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Summary

Giant Cell Arteritis (GCA) is a complex autoimmune vasculitis that affects large arteries

mainly in the elderly population and can lead to severe complications. This work explores

and describes the pathophysiological mechanisms of GCA, studies the side effects of pred-

nisone and the mechanism of action of Tocilizumab using quantitative analysis and in-silico

system biology method, and lastly, presents and evaluates MMPred, a Bioinformatics tool

that incorporates alignment and HLA-II epitope prediction algorithm to predicted autoanti-

gens that could be responsible to post-infection autoimmunity.

This work identified relevant associations between the use of prednisone and known and/or

potential side effects in Real World Data and also investigated further those associations

providing in-silico evidence of proteins that could be involved in the insurgence of these

side effects. Data mining is applied to gene expression data of PBMCs (Peripheral Blood

Mononuclear Cells) revealing a key role for STAT3 and MYC as predictors of response to

Tocilizumab treatment.

At last, the bioinformatics tool MMPred (Molecular Mimicry Predictor) is described, tested,

and applied to two relevant test cases in which a relation between viral infection and the

insurgence of autoimmune diseases is known. While a statistical evaluation of the tool is

limited by data availability, the analysis suggests the capability of the tool to identify bi-

ologically relevant autoantigens that could trigger the autoimmune response in the context

of SARS-CoV-2 and Varicella Zoster Virus infections. In the first case, an interesting sim-

ilarity between the human Helicase MOV10 and the NSP13 protein from SARS-CoV-2 is

identified and described. In the second instead, the VZV protein 66 shows a high degree of

similarity with many human proteins, among which KIT and SYK which are predicted to

have strong functional relation with the early stage of inflammation and the dysfunction of

immune checkpoints in Giant Cell Arteritis, and the proteins MAPK3 and MAPK1 which

are known to related to the process of vascular occlusion in Giant Cell Arteritis.
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Chapter 1

Introduction

1.1. Giant Cell Arteritis

Giant Cell Arteritis (GCA) is the most common granulomatous systemic vasculitis in people

over the age of 50, reporting a peak between 70-80 years [Kuret et al., 2019, Terrades-Garcia

and Cid, 2018]. This disorder appears predominantly in Caucasian individuals, showing more

affectation in the female population. The risk of suffering from GCA for women is 1% whereas

for men is 0.5% during their life time [Al-Mousawi et al., 2019]. An annual incidence range of

GCA has been estimated between 1.1 to 32.8 cases per 100 000 individuals of both sex with

50 years or more [Terrades-Garcia and Cid, 2018, Al-Mousawi et al., 2019].

GCA is a systemic autoimmune disorder that typically affects medium and large vessels, with

a special tropism for the aorta branches, carotid and vertebral arteries. This disorder can lead

to occlusive granulomatous vasculitis with transmural infiltrate containing multinucleated

giant cells, where the temporal artery is commonly involved. This scenario can lead to severe

complications such as blindness or cerebrovascular events [Al-Mousawi et al., 2019].

Giant Cell Arteritis is characterized by chronic inflammation of large arteries, such as the

aorta and the carotid arteries and its extra-cranial branches, which may lead to severe clin-

ical sequelae if not treated promptly, including vision loss, scalp and tongue necrosis, aortic

dissection/rupture, and cerebral infarction [Unizony and Kermani, 2018, Dinkin and John-

son, 2021]. Giant Cell Arteritis is best understood as an inflammatory vascular syndrome

with features of cranial and/or large-vessel vasculitis, systemic inflammation, and polymyal-

gia rheumatica (PMR), which frequently overlap [Dejaco et al., 2017]. Histopathology and

immunopathology studies reveal inflammation of the artery wall with predominance of CD4+

T lymphocytes and macrophages, which frequently undergo granulomatous organization with

formation of giant cells [Cid et al., 1989]. Inflammation-induced vascular remodeling leads

to intimal hyperplasia and lumen occlusion, the source of the ischemic complications of the

6



disease [Dejaco et al., 2017, Cid et al., 1989].

1.1.1. Symptoms

Symptoms include fever, fatigue, headache, visual impairment, pain in the jaw and tongue,

and aggravation of pain by cold temperatures. Furthermore, symptoms include general signs

of vascular occlusion, such as headache, mandibular pain, and stroke [Ness and Nölle, 2024].

1.1.2. Clinical Diagnosis

The presence of giant cells in a temporal artery biopsy specimen is strongly suggestive of

GCA and giant cells are probably the most carefully sought feature when GCA is suspected.

However, the frequency with which giant cells are identified is substantially lower than the

name of the disease suggests [Parker et al., 1975, Lie, 1996, Zhou et al., 2009]. In some cases,

multiple cuts of an artery are necessary to identify giant cells, and giant cells are not detected

in around 2% of clinically diagnosed cases of GCA [Regan et al., 2002]. In the absence of

giant cells, more subtle histopathological changes must suffice as clues to possible presence

of GCA [Stacy et al., 2011, Banz and Stone, 2018].

People with symptoms are diagnosed by biopsy of cranial artery. In this case the markers

of GCA are the destruction of the external muscular layer and the narrowing of the internal

part due to hyperplasia/fibroplasia [Farina et al., 2023].

Other markers of GCA include Erythrocyte sedimentation rate ≥ 50mm/hour, anemia and

inflammation markers [Maz et al., 2021]. Immune signals are more dramatic compared to

other inflammatory diseases, with high levels of IL-6 detected in all patients [Cid, 2014],

making IL-6 this the main molecular marker of the disease.

1.1.3. Etiology

The causes of GCA remain unknown. While antigen has been suspected to function as a

trigger of intramural inflammation, more recent data point towards defects in the thresh-

old setting of the immune system, leading to unopposed T-cells activation in the vessel wall

[Maleszewski et al., 2017]. Vascular inflammation is tightly linked to dysfunctional immune

checkpoints. Therefore, it is not surprising that inhibition of immune checkpoints in the con-

text of cancer immunotherapy may lead to vasculitis (Immune Checkpoint Inhibitor-induced

vasculitis) [Melissaropoulos et al., 2020].

1.2. Pharmacological treatment of Giant Cell Arteritis

1.2.1. Prednisone and its side effects

Prednisone is a synthetic glucocorticoid that plays a crucial role in the management of various

inflammatory and autoimmune conditions because of its anti-inflammatory and immunosup-

7



pressive properties. As a corticosteroid, it mimics the effects of cortisol, a hormone produced

by the adrenal glands, which is vital for regulating metabolism, immune response, and stress

reactions [Puckett et al., 2023].

Upon administration, prednisone is metabolized in the liver to its active form, prednisolone,

which exerts its effects by binding to glucocorticoid receptors within cells. This binding leads

to alterations in gene expression that ultimately reduce inflammation and modulate immune

responses [Puckett et al., 2023].

The mechanism of action involves several pathways: prednisone decreases the migration of

leukocytes to sites of inflammation, reverses increased capillary permeability, and inhibits

the production of pro-inflammatory cytokines. These actions contribute to the alleviation of

symptoms associated with various conditions such as asthma, rheumatoid arthritis, lupus,

inflammatory bowel disease, and certain cancers [Puckett et al., 2023]. The rapid onset of

action—often within hours—makes prednisone a preferred choice for acute exacerbations of

chronic conditions.

After its discovery in 1950 by Arthur Nobile [Nobile, 1994], prednisone is still widely used

nowadays to treat allergic, dermatologic, gastrointestinal, hematologic, ophthalmologic, ner-

vous, renal, respiratory, rheumatologic, infectious, endocrine, or neoplastic conditions as well

as in organ transplant [U.S. Food and Drug Administration, 2013]. It is in fact the first

treatment used when Giant Cell Arteritis is diagnosed [Fraser et al., 2008].

However, prednisone users have a high risk of showing various kinds of side effects. The side

effects can range from mild to severe and include weight gain, hypertension, osteoporosis,

increased susceptibility to infections, mood changes, alterations of blood levels of lipids and

glucose to gastrointestinal, cardiovascular, cardiac, dermatological, ophthalmological side ef-

fects. Long-term use can lead to adrenal suppression due to feedback inhibition on the

hypothalamic-pituitary-adrenal (HPA) axis [Oray et al., 2016].

1.2.2. Tocilizumab, a new frontier in the treatment of GCA

Despite advances in understanding its pathogenesis and the advent of glucocorticoids as a

cornerstone of treatment, managing GCA remains a clinical conundrum marked by relapses,

glucocorticoid-related adverse events, and refractory disease courses [Maleszewski et al., 2017,

Opris, -Belinski et al., 2024, Ness and Nölle, 2024].

In recent years, the emergence of targeted immunomodulatory agents such as Tocilizumab

represents a new era in the management of GCA (DrugBankID: DB06273) [Opris, -Belinski

et al., 2024, Régent and Mouthon, 2022, Nepal et al., 2023].

Tocilizumab, a humanized monoclonal antibody, has emerged as a pivotal therapeutic agent
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in the management of various autoimmune and inflammatory diseases. Tocilizumab was first

produced in the late 1990s when researchers at Osaka University identified IL-6 as a critical

mediator of inflammation. Following its discovery, Chugai Pharmaceuticals initiated clinical

trials that culminated in the drug’s approval by the FDA in January 2010 for RA treatment

[Preuss CV, 2024]. Since then, ongoing research has expanded its indications significantly.

Initially developed for rheumatoid arthritis (RA), its applications have expanded significantly,

particularly in response to the global health challenges posed by conditions such as cytokine

release syndrome (CRS) and COVID-19 [Schett et al., 2020, Kishimoto, 2021]. In the last

years, has demonstrated remarkable efficacy in refractory GCA, offering a corticosteroid-

sparing alternative and achieving sustained disease remission [Calderón-Goercke et al., 2019].

Its ability to down-regulate the IL-6-driven inflammatory cascade not only mitigates acute

symptoms but also attenuates vascular inflammation and reduces the risk of relapse, making

it a promising treatment in GCA [Regola et al., 2020].

Tocilizumab functions as an interleukin-6 (IL-6) receptor antagonist. IL-6 is a pro-inflammatory

cytokine that plays a crucial role in the immune response and is implicated in the pathogen-

esis of several autoimmune diseases. By binding to both soluble and membrane-bound IL-6

receptors, tocilizumab effectively inhibits IL-6 from exerting its inflammatory effects on tar-

get cells, including hepatocytes and synovial fibroblasts. This blockade results in decreased

production of acute-phase reactants such as C-reactive protein (CRP) and fibrinogen, which

are markers of inflammation and consequently help mitigate the inflammatory processes that

characterize GCA [Sebba, 2008].

1.3. Molecular Mimicry and Autoimmune Diseases

Epidemiological, clinical, and experimental evidence support the association between infec-

tions and autoimmune diseases (AIDs) for a variety of conditions, e.g. Rheumatoid Arthritis,

Lupus Erythematosus Systemic and Diabetes type I [Seyyed Mousavi et al., 2017, Knight

et al., 2021, Ehrenfeld et al., 2020, Bergamin and Dib, 2015, Starshinova et al., 2022, Yeung

et al., 2011, Gómez-Rial et al., 2020].

Based on this relation the concept of ”Molecular Mimicry” has been proposed as one of

the many factors that could induce autoimmunity [Damian, 1964, Kaplan and Meyeserian,

1962]. Molecular mimicry occurs when the similarity between host and pathogen could trigger

an immune response against self-antigen, due to the incapability of the immune system to

discriminate between self and non-self [Peterson and Fujinami, 2007, Tam et al., 2007].

1.3.1. GCA and the Relation with Varicella Zoster Virus

While the exact etiology of GCA remains uncertain, recent studies have investigated the

potential role of Varicella Zoster Virus (VZV) as a trigger for the disease.
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VZV is unique among human viruses for its ability to replicate in arteries and cause vascular

disease. It is well-established that VZV can lead to vasculopathy in intracerebral arteries,

characterized by granulomatous arteritis, a pathology also seen in GCA [Gilden and Nagel,

2016]. This similarity has prompted researchers to investigate whether VZV infection could

also be linked to GCA.

Immunohistochemical analyses have consistently detected VZV antigens in a significant pro-

portion of GCA-positive temporal arteries (TAs). For instance, VZV antigen was found in

70% of GCA-positive TAs and 58% of TAs negative for GCA pathology but with clinical

features of GCA, compared to only 18% in normal TAs [Amlie-Lefond and Gilden, 2016].

The presence of VZV antigen primarily in the adventitia of affected arteries suggests that

inflammation might follow VZV reactivation from ganglia, supporting the hypothesis that

VZV could be a contributing factor to GCA.

Several epidemiological studies have examined the association between VZV events and the

incidence of GCA. One study reported that complicated and uncomplicated VZV was asso-

ciated with an increased risk of developing GCA, with hazard ratios of approximately 2.0

and 1.4, respectively, in large cohorts [England et al., 2017]. Another study found that

prior infections, including HZ, were modestly associated with incident GCA, indicating that

long-standing immune alterations might increase susceptibility to GCA [Rhee et al., 2017].

While there is considerable evidence suggesting that VZV may play a role in the pathogenesis

of GCA, this relationship is not unequivocally established. The detection of VZV antigens

in GCA-affected tissues supports the hypothesis that VZV reactivation could trigger the

inflammatory cascade seen in GCA. However, contradictory findings and methodological

challenges highlight the need for further research to definitively clarify the role of VZV in

GCA.

1.3.2. The Varicella Zoster Virus

Varicella Zoster Virus (VZV) is a double-stranded DNA virus from the Herpesviridae family,

it presents its symptoms in the form of chickenpox (varicella) and shingles (herpes zoster)

when reactivated. After initial infection, which occurs typically in childhood, VZV establishes

latency in the sensory ganglia. The reactivation, often occurring in older adults or those

with weakened immune systems, leads to herpes zoster, a painful rash that can result in

complications such as postherpetic neuralgia [Khalil et al., 2015].

VZV entry into host cells is facilitated by multiple glycoproteins on its envelope, including gB,

gE, and gH, which mediate attachment and membrane fusion with host cells. Glycoprotein

E (gE) is particularly significant, as it interacts with various cellular receptors to enable

viral spread and persistence. Upon entry, VZV navigates to the nucleus, where its genome

replicates and viral proteins are synthesized [Olson et al., 1997]. Once inside the cell, VZV
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utilizes cell-to-cell spread mechanisms, which allow it to bypass extracellular space and evade

certain immune defenses. Studies have shown that gE pairs with gI to form a complex that

promotes efficient cell-to-cell spread, especially within neurons and epithelial cells [Oliver

et al., 2020].

VZV has evolved mechanisms to avoid detection and elimination by the immune system,

contributing to its ability to establish lifelong latency and episodic reactivation. A primary

strategy involves glycoprotein E (gE) binding to the Fc region of host IgG, thereby inhibiting

antibody-mediated neutralization [Abendroth et al., 2010]. Additionally, VZV downregulates

major histocompatibility complex class I (MHC-I) molecules on infected cells, reducing recog-

nition by cytotoxic CD8+ T cells. This allows VZV to persist without significant immune

clearance. Furthermore, the virus modulates local immune responses through the upregu-

lation of anti-inflammatory cytokines such as interleukin-10 (IL-10), which dampens local

inflammation and immune activity [Abendroth and Arvin, 2001].

After primary infection, VZV establishes latency primarily in the cranial, dorsal root, and

autonomic ganglia. During this period, the virus remains in a quiescent state with limited

transcriptional activity, which helps it evade immune surveillance. Key latency-associated

transcripts (LATs) are expressed at low levels, maintaining the viral genome in an episomal

form without producing infectious virions [Zerboni et al., 2014]. Reactivation, often triggered

by stress, aging, or immunosuppression, leads to viral replication and the spread of VZV along

sensory nerves, resulting in the clinical manifestations of herpes zoster.

There is growing evidence to suggest that VZV may play a role in the pathogenesis of certain

autoimmune diseases, possibly through molecular mimicry. Molecular mimicry occurs when

viral antigens resemble host proteins closely enough to trigger an autoimmune response.

For example, the structural similarity between VZV antigens and self-antigens may lead to

cross-reactive T cells that attack host tissues. This mechanism has been implicated in VZV-

associated vasculitis and may explain the virus’s association with Giant Cell Arteritis and

other inflammatory diseases of the blood vessels [Maguire et al., 2024, Ishihara et al., 2024,

Abendroth and Arvin, 2001].

1.4. Predicting Molecular Mimicry

1.4.1. The variability of the Human Leukocyte Antigen (HLA) locus and

its relation with autoimmunity

The Human Leukocyte Antigen (HLA) locus is part of the major histocompatibility complex

(MHC). It spans approximately 4 megabases on chromosome 6 and includes several classes

of genes, notably HLA class I (e.g., HLA-A, HLA-B, HLA-C) and class II (e.g., HLA-DRB1,

HLA-DQB1, HLA-DQA1). It is known for its extensive genetic variability, which plays a

critical role in immune response and susceptibility to autoimmune diseases [Carapito et al.,

11



2016, Dholakia et al., 2022].

These genes a show many different alleles within the population [Pierini and Lenz, 2018],

and while their polymorphism allows for a wide range of antigen presentation capabilities, it

also complicates the genetic landscape associated with autoimmune diseases [Dholakia et al.,

2022].

Numerous studies have established strong associations between specific HLA alleles and vari-

ous diseases. According to Dholakia et al. around 144,000 studies pairing 28,320 HLA alleles

with different diseases, among which autoimmune diseases. For example Diabetes type I is

linked to the variants DRB1*04:01 and DQA1*03:01 [Berryman et al., 2023, Krishna et al.,

2024], Rheumatoid Arthritis is instead related to alleles of HLA-DRB1 [Matzaraki et al., 2017,

Debebe et al., 2020]. Interestingly Giant Cell Arteritis is known to be related to HLA-II allele

DRB1*04:01 [Prieto-Peña et al., 2021].

1.4.2. The mechanisms of action relating HLA to autoimmune diseases

The mechanisms by which HLA variability contributes to autoimmune diseases are different

and can be summarized as follows:

• 1. Altered Antigen Presentation

HLA molecules are responsible for presenting peptides (including self-peptides) to T

cells. Variability in HLA genes can lead to differences in how these peptides are pre-

sented, which may trigger autoimmune responses. For example, as been demonstrated

that HLA alleles associated with rheumatoid arthritis (RA) expose citrullinated pep-

tides more effectively, potentially activating autoreactive T cells and initiating or wors-

ening the disease [Miyadera and Tokunaga, 2015].

• 2. Genetic Polymorphism and Linkage Disequilibrium

The high degree of polymorphism within the HLA locus results in a diverse array

of haplotypes that can influence susceptibility to various autoimmune conditions. This

genetic variability complicates the identification of specific causal variants due to linkage

disequilibrium, where alleles at different loci are inherited together more often than

expected by chance [Berryman et al., 2023, Krishna et al., 2024]. The combination of

these factors contributes to the complex patterns of disease associations observed in

autoimmune disorders.

• 3. Influence of Gut Microbiome

Recent research suggests that HLA variability may interact with gut microbiota, in-
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fluencing immune responses and contributing to autoimmunity. An imbalance in gut

microbiome has been linked to increased expression of HLA class II molecules, which

can exacerbate systemic inflammation and further alter the gut microbiome composition

[Berryman et al., 2023]. This relationship between HLA variability, gut microbiome,

and autoimmune disease is still poorly explored but could unveil novel mechanism by

which the autoimmune diseases arises.

• 4. Systemic Inflammation and Immune Activation

Certain HLA haplotypes have been associated with systemic inflammation, which may

precede the onset of autoimmune diseases. This systemic inflammation is thought to

create an environment favoring the development of autoimmunity [Berryman et al.,

2023].

• 5. Molecular Mechanisms and Pathophysiology

The molecular mechanisms underlying HLA-associated autoimmunity include specific

amino acid variations within the peptide-binding grooves of HLA molecules. These

variations can affect how well self-peptides are presented, potentially leading to inap-

propriate immune responses against the body’s own tissues [Pavlos et al., 2017].

1.4.3. Epitopes

Epitopes are critical triggers of the immune response, as they are the specific parts of the

antigen that bind to receptors of the Immune system. The epitope interacts both with HLA-

I and HLA-II, B-cells, and T-cells [Wieczorek et al., 2017, Collesano et al., 2024, Sadegh-

Nasseri, 2016].

HLA Class I molecules primarily present epitopes derived from intracellular proteins, typically

8 to 14 amino acids in length. These epitopes are recognized by CD8+ cytotoxic T cells.

The binding of peptides to HLA Class I is highly selective, with specific anchor residues at

defined positions (such as the second and last residues) being crucial for stable binding. This

interaction is essential for the immune system to monitor and eliminate infected or malignant

cells [Wieczorek et al., 2017].

In contrast, HLA Class II molecules present longer peptides (typically 12 to 25 amino acids)

derived from extracellular proteins, which are processed by antigen-presenting cells (APCs).

These epitopes are recognized by CD4+ helper T cells. The binding mechanism for HLA

Class II is more flexible, allowing for multiple anchor points along the peptide chain, which

facilitates the presentation of a broader range of epitopes [Wieczorek et al., 2017, Collesano

et al., 2024].
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The interaction between T cell receptors (TCRs) and peptide-HLA (pHLA) complexes is

fundamental for T cell activation. Epitopes must be presented in a stable form by HLA

molecules for effective recognition by T cells, which subsequently leads to an adaptive immune

response [Sadegh-Nasseri, 2016].

1.4.4. Epitope Prediction Algorithms

Epitope prediction algorithms are essential tools in the fields of immuno-informatics, enabling

researchers to identify potential epitopes that can elicit immune responses. These algorithms

couple machine learning and bioinformatics techniques to analyze protein sequences and/or

structures in order to predict which segments of a pathogen’s or human protein could trigger

an immune response [Yan et al., 2024].

Epitope prediction algorithms can be broadly categorized into two main types: sequence-

based methods and structure-based methods.

• Sequence-based methods: These algorithms utilize the amino acid sequences of

proteins to predict epitopes. Among which (i) Motif Search-Based Approaches: these

methods identify specific patterns or motifs within protein sequences that are associated

with epitope recognition, (ii) Machine Learning Approaches: apply mainly Artificial

Neural Networks (ANN) trained on known epitope datasets to learn predictive features

[Vita et al., 2019]. (iii) Statistical Methods: Techniques like propensity scales assess

the likelihood of amino acids forming epitopes based on their physical and chemical

properties, such as hydrophilicity and flexibility [Yurina and Adianingsih, 2022].

• Structure-based methods: These approaches focus on the three-dimensional struc-

tures of proteins to predict epitopes. (i) Molecular Docking : This technique simulates

how peptides bind to Human Leukocyte Antigen (HLA) molecules, providing insights

into potential T-cell epitopes [Ramana and Mehla, 2020]. (ii) Conformational Epitope

Prediction: Algorithms that utilize spatial data from protein structures to predict dis-

continuous epitopes, which are formed by residues that are not sequentially adjacent

but come together in the folded protein [Yurina and Adianingsih, 2022, Høie et al.,

2024].

Overall, it must be highlighted that the integration of neural network-based machine learning

techniques has enhanced significantly the predictive capabilities of these algorithms [Nilsson

et al., 2023, Junet and Daura, 2021, Collatz et al., 2021, Ivanisenko et al., 2024, Yang et al.,

2024].

Despite significant improvement in epitope prediction algorithms, limitations are still present.

The accuracy of predictions is influenced by the quality of the datasets, their representation

of the epitope universe as a whole, and the variability of the immune responses among indi-

14



viduals in relation to their genetic background [Barra et al., 2024, Yan et al., 2024].

1.4.5. Sequence Alignment & Sequence Database Search Algorithm

Sequence alignment is a fundamental technique in bioinformatics for analyzing the similarities

and differences between protein sequences. Aligning sequences is useful for inferring functional

and evolutionary relationships, identifying conserved regions, and predicting the structure

and function of proteins [Barton, 1998]. Furthermore, sequence alignment is used within

database search algorithms to identify similarities between distinct groups of proteins. In

our case, sequence database search algorithms are used to compare human and microbial

proteomes to identify potential similar peptides under the hypothesis of molecular mimicry

[Altschul et al., 1990, Schäffer et al., 2001, Damian, 1964, Kaplan and Meyeserian, 1962].

Sequence alignment refers to the arrangement of two or more biological sequences (protein or

nucleotide) to identify regions of similarity. These similarities may indicate functional, struc-

tural, or evolutionary relationships between the sequences. Alignments can be classified into

two main types: (i) global alignment, which aligns entire sequences, and (ii) local alignment,

which focuses on aligning the most similar sub-regions of sequences [Barton, 1998].

Pairwise alignment involves comparing two sequences to find the best-matching segments.

This can be achieved through two primary algorithms:

• Global Alignment: The Needleman-Wunsch algorithm is commonly used for global

alignments. It aligns every residue in both sequences from start to finish, maximizing

overall similarity [Needleman and Wunsch, 1970]. This method is ideal for sequences

of similar length.

• Local Alignment: The Smith-Waterman algorithm is utilized for local alignments,

focusing on identifying the most similar segments within the sequences. This approach

is particularly useful when comparing sequences that may differ significantly in length

or composition [Smith and Waterman, 1981].

Multiple sequence alignment extends pairwise alignment techniques to align three or more

sequences simultaneously. This method helps identify conserved motifs across a family of

proteins and can be performed using algorithms such as Clustal [Sievers and Higgins, 2021],

MUSCLE [Edgar, 2004], or FAMSA [Deorowicz et al., 2016]. MSAs are essential for phylo-

genetic analysis, functional prediction, and clustering of protein families.

Sequence alignment provides the basis for identifying similarities between sequences, but

large-scale comparisons require similarity search algorithms. Tools like BLASTP and PSI-

BLAST apply alignment methods to efficiently compare query sequences against protein

databases, focusing on local regions of similarity. In this work, we use these algorithms to
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compare human and microbial proteomes in order to identify similar peptides.

• BLASTP (Basic Local Alignment Search Tool for proteins): performs a straight-

forward comparison of a protein query against a protein database. It identifies regions

of local similarity based on predefined scoring matrices, such as BLOSUM62 [Henikoff

and Henikoff, 1992]. The algorithm operates by first identifying short matches (words)

between the query and database sequences, then extending these matches to find longer

alignments that meet a specified significance threshold [Altschul et al., 1990].

• PSI-BLAST (Position-Specific Iterated BLAST): builds upon the initial BLASTP

search by incorporating iterative refinement. The first iteration of PSI-BLAST is iden-

tical to a standard BLASTP search; however, subsequent iterations utilize a position-

specific scoring matrix (PSSM) derived from the sequences identified in the previous

round. This PSSM allows PSI-BLAST to capture more subtle patterns of similarity

that may not be detected in a single BLASTP run [Schäffer et al., 2001].

One of the primary advantages of PSI-BLAST over BLASTP is its increased sensitivity for

detecting distant homologs. By iteratively refining the scoring matrix based on the most

significant hits from previous searches, PSI-BLAST can uncover relationships between se-

quences that may be too weak to be identified by a single BLASTP search. This iterative

process enables PSI-BLAST to find biologically relevant similarities that would otherwise

remain hidden. For example, studies have shown that PSI-BLAST can identify more distant

evolutionary relationships due to its ability to leverage information from multiple aligned

sequences, making it particularly useful in cases where sequence conservation is low but

functional similarities exist.

In BLASTP, the scoring is based on static substitution matrices that do not adapt throughout

the search process. This can limit its ability to accurately score alignments involving divergent

sequences. In contrast, PSI-BLAST dynamically generates a PSSM after each iteration,

which reflects the specific amino acid composition and conservation patterns observed in

the aligned sequences from previous iterations. This adaptability enhances the accuracy of

scoring and alignment for subsequent searches. Moreover, PSI-BLAST allows users to set

different expectation values for each iteration, enabling finer control over the sensitivity of

the search process. This flexibility can be crucial when exploring databases with varying

levels of sequence divergence.

While PSI-BLAST offers enhanced sensitivity, it may require more computational resources

due to its iterative nature. Each iteration involves recalculating alignments and updating the

PSSM, which can increase processing time compared to a single BLASTP search. However,

this trade-off is often justified by the improved detection of relevant homologs in complex

datasets.
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1.4.6. Molecular Mimicry Predictor, MMPred

Epidemiological, clinical, and experimental evidence supports the association between infec-

tions and autoimmune diseases, with molecular mimicry proposed as one of the key mech-

anisms underlying this relationship [Oldstone, 1998, Rojas et al., 2018]. Identifying or pre-

dicting epitope mimicry events could therefore serve as a valuable clinical tool. From a

theoretical standpoint, predicting peptide mimicry involves identifying similarities between

self and exogenous proteins [Doxey and McConkey, 2013] and predicting their recognition by

the immune system [Rojas et al., 2018]. In this context, bioinformatics can provide valuable

insights through the application of sequence alignment and epitope-prediction algorithms,

particularly for Human Leukocyte Antigen (HLA) epitopes [Caron et al., 2015, Wang et al.,

2010]. To our knowledge, CRESSP [An et al., 2022] is the only tool currently integrating and

streamlining both sequence alignment and epitope prediction. However, CRESSP primarily

focuses on B-cell epitopes. Although the SARS-CoV-2 study by An et al.included HLA class

II epitopes as well, the actual tool (https://pypi.org/project/cressp/) only incorporates

HLA class I epitope predictions, as provided by MHCflurry [O’Donnell et al., 2020].

Here, we present the program MMPred (Molecular Mimicry Predictor), a tool that integrates

sequence alignment and HLA class II epitope-prediction algorithms into a single pipeline. The

tool is designed to be flexible, user-friendly, and amenable to non-expert use, requiring as sole

inputs the fasta files for the exogenous (query) and endogenous (target) protein (or peptide)

sets and a list of HLA alleles of interest to perform the predictions for. The application

of sequence alignment is optional, and if used, the two sets of sequences are compared and

epitope prediction is applied to those target sequences that show a significant alignment

with query sequences. The tool is an extension of CNN-PepPred [Junet and Daura, 2021],

and offers the possibility to include predictions from NetMHCIIpan4.1, both with the BA

(trained on binding affinities) and EL (trained on eluted ligands) models [Reynisson et al.,

2020]. The tool is programmed in such a way that additional predictors, including HLA class

I epitope predictors, can be added with minimal effort. The alignments can be performed

with BLASTP [Altschul et al., 1990] or by means of a position-specific scoring matrix (PSSM)

with PSI-BLAST [Schäffer et al., 2001].
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Chapter 2

Objectives

• 1. Provide a molecular description of the pathophysiology of Giant Cell

Arteritis through a systematic review of published literature, to utilize this

information within a systems biology framework.

Giant Cell Arteritis (GCA) is an autoimmune disease marked by inflammation in large

arteries, predominantly affecting the elderly population. Despite significant advance-

ments in the understanding of the disease, a detailed molecular description of the disease

is not available. Through a systematic review of recent scientific literature, this work

aims to gather data on causative and symptomatic motifs related to GCA. The knowl-

edge gathered in this way will be applied within systems biology analyses in other parts

of this thesis.

• 2. Evaluate the adverse effects associated with prednisone use by analyzing

real-world data from the NHANES database, and propose molecular hy-

pothesis to further understand the underlying mechanisms.

Prednisone, a synthetic glucocorticoid, is widely used in managing GCA due to its

anti-inflammatory and immunosuppressive properties. However, its prolonged use is

associated with a range of side effects, which can have severe consequences, especially

for older adults. Given the absence of GCA-specific data in the NHANES database,

this objective employs a proxy-based approach, analyzing prednisone’s impact on pop-

ulations with similar inflammatory conditions (e.g., asthma, rheumatoid arthritis, and

chronic obstructive pulmonary disease). The study aims to quantify the association

between prednisone and the insurgence of side effects within these populations using

odds ratio analysis and logistic regression, controlling for confounding variables. When

significant associations are identified, system biology analysis is applied to investigate

the underlying molecular mechanisms.

• 3. Examine the effect of Tocilizumab mining gene expression data produced
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from ex-vivo models of PBMCs (Peripheral Blood Mononuclear Cells) from

GCA patients, and use system biology method to explore its mechanism of

action.

Tocilizumab, an IL-6 receptor antagonist, has emerged as a promising treatment option

for GCA, offering a potential glucocorticoid-sparing alternative. Supervised and unsu-

pervised analyses are used to identify molecular markers of response and to stratify the

population under study. Furthermore, the GCA molecular description is used within

system biology analysis to further understand the mechanism of action of Tocilizumab.

• 4. Develop and validate MMPred, a bioinformatics tool designed to predict

autoantigens based on molecular mimicry, applying it to study the associa-

tion between infectious agents and autoimmune conditions.

Molecular mimicry, where structural similarities between microbial and host proteins

trigger an autoimmune response, is a hypothesized mechanism for GCA onset, poten-

tially linked to infections like Varicella Zoster Virus (VZV). MMPred is a novel tool

that explores molecular mimicry by integrating epitope prediction and sequence align-

ment algorithms. In this part of the work, MMpred is presented, tested, and applied to

SARS-CoV-2-related autoimmune diseases, and to explore the relation between Vari-

cella Zoster Virus infection and the insurgence of GCA.

19



Chapter 3

Methods

3.1. System Biology Analysis

In subsection 3.3.4 and subsubsection 3.5.4 of this work a system biology analysis is performed

to quantify the functional relation between a certain protein and a pathophysiological motifs.

This approach, detailed in [Segú-Vergés et al., 2022], evaluates the likelihood of a func-

tional relationship between a given protein and a set of proteins based on their connections

within a model of the human protein network. The underlying algorithm employs a super-

vised machine-learning technique, specifically Artificial Neural Networks (ANNs), trained on

a large dataset comprising pharmacological drug targets and molecular descriptors of clini-

cal phenotypes —such as drug indications and adverse effects– from the Biological Effector

Database (BED, [Jorba et al., 2020]) compiled by the authors.

In BED, each condition (e.g., giant-cell arteritis) is characterized by a list of motifs (e.g.,

dysfunction of immune checkpoints), and each motif is linked to a set of proteins that map

to a specific subgraph within the network. The training objective of the ANNs is to correctly

associate drug targets with their respective clinical conditions. The resulting score, S, repre-

sents the probability that a given relationship is a true positive, expressed as a percentage,

to which is associated a p − value. Here, a ”relationship” refers to a scenario where a per-

turbation of one element (e.g., a drug target) leads to an observable perturbation in another

(e.g., a clinical condition).

Although the algorithm was originally trained on drug targets, it is designed to assign proba-

bilities to the association of any node within a protein network with a specific subgraph. Since

the propagation of perturbations or signals between proteins operates on the same principles

regardless of whether the context involves drug targets or other protein types, the algorithm

can calculate the probability of a relationship between any protein in the network, and any
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clinical conditions annotated in the network, such as autoimmune diseases.

Two protein networks, or topologies, are available for the ANNs. In one of them, the func-

tional associations are based on experimental evidence; in the other, they are based on infer-

ence and computed using a variety of resources (protein-protein interactions, gene expression,

etc.). In these experiments, the analysis is run for both topologies and the largest score is

taken, or a lower p-value is taken based on the purpose of the analysis. This analysis is

performed both in subsection 3.3.4 and in subsubsection 3.5.4. The score S for a given

protein-condition/motif pair may be zero when the protein is not present in the network or

no possible association is found for the pair. In such a case, the pair is removed from the

analysis.

3.2. GCA molecular description

GCA was molecularly characterized through manual curation of the current scientific liter-

ature regarding Giant Cell Arteritis pathophysiology. The information found has been used

to perform system biology analysis. The characterization consists of the following protocol.

First, a search for reviews on the last 10 years on the molecular pathogenesis and pathophysiol-

ogy of the condition was performed in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/)

on date October 7th, 2020. The specific search was as follows:

• (” Giant cell arteritis ” [Title] OR ”GCA” [Title] ) AND (”molecular”[Title/Abstract] OR

”pathogenesis”[Title/Abstract] OR ”pathophysiology”[Title/Abstract])

• (” Giant cell arteritis ” [Title] OR ”GCA” [Title] ) AND (”molecular”[Title/Abstract] OR

”genetics”[Title/Abstract] OR ”aneurism”[Title/Abstract] OR ”inflamation”[Title/Abstract]

OR ”remodelling”[Title/Abstract] OR ”angiogenesis”[Title/Abstract] OR ”occlusion”[Title/Abstract])

The abstracts of the publications identified in this search were retrieved and assessed at the

title and abstract level, and if molecular information describing the condition pathophysiology

was found, the full texts were thoroughly reviewed seeking to identify the main pathophysi-

ological processes known to be involved in this condition. These processes are referred to as

’motifs’ and can be classified into two levels, depending on their involvement in the pathology:

• Causative (C): Motifs are directly related to the onset or pathophysiology of the con-

dition characterized.

• Manifestative (M): Motifs that are a consequence of the pathology.

Subsequently, each pathophysiological process has been further characterized at protein level.

The publications retrieved were reviewed in order to identify protein/gene candidates to
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be effectors of the condition, i.e., proteins whose activity (or lack thereof) is functionally

associated with the development of the condition. If the evidence of the implication of a

candidate in the condition was judged not consistent enough to be assigned as an effector,

an additional PubMed search was performed specifically for the candidate, including all the

protein names according to UniProtKB; e.g.:

(”Giant Cell Arteritis”[TITLE] OR ” Granulomatous Vasculitis”[TITLE]) AND (”Interleukin-

1 beta” [TITLE/ABSTRACT]) OR ”IL1B” [TITLE/ABSTRACT] OR ”IL-1 beta” [TI-

TLE/ABSTRACT] OR ”IL1F2” [TITLE/ABSTRACT] OR “Catabolin” [TITLE/ABSTRACT])

If novel candidates were identified in this phase, they were included as effectors following the

same criteria and protocol.

3.3. The side-effects of Prednisone

3.3.1. NHANES Database Collection

Each individual in the continuous NHANES (1999-2018) [National Center for Health Statistics

(NCHS), 2024] has been mapped to a new system of variables describing conditions/symptoms,

drug prescription, demographic and anthropomorphic information (ethnicity, sex, age, body

mass index (BMI)). Although there are specific variables in NHANES that map directly to

these concepts, there are other variables that can also map to them, e.g. total cholesterol

[mg/dl] > 240 to hypercholesterolemia. The 67 different NHANES variables used for the

study are shown in Table 7.3. Different entries have been mapped to standardized terms,

Drug Names for drugs, and BED (Biological Effectors Database) terms for clinical conditions.

BED, is a hand-curated database from ANAXOMICS Biotech that relates clinical conditions

to their molecular effectors [Jorba et al., 2020]. The terms for clinical conditions in BED

are based on MESH vocabulary (Medical Subject Headings). BED version used for this

study contained 302 clinical conditions, the full list of NHANES variables used is reported in

Table 7.3, and the query for the translation from NHANES to BED is reported in Table 7.4.

The resulting extract from 1999 to 2018 contains 101316 individuals described by demographic

and anthropometric information (AGE, SEX, BMI, and ethnicity), medical conditions, and

drugs used. Apart from demographic information, the rest of the data is treated as binary

(0/1). Due to the high presence of missing data on medical conditions variable in the first

years of NHANES, we used as the basis for this study only the individuals from 2013 to 2018,

resulting in 29400 individuals, 101 different medical conditions, and 1517 different drugs.

We have further labeled the clinical conditions in terms of the relation they have with pred-

nisone treatment if any with four annotations.

• IND: when the term is a condition or symptom for which the drug could be indicated
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• SE: when the term is a known side-effect of the drug

• UNK: when there is neither an indication nor a side-effect

• BOTH: when the term can be both a side effect and an indication.

The references for the annotation of the indication are extracted from DrugBank [Online,

2024] prednisone code DB00635 while for the side effect are extracted from SIDER 4.1 [Kuhn

et al., 2016], the annotations are shown in Table 7.5.

3.3.2. Statistical Analysis

To evaluate the association between prednisone-use and medical conditions, we used the odds

ratio (OR) [Szumilas, 2010].

To evaluate the association between a certain condition Y and the use of prednisone, the

odds ratio OR is computed by means of multivariate logistic regression. Given a population,

it is first split in two: Y + represents the population showing the condition Y , while Y −

represents the population not showing it. The analysis includes confounding variables in the

model (age, sex, BMI, ethnicity) along with prednisone use.

Considering the logistic model:

p(Y +) =
exp(β0 + βpxp + β1x1 + · · · + βmxm)

1 − exp(β0 + βpxp + β1x1 + · · · + βmxm)
(3.1)

where p(Y +) is the probability of condition Y appearing, β0 is the intercept, xp is the variable

for prednisone {0,1}, βp is its regression coefficient, and x1, . . . , xm are confounding variables

with their regression coefficients β1, . . . , βm.

Define p0 as the probability of having condition Y in the presence of prednisone, and p1 the

probability in its absence:

p0 = p(Y +|xp = 0) =
exp(β0 + β1x1 + · · · + βmxm)

1 − exp(β0 + β1x1 + · · · + βmxm)
(3.2)

p1 = p(Y +|xp = 1) =
exp(β0 + βp + β1x1 + · · · + βmxm)

1 − exp(β0 + βp + β1x1 + · · · + βmxm)
(3.3)

Applying the logit transformation:

log

(
p1

1 − p1

)
= β0 + βp + β1x1 + · · · + βmxm (3.4)
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log

(
p0

1 − p0

)
= β0 + β1x1 + · · · + βmxm (3.5)

Exponentiating these, we get:

p1
1 − p1

= exp(β0 + βpxp + β1x1 + · · · + βmxm) (3.6)

p0
1 − p0

= exp(β0 + β1x1 + · · · + βmxm) (3.7)

The odds ratio OR is defined as:

OR =

p1
1−p1
p0

1−p0

=
exp(β0 + βp + β1x1 + · · · + βmxm)

exp(β0 + β1x1 + · · · + βmxm)
= exp(βp) (3.8)

The lower bound lb(OR) and upper bound ub(OR) of the OR for prednisone are computed

according to the Wald test [A., 2002]. An association is considered significant if lb(OR) > 1

at a confidence level α < 0.05.

3.3.3. Homogenization of Population Datasets

To analyze the OR of different medical conditions between prednisone users and non-users,

we addressed the large imbalance between the populations (232 vs. 29168). To correct for

this, we sampled the non-prednisone population by selecting subsets with a size four times

that of the prednisone group, while ensuring homogeneity in terms of age, gender, BMI, and

ethnicity. Weighted random sampling [E., 1997] was used to select population subsets. The

OR was calculated across different subsets, repeated Nrep times, and averaged. Since OR is

lognormally distributed, the mean OR can be computed as:

OR(X) = exp

 1

Nrep

Nrep∑
n=1

log(OR(X))

 (3.9)

The same method estimates the average lower and upper bounds lb(OR) and ub(OR). Nrep

was set to 500. We calculated the OR between prednisone-use and medical conditions in

four sets of individuals with the scope to have more homogeneus subpopulation in terms of

conditions and comorbidities:

• Overall: all the 29400 Individuals extracted from NHANES.

• RA: set of 866 individuals with Rheumatoid Arthritis.
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• COPD: set of 672 individuals with Chronic Obstructive Polmunary Disease.

• AS: set of 2585 individuals with Asthma.

Summary statistics describing the 4 populations with all the individuals are shown in Table 3.1

and in Figure 3.1.

Populations Individuals (N)
Ethnicity (%) SEX (%)

Prednisone (%)
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Overall 29,400 17 22 34 10 17 49 51 0.8

PREDN 232 11 23 39 12 15 40 60 100

RA 866 15 28 35 12 10 42 58 6.3

COPD 672 4 18 65 5 9 53 47 6.5

AS 2,585 12 30 35 10 13 44 56 2.2

Table 3.1: Populations and Prednisone Use Statistics

Figure 3.1: Graphical representation of the three population used in the study. The number
of individuals N is shown, together with the distribution of prednisone users, sex, ethnicity
and age within the population.
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3.3.4. Evaluating the functional relation between the use of prednisone

and the side-effects using System Biology Analysis

We used the systems biology-based approach described in section 3.1 to identify potential

molecular relationships that could explain the associations identified between prednisone use

and medical conditions.

In this case, the ANNs analysis is used in two steps. (i) At first the functional relation

between the prednisone receptor and the motifs describing a certain side-effect (e.g. ADHD)

is computed for those conditions that show a significant association with the use of prednisone

in the Overall population. (ii) If the estimated functional relation is significant (p-value ¡ 0.2)

and a significant association is identified in any of the three subpopulations (RA, AS, COPD)

then the functional association between all the proteins that are known to be related to the

condition describing the population and the motifs describing the side-effect is estimated.

The results are discussed in case of significance. Results are reported in Table 4.1.

3.4. The effect of Tocilizumab in GCA-patients PBMCS (Pe-

ripheral Blood Mononuclear Cells)

3.4.1. GCA Patients, PBMCS treatment

PBMCs were sampled from 17 GCA female patients from the Hospital Clinical Barcelona.

3.4.2. PBMCS treatment

The PBMCs sampled from the participant’s blood have been treated in three different ways.

• UNT: Untreated group.

• IL6: The PBMCs are treated with IL6 to exacerbate the pathophysiology of GCA.

• IL6+TCZ: The PBMCs are treated with IL6 and Tocilizumab.

3.4.3. Data generation

The expression level of 245 genes was measured by means of quantification by sequencing

using NanoString techonology. The genes taken into account are shown in Table 7.6.

3.4.4. Differential Differential Analysis

Two differential expression analysis have been performed:

• UNT vs IL6

• IL6+TCZ vs IL6
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Differential expression analysis is applied using Wilcoxon signed-rank for the paired ex-

periments and the Wilcoxon rank-sum for the unpaired [Rey and Neuhäuser, 2011], mul-

tiple hypothesis correction is applied using the Benjamini-Hochberg method [Benjamini and

Hochberg, 1995].

3.4.5. Data analysis: Clustering and Classification

Clustering of the 17 samples is applied to a subset of genes of interest. Z-score normalization is

applied to each gene, the clustering method is hierarchical clustering with average aggregation

function [Nielsen, 2016], spearman correlation coefficient [Corder and Foreman, 2014] has been

used as distance. The clustering solution has been evaluated considering the mean silhouette

index [Rousseeuw, 1987], Dunn-index [Dunn, 1973], and the Hopkins statistics [B. and G.,

1954].

Classifiers are trained to reclassify the samples into the obtained clusters. The classifier

used is linear regression with threshold optimization [Freedman, 2009], Leave One Out

(LOO) is the validation method applied [Trevor Hastie, 2009]. The indexes to evaluate

the validity of the classifier are True-Positive (TP), True-Negative (TN), False-Positive (FP),

False-Negative (FN), Accuracy (ACC), Precision (PREC), Negative Predicted Value (NPV),

True-Positive Rate (TPR), True-Negative Rate (TNR) and Matthew-Correlation-Coefficient

(MCC) [Matthews, 1975].

ACC =
TN + TP

TP + FP + TN + FN
(3.10)

PREC =
TP

TP + FP
(3.11)

TPR =
TP

TP + FN
(3.12)

NPV =
TN

TN + FN
(3.13)

TNR =
TN

TN + FP
(3.14)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3.15)
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The criterion for the selection of the best classifiesr is the Matthew Correlation Coefficient

(MCC) [Matthews, 1975]. The clustering and classification tool used in this analysis have

been described by Coto-Segura et al. and Gil et al., respectively.

3.4.6. System Biology Analysis. The TPMS

The Therapeutic Performance Mapping System (TPMS) is a systems biology tool designed to

study the mechanisms of action (MoAs) of drugs by simulating patient-specific protein-protein

interaction networks [SL, 2018]. It is built by integrating protein-protein interaction data into

Human Protein Networks (HPNs) and can be used to simulate how drugs interact with the

human biological system, focusing particularly on the molecular pathways that contribute to

clinical outcomes or adverse effects [Jorba et al., 2020]. In this case, TPMS is used to study

the effect of tocilizumab on GCA, i.e. to study how the inhibition of IL6 can reverse the

activation state of the protein differentially expressed in GCA as reported in the molecular

description of the disease in Table 7.2. Furthermore, TPMS allows users to specify the

activation state of certain proteins and incorporate these specifications as constraints within

the solution search space. MoAs have been computed with restriction, using as constraints a

set of proteins/genes that have been identified to be differentially expressed PBMCS treated

with tocilizumab.

3.5. MMPred, Molecular Mimicry Predictor

3.5.1. MMPred

This study introduces MMPred, a software tool integrating epitope prediction and sequence

alignment algorithms to simplify the setup of computational analyses aimed at the generation,

investigation or testing of hypotheses relative to molecular mimicry events in the context of

autoimmune diseases. As it stands, the tool provides epitope predictions for HLA class II

only, as alleles involved in autoimmunity belong often to this class [Fiorillo et al., 2017]. But

the tool can be easily extended to HLA Class I prediction by incorporating the corresponding

pre-trained models from CNN-PepPred and NetMHCpan [Reynisson et al., 2020].

3.5.2. Algorithm

The MMPred algorithm is illustrated in Figure 3.2 for uses combining sequence alignment

and epitope prediction. In addition, the program may be also used without the alignment

feature to streamline epitope prediction using NetMHCIIpan and CNN-PepPred.

Software specifications

The software has been developed using Python3.6.8 in a Linux environment. The Python3

libraries used are Pandas (https://pandas.pydata.org/), NumPy [Harris et al., 2020],

Matplotlib [Hunter, 2007], pickle (https://github.com/python/cpython/blob/3.6/Lib/

pickle.py), sklearn [Pedregosa et al., 2011] and tensorflow [Abadi et al., 2016]. Soft-
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ware, installation instructions and program user-guide are available in GitHub (https:

//github.com/ComputBiol-IBB/MMPRED).

Input

The program takes a set of protein sequences in the form of a fasta file (QUERY) and a list

of HLA alleles (ALLELES) as minimal input. If no additional input is provided, the program

runs an epitope prediction for the sequences in QUERY and each of the HLA alleles specified.

The user can specify if QUERY contains entire protein sequences (protein mode) or peptides

(peptide mode). When in protein mode, the program makes a prediction for each fragment of

size W in the protein (with a 1-residue step), where W is a user-defined parameter. Instead,

when using the peptide mode a single prediction is performed for the full length of the peptide.

The user can provide a second fasta file (TARGET). In this case, an alignment is performed

between the peptides in or derived from QUERY and the TARGET sequences to produce the

TARGET* set (see Figure 3.2), containing the sequences from TARGET that show significant

(to a value defined by the user) alignment with QUERY peptides. Epitope prediction is then

applied to the TARGET* sequences.

In this study, we are using microbial sequences as QUERY and human ones as TARGET.

Yet, QUERY and TARGET may be whatever the user thinks appropriate for the analysis in

question.

Alignment

Protein sequence alignment is performed to identify the potential similarity between QUERY

and TARGET sequences, if TARGET is specified. The alignment can be done using either

of two strategies: i) using BLASTP to perform an ungapped alignment, with automatic

adjustment of parameters for short input sequences or ii) using PSI-BLAST to compute a

PSSM by aligning the QUERY fragment against a user-defined set of epitopes provided in a

fasta file and then using the PSSM to perform a search in TARGET.

If the alignment satisfies a certain significance threshold (either E-value or bit score; by

default E-Value < 0.05) the aligned TARGET sequence is stored in TARGET* for epitope

prediction. The parameter (E-value or bit score) and its value can be defined by the user.

To perform the epitope prediction, a sequence of length ≥ W that we shall call ”prediction

window” has to be extracted from the alignment. If the length of the alignment is < W , then

a prediction window of size W centered on the aligned sequence is extracted. If the number

of extra residues at left and right cannot be the same, the program automatically takes the

extra residue to the right. If the window falls outside the ends of the sequence, the algorithm

will take the first or last W residues accordingly. W is by default 15.
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Epitope prediction

Whether the alignment is performed or not, epitope predictions are run using NetMHCI-

Ipan 4.1, with both the model trained on Binding Affinity (BA) and that trained on mass

spectrometry Eluted Ligands (EL) [Reynisson et al., 2020], and CNN-PepPred [Junet and

Daura, 2021]. The three predictions are kept and no consensus score is generated. Note

that NetMHCIIpan reports the prediction score and the %Rank for each peptide-HLA pair.

The %Rank is a normalized prediction score that enables comparison between different HLA

alleles and models (BA and EL). The %Rank of a query sequence is determined by compar-

ing the prediction score to a score distribution for a random set of natural peptides, with

%Rank = 1 meaning that the queried sequence obtained a prediction score in the highest

1% of the distribution. On the other hand, CNN-PepPred reports only prediction scores. To

make results from CNN-PepPred comparable to NetMhcIIpan, a score distribution for nat-

ural peptides was generated for each HLA allele available in CNN-PepPred, using a random

sample of 10,000 peptides extracted from UniRef50 [The UniProt Consortium, 2023].

Output

The output depends on the input parameters as follows:

• No Alignment, Protein mode: The program will return the predicted core (sequence of

length 9) for every window of size W achieving %Rank ≤ 10 in every protein included

in QUERY, together with the ID of the protein, start and end position of the W -residue

peptide, start and end position of the predicted core, prediction method, score, %Rank

and the allele for which the prediction has been made.

• No Alignment, Peptide mode: The program will return the predicted 9-mer core for

every peptide included in QUERY achieving %Rank ≤ 10, together with the ID of the

peptide, start and end position of the predicted core, prediction method, score, %Rank

and the allele for which the prediction has been made.

• Alignment : For every sequence in TARGET* achieving %Rank ≤ 10, the program

will return the predicted 9-mer core, the TARGET sequence ID, the start and end

position of the alignment in the TARGET sequence, the start and end position of the

window of size W extracted from the alignment in the TARGET sequence, the start and

end position of the predicted core in the TARGET sequence, identity, E-value and bit

score of the alignment, the aligned TARGET sequence, the QUERY sequence ID, the

start and end position in the QUERY sequence of the alignment, the aligned QUERY

sequence, prediction method, score, %Rank and the allele for which the prediction has

been made.
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3.5.3. Evaluation Datasets

Microbial Epitope Dataset (MEDS)

A dataset of known HLA class II epitopes from infectious agents was manually downloaded

from IEDB [Vita et al., 2019] (https://www.iedb.org). The search terms ”Epitope: Linear

peptide”, ”Epitope source: Bacteria, Virus”, ”Host: Human”, ”Assay: MHC ligand”, ”Out-

come: positive”, ”MHC Restriction: Class II”, ”Disease: any” were used (date 11/10/2023).

Epitopes lacking either the UniProtKB accession number (AC) [The UniProt Consortium,

2023] (https://www.uniprot.org) of the protein, start or end position in the sequence or the

HLA allele for which they were tested, were excluded. Epitopes containing modified amino-

acid residues were also discarded. Additionally, only epitopes from microorganisms known to

be related to autoimmune diseases were considered. The relationship between an organism

and the occurence of autoimmune diseases was determined by review of the literature when

not annotated in IEDB. For each organism with epitopes fulfilling the previous selection

criteria, a PubMed (https://pubmed.ncbi.nlm.nih.gov/) search for reviews from the last

10 years using the keywords ”organism name AND (autoimmunity OR autoimmune)” was

performed. As last filter, epitopes associated to HLA alleles with no model available in

CNN-PepPred and NetMHCIIPan were also discarded.

After these filters, MEDS contained 3,676 epitopes from 88 proteins of 13 microorganisms,

associated to 50 HLA class II alleles, with a total of 9,229 epitope-allele pairs.

Human Autoepitope DataSet (HADS)

A dataset containing known human autoepitopes was downloaded from IEDB (11/10/2023).

The search terms were: ”Epitope: Linear peptide”, ”Epitope source: Human”, ”Host: Hu-

man”, ”Assay: MHC ligand”, ”Outcome: positive”, ”MHC Restriction: Class II”, ”Disease:

autoimmune”.

To avoid redundancy in the form of nested sets, epitopes from the same protein that showed

overlap and were linked to the same allele were merged into a single epitope. After the

merging, only sequences with length ≥ 15 were kept. Epitopes associated to HLA alleles

with no model available in CNN-PepPred and NetMHCIIPan were also discarded.

HADS thus contained 807 epitopes from 608 different human proteins, associated to 5 dif-

ferent HLA class II alleles in the context of Rheumatoyd Arthritis and Multiple Sclerosis

(Supplementary material file HADS summary.xslx).

Human Proteome Dataset (HPDS)

HPDS contains the sequences of the 20,426 reviewed human proteins found in UniProt [The

UniProt Consortium, 2023] on the date of the download (18/10/2023).
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SARS-CoV-2 Proteome Dataset (SC2DS)

SC2DS was generated from the SARS-CoV-2 reference proteome [Wu et al., 2020] (UniProt

identifier: UP000464024, downloaded 11/01/2024) and the Pangolin variants [Rambaut et al.,

2020] (downloaded 01/03/2024) A.23.1-like, A.23.1-like+E484K, Alpha (B.1.1.7-like), AV.1-

like, B.1.1.318-like, B.1.1.7-like+E484K, B.1.617.1-like, B.1.617.3-like, Beta (B.1.351-like),

Delta (AY.4.2-like), Delta (AY.4-like), Delta (B.1.617.2-like), Delta (B.1.617.2-like) +K417N,

Epsilon (B.1.427-like), Epsilon (B.1.429-like), Eta (B.1.525-like), Gamma (P.1-like), Iota (B.1.526-

like), Lambda (C.37-like), Mu (B.1.621-like), Omicron (BA.1-like), Omicron (BA.2-like), Omi-

cron (BA.3-like), Omicron (BA.4-like), Omicron (BA.5-like), Omicron (Unassigned), Omi-

cron (XBB.1.16-like), Omicron (XBB.1.5-like), Omicron (XBB.1-like), Omicron (XBB-like),

Theta (P.3-like), XBB-parent1, XBB-parent2, XE-parent1, XE-parent2, Zeta (P.2-like). The

downloaded sequences were manually split into all possible overlapping fragments of size 15.

Fragments of variant sequences were only kept if they had indels or mutations relative to

the reference proteome. SC2DS thus contained 9,608 15-mers, of which 243 from Pangolin

variants.

MHC class II epitopes Dataset (MHCII-EDS)

MHCII-EDS contains all HLA class II epitopes available in IEDB (date 18/03/2024), obtained

with the search terms: ”Epitope: Linear peptide”, ”Epitope source: Any”, ”Host: Any”,

”Assay: MHC ligand”, ”Outcome: positive”, ”MHC Restriction: Class II”, ”Disease: Any”.

A total of 485,020 epitopes were downloaded. Redundancy was eliminated by clustering the

sequences at 95% identity with CD-HIT [Li and Godzik, 2006], then using the centroid as

cluster representative to obtain a final set of 155,923 epitopes. This dataset was used for

the computation of the PSSM in all the analyses where PSI-BLAST was used as alignment

algorithm.

3.5.4. MMPred evaluation

Evaluation setup

To evaluate the algorithm, five sets of predictions were obtained:

1. Sequences from the human autoepitope dataset (HADS) (TARGET) that significantly

align with sequences from the microbial epitope dataset (MEDS) (QUERY) using

BLASTP and were positive for binding to HLA class II (with or without allele match,

see below) with CNN-PepPred and/or NetMHCIIpan.

2. Same as prediction set 1 but using PSI-BLAST for the alignment.

3. Same as prediction set 1 but with the human proteome dataset (HPDS) as TARGET.

4. Same as prediction set 3 but using PSI-BLAST for the alignment.
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5. Sequences from HPDS (TARGET) that significantly align with sequences from the

SARS-CoV-2 proteome dataset (SC2DS) (QUERY) using BLASTP and where positive

for binding to HLA class II with CNN-PepPred and/or NetMHCIIpan.

6. Same as prediction set 5 but using PSI-BLAST for the alignment.

Prediction sets 1 and 2 were based on a threshold E-value of 0.05 for the alignments and

a %Rank ≤ 2 as condition for binding —Reynisson et al. [Reynisson et al., 2020] defined

peptides with %Rank ≤ 2 as strong binders and peptides with 2 < %Rank ≤ 10 as weak

binders. Prediction sets 3 and 4 were instead obtained in replicates by using threshold E-

values from 0.1 to 0.001 and threshold %Rank values of 2 and 10. Owing to the results

obtained for prediction sets 3 and 4, prediction sets 5 and 6 were based on a threshold

E-value of 0.01 for the alignments and a %Rank ≤ 2.

Prediction sets 1 to 4 were evaluated according to two allele-selection criteria:

1. AllHLA: epitope prediction for HADS (or HPDS) sequences that had at least one

significant alignment with MEDS sequences was performed for all alleles.

2. OneHLA: epitope prediction for HADS (or HPDS) sequences that had at least one

significant alignment with MEDS sequences was only performed for the allele(s) corre-

sponding to the microbial epitope-allele pair(s) indicated in MEDS.

Furthermore, they were also evaluated both ignoring and considering allele matches:

1. Epitope prediction: sequences in HADS (or HPDS) were considered to be predicted as

mimicry-induced autoepitopes if there was at least one alignment with MEDS sequences

that satisfied the threshold E-value and there was at least one prediction from CNN-

PepPred or NetMHCIIpan (BA or EL models) that satisfied the threshold %Rank for

any HLA allele.

2. Epitope-allele prediction: epitope-allele pairs in HADS (or HPDS) were considered to

be predicted as autoepitope-allele pairs if there was at least one alignment with MEDS

that satisfied the threshold E-value, and there was at least one prediction from CNN-

PepPred or NetMHCIIpan (BA or EL models) that satisfied the threshold %Rank for

the same HLA allele of the MEDS pair.

Prediction sets 1 and 2: Supervised evaluation

Prediction sets 1 and 2 may be viewed as a supervised evaluation, since the TARGET se-

quences are labeled, i.e., they are known to be human autoepitopes, albeit not necessarily

relatable to infection events. The remaining prediction sets have the entire, unlabeled human
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proteome (HPDS) as TARGET.

The allele set used for prediction contained all alleles for which a model exists in either CNN-

PepPred or NetMHCIIpan and are present in either HADS or MEDS, totalling 58 alleles

shown in Table 7.8.

Prediction sets 3 and 4: Functional evaluation

Prediction sets 3 and 4 were used to investigate potential functional relationships between

predicted autoantigens and the pathophysiological pathways associated with specific autoim-

mune diseases. This investigation involved a post-analysis of the predicted autoantigens using

a systems biology approach as described in section 3.1.

In this study, S was determined for the relationship between each of the human proteins from

HPDS that we predicted to be autoantigens as a consequence of microbial peptide mimicry

and a list of patophysiological motifs characteristic of each selected autoimmune disease. The

list of autoimmune diseases was compiled from the same articles used for the generation of

MEDS (see section 3.5.3), and each autoimmune disease was then mapped to corresponding

pathophysiological motifs compiled in BED AS as shown in Table 7.7:

For a given BED condition, both the separate protein sets corresponding to the individual

motifs and a single protein set corresponding to all motifs of the condition were used. The

motifs to be tested for each predicted autoantigen were selected using the following logical

sequence: predicted autoantigen → microbial protein with matching epitope sequence →
infectious organism → organism’s related autoimmune diseases → BED motifs.

The distribution of S for the predicted autoantigens was compared to the distribution for a

random subset of 1000 samples from HPDS, as surrogate for a random distribution, using

the one-sided Mann-Whitney U test [Di Bucchianico, 1999].

Prediction sets 5 and 6: SARS-CoV-2 peptide mimicry

Prediction sets 5 and 6 illustrate an actual application of the tool: the identification of

potential human autoantigens resulting from SARS-CoV-2 peptide mimicry.

The analysis included those HLA class II alleles for which there is experimental evidence of

their binding of human autoepitopes from HADS or SARS-CoV-2 epitopes from MEDS, plus

a set of alleles from HLA-Spread [Dholakia et al., 2022] associated to autoimmune diseases

that have been linked to SARS-CoV-2. As further filter, only those alleles for which there

was a model in either CNN-PepPred or NetMHCIIpan were considered, leading to a total of

45 alleles (see Table 7.8.

We applied the same systems biology approach used on prediction sets 3 and 4 to explore
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potential functional relationships between predicted autoantigens and pathopysiological path-

ways associated to specific autoimmune diseases. To that end, we choose the BED motifs

corresponding to the following autoimmune diseases associated with SARS-CoV-2 infection as

shown in Table 7.7: Anemia, Diabetes type 1, Guillain-Barre Syndrome, Myasthenia Gravis,

Rheumatoyd Arthritis and, Lupus Erythematosus Systemic [Ehrenfeld et al., 2020, Knight

et al., 2021]. For each condition motif, the background distribution of the score S was cal-

culated using proteins that had S > 0, lacked a predicted autoepitope, and were not present

in the motif’s description. For the predicted autoantigens, the score S and its correspond-

ing percentile, Perc(S) (indicating where it falls within the background distribution), were

determined. Perc(S) served as an indicator of a potential functional relationship between

the autoantigen and the pathophysiological motif. Thresholds were established as follows:

Perc(S) > 95 indicated a weak functional relationship, Perc(S) > 99 indicated a functional

relationship, and Perc(S) > 99.9 indicated a strong functional relationship.

3.6. MMPred, Varicella Zoster Virus and Giant Cell Arteritis

3.6.1. VZVDS, Varicella Zoster Virus Dataset

Sequences belonging to Varicella Zoster Virus have been extracted from UniprotKB [The

UniProt Consortium, 2023] downloading all the Reviewed sequences related to the Varicell

Zoster Virus (strain Dumas, taxon ID: 10388). A total of 69 proteins have been manually

split into 34747 overlapping 15-mers.

3.6.2. MMPred analysis

VZVDS is aligned against HPDS. MMPred is applied both using BLASTP and PSI-BLAST,

in the latter case the MHCII-EDS dataset is used for the computation of the PSSMs. Only

the allele DRB1*04:01 is used in the prediction, being the only HLA-II allele known to be

related to GCA according to HLA-Spread [Dholakia et al., 2022, Prieto-Peña et al., 2021].

E − V alue < 0.01 and %Rank < 2 are the thresholds applied.
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Figure 3.2: Scheme summarizing the overall workflow of MMPred when used with alignment.
Input in purple, process in orange and output in grey.
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Chapter 4

Results & Discussion

4.1. GCA Molecular Description

The systematic review of papers related to GCA provided 106 papers describing the behavior

of 88 different proteins related to the disease. Those proteins have been categorized into 8

motifs, which in turn are organized into causative and manifestative motifs. These results

are summarized in Table 7.1 and Table 7.2.

4.1.1. Causative motifs

GCA genetic associations

A genetic component in the pathogenesis of GCA is supported by observations of sporadic

family clustering of affected members, along with the predominance of the disease in whites,

particularly those from northern Europe or of northern European descent [Liozon et al., 2009,

Carmona et al., 2014]. Indeed, an increased risk of GCA is associated with polymorphisms

in a variety of genes that mediate immune, inflammatory, and vascular responses [Terrades-

Garcia and Cid, 2018].

A genetic predisposition has been found, with strong relevance on some alleles of the Human

Leukocyte Antigen (HLA) class I and II regions. For what concerns class II, the HLA-DRA

locus and the allele HLA-DRB1*04:01 are known to be related to the disease. DQA1*03 and

DQB1*03 are also reported to contribute to the risk development of the disorder [Terrades-

Garcia and Cid, 2018, Carmona et al., 2015, Stamatis, 2020, Al-Mousawi et al., 2019, Prieto-

Peña et al., 2021]). About class I, GCA is associated with HLA-B locus [Al-Mousawi et al.,

2019]. HLA-II is a highly polymorphic protein complex present in antigen-presenting cells

(APC). Genetic regions such as DR define the peptide-binding groove, which is formed by

alpha and beta chains. The proper function of HLA-II is needed in order to develop acquired

immunity, as its main role is displaying antigenic peptides to CD4+ T lymphocytes [Alvaro-
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Benito and Freund, 2020, Wieczorek et al., 2017]. Alterations located in HLA-II chains

that create peptide-binding grooves may lead to an antigen-presentation disease and thus a

dysfunction in adaptative immunity [Terrades-Garcia and Cid, 2018]HLA class-I is a protein

complex present in all nuclear cells, and its main role is to activate CD8+ T lymphocytes

in pathological situations. A dysfunction of it could also contribute to an immune disorder

[Wieczorek et al., 2017].

Despite the fact that HLA protein complex suppose the strongest genetic predisposition to

suffer from GCA, there are also other genes involved. For example, TNF-alpha microsatellite

or interleukin-6 (IL-6) are suggested to contribute to the development of this disease. How-

ever, further studies are needed to establish a more robust genetic association. It is not the

case of IL-12 beta single nucleotide polymorphism (SNP) rs755374, which reported to have

a strong genetic relationship with GCA in several meta-analysis and cohorts [Al-Mousawi

et al., 2019, Carmona et al., 2017a, Stamatis, 2020]. Another gene with confirmed associa-

tion with this pathology was the one that codes for tyrosine phosphatase non-receptor type

22 (PTPN22). The relevance of this receptor lies in its function, which is to participate in

T and B cell receptor signaling pathways [Kuret et al., 2019]. Literature also describes as

an important genetic factor to develop GCA Interleukin 10 (IL-10) and vascular endothelial

growth factor (VEGF) [Kuret et al., 2019].

Regarding vascular remodeling and angiogenesis, PLG and P4HA2 variants showed GCA

predisposition in a GWA study. PLG gene encodes a secreted blood zymogen that can be

converted into two different proteins, plasmin and angiostatin, which are important in a wide

spectrum of physiological processes such as angiogenesis and lymphocyte recruitment and

inflammation via production of cytokine and ROS, all of them relevant processes in GCA.

P4HA2 encodes an isoform of alpha subunit of the collagen prolyl 4-hydroxylase, essential for

collagen biosynthesis. This gene has been considered important in hypoxia response and its

expression is regulated by hypoxia-inducible factor-1 (HIF-1), which also targets other genes

related to the processes involved in GCA, suggesting the involvement of P4HA2 in GCA

[Carmona et al., 2017b]. Apart from the genetic variants or alterations mentioned above,

there are other polymorphisms in a variety of genes encoding for molecules participating in

immune, inflammatory, and vascular responses (i.e. NOS2) that are associated with increased

GCA risk [Carmona et al., 2014, Kuret et al., 2019].

Dysfunction of immune checkpoints

Large and medium vessels have their walls protected from inflammation processes due to the

expression of Programmed Cell Death 1 Ligand 1 (PD-L1) by the endothelial and dendritic

cells. The display of this ligand allows it to maintain self-tolerance by binding Programmed

Cell Death Protein 1 (PD-1) receptors from T lymphocytes. This interaction confers an

immunoprivileged environment due to the function carried by these structures are vital and

need to be protected. PD1/PDL1 checkpoint impairs T cell activation, effectors secretion
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and survival, avoiding the destruction of the blood vessel tissue [Weyand et al., 2018].

PD1/PDL1 checkpoint is compromised in GCA patients and thus T cells and macrophages

cause damage to wall arteries and fostering its pathological remodeling. This balance is

altered because of a synergy created by low PD-L1 expression from Dendritic cells and high

PD-1 expression from T cells. Therefore, in this scenario self-tolerance is lost and immuno-

protection of the arterial wall is disrupted. As a consequence, T cells proliferation and

activation is fostered [Zhang et al., 2017]. IFN-γ, IL-17, IL-9 and IL-21 are secreted by

lymphocytes T which generates an inflammation environment that enhances hyperplasia of

intimal artery layer, fragmentation of the elastic lamina and intramural angiogenesis [Weyand

et al., 2018, Zhang et al., 2017, Watanabe et al., 2017]. Moreover, activated T cells, activated

macrophages, multinucleated giant cells as well as dendritic cells will start to accumulate and

form granulomatous infiltrates that will obstruct affected arteries [Watanabe et al., 2017].

The disruption PD1/PDL1 checkpoint and its chronification over time cause autoimmune

inflammation that will severely damage aorta and its related branches. Specifically, those

structures will experiment lumen occlusion, rupture and aneurysm formation [Watanabe

et al., 2017].

Macrophages have a key role in vessel remodeling. According to the layer where they are

located, a specific combination of substances will be secreted to produce the wall alteration.

For example, macrophages infiltrated in the Media layer produce growth factors such as

platelet-derived growth factor (PDGF) , Vascular endothelial growth factor (VEGF) and Fi-

broblast growth factor (FGF), whereas those infiltrated in the adventitia secrete transforming

growth factor-β1, IL-6, and IL-1β. These cytokines foster adventitial fibrosis, contributing to

structural rigidity and localized inflammation. Together, these processes orchestrate vascular

remodeling that is central to the pathology of Giant Cell Arteritis [Watanabe et al., 2017].

4.1.2. Symptomatic Motifs of GCA

The current understanding on the pathophysiology of GCA invokes interactions occurring

between the innate and adaptive immune system and the different compartments of the

arterial wall, including endothelial cells and vascular smooth muscle cells (VSMCs), such

that vascular inflammation, remodelling, and occlusion may occur. GCA is initiated by an

unknown danger factor (may be bacterial or viral products) that triggers the early vascular

inflammation (Motif: ”V ascularInflammation − Early”). This first response is amplified

(Motif: ”V ascularInflammation − Amplificationcascades, Persistent”) and may further

result in a systemic inflammation (Motif: ”SystemicInflamation”). During the filtration

of immune cells into the site of lesion, the vascular wall results damaged (Motif 4) and a

repairing response, vascular remodelling (Motif 5), is initiated. Although the prevalence of

GCA is the highest in temporal artery, extracranial vessels are also found to be affected

by GCA, being the aorta the main site of inflammation. Aortic aneurysm may be formed
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secondary to GCA (Motif 6).

Vascular Inflammation - Early

The inflammation starts in the adventitia and progresses to the other layers of the arterial

wall, culminating in transmural damage. Activated dendritic cells (DCs) play an important

role in the immune response of GCA. The activation of DC breaks immune tolerance and

renders the arteries susceptible to inflammatory injury [Terrades-Garcia and Cid, 2018].

During the initiation phase of GCA, dendritic cells (DCs) within the adventitia of arter-

ies are activated through toll-like receptors (TLRs) triggered by an unknown antigen via

pathogen-associated molecular patterns (PAMPs), microorganism-associated molecular pat-

terns (MAMPs) and damage-associated molecular patterns (DAMPs). The DC activation

results in the production of chemokines (CCL19 and CCL21) that attract and retain addi-

tional DCs and expression of co-stimulatory molecules CD83 and CD86, which interact with

the T cell receptor complex and CD28 to activate CD4+T cells. In turn, the expression of

CD83/86 is modulated by immune checkpoints. In GCA, it has been observed that the pro-

grammed death 1 (PD-1) receptor/programmed death ligand 1 (PD-L1) immune checkpoint

is inefficient in GCA-affected temporal arteries; this is thought to contribute to the excessive

infiltration of activated T cells into affected medium- and large-sized blood vessels [Terrades-

Garcia and Cid, 2018]. Furthermore, studies demonstrated the efficacy of administrating a

fusion protein of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the fragment

crystallizable region of a human IgG1 to treat GCA patients. CTLA4, a competitive protein

binding to CD80/86, can inhibit T cell activation by impeding the interaction of CD28 with

CD80/86 [Langford et al., 2017].

DCs also release cytokines, such as IL-1β, IL-6, IL-23, and IL-21 or IL-12 and IL-18, that are

responsible for triggering the differentiation into two distinct T cell subgroups. The first set

of cytokines induces the differentiation of activated T cells into Th17 cells; the second drives

Th1 cell formation. Th17 cells secrete IL-17A, modulating the function of endothelial cells

(ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and bone marrow stromal cells,

while Th1 cells release interferon γ (IFN-γ), involving in activation of macrophages, ECs,

VSMCs, and cytotoxic cells [Dammacco et al., 2020].

Levels of IL-17A are found to be elevated in GCA lesions and are rapidly reduced following

treatment with glucocorticoids, suggesting that IL-17A suppression may contribute to the im-

provement of symptoms in patients with GCA who receive high-dose glucocorticoid therapy.

Interestingly, strong expression of IL-17A in the involved arteries of patients with GCA was

associated with a better response to glucocorticoid therapy with few relapses [Terrades-Garcia

and Cid, 2018, Esṕıgol-Frigolé et al., 2013].

B cells are scarcely present in the arterial wall of all the patients with GCA, suggesting
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that its effect is not crucial in the pathogenesis. Decreased levels of B cells are observed

in patients with newly diagnosed GCA but return to normal levels during corticosteroid-

induced remission. Interestingly, returned B cells in patients showed an enhanced potential

to produce IL-6, suggesting the presence of a delicate interplay between B cells and T cells

in GCA as IL-6 production by B cells is promoted by T cell help, and IL-6 is important for

the development of Th17 cells [van der Geest et al., 2014].

DNA methylation is a component of the epigenetic and transcriptional regulatory system in

the cell. Studies have shown that hypomethylation of several genes involved in T cell mat-

uration and activation, such as IFNG, TNF, NLRP1, PTPN22, RUNX3, CCR7, PPP3CC,

NFATC1 and NFATC2, are present in GCA patients, suggesting a central role of T cells in

GCA [Coit et al., 2016].
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Figure 4.1: Possible pathogenetic algorithm of giant cell arteritis (GCA). After activation by

danger signals, dendritic cells resident in the arterial adventitia mature, produce chemokines

such as CCL19 and CCL21, and express the co-stimulatory molecules CD83 and CD86 re-

quired for their interaction with CD4+ T cells. Dendritic cells also release cytokines, such

as IL-1 β, IL-6, IL-23, and IL-21 or IL-12 and IL-18, that trigger two distinct networks. The

first network induces the differentiation of activated T cells into Th17 cells; the second drives

Th1 cell formation. Both T cell lineages participate in the evolving granulomatous inflam-

mationImage taken from Dammacco et al.. Reprinted from Clinical Ophthalmology 2023:17

623-632’ Originally published by and used with permission from Dove Medical Press Ltd.
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Vascular inflammation – Amplification cascades - Persistent

Following the initiating events of GCA, amplification cascades play an important role in

the development and progression of inflammatory infiltrates, the development of full-blown

transmural inflammation, vascular wall injury, and remodeling, the pathological substrate of

clinical symptoms and complications of GCA [Terrades-Garcia and Cid, 2018].

Th1 cells release IFN-γ, and this induces the production of several chemokines (CCL2,

CXCL9, CXCL10, and CXCL11) by VSMCs. CCL2 leads to the recruitment of monocytes

which express its receptor (CCR2) and then differentiate into macrophages and multinucle-

ated giant cells, which contributes to the development of granulomas at the intima-media

junction. CXCL9, CXCL10, and CXCL11 trigger the recruitment of immune cells express-

ing their receptor (CXCR3), i.e. Th1 and CD8+ T cells, thus leading to an increase in

the production of IFN-γ, which probably contributes to the initiation of a positive forward

loop supporting the chronic Th1 inflammatory response observed in GCA [Samson et al.,

2017]. CD8+ T cell may play a role in initiating vascular remodeling as its strong infiltration

is associated with more severe disease. CD8+ T cells are infiltrated into the arterial wall

and produce cytokines (IL-17 and IFN-γ) and cytotoxic molecules (granzymes and perforin)

[Samson et al., 2017].

Once activated, macrophages release pro-inflammatory cytokines such as tumor necrosis fac-

tor alpha (TNF-α), IL-1β, and IL-6, thus amplifying the inflammatory response [Dammacco

et al., 2020]. Upregulation of chemokines, endothelial adhesion molecules, and colony-stimulating

factors in lesions may reinforce the inflammatory loops associated with GCA. Consequently,

it results in the continuous recruitment and expansion of additional inflammatory cells.

A study has shown that IL-23p19 might be involved in leukocytes attachment and trans-

migration by promoting the overexpression of adhesion molecules ICAM-1 and VCAM-1

(http://hdl.handle.net/10803/401863).

Angiogenic factors, such as VEGF, fibroblast growth factor-2, and PDGFs produced by

macrophages may promote the formation of new vessels in vascular injuries of GCA. Acute

phase proteins such as haptoglobin and serum amyloid A, typically increased in patients with

GCA, may also be angiogenic [Cid et al., 1993, O’Neill et al., 2015]. The expression of en-

dothelial adhesion molecules by neovessels facilitates the recruitment of additional leucocytes.

While angiogenesis is an important process in the progression and maintenance of chronic in-

flammatory diseases, such as GCA, inflammation-induced angiogenic activity may also play a

compensatory role for ischaemia at distal sites in patients with GCA, thus protecting against

ischaemic complications [Terrades-Garcia and Cid, 2018].

Systemic Inflammation

Systemic inflammation is a syndrome associated with arteritis in the majority of the patients

with GCA. This reaction takes place distant from the areas of inflammation and it involves the
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participation of multiple organs and systems. As consequence, clinical manifestations such as

fever, anorexia, weight loss, hematologic abnormalities (i.e., anemia and thrombocytosis), bio-

chemical alterations (acute phase protein synthesis), and metabolic changes (i.e., increased

lipolysis and muscle loss) are characteristically occurred [Weyand et al., 2012, Hernández-

Rodŕıguez et al., 2002]. Macrophages at the site of injury produce pro-inflammatory cy-

tokines, mostly IL-1β, TNF-α and IL-6, that have both local and systemic effects. In fact,

the intensity of the systemic inflammatory response in GCA correlates with the expression of

these pro-inflammatory cytokines. Moreover, circulating TNF-α and IL-6, along with tissue

expression of TNF-alpha, have been shown to correlate with relapses and disease persistence

[Terrades-Garcia and Cid, 2018, Hernández-Rodŕıguez et al., 2002].

Vascular Injury

In the media, macrophages activated by IFN-γ are involved in the production of toxic me-

diators to the arterial tissue like reactive oxygen species, causing lipid peroxidation of phos-

pholipids.

Nitric oxide (NO), produced through induced NO-synthase (iNOS), triggers nitration of en-

dothelial proteins and matrix metalloproteinase 2 (MMP2) and MMP9, also produced by

vascular smooth muscle cells (VSMCs), causing the destruction of the media and digestion

of the internal elastic lamina, degrading the extracellular matrix [Samson et al., 2017].

Indeed, an increased proteolytic activity is observed in GCA lesions, MMPs are found to be

upregulated whereas its natural inhibitor, tissue inhibitor of metalloproteinases (TIMP-1 and

TIMP-2), are downregulated [Terrades-Garcia and Cid, 2018]. This increment may contribute

to the disruption of elastic fibers, favoring aortic dilatation, and abnormal vascular remodeling

[Cid, 2014].

Arterial remodeling and vascular occlusion, Vascular injury and remodeling

Activated macrophages or injured VSMCs release growth factors such as platelet-derived

growth factor (PDGF), fibroblast growth factor-2 (FGF2), and vascular endothelial growth

factor (VEGF), that are responsible for triggering a vascular remodeling process leading to

myofibroblast differentiation of VSMCs, migration towards the intimal layer and deposition

of cellular extramatrix proteins [Planas Rigol and Corbera Bellalta, 2016, Hid Cadena et al.,

2018]. This vascular remodeling program can be considered as dysfunction repair in response

to the injured arterial cells that lead to intimal hyperplasia, luminal occlusion, ischemia,

and eventually end organ damage [Weyand et al., 2012]. Several factors including TGF-β,

endothelin-1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and

sortilin are also thought to contribute to myofibroblast activation and production of matrix,

eventually leading to vascular occlusion. Furthermore, endothelin-1 expression in GCA in-

juries is not downregulated after glucocorticoid therapy, suggesting that mechanisms of vessel

occlusion may require a specific approach in vessel vasculitis [Cid, 2014, Dejaco et al., 2017].
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Vessel stenosis and luminal occlusion are generated as a consequence of excessive intimal

hyperplasia. Of all the mechanisms leading to vascular injury, uncontrolled hyperproliferation

of the intimal later produces the most significant consequences of GCA, particularly blindness

and stroke [Weyand and Goronzy, 2002].

Chronic inflammation has long been associated with angiogenesis. In GCA, it has been found

that the number of new vessels observed correlates with the extent of internal elastic lamina

damage, suggesting the relationship between elastic tissue digestion and neovascularization.

Moreover, a dual role of angiogenesis has also been suggested as it might play role both in

vasculitic processes with a primary proinflammatory role and a secondary role compensating

for ischemia [Mitchell and Cestari, 2009]. On these newly formed vessels in GCA, intense

expression of constitutive endothelial adhesion molecules such as PECAM-1, P-selectin, and

ICAM-1 are found, particularly at the medial-intimal junction. In addition, expression of the

inducible endothelial adhesion molecules, E-selectin and VCAM-1, are also found in many

patients. This suggests that neovascularization may be involved in providing new entries

for infiltrating leukocytes, thus recruiting new cells into the inflammatory infiltrate [Samson

et al., 2017].
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Figure 4.2: Immunopathological model of GCA. Phase 1: loss of tolerance and activation of

resident dendritic cells in the adventitia. Phase 2: recruitment, activation, and polarization

of CD4+ T cells. Phase 3: recruitment of CD8+ T cells and monocytes. Activation of

macrophages, formation of giant cells, and injury of VSMCs. Phase 4: vascular remodeling.

Reprinted from Reprinted from Autoimm. Rev., 16(8), Samson et al., Recent advances in

our understanding of giant cell arteritis pathogenesis, Pages 833-844, Copyright (2017), with

permission from Elsevier.
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Aortic Aneurysm Formation

Although GCA predominantly involves branches of the external carotid artery, extratemporal

large vessels such as arteries of the upper and lower extremities as well as the aorta can also

be the site of GCA injury. GCA is rare but is the most frequent cause of non-atheromatous

aortic aneurysm. Aortic involvement is generally asymptomatic and concurrently identified

at the time of GCA diagnosis. In symptomatic aortitis, clinical manifestations include back

pain, abdominal pain, and dyspnea [Kwon et al., 2015]. Aortic aneurysm can be classified

either as thoracic aortic aneurysm or abdominal aortic aneurysm according to its spatial

distribution, in the chest or below the diaphragm, respectively. Aneurysms are clinically

important complications as spontaneous aortic rupture can be life-threatening [Salameh et al.,

2018]. The formation of aortic aneurysm is found to be elevated in GCA patients five years

after the diagnosis and remains elevated up to 20 years after diagnosis, suggesting that the

long-term vascular inflammation in GCA patients may lead to a reduced ability to resist

the high pressures milieu of the aorta that eventually causes aortic aneurysm or dissection

[Carvajal Alegria et al., 2021].

Generally, formation and rupture of aortic aneurysms have been attributed to the infiltration

of inflammatory cells, apoptosis and dysfunction of VSMCs, and breakdown of collagen and

elastic fibers, as VSMCs and extracellular matrix (ECM) proteins are critical in a functional

vessel, particularly in preserving its mechanical compliance with pulsative blood flow. The im-

balance between levels of matrix metalloproteinases (MMP2 and MMP9) and their inhibitors

(TIMP1) points towards the excessive degradation of the ECM and progressive aortic wall

deterioration. MMP9 expression level can be regulated through the JNK1/2 and ERK1/2

signaling pathways, these kinases phosphorylate and activate the transcription factor AP-1,

which drives the transcription of several MMP genes. In addition, inflammatory cytokines

such as TNF-α can also activate AP-1, thus promoting MMP expression. Several MMP

promotors contain NF-kB binding sites, suggesting its role in aneurysm formation [Barbour

et al., 2007, Ince and Nienaber, 2007]. The pathology of aortic aneurysm is also associated

with heritability. Several pathogenic genes have been found to cause aortic aneurysm and

they encode proteins involved in ECM of the aortic wall, fibrillin-1 (FBN1) and microfibrillar-

associated protein 5 (MFAP5); VSMC contraction or metabolism, ACTA2, MYH11, MYLK,

PRKG1, and MAT2A; and canonical transforming growth factor-beta signaling, TGFBR1,

TGFBR2, TGFB2, and SMAD3 [Wu, 2018].

4.2. The side-effects of Prednisone

Results of the analysis are shown in Table 4.1.

Population Condition Annotation OR

Overall ACNE VULGARIS ALL SE 1.3 (0.1; 16.4)

RA ACNE VULGARIS ALL SE -
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COPD ACNE VULGARIS ALL SE -

AS ACNE VULGARIS ALL SE -

Overall ALZHEIMER DISEASE UNK 0.7 (0.0; 13.3)

RA ALZHEIMER DISEASE UNK 3.4 (0.2; 51.9)

COPD ALZHEIMER DISEASE UNK 1.1 (0.1; 14.3)

AS ALZHEIMER DISEASE UNK 20.9 (0.7; 661.4)

Overall ANGINA PECTORIS UNK 1.7 (0.8; 3.7)

RA ANGINA PECTORIS UNK 1.0 (0.3; 3.5)

COPD ANGINA PECTORIS UNK 0.8 (0.3; 2.4)

AS ANGINA PECTORIS UNK 0.4 (0.0; 2.8)

Overall ANXIETY SE 1.1 (0.6; 1.9)

RA ANXIETY SE 1.3 (0.6; 3.1)

COPD ANXIETY SE 1.0 (0.4; 2.5)

AS ANXIETY SE 0.9 (0.3; 2.4)

Overall ARRHYTHMIA SE 1.6 (0.9; 2.9)

RA ARRHYTHMIA SE 1.4 (0.5; 3.8)

COPD ARRHYTHMIA SE 1.6 (0.7; 3.7)

AS ARRHYTHMIA SE 1.6 (0.6; 4.4)

Overall ARTHRALGIA SE 2.7 (1.6; 4.5)

RA ARTHRALGIA SE 1.8 (0.9; 3.6)

COPD ARTHRALGIA SE 1.2 (0.5; 3.0)

AS ARTHRALGIA SE 0.6 (0.2; 2.0)

Overall ASTHMA BOTH 4.0 (2.7; 6.0)

RA ASTHMA BOTH 1.9 (1.0; 3.7)

COPD ASTHMA BOTH 1.1 (0.5; 2.2)

AS ASTHMA BOTH -

Overall ASTHMA ALLERGIC BOTH 9.9 (5.6; 17.4)

RA ASTHMA ALLERGIC BOTH 4.7 (2.1; 10.3)

COPD ASTHMA ALLERGIC BOTH 1.5 (0.7; 3.5)

AS ASTHMA ALLERGIC BOTH 5.2 (2.8; 9.5)

Overall ATHEROSCLEROSIS UNK 1.1 (0.1; 14.0)

48



RA ATHEROSCLEROSIS UNK -

COPD ATHEROSCLEROSIS UNK -

AS ATHEROSCLEROSIS UNK -

Overall ATRIAL FIBRILLATION UNK 0.6 (0.1; 3.2)

RA ATRIAL FIBRILLATION UNK -

COPD ATRIAL FIBRILLATION UNK -

AS ATRIAL FIBRILLATION UNK -

Overall

ATTENTION DEFICIT DIS-

ORDER WITH HYPERACTIV-

ITY

UNK 0.6 (0.1; 3.2)

RA

ATTENTION DEFICIT DIS-

ORDER WITH HYPERACTIV-

ITY

UNK 8.4 (0.2; 327.2)

COPD

ATTENTION DEFICIT

DISORDER WITH HY-

PERACTIVITY

UNK 10.3 (1.1; 98.0)

AS

ATTENTION DEFICIT DIS-

ORDER WITH HYPERACTIV-

ITY

UNK 2.2 (0.5; 9.9)

Overall BACTERIAL INFECTION SE 1.0 (0.6; 1.5)

RA BACTERIAL INFECTION SE 0.9 (0.4; 2.0)

COPD BACTERIAL INFECTION SE 1.0 (0.4; 2.2)

AS BACTERIAL INFECTION SE 0.5 (0.2; 1.2)

Overall BIPOLAR DISORDER UNK 0.5 (0.0; 4.3)

RA BIPOLAR DISORDER UNK -

COPD BIPOLAR DISORDER UNK -

AS BIPOLAR DISORDER UNK -

Overall BLURRED VISION SE 1.1 (0.3; 3.9)

RA BLURRED VISION SE 1.2 (0.3; 5.5)

COPD BLURRED VISION SE -

AS BLURRED VISION SE -

Overall BREAST NEOPLASMS UNK 2.1 (0.8; 5.1)

RA BREAST NEOPLASMS UNK 2.5 (0.8; 8.3)

COPD BREAST NEOPLASMS UNK 1.6 (0.4; 7.5)
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AS BREAST NEOPLASMS UNK 5.3 (1.3; 20.7)

Overall CARDIOMYOPATHY SE 1.1 (0.5; 2.1)

RA CARDIOMYOPATHY SE 0.3 (0.1; 1.2)

COPD CARDIOMYOPATHY SE 0.9 (0.4; 2.4)

AS CARDIOMYOPATHY SE 0.6 (0.2; 1.9)

Overall

CHRONIC OBSTRUC-

TIVE PULMONARY DIS-

EASE

IND 4.3 (2.4; 7.6)

RA

CHRONIC OBSTRUC-

TIVE PULMONARY DIS-

EASE

IND 4.5 (2.3; 8.8)

COPD
CHRONIC OBSTRUCTIVE

PULMONARY DISEASE
IND -

AS

CHRONIC OBSTRUC-

TIVE PULMONARY DIS-

EASE

IND 3.3 (1.6; 6.8)

Overall COLORECTAL NEOPLASMS UNK 0.8 (0.1; 4.9)

RA COLORECTAL NEOPLASMS UNK -

COPD COLORECTAL NEOPLASMS UNK -

AS COLORECTAL NEOPLASMS UNK -

Overall CONJUNCTIVITIS IND 3.7 (0.3; 42.9)

RA CONJUNCTIVITIS IND -

COPD CONJUNCTIVITIS IND -

AS CONJUNCTIVITIS IND -

Overall CONSTIPATION SE 3.9 (0.9; 17.7)

RA CONSTIPATION SE 1.7 (0.2; 14.6)

COPD CONSTIPATION SE 2.9 (0.6; 14.3)

AS CONSTIPATION SE 2.9 (0.6; 13.3)

Overall COUGH UNK 15.5 (3.5; 69.1)

RA COUGH UNK 1.8 (0.2; 15.5)

COPD COUGH UNK 5.4 (1.0; 29.3)

AS COUGH UNK 6.4 (2.1; 19.2)

Overall CROHN DISEASE BOTH 6.9 (0.7; 64.3)
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RA CROHN DISEASE BOTH 13.0 (0.8; 207.1)

COPD CROHN DISEASE BOTH -

AS CROHN DISEASE BOTH -

Overall DEPRESSION SE 1.8 (1.1; 2.9)

RA DEPRESSION SE 1.5 (0.7; 3.2)

COPD DEPRESSION SE 1.8 (0.9; 3.9)

AS DEPRESSION SE 2.6 (1.3; 5.3)

Overall
DERMATITIS CONTACT SUS-

CEPTIBILITY
BOTH 7.4 (0.9; 59.2)

RA
DERMATITIS CONTACT SUS-

CEPTIBILITY
BOTH -

COPD
DERMATITIS CONTACT SUS-

CEPTIBILITY
BOTH -

AS
DERMATITIS CONTACT

SUSCEPTIBILITY
BOTH 8.5 (1.0; 72.7)

Overall DIABETES TYPE I SE 0.8 (0.4; 1.8)

RA DIABETES TYPE I SE 1.1 (0.4; 3.0)

COPD DIABETES TYPE I SE 0.6 (0.2; 2.0)

AS DIABETES TYPE I SE 0.8 (0.2; 2.8)

Overall DIABETES TYPE II SE 0.7 (0.4; 1.2)

RA DIABETES TYPE II SE 1.5 (0.7; 2.9)

COPD DIABETES TYPE II SE 0.6 (0.2; 1.6)

AS DIABETES TYPE II SE 1.2 (0.5; 2.9)

Overall DIABETIC NEPHROPATHY UNK 0.2 (0.0; 4.9)

RA DIABETIC NEPHROPATHY UNK -

COPD DIABETIC NEPHROPATHY UNK 1.8 (0.2; 16.6)

AS DIABETIC NEPHROPATHY UNK -

Overall DIABETIC NEUROPATHIES UNK 2.1 (0.3; 14.9)

RA DIABETIC NEUROPATHIES UNK 1.3 (0.2; 10.2)

COPD DIABETIC NEUROPATHIES UNK 1.1 (0.1; 10.3)

AS DIABETIC NEUROPATHIES UNK 2.1 (0.3; 18.1)

Overall DIABETIC RETINOPATHY UNK 0.7 (0.3; 1.8)
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RA DIABETIC RETINOPATHY UNK 0.8 (0.2; 2.7)

COPD DIABETIC RETINOPATHY UNK 0.7 (0.2; 3.4)

AS DIABETIC RETINOPATHY UNK 0.4 (0.1; 3.0)

Overall DIZZINESS SE 5.9 (1.2; 28.8)

RA DIZZINESS SE 3.1 (0.6; 15.9)

COPD DIZZINESS SE 6.4 (1.5; 27.6)

AS DIZZINESS SE 5.4 (1.1; 26.1)

Overall DYSPEPSIA SE 1.7 (0.9; 3.4)

RA DYSPEPSIA SE 1.5 (0.5; 4.1)

COPD DYSPEPSIA SE 1.2 (0.4; 3.5)

AS DYSPEPSIA SE 3.2 (1.3; 7.7)

Overall DYSPNEA UNK 8.1 (2.5; 26.7)

RA DYSPNEA UNK 7.5 (2.3; 23.8)

COPD DYSPNEA UNK 2.1 (0.9; 5.2)

AS DYSPNEA UNK 2.5 (0.8; 7.3)

Overall EDEMA BOTH 2.2 (1.1; 4.3)

RA EDEMA BOTH 1.4 (0.6; 3.6)

COPD EDEMA BOTH 2.9 (1.3; 6.4)

AS EDEMA BOTH 1.5 (0.5; 4.4)

Overall FEVER UNK 0.0 (0.0; 0.0)

RA FEVER UNK -

COPD FEVER UNK -

AS FEVER UNK -

Overall FIBROMYALGIA UNK 4.8 (1.4; 16.8)

RA FIBROMYALGIA UNK 2.3 (0.6; 8.3)

COPD FIBROMYALGIA UNK 1.0 (0.1; 7.9)

AS FIBROMYALGIA UNK 2.2 (0.5; 10.0)

Overall
GASTROESOPHAGEAL

REFLUX DISEASE
SE 1.6 (1.0; 2.7)

RA
GASTROESOPHAGEAL RE-

FLUX DISEASE
SE 1.1 (0.5; 2.3)
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COPD
GASTROESOPHAGEAL RE-

FLUX DISEASE
SE 1.0 (0.4; 2.3)

AS
GASTROESOPHAGEAL RE-

FLUX DISEASE
SE 1.5 (0.7; 3.3)

Overall GLAUCOMA SE 3.8 (1.4; 10.4)

RA GLAUCOMA SE 3.6 (1.1; 11.8)

COPD GLAUCOMA SE 3.4 (1.0; 12.0)

AS GLAUCOMA SE 1.5 (0.2; 12.4)

Overall GOUT BOTH 1.9 (1.1; 3.4)

RA GOUT BOTH 1.3 (0.5; 3.0)

COPD GOUT BOTH 1.1 (0.4; 2.9)

AS GOUT BOTH 1.7 (0.6; 4.6)

Overall HEADACHE SE 2.3 (0.9; 6.1)

RA HEADACHE SE 2.5 (0.8; 7.8)

COPD HEADACHE SE 1.6 (0.3; 8.4)

AS HEADACHE SE 2.0 (0.6; 6.6)

Overall HEART FAILURE SE 1.4 (0.5; 3.9)

RA HEART FAILURE SE 0.9 (0.2; 3.8)

COPD HEART FAILURE SE 0.9 (0.3; 3.3)

AS HEART FAILURE SE 0.9 (0.1; 7.2)

Overall
HEPATOCELLULAR CARCI-

NOMA
UNK 0.5 (0.0; 15.9)

RA
HEPATOCELLULAR CARCI-

NOMA
UNK 6.4 (0.3; 133.4)

COPD
HEPATOCELLULAR CARCI-

NOMA
UNK -

AS
HEPATOCELLULAR CARCI-

NOMA
UNK -

Overall HYPERCALCEMIA BOTH 1.4 (0.2; 10.9)

RA HYPERCALCEMIA BOTH 2.5 (0.2; 26.7)

COPD HYPERCALCEMIA BOTH -

AS HYPERCALCEMIA BOTH -

Overall HYPERCHOLESTEROLEMIA SE 1.1 (0.8; 1.5)
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RA HYPERCHOLESTEROLEMIA SE 1.0 (0.6; 1.8)

COPD HYPERCHOLESTEROLEMIA SE 0.9 (0.5; 1.8)

AS HYPERCHOLESTEROLEMIA SE 1.6 (0.8; 3.3)

Overall HYPERGLYCEMIA UNK 1.0 (0.5; 1.8)

RA HYPERGLYCEMIA UNK 1.3 (0.5; 3.4)

COPD HYPERGLYCEMIA UNK 1.0 (0.3; 3.1)

AS HYPERGLYCEMIA UNK 0.9 (0.3; 3.0)

Overall HYPERNANTREMIA UNK 4.5 (0.5; 37.2)

RA HYPERNANTREMIA UNK -

COPD HYPERNANTREMIA UNK 22.7 (1.0; 505.8)

AS HYPERNANTREMIA UNK 18.0 (1.6; 206.3)

Overall HYPERTENSION SE 1.5 (1.0; 2.1)

RA HYPERTENSION SE 0.8 (0.5; 1.5)

COPD HYPERTENSION SE 1.2 (0.6; 2.4)

AS HYPERTENSION SE 1.1 (0.5; 2.2)

Overall HYPERTRIGLYCERIDEMIA SE 1.0 (0.4; 2.0)

RA HYPERTRIGLYCERIDEMIA SE 2.8 (0.6; 12.4)

COPD HYPERTRIGLYCERIDEMIA SE -

AS HYPERTRIGLYCERIDEMIA SE 0.8 (0.1; 4.8)

Overall HYPERURICEMIA UNK 1.2 (0.7; 2.0)

RA HYPERURICEMIA UNK 0.7 (0.3; 2.0)

COPD HYPERURICEMIA UNK 0.9 (0.3; 2.6)

AS HYPERURICEMIA UNK 1.2 (0.4; 3.1)

Overall HYPOCALCEMIA UNK 2.7 (0.9; 8.4)

RA HYPOCALCEMIA UNK 0.7 (0.1; 5.9)

COPD HYPOCALCEMIA UNK 3.1 (0.7; 13.8)

AS HYPOCALCEMIA UNK 2.3 (0.5; 10.6)

Overall HYPOCALEMIA UNK 1.0 (0.4; 2.4)

RA HYPOCALEMIA UNK 0.5 (0.1; 4.2)

COPD HYPOCALEMIA UNK 2.5 (0.5; 12.9)

AS HYPOCALEMIA UNK 1.4 (0.3; 6.2)
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Overall HYPONANTREMIA UNK 0.2 (0.0; 2.0)

RA HYPONANTREMIA UNK -

COPD HYPONANTREMIA UNK -

AS HYPONANTREMIA UNK -

Overall HYPOPHOSPHATEMIA UNK 2.7 (0.6; 13.0)

RA HYPOPHOSPHATEMIA UNK 3.9 (0.4; 40.0)

COPD HYPOPHOSPHATEMIA UNK 3.5 (0.4; 35.2)

AS HYPOPHOSPHATEMIA UNK 5.5 (1.1; 27.1)

Overall INSOMNIA SE 1.6 (0.8; 3.3)

RA INSOMNIA SE 1.6 (0.6; 4.2)

COPD INSOMNIA SE 0.6 (0.1; 2.4)

AS INSOMNIA SE 1.3 (0.4; 4.3)

Overall LUNG NEOPLASMS UNK 0.5 (0.0; 9.7)

RA LUNG NEOPLASMS UNK -

COPD LUNG NEOPLASMS UNK 0.5 (0.1; 4.2)

AS LUNG NEOPLASMS UNK -

Overall
LUPUS ERYTHEMATO-

SUS SYSTEMIC
BOTH 18.7 (2.7; 131.5)

RA
LUPUS ERYTHEMATO-

SUS SYSTEMIC
BOTH 12.7 (3.5; 46.2)

COPD
LUPUS ERYTHEMATOSUS

SYSTEMIC
BOTH 2.9 (0.1; 58.1)

AS
LUPUS ERYTHEMATO-

SUS SYSTEMIC
BOTH 42.2 (4.8; 370.6)

Overall MELANOMA UNK 0.7 (0.1; 3.9)

RA MELANOMA UNK -

COPD MELANOMA UNK -

AS MELANOMA UNK -

Overall MENOPAUSE UNK 0.8 (0.1; 9.0)

RA MENOPAUSE UNK -

COPD MENOPAUSE UNK -

AS MENOPAUSE UNK -
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Overall MUSCLE SPASMS UNK 3.3 (1.3; 8.5)

RA MUSCLE SPASMS UNK 1.5 (0.5; 4.5)

COPD MUSCLE SPASMS UNK 3.2 (1.0; 10.6)

AS MUSCLE SPASMS UNK 1.4 (0.3; 5.9)

Overall MYALGIA SE 3.3 (1.4; 7.5)

RA MYALGIA SE 2.2 (0.9; 5.5)

COPD MYALGIA SE 1.1 (0.2; 5.4)

AS MYALGIA SE 1.5 (0.4; 6.6)

Overall
MYOCARDIAL INFARC-

TION
SE 2.5 (1.4; 4.4)

RA MYOCARDIAL INFARCTION SE 1.2 (0.5; 2.7)

COPD MYOCARDIAL INFARCTION SE 1.5 (0.7; 3.2)

AS MYOCARDIAL INFARCTION SE 1.6 (0.6; 4.4)

Overall NASOPHARYNGITIS UNK 2.1 (0.1; 33.9)

RA NASOPHARYNGITIS UNK -

COPD NASOPHARYNGITIS UNK -

AS NASOPHARYNGITIS UNK -

Overall NAUSEA SE 4.2 (1.0; 18.1)

RA NAUSEA SE 0.9 (0.1; 7.5)

COPD NAUSEA SE -

AS NAUSEA SE -

Overall NEUROPATHIC PAIN SE 2.4 (1.2; 5.0)

RA NEUROPATHIC PAIN SE 1.8 (0.7; 4.5)

COPD NEUROPATHIC PAIN SE 2.1 (0.9; 5.0)

AS NEUROPATHIC PAIN SE 3.2 (1.3; 7.7)

Overall OSTEOARTHRITIS BOTH 1.0 (0.7; 1.6)

RA OSTEOARTHRITIS BOTH -

COPD OSTEOARTHRITIS BOTH 0.6 (0.2; 1.5)

AS OSTEOARTHRITIS BOTH 0.6 (0.2; 1.4)

Overall OSTEOPOROSIS SE 2.2 (0.2; 24.2)

RA OSTEOPOROSIS SE -
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COPD OSTEOPOROSIS SE 6.1 (0.7; 50.4)

AS OSTEOPOROSIS SE 12.1 (1.2; 125.7)

Overall OSTEOSARCOMA UNK 3.2 (0.3; 40.2)

RA OSTEOSARCOMA UNK -

COPD OSTEOSARCOMA UNK -

AS OSTEOSARCOMA UNK -

Overall PAIN SE 4.4 (2.1; 9.1)

RA PAIN SE 3.0 (1.2; 7.1)

COPD PAIN SE 3.9 (1.7; 8.7)

AS PAIN SE 0.9 (0.2; 3.7)

Overall PANCREATIC NEOPLASMS UNK 1.9 (0.1; 33.1)

RA PANCREATIC NEOPLASMS UNK -

COPD PANCREATIC NEOPLASMS UNK -

AS PANCREATIC NEOPLASMS UNK -

Overall PHARYNGITIS UNK 6.8 (1.0; 48.0)

RA PHARYNGITIS UNK -

COPD PHARYNGITIS UNK -

AS PHARYNGITIS UNK -

Overall PHOTOSENSITIVITY UNK 1.0 (0.4; 2.2)

RA PHOTOSENSITIVITY UNK -

COPD PHOTOSENSITIVITY UNK 0.3 (0.0; 2.5)

AS PHOTOSENSITIVITY UNK 1.3 (0.3; 4.8)

Overall PROSTATIC NEOPLASMS IND 1.8 (0.6; 5.0)

RA PROSTATIC NEOPLASMS IND 3.2 (0.6; 17.9)

COPD PROSTATIC NEOPLASMS IND 1.4 (0.4; 5.4)

AS PROSTATIC NEOPLASMS IND 4.6 (0.8; 27.9)

Overall PRURITUS SE 7.6 (1.1; 55.2)

RA PRURITUS SE -

COPD PRURITUS SE 13.8 (0.8; 247.3)

AS PRURITUS SE 7.9 (0.8; 76.7)

Overall PSORIASIS BOTH 4.8 (0.7; 33.5)
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RA PSORIASIS BOTH 7.7 (1.3; 46.5)

COPD PSORIASIS BOTH -

AS PSORIASIS BOTH -

Overall RENAL CELL CARCINOMA UNK 1.7 (0.2; 16.0)

RA RENAL CELL CARCINOMA UNK -

COPD RENAL CELL CARCINOMA UNK -

AS RENAL CELL CARCINOMA UNK -

Overall
RHEUMATOID ARTHRI-

TIS
BOTH 5.0 (3.0; 8.4)

RA RHEUMATOID ARTHRITIS BOTH -

COPD
RHEUMATOID ARTHRI-

TIS
BOTH 5.2 (2.4; 11.1)

AS
RHEUMATOID ARTHRI-

TIS
BOTH 5.0 (2.4; 10.6)

Overall RHINITIS ALLERGIC IND 3.8 (2.0; 7.2)

RA RHINITIS ALLERGIC IND 1.8 (0.7; 4.9)

COPD RHINITIS ALLERGIC IND 1.2 (0.5; 2.9)

AS RHINITIS ALLERGIC IND 1.6 (0.9; 2.9)

Overall SEIZURES UNK 0.6 (0.1; 3.7)

RA SEIZURES UNK 2.5 (0.5; 13.0)

COPD SEIZURES UNK 2.7 (0.5; 14.3)

AS SEIZURES UNK 2.8 (0.6; 12.3)

Overall SINUSITIS IND 14.5 (2.5; 84.2)

RA SINUSITIS IND -

COPD SINUSITIS IND -

AS SINUSITIS IND -

Overall SKIN ERUPTIONS SE 9.8 (1.3; 73.9)

RA SKIN ERUPTIONS SE 17.2 (0.9; 315.4)

COPD SKIN ERUPTIONS SE -

AS SKIN ERUPTIONS SE 32.5 (1.6; 642.8)

Overall STROKE UNK 1.2 (0.6; 2.4)

RA STROKE UNK 1.4 (0.6; 3.3)
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COPD STROKE UNK 1.4 (0.5; 3.5)

AS STROKE UNK 0.9 (0.3; 3.1)

Overall THROMBOPHLEBITIS SE 1.9 (0.3; 13.8)

RA THROMBOPHLEBITIS SE 3.4 (0.3; 34.4)

COPD THROMBOPHLEBITIS SE -

AS THROMBOPHLEBITIS SE -

Overall THYROIDITIS BOTH 1.2 (0.7; 1.9)

RA THYROIDITIS BOTH 0.9 (0.4; 2.0)

COPD THYROIDITIS BOTH 0.7 (0.3; 1.9)

AS THYROIDITIS BOTH 0.7 (0.2; 2.2)

Overall URINARY INCONTINENCE UNK 1.2 (0.2; 6.3)

RA URINARY INCONTINENCE UNK 1.8 (0.2; 14.8)

COPD URINARY INCONTINENCE UNK -

AS URINARY INCONTINENCE UNK -

Overall URTICARIA SE 1.9 (0.1; 31.7)

RA URTICARIA SE -

COPD URTICARIA SE -

AS URTICARIA SE 33.0 (2.4; 453.3)

Overall
UTERINE CERVICAL NEO-

PLASMS
UNK 3.0 (0.8; 10.7)

RA
UTERINE CERVICAL NEO-

PLASMS
UNK 0.7 (0.1; 5.4)

COPD
UTERINE CERVICAL NEO-

PLASMS
UNK 1.7 (0.2; 14.3)

AS
UTERINE CERVICAL NEO-

PLASMS
UNK 1.3 (0.2; 10.5)

Table 4.1: The table summarize the computed OR and the lower

and upper bound computed in the four different population for

each BED condition taken into account.

Of the 101 terms, only 85 have been used for the analysis. Of this 85, 5 were annotated

as indication (IND), 31 as Side-effects (SE), 12 as Side-Effects or Indication (BOTH) and

37 as Unknown (UNK). Among the SE terms, the ones showing a positive and significant

correlation with the use of prednisone in the Overall population are Pain, Arthralgia, Myalgia
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and Neuropathic Pain for pain-related terms, followed by major conditions like Myocardial

Infarction, Glaucoma, Depression and Hypertension. At last, other minor symptoms are

present, Dizziness, Skin Eruptions, Pruritus and Nausea.

4.2.1. Known Side-effects

Pain, Arthralgia, neuropathic Pain

Pain shows a positive association in the Overall population with 4.4 (2.1; 9.1), the same

correlation is also found in RA 3.0 (1.2; 7.1) and COPD 3.9 (1.7; 8.7), but not in AS 0.9 (0.2;

3.7). Arthralgia shows a similar pattern with 2.7 (1.6; 4.5) in the Overall population and 1.8

(0.9; 3.6) in RA and 1.2 (0.5; 3.0) in COPD while it is lower than 1 in AS. Myalgia is 3.3 (1.4;

7.5) in the Overall population and remains strong but not significant in RA 2.2 (0.9; 5.5)

while is weaker and closer to 1 in COPD 1.1 (0.2; 5.4) and AS 1.5 (0.4; 6.6). Neuropathic pain

is significant in the Overall population with 2.4 (1.2; 5.0), is still positive yet not significant

in RA and COPD with 1.8 (0.7; 4.5) and 2.1 (0.9; 5.0), while is much stronger and significant

in AS 3.2 (1.3; 7.7).

The term Pain, which includes individual taking any drugs for any kind of pain as described in

Table 7.5 is particularly strong among RA and COPD patients, Arthralgia instead is stronger

in RA while is closer to 1 or less in COPD and AS, similarly, Myalgia is stronger in RA and

ASTHMA but weaker in COPD. Note that Myalgia and Arthralgia are particularly strong in

RA with respect to the other conditions, these two terms are typical symptoms of RA [Walsh

and McWilliams, 2012], and the prolonged use of prednisone could be a worsening factor in

the context of rheumatoid arthritis. Prednisone results as a strong predictor of Neuropathic

Pain in the context of asthma, some underlying mechanism explaining this observation could

be hypothesized considering the risk of neuritis associated with the use of prednisone and

the molecular evidence suggesting the presence of neurogenic inflammation in the context of

asthma [Butler and Heaney, 2007, Joos et al., 2003].

Myocardial Infarction

Myocardial Infarction shows significant association in the Overall population with 2.5 (1.4;

4.4), while is not significant in the other populations with 1.2 (0.5; 2.7) for RA, 1.5 (0.7; 3.2)

for COPD, and 1.6 (0.6; 4.4) in AS.

It must be highlighted that individuals described has having a Myocardial Infarction are

those that reported at least one episode of infarction in their life, before or after they started

use of prednisone.

Glaucoma, Depression, Hypertension

Glaucoma shows a significant association with prednisone in the RA population with 3.6 (1.1;

11.8), the same occurs in the COPD population 3.4 (1.0; 12.0) yet the lower bound is slightly
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lower than one, the OR is 2 times smaller in the AS population respect to RA and COPD,

with 1.5 (0.2; 12.4). Note that the OR for glaucoma in the Overall population is 3.8 (1.4;

10.4), similarly to what obtained in RA and COPD.

Depression shows Association in the Overall population with 1.8 (1.1; 2.9), while is not sig-

nificant yet positive in RA 1.5 (0.7; 3.2) and COPD 1.8 (0.9; 3.9), though it shows significant

association in AS patients with 2.6 (1.3; 5.3).

Hypertension show significant Association in the Overall population with 1.5 (1.0; 2.1) yet

its lower bound is very close to one, correlation is not significant instead in none of the 3

population and always very close to one with 0.8 (0.5; 1.5) in RA, 1.2 (0.6; 2.4) in COPD

and 1.1 (0.5; 2.2) in AS.

For what concern Glaucoma, Depression and Hypertension, significant association is observed

with different entity across the population taken into account, the differences observed could

be related to frequency, dose and path of administration which vary across the different

population taken into account, on the other hand a quantification of the association between

prednisone and the insurgence of this conditions is provided.

Nausea, Pruritus, Skin eruptions and Dizziness

Some minor conditions show significant association with the use prednisone, in particular

Dizziness, which is significant in the Overall population with 5.9 (1.2; 28.8) and in COPD

and AS with 6.4 (1.5; 27.6) and 5.4 (1.1; 26.1) while is two-fold smaller and not significant in

RA 3.1 (0.6; 15.9). Skin Eruptions has an OR of 9.8 (1.3; 73.9) in the Overall population and

appears also in AS with 32.5 (1.6; 642.8) and RA 17.2 (0.9; 315.4). Pruritus with 7.6 (1.1;

55.2) in the Overall population only appears in COPD and AS with 13.8 (0.8; 247.3) and

7.9 (0.8; 76.7). At last, Nausea with 4.2 (1.0; 18.1) in the Overall Population. The relation

of prednisone use with the insurgence conditions of minor entities (Nausea, Pruritus, skin

eruptions, and dizziness) is quantified, also in this case some variation is observed across the

different populations.

Dyspepsia, Osteoporosis, Urticaria

Note that the only side-effects that have a significant association with prednisone in either

the populations RA, COPD, or AS but are not significantly associated with prednisone in

the Overall population only occurs in the AS population. AS shows a positive and significant

association with Dyspepsia 3.2 (1.3; 7.7) Osteoporosis 12.1 (1.2; 125.7) and Urticaria 33.0

(2.4; 453.3). Note that the confidence intervals are extremely wide for both Osteoporosis and

Urticaria, this is due to the very small number of individuals showing these conditions, also

note that results for Urticaria are absent in COPD and RA while Osteoporosis is absent only

in RA due to the absence of individuals showing these conditions in these populations. For

what concerns Dyspepsia, note that the OR in the AS population is nearly 2 times the one
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Overalll population with 3.2 (1.3; 7.7) against 1.7 (0.9; 3.4), a weaker yet positive relation

is observed for this condition also in RA with 1.5 (0.5; 4.1) and COPD with 1.2 (0.4; 3.5).

Dyspepsia, Osteoporosis, and Urticaria all show positive association with prednisone in the

AS population. While for Osteoporosis and Urticaria the confidence intervals are extremely

wide, these are not for dyspepsia. Dyspepsia is a frequent symptom in patients with asthma,

[Tomyo et al., 2019] reported that 44% of patients with asthma show functional dyspepsia,

and different authors describe a relationship of asthma with Gastroesophageal Reflux Disease

[Boos et al., 2014, Liang et al., 2013, Tsai et al., 2010]. An association between the use of

glucocorticoid and the insurgence of Dyspepsia has been reported by [Hallas and Bytzer, 1998]

for a relative risk (RR 1.1, CI 1.0-1.3). Our results suggest a strong presence of Dyspepsia

among AS patients using prednisone.

4.2.2. Potential Side-effects

Of the 38 conditions marked as UNK only Cough 15.5 (3.5; 69.1), Dyspnea 8.1 (2.5; 26.7),

Fibromyalgia 4.8 (1.4; 16.8), and Muscle Spasms 3.3 (1.3; 8.5) show a significant association

with the use of prednisone in the Overall population. Of these four conditions, only Dyspnea

and Cough show associations also in the other populations, in particular Dyspnea shows OR

of 7.5 (2.3; 23.8) in RA while Cough shows an OR of 6.4 (2.1; 19.2) in AS. Among the

potential side effects, some don’t show association in the Overall population while some show

association in either COPD or AS, but not in RA. In AS we observe Breast Neoplasm 5.3

(1.3; 20.7), Hypophosphatemia 5.5 (1.1; 27.1) and Hypernatremia 18.0 (1.6; 206.3), this latter

is also present in COPD with 22.7 (1.0; 505.8). In COPD we also observe Attention Deficit

Disorder with Hyperactivity 10.3 (1.1; 98.0).

Attention Deficit Disorder with Hyperactivity (ADHD)

Attention Deficit Disorder with Hyperactivity shows a strong association with the use of

prednisone in COPD patients. A common mechanism explaining the relation between ADHD

and prednisone could be hypothesized considering that both have a relation with the HPA-

axis dysregulation [Vogel et al., 2017, Alten and Wiebe, 2015]. On the other hand, [Vogel

et al., 2017] suggests that the relations between ADHD and the HPA axis are mostly due to

anxiety disorder and depression. Note that Anxiety and depression are comorbidities both for

COPD [Panagioti et al., 2014] and for Attention Deficit Disorder with Hyperactivity [Kittel-

Schneider and Reif, 2020], prednisone could be among the factors contributing to these mental

conditions but further studies are needed.

Dyspnea and Cough

Dyspnea appears among the UNK terms because is not annotated as an indication in drug-

bank, yet prednisone is widely used in the treatment of dyspnea when caused by Chronic

Obstructive Pulmonary Disease [Woods et al., 2014], association with prednisone and dys-

pnea is particularly high in the RA population. Of the 5 patients showing both RA and
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Dyspnea and using prednisone 1 is using it for unspecified allergies, 2 for dyspnea or breath-

ing, and 2 for chronic obstructive pulmonary disease, so generally for respiratory problems.

These results can be attributed to the lung involvement of rheumatoid arthritis [Chatzid-

iontsiou, 2016] and the use of prednisone for their management, rather than considering it a

side-effect of prednisone. A similar situation is obtained for Cough, it is not annotated as an

indication for prednisone in drugbank but prednisone is actually used for cough treatment

when caused by Chronic Obstructive Pulmonary Disease [Thompson et al., 1996]. The use of

prednisone for Cough treatment seems to be more frequent in the AS population, the strong

association could be due to the occurrence of cough as asthmatic symptoms.

Fibromyalgia

Prednisone appears to be a predictor of Fibromyalgia in the Overall population, the asso-

ciation is positive but not significant in the RA and AS population while equal to 1 in the

COPD population. Different papers discussed already the relationship between the use of

prednisone and the occurrence of fibromyalgia. A study conducted in RA patients shows

that individuals with strong fibromyalgia symptoms were more likely to use prednisone than

those with weak symptoms (Odds Ratio 4.99 [95% Confidence Interval 1.20-20.73]) [Szumi-

las, 2010]. A prospective cohort study [Chakr et al., 2017] investigates the use of DMARD

in RA patients and its relation with Fibromyalgia, concluding that RA patients with FM

used more leflunomide and prednisone. Another study investigates the molecular aspect of

Fibromyalgia, particularly focusing on Glucocorticoid (GR) and Mineral-corticoid receptor

(MR) involvement, stating that lower levels of GR and MR are present in Fibromyalgia

patients and that this under-expression could be related to a malfunctioning of the hypotha-

lamic–pituitary–adrenal axis (HPA) and to the presence of low levels of anti-inflammatory

mediator. Considering that the term fibromyalgia is defined by drug indications, our results

suggest that people using prednisone are more likely to take drugs to treat fibromyalgia.

Muscle Spasms

Prednisone is associated with muscle spasms, a positive and almost significant association is

observed among COPD patients. Myopathies are a known side effect of prednisone [Schweiger

and Zdanowicz, 2010], and muscle spasms is a manifestation of it.

Hypernatremia and Hypophosphatemia

Hypernatremia shows positive association with prednisone in both AS and COPD patients.

This result is in line with different other studies. A nested case-control study [Imaizumi

et al., 2021] identify high dosage glucocorticoid has a predictor of IAH (Intensive-care-unit

Acquired Hypernatremia) (odds ratio (OR), 4.15 [95% confidence interval (CI) 1.29–13.4])

while a meta-analysis of 37 reports a relative risk 1.57 (95% CI, 1.24-1.99) for hypernatremia

due to use of corticosteroids. Our results are in line with these evidences yet OR estimated by

our method shows a very wide confidence interval due to the small number of samples showing

hypernatremia. Hypophosphatemia shows significant association with the use of prednisone in
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AS patients. Hypophosphatemia has been identified as a complication in Asthmatic patients

as a consequence of urinary excretion of phosphate due to the use of glucocorticoid [Braddy

et al., 1989]. The relation between the use of corticosteroids and phosphate levels is poorly

described in literature.

Breast Neoplasm

A significant association between Breast Neoplasm and prednisone is observed in AS patients.

This association appears because prednisone is often used together with chemotherapies in

the treatment breast neoplasm [Marini et al., 1996], so it can’t be considered a side effect of

prednisone.

4.2.3. System Biology Analysis

System biology analysis has been conducted for those associations that we found interesting

and that show incomplete understanding of the molecular mechanisms underlying it. Analysis

have been performed whether the condition in exam is a known side-effect or not. The results

of this analysis are shown in Table 4.2 and Table 4.3, respectively for the identified side effects

in the AS and COPD population. The analysis on the RA population didn’t produce any

significant results.

IN
Dyspepsia gallbladder al-

terations

Hypophosphatemia

excessive secretion of

parathyroid hormone

(PTH)

Hypophosphatemia re-

duced bone resorption

Neuropathic pain prono-

ciceptive facilitation at the

spinal dorsal horn

Prednisone

Receptor
* * ** *

P22301 - - * ***

P17931 - - * ***

P05231 - - * ***

Q16620 - - * ***

P35367 - - - ***

P23560 - - - ***

P13501 - - - ***

P13500 - - - ***

P09341 - - - ***

Q99731 - - - ***

P02778 - - - ***

O95998 - - - ***

O00175 - - - ***

Q14116 - - - ***

P80075 - - - ***

P51671 - - - ***

P42830 - - - ***

Q03135 * - * *

P21731 * - - *

P10721 - - - *

P10145 - - - *

P09429 - - - *

P08637 - - - *

P01584 - - - *
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P01583 - - - *

P01133 - - - *

O75015 - - - *

Q99075 - - - *

O00206 - - - *

Q92769 * - - *

Q16665 - * - *

Q15109 - - - *

Q13557 - - - *

Q9NPH3 - - - *

P42226 * - - *

P09603 - - *** -

P35225 - - * -

P29966 - - * -

P29460 - - * -

P29459 - - * -

P27930 - - * -

P21980 - - * -

P20701 - - * -

P15692 - - * -

P08700 - - * -

P05113 - - * -

P05112 - - * -

P04141 - - * -

P01579 - - * -

O60602 - - * -

Q969D9 - - * -

P47712 - - * -

P43699 - - * -

P14780 * - - -

Q9BQ51 - * - -

P05362 - * - -

P01574 * - - -

P01375 * - - -

P00533 * * - -

O95238 - * - -

Q9Y261 - * - -

Q15796 * - - -

Q13478 * - - -

P84022 * * - -

P37231 * - - -

Table 4.2: Results of the system biology analysis for relevant

associations found in the AS population. ***: p-value <

0.05, **: p-value < 0.1, *:p-value < 0.2 and -: p.value > 0.2.
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IN ADHD Circadian System Imbalance ADHD Neurotrasmitter imbalance

Prednisone * *

P02794 - ***

P02792 - ***

P48200 - ***

P21731 - **

P13612 - *

P05112 - *

O94817 - *

O15264 * *

Q6NYC1 - *

Q16539 * *

Q15759 * *

Q14790 - *

P55211 - *

P53778 * *

P43115 - *

P42574 - *

P35225 - *

Q9HBY0 - *

P19838 * -

P10144 * -

Q96EB6 * -

P05412 * -

Q92769 * -

Q14145 * -

Q03405 * -

P35968 * -

P28482 * -

Table 4.3: Results of the system biology analysis for relevant

associations found in the COPD population. ***: p-value <

0.05, **: p-value < 0.1, *:p-value < 0.2 and -: p.value > 0.2.

Considering the functional association between the prednisone receptor, the motives that

have been identified as functionally related are CIRCADIAN SYSTEM IMBALANCE and

NEUROTRANSMITTER IMBALANCE for ADHD, with p-value < 0.2 for both. In Dyspep-

sia the only significantly related module is GALL BLADDER ALTERATIONS with p-value

< 0.2. In hypophosphatemia, REDUCED BONE RESORPTION shows p-value < 0.1 while

EXCESSIVE SECRETION OF PARATHYROID HORMONE (PTH) shows p-value <0.2.

For neuropathic pain, PRONOCICEPTIVE FACILITATION AT THE SPINAL DORSAL

HORN is the most significant one with p-value < 0.1.

We evaluated the molecular relation between the use of prednisone and (1) neuropathic pain

in asthmatic individuals, (2) dyspepsia in asthmatic individuals, (3) hypophosphatemia in

asthmatic individuals, and (4) ADHD in COPD.
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For AS, COPD and RA populations, COPD proteins were identified to be functionally asso-

ciated with the ADHD modules CIRCADIAN SYSTEM IMBALANCE (13 proteins with p

< 0.2) and NEUROTRANSMITTER IMBALANCE (2 proteins with p-value < 0.05, 2 with

p-value < 0.1 and 8 with p-value <0.2).

Functional relation between asthma protein and modules of Dyspepsia, Neuropathic Pain,

and Hypophosphatemia has been identified. In particular 12 asthma proteins were identified

to be functionally related to the dyspepsia motive GALLBLADDER ALTERATION (all with

p-value <0.2), 7 proteins relate to the hypophosphatemia motive of EXCESSIVE SECRE-

TION OF PARATHYROID HORMONE (PTH) (all with p-value < 0.2) and 24 proteins

relates to REDUCED BONE RESORPTION (23 with p-value < 0.2 and 1 with p-value <

0.05). At last. some proteins relates with Neuropathic Pain modules of PRONOCICEPTIVE

FACILITATION AT THE SPINAL DORSAL HORN (17 with p-value <0.05 and 15 p-value

< 0.1).

ADHD-NEUROTRASMITTER IMBALANCE in COPD

Among the COPD proteins which show functional relation with the “NEUROTRASMIT-

TER IMBALANCE” motif of ADHD are the Ferritin Heavy Chain (Uniprot: P02794) and

the Iron-responsive element-binding protein 2 (Uniprot: P48200) with p-value < 0.05, while

the Thromboxane A2 receptor (Uniprot: P21731), and the Ferritin Light Chain (Uniprot:

P02792) shows p-value < 0.1. Ferritin is a well-known biomarker in COPD [Hoepers et al.,

2015], while the relation of ferritin and/or Fe levels with ADHD is supported by much evi-

dence, though with some conflicting results [Robberecht et al., 2020, Oner et al., 2012]. We

could hypothesize (1) ferritin miss-regulation as a common underlying mechanism between

COPD and ADHD and (2) prednisone as a potential contributor to this misregulation, some-

how these findings confirm the results reported in [Fasmer et al., 2011], where a correlation

is observed between ADHD and the use of drugs for asthma treatment, among which pred-

nisone. It’s interesting to notice that the Thromboxane A2 receptor is part of a variety of

inflammatory processes [Yan et al., 2017].

HYPOPHOSPATEMIA-REDUCED BONE ABSORPTION in Asthma

The only asthma protein that has been identified to have a strong functional relation with

the hypophosphatemia module REDUCED BONE RESORPTION is the Macrophage colony-

stimulating factor 1 (Uniprot: P09603). Considering the involvement of the protein in inflam-

matory processes and bone-remodeling, the importance of phosphorus in bone mineralization,

and the worsening effect of corticosteroids on bone general health [Mitra, 2011, Picado and

Luengo, 1996], we can hypothesize prednisone to be a cause hypophosphatemia in asthma

patients in relation to molecular process involving bone-remodeling.
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NEUROPATHIC PAIN in ASTHMA

The number of Asthma proteins identified as strongly related to the Neuropathic Pain module

PRONOCICEPTIVE FACILITATION AT THE SPINAL DORSAL HORN is 17. We found

the brain-derived neurotrophic factor BDNF and the BDNF/NT-3 growth factors receptor

(Uniprot: P23560, Q16620), the C-C motifs chemokines 2, 5, 8, 19, and 24 (Uniprot: P13500,

P13501, P80075, Q99731, O00175) and the C-X-C motif chemokines 5 and 10 (Uniprot:

P42830, P022778) together with interleukins 6, 10, 18 (Uniprot: P05231, P22301, Q14116)

and the interleukin-18-binding protein (Unirprot O95998) and at last, Eoxitin (Uniprot:

P51671), Galectin-3 (Uniprot: P17931), Growth Related Alpha Protein (Uniprot: P09341)

and Histamine H1 Receptor (Uniprot: P35367). The first interesting aspect of the results

obtained is that 15 out of the 17 proteins identified are related to immune mechanisms, while

the two remaining regard the Brain-Derived Neurotrophic factor and its receptor. Various

yet conflicting evidence relate BDNF and its signaling pathway to the glucocorticoid receptor

and so to the use of Glucocorticoids [Zhang et al., 2020] while others report a relation with

asthma [Barrios and Ai, 2018]. The presence of an underlying mechanism for which pred-

nisone could be a predictor of neuropathic pain and neuritis could be hypothesized taking in

consideration the proteins identified by this analysis.

4.3. The effect of Tocilizumab in GCA-patiens PBMCS (Pe-

ripheral Blood Mononuclear Cells)

4.3.1. Differential Analysis

Significant results for multiple hypothesis testing were obtained only in the p-value TCZ+IL6

vs IL6 experiment, with 81 differentially expressed transcripts, of which 7 with a negative

fold-change (FC), and 71 with a positive one. In the IL6 vs UNT experiment, no statistically

significant protein is found when adjusting for multiple hypotheses. Without adjustment, we

found 49 significant proteins, of which 34 with FC < 0 and 15 with FC > 0.

Considering instead non-adjusted p-values both in the TCZ+IL6 vs IL6 and IL6 vs UNT

experiments, 41 proteins are significant in both experiments, and all of them show opposite

FC. A subgroup of 7 (BCL6, C3AR1, CCL2, CCR1, HIF1A, IL10, MYC, STAT3) is acti-

vated by IL6 and inhibited by TCZ (named “negative set”), is the opposite for the other 31

(“positive set”).

Interestingly, if we consider a p-value threshold of 0.1, we have significant p-values also in

the IL6 vs UNT experiment, and a total of 6 protein significant in both experiments. 3 are

upregulated by IL6 and inhibited by TCZ (MYC, HIF1A, STAT3) while 3 have the opposite

behaviour (STAT1, NLRP3, TREM2).

The results of the differential analysis are shown in Table 4.4.

68



TCZ+IL6 vs IL6 IL6 vs UNT

Protein p fdr(p) FC p fdr(p) FC SET

CSF1 0.0003 0.0113 U 0.0168 0.1229 D POS

MAP2K4 0.0003 0.0113 U 0.2659 0.5087 D

TNF 0.0004 0.0113 U 0.1626 0.4039 D

MYC 0.0004 0.0113 D 0.0007 0.0572 U NEG

CCL24 0.0005 0.0113 U 0.0168 0.1229 D POS

IFIT2 0.0005 0.0113 U 0.1626 0.4039 D

RIPK2 0.0005 0.0113 U 0.0277 0.1629 D POS

IFNG 0.0005 0.0113 U 0.4348 0.659 D

CCL4 0.0005 0.0113 U 0.3318 0.5712 U

TNFSF14 0.0006 0.0113 U 0.1773 0.4189 D

NFE2L2 0.0006 0.0113 U 0.1024 0.3527 D

CSF2 0.0006 0.0113 U 0.8313 0.9025 U

IFI44 0.0007 0.0113 U 0.0129 0.1156 D POS

CYSLTR1 0.0007 0.0113 U 0.0056 0.1128 D POS

NOD1 0.0007 0.0113 U 0.1239 0.3982 D

HIF1A 0.0008 0.0125 D 0.0007 0.0572 U NEG

TREM2 0.0012 0.0128 U 0.0019 0.0776 D POS

NLRP3 0.0012 0.0128 U 0.0016 0.0776 D POS

IFIT3 0.0012 0.0128 U 0.2868 0.5237 D

HMGB2 0.0012 0.0128 U 0.0065 0.1156 D POS

MEF2A 0.0012 0.0128 U 0.0129 0.1156 D POS

LIMK1 0.0014 0.0144 U 0.0036 0.1008 D POS

CDC42 0.0016 0.015 U 0.0352 0.2017 D POS

IL15 0.0016 0.015 U 0.554 0.7377 D

BCL6 0.0016 0.015 D 0.0217 0.1375 U NEG
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IRF5 0.0019 0.0153 U 0.0113 0.1156 D POS

TGFBR1 0.0019 0.0153 U 0.0113 0.1156 D POS

HLA-DRA 0.0019 0.0153 U 0.0168 0.1229 D POS

IFIT1 0.0023 0.0153 U 0.0129 0.1156 D POS

C3 0.0023 0.0153 U 0.0168 0.1229 D POS

ITGB2 0.0023 0.0153 U 0.0113 0.1156 D POS

PTK2 0.0023 0.0153 U 0.0191 0.128 D POS

MAPK14 0.0023 0.0153 U 0.2274 0.4684 D

CCL3 0.0023 0.0153 U 0.6874 0.8121 U

CD40LG 0.0026 0.017 U 0.0113 0.1156 D POS

HLA-DRB1 0.0026 0.017 U 0.0075 0.1156 D POS

TNFAIP3 0.0031 0.0188 U 0.0552 0.2609 D

IL1RN 0.0031 0.0188 U 0.4631 0.6889 D

CXCL10 0.0036 0.0194 U 0.0086 0.1156 D POS

IL18 0.0036 0.0194 U 0.0191 0.128 D POS

CXCL8 0.0036 0.0194 U 0.1626 0.4039 D

NR3C1 0.0036 0.0194 U 0.2659 0.5087 D

CCR7 0.0036 0.0194 D 0.4925 0.69 U

STAT1 0.0042 0.0207 U 0.0005 0.0572 D POS

HMGN1 0.0042 0.0207 U 0.0759 0.3099 D

NFKB1 0.0042 0.0207 U 0.1239 0.3982 D

CCL2 0.0042 0.0207 D 0.0113 0.1156 U NEG

DDIT3 0.0049 0.0235 U 0.4074 0.6376 U

RHOA 0.0056 0.0251 U 0.0042 0.1008 D POS

MAX 0.0056 0.0251 U 0.0099 0.1156 D POS

MAPK1 0.0056 0.0251 U 0.6529 0.7987 U

C3AR1 0.0056 0.0251 D 0.0217 0.1375 U NEG

ATF2 0.0065 0.0285 U 0.2461 0.4985 D
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PTGDR2 0.0075 0.0311 U 0.4925 0.69 D

TLR3 0.0075 0.0311 U 0.4631 0.6889 U

STAT3 0.0075 0.0311 D 0.0019 0.0776 U NEG

TGFB1 0.0086 0.0329 U 0.0245 0.1516 D POS

RAF1 0.0086 0.0329 U 0.6529 0.7987 D

RAPGEF2 0.0086 0.0329 U 0.5228 0.7118 D

TOLLIP 0.0086 0.0329 U 0.7583 0.854 U

CXCR2 0.0099 0.035 U 0.1024 0.3527 D

MMP9 0.0099 0.035 U 0.0495 0.2433 D POS

PLCB1 0.0099 0.035 U 0.1488 0.4039 D

MAP3K9 0.0099 0.035 U 0.0929 0.3391 D

STAT2 0.0099 0.035 U 0.1626 0.4039 D

IRF1 0.0113 0.0368 U 0.2274 0.4684 D

RAC1 0.0113 0.0368 U 0.1488 0.4039 D

CREB1 0.0113 0.0368 U 0.4348 0.659 D

GNB1 0.0113 0.0368 U 0.4925 0.69 U

IL6 0.0113 0.0368 U 0.5228 0.7118 U

KEAP1 0.0129 0.0398 U 0.2659 0.5087 D

IL18RAP 0.0129 0.0398 U 0.1626 0.4039 D

RPS6KA5 0.0129 0.0398 U 0.2868 0.5237 D

CCL20 0.0129 0.0398 U 0.9058 0.925 U

PRKCB 0.0148 0.0443 U 0.0129 0.1156 D POS

CD40 0.0148 0.0443 U 0.3088 0.5554 U

ROCK2 0.0168 0.0492 U 0.0929 0.3391 D

IL23A 0.0168 0.0492 U 0.2274 0.4684 D

PTGS1 0.0217 0.0584 U 0.0113 0.1156 D POS

OASL 0.0217 0.0584 U 0.0036 0.1008 D POS

NFATC3 0.0217 0.0584 U 0.3812 0.6292 D
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MEF2D 0.0217 0.0584 U 0.6529 0.7987 D

MAP3K7 0.0217 0.0584 U 0.3318 0.5712 D

IL1A 0.0217 0.0584 U 0.4925 0.69 U

FLT1 0.0217 0.0584 U 0.4348 0.659 U

CCL22 0.0277 0.0714 U 0.0395 0.2162 D POS

CXCL9 0.0277 0.0714 U 0.4074 0.6376 D

CCL5 0.0277 0.0714 U 0.0552 0.2609 D

TLR2 0.0277 0.0714 D 0.084 0.3266 U

MX1 0.0312 0.078 U 0.193 0.4388 D

CXCL2 0.0312 0.078 U 0.4925 0.69 D

FASLG 0.0312 0.078 U 0.9058 0.925 D

TRAF2 0.0352 0.0833 U 0.4925 0.69 D

MAPKAPK5 0.0352 0.0833 U 0.1488 0.4039 D

CXCR4 0.0352 0.0833 U 0.2274 0.4684 D

C1R 0.0352 0.0833 U 0.9058 0.925 U

CCL8 0.0352 0.0833 D 0.1359 0.3995 U

NOD2 0.0395 0.09 U 0.0759 0.3099 D

IL1RAP 0.0395 0.09 U 0.1626 0.4039 D

LY96 0.0395 0.09 D 0.2097 0.4636 U

CFB 0.0395 0.09 U 0.5228 0.7118 U

C5 0.0442 0.0971 U 0.4074 0.6376 D

LTB 0.0442 0.0971 U 0.1359 0.3995 D

PDGFA 0.0442 0.0971 U 0.5862 0.7554 D

SMAD7 0.0442 0.0971 U 0.6874 0.8121 U

CD86 0.0495 0.1047 U 0.8684 0.9139 D

OAS2 0.0495 0.1047 U 0.1488 0.4039 D

SHC1 0.0495 0.1047 U 0.6529 0.7987 D

CCR1 0.0495 0.1047 D 0.0442 0.2317 U NEG
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MAP2K1 0.0552 0.1148 U 0.4074 0.6376 D

CCL21 0.0552 0.1148 U 0.3318 0.5712 U

AGER 0.0615 0.1246 U 0.1359 0.3995 D

RIPK1 0.0615 0.1246 U 0.9058 0.925 U

IL23R 0.0615 0.1246 U 0.193 0.4388 U

HSH2D 0.0684 0.1362 U 0.3318 0.5712 D

TLR1 0.0684 0.1362 D 0.0277 0.1629 U

PRKCA 0.0759 0.1474 U 0.084 0.3266 D

GNAQ 0.0759 0.1474 U 0.0929 0.3391 D

IL2 0.0759 0.1474 U 0.5228 0.7118 U

MAPK8 0.084 0.1619 U 0.3812 0.6292 D

FXYD2 0.0929 0.1733 U 0.0442 0.2317 D

AREG 0.0929 0.1733 D 0.2274 0.4684 U

NOX1 0.0929 0.1733 U 0.7564 0.854 U

PTGS2 0.0929 0.1733 U 0.2659 0.5087 U

LTB4R2 0.1024 0.1867 U 0.4348 0.659 D

BORCS8-MEF2B 0.1024 0.1867 U 0.6874 0.8121 U

BORCS8-MEF2B 0.1024 0.1867 U 0.6874 0.8121 U

C9 0.1024 0.1867 U 0.5862 0.7554 U

HMGB1 0.1128 0.1995 U 0.0168 0.1229 D

CEBPB 0.1128 0.1995 U 0.1773 0.4189 U

MAP3K5 0.1128 0.1995 D 0.3812 0.6292 U

CCL11 0.1128 0.1995 U 0.193 0.4388 U

MAFF 0.1239 0.2144 U 0.9811 0.9811 U

C1S 0.1239 0.2144 U 0.0929 0.3391 U

IL12B 0.1239 0.2144 U 0.1359 0.3995 U

TLR5 0.1359 0.2285 U 0.0191 0.128 D

MAP2K6 0.1359 0.2285 U 0.0759 0.3099 D
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CCR4 0.1359 0.2285 U 0.7583 0.854 D

IL21 0.1359 0.2285 U 0.554 0.7377 U

DAXX 0.1488 0.2415 U 0.2868 0.5237 D

ALOX5 0.1488 0.2415 D 0.6529 0.7987 D

JUN 0.1488 0.2415 U 0.6791 0.8121 U

OXER1 0.1488 0.2415 U 0.7226 0.8412 U

CCL13 0.1488 0.2415 U 0.5862 0.7554 U

CFD 0.1626 0.2552 U 0.0759 0.3099 D

IRF3 0.1626 0.2552 U 0.6874 0.8121 D

MAFK 0.1626 0.2552 U 0.8684 0.9139 D

TLR6 0.1626 0.2552 U 0.6874 0.8121 D

MAP3K1 0.1626 0.2552 U 0.6192 0.7812 U

CXCL3 0.1773 0.2676 U 0.8684 0.9139 D

CYSLTR2 0.1773 0.2676 U 0.9811 0.9811 U

CCR3 0.1773 0.2676 U 0.8684 0.9139 U

CXCR1 0.1773 0.2676 U 0.1626 0.4039 U

CSF3 0.1773 0.2676 U 0.2659 0.5087 U

C8A 0.1773 0.2676 U 0.7583 0.854 U

MRC1 0.193 0.2895 U 0.4074 0.6376 U

IL4 0.2097 0.3067 U 0.5862 0.7554 D

IL10RB 0.2097 0.3067 U 0.8684 0.9139 D

RELB 0.2097 0.3067 U 0.0759 0.3099 U

IL3 0.2097 0.3067 U 0.8313 0.9025 U

LTA 0.2274 0.3246 U 0.5228 0.7118 D

PTGIR 0.2274 0.3246 U 0.7946 0.8825 U

IL11 0.2274 0.3246 U 0.1239 0.3982 U

IFNB1 0.2274 0.3246 U 0.4925 0.69 U

HSPB1 0.2659 0.3708 U 0.4925 0.69 D
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IRF7 0.2659 0.3708 D 0.6192 0.7812 U

IL7 0.2659 0.3708 U 0.6192 0.7812 U

CCL16 0.2659 0.3708 U 0.5862 0.7554 U

CXCL1 0.2868 0.3975 D 0.1359 0.3995 U

MAPKAPK2 0.3088 0.4158 U 0.8313 0.9025 U

TLR7 0.3088 0.4158 D 0.4348 0.659 U

IL22 0.3088 0.4158 U 0.8684 0.9139 U

ALOX15 0.3088 0.4158 D 0.2274 0.4684 U

CCL7 0.3088 0.4158 D 0.3812 0.6292 U

DEFA1 0.3318 0.4321 U 0.2274 0.4684 D

MYD88 0.3318 0.4321 D 0.2097 0.4636 D

MKNK1 0.3318 0.4321 U 0.7226 0.8412 D

HRAS 0.3318 0.4321 U 0.9058 0.925 U

ELK1 0.3318 0.4321 U 0.8313 0.9025 U

CCL17 0.3318 0.4321 U 0.1488 0.4039 U

PPP1R12B 0.356 0.4585 U 0.9434 0.9513 U

TBXA2R 0.356 0.4585 D 0.0495 0.2433 U

IL13 0.3812 0.4831 U 0.7946 0.8825 U

MBL2 0.3812 0.4831 U 0.4074 0.6376 U

C6 0.3812 0.4831 U 0.9058 0.925 U

IL12A 0.4074 0.5003 U 0.0759 0.3099 D

TRADD 0.4074 0.5003 D 0.193 0.4388 U

IL1R1 0.4074 0.5003 D 0.554 0.7377 U

IL1B 0.4074 0.5003 U 0.6192 0.7812 U

MASP1 0.4074 0.5003 U 0.1626 0.4039 U

PTGFR 0.4074 0.5003 U 0.1773 0.4189 U

CD4 0.4348 0.5257 U 0.1773 0.4189 D

RELA 0.4348 0.5257 U 0.7226 0.8412 U
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PTGER3 0.4348 0.5257 U 0.7946 0.8825 U

IL6R 0.4631 0.5515 U 0.0395 0.2162 D

BCL2L1 0.4631 0.5515 U 0.7583 0.854 U

NOS2 0.4631 0.5515 U 0.7583 0.854 U

TLR4 0.4925 0.5807 U 0.2868 0.5237 D

BIRC2 0.4925 0.5807 U 0.2868 0.5237 U

GRB2 0.5228 0.6134 D 0.084 0.3266 U

MX2 0.554 0.6343 D 0.4074 0.6376 D

PLA2G4A 0.554 0.6343 U 0.0684 0.3099 U

TLR9 0.554 0.6343 D 0.2659 0.5087 U

CCL23 0.554 0.6343 U 0.1024 0.3527 U

IL5 0.554 0.6343 U 0.4631 0.6889 U

IFNA1 0.5695 0.6489 U 0.2274 0.4684 U

HDAC4 0.5862 0.6615 D 0.9058 0.925 U

CRP 0.5862 0.6615 U 0.4925 0.69 U

CFL1 0.6192 0.6857 U 0.4925 0.69 U

C4A 0.6192 0.6857 U 0.356 0.6041 U

C1QA 0.6192 0.6857 U 0.3318 0.5712 U

CXCL6 0.6192 0.6857 U 0.2461 0.4985 U

GNAS 0.6529 0.7164 U 0.9434 0.9513 D

CD55 0.6529 0.7164 U 0.3088 0.5554 U

MEF2C 0.6874 0.7405 U 0.2097 0.4636 D

CXCL5 0.6874 0.7405 U 0.8313 0.9025 U

MMP3 0.6874 0.7405 U 0.2659 0.5087 U

PIK3C2G 0.6874 0.7405 U 0.1359 0.3995 U

LTB4R 0.7226 0.7749 U 0.5862 0.7554 D

FOS 0.7583 0.7952 U 0.3318 0.5712 D

PTGER4 0.7583 0.7952 U 0.8684 0.9139 U
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MAFG 0.7583 0.7952 U 0.1239 0.3982 U

C1QB 0.7583 0.7952 U 0.1626 0.4039 U

TGFB3 0.7583 0.7952 U 0.0148 0.1229 U

TGFB2 0.7946 0.8296 D 0.356 0.6041 U

GNGT1 0.8313 0.8641 U 0.2868 0.5237 U

MAPK3 0.8684 0.891 D 0.9434 0.9513 U

ARG1 0.8684 0.891 D 0.554 0.7377 U

C7 0.8684 0.891 U 0.1488 0.4039 U

TCF4 0.9058 0.9213 U 0.6874 0.8121 D

C2 0.9058 0.9213 U 0.0684 0.3099 U

CCR2 0.9811 0.9811 U 0.1128 0.3828 D

TLR8 0.9811 0.9811 U 0.1773 0.4189 U

CCL19 0.9811 0.9811 U 0.7583 0.854 U

ALOX12 0.9811 0.9811 U 0.1359 0.3995 U

MYL2 - - D 0.4074 0.6376 D

HSPB2 - - D 0.6529 0.7987 D

TYROBP - - D 0.0042 0.1008 D

IL9 - - D 0.1024 0.3527 U

MASP2 - - D - - D

KNG1 - - D - - D

C8B - - D - - D

PTGER1 - - D - - D

TWIST2 - - D - - D

TSLP - - D - - D
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Table 4.4: This table shows the results of the TCZ+IL6 vs

IL6 and IL6 vs UNT differential expression analysis. ”Pro-

tein” indicates the protein’s gene name, ”p” the p-value of

the Wilcoxon-test, ”fdr(p)” the adjusted p-value of the test,

and ”FC” the sign of the fold change with ”U” for positive

fold change and ”D” for negative fold change, ”SET” indi-

cates whether the protein has been assigned to the negative

(NEG) or positive (NEG).

4.3.2. Clustering and Classification

Clustering is adopted to identify the natural stratification of the GCA patients. Clustering has

been applied using the “negative set” of protein to identify two groups. The expression values

of the seven proteins from the three experiments UNT, IL6, and IL6+TCZ are considered for

a total of 7*3=21 features.

We define the responder group (those who respond better to Tocilizumab) as the cluster for

which the average expression value in the TCZ+IL6 data is lower than in the IL6 data.
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Figure 4.3: (A) shows the dendrogram obtained from the clustering analysis using average ag-

gregation function and Spearman as distance. (B) shows the MDS generated using Spearman

as distance function. The Non-Responder group (NR) is in blue, the Responder group (R) is

in Red. The clustering solution reported Mean−Silhouette− index = 1.5, Dunn− Index =

0.41, and Hopkins− statistics = 0.62.
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Furthermore, classification is performed considering all the combinations of 7 or fewer features

using the only data from the UNT dataset to identify stratification in gene expression without

treatment. Results are shown in Table 4.5.

Protein-Set TP TN FP FN ACC PREC TNR TPR NPV MCC

STAT3,MYC,C3AR1,BCL6 7 9 1 0 0.94 0.88 1.0 0.9 1.0 0.89

STAT3,MYC,HIF1A,CCL2 7 9 1 0 0.94 0.88 1.0 0.9 1.0 0.89

STAT3,MYC,CCR1,C3AR1,BCL6 7 9 1 0 0.94 0.88 1.0 0.9 1.0 0.89

STAT3,MYC,CCR1,CCL2,BCL6 7 9 1 0 0.94 0.88 1.0 0.9 1.0 0.89

STAT3,MYC,C3AR1 6 10 0 1 0.94 1.0 0.86 1.0 0.91 0.88

STAT3,MYC 7 8 2 0 0.88 0.78 1.0 0.8 1.0 0.79

STAT3 4 6 4 3 0.59 0.5 0.57 0.6 0.67 0.17

MYC 0 8 2 7 0.47 0.0 0.0 0.8 0.53 -0.31

Table 4.5: The table shows the results of the classification experiment (logistic regression,

leave one out validation method). The ”Protein-set” indicates the gene names of the proteins

used to train the classifier, ”TP” are the true positives, ”TN” are the true negatives, ”FP”

are the false-positives, ”FN” the false negatives, ”ACC” is accuracy, ”PREC” is precision,

”TNR” is the true negative rate, ”TPR” is the true positive rate, ”NPV” is the negative

predicted value and ”MCC” is the Matthew correlation coefficient.

It is interesting to note that the classifiers maximizing the quality of the prediction (MCC ≈
0.9) all include STAT3 and MYC as features. The classifier with only STAT3 and MYC

scores 0.79, whereas classifiers with the single genes STAT3 or MYC perform poorly, with

MCC values of 0.17 and -0.31, respectively. These results suggest a cooperative role of STAT3

and MYC in the response to Tocilizumab. From this evidence, is clear that lower levels of

STAT3 and MYC before treatment cause a stronger response to Tocilizumab, i.e. a stronger

decrease of IL6 levels after the drug is administered. This information could be helpful to

calibrate the dose of the drug and to better understand the stratification of the patients.

4.3.3. System biology analysis, TPMS

The mechanism of action of Tocilizumab in GCA has been computed using the TPMS, the

MoAs have been computed using as restriction the genes of both the negative and positive

set and their respective activation state after the treatment with Tocilizumab, With the

genes belonging to the negative set being downregulated by Tocilizumab and the genes of the

positive set being up-regulated by it. The results are shown in Figure 4.4.
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Figure 4.4: The image show the average MoA obtained using has restriction both the positive

and negative sets identified in the differential expression analysis. The red lines indicate

inhibition, the green line indicates activation.

The MoA highlights the effect of Tocilizumab on IL6RA, which is directly inhibited by the

drug. This inhibition effectively blocks the IL6 signaling cascade and its relative inflammatory

response. The downstream effects of IL6RA inhibition were observed across several key

proteins and cytokines involved in immune signaling, including JAK1, JAK2, JAK3, STAT3,

IL6, IL21, and IL23A.

STAT3, a central node in the network, displayed extensive connectivity, suggesting its pivotal

role in mediating the downstream effects of IL6RA inhibition. The activation (green arrows)

of STAT3 influenced a range of cellular processes by interacting with multiple proteins such

as SRC, FAK1, and MMP2, further propagating the signal.

The network analysis also identified significant downstream targets influenced by the path-

way’s modulation, including molecules involved in inflammation and angiogenesis: CCL2,

CH3L1, CRP, FGF2, TGFB1, and VEGFA. The simulation indicates that Tocilizumab’s
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inhibition of IL6RA disrupts the signaling pathways that lead to the production of these

factors, potentially reducing inflammatory and proliferative responses.

In summary, the simulation of Tocilizumab’s action within the protein network elucidates its

broad impact on immune signaling pathways. By inhibiting IL6RA, Tocilizumab modulates

key proteins and cytokines, which collectively contribute to its therapeutic effects in reducing

inflammation and altering the pathological signaling of Giant Cell Arteritis.

4.4. MMPred

4.4.1. Supervised evaluation

Prediction sets 1 (using BLASTP) and 2 (using PSI-BLAST) evaluate the capacity of the

tool to identify human peptides from a pool of known autoepitopes (HADS dataset) that

significantly align with known epitopes from microbial species known to be associated to

autoimmune diseases (MEDS dataset) and are recognized as HLA class II epitopes by one

or both predictors used. In essence, starting from a pool of known human autoepitopes,

the tool predicts which of them could induce autoimmunity as a consequence of a previous

infection and microbial peptide mimicry. Out of the 807 known human autoepitops con-

tained in HADS, 21 had at least one sequence fragment that significantly aligned with a

microbial epitope from MEDS and was predicted as an autoepitope by CNN-PepPred and/or

NetMHCIIpan (Table 7.9). The matching microbial epitopes are from SARS-CoV-2, My-

cobacterium tuberculosis (MT) and Human Alphaherpesvirus (HHV) 1 and 3. PSI-BLAST

and BLASTP produced significant alignments in all cases.

In four of the cases, the predicted autoepitopes were matched at the epitope-allele level and

using OneHLA as allele selection criteria (see section 3.5.4), meaning that the predictions

matched the allele that has been found to bind, experimentally, both the microbial and

human epitopes. The corresponding autoantigens are H1-2, H1-4 and MPO, showing sequence

similarity with HbhA and RplV from MT and the Spike Glicoprotein from SARS-CoV-2

(Table 7.9). Furtermore, the alleles DRB1*15:01 and DRB5*01:01 are know to be linked to the

autoimmune disease —multiple sclerosis– that has been associated with these autoantigens

[Karni et al., 1999, Finn et al., 2004, Prat et al., 2005, Z̆ivković et al., 2009, Shahbazi et al.,

2010, Alcina et al., 2012, Quandt et al., 2012, Apperson et al., 2013, Kaushansky and Ben-

Nun, 2014, Stürner et al., 2019].

4.4.2. Functional evaluation

Prediction sets 3 (using BLASTP) and 4 (using PSI-BLAST) evaluate the capacity of the tool

to identify peptides from the full human proteome (HPDS dataset) that significantly align

with known epitopes from microbial species known to be associated to autoimmune diseases

(MEDS dataset) and are recognized as HLA class II epitopes by one or both predictors used.

In short, it extends the analysis reported in section 4.4.1 to the full human proteome.
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The identified autoantigens were then subjected to the functional evaluation described in

section 3.5.4. The results are summarized in Figure 4.5 and Table 4.6, where the dependence

of the distribution of scores S —the probability that there exists a relationship between the

predicted autoantigen and a pathophysiological pathway associated to one of the autoimmune

diseases considered– on the various parameters —E-value and %Rank thresholds, use of

BLASTP or PSI-BLAST, use of the allHLA or oneHLA allele-selection criteria– is evaluated.

In addition, the different score distributions are compared to a score distribution for a random

subset of 1000 proteins from HPDS.

Using PSI-BLAST notably reduces the number of hits, but its strength lies in incorporating

specific biological information into the alignments. By leveraging the pool of peptides known

to bind HLA class II molecules to generate a Position-Specific Scoring Matrix, PSI-BLAST

may enhance the alignment’s relevance. Although this approach results in fewer hits, it

achieves the highest mean score ratio and the most significant distinction between predicted

autoantigen score distributions and the random peptide score distribution, particularly at

E-value and %Rank thresholds of 0.01 and 2, respectively. These thresholds optimize the

selection of predicted autoantigens, increasing the likelihood of identifying proteins associated

with a specific autoimmune disease in the human protein network. However, using a more

stringent E-value threshold of 0.001 drastically reduces the number of aligned sequences,

which, when combined with a %Rank threshold of 2, can prevent the prediction of any

autoantigens. The choice of allele-selection criteria for the binding prediction, allHLA or

oneHLA, plays also a significant role in the results, particularly regarding the number of hits.

The results of this analysis require some biological context for proper interpretation. We

are examining the potential relationship, within a graph representing the human protein

network, between a protein identified as a potential autoantigen and a set of proteins that have

been linked to the pathophysiology of a specific autoimmune disease. Clearly, the proteins

in this set tend to be elements of the immune system. Therefore, a high score indicates

that the predicted autoantigen is, in network terms, associated to these immune-system

elements. While this may not be a universal characteristic of all autoantigens, Figure 4.5 and

Table 4.6 show that as we apply more stringent alignment and epitope prediction thresholds,

thereby increasing our confidence in the autoepitope, the mean score and significance of the

relationship between autoantigen and autoimmune disease motif also increase. This focused

approach not only enhances the reliability of our predictions but also allows us to propose

potential links between the predicted autoantigens and specific autoimmune diseases, which

would be difficult to establish otherwise.
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Figure 4.5: Results of the functional analysis for prediction sets 3 (using BLASTP) and

4 (using PSI-BLAST). Dependence of the distribution of scores S (box plots overlaid with

scatterplots) on the following parameters: use of BLASTP or PSI-BLAST and threshold E-

value for the alignment, %Rank threshold and allele-selection criterion (allHLA or one HLA,

see section 3.5.4) for the epitope prediction. The random distribution (Rnd) is represented

in grey. The mean of the distribution is indicated with a cross.
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Alignment Alleles %Rank E-Value N Score Ratio p-Value Significance

BLASTp allHLA 10 0.1 3144 1.11 3.41e-02 -

BLASTp allHLA 10 0.05 1770 1.15 2.33e-02 -

BLASTp allHLA 10 0.01 516 1.36 1.10e-13 ***

BLASTp allHLA 10 0.001 67 1.91 2.05e-06 ***

BLASTp allHLA 2 0.1 1594 1.1 1.99e-01 -

BLASTp allHLA 2 0.05 794 1.2 1.07e-02 -

BLASTp allHLA 2 0.01 301 1.28 4.25e-04 **

BLASTp allHLA 2 0.001 50 2.14 9.51e-07 ***

BLASTp oneHLA 10 0.1 1346 0.96 9.88e-01 -

BLASTp oneHLA 10 0.05 711 0.95 9.82e-01 -

BLASTp oneHLA 10 0.01 299 1.15 1.26e-02 -

BLASTp oneHLA 10 0.001 50 2.14 9.51e-07 ***

BLASTp oneHLA 2 0.1 618 1.09 3.53e-01 -

BLASTp oneHLA 2 0.05 330 1.16 2.95e-01 -

BLASTp oneHLA 2 0.01 134 1.47 2.43e-03 *

BLASTp oneHLA 2 0.001 17 3.14 9.69e-10 ***

PSI-BLAST allHLA 10 0.1 487 1.49 1.53e-13 ***

PSI-BLAST allHLA 10 0.05 89 1.47 6.60e-04 **

PSI-BLAST allHLA 10 0.01 23 2.66 3.85e-08 ***

PSI-BLAST allHLA 10 0.001 6 1.33 3.26e-01 -

PSI-BLAST allHLA 2 0.1 184 1.8 3.03e-11 ***

PSI-BLAST allHLA 2 0.05 83 1.48 6.45e-04 **

PSI-BLAST allHLA 2 0.01 17 3.14 9.69e-10 ***

PSI-BLAST allHLA 2 0.001 0 - - -

PSI-BLAST oneHLA 10 0.1 188 1.49 1.22e-05 ***

PSI-BLAST oneHLA 10 0.05 56 1.5 1.04e-02 -

PSI-BLAST oneHLA 10 0.01 23 2.66 3.85e-08 ***

PSI-BLAST oneHLA 10 0.001 6 1.33 3.26e-01 -

PSI-BLAST oneHLA 2 0.1 50 1.52 1.08e-02 -

PSI-BLAST oneHLA 2 0.05 50 1.52 1.08e-02 -

PSI-BLAST oneHLA 2 0.01 17 3.14 9.69e-10 ***

PSI-BLAST oneHLA 2 0.001 0 - - -

Table 4.6: Results of the functional analysis for prediction sets 3 (using BLASTp) and 4

(using PSI-BLAST). Alleles: allele-selection criterion (see section 3.5.4); Score ratio: mean-

score ratio; N: size of the sample; p-Value: from the Mann-Whitney U test; Significance: -

(not significant), * (p-value < 0.01), ** (p-value < 0.001), *** (p-value < 0.0001).

4.4.3. SARS-CoV-2 peptide mimicry

The predicted autoantigens and their relation to autoimmune diseases

Prediction sets 5 (using BLASTP) and 6 (using PSI-BLAST) evaluate the capacity of the

tool to identify peptides from the full human proteome (HPDS dataset) that significantly

align with known epitopes from SARS-CoV-2 (SC2DS dataset) and are recognized as HLA

class II epitopes by one or both predictors used. It thus focuses the analysis on finding

SARS-CoV-2 epitopes that could induce an autoimmune disease through peptide mimicry.

As in the previous section, the identified autoantigens were evaluated for their potential

relationship with autoimmune-disease motifs in the human protein network (section 3.5.4).
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The results of this evaluation are reported in Figure 4.6. Using BLASTP, MMPred identified

14 potential autoantigens: MYT1L, BAZ1A, CHD5, MCM8, ATF7, MOV10, MOV10L1,

DNA2, BRI3, PARVG, CALD1, MICAL3, SLC35E4, and UNC50, using a threshold E-value

of 0.01. In contrast, PSI-BLAST did not detect any autoepitopes with an E-value below 0.01

and predicted only one autoepitope from HELZ2 with an E-value below 0.05. This outcome is

consistent with the previous section’s analysis, where BLASTP yielded a significantly higher

number of positive predictions at the same thresholds. Most alignments involved SARS-

CoV-2 Non-Structural Proteins (NSPs), particularly NSP3, NSP5, NSP13, NSP14, NSP15,

and NSP16. Additionally, one alignment involved Nucleoprotein N, and two alignments were

related to the Spike protein of the Omicron variants BA.1-like and BA.4-like [Wu et al., 2020].

These findings are summarized in Table 7.10.

In the functional analysis, the 15 predicted autoantigens were assessed for potential associa-

tions with 32 autoimmune-disease motifs annotated in the network. Eight proteins —BAZ1A,

ATF7, MOV10, DNA2, PARVG, MICAL3, SLC35E4, and HELZ2– scored in the 95th per-

centile (Perc(S), see Section 3.5.4) or higher for 19 different motifs (see Figure 4.6). While

no autoantigen met the minimum threshold for certain motifs, at least one motif from each

selected autoimmune disease had a significant hit. Notably, BAZ1A, MOV10, and PARVG

were the only proteins with a Perc(S) exceeding 99 for at least one motif. The highest

Perc(S) (above 99.9) was achieved by MOV10 in association with the ”Lupus Erythematosus

Systemic” motif.

With a Perc(S) > 95, Rheumatoid Arthritis and Thyroiditis are associated with the same

predicted autoantigens, MOV10 and ATF7, which are also linked to Lupus Erythematosus

Systemic along with PARVG. Additionally, SLC35E4 is also connected to Rheumatoid Arthri-

tis. Type I Diabetes is associated with the predicted autoantigens MOV10 and PARVG, with

PARVG also linked to Guillain-Barré Syndrome, alongside ATF7, BAZ1A, and DNA2. Myas-

thenia Gravis shows predicted associations with HELZ2, ATF7 and PARVG. Lastly, Anemia

is associated with MICAL3 and BAZ1A.

When the threshold is raised to Perc(S) > 99, MOV10 is associated with both Lupus Ery-

thematosus Systemic and Rheumatoid Arthritis. MOV10 is also linked to Thyroiditis, along

with ATF7. Anemia is connected to BAZ1A, and Myasthenia Gravis is linked to PARVG.

The human proteins MYT1L, CHD5, MCM8, MOV10L1, BRI3 and CALD1 were predicted

as autoantigens but did not show a Perc(S) > 95 for any of the motifs tested.

The predicted human autoepitopes align with known SARS-CoV-2 epitopes

While there is no experimental evidence in IEDB linking our predicted autoepitopes to au-

toimmune diseases, many of the SARS-CoV-2 sequences that align significantly with these

predicted autoepitopes are known to bind HLA class II molecules. Specifically, the SARS-
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Figure 4.6: Results of the ANNs analysis for the predicted autoantigens of the SARS-CoV-2
vs. Human protome prediction sets. For each of the autoimmune-disease motifs tested, a
boxplot with overlapped scatterplot represent the background distribution of the score S.
The eight predicted autoantigens that satisfy Perc(S) > 95 are shown. Those with Perc(S)
> 99 are marked with *, and those with Perc(S) > 99.9 are marked with **.
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CoV-2 sequences 369-378 of the Nucleoprotein, 47-55, 275-289, and 557-569 of NSP13, 389-398

of NSP14, 248-258 of NSP15, and 257-267 of NSP16 overlap with regions that have been ex-

perimentally validated [Obermair et al., 2022, Huisman et al., 2022] (see Table 7.10). Notably,

the regions 275-289 and 557-569 of NSP13 show allele-specific hits, where the autoepitopes

have been predicted for the same alleles experimentally observed to bind these SARS-CoV-2

protein regions. Thus, DRB1*07:01 is predicted to bind an autoepitope in MOV10, and

DRB1*04:04 is predicted to bind an autoepitope in HELZ2.

The functional analysis reveals an interesting pattern among the predicted autoantigens that

align with known SARS-CoV-2 epitopes. Specifically, nine human proteins —ATF7, HELZ2,

MOV10, MOV10L1, DNA2, BRI3, PARVG, CALD1, MICAL3– exhibit significant alignment

with these SARS-CoV-2 epitopes. Among these, ATF7, HELZ2, MOV10, DNA2, PARVG

and MICAL3 rank in the 95th percentile or higher (Perc(S) > 95) across 18 different motifs,

with ATF7, MOV10, and PARVG showing Perc(S) > 99 for six motifs. MOV10 alone achieves

a Perc(S) > 99.9 for a single motif. In contrast, the associations are less significant when

examining predicted autoantigens derived from alignments with SARS-CoV-2 sequences not

known to be antigenic. Of the six proteins with peptides matching these regions (MYT1L,

BAZ1A, CHD5, MCM8, SLC35E4 and UNC50), only BAZ1A and SLC35E4 yield significant

results, both achieving Perc(S) > 95 for just three motifs, with only BAZ1A reaching Perc(S)

> 99 for a single motif.

The antiviral activity of the predicted autoantigens MOV10 and HELZ2

We examined baseline expression patterns of the predicted autoantigens in lung cells using

the Expression Atlas [George et al., 2024]. Proteomics data from Wang et al. [Wang et al.,

2019] indicate that 11 out of the 15 predicted autoantigens (BAZ1A, MCM8, ATF7, HELZ2,

MOV10, MOV10L1, DNA2, PARVG, CALD1, MICAL3, UNC50) are highly expressed, sup-

porting the hypothesis that cross-reaction with HLA class II molecules in previously infected

lung cells is plausible [Kawasaki et al., 2022, Hoffmann et al., 2020]. Additionally, a gene en-

richment analysis conducted using the online tool g:Profiler [Kolberg et al., 2023] (threshold =

0.05, multiple hypothesis testing method g:SCS) revealed significant enrichment for the Gene

Ontology (GO, https://geneontology.org/) Molecular Function terms ”helicase activity”

(GO:0004386) and ”single-stranded DNA-helicase” (GO:0017116), as well as the Cellular

Component terms ”P granule” (GO:0043186) and ”intracellular non-membrane-bounded or-

ganelle” (GO:0043232). Notably, the human proteins MOV10, HELZ2, and DNA2, which

are reported to have helicase activity with GO evidence code ”inferred by direct assay”

(IDA), contain segments that align with the helicase NSP13 of SARS-CoV-2 (see Table 7.10).

MOV10 is implicated in the modulation of viral infectivity [Goodier et al., 2012] and promotes

type I interferon production [Cuevas et al., 2016, Yang et al., 2022, Balinsky et al., 2017],

while HELZ2 is known to respond to interferon production during viral infection [Huntzinger

et al., 2023, Du et al., 2024]. DNA2 does not appear to have any known antiviral activity.

On the other hand, the helicase activity of NSP13 is crucial for viral replication [Yan et al.,
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2021] and this protein interacts with the host to inhibit interferon-beta production, thereby

evading the immune response [Xia et al., 2020]. Thus, it seems that MOV10 and HELZ2 play

roles antagonistic to that of NSP13.

Overall, transcriptomic and proteomic data on our predicted autoantigens in the context of

SARS-CoV-2 infection primarily focus on MOV10 and HELZ2. These studies utilize samples

obtained from either the lungs of infected patients or lung cell lines.

Wang et al. employed Dermatan Sulfate (DS)-affinity proteomics to define the autoantigenome

of lung fibroblasts, complemented by bioinformatics analyses to explore the relationship be-

tween autoantigenic proteins and COVID-19-induced alterations [Wang et al., 2022]. Notably,

they discovered that 86% of their predicted autoantigens were either up- or down-regulated in

COVID-19 patients or SARS-CoV-2-infected cells. Among the previously unknown autoanti-

gens identified in this study, MOV10 (with very high DS affinity) and CALD1 (with medium

to high DS affinity) align with our predictions. Both proteins exhibited altered expression in

COVID-19 patients and/or SARS-CoV-2-infected cells.

In a study published by An et al., the authors developed a bioinformatics pipeline similar

to ours (see comment in Introduction) and performed a differential expression analysis using

the Calu-3 human lung adenocarcinoma cell line [An et al., 2022]. Their pipeline predicts

cross-reactivity for MOV10 and HELZ2 and reports a positive correlation of these proteins’

transcripts with SARS-CoV-2 viral load in infected cells.

In a study by An et al., the authors developed a bioinformatics pipeline similar to ours (as

noted in the Introduction) and conducted a differential expression analysis using the Calu-3

human lung adenocarcinoma cell line [An et al., 2022]. Their pipeline predicts that MOV10

and HELZ2 may exhibit cross-reactivity, while expression data reveal a positive correlation

between transcript abundance of these proteins, particularly HELZ2, and SARS-CoV-2 viral

load in infected cells.

A study by Ariumi explored the epigenetic mechanisms triggered by SARS-CoV-2 infections

[Ariumi, 2022]. The findings indicate that the knockdown of MOV10 leads to a significant

increase in viral load/replication in infected cells, suggesting that MOV10 plays a role in the

host’s suppression of SARS-COV-2 replication.

A study examining gene expression in cell lines and patient samples in the context of epige-

netic regulation during SARS-CoV-2, SARS-CoV, and MERS infections identified various dif-

ferentially expressed genes involved in the epigenetic response during infection in pulmonary

cell lines [Salgado-Albarrán et al., 2021]. Although the study does not report expression data

for MOV10, it highlights MOV10’s functional and physical relationships with the differen-

tially expressed genes through protein-protein interaction (PPI) data [Kotlyar et al., 2019]

and co-expression analysis [Langfelder and Horvath, 2008].
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Aside from MOV10 and HELZ2, the literature also reports the overexpression of MICAL3

in convalescent COVID-19 patients who retested positive [Fang et al., 2022]. However, no

relevant studies have been found that link the other predicted autoantigens to SARS-CoV-2.

Sequence and structural similarity between NSP13 andMOV10, an immune-

excape mechanism?

Considering the reported evidence regarding MOV10, we extended our investigation to NSP13

due to its shared helicase activity and the presence of a similar HLA class II epitope. Given

MOV10’s suggested suppressor role in SARS-CoV-2 replication, its presence in lung epithelial

cells, its upregulated expression in SARS-CoV-2-infected cells, and the APC-like properties

of lung epithelial cells [Kawasaki et al., 2022, Hoffmann et al., 2020], we propose that the

presence of epitopes in NSP13 that are cross-reactive with MOV10 epitopes might represent

a mechanism that facilitates SARS-CoV-2 replication in the lungs.

We would therefore expect the NSP13 epitope NVNRFNVAITRAK (positions 557 to 569,

see Table 7.10) to be conserved across NSP13 variants. However, it is important to note

that this conservation might also arise from the sequence’s involvement in NSP13’s catalytic

activity [Newman et al., 2021].

A total of 1,725,419 protein sequences of the ORF1ab polyproteins were downloaded from

NCBI Virus (15/02/2024) [Hatcher et al., 2017], with the maximum number of ambigu-

ous characters set to zero, and considering only sequences collected for baseline surveillance

(random sampling = ”Only”). To extract NSP13 from the ORF1ab sequences, a BLASTP

alignment was performed using the reference sequence of NSP13 as the query and the ORF1ab

sequences as the target. Due to the high similarity of the variants to the reference, all align-

ments yielded significant results, allowing us to heuristically extract the corresponding NSP13

variants. A multiple sequence alignment of all NSP13 variants, along with the NSP13 ref-

erence, was then performed using FAMSA [Deorowicz et al., 2016], which is optimized for

datasets with high dimensionality and high pairwise identity. To compute the conservation

of the NSP13 epitope, we averaged the Shannon Entropy [Shenkin et al., 1991] across its

positions and compared it to the distribution of all windows of the same length across the

alignment. The NSP13 epitope at positions 557 to 569 showed a higher conservation score

than 95.7% of the windows of the same size, indicating the strong conservation of this region.

A logo plot of the alignment is presented in Figure 4.7.

Furthermore, the superposition of the crystallographic structure of NSP13 (PDB entry 6ZSL,

chain B) [Newman et al., 2021] with the predicted AlphaFold structure of MOV10 (UniProt

entry Q9HCE1) [Jumper et al., 2021, Varadi et al., 2022] reveals significant structural simi-

larity between two regions of these proteins of 214 residues in length (36.5% of the sequence

of 6ZSL and 21.3% of that of the AlphaFold model of Q9HCE1, with a Cα RMSD of 1.98 Å,

see Figure 4.7). Notably, the regions corresponding to the epitopes —NSP13 residues 557-
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569 and MOV10 residues 901-913– are superimposed in the structural alignment, suggesting

that epitope mimicry could arise from both sequence and structure. Although the MOV10

structure is based on an AlphaFold model [Terwilliger et al., 2024], the model confidence in

this region is very high (pLDDT > 90).

Overall, these findings support the hypothesis of cross-reactivity between the epitopes of

NSP13 and MOV10, which may influence SARS-CoV-2 replication in the lungs. While the

potential for an autoimmune response against MOV10 and its connection to autoimmune dis-

eases remains speculative at this stage (see section 4.4.3), further investigation is warranted.

Figure 4.7: (a) Superposition of the crystallographic structure of NSP13 (PDB entry 6ZSL,
chain B) (green) with the predicted AlphaFold structure of MOV10 (UniProt entry Q9HCE1)
(pink), the highlighted α-helices in the center correspond to residues 557-569 of NSP13 and
901-913 of MOV10. Superposition and image were generated with PyMOL (https://www.
pymol.org/). (b) Logo plot of the multiple sequence alignment for the NSP13 epitope. To
facilitate visualization, a pseudocount of 0.1 is used and a min-max normalization of each
position is applied. Image generated with the logomaker python package [Tareen and Kinney,
2020]
.

4.5. MMPred applied to VZV and GCA

The analysis produced 44 predicted autoantigens, 34 using Psi-BLAST, 8 using BLASTP, and

12 by PSI-BLAST or BLASTP. The results of the prediction are summarized in Table 7.11.
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The system biology analysis produced significant results. Out of the 54 predicted autoanti-

gens, 32 show a Perc(S) > 95 for at least one motif. All motifs have at least one protein

scoring higher than this threshold. When considering a Perc(S) > 99, 19 predicted autoanti-

gens satisfy the threshold for five different motifs. In particular, BRAF, LIMK1, and RAF1

relate to “Aortic Aneurysm Formation”; LCK, MAPK1, MAPK3, PDGFRA, and SYK to

“Dysfunction of Immune Checkpoints”, MAPKAPK3 to “Giant Cell Arteritis (GCA)”; KIT,

MAPK12, MAPK13, MAPK7, and SYK to “Vascular Inflamation Early”; and DDR1, DDR2,

EPHA2, EPHAB1, EPHB3, PDGFRB, and SYK to “Vascular Inflammation Amplification

Cascade”. Only the two genes KIT and SYK show a Perc(S) > 99.9, with KIT relating to

“Vascular Inflammation – Early” and SYK to “Dysfunction of Immune check-points”. The

results are summarized in Figure 4.8.

Previous knowledge about the predicted autoantigens

None of the predicted autoepitopes and their similar microbial sequences have been previously

identified to cross-link with DRB1*04:01 at experimental level according to IEDB (date:

25/06/2024).

Among the predicted autoantigens, the genes MAPK3(ERK1), MAPK1(ERK2) also appear

in the molecular description of GCA, both for the motif “Aortic Aneurysm Formation” and

identified by Barbour et al.. Is interesting to note that MAPK3 and MAPK1 are also known

to be upregulated in Varicella Zoster Virus infected cells [Liu et al., 2012] increasing the

likelihood of these two proteins being autoantigens within the context of GCA.

For all the other predicted autoantigens only PDGFRB appears in previous studies, which

is identified among the hub genes that could relate to ischemic stroke in relation to VZV

replication according to bioinformatic analysis [Wang et al., 2023].

The protein 66

All the alignments occur in the six VZV proteins gE (74 to 83), ORF13(149 to 164 and

186 to 201), ORF28 (686 to 701 and 888 to 895), ORF59 (242 to 254), ORF62 (346 to

351) and 66 (191 to 209). Is interesting to observe that most of the predicted autoantigens

align with the VZV protein 66, with a total of 44 predicted autoantigens aligning with this

VZV protein. Among these 44 proteins, 19 satisfy the treshold Perc(S) > 99, BRAF,

DDR1, DDR2, EPHA2, EPHB1, EPHB3, KIT, LCK, LIMK1, MAPK1, MAPK12, MAPK13,

MAPK3, MAPK7, MAPKAPK3, PDGFRA, PDGFRB, RAF1, and SYK. It also must be

noted that SYK and KIT are the only two proteins to satisfy Perc(S) > 99.9. Furthermore

the 9 predicted autoantigens not aligning with this protein score poorly in the ANNs analysis,

with only TYMS, POLA1, and EMD satisfying Perc(S) > 95, making the case for the protein

66 to be among the VZV proteins inducing autoimmunity in Giant Cell Arteritis.

92



Figure 4.8: The image show the results of the ANNs analysis for the predicted autoantigens

of the VZV vs Human-protome experiment. For each of the motifs tested a boxplot with

overlapped scatterplot represent the background distribution of S, the predicted autoantigens

that satisfies Perc(S) > 99 are shown. Those that shows Perc(S) > 99 are marked with *,

and those that show Perc(S) > 99.9 are marked with **.
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Chapter 5

General Discussion & Outlook

This thesis has explored statistics, bioinformatics, and systems biology approaches to deepen

our understanding of Giant Cell Arteritis. The results contribute to the comprehension of the

disease providing (i) a comprehensive molecular description of the pathophysiological path-

ways related to the condition, (ii) a further understanding of its pharmacological treatment

regarding the side effects of prednisone and the predictor of response for tocilizumab, and

(iii) the development of the molecular mimicry predictor MMPred, which identified different

autoantigens that could be responsible for the insurgence of the disease in relation to VZV

infections and also identified interesting autoantigens in the context of autoimmune disease

related to SARS-CoV-2 infections.

The analysis of prednisone’s adverse effects highlighted several significant associations, includ-

ing fibromyalgia, muscle spasms, hypernatremia, hypophosphatemia, and breast neoplasms,

with different entities across the different populations taken into account.

Using systems biology analysis, the study further explored prednisone’s mechanisms, identify-

ing molecular links between prednisone receptors and specific motifs associated with adverse

effects. While in some cases the association regards known side effects, for others the as-

sociation is uncertain according to previous knowledge. Among the novel and interesting

relations identified, reduced bone resorption (linked to hypophosphatemia) and neurotrans-

mitter imbalances (related to neuropathic pain and circadian rhythm disruptions) are the

most interesting ones. For each of these associations, a set of proteins whose misregulation

could be linked to the insurgence of the adverse effect is provided. This part of the work

provides a starting point for further understanding of the molecular mechanism underlying

the occurrences of these side effects. On the other side, limitations of this part of the work

regard a lack of information on doses and path of administration of the drug and, in some

cases, the sample size studied.
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The study examined Tocilizumab’s impact on Peripheral Blood Mononuclear Cells (PBMCs)

from GCA patients by comparing gene expression profiles under three conditions: untreated,

IL-6-stimulated, and IL-6 combined with Tocilizumab. Differential expression analysis iden-

tified 81 significantly modulated genes in the IL-6 + Tocilizumab group compared to IL-6

alone. Key findings included the downregulation of STAT3, MYC, and HIF1A in the pres-

ence of Tocilizumab, suggesting an inhibitory effect on IL-6-driven pathways, which are cru-

cial in GCA inflammation. Furthermore, an important relationship between baseline levels

of STAT3 and MYC in the modulation of the response to Tocilizumab has been detected

by means of clustering and classification analysis, suggesting that these molecular markers

could play a predictive role in determining individual patient responses to treatment. This

study is limited by the relatively small number of genes analyzed, focusing only on key in-

flammatory pathways. Future research could expand the gene panel to include a broader

range of genes involved in immune regulation and inflammatory signaling pathways, as well

as explore the potential interactions between STAT3, MYC, and other relevant biomarkers.

A systems biology approach using the Therapeutic Performance Mapping System (TPMS)

further elucidated Tocilizumab’s mechanism of action by simulating the effects of IL-6 recep-

tor inhibition on downstream immune signaling pathways. Inhibiting IL-6RA led to reduced

activation of pro-inflammatory cytokines and chemokines such as CCL2, IL21, and IL23A,

potentially contributing to decreased inflammation and vascular remodeling in GCA.

MMPred was presented and its capability to identify biologically relevant results was demon-

strated, using both BLASTP and PSI-BLAST as alignment methods. Interestingly, an inter-

esting relation between the likelihood of a protein to be an autoantigen and the functional

relation of the same protein to the motif related to a wide range of autoimmune diseases was

identified. While the statistical evaluation of the method was not possible because of the lack

of resources reporting experimental evidence for molecular mimicry about HLA-II, biologi-

cally relevant results were produced in the context of SARS-CoV-2 and VZV infections. For

SARS-CoV-2, MMPred identified 15 potential autoantigens, with MOV10 being the most

interesting one for its strong functional relation with many autoimmune conditions but also

for its anti-viral role and its similarity with the SARS-CoV-2 protein NSP13, suggesting a

potential immune-escape mechanism.

For VZV, MMPred detected multiple autoantigens, with protein 66 from VZV aligning with

44 predicted human autoantigens related to GCA. Among these, SYK and KIT emerged

because of the strong functional relationship with the motifs of ”vascular inflammation -

early” and ”Dysfunction of immune check-points”. Furthermore, the protein 66 also aligns

with MAPK3 and MAPK1, two proteins known to be highly expressed in GCA aortas and

involved in the motif ”Aortic aneurysm formation”.

This analysis strongly supports VZV’s possible role as a trigger in GCA, driven by molecular

mimicry between viral and host proteins. Further studies could unveil the role of the iden-

tified autoantigens both with in-silico and in-vivo experiments. The relation between any
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other infective microorganism and autoimmune disease can be explored using MMPred in a

systematic way. At last, MMPred can be further extended to include any other linear epitope

predictor for HLA-I and HLA-II molecules and T and B cell receptors.
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Chapter 6

Conclusions

Through a systematic review of recent literature, the current knowledge of the pathophysiol-

ogy of GCA has been extracted from a molecular perspective. Pathways related to vascular

inflammation, immune checkpoint dysfunction, and arterial remodeling have been described,

helping future researchers in a deeper understanding of the pathology.

The side effects of Prednisone have been explored by mining real-world-data and producing

real-world-evidence. In addition, an in-silico system biology method has been applied to

identify human proteins that can be related to the insurgence of certain side effects and

provide the background to formulate hypotheses at a molecular level.

By mining gene-expression data from ex-vivo models of PBMCs, STAT3 and MYC have been

identified as crucial genes in modulating response to Tocilizumab, offering two key biomarkers

for patient stratification in further studies.

The bioinformatics tool MMPred was presented, and evaluated and its capability to produce

biologically relevant results has been demonstrated. In particular, the autoantigen MOV10

has been identified as a potential trigger of autoimmunity in the context of SARS-CoV 2

infections, and the interplay with NSP13 could be at the base of an immune-escape mechanism

from the virus. In the case of Varicella Zoster Virus, the viral protein 66 showed high

similarity with many human proteins among which SYK and KYT show a strong functional

relation with the pathophysiology of GCA, and MAPK3 and MAPk1 which are known to

be upregulated in VZV-infected cells and be involved in aortic aneurysm formation in GCA

patients.
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Alfonso, B. Sopeña, C. Carmen Gómez-Vaquero, E. Raya, E. Grau, J. A. Román, E. F.
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Miranda-Filloy, J. Sánchez-Mart́ın, J. J. Alegre-Sancho, L. Sáez-Comet, M. Pérez-Conesa,
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A. Régent and L. Mouthon. Treatment of Giant Cell Arteritis (GCA). J Clin Med, 11(7),

Mar 2022.
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Chapter 7

Appendix

7.1. Giant Cell Arteritis Molecular Description

Motif name N Proteins

Vascular inflammation-early 16

Vascular inflammation-amplification cascade 32

Systemic inflammation 7

Vascular injury 5

Arterial remodelling and vascular occlusion 20

Aortic Aneurysm formation 15

Dysfunction of immune checkpoints 12

GCA genetic associations 6

total 88

Table 7.1: Summary of the motifs identified as involved in GCA, and the number of protein

composing these.

124



Motif Protein State Reference

GCA genetic associations HLA-DRA [Al-Mousawi et al., 2019]

GCA genetic associations HLA-B [Al-Mousawi et al., 2019]

GCA genetic associations HLA-DQA1 [Al-Mousawi et al., 2019]

GCA genetic associations HLA-DQB1 [Al-Mousawi et al., 2019]

GCA genetic associations HLA-DRB1 [Al-Mousawi et al., 2019,

Terrades-Garcia and Cid,

2018, Stamatis, 2020]

GCA genetic associations IL12B U [Al-Mousawi et al., 2019]

Dysfunction of immune check-

points

CD274 D [Zhang et al., 2017,

Weyand et al., 2018]

Dysfunction of immune check-

points

IFNG U [Weyand et al., 2018,

Watanabe et al., 2017]

Dysfunction of immune check-

points

IL1B U [Watanabe et al., 2017]

Dysfunction of immune check-

points

IL6 U [Watanabe et al., 2017]

Dysfunction of immune check-

points

IL9 U [Watanabe et al., 2017]

Dysfunction of immune check-

points

PDCD1 U [Zhang et al., 2017]

Dysfunction of immune check-

points

TGFB1 U [Watanabe et al., 2017]

Dysfunction of immune check-

points

FGF1 U [Watanabe et al., 2017]

Dysfunction of immune check-

points

IL17A U [Weyand et al., 2018]

Dysfunction of immune check-

points

IL21 U [Weyand et al., 2018]

Dysfunction of immune check-

points

VEGFA U [Watanabe et al., 2017]

Dysfunction of immune check-

points

PDGFA U [Watanabe et al., 2017]

Vascular inflammation – early IL12 U [Dammacco et al., 2020]

Vascular inflammation – early IL18 U [Dammacco et al., 2020]
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Vascular inflammation – early IL23 U [Dammacco et al., 2020]

Vascular inflammation – early CCL19 U [Dammacco et al., 2020]

Vascular inflammation – early CCL21 U [Dammacco et al., 2020]

Vascular inflammation – early ICAM1 U [Samson et al., 2017]

Vascular inflammation – early IFNG U [Cid, 2014]

Vascular inflammation – early IL17A U [Planas Rigol and Cor-

bera Bellalta, 2016]

Vascular inflammation – early IL1B U [Dammacco et al., 2020]

Vascular inflammation – early IL21 U [Planas Rigol and Cor-

bera Bellalta, 2016]

Vascular inflammation – early IL6 U [Planas Rigol and Cor-

bera Bellalta, 2016]

Vascular inflammation – early TGFA U [Planas Rigol and Cor-

bera Bellalta, 2016]

Vascular inflammation – early TLR2 U [Samson et al., 2017]

Vascular inflammation – early TLR3 U [Weyand and Goronzy,

2013]

Vascular inflammation – early TLR4 U [Samson et al., 2017]

Vascular inflammation – early VCAM1 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

CXCL9 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

CCL2 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

TNFA U [Dammacco et al., 2020]

Vascular inflammation – amplifi-

cation cascades, persistent

CXCL10 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

CXCL11 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

CSF U [Terrades-Garcia and Cid,

2018]

Vascular inflammation – amplifi-

cation cascades, persistent

FGF2 U [Terrades-Garcia and Cid,

2018]
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Vascular inflammation – amplifi-

cation cascades, persistent

GMCSF U [Harrington et al., 2021]

Vascular inflammation – amplifi-

cation cascades, persistent

GRA U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

IL17 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

ICAM1 U [O’Neill et al., 2015]

Vascular inflammation – amplifi-

cation cascades, persistent

IFNG U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

JAK1 U [Harrington et al., 2021]

Vascular inflammation – amplifi-

cation cascades, persistent

JAK2 U [Harrington et al., 2021]

Vascular inflammation – amplifi-

cation cascades, persistent

JAK3 U [Harrington et al., 2021]

Vascular inflammation – amplifi-

cation cascades, persistent

IL1B U [Terrades-Garcia and Cid,

2018]

Vascular inflammation – amplifi-

cation cascades, persistent

IL22 U [Zerbini et al., 2018]

Vascular inflammation – amplifi-

cation cascades, persistent

NOX2 D [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

IL33 U [Terrades-Garcia and Cid,

2018]

Vascular inflammation – amplifi-

cation cascades, persistent

IL6 U [Terrades-Garcia and Cid,

2018]

Vascular inflammation – amplifi-

cation cascades, persistent

PDGFA U [Terrades-Garcia and Cid,

2018]

Vascular inflammation – amplifi-

cation cascades, persistent

JAG1 U [Deshayes et al., 2020]

Vascular inflammation – amplifi-

cation cascades, persistent

PRF1 U [Samson et al., 2017]

Vascular inflammation – amplifi-

cation cascades, persistent

ASAA U [O’Neill et al., 2015]

Vascular inflammation – amplifi-

cation cascades, persistent

GP130 U (http://hdl.handle.net/10803/401863)
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Vascular inflammation – amplifi-

cation cascades, persistent

HPT U [Cid et al., 1993]

Vascular inflammation – amplifi-

cation cascades, persistent

IL23P19 U [Deshayes et al., 2020],

http://hdl.handle.net/10803/401863

Vascular inflammation – amplifi-

cation cascades, persistent

NOTCH U [Deshayes et al., 2020]

Vascular inflammation – amplifi-

cation cascades, persistent

PECAM1 U [O’Neill et al., 2015]

Vascular inflammation – amplifi-

cation cascades, persistent

STAT3 U http://hdl.handle.net/10803/401863

Vascular inflammation – amplifi-

cation cascades, persistent

VCAM1 U [O’Neill et al., 2015]

Vascular inflammation – amplifi-

cation cascades, persistent

VEGFA U [Terrades-Garcia and Cid,

2018]

Systemic inflammation CRP U [Terrades-Garcia and Cid,

2018]

Systemic inflammation TNFA U [Cid, 2014]

Systemic inflammation IL1B U [Planas Rigol and Cor-

bera Bellalta, 2016]

Systemic inflammation IL33 U [Planas Rigol and Cor-

bera Bellalta, 2016]

Systemic inflammation IL6 U [Cid, 2014]

Systemic inflammation ASAA U [O’Neill et al., 2015]

Systemic inflammation OPN U [Prieto-González et al.,

2017]

Vascular injury TIMP1 D [Terrades-Garcia and Cid,

2018]

Vascular injury TIMP2 D [Terrades-Garcia and Cid,

2018]

Vascular injury iNOS U [Samson et al., 2017]

Vascular injury MMP2 U [Cid, 2014]

Vascular injury MMP9 U [Cid, 2014]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

EDN1 U [Samson et al., 2017, De-

shayes et al., 2020, Cid,

2014]
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Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

CHI3L1 U [Burja et al., 2018]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

FGF2 U [Dammacco et al., 2020]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

FAK U [Planas-Rigol et al., 2017]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

ICAM1 U [Mackie et al., 2010]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

PDGFA U [Dammacco et al., 2020,

Cid, 2014]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

PECAM1 U [Mackie et al., 2010]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

SELPLG U [Mackie et al., 2010]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

TFGB1 U [Cid, 2014]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

VWF U [Burja et al., 2018]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

BDNF U [Dejaco et al., 2017, Ly

et al., 2014]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

NGF U [Dejaco et al., 2017]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

PTX3 U [Burja et al., 2018]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

SELE U [Mackie et al., 2010]
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Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

PAXI U [Régent et al., 2017]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

SORT U [Dejaco et al., 2017]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

TNC U [Régent et al., 2017]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

VCAM1 U [Mackie et al., 2010]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

VEGFA U [Dammacco et al., 2020]

Arterial remodeling and vascular

occlusion / Vascular injury and

remodelling

VEGFA U [Samson et al., 2017]

Aortic Aneuryms formation ERK1 U [Barbour et al., 2007]

Aortic Aneuryms formation ERK2 U [Barbour et al., 2007]

Aortic Aneuryms formation FOS U [Barbour et al., 2007]

Aortic Aneuryms formation JNK1 U [Barbour et al., 2007]

Aortic Aneuryms formation JNK2 U [Barbour et al., 2007]

Aortic Aneuryms formation JUN U [Barbour et al., 2007]

Aortic Aneuryms formation TIMP1 D [Barbour et al., 2007]

Aortic Aneuryms formation MMP12 U [Barbour et al., 2007]

Aortic Aneuryms formation MMP2 U [Barbour et al., 2007]

Aortic Aneuryms formation MMP2 U [Barbour et al., 2007]

Aortic Aneuryms formation ADAM17 U [Barbour et al., 2007]

Aortic Aneuryms formation CST3 U [Barbour et al., 2007]

Aortic Aneuryms formation MMP1 U [Barbour et al., 2007]

Aortic Aneuryms formation MMP13 U [Barbour et al., 2007]

Aortic Aneuryms formation MMP8 U [Barbour et al., 2007]
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Table 7.2: The table reports what is obtained in the molecular

description of GCA. Each protein is described by the pathopysio-

logical motif ”Motif”, the gene name of the protein ”Protein”, the

state of the protein ”U” or ”D” respectively up or down regulated,

and the ”Reference” where the information has been found.

7.2. The Side-Effects of Prednisone

1ST CANCER - WHAT KIND WAS IT?, 2ND CANCER - WHAT KIND WAS IT?; 3RD CANCER - WHAT KIND WAS IT?;

AGE AT SCREENING ADJUDICATED - RECODE; AGE IN YEARS AT SCREENING; BLURRED VISION; BODY MASS INDEX

(KG/M**2); CALCIUM, TOTAL (MMOL/L); CHOLESTEROL (MG/DL); CHOLESTEROL (MMOL/L); CHOLESTEROL, RE-

FRIGERATED SERUM (MG/DL); CHOLESTEROL, REFRIGERATED SERUM (MMOL/L); CHOLESTEROL, TOTAL (MG/DL);

CHOLESTEROL, TOTAL (MMOL/L); DIABETES AFFECTED EYES/HAD RETINOPATHY; DID SP HAVE EPISODE OF

HAY FEVER/PAST YR; DO YOU STILL HAVE A THYROID PROBLEM; DO YOU STILL HAVE THYROID PROBLEM;

DOCTOR EVER TOLD YOU THAT YOU HAD GOUT?; DOCTOR TOLD HAVE HAY FEVER; DOCTOR TOLD YOU -

HIGH CHOLESTEROL LEVEL; DOCTOR TOLD YOU HAVE DIABETES; EPISODE OF HAY FEVER IN PAST 12 MONTHS;

EPISODE OF HAY FEVER IN PAST 12 MONTHS?; EVER BEEN TOLD YOU HAVE JAUNDICE?; EVER HAD 3 OR MORE

EAR INFECTIONS?; EVER TOLD BY DOCTOR HAVE SLEEP DISORDER?; EVER TOLD YOU HAD A STROKE; EVER

TOLD YOU HAD ANGINA/ANGINA PECTORIS; EVER TOLD YOU HAD COPD?; EVER TOLD YOU HAD HEART AT-

TACK; GENDER; GENERAL CONDITION OF HEARING; GENERIC DRUG NAME; GLUCOSE (MMOL/L); GLUCOSE, RE-

FRIGERATED SERUM (MMOL/L); GLUCOSE, SERUM (MMOL/L); HAD A HYSTERECTOMY?; ICD-10-CM CODE 1 DE-

SCRIPTION; ICD-10-CM CODE 2 DESCRIPTION; ICD-10-CM CODE 3 DESCRIPTION; LDL-CHOLESTEROL (MG/DL); LDL-

CHOLESTEROL (MMOL/L); MORE THAN 3 KINDS OF CANCER; NUMBER OF DAYS TAKEN MEDICINE; PHOSPHORUS

(MMOL/L); POTASSIUM (MMOL/L); POTASSIUM: SI (MMOL/L); PULSE REGULAR OR IRREGULAR?; RACE/ETHNICITY -

RECODE; RACE/HISPANIC ORIGIN; SEVERE PAIN IN CHEST MORE THAN HALF HOUR; SKIN REACTION TO SUN AFTER

NON-EXPOSURE; SODIUM (MMOL/L); SODIUM: SI (MMOL/L); STANDARD GENERIC INGREDIENT NAME; STILL HAVE

ASTHMA; TAKEN PRESCRIPTION MEDICINE, PAST MONTH; TAKEN PRESCRIPTION MEDICINE/PAST MONTH; TAKING

INSULIN NOW; TAKING PRESCRIPTION FOR HYPERTENSION; TAKING TREATMENT FOR ANEMIA/PAST 3 MOS; TOLD

HAD HIGH BLOOD PRESSURE - 2+ TIMES; TOTAL BONE MINERAL DENSITY (G/CM2̂); TOTAL CALCIUM (MMOL/L);

TOTAL CHOLESTEROL (MG/DL); TOTAL CHOLESTEROL (MMOL/L); TOTAL CHOLESTEROL( MG/DL); TOTAL CHOLES-

TEROL( MMOL/L); TRIGLYCERIDE (MMOL/L); TRIGLYCERIDES (MG/DL); TRIGLYCERIDES, REFRIG SERUM (MG/DL);

TRIGLYCERIDES, REFRIGERATED (MG/DL); URIC ACID (MG/DL); WHAT KIND OF CANCER; WHICH TYPE OF ARTHRI-

TIS WAS IT?, WHICH TYPE OF ARTHRITIS

Table 7.3: List of NHANES variables used.

BED QUERY

ACNE VULGARIS ALL
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Acne

ALZHEIMER DISEASE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Alzheimer s disease, unspecified

ANGINA PECTORIS STATUS:ANGINA PECTORIS == yes

ANXIETY
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Anxiety disorder, unspecified

ARRHYTHMIA

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Abnormalities of heart beat; Cardiac arrhythmia, unspecified;

Tachycardia, unspecified)

ARRHYTHMIA STATUS:PULSE REGULAR == irregular

ARTHRALGIA

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Pain in hip; Pain in shoulder; Cervicalgia; Pain in knee; Dor-

salgia, unspecified; Pain in joint; Dorsalgia)

ASTHMA STATUS:ASTHMA TODAY == yes

ASTHMA ALLERGIC
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Prevent asthma; Asthma)

ATHEROSCLEROSIS

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Atherosclerosis of native arteries of extremities; Atheroscle-

rosis; Prevent atherosclerosis)

ATRIAL FIBRILLATION

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Unspecified atrial fibrillation; Unspecified atrial fibrillation

and atrial flutter)
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ATTENTION DEFICIT DISORDER WITH HYPERACTIVITY
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Attention-deficit hyperactivity disorders

BACTERIAL INFECTION STATUS:BACTERIAL INFECTION ANY == yes

BIPOLAR DISORDER
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Bipolar disorder, unspecified

BLURRED VISION STATUS:BLURRED VISION == blurred vision

BREAST NEOPLASMS STATUS:CANCER TYPE == breast

CARDIOMYOPATHY STATUS:CARDIOPATHY PAIN IN CHEST == yes

CHRONIC OBSTRUCTIVE PULMONARY DISEASE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Chronic obstructive pulmonary disease, unspecified

CHRONIC OBSTRUCTIVE PULMONARY DISEASE STATUS:COPD == yes

COLORECTAL NEOPLASMS STATUS:CANCER TYPE == OR(colon; rectum (rectal))

CONJUNCTIVITIS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Conjunctivitis

CONSTIPATION
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Constipation

COUGH
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Cough

CROHN DISEASE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Crohn s disease [regional enteritis]

DEPRESSION

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Manic episode; Major depressive disorder, recurrent, unspeci-

fied; Unspecified mood [affective] disorder; Major depressive disor-

der, single episode, unspecified)

DERMATITIS CONTACT SUSCEPTIBILITY
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Dermatitis, unspecified; Atopic dermatitis, unspecified)

DIABETES TYPE I
STATUS:DIABETES == yes -AND- STATUS:DIABETES IN-

SULIN NOW == yes

DIABETES TYPE II
STATUS:DIABETES == yes -AND- STATUS:DIABETES IN-

SULIN NOW == no

DIABETIC NEPHROPATHY

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Prevent diabetic kidney disease; Type 2 diabetes mellitus with

kidney complications)

DIABETIC NEUROPATHIES
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Type 2 diabetes mellitus with neurological complications

DIABETIC RETINOPATHY STATUS:DIABETES RETINOPATHY == yes

DIARRHEA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == In-

fectious gastroenteritis and colitis, unspecified

DIZZINESS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Dizziness and giddiness

DYSPEPSIA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Functional dyspepsia

DYSPNEA

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Shortness of breath; Prevent breathing difficulty; Unspecified

abnormalities of breathing)

EDEMA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Edema, unspecified

ERECTILE DYSFUNCTION
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Male erectile dysfunction, unspecified

FEVER
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Fever, unspecified

FIBROMYALGIA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == Fi-

bromyalgia

GASTROESOPHAGEAL REFLUX DISEASE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Gastro-esophageal reflux disease

GLAUCOMA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Glaucoma

GOUT STATUS:GOUT == yes

HEADACHE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Prevent migraine; Migraine; Headache)
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HEART FAILURE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Heart failure, unspecified

HEPATOCELLULAR CARCINOMA STATUS:CANCER TYPE == liver

HODGKINS LYMPHOMA STATUS:CANCER TYPE == lymphoma/hodgkins disease

HYPERCALCEMIA LAB:CALCIUM TOTAL(mmol/L) > 2.6 -AND- DEMO:AGE > 17

HYPERCHOLESTEROLEMIA
LAB:CHOLESTEROL TOTAL(mg/dL) > 240 -AND- DEMO:AGE

> 17

HYPERCHOLESTEROLEMIA
LAB:CHOLESTEROL TOTAL(mmol/dL) > 6.2 -AND-

DEMO:AGE > 17

HYPERCHOLESTEROLEMIA
LAB:LDL CHOLESTEROL(mg/dL) > 160 -AND- DEMO:AGE >

17

HYPERCHOLESTEROLEMIA
LAB:LDL CHOLESTEROL(mmol/L) > 4.1 -AND- DEMO:AGE >

17

HYPERCHOLESTEROLEMIA STATUS:HYPERCHOLESTEROLEMIA == yes

HYPERGLYCEMIA LAB:GLUCOSE SERUM(mmol/L) > 7 -AND- DEMO:AGE > 17

HYPERNANTREMIA LAB:SODIUM(mmol/L) > 145 -AND- DEMO:AGE > 17

HYPERTENSION STATUS:HYPERTENSION2 == yes

HYPERTRIGLYCERIDEMIA LAB:TRIGLYCERIDE(mmol/L) > 1.7 -AND- DEMO:AGE > 17

HYPERURICEMIA
LAB:URIC ACID(mg/dL) > 6 -AND- DEMO:SEX == female -

AND- DEMO:AGE > 17

HYPERURICEMIA
LAB:URIC ACID(mg/dL) > 7 -AND- DEMO:SEX == male -AND-

DEMO:AGE > 17

HYPOCALCEMIA LAB:CALCIUM TOTAL(mmol/L) < 2.2 -AND- DEMO:AGE > 17

HYPOCALEMIA LAB:POTASSIUM(mmol/L) < 3.5 -AND- DEMO:AGE > 17

HYPOGLYCEMIA LAB:GLUCOSE SERUM(mmol/L) < 2.8 -AND- DEMO:AGE > 17

HYPONANTREMIA LAB:SODIUM(mmol/L) < 135 -AND- DEMO:AGE > 17

HYPOPHOSPHATEMIA LAB:PHOSPHORUS(mmol/L) < 0.81 -AND- DEMO:AGE > 17

INSOMNIA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == In-

somnia

LIPOSARCOMA STATUS:CANCER TYPE == soft tissue (muscle or fat)

LUNG NEOPLASMS STATUS:CANCER TYPE == lung

LUPUS ERYTHEMATOSUS SYSTEMIC
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == Lu-

pus erythematosus

MELANOMA STATUS:CANCER TYPE == melanoma

MENOPAUSE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Menopausal and other perimenopausal disorders

MUSCLE CRAMPS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Cramp and spasm; Prevent cramp and spasm)

MUSCLE SPASMS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Muscle spasm; Cramp and spasm; Prevent cramp and spasm)

MYALGIA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Myalgia

MYOCARDIAL INFARCTION STATUS:HEART ATTACK == yes

NASOPHARYNGITIS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Prevent common cold; Acute nasopharyngitis [common cold])

NAUSEA

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Nausea and vomiting; Vomiting; Nausea; Prevent nausea and

vomiting)

NEUROPATHIC PAIN
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Neuralgia and neuritis, unspecified

OBESITY DEMO:BODY MASS INDEX-kg/m**2 >= 30

OSTEOARTHRITIS
STATUS:ARTHRITIS TYPE == OR(osteoarthritis; osteoarthritis

or degenerative arthritis)

OSTEOPOROSIS LAB:BMD TOTAL(g/cmˆ2) < 0.86 -AND- DEMO:AGE >= 50

OSTEOSARCOMA STATUS:CANCER TYPE == bone

OVARIAN NEOPLASMS STATUS:CANCER TYPE == ovary (ovarian)
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PAIN

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Other chest pain; Other acute postprocedural pain; Unspec-

ified abdominal pain; Pain, not elsewhere classified; Abdominal

and pelvic pain; Pain in limb, hand, foot, fingers and toes; Pain,

unspecified; Chest pain, unspecified)

PANCREATIC NEOPLASMS STATUS:CANCER TYPE == pancreas (pancreatic)

PARKINSON DISEASE
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Parkinson s disease

PEPTIC ULCER
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Peptic ulcer, site unspecified

PHARYNGITIS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Streptococcal pharyngitis; Acute pharyngitis)

PHOTOSENSITIVITY
STATUS:FOTOSENSIBILITY LEVEL == OR(get a severe sun-

burn with blisters; a severe sunburn for a few days with peeling)

PROSTATIC NEOPLASMS STATUS:CANCER TYPE == prostate

PRURITUS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Pruritus, unspecified

PSORIASIS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Psoriasis

RENAL CELL CARCINOMA STATUS:CANCER TYPE == kidney

RHEUMATOID ARTHRITIS STATUS:ARTHRITIS TYPE == rheumatoid arthritis

RHINITIS ALLERGIC STATUS:HAY FEVER LASTYEAR == yes

SEIZURES
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Epilepsy and recurrent seizures

SINUSITIS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Acute sinusitis, unspecified

SKIN ERUPTIONS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Rash and other nonspecific skin eruption

SKIN PIGMENTATION
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == Dis-

order of pigmentation, unspecified

STOMACH NEOPLASMS STATUS:CANCER TYPE == stomach

STROKE STATUS:STROKE == yes

TACHYCARDIA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Tachycardia, unspecified

THROMBOPHLEBITIS
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

Phlebitis and thrombophlebitis of lower extremities, unspecified

THYROID NEOPLASMS STATUS:CANCER TYPE == thyroid

THYROIDITIS STATUS:THYROID PROBLEM TODAY == yes

URINARY BLADDER NEOPLASMS STATUS:CANCER TYPE == bladder

URINARY INCONTINENCE

DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL ==

OR(Urgency of urination; Other specified urinary incontinence;

Unspecified urinary incontinence)

URTICARIA
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == Ur-

ticaria

UTERINE CERVICAL NEOPLASMS
STATUS:CANCER TYPE == OR(cervix (cervical); uterus (uter-

ine))

VAGINAL BLEEDING
DRUG:PRESCRIPTION CONDITION ICD10 DESC ALL == Ex-

cessive, frequent and irregular menstruation

Table 7.4: BED indicates the BED term used in the final datasets, QUERY is the query

used to trasform the NHANES database into BED.
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BED DrugBank Indication Sider Side-effect ANNOTATION

ACNE VULGARIS
Acne; Acneiform eruption;

Steroid acne
SE

ALZHEIMER DISEASE UNK

ANGINA PECTORIS UNK

ANXIETY Anxiety SE

ARRHYTHMIA Arrhythmia SE

ARTHRALGIA Arthralgia SE

ASTHMA Asthma Asthma BOTH

ASTHMA ALLERGIC Asthma Asthma BOTH

ATHEROSCLEROSIS UNK

ATRIAL FIBRILLATION UNK

ATTENTION DEFICIT DISOR-

DER WITH HYPERACTIVITY
UNK

BACTERIAL INFECTION Infection SE

BIPOLAR DISORDER UNK

BLURRED VISION Vision blurred SE

BREAST NEOPLASMS UNK

CARDIOMYOPATHY Hypertrophic cardiomyopathy SE

CHRONIC OBSTRUCTIVE PUL-

MONARY DISEASE

Acute Exacerbation of Chronic

Obstructive Pulm...
IND

COLORECTAL NEOPLASMS UNK

CONJUNCTIVITIS Allergic Conjunctivitis (AC) IND

CONSTIPATION Constipation SE

COUGH UNK

CROHN DISEASE Acute Crohn’s Disease (CD) Crohn’s disease BOTH

DEPRESSION Depression SE

DERMATITIS CONTACT SUS-

CEPTIBILITY
Dermatitis, Contact; Dermatitis; Dermatitis contact BOTH

DIABETES TYPE I Diabetes mellitus SE

DIABETES TYPE II Diabetes mellitus SE

DIABETIC NEPHROPATHY UNK

DIABETIC NEUROPATHIES UNK

DIABETIC RETINOPATHY UNK

DIARRHEA Diarrhoea SE

DIZZINESS Dizziness SE

DYSPEPSIA Dyspepsia SE

DYSPNEA UNK

EDEMA Edema of the cerebrum Oedema BOTH

ERECTILE DYSFUNCTION UNK

FEVER UNK

FIBROMYALGIA UNK

GASTROESOPHAGEAL REFLUX

DISEASE

Gastrointestinal disorder; Gas-

trointestinal ir...
SE

GLAUCOMA Glaucoma SE

GOUT Acute Gouty Arthritis Gouty arthritis BOTH

HEADACHE Headache SE

HEART FAILURE Rheumatic heart disease SE

HEPATOCELLULAR CARCI-

NOMA
UNK

HODGKINS LYMPHOMA Aggressive Lymphoma IND

HYPERCALCEMIA Hypercalcemia of Malignancy Hypercalcaemia BOTH

HYPERCHOLESTEROLEMIA Hypercholesterolaemia SE
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HYPERGLYCEMIA UNK

HYPERNANTREMIA UNK

HYPERTENSION Hypertension SE

HYPERTRIGLYCERIDEMIA Hypertriglyceridaemia SE

HYPERURICEMIA UNK

HYPOCALCEMIA UNK

HYPOCALEMIA UNK

HYPOGLYCEMIA UNK

HYPONANTREMIA UNK

HYPOPHOSPHATEMIA UNK

INSOMNIA Insomnia SE

LIPOSARCOMA UNK

LUNG NEOPLASMS UNK

LUPUS ERYTHEMATOSUS SYS-

TEMIC

Systemic Lupus Erythematosus

(SLE)
Systemic lupus erythematosus BOTH

MELANOMA UNK

MENOPAUSE UNK

MUSCLE CRAMPS UNK

MUSCLE SPASMS UNK

MYALGIA Myalgia SE

MYOCARDIAL INFARCTION Myocardial infarction SE

NASOPHARYNGITIS UNK

NAUSEA Nausea SE

NEUROPATHIC PAIN Neuritis SE

OBESITY Obesity SE

OSTEOARTHRITIS Synovitis of osteoarthritis Osteoarthritis BOTH

OSTEOPOROSIS Osteoporosis SE

OSTEOSARCOMA UNK

OVARIAN NEOPLASMS UNK

PAIN
Arthralgia; Myalgia; Abdomi-

nal pain
SE

PANCREATIC NEOPLASMS UNK

PARKINSON DISEASE UNK

PEPTIC ULCER Peptic ulcer SE

PHARYNGITIS UNK

PHOTOSENSITIVITY UNK

PROSTATIC NEOPLASMS
Metastatic Castration Resis-

tant Prostate Cance...
IND

PRURITUS Pruritus SE

PSORIASIS
Psoriatic Arthritis; Severe Pso-

riasis
Psoriasis BOTH

RENAL CELL CARCINOMA UNK

RHEUMATOID ARTHRITIS Rheumatoid Arthritis Rheumatoid arthritis BOTH

RHINITIS ALLERGIC Allergic Rhinitis (Disorder) IND

SEIZURES UNK

SINUSITIS Allergic Rhinitis (Disorder) IND

SKIN ERUPTIONS
Unspecified disorder of skin

and subcutaneous ...
SE

SKIN PIGMENTATION
Unspecified disorder of skin

and subcutaneous ...
SE

STOMACH NEOPLASMS UNK

STROKE UNK

TACHYCARDIA Tachycardia SE
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THROMBOPHLEBITIS Thrombophlebitis SE

THYROIDITIS Thyroiditis Thyroiditis BOTH

THYROID NEOPLASMS UNK

URINARY BLADDER NEO-

PLASMS
UNK

URINARY INCONTINENCE UNK

URTICARIA Urticaria SE

UTERINE CERVICAL NEO-

PLASMS
UNK

VAGINAL BLEEDING UNK

Table 7.5: BED is the name of the BED condition, DrugBank Indication is the name of

the prednisone indication as reported in DrugBank, Sider Side-effect is the side-effect has

indicated in the Sider database, and ANNOTATION is the label assigned to each BED

condition.
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7.3. The effect of Tocilizumab in GCA-patiens PBMCS (Pe-

ripheral Blood Mononuclear Cells)

AGER, ALOX12, ALOX15, ALOX5, AREG, ARG1, ATF2, BCL2L1, BCL6, BIRC2,

BORCS8-MEF2B, C1QA, C1QB, C1R, C1S, C2, C3, C3AR1, C4A, C5, C6, C7, C8A,

C8B, C9, CCL11, CCL13, CCL16, CCL17, CCL19, CCL2, CCL20, CCL21, CCL22,

CCL23, CCL24, CCL3, CCL4, CCL5, CCL7, CCL8, CCR1, CCR2, CCR3, CCR4, CCR7,

CD4, CD40, CD40LG, CD55, CD86, CDC42, CEBPB, CFB, CFD, CFL1, CREB1, CRP,

CSF1, CSF2, CSF3, CXCL1, CXCL10, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8,

CXCL9, CXCR1, CXCR2, CXCR4, CYSLTR1, CYSLTR2, DAXX, DDIT3, DEFA1,

ELK1, FASLG, FLT1, FOS, FXYD2, GNAQ, GNAS, GNB1, GNGT1, GRB2, HDAC4,

HIF1A, HLA-DRA, HLA-DRB1, HMGB1, HMGB2, HMGN1, HRAS, HSH2D, HSPB1,

HSPB2, IFI44, IFIT1, IFIT2, IFIT3, IFNA1, IFNB1, IFNG, IL10RB, IL11, IL12A, IL12B,

IL13, IL15, IL18, IL18RAP, IL1A, IL1B, IL1R1, IL1RAP, IL1RN, IL2, IL21, IL22, IL23A,

IL23R, IL3, IL4, IL5, IL6, IL6R, IL7, IL9, IRF1, IRF3, IRF5, IRF7, ITGB2, JUN, KEAP1,

KNG1, LIMK1, LTA, LTB, LTB4R, LTB4R2, LY96, MAFF, MAFG, MAFK, MAP2K1,

MAP2K4, MAP2K6, MAP3K1, MAP3K5, MAP3K7, MAP3K9, MAPK1, MAPK14,

MAPK3, MAPK8, MAPKAPK2, MAPKAPK5, MASP1, MASP2, MAX, MBL2, MEF2A,

MEF2C, MEF2D, MKNK1, MMP3, MMP9, MRC1, MX1, MX2, MYC, MYD88, MYL2,

NFATC3, NFE2L2, NFKB1, NLRP3, NOD1, NOD2, NOS2, NOX1, NR3C1, OAS2,

OASL, OXER1, PDGFA, PIK3C2G, PLA2G4A, PLCB1, PPP1R12B, PRKCA, PRKCB,

PTGDR2, PTGER1, PTGER3, PTGER4, PTGFR, PTGIR, PTGS1, PTGS2, PTK2,

RAC1, RAF1, RAPGEF2, RELA, RELB, RHOA, RIPK1, RIPK2, ROCK2, RPS6KA5,

SHC1, SMAD7, STAT1, STAT2, STAT3, TBXA2R, TCF4, TGFB1, TGFB2, TGFB3,

TGFBR1, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TNF, TN-

FAIP3, TNFSF14, TOLLIP, TRADD, TRAF2, TREM2, TSLP, TWIST2, TYROBP

Table 7.6: List of gene used in the differential expression analysis.
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7.4. MMPred

Evaluation Sars-CoV-2 peptide mimicry

DPA1*01:03/DPB1*02:01

DPA1*01:03/DPB1*03:01

DPA1*01:03/DPB1*04:01

DPA1*01:03/DPB1*04:02

DPA1*02:01/DPB1*01:01

DPA1*02:02/DPB1*05:01

DQA1*01:01/DQB1*05:01

DQA1*01:02/DQB1*06:02

DQA1*02:01/DQB1*02:02

DQA1*03:01/DQB1*03:02

DQA1*03:02/DQB1*04:01

DQA1*05:01/DQB1*02:01

DQA1*05:01/DQB1*03:01

DQA1*05:05/DQB1*03:01 DRB1*01:01

DRB1*01:02 DRB1*01:03 DRB1*03:01

DRB1*03:02 DRB1*03:03 DRB1*03:04

DRB1*04:01 DRB1*04:02 DRB1*04:03

DRB1*04:04 DRB1*04:05 DRB1*04:06

DRB1*04:07 DRB1*07:01 DRB1*08:01

DRB1*08:02 DRB1*08:03 DRB1*09:01

DRB1*10:01 DRB1*11:01 DRB1*11:02

DRB1*11:03 DRB1*11:04 DRB1*12:01

DRB1*12:02 DRB1*13:01 DRB1*13:02

DRB1*13:03 DRB1*13:04 DRB1*13:05

DRB1*14:01 DRB1*14:02 DRB1*14:05

DRB1*15:01 DRB1*15:02 DRB1*16:01

DRB1*16:02 DRB3*01:01 DRB3*02:02

DRB3*03:01 DRB4*01:01 DRB4*01:03

DRB5*01:01

DPA1*01:03/DPB1*04:01 DPB1*01:01

DPB1*03:01 DPB1*04:01 DPB1*04:02

DPB1*05:01 DQA1*01:02

DQA1*01:02/DQB1*06:02

DQA1*01:03 DQA1*03:01

DQA1*03:01/DQB1*03:02 DQA1*03:03

DQA1*05:01 DQA1*05:01/DQB1*02

DQA1*05:01/DQB1*02:01

DQA1*05:01/DQB1*03:01 DQB1*02:01

DQB1*02:02 DQB1*03:02 DQB1*03:03

DQB1*04:01 DQB1*05:01 DQB1*06:01

DQB1*06:02 DRB1*01:01 DRB1*03:01

DRB1*04:01 DRB1*04:04 DRB1*04:05

DRB1*04/DQB1*03:02 DRB1*07:01

DRB1*08:02 DRB1*08:03 DRB1*09:01

DRB1*11:01 DRB1*12:01 DRB1*13:01

DRB1*13:02 DRB1*15:01 DRB1*15:02

DRB1*15:03 DRB3*01:01 DRB3*02:02

DRB4*01:01 DRB5*01:01

Table 7.8: List of alleles used for prediction.
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Microorganism BED term Reference

Enterovirus B DIABETES TYPE I
[Bergamin and Dib, 2015, Yeung
et al., 2011]

Hepatitis B virus ARTHRALGIA [Cacoub and Terrier, 2009]

Hepatitis B virus PRURITUS [Cacoub and Terrier, 2009]

Hepatitis B virus PSORIASIS [Cacoub and Terrier, 2009]

Influenza A virus DIABETES TYPE I [Smatti et al., 2019]

Mycobacterium tuberculosis DERMATOMYOSITIS [Starshinova et al., 2022]

Mycobacterium tuberculosis
LUPUS ERYTHEMATOSUS
SYSTEMIC

[Starshinova et al., 2022]

Mycobacterium tuberculosis RHEUMATOID ARTHRITIS [Starshinova et al., 2022]

Neisseria meningitidis
GUILLAIN-BARRE SYN-
DROME

[Temme et al., 2021]

Rotavirus A DIABETES TYPE I [Gómez-Rial et al., 2020]

Rotavirus A MYASTHENIA GRAVIS [Gómez-Rial et al., 2020]

Sars-Cov 2 ANEMIA
[Knight et al., 2021, Ehrenfeld
et al., 2020]

Sars-Cov 2 DIABETES TYPE I
[Knight et al., 2021, Ehrenfeld
et al., 2020]

Sars-Cov 2
GUILLAIN-BARRE SYN-
DROME

[Knight et al., 2021, Ehrenfeld
et al., 2020]

Sars-Cov 2
LUPUS ERYTHEMATOSUS
SYSTEMIC

[Knight et al., 2021, Ehrenfeld
et al., 2020]

Sars-Cov 2 MYASTHENIA GRAVIS
[Knight et al., 2021, Ehrenfeld
et al., 2020]

Sars-Cov 2 RHEUMATOID ARTHRITIS
[Knight et al., 2021, Ehrenfeld
et al., 2020]

Sars-Cov 2 THYROIDITIS
[Knight et al., 2021, Ehrenfeld
et al., 2020]

Staphylococcus aureus
GUILLAIN-BARRE SYN-
DROME

[Seyyed Mousavi et al., 2017]

Staphylococcus aureus HEPATITIS [Seyyed Mousavi et al., 2017]

Staphylococcus aureus
LUPUS ERYTHEMATOSUS
SYSTEMIC

[Seyyed Mousavi et al., 2017]

Staphylococcus aureus MULTIPLE SCLEROSIS [Seyyed Mousavi et al., 2017]

Staphylococcus aureus RHEUMATOID ARTHRITIS [Seyyed Mousavi et al., 2017]

Staphylococcus aureus
SCHOENLEIN-HENOCH PUR-
PURA

[Seyyed Mousavi et al., 2017]

Table 7.7: This table report the autoimmune disease/condition associated to each microor-
ganism present in BED. Only those microorganism that are related to at least one autoim-
mune condition/disease that is associated to a BED term are reported. Microorganism
reports the name of the Microorganism, BED term the name of the BED term for the cor-
responding autoimmune condition/disease, and Reference reports the reference from which
the information was extracted.
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Human autoepitope AID Microbial epitope Organism Same allele

H1-1 (62-70) MS PPE68 (63-68) MT -

H1-2 (59-67) MS PPE69 (63-68) MT -

H1-2 (203-211) MS HbhA (167-185) MT DRB5*01:01

H1-4 (210-218) MS HbhA (168-185) MT DRB5*01:01

H1-4 (210-218) MS RplV (152-157) MT DRB5*01:01

H2BC3 (66-74) MS EsxB (18-24) MT -

MPO (234-242) MS Spike (326-330) SARS-CoV-2 DRB1*15:01

IFT57 (60-68) MS Spike (457-462) SARS-CoV-2 -

PTPRJ (693-701) MS Spike (778-785) SARS-CoV-2 -

RPL31 (103-116) MS Spike (1065-1069) SARS-CoV-2 -

RPL7A (60-68) MS Spike (1210-1218) SARS-CoV-2 -

ARID4B (540-552) MS Replicase polyprotein 1a (972-977) SARS-CoV-2 -

CCDC97 (248-256) MS Replicase polyprotein 1a (972-977) SARS-CoV-2 -

GLT8D1 (48-56) MS Replicase polyprotein 1a (1910-1917) SARS-CoV-2 -

TGFBI (235-244) MS Replicase polyprotein 1a (2147-2155) SARS-CoV-2 -

VIM (52-64) MS Replicase polyprotein 1a (3381-3389) SARS-CoV-2 -

HLA-A (57-65) MS Replicase polyprotein 1a (3991-3999) SARS-CoV-2 -

HLA-A (57-66) RA Replicase polyprotein 1a (3991-3999) SARS-CoV-2 -

MRPS15 (196-204) MS Nucleoprotein (86-93) SARS-CoV-2 -

PLXDC2 (38-49) MS Nucleoprotein (267-274) SARS-CoV-2 -

ACTA2 (153-161) MS ORF3a protein (164-176) SARS-CoV-2 -

H3-4 (21-29) MS ORF8 protein (51-56) SARS-CoV-2 -

RPL5 (18-26) MS Tegument protein UL46 (486-490) HHV-1 -

JAK2 (102-110) MS gE (38-42) HHV-3 -

Table 7.9: Results of the supervised evaluation. Human autoepitope: human protein name

and position in the sequence of the predicted autoepitope; AID: autoimmune disease as-

sociated to the microorganism (MS: multiple sclerosis, RA: rheumatoid arthritis); Microbial

epitope: microbial protein name and position in the sequence of the known microbial epitope;

Organism: corresponding microrganism (MT: Mycobacterium tuberculosis, HHV: Human Al-

phaherpesvirus); Same allele: predicted allele, only shown when the same allele is known to

recognise both human and microbial epitopes at the experimental level.
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Autoantigen Epitope SARS-CoV-2 protein Aligned Sequence N positive

MYT1L EEGDREEEE (125 to 133) NSP3 DEDEEEGDCEEEE (110 to 122) 1

BAZ1A VDGDEEEGQSEEEE (1229 to 1242) NSP3 DEDEEEGDCEEEEFE (110 to 124) 2

CHD5 DDDDEEEEGGCEEEED (398 to 413) NSP3 DEDEEEGDCEEEE (110 to 122) 2

MCM8 YNYEPLTQL (199 to 207) NSP5 YNYEPLTQ (237 to 244) 1

ATF7 FVCNAPGCG (7 to 15) NSP13 PYVCNAPGC (47 to 55) 1

HELZ2 FTVIQGPPG (2169 to 2177) NSP13 QKYSTLQGPPGTGKS (275 to 289) 11

MOV10 KRFNVAVTRAKAL (903 to 915) NSP13 NVNRFNVAITRAK (557 to 569) 5

MOV10L1 RFNVAITRPKAL (1131 to 1142) NSP13 NVNRFNVAITRAK (557 to 569) 5

DNA2 LNVAITRAKH (1000 to 1009) NSP13 RFNVAITRAK (560 to 569) 4

BRI3 VTRYPANSI (64 to 72) NSP14 VDRYPANSIV (389 to 398) 7

PARVG LHLLVALAKRFQ (140 to 151) NSP15 LHLLIGLAKRF (248 to 258) 8

CALD1 VMSLKNGQI (225 to 233) NSP16 TAVMSLKEGQI (257 to 267) 2

MICAL3 YKKDKKKKA (1747 to 1755) N KKDKKKKADE (369 to 378) 3

SLC35E4 SVLYNLASF (265 to 273) spike(BA.1-like) SVLYNLASFS (366 to 375) 1

UNC50 YKYLRRLFR (32 to 40) spike(BA.4-like) YNYLRRLFR (447 to 455) 7

Table 7.10: MMPred-predicted autoantigens from similarity to SARS-CoV-2 sequences. N

positive: number of positive predictions for the epitope (pairs of prediction method and

allele).
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Predicted AA autoepitope VZV protein aligned sequence alignment method

AFF3 (664 to 672) FIETESSSS ORF62 (346 to 360) PKSREFVSSSSSSSS blastp

UNG (251 to 259) FLLWGSYAQ ORF59 (242 to 254) GLVFMLWGAHAQK blastp

POLD1 (609 to 618) IMMAHNLCYY ORF28 (686 to 701) LYPSIIQAHNLCFTTL blastp

POLA1 (867 to 875) SIIQEFNIC ORF28 (688 to 700) PSIIQAHNLCFTT blastp

LILRA2 (196 to 204) YAYDSNSPY gE (74 to 83) AYDHNSPYIW blastp

HEG1 (654 to 663) FFVSDSSSSS ORF62 (350 to 364) EFVSSSSSSSSWGSS blastp

EMD (190 to 198) FMSSSSSSS ORF62 (351 to 361) FVSSSSSSSSW blastp

ZNF594 (542 to 550) LECEKTFSQ ORF28 (888 to 895) KLECEKTF blastp

TAOK1 (140 to 149) YLHSHTMIHH 66 (192 to 208) RALQYLHNNSIIHRDIK blastp, psiblast

PHKG2 (142 to 151) FLHANNIVHH 66 (195 to 209) QYLHNNSIIHRDIKS blastp, psiblast

CDKL3 (114 to 122) YLHSNNIIH 66 (191 to 207) LRALQYLHNNSIIHRDI blastp, psiblast

BRAF (565 to 574) YYLHAKSIIH 66 (192 to 206) RALQYLHNNSIIHRD blastp, psiblast

MAPKAPK3 (155 to 164) FLHSHNIAHH 66 (193 to 208) ALQYLHNNSIIHRDIK blastp, psiblast

TAOK3 (136 to 145) YYLHSHALIH 66 (193 to 207) ALQYLHNNSIIHRDI blastp, psiblast

TSSK4 (137 to 146) YYLHSKSIVH 66 (193 to 206) ALQYLHNNSIIHRD blastp, psiblast

MAPKAPK2 (175 to 184) YLHSINIAHH 66 (193 to 208) ALQYLHNNSIIHRDIK blastp, psiblast

TYMS (200 to 208) FYVVNSELS ORF13 (186 to 201) LCQFYVANGELSCQVY blastp, psiblast

DCLK2 (504 to 513) YLHGLSIVHH 66 (193 to 207) ALQYLHNNSIIHRDI blastp, psiblast

DCLK1 (500 to 509) YYLHSLNIVH 66 (193 to 207) ALQYLHNNSIIHRDI blastp, psiblast

TYMS (164 to 172) IDTIKTNPD ORF13 (149 to 164) LQTVIDTIKTNPESRR blastp, psiblast

TNNI3K (575 to 583) YLHNLTQPI 66 (193 to 208) ALQYLHN–NSIIHRD psiblast

TAOK2 (140 to 148) YLHSHNMIH 66 (192 to 207) RALQYLHNNSIIHRDI psiblast

SYK (484 to 492) YLEESNFVH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

RAF1 (457 to 466) YYLHAKNIIH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

TYRO3 (644 to 653) YLSSRNFIHH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

ARAF (418 to 427) YYLHAKNIIH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

PDGFRB (815 to 824) FFLASKNCVH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

PDGFRA (807 to 816) FFLASKNCVH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

NLK (253 to 261) YLHSAGILH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

MERTK (712 to 721) YYLSNRNFLH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

CSNK1E (117 to 126) YIHSKNFIHH 66 (194 to 207) LQYLHNNSIIHRDI psiblast

MAPK6 (141 to 150) YYIHSANVLH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

CSNK1D (117 to 126) YIHSKNFIHH 66 (194 to 207) LQYLHNNSIIHRDI psiblast

CSNK1G1 (154 to 162) YVHSKNLIY 66 (194 to 207) LQYLHNNSIIHRDI psiblast

CSNK1G3 (152 to 160) YVHSKNLIY 66 (194 to 207) LQYLHNNSIIHRDI psiblast

DDR1 (755 to 764) YLATLNFVHH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

DDR2 (699 to 708) YLSSLNFVHH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

DSTYK (765 to 774) IRFLHSQGLH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

CSNK1A1L (126 to 134) YVHTKNFLH 66 (194 to 207) LQYLHNNSIIHRDI psiblast

EPHA2 (728 to 737) YLANMNYVHH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

EPHB1 (733 to 742) YYLAEMNYVH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

EPHB3 (747 to 756) YYLSEMNYVH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

CSNK1A1 (126 to 134) YVHTKNFIH 66 (194 to 207) LQYLHNNSIIHRDI psiblast

KIT (781 to 790) FLASKNCIHH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

LCK (354 to 362) FIEERNYIH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

CSF1R (767 to 775) FLASKNCIH 66 (192 to 207) RALQYLHNNSIIHRDI psiblast

LIMK1 (449 to 458) YYLHSMNIIH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

MAPK1 (138 to 146) YIHSANVLH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

ZAP70 (451 to 459) YLEEKNFVH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

MAPK13 (138 to 146) LKYIHSAGV 66 (193 to 206) ALQYLHNNSIIHRD psiblast

MAPK3 (155 to 164) YYIHSANVLH 66 (192 to 206) RALQYLHNNSIIHRD psiblast

MAPK4 (138 to 147) YYIHSANVLH 66 (192 to 206) RALQYLHNNSIIHRD psiblast
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MAPK7 (169 to 178) LKYMHSAQVV 66 (191 to 206) LRALQYLHNNSIIHRD psiblast

MAPK12 (142 to 151) YIHAAGIIHH 66 (193 to 206) ALQYLHNNSIIHRD psiblast

Table 7.11: The table summarizes the prediction and alignments

obtained in the MMPred comparison of VZV and Human

protein sequences. The column ”Predicted AA” reports the

predicted human autoantigens and the position of the over-

allped predicted autoepitopes, ”autoepitope” reports the se-

quences of the overlapped 9-mers, ”VZV protein” reports the

gene name of the Varicella Zoster Virus proteins and the po-

sition of the overlapped aligned sequence, ”aligned sequence”

reports the overlapped sequences showing significant align-

ment, and ”alignment method” report the alignment method

used.
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Chapter 8

Publications related to this thesis

P. Coto-Segura, C. Segú-Vergés, A. Martorell, D. Moreno-Ramı́rez, G. Jorba, V. Junet, F.

Guerri, X. Daura, B. Oliva, C. Cara, O. Suárez-Magdalena, S. Abraham, and J. M. Mas.

A quantitative systems pharmacology model for certolizumab pegol treatment in moderate-to-

severe psoriasis. Frontier in Immunology, 14:1212981, 2023.

A different application of the Therapeutic Performance Mapping System and Clustering tool

is utilized in this thesis in subsection 3.4.6 and in subsection 4.3.2. This study is not part of

the thesis.

F. Guerri, V. Junet, J. Farrés and X. Daura. MMPred: a tool to predict peptide mimicry

events in MHC class II recognition. Frontiers in Genetics. Accepted 25 November 2024,

Volume 15 - 2024, doi: 10.3389/fgene.2024.1500684.

This paper includes the development and testing of MMPred, described in subsection 1.4.6,

section 3.5, and section 4.4 of this thesis.
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