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I, Josef SVĚTLÍK, declare that this thesis titled, “Proximity effects in heterostructures
of graphene and low-symmetry 2D materials” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:





v

UNIVERSITAT AUTÒNOMA DE BARCELONA

Abstract
Proximity effects in heterostructures of graphene and low-symmetry 2D materials

by Josef SVĚTLÍK

Our information age requires the storage and processing of enormous amounts of
data. The scaling of classical computing and storage devices is currently reaching
physical limits. Devices based on new materials or working principles have to be
developed to handle the growing amount of data faster and more efficiently. To
this end, two-dimensional materials (2DMs) are promising due to their atomic-scale
thickness and because they host a plethora of interesting physical phenomena that
could be exploited in future devices. Moreover, the combination of 2DMs in van
der Waals (vdW) heterostructures allows for tailoring the physical properties for a
specific application through proximity effects. Graphene is a 2DM showing excellent
electronic and spin transport properties that attracted considerable attention from the
spintronic research community. The long spin coherence time in graphene makes it a
perfect material for transmitting spin-encoded information; however, manipulating
spin in pristine graphene proves challenging. A possible pathway to achieve spin
manipulation in graphene involves inducing spin-orbit coupling (SOC) through prox-
imity effects with 2D transition metal dichalcogenides (TMDCs). This dissertation
investigates SOC phenomena in graphene induced by the proximity of low-symmetry
TMDCs. Novel types of SOC are identified through spin relaxation and charge-spin
interconversion measurements. The results expand our understanding of proximity-
induced SOC phenomena in graphene and offer a new pathway for future-generation
spintronic devices where spins are generated, manipulated and detected solely in
graphene-based circuitry.
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Chapter 1

Introduction

1.1 Transistor scaling and beyond

The transistor, a foundational component of modern electronics and computers, was
developed by Bardeen and Brattain under the supervision of Shockley at Bell Labs in
1947 [1]. This compact solid-state semiconducting device, capable of functioning as
an electrical switch, ultimately replaced less reliable inefficient and bulky thermionic
valves. However, it was not until the development of the metal-oxide-semiconductor
field-effect transistor (MOSFET) by Atalla and Kahng in 1960 that industrial-scale
production of transistors for a wide range of applications became possible [2–4]. At
the same time, Kilby patented the integrated circuit and Noyce invented a more
practical monolithic version [5, 6]. Integrated circuits packed with interconnected
transistors, capacitors, and resistors were quickly adopted by the electronics industry
and became the platform for building modern consumer electronics.

Since then, the goal has been relatively straightforward — to pack more transistors
into the same area. Thanks to the incredible effort of material scientists and electrical
engineers, the number of transistors in integrated circuits approximately doubled
every two years, a trend already noticed by Moore in 1965 [7]. His observation became
later known as Moore’s law and set the pace for the breathtaking miniaturisation that
has been seen over the next 50 years. As of 2024, the number of transistors is higher
than 200 million per mm2 in state-of-the-art chips [8]. This exponential increase in
transistor density over time brought the remarkable transformation of computers
from large machines capable of performing modest calculations for a handful of
individuals to ubiquitous pocket "supercomputers", always at our disposal.

Unfortunately, the downscaling of transistors is reaching its fundamental physical
limits [9], as electric current starts to leak through the too-thin gate insulator and the
too-short silicon channel, leading to small on/off ratios and an increase in power
dissipation. These short-channel effects disrupted another scaling law originally
observed by Dennard in 1974 also known as Dennard scaling [10]. Dennard discov-
ered that the power density of devices stays roughly constant as their size decreases.
Therefore, smaller devices require less power to operate providing improved chip
efficiency. Dennard’s law accompanied Moore’s law until approximately 2006. Since
then, a further decrease in transistor size has had an undesired side effect: an increase
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in power dissipation due to the short-channel effects [11, 12]. Power dissipation
constitutes a serious issue not only for efficiency but also for heat management. Main-
taining computer chips at safe operating temperatures is becoming an increasingly
challenging problem, and requires extra energy to cool them down. The problem has
become so severe that more than 50 % of the total energy consumption in data centres
is now spent on cooling [13]. The need to store and manipulate ever-larger amounts
of data has steadily grown over the years, but it is increasing at an even faster pace
now due to the artificial intelligence revolution currently underway. Therefore, more
powerful and efficient devices are needed, but they can not be delivered by standard
silicon technology. Instead, a new "Beyond Moore" information technology hardware
has to be designed and developed.

Beyond Moore research explores alternative computing paradigms and advanced
materials that would first complement and eventually replace silicon technology
[14]. Advanced materials with reduced dimensionality include 2D materials [15], 1D
carbon nanotubes [16], and 0D molecules [17]. Alternative technologies rely on ex-
ploiting degrees of freedom other than the electron’s charge, such as the electric dipole
[18, 19], orbital currents [20], valley [21, 22], or spin [23, 24]. The most prominent
beyond-CMOS technologies include quantum [25], optical [26], and neuromorphic
computing [27] and spintronics [23]. As this thesis falls within the field of spintronics,
the focus will be solely on the description of early successes and future directions of
spintronic technology.

1.2 Spintronics

Spintronics, a portmanteau of spin electronics, aims at utilizing the spin of an electron
to store and process information. Using spins in addition or, ideally, instead of charge
promises more energy-efficient, faster, and denser storage, memory, and logic devices
due to the potentially negligible power dissipation in spintronic devices, where a
pure spin current carries the information.

Spins, or their larger assembly in magnetic regions made up of many magnetic
domains, have been used to store information for over a century [28]. The basic
concept of magnetic storage has remained the same over time: read-and-write heads
passing in proximity to the surface of the magnetic storage medium save or retrieve
information. In write mode, the magnetization of parts of the magnetic medium
is changed to record the signal. In read mode, the head passes over the magnetic
segments of the storage medium and outputs voltages that directly correlate with the
local magnetisation of the medium.

The first important contribution of magnetic recording technology to computers
was the magnetic tape storage that replaced punch cards in the early 1950s [29]. It
remains important for archival storage to this day because of its high volumetric
density and cost-effectiveness. However, disk drives made of magnetic platters began
to replace magnetic tape technology in computers since 1956 because they offered
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faster data access. Hard disk drives (HDDs) saw a similarly impressive improvement
in data density as processors in terms of transistor count. Whereas the first HDD,
IBM RAMAC, could store about 2000 bits per square inch, current HDDs store more
than 1600,000,000,000 bits per square inch [30]. This impressive advancement was
achieved through continuous improvements in the magnetic material of the platters,
the read-and-write heads, and the drive electronics.

The first spintronic device exploiting the flow of a spin-polarised current besides
the magnetisation of a magnetic medium was the magnetoresistive (MR) read head.
The anisotropic MR read head for HDDs was introduced by IBM in 1991. However,
Fert’s and Grünberg’s discovery of giant magnetoresistance or GMR in 1988 already
showed that a much more sensitive reading of magnetic field variations could be
achieved with vertical heterostructures composed of alternating magnetic and non-
magnetic (NM) conductive layers [31, 32]. By 1997, HDDs with spin valve GMR
read heads started to replace anisotropic MR read heads. Around 2006, the NM
layer sandwiched between the two ferromagnetic metals (FM) was replaced by a
thin insulating layer in tunnelling MR (TMR) read heads [33, 34]. Solid-state drive
(SSD) technology, based on transistors, has been increasingly substituting HDDs in
consumer electronics (PCs, laptops, and smartphones); however, data centres, cloud
servers, and other applications requiring massive storage capacity still rely on HDDs.

In addition to data storage, spintronics technology gains importance for non-
volatile magnetoresistive random access memory (MRAM) devices. Recently, the tog-
gle magnetoresistive random access memory (MRAM) and spin-transfer torque (STT)-
MRAM were introduced [35, 36]. In STT-MRAM, magnetic switching is achieved
by transferring the angular momentum of a spin-polarised current into a magnetic
storage layer. Currently, spin-orbit torque (SOT)-MRAM [37] and voltage-controlled
magnetic anisotropy (VCMA)-MRAM [38] are under intensive research and devel-
opment. In SOT-MRAM, the spin-orbit coupling (SOC), i.e. coupling between the
spin of an electron and its motion inside a crystal, is used to generate a spin current
through charge-to-spin conversion phenomena. The accumulated spin angular mo-
mentum at the boundaries of the SOT layer is transferred to the adjacent magnetic
layer, switching its magnetisation. SOT-MRAM provides higher density and faster
speed of operation compared to STT-MRAM [39]. Moreover, SOT-MRAM has better
endurance because the (large) writing current flows only through the SOT layer com-
pared to STT-MRAM, where the current runs vertically through a highly sensitive
tunnel barrier. In VCMA-MRAM, the strength of interfacial perpendicular magnetic
anisotropy at the ferromagnet/oxide interface is modulated by accumulating charge
at the interface and it also relies on the effect of SOC [40]. Indeed, SOC is gaining
increasing attention in the context of the development of future-generation fast low-
power spintronic devices operating at sub-nano second and sub-picojoule regimes
[41–43] which makes a deeper understanding of it timely and extremely important.

Besides spintronic data storage and memory devices, intensive research is cur-
rently carried out on spin-logic devices [44, 45]. Spin-logic devices are particularly
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interesting because they would allow for in-memory computing, i.e. the combination
of memory and logic in a single spintronic device. Standard von Neumann computer
architecture comprises separate memory and logic chips, thus, energy and time are
wasted by moving the data between them. A spintronic device capable of in-memory
computing would provide a better performance in terms of efficiency and speed.
However, finding suitable materials for making such a device is challenging as the
spin-encoded information must be manipulated and communicated across the chip.
Spins undergo fast decoherence in most materials and the information is lost over
short distances. Since magnetism, SOC and charge scattering are responsible for spin
relaxation, NM materials with small SOC and high mobility are the best candidates
for achieving long distance spin communication. A wonder material for this purpose,
exhibiting negligible SOC and exceptionally high carrier mobility, was isolated by
Novoselov and Geim in 2004 and is known as graphene [46].

The isolation of graphene stimulated a great interest in 2D materials (2DMs)
research and led to the discovery of many more atomically thin crystal families [47].
Using 2DMs to build ultra-flat circuitry is envisioned as a possible way to extend
Moore’s law [48–50].

1.3 Graphene spintronics

Graphene enables spin transport at room temperature over distances larger than
any other material due to its negligible SOC, lack of hyperfine interaction, and
high carrier mobility [51, 52]. For this reason, graphene is an ideal material for
spin communication. However, the absence of SOC in pristine graphene makes the
generation, manipulation, and detection of spin currents impossible and graphene
has to be contacted by FMs to inject and detect spins.

The SOC can be useful for generating spin currents through charge-to-spin conver-
sion phenomena, such as the spin Hall effect (SHE) [53] or the Rashba-Edelstein effect
[54, 55] also known as inverse spin galvanic effect (ISGE) [56, 57]. In addition, inverse
effects, i.e. inverse SHE [58] and inverse Rashba-Edelstein effect (spin galvanic effect)
[59], can be used for electrical spin detection as they convert spin into charge current.
These charge–spin interconversion (CSI) effects enable FM-free spin injection and
detection.

Furthermore, SOC might be employed to control the flow of spins through the
channel with an external electric field [60], as originally proposed by Datta and Das
[61]. In their proposal of the electronic analogue of the electro-optic modulator, a gate
voltage modulates the strength of SOC that rotates the diffusing spins. Graphene
with enhanced SOC is envisioned as a promising material for achieving spin-logic
devices.

For these reasons, a finite gate-tunable SOC in graphene is desirable as it would
provide the means to perform all the basic operations of an active spintronic device,
i.e. injection, manipulation, and detection of spins. Excitingly, a sizeable SOC can be
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induced in graphene through proximity-induced effects [62, 63]. Proximity effects
refer to short-range interactions across the interfaces of materials in heterostructures,
where properties of one material are transferred to another. The atomically-thin
nature of 2DMs promotes proximity effects and their layered nature allows for direct
assembly in van der Waals (vdW) heterostructures in a Lego-like manner.

In recent years, proximity-induced SOC [64, 65], magnetism [66, 67], and super-
conductivity [68] have been demonstrated in heterostructures made of various 2DMs.
Proximity-SOC in graphene is achieved by interfacing it with high-SOC materials,
such as transition metal dichalcogenides (TMDCs) [64, 65] and topological insulators
[69] and demonstrated through weak antilocalisation experiments [70], nonlocal
measurements probing spin relaxation anisotropy [64, 65, 71], and CSI phenomena
[55, 72–74].

Measuring spin relaxation anisotropy through (nonlocal) spin precession experi-
ments is a powerful method to investigate spin transport and dynamics in graphene
[75, 76]. In these measurements, spin lifetimes along different spatial directions are
identified which provides key information on the nature of the induced SOC (e.g.
persistent spin texture, Rashba winding spin texture, etc). CSI measurements are
mainly performed to measure the spin-charge conversion efficiency, i.e. the spin Hall
angle, of various materials and heterostructures. Large spin Hall angles are required
to achieve practical applications of spintronic devices. In addition, certain insight into
the nature of SOC in graphene can be obtained with these measurements by taking
into consideration the symmetries of the present CSI phenomena [77].

Recently, low-symmetry 2DMs attracted attention of the spintronics community
[78–81] due to the possibility of generating unconventional CSI components [82] and
inducing novel types of SOC in graphene [63]. These discoveries broaden the range
of possible device architectures for spintronic applications. Therefore, understanding
and mastering the control of SOC in graphene is crucial step towards the development
of active 2D spintronic devices.

Spin interconnect Spin logics CSI

I

VG1

VG2

VG3

VG4
V+

V-

a b c

I

V

Fig. 1.1: Graphene spintronics. a. Lateral graphene spin valve for spin communication. b. Spin-
logic device based on graphene demultiplexer and SOC-modulating logical gates. c. Charge-spin
interconversion in the graphene region where SOC is enhanced by proximity effect. Adapted from Ref.

[83].

1.4 Thesis outline

In this thesis, I investigate spin transport in heterostructures of graphene and low-
symmetry TMDCs that induce a sizeable SOC in graphene through proximity effects.



6 Chapter 1. Introduction

The low symmetry of these heterostructures leads to the emergence of novel types of
proximity-induced SOC in graphene. Such SOC is studied through a series of mea-
surements based on spin relaxation anisotropy and CSI experiments. The structure
and content of the thesis is as follows:

• This chapter briefly presents limits to transistor scaling, spintronics as a technol-
ogy capable of extending Moore’s law, and graphene spintronics as a promising
research direction to achieve spin-logic components.

• Chapter 2 presents the background on the physical phenomena and materials
explored in this thesis. It begins with an introduction to quantum mechanical
spin, spin-orbit coupling, and the general concepts of spin transport, spin
relaxation, and charge to spin interconversion phenomena. Then, selected van
der Waals materials are presented, followed by a description of spin transport
in both pristine and proximitized graphene.

• Chapter 3 introduces the experimental design employed in this thesis, starting
with the concept of spin injection, detection, and precession under an out-of-
plane, in-plane, and oblique magnetic field in lateral spin devices. Finally, the
device geometries for characterising the spin relaxation anisotropy and the CSI
are described.

• Chapter 4 introduces the device fabrication steps and the used characterisation
methods.

• Chapter 5 describes the modelling of spin transport. The solution of the Bloch
diffusion equation is derived for the case of a partially proximitized graphene
spin valve. The spin density across anisotropic samples is calculated and
simulations of precession curves are presented for different magnetic field
configurations. The lineshape dependence of the curves on various geometric
and spin transport parameters is investigated.

• Chapter 6 presents an experimental demonstration of anisotropic spin dynam-
ics in low-symmetry graphene/PdSe2 heterostructures. Large in-plane spin
relaxation anisotropy is observed, indicating the presence of a novel SOC in
graphene/PdSe2. In addition, the anisotropy is shown to be highly tunable by
an electric field, paving the way for gate-tunable spin transport devices.

• Chapter 7 first proposes a protocol based on multilateral spin precession experi-
ments to disentangle spin currents and spin densities, induced by the SHE and
ISGE, respectively. The chapter demonstrates the possibility of generating spins
with polarisation components in all three spatial directions through CSI in a
low-symmetry graphene/WTe2 heterostructure.

• Finally, Chapter 8 provides conclusions of the thesis and recommendations for
future work.
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Chapter 2

Theoretical background

This chapter introduces the theory of the physical phenomena investigated in this the-
sis. The chapter begins by introducing the concept of quantum mechanical spin and
its mathematical framework. It then delves into spin–orbit coupling, spin transport,
spin relaxation, and charge–spin interconversion phenomena. Subsequent sections
provide an overview of van der Waals and two-dimensional (2D) materials. Finally,
the chapter discusses spin transport in graphene and proximitized graphene.

2.1 Electron spin

A seminal work that shed light on the existence of an electron’s spin was the Stern-
Gerlach experiment [1] conducted in 1922, three years before Heisenberg [2], Born,
and Jordan [3] defined modern quantum mechanics. In the Stern-Gerlach experiment,
a beam of silver atoms is sent through an inhomogeneous magnetic field that acts
on their magnetic moments and deflects their trajectories. If the atoms behaved
as classical magnets, the magnetic field acting on their randomly orientated mag-
netic moments would cause continuous spreading around the central undeflected
beam. However, the atomic beam splits and forms two lines on the detector screen.
Thus, the result suggests the existence of quantised intrinsic angular momentum
(spin) that is resolved to be either spin-up or spin-down, when passing through the
inhomogeneous magnetic field.

Another experimental result hinting at the existence of spin was the observation
of spectral line splitting in atomic spectra, as demonstrated by the Zeeman effect..
When investigating atomic spectra in strong magnetic fields, the actual number of
observed electron states in the atom was twice the expected number predicted by
the then-prevailing Bohr-Sommerfeld model. Trying to grapple with the anomaly,
namely the doublet structure of the alkali spectra, Pauli realised that the phenomenon
could be understood if the electron had a new quantum property that would take
two values [4]. Although discussed by other physicists (e.g. Compton [5]), the idea of
a spinning electron was pushed forward by Uhlenbeck and Goudsmit [6, 7] to give a
classical physical explanation. Assuming the existence of a magnetic moment of an
electron allowed them to explain the fine structure of the atomic spectra qualitatively.
The correct quantitative explanation was provided by Thomas [8]. Pauli, deeply
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discontent with the classical image, redefined the spin angular momentum in terms
of the quantum-mechanical operator

Ŝ =
h̄
2

σ⃗s , (2.1)

where h̄ is the reduced Planck constant and σ⃗s = (σx , σy , σz) is a vector containing
Pauli matrices

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
(2.2)

and derived his equation that describes spin-1/2 particles in a non-relativistic limit
[9]: [

1
2 me

(
σ⃗s ( p̂ − q A⃗)

)2
+q V

]
|ψ⟩ = i h̄

∂

∂t
|ψ⟩ , (2.3)

where me is the electron’s rest mass, p̂ = i h̄∇ is the momentum operator, A⃗ is the
vector potential, V is the electric scalar potential, and

|ψ⟩ = ψ+|↑⟩+ ψ−|↓⟩ (2.4)

is the quantum state of the system expressed as a two-component spinor wave
function.

Finally, Dirac derived the relativistic wave equation for massive fermions [10] and
the quantum-mechanical description of the electron (and all 1/2-spin particles) was
complete.

2.2 Spin–orbit coupling

Spin–orbit coupling (SOC) is a relativistic interaction coupling a particle’s spin with
its orbital motion. It is responsible for the splitting of the spectral lines in the atomic
spectra. In solid-state systems, phenomena such as spin relaxation, the spin Hall effect
[11], anisotropic magnetoresistance [12], magnetic anisotropy [13], and anomalous
Hall effect [14, 15] emerge as a result of the SOC’s effects on the electronic states.
SOC induces phenomena such as spin–orbit torque [16] and spin–momentum locking
[17], promising practical applications in data storage, memory, and logic devices.
Therefore, understanding and controlling SOC is pivotal for spintronics.

How SOC emerges in an atom can be understood by imagining an electron with
its spin magnetic dipole moment orbiting around a nucleus. An electron with charge
e forms a closed current loop of a diameter r. In the reference frame of the electron,
the positively charged nucleus, with an atomic number Z and charge q = Z e, orbits
around the stationary electron. According to the Biot-Savart law, this closed current
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loop generates a magnetic field

B⃗SOC =
µ0 I
2 r

=
Z e f

2 ϵ0 c2 r
, (2.5)

where µ0 and ϵ0 is the permeability and permittivity of vacuum, c is the speed of
light, I is the current flowing through the loop, and f is the orbital frequency. Since
the electron’s orbital angular momentum vector is

L⃗ = 2 π me f r2 , (2.6)

we can relate the induced magnetic field and orbital angular momentum

B⃗SOC =
Z e L⃗

4 π ϵ0 me c2 r3 . (2.7)

The resulting magnetic field exerts a torque τB on the spin magnetic dipole moment
of the electron

µ⃗s = − gs e
2 me

S⃗ = − gs µB

h̄
S⃗ , (2.8)

where gs is the electron’s g-factor, µB is the Bohr magneton, and S⃗ is the spin angular
momentum vector. This torque

τB = B⃗SOC × µ⃗s = − Z e2 gs

8 π ϵ0 m2
e c2 r3 L⃗ × S⃗ (2.9)

leads to a change in the energy

∆ESOC = −µ⃗s · B⃗SOC ∝ S⃗ · L⃗ . (2.10)

Therefore, the interaction between the spin angular momentum and orbital angular
momentum shifts the electron’s energy levels in the atom.

According to Eq. 2.7, the SOC strength depends strongly on the radii of the
orbiting electrons (∼ r3); therefore, the electrons located in the inner shell experience
stronger SOC. The other important parameter is the atomic number Z— SOC is small
for materials composed of light elements (e.g. graphene, hexagonal boron nitride)
and become stronger for materials composed of heavier elements (e.g. transition
metal dichalcogenides).

Although the above semi-classical derivation of the atomic SOC is useful to
illustrate its origin, its nature is inherently relativistic. The precise description of
the SOC effect on a moving electron requires the addition of the following SOC
Hamiltonian to the Dirac equation

HSOC =
e h̄

4 m2
e c2

√
1 − v2/c2

(
∇V × ( p̂ + e A⃗)

)
· σ⃗s , (2.11)
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where v is the electron’s velocity. The form of this term depends on the system in
question. In crystals, Eq. 2.11 is strongly influenced by symmetry and can manifest
itself, for example, as Rashba [18] or Dresselhaus SOC [19] (for details see Sec. 2.4).

2.3 Spin transport

As discussed in the previous sections, electrons, which facilitate electrical transport
through materials, have spin in addition to charge. In the two-spin channel model of
conduction, the charge current Jc can be expressed as a sum of spin-up and spin-down
polarised currents (J↑ and J↓)

Jc = J↑ + J↓ , (2.12)

while the pure spin current is defined as

Js = J↑ − J↓ . (2.13)

In isolated NMs, there is no preferential spin orientation (i.e. J↑ = J↓), and, therefore,
the charge current is unpolarised (Js = 0). However, FM materials have different
densities of states (DOS) for spin-up carriers (N↑) and spin-down carriers (N↓). The
imbalance in spin populations (and perhaps also mobility and scattering) may lead
to distinct spin currents in the two channels (J↑ ̸= J↓) and the current becomes
spin-polarised (Js ̸= 0).

Applying a current from an FM into an NM induces spin accumulation and spin
splitting at their interface. Spin splitting in energy requires the definition of two
spin-dependent electrochemical potentials, µ↑ and µ↓. The spin-polarised current is
defined as

J↑(↓) = Ds ∇ µ↑(↓) , (2.14)

where Ds is the spin diffusion constant. The pure spin current can then be expressed
as

Js = Ds ∇ (µ↑ − µ↓) . (2.15)

The nonequilibrium population of spin-polarised carriers injected into NM materials
diminishes as the carriers diffuses away from the spin injection point. The spin
relaxation length or spin diffusion length λs is a characteristic distance quantifying
how far spin information can travel in a material before it dissipates due to spin
relaxation processes. Its mathematical expression is derived from the spin diffusion
equation

λs =
√

τs Ds , (2.16)

where τs is the spin relaxation time. Spin relaxation processes, responsible for the
randomisation of the spin polarisation, have been extensively studied in various
materials, including metals, semiconductors, and superconductors [20–22]. The fol-
lowing section briefly introduces the two of them that are most relevant for graphene:
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the Elliott-Yafet and Dyakonov-Perel mechanisms.

2.4 Spin relaxation

Understanding spin relaxation mechanisms is crucial in spintronics but also in future
quantum technologies. It provides essential information to optimize spin trans-
port properties and to improve quantum information processing by enhancing the
coherence time of spin qubits [23].

The Elliott-Yafet spin relaxation mechanism [24, 25] dominates spin relaxation
in systems conserving time-reversal and inversion symmetry, for example, in many
metals. In this mechanism, spins may flip during scattering events where SOC allows
spins to change orientation as they interact with lattice defects, spin-conserving
impurities, and phonons. This is possible due to the mixing of the pure degenerate
spin-up | ↑⟩ and spin-down | ↓⟩ eigenstates by the SOC (Fig. 2.1a). Eigenfunctions
describing the perturbed Bloch states, i.e. spin-up band Ψ⃗k,⇑ (⃗r) and spin-down band
Ψ⃗k,⇓ (⃗r), related to the former by time-reversal symmetry, are linear combinations of
different spin functions

Ψ⃗k,⇑ (⃗r) = [a⃗k (⃗r)| ↑⟩+ b⃗k (⃗r)| ↓⟩] ei k⃗ r⃗

Ψ⃗k,⇓ (⃗r) = [a∗
k⃗
(⃗r)| ↓⟩ − b∗

k⃗
(⃗r)| ↑⟩] e−i k⃗ r⃗ ,

(2.17)

where the coefficients a and b have the periodicity of the lattice [26]. The scattering
probabilities preserving or flipping spin during a scattering event that changes the
momentum k⃗ → k⃗’ are

P|↑⟩→|↑⟩ ∝ |Mk⃗,k⃗′ |
2 |a∗

k⃗′
a⃗k|

2

P|↑⟩→|↓⟩ ∝ |Mk⃗,k⃗′ |
2 |b∗

k⃗′
a⃗k|

2 .
(2.18)

The spin-flip probability of single event alone is usually small, however, multiple
scattering events eventually lead to a spin flip. As the scattering frequency increases,
so does the rate of spin flips, resulting in a linear relationship between the momentum
scattering time τp and the spin relaxation time τs (Fig. 2.1c)

τs ∝
τp

P|↑⟩→|↓⟩
≈

τp

⟨|b|2⟩ , (2.19)

where ⟨ ⟩ denotes the average over the Fermi surface.
The Dyakonov-Perel spin relaxation [27, 28] occurs in non-centrosymmetric

systems. Inversion symmetry breaking, in the presence of SOC, has an important
consequence for spin physics. In contrast to inversion-symmetric materials, where
the SOC causes only the mixing of the spin-up and spin-down states, in the case
of inversion-asymmetric systems, SOC induces a splitting of spin-polarised bands
(Fig. 2.1b).
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Fig. 2.1: Elliott-Yafet/Dyakonov-Perel spin relaxation and spin textures. a. In inversion
symmetric systems, bands remain spin-degenerate despite SOC. b. During Elliott-Yafet spin
relaxation, spins sometimes flip randomly, when they encounter scattering centres (grey dots).
c. If the inversion symmetry is broken, SOC acts on the carriers as an effective magnetic
field leading to spin-splitting of the bands. d. During Dyakonov-Perel spin relaxation, spins
undergo precession between the scattering centres. e,f. Linear Dresselhaus (e) and Rashba (f)

spin-texture.

The SOC acts on the spin as a k⃗-dependent effective magnetic field Ω⃗(⃗k) changing
the energy by

HSOC =
h̄
2

Ω⃗(⃗k) σ⃗s . (2.20)

This results in a k⃗-dependent Larmor precession that changes every time the spin
scatters. As the individual spins of the initially coherent spin population take different
paths, and thus feel effective magnetic fields of varying intensity and direction.
Momentum scattering resets the precession. Thus, if the momentum scattering time
is shorter than the spin precession period, the scattering helps the spin population to
remain coherent over a longer time and distance. This gives an inversely proportional
relation between τs and τp (Fig. 2.1d)

τs ∝
1

Ω2 τp
. (2.21)

Experimentally, the investigation of spin transport as a function of temperature T can
help distinguish between the Elliot-Yafet and Dyakonov-Perel relaxation mechanisms
in systems where momentum scattering dominates, due to the dependence τp ∝ 1/T.
Alternatively, probing changes in spin transport induced by modulating the carrier
concentration n may provide insights into spin relaxation.

The specific form of Ω⃗(⃗k) is strongly dependent on the crystal symmetry. For
instance, in zinc-blende III-V semiconductors (such as GaAs or InSb), where bulk
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inversion symmetry is broken, the SOC Hamiltonian close to the Γ point has Dressel-
haus form [19]. In the case of 2D electron gas, where transport is confined in the xy
plane, Dresselhause SOC acquires linear form [29]

HD1 = γD/h̄3 ⟨k2
z⟩ (ky σy − kx σx) , (2.22)

where γD is Dresselhaus SOC strength parameter. Such hamiltonian results in spin
polarisation of the Bloch bands (i.e. spin texture) shown in Fig. 2.1e.

Another SOC type commonly emerges at the interfaces of vertical heterostructures,
where the out-of-plane inversion symmetry is broken, as proposed by Rashba. In this
case, the SOC Hamiltonian takes the following form

HR = (λR/h̄) (⃗z × p⃗) · σ⃗s , (2.23)

where λR is Rashba SOC strength parameter [18]. Rashba SOC manifests as a winding
spin texture (Fig. 2.1f).

While SOC facilitates spin relaxation, the spin-momentum coupling it induces can
act as a steering mechanism to control the direction of spin current and its polarisation
through charge–spin interconversion, as introduced in the following section.

2.5 Charge–spin interconversion

In 1929, Mott formulated a theory of the asymmetric spin-dependent scattering of an
unpolarised electron beam by a central potential, such as that of a heavy nuclei [30].
Later, in 1971, Dyakonov and Perel predicted that such spin-dependent scattering
in solid-state systems leads to the generation of a transverse spin current [31, 32].
However, this charge-spin interconversion (CSI) received more attention only after
the rediscovery of the effect by Hirsch in 1999 [33]. CSI phenomena have attracted
great research interest in the past 20 years and are approaching practical applications
in SOT MRAM [34]. CSI is a group of physical phenomena that allows for the
conversion of charge to spin and vice versa. In NM materials, it involves two main
effects: the spin Hall effect (SHE) and the spin galvanic effect (SGE). Their reciprocal
counterparts, the inverse SHE (ISHE) and the inverse SGE (ISGE) are related to the
original effects through the Onsager reciprocal relations [35, 36].

During the SHE, spin-dependent changes in the trajectories of charge carriers
occur because of SOC, leading to a directed spin current. The sideways deflection
arises either from the intrinsic SOC of the crystal (intrinsic SHE) [37] or from localised
SOC impurities present in the material (extrinsic SHE) [38].

Two extrinsic SHE mechanisms are skew scattering and side jump. Skew scatter-
ing occurs when a gradient of the Zeeman energy exerts a spin-dependent force on
electrons as they pass near a charged SOC impurity (Fig. 2.2a). In contrast, side-jump
scattering involves a discontinuous spin-dependent deflection of magnitude δ when
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electrons collide with the SOC impurity (Fig. 2.2b). Both mechanisms lead to a trans-
verse spin current perpendicular to the charge current. To increase the magnitude
of the extrinsic SHE, heavy metal impurities with strong SOC can be intentionally
introduced into a light metal with low intrinsic SOC [39].

The intrinsic SHE is closely connected to the concept of Berry curvature. Electrons
develop a spin-dependent anomalous velocity due to the Berry curvature Ω⃗n (⃗k)

v⃗n (⃗k) =
1
h̄
∇ En (⃗k)−

e
h̄

E⃗ × Ω⃗n (⃗k) , (2.24)

where En is the energy of the electron at the band n and E⃗ is the electric field. The
Berry curvature deflects the trajectories of spin-up and spin-down carriers in opposite
directions (Fig. 2.2c).

The intrinsic SHE strongly depends on crystal symmetry. Specifically, materials’
space groups dictate the allowed SHE components. In high-symmetry systems, the
charge current, spin current, and spin polarisation must be mutually perpendicular
( J⃗c ⊥ J⃗s ⊥ S⃗). This is sometimes refer to as the ordinary SHE. However, as the
symmetry is reduced, unconventional spin current and spin polarisation components
may emerge. Two extreme cases of unconventional SHE are collinear SHE, where
J⃗c ⊥ J⃗s ∥ S⃗, and longitudinal SHE, where J⃗c ∥ J⃗s ⊥ S⃗ [40].

a  

c  

Jc kx

ky

b 

δ�

δ�

d 

Jc

S

Fig. 2.2: Charge-to-spin conversion mechanisms. a,b. Skew scattering
(a) and side-jump (b) are extrinsic SHE mechanisms involving spin-
dependent deflection of electrons from a charged impurity (grey). c.
Intrinsic SHE emerges due to the effect of Berry curvature. d. ISGE
in a Rashba system produces spin density perpendicular to the charge

current direction.

An important parameter for practical applications is the spin Hall angle, which
measures the CSI conversion efficiency and gives a figure of merit to compare the CSI
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efficiencies of different materials, and is defined as

Θk
ij =

Jk
s,i

Jc,j
, (2.25)

where Jk
s,i is the spin current in the î direction, Jc,j is the charge current in the ĵ direction,

and k̂ is the direction of spin polarisation.
The ISGE, also called the Rashba-Edelstein effect [41], occurs in materials with

spin-polarised band structure when the Fermi level is tilted by an applied electric
field. The accumulation of spins with a specific polarisation can be understood by
examining Fig. 2.2d, which represents the case of Rashba SOC at the interface. As
the electron momentum and spin polarisation are locked, right-movers (+kx) acquire
spin polarisation along y and left-movers (−kx) acquire spin polarisation along −y.
Therefore, spin density with opposite polarisation accumulates at the interface when
the carriers flow in opposite directions. In this simple example, spin polarisation is
confined in the xy plane; however, in less symmetric systems, the restrictions on the
spin polarisation are relaxed leading to more complex ISGE.

The previous discussion demonstrates that SHE-generated spin currents and
ISGE-induced spin densities are often concurrent. Research on vdW heterostructures
comprising graphene and both high- and low-symmetry heavy-metal compounds
stimulated great enthusiasm in recent years [42–47], due to the combination of large
spin Hall angles and the ability of spins to diffuse over long distances while main-
taining their polarisation. Resolving spin currents and spin densities in low crystal
symmetry systems is addressed in Chapter 7. The experimentally investigated system
comprises graphene/Td-WTe2 vdW heterostructure.

2.6 Van der Waals materials

Van der Waals (vdW) materials consist of vertically stacked, atomically thin layers
that are weakly coupled through van der Waals forces. As shown in Fig. 2.3 atoms
within each layer are covalently bonded, and the layers exhibit either a simple pla-
nar crystal structure, as in graphite and hexagonal boron nitride (hBN), or a more
complex structure, as in the case of transition metal dichalcogenides (TMDCs) in-
cluding tungsten ditelluride (WTe2) and palladium diselenide (PdSe2), with the latter
presenting a puckered crystal structure. The number of vdW materials is virtually
limitless, exhibiting diverse behaviours spanning semiconductors, superconductors,
semimetals, dielectrics, and, most recently, vdW magnets.

The weak nature of van der Waals (vdW) forces allows the individual sheets
forming the vdW stack to peel off. Due to their two-dimensional character, the
physical properties of such single-layer materials differ significantly from their three-
dimensional counterparts. Indeed, since the isolation of graphene in 2004 [48], re-
search on 2D materials (2DMs) has represented a paradigmatic shift in the field of
condensed matter physics.
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Fig. 2.3: Van der Waals materials. a. Layered structure of vdW materials. b. Graphite is
a monoelemental vdW material made of one-atom-thick 2D carbon layers. c. Hexagonal
boron nitride (hBN) is an isomorph of graphene. d. PdSe2 and e. WTe2 are examples of

TMDCs consisting of 3-atom-thick 2D layers.

It was long assumed that materials could not exist in a stable 2D form due to
thermodynamic instability [49]. However, in 2004, A. Geim and C. Novoselov suc-
ceeded in exfoliating a single layer of graphite — graphene[48]. The discovery of
graphene stimulated significant interest in 2DMs, and soon after, many other vdW
crystals were exfoliated into monolayer form[50]. This top-down approach to obtain
single-layer materials is widely used for fundamental research in academic laborato-
ries, as it yields high-quality single-crystal 2DMs. However, it has the disadvantage
of producing samples with limited lateral dimensions, typically on the order of tens
of micrometres. In addition to mechanical exfoliation, considerable progress has
been made in developing bottom-up growth methods for high-quality 2DMs, such
as chemical vapour deposition (CVD) [51] and molecular beam epitaxy (MBE) [52].
These techniques also enable the synthesis of 2DMs whose bulk counterparts do
not exist, such as silicene, germanene, and stanene[53]). These efforts are crucial for
applications, particularly in the microelectronics sector, where large-area 2DMs are a
prerequisite for industrial-scale device fabrication.

As mentioned earlier, the available material palette is vast, with high-throughput
computational methods predicting more than 1800 vdW materials that are potentially
exfoliable [54]. The following sections present the materials investigated in this thesis:
monolayer graphene and the transition metal dichalcogenides PdSe2 and WTe2.

2.6.1 Graphene

Graphene is a single sheet of hexagonally arranged carbon atoms. The honeycomb
structure of graphene results from planar sp2 hybridisation between s, px and py

orbitals. Such hybridisation leads to the formation of covalent σ-bonds rotated 120◦
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Fig. 2.4: Graphene. a. Crystal structure (orange rhombus outlines unit cell).
b. First Brillouin zone in reciprocal space.

degrees to each other that connect the three closest carbon atoms and give graphene its
exceptional mechanical strength. Three out of four valence electrons of carbon atoms
are employed in the covalent bonding. Due to the full filling of the σ bands, they are
located deep in the valence band and do not contribute to the electrical properties of
graphene. The electronic properties are fully determined by the remaining electrons
in pz orbitals whose lobes are located above and below the graphene sheet and
form delocalised (metallic) π bonds. Electrons in pz orbitals can easily hop between
neighbouring carbon atoms, making graphene electrically conducting. The valence π

and conduction π∗ bands touch at characteristic points in the momentum space K
and K’, making graphene a semimetal.

Graphene has a triangular Bravais lattice with two atoms per unit cell belonging
to sublattices A and B (Fig. 2.4a). Each sublattice point of one kind is surrounded by
three sublattice points of the other kind. The lattice vectors a⃗1 and a⃗2 are

a⃗1 =
a0

2
(3,

√
3) ; a⃗2 =

a0

2
(3,−

√
3) , (2.26)

where a0 = 0.142 nm is the carbon-carbon distance. Reciprocal lattice vectors are

b⃗1 =
2 π

3 a0
(1,

√
3) ; b⃗2 =

2 π

3 a0
(1,−

√
3) . (2.27)

and the positions of K, K′, and M points in the momentum space (Fig. 2.4b) are

K⃗ =
2 π

3 a0

(
1,

1√
3

)
; K⃗′ =

2 π

3 a0

(
1,− 1√

3

)
; M⃗ =

2 π

3 a0
(1, 0) . (2.28)

The electronic dispersion relation can be derived using the tight-binding approxi-
mation [55]. Assuming only the nearest neighbour hopping t ≈ 2.8 eV and second
nearest neighbour hopping 0.02 t ≲ t′ ≲ 0.2 t, the energy bands are defined by [56]

E± (⃗k) = ±t
√

3 + f (⃗k)− t′ f (⃗k) , (2.29)
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Fig. 2.5: Electronic bands of graphene consist of six pairs of Dirac cones per
Brillouin zone (left). One pair of Dirac cones is zoomed (right).

where + (−) marks the π∗ (π) band and

f (⃗k) = 2 cos
(√

3 ky a0

)
+4 cos

(√
3

2
ky a0

)
cos
(

3
2

kx a0

)
. (2.30)

A nonzero value of t′ induces a small electron-hole asymmetry in the spectrum. The
Hamiltonian for states near the K and K′ points is

H0 = h̄ vF (κ σx kx + σy ky) , (2.31)

where κ = +1 (−1) at K (K′), vF is the Fermi velocity

vF =
3 ao t
2 h̄

≈ 106 m/s , (2.32)

and σx, σy are the Pauli matrices acting on the pseudospin space formed by the two
triangular sublattices. Interestingly, the electronic structure of graphene shows linear
rather than parabolic band dispersion close to the K and K′ points (Fig. 2.5), and
charge transport is governed by the massless Dirac equation. The carrier mobility µ

near the charge neutrality point (CNP), where the π and π∗ conical bands touch, is
extremely high exceeding 105 cm2 V−1 s−1 under ideal conditions (flat substrate, min-
imal surface contamination) at room temperature [57, 58]. In addition, the Dirac cone
electronic structure gives graphene a unique ambipolar characteristic. In contrast
to conventional semiconductors where conduction is usually limited to one carrier
type with mobilities in the range ∼ 103-104 cm2 V−1 s−1, the electronic conduction
in graphene can be switched between electrons (e−) and holes (h+) under an exter-
nal electric field. Despite these exceptional properties, graphene’s gapless nature
prohibits its use as a transistor because of the associated small on-off ratio.

For spintronic applications, the weak intrinsic SOC and the lack of hyperfine
interaction ensure that spins propagate coherently through the crystal lattice over long
distances [59]. However, these properties also make controlling and manipulating
spins in pristine graphene impossible. Nevertheless, owing to their atomically thin
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nature, when combined with other 2DMs that inherently exhibit large SOC, it is
possible to imprint such properties in graphene through proximity-induced effects.
One of the central ideas of this thesis is to investigate spin transport and spin-charge
interconversion phenomena in hybrid systems that combine graphene with 2DMs
exhibiting strong SOC, specifically TMDCs.

2.6.2 Transition metal dichalcogenides

TMDCs have a chemical structure MX2, where M stands for a transition metal
(e.g., Nb, Mo, Pd, Ta, W, Re, Pt) and X represents a chalcogen atom (S, Se or Te).
Abundant structural phases include the hexagonal (2H) and the trigonal structure (1T);
however, other phases of TMDCs exist, such as monoclinic (1T’) and orthorhombic
(Td). The rich chemical and structural representation of TMDCs translates into a
variety of electronic properties, including semiconducting (e.g. MoS2 and WSe2) [60],
semimetallic (e.g. bulk PdSe2, MoTe2 and Td-WTe2) [61–63], and, at low temperatures,
superconducting behaviours (NbSe2 and TaS2) [64, 65].

The electronic band structure of TMDCs is highly dependent on their thickness
[66]. For example, WSe2 (Fig. 2.6a) and similar 2H-TMDCs are direct band gap semi-
conductors in the monolayer limit, exhibiting strong photoluminescence. In contrast,
the band gap becomes indirect for bilayer and thicker flakes [67, 68]. Other TMDCs,
such as PdSe2 and PtSe2, show a transition from semimetals to semiconductors as
their thickness is reduced from bulk to a few layers [61, 69]. In addition, Td-WTe2

(Fig. 2.6b), a type-II Weyl semimetal, becomes a 2D topological insulator in the single
layer limit [70].
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Fig. 2.6: Examples of TMDC monolayers with different lattice structures. a. Hexagonal WSe2. b.
Td-WTe2. c. Pentagonal PdSe2. Orange areas depict unit cells. The first row shows a top view and

the second and third rows show two respective side views.
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The high-crystal symmetry 2H-TMDCs have a hexagonal lattice akin to graphene;
however, the sublattice points A and B are occupied by M and X atoms, respectively.
They have threefold rotational symmetry and are inversion symmetric in the bulk
form. In 2H-TMDC monolayers, the inversion symmetry is broken and interesting
spin-valley locking emerges due to the strong SOC stemming from d-orbitals of the
transition metal atoms [71]. The conduction (valence) band minima (maxima) are
located at the K and K′ points and the bands are spin-polarised out-of-plane with
the opposite polarisation at the opposing valleys to preserve time-reversal symmetry
[72]. This strong spin-valley locking makes 2H-TMDCs particularly interesting for
opto-spintronics [73], as the accumulation of spin-up or spin-down carriers can be
generated by circularly-polarised light with opposite helicity [74].

Low-symmetry TMDCs like Td-WTe2 and Td-MoTe2 are noncentrosymmetric even
in the bulk form. Therefore, their electronic bands can be spin-polarised. They have
recently attracted much attention from the spintronic community due to the large spin
Hall angles and the possibility of generating unconventional CSI components [43, 75,
76]. Chapter 7 investigates CSI phenomena in a graphene/Td-WTe2 heterostructure.

In addition, a new class of low-symmetry 2DMs with pentagonal structure has
been recently established, promising intriguing properties, such as piezoelectricity,
ferroelectricity, negative Poisson’s ratio and topological states [77]. The family of
TMDCs offers some pentagonal 2DMs, such as PdS2 and PdSe2. They crystallise in the
orthorhombic phase and the Se atoms have a tilted square-plane coordination around
Pd atoms leading to a buckled structure and unique pentagonal Cairo tiling in the
plane (Fig. 2.6c). In bulk, they are inversion symmetric; however, their combination
with other 2DMs with distinct crystallography in vdW heterostructures may result in
completely symmetry-free interfaces, giving rise to intriguing physical phenomena.
Chapter 6 investigates SOC in graphene induced by PdSe2 proximity through spin
relaxation anisotropy measurements.

2.7 Spin transport in graphene

Out of all known materials, graphene has the longest spin lifetime and spin diffusion
length at room temperature. The long λs is predominantly the consequence of weak
intrinsic SOC which has a magnitude of mere λI ∼ 12 µeV and opens a band gap
with magnitude 2 λI in the dispersion spectra [78]. The weak nature of intrinsic SOC
led to theoretical predictions of λs ≈ 100 µm and τs = 1 ms for an ideal graphene
layer [79]. The intrinsic SOC Hamiltonian HI in pristine graphene adds up with the
H0 term in Eq. 2.31 describing linear dispersion, i.e. H = H0 +HI , where

HI = λI σz κ sz . (2.33)

Another mechanism that can potentially relax spins is the hyperfine interaction of an
electron spin with the nuclear magnetic moment of the 13C atoms. However, natural
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graphene is predominantly composed of isotope 12C (99%) that lacks nuclear spin,
therefore, this interaction is negligible. Moreover, a study of artificial (CVD-grown)
graphene explicitly composed of the C13 isotope has demonstrated that hyperfine
interaction does not play an important role in spin relaxation, regardless of the isotope
concentration [80].

A free-standing pristine flat graphene sheet is inversion-symmetric, and the
Elliott-Yafet mechanism is expected to govern the spin relaxation. However, such a
flat graphene sheet cannot exist under real-life conditions, as it is well known that
thermal fluctuations lead to the rippling [81]. Thus, even in suspended graphene,
the inversion symmetry is slightly broken by the ripples [82]. The rippling leads to
spatially varying gauge fields [83] that act on spins as randomly distributed effective
out-of-plane magnetic fields [84]. However, the calculated spin relaxation time,
caused only by the ripples, is on the order of hundreds of nanoseconds [85], which
is in stark contrast to experimentally measured τs ≈ 0.2 ns in suspended graphene
samples [86, 87]. The low τs is somewhat understandable, as sample fabrication is
expected to deteriorate the quality of graphene due to the introduction of adatoms
and polymer residues.

In disordered graphene, the Elliot-Yafet spin relaxation (see Sec. 2.4) induced by
collisions with random spin-independent scatterers (e.g. nonmagnetic impurities,
vacancies) was calculated to be quadratically dependent on the position of the Fermi
level [26]

τEY
s ≈ E2

F
Ω2 τp , (2.34)

where Ω is a Rashba-like SOC energy term that splits bands with opposite chirality.
Placing graphene on a substrate mechanically stabilises the 2D sheet, limiting its

thermal fluctuations; however, it breaks the out-of-plane inversion symmetry. Thus,
graphene experiences a substrate-induced out-of-plane electric field that leads to
Rashba SOC

HR =
λR

2
(κ σx sy − σy sx) . (2.35)

In most cases, the substrate-induced Rashba field dominates over the curvature-
induced gauge fields. Rashba SOC acts on the spins as an effective momentum-
dependent in-plane magnetic field. The momentum-dependent spin precession
between the scattering events leads to the Dyakonov-Perel spin relaxation (see Sec. 2.4)
[84]

τDP
s ∝

1
∆2 τp

. (2.36)

Due to the confinement of the Rashba field in the graphene plane, spins are
expected to relax anisotropically, with out-of-plane spins relaxing twice as fast as
in-plane spins. However, in standard graphene samples on SiO2 substrates, this
anisotropy is not observed, implying that other processes dominate the spin relax-
ation, such as spin interaction with magnetic impurities or random spin-orbit fields
(SOFs) and electric potentials [88]. Indeed, an inhomogeneous SiO2 surface leads to



28 Chapter 2. Theoretical background

electron-hole puddles in graphene [89], significantly reducing τs [90]. The longest
room-temperature spin lifetimes in graphene to date were measured in partially or
fully hBN-encapsulated samples, typically reaching several nanoseconds [91–93],
underlying the importance of protecting graphene from residues and solvents during
sample fabrication.

Such long spin lifetimes and diffusion lengths in clean graphene samples with
high carrier mobility make graphene promising for spintronics applications. However,
the lack of appreciable SOC in graphene makes it challenging to manipulate the spin,
limiting the application of pristine graphene to spin interconnects. Increasing the
SOC in graphene, while preserving relatively long λs and τs, would allow electrical
injection, detection, and control of the spins paving the way for active spintronic
devices. Remarkably, SOC can be engineered in graphene through proximity effects
[73].

2.8 Spin transport in proximitized graphene

Proximity effects are short-range interactions across interfaces that imprint physical
properties absent in the pristine form of the material. They involve the hybridisation
of overlapping orbitals and quantum tunnelling of electrons between interface layers.
In the case of magnetism and SOC, proximity effects decay exponentially with the
distance from the interface; therefore, only properties of a few first atomic layers away
from the interface are influenced. In the case of vdW heterostructures, proximity
effects are boosted by the atomically thin nature of 2DMs, strongly modifying their
properties.

First-principles methods based on density functional theory accurately predicted
the possibility of inducing a relatively strong SOC (in the meV range) in graphene by
interfacing it with high spin-orbit 2DMs like TMDCs [94–96]. Interfacing graphene
with a TMDC breaks the out-of-plane inversion symmetry, leading to the familiar
Rashba SOC (Eq. 2.35). Moreover, since the sublattice symmetry of TMDC is broken
(sublattice points A and B are occupied by chalcogen and transition metal, respec-
tively), the carbon atoms at different sublattices experience different electrostatic
potentials and the sublattice symmetry in graphene is likewise broken. The effective
orbital energy difference on A and B sublattices of proximitized graphene opens a
gap in the electronic spectrum, and it is described by the staggered potential [94]

H∆ = ∆ σz s0 , (2.37)

where ∆ is the proximity-induced gap, σz is the pseudospin Pauli matrix and s0 is the
unit spin matrix. Pseudospin symmetry breaking requires redefining the intrinsic
SOC

HI =
1
2

[
λA

I (σz + σ0) + λB
I (σz − σ0)

]
κ sz , (2.38)
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where λA
I and λB

I are intrinsic SOC strength parameters on sublattices A and B,
respectively. Breaking the sublattice symmetry in the presence of SOC lifts the
spin degeneracy. The change in the Hamiltonian due to the pseudospin inversion
asymmetry (PIA) is described by the term [95]

HPIA =
a
2

[
λA

PIA (σz + σ0) + λB
PIA (σz − σ0)

]
(kx sy − ky sx) , (2.39)

where a = 0.246 nm is the lattice constant of graphene and λA
PIA and λB

PIA are PIA-
induced SOC parameters on sublattices A and B, respectively. Both, HI and HPIA

describe the nearest-neighbour hopping, but the latter also involves spin-flip. The
sum

H = H0 +HI +HR +HPIA (2.40)

describes graphene’s bands at K and K′. The Eq. 2.40 accurately describes the elec-
tronic structure of graphene proximitized with hexagonal 2H-TMDC, such as MoS2,
MoSe2, WS2, and WSe2. The magnitude of ∆, λA/B

I and λA/B
PIA depends on many

parameters, such as the chemical composition of the TMDC and the distance and
alignment between the TMDC and the graphene lattices, that is, the twist angle. Thus,
the nature and strength of SOC in graphene are highly tunable. Figure 2.7b shows

-2

-1.5

-1

-0.5

0

0.5

Γ K M Γ

E
−
E
F
[e
V
]

a

-2

0

2

-4 -2 0 2 4

E
−
E
F
[m
eV
]

k [10−4/Å]

c

10−3/Å

B
B

A
A

-0.5

0

0.5

sz

B

B

A

A
b

d

C3v rota�onal symmetry

e

Z of transition metal

Fig. 2.7: Graphene/2H-TMDC heterostructures. a. Illustration of a graphene/MoS2 heterostructure.
b. Its band structure. The inset shows valley-Zeeman SOC-induced splitting of spin bands (fine
structure). c. Rashba SOC-induced winding spin texture for bands away from K and K′ points. d.
Graphene bands under the influence of valley-Zeeman SOC. As the strength of SOC increases spin
degeneracy is lifted and band inversion can occur for large SOC (right). e. Graphene/2H-TMDC
heterostructures have C3v rotational symmetry. Adapted from Ref. [94] (a, b, c) and Ref. [95] (d).

the band structure of a graphene/MoS2 heterostructure. The EF is located close to
the conduction band of MoS2 and crosses the CNP of graphene. The proximity of
heavy d orbitals of MoS2 induces energy splitting of the spin bands that is opposite at
K and K′. This vertical splitting of spin bands, opposite at the two valleys, is called
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valley-Zeeman splitting. The valley-Zeeman SOC gives graphene an out-of-plane
spin texture (inset of Fig. 2.7b). Since the carriers away from K and K′ also experience
Rashba SOC, bands have in-plane winding spin-texture (Fig. 2.7c). The strength
of proximity-induced SOC in graphene grows with the atomic number Z of the
transition metal and, for strong enough SOC (WSe2), it can induce band inversion
(Fig. 2.7d).

Another degree of freedom that should be considered, when determining the
strength of induced SOC, is the twist angle between graphene and TMDC. Graphene
on 2H-TMDCs has threefold rotational symmetry. Fig. 2.7e shows a graphene/2H-
TMDC heterostructure for twist angle 30° where the valley-Zeeman SOC is expected
to disappear. In contrast, 20° twist angle was calculated to give maximum valley-
Zeeman SOC for MoS2 and MoSe2 [97]. Another important consequence of twisting
is the emergence of a radial Rashba component that appears for twist angles other
than 0° and 30°. The radial Rashba component measures the deviation of spin texture
from ordinary tangential orientation and it was predicted to reach up to 40° for a
twist angle of 20° in graphene/MoS2 heterostructure [96].
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The proximity-induced spin textures described above have strong implications
for spin dynamics in graphene, leading to spin lifetime anisotropy, which can be
quantified by the ratio between the spin lifetimes for perpendicular and parallel
spin components to the graphene plane (ζz,∥ = τs

z /τs
∥). Dyakonov-Perel spin relax-

ation becomes dominant, as the diffusing spins precess around the strong SOFs and
dephase over time. The in-plane spin relaxation remains isotropic (τs

x = τs
y = τs

∥)
because the out-of-plane SOFs (Ω2

z) act equally on all spins in the xy plane and the
in-plane Rashba SOFs (Ω2

x and Ω2
y) have a radial symmetry around K and K′ points.

Importantly, as there are momentum-independent out-of-plane SOFs whose sign
depends on the valley, the intervalley scattering time τiv becomes a key parameter for
correctly determining the spin-lifetime anisotropy.
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In a system with intervalley scattering and out-of-plane SOFs, (τs
∥)

−1 ∝ τiv and
(τs

z )
−1 ∝ τp (Fig. 2.8a) and the spin lifetime anisotropy is [98]

ζz,∥ =
τs

z
τs
∥
=

(
λVZ

λR

)2 (τiv

τp

)
+

1
2

, (2.41)

where λVZ is the valley-Zeeman SOC parameter λVZ = (λA
I − λB

I )/2. Assuming
τiv ∼ 5 τp and DFT values of λVZ = 1.2 meV and λR = 0.56 meV, the spin lifetime
anisotropy is ζz,∥ ∼ 20 but depends also on the position of the Fermi level (Fig
2.8b). On the other hand, in the absence of intervalley scattering (τiv → ∞), the spin
lifetime anisotropy is reduced to ζz,∥ = 1/2 (Fig. 2.8c) as for a standard Rashba 2D
electron gas. Proximity-induced SOC in graphene/2H-TMDC heterostructures has
been extensively investigated experimentally, showing that the observed spin lifetime
anisotropy is driven by such intervalley scattering mechanism [99–101].
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Fig. 2.9: Graphene/SnTe low symmetry heterostructure. a. Top view (left) and side view (right)
of a graphene/SnTe heterostructure. SnTe has a rectangular unit cell and displays pronounced
buckling and ferroelectricity (denoted by the orange arrow) along x̂. b. Calculated band structure
of a graphene/SnTe heterostructure showing strong hybridisation of the graphene right-movers’
band with SnTe band parallel to it. c. Representative spin texture of one spin-split graphene band
when proximitized with SnTe. Arrows indicate the persistent spin texture along ŷ and the colour
scale denotes the sz component of the SOF. d. Spin lifetime anisotropy in graphene/SnTe as a

function of Fermi level position. Adapted from Ref. [102].

Although graphene/2H-TMDC heterostructures show spin lifetime anisotropy be-
tween in-plane and out-of-plane directions, in-plane lifetimes remain isotropic due to
the inherent threefold rotational symmetry (C3v). Lowering the symmetry by combin-
ing 2DMs with mutually incompatible lattices could result in anisotropic behaviour



32 Chapter 2. Theoretical background

along all three spatial directions, as predicted for graphene/SnTe heterostructures
[102]. SnTe has a rectangular lattice and displays pronounced buckling (Fig. 2.9a)
and strong in-plane ferroelectricity. Therefore, instead of ordinary in-plane Rashba
SOF induced by the out-of-plane electric field, a more complex Rashba SOC can be
expected. For an arbitrary twist angle between graphene and SnTe, the gradient of
crystal potential ∇V (⃗r) has all three spatial components and the Rashba Hamiltonian
has to be modified [102]

H∗
R =

3

∑
i=0

κδi,2 σi
[
βi

1 kx sz + βi
2 ky sz + λi

R (kx sy − ky sx)
]

, (2.42)

where δi,2 is Kronecker delta function [102] and βi
1, βi

2, λi
R are pseudospin-dependent

Rashba SOC parameters. The interaction ∝ kx sz and ky sz results in unconventional
out-of-plane Rashba SOFs. In addition, a strong momentum-independent hybridisa-
tion of right-movers of graphene´s Dirac cone with the SnTe bands (Fig. 2.9b) gives
rise to persistent spin texture described by the hybridization-induced SOC term [102]

HHI =
3

∑
i=0

κ1+δi,2 σi (α
i
1 sx + αi

2 sy) , (2.43)

where αi
1 and αi

2 are pseudospin-dependent components of SOF. Fig. 2.9c shows the
final spin texture, calculated for 3°-twisted graphene/SnTe heterostructure (Fig. 2.9c).
As the persistent field is directed in the ky direction, the spins along x̂ have a much
shorter spin lifetime. Interestingly, the spin lifetime anisotropy ζ = τy/τx ∼ τz/τx

was also predicted to be highly tunable by an external electric field (Fig. 2.9d). Inves-
tigation of proximity-induced SOC through spin relaxation anisotropy measurements
in a related symmetry-free heterostructure comprising PdSe2 and graphene is the
subject of Chapter 6.
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Chapter 3

Experimental design

This chapter details the design of spin devices studied in this thesis, focusing on
the investigation of proximity-induced effects in graphene-based heterostructures
through spin transport and CSI phenomena. The chapter begins by describing the
basic geometry of lateral devices, nonlocal measurement schemes and the mechanism
of spin injection and detection. It then discusses spin precession experiments under
different magnetic field configurations. Finally, it presents the modified geometry of
the lateral devices used to investigate proximity-induced anisotropic spin transport
and CSI.

3.1 Graphene spin valve

The experimental design of the samples used in this thesis to investigate proxim-
ity effects is based on the device geometry proposed by Johnson and Silsbee [1, 2].
They were the first to inject a spin-polarised current into one end of a paramagnetic
(metallic) material and to measure the spin accumulation on the other end using
ferromagnetic (FM) electrodes. This device geometry is called lateral spin valve. In
contrast to vertical spin valves, the dominant spin current in lateral devices prop-
agates in the horizontal direction. Lateral spin valves enable measurements in a
nonlocal configuration, where the region of the device through which current flows is
spatially separated from the voltage leads, i.e., the detection region. Charge contribu-
tions, such as the anisotropic magnetoresistance and the Hall effect normally dwarf
the spin signal in local measurements. The benefit of the nonlocal configuration
is the removal [3] or significant reduction [4] of charge contributions to the signal
(Jc ≈ 0), making the measurement predominantly sensitive to spin. In other words,
the nonlocal configuration enables measurements of pure spin currents Js.

The graphene lateral spin valve consists of a narrow graphene channel connected
by several FM and NM electrodes (Fig. 3.1a). The geometry of the graphene channel
is defined by its width W and length L measured from the FM injector to the FM
detector electrode. FM electrodes are designed as thin narrow wires so that their easy
axis magnetisation M⃗ is determined by shape anisotropy, i.e along their long axis.
Moreover, electrodes are chosen to have different widths w, which result in varying
coercive fields and thereby allow their relative magnetization to be set to parallel (P)
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Fig. 3.1: Nonlocal measurements of graphene spin valves. a. Graphene spin valve with 2 FM electrodes
and the spin-dependent electrochemical potential across the sample (below). b. The device outputs ±Vnl
depending on the relative magnetization of the injector and detector — parallel (↑↑, ↓↓) or antiparallel

(↑↓, ↓↑) — leading to the signal with two stable states

and antiparallel (AP) configurations, using an external magnetic field applied along
their long axis. The NM electrodes are defined at the outer ends of the graphene
channel. In the non-local configuration represented in Fig. 3.1a, the electrical current
is applied between the FM1-NM1 electrodes, and the voltage is measured between
the FM2-NM2 electrodes.

Spin injection into semiconductors and semimetals is more challenging than for
metals. The spin injection efficiency of FM electrodes in direct contact with a semicon-
ductor is severely reduced due to the impedance mismatch [5]. The conductivity of
graphene is much smaller than that of FM (metallic) electrodes, which leads to spin
absorption in the FM and increased spin relaxation rate at the FM/graphene interface.
The problem can be addressed by intercalating a tunnel barrier between the FM and
graphene [6]. The tunnel barrier also improves the injection of spins, as it provides
high spin-dependent resistance and limits the spin-sinking into the FM. The addition
of a tunnel barrier enabled the first room-temperature spin transport measurements
in mesoscopic lateral devices made of metallic Al [7] and semiconducting GaAs [8]
wires.

Electronic spin transport in graphene-based spin valves was demonstrated for
the first time by Tombros et al. [9] using Al2O3 tunnel barriers. Since then, different
thin insulators have been used to improve spin injection/detection efficiency into
graphene, including TiO2 [10], MgO [11] or TiO2 seeded with MgO [12], amorphous
carbon [13], fluorinated graphene [14], SrO [15] and 2-3 layers of hBN [16, 17]. The
approach in this thesis is based on the intercalation of a TiOx tunnel barrier and the
use of FM Co as a spin-sensitive injector/detector. Details of the fabrication process
are presented in Chapter 4.

Having described the basic elements of the graphene spin valve, let us examine
spin injection and detection in detail. In FM materials, spin-up and spin-down elec-
trons have different density of states (DOS). Therefore, an electrical current passing
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through an FM material is likely to be spin-polarised. When the spin-polarised current
Jc flows from the FM to the graphene channel, a nonequilibrium spin accumulation is
created underneath the FM contact (Fig. 3.2). The injected spin current Js is

Js =
η µB Jc

e
, (3.1)

where η is the polarisation of the FM and µB is the Bohr magneton. The FM’s
polarisation depends on the relative difference between the (effective) spin-up N↑(EF)

and spin-down N↓(EF) DOS at the Fermi level (EF)

η =
N↑(EF)− N↓(EF)

N↑(EF) + N↓(EF)
. (3.2)

The actual spin injection efficiency (injector’s polarisation) Pi is indeed smaller than
the theoretically achievable one (Pi < η µB/e) and depends on the quality of the
tunnel barrier, its thickness, bias voltage, and tunnelling matrix for the various bands
contributing to the DOS, etc.

The population of spin-polarised carriers then diffuses away from the injection
point (x0 = 0) to both sides of the channel. The spin population diffusing to the right
side of the sample results in spin accumulation at the detection point (x → L) and
induces a nonlocal voltage

Vnl = Pd
µs(L)

2
, (3.3)

where Pd is the spin detection efficiency (detector’s polarisation) and µs(L) = µ↑(L)−
µ↓(L) is the spin accumulation beneath the detector colinear with the magnetization
of the FM detector. In other words, the detector serves as a spin analyser, as it is
sensitive only to the spin component parallel (antiparallel) to the magnetization of
the FM, leading to a positive (negative) Vnl. The mechanism of Vnl detection can be
understood by examining Fig. 3.2b and c. The Fermi level of the FM2 contact tends to
align with the spin-dependent electrochemical potential in graphene so it is displaced
by ±Pd µs(L)/2. In contrast, the NM electrode is insensitive to spin, therefore its
potential is aligned with the Fermi level of graphene. Consequently, the Vnl measured
between floating contacts FM2 and NM2 depends only on the spin accumulation
below FM2. This is the advantage of having an NM as one of the detector’s electrodes.

The measured Vnl divided by the applied current I at the injector defines the
nonlocal resistance Rnl = Vnl/I. The spin accumulation in the graphene channel as
a function of distance from the injector is governed by the Boltzmann equation of
diffusion

∇2 µs =
1

λ2
s

µs , (3.4)

where λs is the spin diffusion length. If the diffusion is confined to one dimension,
which is satisfied provided a high ratio between L and W of the graphene channel,
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Fig. 3.2: Electrical spin injection and detection. a. Spin injection from FM electrode. b,c. Spin
detection in P (b) and AP (c) configuration using one FM and one NM electrode.

the solution of the Boltzmann equation gives

µs(x) = µs(0) exp
[
− x

λs

]
, (3.5)

where µs(0) is the spin accumulation below the injector. Considering the effect of the
injector’s and detector’s polarisation and their relative magnetisation alignment we
obtain

Rnl = ±1
2

Pi Pd
λs

σ W
exp

[
− x

λs

]
, (3.6)

where σ is the conductivity of graphene. By measuring Rnl as a function of channel
length, λs of the investigated material can be approximately determined. In practice,
different L are achieved by attaching different FMs with dissimilar spacing. Therefore,
the method is valid if all the used FM electrodes have approximately the same
polarisation (Pj ≈ const., where j is the index of the FM contact).

The measurement of the Rnl while sweeping the external magnetic field By along
the long axis of the FM electrodes will display sharp transitions between +Rnl and
−Rnl as the relative magnetization between the FM1 and FM2 electrodes changes
from parallel (↑↑ or ↓↓) to antiparallel (↑↓ or ↓↑). This type of measurements are
commonly referred to as spin valve configuration. Spin valve measurements with
two FM electrodes give rise to two switches during the one-directional magnetic field
sweep (Fig. 3.1b). The spin valve measurement is used to determine the amplitude
of the spin signal and to set the magnetisation of the FM electrodes for precession
measurements.

3.2 Hanle spin precession in graphene spin valves

The main advantage of lateral spin valves measured in nonlocal configuration is
the possibility of performing sensitive spin precession measurements. These allow
for the direct determination of spin transport parameters, namely spin relaxation
time τs and spin diffusion constant Ds, which define the spin diffusion length λs =√

τs Ds and the product of injection and detection efficiencies Pi Pd. Unambiguous
determination of the polarisation Pj of a specific FM requires three consecutive
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precession measurements with three different FMs (which gives us three equations
with three unknown parameters).

In spin precession measurements, an external magnetic field B⃗ exerts a torque τ⃗

on the diffusing spins µ⃗s = (µx , µy , µz) making them precess. The torque exerted is

τ⃗ = γc µ⃗s × B⃗ , (3.7)

where γc is a gyromagnetic ratio. For an electron with mass me and effective Landé
factor ge, the gyromagnetic ratio is

γc =
e ge

2 me
=

ge µB

h̄
. (3.8)

The Larmor precession frequency is independent of the angle between angular mo-
mentum and external magnetic field ωL = |γc B|, however, no precession occurs for
the case B⃗∥µ⃗s.

Neglecting the rotation of FM’s magnetisation (correct for B ≪ Bsat, where Bsat

is the FM’s magnetisation saturation field in the direction of B⃗) and neglecting the
contact-induced relaxation processes (i.e., in the high contact resistance regime), the
analytical expression for the precession lineshape when applying the magnetic field
perpendicular to the FM is [18]

Rnl(B) = ± Pi Pd

e2 N(EF) W

∫ ∞

0

1√
4 π Ds t

exp
[
− L2

4 Ds t

]
cos(ωL t) exp[− t

τs
] dt . (3.9)

The first term ± Pi Pd
e2 N(EF)W captures the magnitude of the spin signal in the absence

of an external magnetic field and relaxation processes (± corresponds to P and AP
configuration, respectively). The second term 1√

4 π Ds t exp
[
− L2

4 Ds t

]
describes the

probability distribution for spins to reach the detector in a time t. Note, that we are
integrating within the interval < 0, ∞ >. This means that the time window over
which we measure is long enough to capture the contributions of all spins, even those
scattered many times on their way to the detector. The third term cos(ωL t) accounts
for the projection of the spin component colinear with the detector’s magnetisation
as the spins undergo Larmor precession. The last term exp[− t

τs
] captures the spin re-

laxation. Fitting the experimental data to the above equation yields the spin transport
parameters Ds, τs, λs, and Pi Pd.

Fig. 3.3 shows a graphical representation of spin precession in a graphene spin
valve and a typical Hanle precession curve described by Eq. 3.9. The Hanle curve is
symmetric, with a maximum at B = 0 and two local minima at ±Bmin corresponding
to the field that forces the aggregate spin orientation to precess 180° so the magnetic
moment reaches the detector antiparallel to its magnetisation. Diffusive broadening
causes the spin signal to die away for fields above ±Bdp, where the spin population
completely dephases.
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Fig. 3.3: Spin precession in a graphene spin valve. a. In-plane precession of the magnetic
dipole moment µ⃗ of an electron caused by the out-of-plane magnetic field Bz. b. Simulated

Hanle precession curves for P and AP configuration using Eq. 3.9.

So far, a generic τs has been introduced. However, spin relaxation might be
anisotropic and spin lifetimes can differ for spins pointing in different directions.
It is possible to get insights into anisotropic spin dynamics by investigating spin
lifetimes along different orientations. One can define the spin lifetime anisotropy as
ζi,j = τs

i /τs
j , where i ̸= j and i, j ∈ x, y, z.

Spin lifetime anisotropy provides information about SOFs that dominate spin
relaxation in the investigated system. For example, inversion symmetry breaking at
the interface induces an electric field across the interface, leading to a k⃗-dependent
in-plane effective magnetic field (i.e. winding spin texture). This Rashba-type SOC
relaxes out-of-plane spins twice as fast as in-plane spins ζz,∥ = τs

z /τs
∥ < 1, where

τs
∥ = τs

x = τs
y marks the in-plane spin lifetimes. Conversely, sublattice symmetry

breaking leads to the emergence of an in-plane electric field and a valley-contrasting
out-of-plane effective magnetic field. This Ising-type SOC relaxes in-plane spins faster
than out-of-plane spins ζz,∥ = τs

z /τs
∥ > 1.

Determination of spin lifetime anisotropy is therefore a powerful method for
gaining an understanding of SOC in the investigated system. How SOC and the
resulting SOFs govern spin relaxation is explained in detail in Section 2.4.

Determination of spin lifetimes along the three spatial directions requires system-
atic investigation of spin precession under selected magnetic field configurations.
Equation 3.9 provides excellent fits to the Hanle precession measurements performed
with a magnetic field perpendicular to the sample plane. Here, the spins precess
in the graphene plane and τs

x and τs
y can be determined. In our regular graphene

devices, with selected dimensions and typical spin diffusion parameters, the spins
fully dephase for B of less than a few hundred mT. The out-of-plane magnetisation
saturation field of thin FM electrodes made of cobalt is sufficiently large (Bsat

z ≳ 1 T),
therefore the condition B ≪ Bsat is easily met and the equation generally gives good
fits to the data. The Eq. 3.9 can also be used when the magnetic field is oriented along
the spin diffusion direction. In this case, the spins precess in the plane perpendicular
to graphene (yz plane) and τs

z and τs
y can be determined. However, the saturation field

for the Co electrodes in this direction is much lower, typically Bsat
x ≈ 0.15 T; therefore,
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Fig. 3.4: Spin precession modelling after including the effect of magnetisation rotation. a. Strong
Bz tilts the M⃗ of the FMs out-of-plane, therefore the orientation of injected spins changes. For
Bz > |Bdp|, only the component of magnetic moment parallel to the external field (µz ) contributes
to the signal. b. Spin precession under an out-of-plane magnetic field considering the tilting of
the M⃗ of the injector and detector contacts. c. Already a relatively weak Bx tilts the M⃗ of the
FMs, changing the orientation of the injected spins. For Bx > |Bdp|, only the spin component µx

contributes to the signal. d.

the signal deviates from the above equation even for low fields. The problem can be
mitigated by increasing the length of the graphene channel to observe the complete
precession curve for even lower fields. Different saturation fields are a consequence
of the shape anisotropy of the FMs, whose heights, widths, and lengths (measured
along ẑ, x̂ and ŷ, respectively) have an approximate aspect ratio of 1 : 10 : 100.

An improvement in the fits (Fig. 3.4) can be achieved by adding a term that ac-
counts for the rotation of the FM’s magnetisation derived using the Stoner-Wohlfarth
model

R∗
nl(B) = Rnl(B) cos2

(
arcsin(B/Bsat)

)
+R0

nl sin2
(

arcsin(B/Bsat)
)

, (3.10)

where R0
nl is the value of the Rnl at B = 0. Importantly, fitting the experimental data

to this modified equation enables the determination of Bsat. Knowledge of Bsat is
required to accurately determine ζ (for details see the next section).

Unfortunately, the magnetisation tilting in the plane tends to deviate from the
Stoner-Wohlfarth model. Moreover, the exact behaviour of FM’s in-plane magnetisa-
tion tilting is often sample-dependent because of, for example, particular domain wall
pinning, which limits the use of the method [19]. Therefore, an alternative method to
probe τs

z is required.
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3.3 Oblique spin precession

A better protocol for determining spin relaxation anisotropy was proposed by Raes
et al. [20] The method relies on the application of oblique magnetic fields in the
plane perpendicular to the substrate and parallel to the FMs (yz plane). The oblique
angle β is defined so that β = 0° corresponds to the spin valve configuration (where
no precession occurs) and β = 90° corresponds to the out-of-plane magnetic field
configuration (where spins precess only in-plane). As depicted in Fig. 3.5a, magnetic
fields at oblique angles ranging between these two extrema force the spins to precess
conically in an oblique plane perpendicular to B⃗ = (0 , B cos(β) , B sin(β)).

The evolution of the spin density is derived by solving the steady-state Bloch
diffusion equation in 1D:

Ds
∂2

∂x2 µ⃗s − γc µ⃗s × B⃗ − τ−1
s · µ⃗s = 0 , (3.11)

where tensor τ−1
s is a diagonal matrix containing the spin relaxation times in the three

spatial directions

τ−1
s =

(τs
x)

−1 0 0
0 (τs

y)
−1 0

0 0 (τs
z )

−1

 . (3.12)

In the case of a homogeneous spin channel, boundary conditions to the Bloch diffu-
sion equation are {

x = 0 : µ⃗sI = µ⃗sI I J⃗sI = J⃗sI I + J⃗s0

x → ±∞ : µ⃗s = 0 J⃗s = 0

}
, (3.13)

where Roman numbers mark the specific region of the sample and J⃗s0 = (0, Jy0 , 0) is
the injected spin current along ŷ. The last boundary condition ensures complete spin
relaxation at a large distance from the injector. A homogeneous spin channel implies
that the same spin transport parameters govern the spin diffusion throughout the
whole sample through which the spins diffuse.

In their original paper, Raes et al. focused solely on the non-precessing spin
component, which largely simplifies the data analysis [20]. The spin components
misaligned with the external magnetic field completely dephase for B ≥ | ± Bdp|.
For larger B, only the non-precessing component Rβ

dp = Rβ
nl(±Bdp) parallel to B⃗

contributes to the measured spin signal

Rβ
dp = Rnl(ζ, β) cos2(β∗) , (3.14)
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Fig. 3.5: Oblique spin precession. a. A magnetic field B⃗β at an oblique angle β induces conical spin

precession. b. Trends in Rβ
dp/R0

nl vs cos2(β) for various ζ. c,d,e. Oblique spin precession curves at
various angles β change shape depending on the value of ζ. Spin relaxation is isotropic in (c) and

anisotropic with spins out-of-plane (d) and in-plane (e) relaxing faster.

where β∗ = β − γ(β, B) is the angle between the axis of injection/detection at B and
B⃗. The axis of injection and detection is defined by the tilted M⃗ of the FM electrodes

γ(β, B) = arcsin
(

B sin(β)

Bsat + B cos(β)

)
, (3.15)

similar to the term arcsin(B/Bsat) in the Eq. 3.10, where β = 90° but generalized for
an arbitrary oblique angle β. The term Rnl(ζ, β) is

Rnl(ζ, β) =

√
τs,β

τs,∥
exp

[
− L

λ
∥
s

(√
τs,∥
τs,β

− 1

)]
R0

nl , (3.16)

where λ
∥
s is the spin diffusion length for spins in the graphene plane.

Realising that
τs,β

τs,∥
=
(

cos2(β) + ζ−1sin2(β)
)−1

, (3.17)

we can extract the parameter ζ by plotting Rβ
dp/R0

nl vs cos2(β). Figure 3.5b shows

how the Rβ
dp/R0

nl vs cos2(β) curves deviate from the identity function (ζ = 1) when
the out-of-plane spin lifetime is larger (ζ > 1) and smaller (ζ < 1) than the in-plane
spin lifetime.

To accurately determine ζ using the equations above, the value of Bdp must be
sufficiently low (Bdp ≲ 0.15) because, for larger B, magnetoresistive effects start to
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affect the measured signal. Therefore the applicability of the method is conditioned
by a sufficiently large L. The required value of L depends on λs and hence varies from
sample to sample. A good guiding principle is to design devices with L ≥

√
2λs.

Alternatively, instead of focusing solely on the component parallel to B⃗ (i.e. Rβ
dp),

we can use the solution of the Bloch diffusion equation to obtain fits of the precession
curves in the full range of B⃗. Figures 3.5c,d,e show the lineshape of normalised spin
precession curves RN

nl = Rβ
nl/R0

nl for a few selected β and ζ. Figure 3.5c shows oblique
precession curves for the case of isotropic graphene (ζ = 1), thus, Rnl saturates at
the value R45°

dp = R0
nl cos2(45°) = R0

nl/2. In Figure 3.5d out-of-plane spins relax faster
(ζ = 0.5), thus, R45°

dp < R0
nl/2. In contrast, in Figure 3.5e out-of-plane spins relax

slower (ζ = 2), thus, R45°
dp > R0

nl/2. Measuring the spin precession with β = 45° gives
a quick insight into the hierarchy of spin lifetimes.

The spin population precessing under oblique B⃗ acquires all three spatial com-
ponents µx, µy, µz. Therefore, the line shape of the precession curve is sensitive to
all three spin lifetimes and the method is advantageous for systems where the spin
lifetimes are different also in plane (τs

x ̸= τs
y).

3.4 Proximitized graphene spin valves

The experimental devices tested in this thesis to investigate proximity effects consist
of a graphene spin channel partially covered by another vdW material. A schematic
of the device with an inhomogeneous spin channel, having proximitized and pristine
graphene zones, is shown in Fig. 3.6a, and consists of 5 different regions. Boundary
conditions for the Bloch diffusion equation describing spin transport in the inhomo-
geneous spin channel are

x = 0 : µ⃗sI = µ⃗sI I J⃗sI = J⃗sI I + J⃗s0

x = l : µ⃗sI I = µ⃗sI I I J⃗sI I = J⃗sI I I

x = l + wH : µ⃗sI I I = µ⃗sIV J⃗sI I I = J⃗sIV

x = L : µ⃗sIV = µ⃗sV J⃗sIV = J⃗sV

x → ±∞ : µ⃗s = 0 J⃗s = 0


, (3.18)

where l is the distance from the injector (FM2) to the beginning of the proximitized
region, and wH is the width of the proximitized region.

This device geometry is chosen to investigate proximity-induced effects for the
following reasons:

1. Spin transport parameters (such as τs and Ds of graphene and Pj of FMs) vary
from sample to sample. Therefore, it is essential first to characterise the bare
graphene channel and only then examine the heterostructure and compare the
spin transport properties. The possibility of characterising the spin transport
parameters of bare graphene regions is ensured by adding at least one more FM
electrode on both sides of the graphene channel (to region I and region V).
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2. The spin diffusion length in the investigated graphene heterostructures is usu-
ally significantly reduced by proximity-induced effects (e.g. SOC, exchange
interaction). Therefore, FM electrodes must be placed closer together to measure
appreciable spin signals. Doing so, however, would increase the contribution
of spurious effects to the signal (e.g. charge contributions and contact-induced
relaxation). By proximitizing only a narrow region of the graphene channel, we
ensure that a sufficiently large spin population remains polarised after passing
through the heterostructure.

3. Finally, new characteristic features of the precession curve emerge for the
anisotropic system when the injector and detector are placed at different dis-
tances from the proximitized region (different lengths of region II and region IV
in Fig. 3.6). These features help to identify the spin relaxation anisotropy and
dominant SOFs in proximitized graphene (see Chapter 5).

Vnl
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x=l
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x=Lx=0x

y
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b

Fig. 3.6: Geometries of graphene/2DM heterostructures to investigate anisotropic spin transport (a) and
charge-spin interconversion (b).

3.5 Device geometry for spin-charge interconversion experi-
ments

Bare graphene has negligible SOC, thus it is impossible to interconvert charge and
spin in the material alone. However, graphene proximitized by a strong SOC material
(such as a TMDC) acquires a sufficiently large SOC, which enables the conversion
of charge to spin currents and vice versa. Generating or detecting spin currents
and spin densities in graphene becomes possible via the (inverse) spin Hall effect
and the (inverse) spin galvanic (Rashba-Edelstein) effect. Apart from implications
for practical applications, investigating charge-spin interconversion (CSI) mecha-
nisms in graphene-based heterostructures can serve as a complementary method for
determining emerging spin textures in proximitized graphene.

The design of the devices used to investigate CSI depends on whether the material
proximitizing graphene conducts electrical current. If the 2DM is conducting, two
NM electrodes directly contact the metallic material. In this case, a spin-polarised
population is generated by applying a charge current through the 2DM alone. If the
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2DM proximitizing graphene is insulating or semiconducting, Hall bars of graphene
that protrude from below the material are required (Fig. 3.6b). The geometry was
first described in [21]. Two NM electrodes are used to contact the sides of the
graphene Hall bar and a spin-polarised population is generated by applying current
between them (charge-to-spin conversion). The CSI-generated spins diffuse from the
proximitized region and induce Vnl between the FM and NM detector contact, as for
the conventional lateral spin devices (see Section 3.1). Alternatively, current source
and voltage probes can be swapped, spins injected by the FM diffuse towards the
proximitized region, and induce a Vnl across the Hall bar (spin-to-charge conversion).
The relationship between these two reciprocal effects is governed by Onsager relations
[22, 23].

Although the first type of device, with conducting 2DM, is easier to fabricate, data
analysis is more complicated, because the spin population in the heterostructure may
be generated by both the proximitized graphene and the 2DM. In contrast, charge
current cannot flow through an insulating 2DM, and the only possible source of spin
population is the charge converted by passing through proximitized graphene. In the
case of semiconducting material, it is important to perform the experiments within
its band gap to prevent current shunting, which would also result in contributions
from the bulk.
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Chapter 4

Sample fabrication and
characterisation

This chapter describes the device fabrication and characterisation methods used in
this thesis. Sample fabrication starts with the exfoliation of 2DMs, followed by the
identification of thin flakes with an optical microscope and their characterisation
with Raman spectroscopy and atomic force microscopy. Selected 2DMs are stacked
in vertical van der Waals heterostructures using deterministic transfer techniques.
Annealing of the stacks in ultra-high vacuum is done to improve the quality of the
interface between the 2DMs. The electrodes are subsequently defined using electron-
beam lithography and metallisation. The final devices are then wired to a chip carrier
and loaded in a cryostat, where the transport measurements are performed. Finally,
when finalising the electrical characterisation, the devices are imaged by scanning
electron microscopy. The following pages describe each step and the characterisation
method in detail.

4.1 Mechanical exfoliation

The first successfully isolated and characterised 2DM, graphene, was obtained by
mechanical exfoliation by Geim and Novoselov in 2004 [1]. Since then, researchers
have been commonly using mechanical exfoliation to yield high-quality 2D single
crystals on a laboratory scale. The ease and inexpensiveness of the process surely
contributed to the rapid expansion of the 2DM family over the last 20 years.

Mechanical exfoliation relies on overcoming weak interlayer vdW forces. Thinner
flakes of vdW materials can be detached from the bulk by peeling off the vdW layers
using adhesive tape. Several exfoliation steps are usually needed to obtain thin layers.
However, excessive exfoliation diminishes the size of the flakes, as the crystals tend
to fragment during the process. Once the tape contains thin layers, the last exfoliation
is performed to transfer the 2DM, though this time between the tape and the highly
doped silicon substrate with a thin SiO2 overlayer (i.e. SiO2/Si++ substrate).

Each material exfoliates in its unique way; therefore, different strategies are
needed, depending on the material in question. The success of the process depends,
for example, on the right choice of adhesive, which may include Scotch, Kapton,
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Nitto tapes, or polydimethylsiloxane (PDMS) film. Other important parameters
include the geometry and kinetics of exfoliation [2], such as the pressure applied
to the tape, the speed and angle of peeling, the roughness of the substrate, and its
temperature. Proper pre-treatment of the substrates is also crucial for successful
exfoliation. Oxygen plasma treatment of the substrates before exfoliation helps to
remove adsorbed hydrocarbons, water and other undesired species from the surface
[3]. Their presence would otherwise prevent 2DM from adhering to the substrate and
cause a low yield of thin layers.

Graphene, hBN, and most TMDCs are stable in ambient environment, therefore,
they can be exfoliated in air, although it is better to do so in a cleanroom atmosphere
to limit dust contamination and have control over humidity. However, many other
2DMs degrade under ambient conditions through oxidation and hydrolysis, so their
exfoliation in O2 and H2O-free environment is necessary. The interior of an argon-
filled glovebox provides such an inert environment while allowing the manipulation
of the samples.

4.2 Optical microscopy

The substrates with exfoliated 2DMs are examined under an optical microscope.
Optical contrast between flakes of varying thicknesses on SiO2 substrate emerges
due to the light interference [4]. A fraction of light is reflected from the surface of
the 2DM, another faction is reflected from the 2DM/SiO2 interface, and finally, the
last fraction is reflected from the interface between SiO2 and Si. Therefore, optical
contrast depends on the wavelength and angle of the incident light, the thickness
and refractive index of 2DM, and the exact SiO2 thickness [5]. Optimal contrast
for different 2DMs is achieved by carefully choosing a substrate with ideal SiO2

thicknesses [6]. Typically, 90-nm thick SiO2 is used to identify thin hBN and 300-nm
or 440-nm thick SiO2 is used to identify graphene and few-layer TMDCs. In addition
to standard bright-field microscopy, dark-field microscopy excludes unscattered light
from the image increasing the visibility of cracks in 2DMs and localized contaminants
on their surface.

4.3 Raman spectroscopy

The capacity to correctly determine the thickness of thin 2DMs is based on the
previous calibration of optical contrast with Raman spectroscopy. This is achieved by
acquiring Raman spectra of flakes, whose images were captured beforehand with the
optical microscope.

Raman spectroscopy is a simple and nondestructive characterisation tool to de-
termine the type of material, the presence of strain, disorder, and damage. It relies
on inelastic scattering of incident laser light from the investigated sample. Photons
interacting with the phonons or molecular vibrations gain or lose small quanta of
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energy leading to frequency shift (anti-Stokes vs Stokes). Raman spectra display
several peaks corresponding to different vibrational modes of the material. The
thickness determination of thin flakes relies on changes in Raman shifts of peaks and
their shape and intensity with the number of 2D layers. For instance, graphite and
thin graphene flakes display two characteristic peaks in the Raman spectra [7], one at
around 1582 cm−1 (G) and one at around 2680 cm−1 (2D). The shape of the 2D peak
and the ratio between the two peaks change with the varying number of 2D layers as
shown in Fig. 4.1a.

In addition, polarised Raman spectroscopy can determine the crystallographic
directions of anisotropic materials such as PdSe2 [8] and WTe2 [9]. The intensity of
characteristic vibrational modes varies with the changing angle between the light’s
polarisation and crystallographic directions (see Chapters 7 and 6).
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Fig. 4.1: Raman spectroscopy and AFM. a. Raman spectra of mono-, bi- and trilayer graphene and bulk
graphite. The inset shows the focus points of incident laser light on graphene of varying thickness on a
440-nm SiO2/Si++ substrate. b. AFM measurement of graphene-based heterostructure. The graphene

was etched into a Hall bar and contacted by NM electrodes.

4.4 Atomic force microscopy

Atomic force microscopy (AFM) is a technique that captures detailed topographic
images of the investigated samples by scanning the surface line-by-line with an atom-
ically sharp tip on a cantilever. Fig. 4.1b shows an AFM image of a sample under
fabrication. During AFM measurement, the attractive/repulsive forces of various
kinds (e.g. mechanical, electrostatic, van der Waals, and other forces) between the
sample and the piezoelectrically controlled tip deflect the cantilever. The tapping
mode is the most commonly used AFM measurement mode during which the can-
tilever is set to oscillate at a constant frequency near its resonance. The interaction of
the tip with the specimen changes the set amplitude of the cantilever’s oscillation.
An electronic servo then adjusts the tip’s distance from the surface to recover the
set amplitude. A laser beam is directed at and reflected by the cantilever, and the



58 Chapter 4. Sample fabrication and characterisation

photodiode detects the deflection. Because the magnitude of the deflection depends
on the distance between the tip and the surface of the sample, the height profile can
be measured.

AFM is useful for determining the approximate thickness of 2DMs and displaying
and sweeping away [10] the surface contaminants or even pushing out residues that
are trapped at the interface of vdW heterostructures [11].

4.5 Deterministic transfer of 2DMs

Once the individual 2D flakes are identified and characterised, they are assembled
in vertical van der Waals heterostructures. This is achieved by employing the vis-
coelastic stamping method [12]. The technique relies on transparent stamps made
of elastic polymeric films, such as bare PDMS, polycarbonate (PC)-PDMS bilayer,
polypropylcarbonate (PPC)-PDMS bilayer and many more [13]. The stamp is placed
on a microscope slide and fixed on a transfer arm controlled by a micromanipulator.
The flake of interest is then localised on the substrate and the stamp is brought in
contact with the sample using the transfer arm. The transparent nature of the stamp
allows for visual control of the process using an optical microscope. The substrate
is heated to 40◦C when using a PPC-based stamp and to about 150◦C when using
a PC-based stamp. The polymer becomes more viscose at elevated temperatures,
promoting adhesion between the stamp and the selected flake. The stamp with the
2DM is then detached from the substrate by lifting the transfer arm. A second 2DM,
exfoliated on a separate substrate, is then aligned with the flake on the stamp using
the microscope, and the two materials are brought in contact by moving the transfer
arm down. Stacking the 2DMs at an elevated temperature (approximately above 110◦)
promotes the cleanliness of the interface, as the residues become more mobile and can
be pushed out during the stamping [14]. Then, the temperature is increased above the
polymer’s melting point and the arm is lifted again. The PPC (or PC) layer detaches
from the PDMS layer and remains on the substrate with the desired heterostructure.
Finally, the polymer is quickly dissolved by immersing the sample in chloroform and
then the sample is washed in acetone and isopropyl alcohol (IPA).

4.6 Thermal annealing

High vacuum annealing removes residues from the surface of assembled vdW het-
erostructures, remaining from the exfoliation process and transfer steps and, even
more importantly, improves the interface quality between the individual 2DMs by
reducing air bubbles and blisters. High temperature increases the mobility of residues
trapped in the vdW sandwich leading to the formation of pockets containing the
accumulated residues. Some pockets are pushed out of the heterostructure and oth-
ers remain trapped at the interface. The formation of contamination-free regions
leads to a significant enhancement of proximity effects. The annealing step is always
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conducted at a pressure of 10−8 mbar. The exact temperature and duration of the
annealing typically range from 250◦C to 400◦C and 1 to 4 hours, depending on the
2DM being processed and their thermal stability.

4.7 E-beam lithography, plasma etching, e-beam evaporation
and sample installation

After the assembly of the heterostructures, electrodes that contact the 2DMs are
fabricated in several electron-beam (e-beam) lithography and e-beam evaporation
steps, as illustrated in Fig. 4.2. A double layer of standard positive lithography resists,
methyl methacrylate (MMA) EL6 and polymethyl methacrylate (PMMA) A4 is spin-
coated onto the samples. The design of the electrodes is prepared with the software
KLayout and the writing is done with a high-resolution e-beam lithography system
Raith 150 Two. After the e-beam writing, the exposed polymer is removed by soaking
the samples in a solution of methyl isobutyl ketone (MIBK) and IPA — MIBK: IPA
(1:3) developer — for 90 s and the reaction is quenched with IPA. The metallization
of the contact is done by e-beam evaporation. In this thesis, an AJA Intercontinental
evaporator system with a base pressure of 10−8 mbar was used. Usually, two (or three)
lithography-evaporation steps are required to define all necessary electrodes. First,
NM electrodes made of Ti/Pd (1 nm/40 nm) are defined to contact the graphene and
the TMDC. Environmentally unstable TMDCs form a superficial oxide layer when
exposed to air, therefore, an additional lithography-evaporation cycle is required to
contact it separately from graphene. In this step, argon plasma etching is performed
in-situ to remove the oxidised surface of the material and only then the metal is
evaporated. After all the NM electrodes have been evaporated, FM electrodes are
defined on the graphene channel. The tunnel barrier, consisting of TiO2, is prepared
by a two-step evaporation-oxidation process. First, 5 Å thick layer of Ti is evaporated,
followed by 40 min of oxidation in O2 gas at a partial pressure of 10−2 mbar. The
same evaporation-oxidation process is repeated to grow a tunnel barrier with a
total thickness of approximately 1 nm. Subsequently, a 30 nm thick layer of Co is
evaporated. FM electrodes with different widths are designed (ranging from 120
to 250 nm) to ensure different coercivity of individual contacts and to gain external
(magnetic) control over their relative magnetisation orientation. The resist mask is
lifted off in acetone for 30 min, and the final device is soaked in IPA and dried with a
nitrogen gun.

Devices are then glued to the chip carrier with silver paste and wired using an
ultrasonic aluminium wire bonder. The ultrasonic force is optimized to make strong
bonds while avoiding the breakage of the SiO2 dielectric layer, which would result
in an undesired leakage current between the device and the highly p-doped silicon
substrate (Si++) used for global gating. The chip carrier with the sample ready for
testing is loaded in a cryostat and vacuum-pumped to a pressure of about 10−6 mbar.
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Fig. 4.2: Optical image of a. TMDC/graphene heterostructure assembled by viscoelastic stamping. b.
E-beam-patterned mask designed to evaporate NM electrodes. c. Mask to etch graphene layer into a
channel with hall bars. d. Mask for evaporation of FM electrodes. e. Final device. f. Wire-bonding of

the device. Violet lines in the images outline graphene.

4.8 Measurement setups

The experiments were performed in three different measurement setups. The setups
comprise a cryostat, a switch box, an electromagnet, and a rack with temperature
controller, current and voltage sources, and multimeters. One of the setups allows
us to set an arbitrary orientation of the sample relative to the external magnetic field
without breaking the vacuum. It is a wet 3He cryostat and 9 T magnet. At room tem-
perature, rotation about one axis is achieved by rotating the whole probe in a small
electromagnet. The rotation around the second axis is done with an externally manip-
ulated rack and pinion actuator. Although this setup is suitable for measurements
down to 300 mK, we have only run room-temperature experiments. Two other setups
were used to perform low-temperature measurements. The continuous-flow nitrogen
cryostat (Fig. 4.3) relies on continuous replenishment of liquid nitrogen from a storage
dewar as the cryogen boils away within the cryostat. Cooling power is determined
by the flow rate of the cryogen, which is controlled with a needle valve. The base
temperature of the nitrogen cryostat is 77 K. The closed-cycle helium cryostat relies
on the circulation of a high-purity (99.999 %) helium gas between the compressor
and cold head (expander) through two high-pressure tubes. Our system can reach
a base temperature of about 5 K. In addition, any temperature from base to room
temperature can be set with a local heater using a proportional-integral-derivative
(PID) temperature controller.
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Fig. 4.3: Measurement setup. a. Motorised rotation stage. b. Electromagnet. c. Cryostat. d. Liquid
nitrogen input line. e. Turbomolecular pump. f. PID temperature controller. g. Current and voltage

sources and multimeters. i. Switch box.

The desired measurement configuration is set with an electrical switch box. Al-
ternatively, the sample is grounded between the measurements to protect it from
electrostatic discharge. The electromagnet consists of two solenoids with two poles
on each side of the cryostat. In the case of the two low-temperature setups, the
electromagnet is placed on a rotatory stage to allow for precise control of the angle
between the magnetic field and the device’s FMs in one coordinate plane determined
by how the sample is installed. Magnetic fields up to 0.4, 0.6 and 1 T can be applied
depending on the setup used. Current and voltage sources and multimeters are
Keithley 6221, Keithley 2400, and Keithley 2182A.

4.9 Electrical measurements

A three-point measurement configuration is used to determine the contact resistance.
Ideally, the contact resistance of the NM electrodes should be as low as possible. Ti/Pd
electrodes in our samples typically display a contact resistance of a few hundred
Ω. The contact resistance of the magnetic electrodes must be higher to mitigate the
problem of impedance mismatch between cobalt and graphene. Therefore, a thin
tunnel barrier between the two materials is introduced. Our approximately 1 nm
thick TiO2 tunnel barrier typically has a resistance of a few 10s of kΩ. Crucially, both
types of contact must display stable resistance values; otherwise, noise will hide the
spin signal. This is an issue especially for the highly resistive tunnel contacts, as noise
usually manifests as a percentual fluctuation around a given resistance. The quality
of tunnelling contacts can be determined by performing IV sweeps in a two-point
configuration. Contrary to transparent contacts, where Ohm’s law governs transport,
tunnelling contacts display nonlinear IV curves. The deviation from linear behaviour
increases with the quality of the tunnel barrier. Therefore, in the case of a barrier
with high pinhole density, the characteristic IV curve displays only a slight deviation
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from linear behaviour, which leads to a small spin signal. The electrical current
applied across the TiO2 tunnel barrier typically has to be limited to around 10 µA;
otherwise, the barrier is irreversibly damaged and the magnitude of the spin signal
drops considerably.

After all contacts are characterised, the graphene’s charge neutrality point (CNP)
is determined by changing the position of the Fermi level. This is achieved by
sweeping the back-gate voltage Vg between Si++ and graphene while measuring
longitudinal resistance Rxx in a two-point or four-point configuration. The advantage
of a four-point configuration over a two-point configuration is that it removes contact
resistance, so only Rxx of graphene is measured. The relationship between Vg and the
carrier density at fixed gate value n(Vg) is

Vg − VCNP =
e n(Vg)

CSiO2

, (4.1)

where CSiO2 is the capacitance estimated with the SiO2 dielectric layer; for 440 nm
thick SiO2, CSiO2 /e = 4.9 × 1010 V−1cm−2.

The Rxx vs Vg curve allows us to determine the charge carrier mobility µ and the
residual carrier density n0 at CNP by fitting the experimental data to the expression

Rxx =
L

W e µ ntotal
, (4.2)

where L is the length and W is the width of the graphene channel. The total carrier
density ntotal is given by [15]

ntotal =
√

n2
0 + n2(Vg). (4.3)

Deviation from n0 = 0, normally expected for pristine graphene, is caused by charged
impurities at the graphene/SiO2 interface or in the dielectric itself. Impurities, in-
troduced mainly during the sample fabrication, are also responsible for the shift of
VCNP away from 0 V. The position of VCNP indicates whether the doping is of a p-type
(positive offset of the CNP) or n-type (negative offset of the CNP).

After characterising the graphene channel, the charge transport properties of the
2DM proximitizing graphene and the properties of the graphene-2DM interface are
examined. If the material is fairly conductive, the Rxx vs Vg curve is measured in a
similar way as in the case of graphene. However, semiconducting materials require a
different approach. In this case, the 2DM or the interface is voltage-biased with the
drain-source voltage Vds and a small current Ids is measured, amplified, converted
into voltage and detected with the nanovoltmeter. These measurements allow us to
determine the threshold voltage VT above which the current can flow through the
2DM and the interface. For Vg ≲ |VT|, the Fermi level is located within the material’s
band gap, and electronic transport through the material is quenched.

Spin transport experiments are conducted using the current-reversal method. The
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Fig. 4.4: Back gate measurements. a. Rxx vs Vg. Resistance reaches a maximum at VCNP
where the carrier density is the lowest. Transport is dominated by holes for Vg < VCNP,
and by electrons for Vg > VCNP. b. Ids vs Vg for different values of Vds. Conduction

occurs only for Vg > VT and positive Vds.

advantage of this method over a simple DC measurement is the removal of thermally
generated voltage VEMF from the signal. The polarity of a bias current is switched
between I+ and I− repeatedly and voltages V+ and V− are measured

V+ = VEMF + IR V− = VEMF − IR (4.4)

By combining the two measurements, thermoelectric contribution to the signal can
be removed

V =
V+ − V−

2
= IR. (4.5)

4.10 Scanning electron microscopy

Once the device testing is complete, the chip is unloaded from the cryostat, and
scanning electron microscopy (SEM) images are taken. In general, the actual distances
might slightly deviate from the designed ones due to inaccuracies in the lithography
process (e.g. shift or distortion of the mask due to non-ideal beam alignment and
sample charging issues). Therefore, it is better to determine the distances between
FMs and the proximitized graphene region from the SEM image (Fig. 4.5). In this
way, more accurate modelling of the spin transport in the samples is achieved.
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Fig. 4.5: SEM image of a representative graphene/2DM device designed to inves-
tigate spin transport and charge-spin interconversion. Graphene and 2DM are
outlined for clarity. The darker contacts are FM electrodes, and the lighter contacts

are NM electrodes.
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Chapter 5

Modelling anisotropic spin
transport

In this chapter, we present the modelling of spin diffusion and precession that are
needed in the following chapters to determine the spin lifetime anisotropy in hybrid
graphene-TMDC devices. The simulations presented here have been performed by
solving analytically the Bloch diffusion equation for spins using the software Wolfram
Mathematica ©. The presented modelling results are in preparation for publication
"Spin Dynamics in Heterogeneous Nonlocal Spin Devices: Interplay of Isotropic and
Anisotropic Spin Relaxation.".

5.1 Solution of the Bloch diffusion equation

Spin transport in proximitized graphene devices can be described by the 1D diffusive
Bloch equation

Ds
∂2

∂x2 µ⃗′
s − γc µ⃗′

s × B⃗′ − (τ′
s)

−1 · µ⃗′
s = 0 , (5.1)

where µ⃗′
s = (µx′ , µy′ , µz) is the spin-dependent electrochemical potential, B⃗′ is the

magnetic field, and (τ′
s)

−1 is the diagonal matrix containing the spin relaxation times

(τ′
s)

−1 =

(τs
x′)

−1 0 0
0 (τs

y′)
−1 0

0 0 (τs
z )

−1

 (5.2)

in a rotated coordinate system

x′ = x cos(ϕ) + y sin(ϕ)

y′ = −x sin(ϕ) + y cos(ϕ) ,
(5.3)

where ϕ is the angle between x̂ and x̂′. The need for a rotated coordinate system
comes from the possible misalignment between the direction of the injected spins ŷ
and the two directions in which the spin lifetime is the longest (defined as x̂′) and the
shortest (defined as ŷ′). The angle ϕ is unknown before measuring the device because
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the conscious alignment of ŷ with x̂′ or ŷ′ during sample fabrication is not possible
and ϕ ̸= 0°, 90° is expected in most cases.

In the new coordinate system the spin injection along ŷ, J⃗s0 = (0 , Jy0 , 0), and the
oblique magnetic field defined by the angle β in the yz plane, B⃗ =

(
0 , B cos(β) , B sin(β)

)
,

are then expressed as follow:

J⃗′s0
=
(

J′x0
, J′y0

, 0
)
=
(

Jy0 sin(ϕ) , Jy0 cos(ϕ) , 0
)

(5.4)

B⃗′ =
(

B′
x , B′

y , Bz

)
=
(

B sin(ϕ) cos(β) , B cos(ϕ) cos(β) , B sin(β)
)

. (5.5)

Equation 5.1 can be written as

Ds
∂2

∂x2 µ⃗′
s =

(τs
x′)

−1 −γc Bz γc B′
y

γc Bz (τs
y′)

−1 −γc B′
x

−γc B′
y γc B′

x (τs
z )

−1

 µ⃗′
s = A µ⃗′

s . (5.6)

whose mathematical solution has the form µ⃗′
s = ek x v⃗, with k a constant, and v⃗ a

vector. The second derivative of Eq. 5.6 after substitution is

Ds k2 ek x v⃗ = A ek x v⃗ , (5.7)

which can be reduced to
(A − λ I) v⃗ = 0 , (5.8)

where λ = Ds k2 and I is the 3 × 3 identity matrix. For every root of Eq. 5.8, there is a
linearly independent solution of the form µ⃗′

s = ek x v⃗. A linear combination of all the
independent solutions provides a general solution

µ⃗′
s =

3

∑
n=1

(
c+n ek+n x + c−n ek−n x

)
v⃗n , (5.9)

where λn and v⃗n are eigenvalues and eigenvectors of A and k±n = ±
√

λn/Ds. Con-
stants c±n can be determined by setting the boundary conditions, as there are 18
equations for 18 unknown constants.

Boundary conditions for the partially proximitized graphene spin valve, charac-
terised by 5 different regions (see Fig. 5.1a), are

x = 0 : µ⃗′
sI
= µ⃗′

sI I
J⃗′sI

= J⃗′sI I
+ J⃗′s0

x = l : µ⃗′
sI I

= µ⃗′
sI I I

J⃗′sI I
= J⃗′sI I I

x = l + wH : µ⃗′
sI I I

= µ⃗′
sIV

J⃗′sI I I
= J⃗′sIV

x = L : µ⃗′
sIV

= µ⃗′
sV

J⃗′sIV
= J⃗′sV

x → ±∞ : µ⃗′
s = 0 J⃗′s = 0


. (5.10)

Regions I, II, IV, and V correspond to pristine graphene, characterised by isotropic
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spin relaxation times (τs
x′ = τs

y′ = τs
z ) [1]. Region III is graphene proximitized with

another 2DM of width wH, which induces anisotropic spin lifetimes (τs
x′ ̸= τs

y′ ̸= τs
z ).

The FM injector generates the spin current J⃗s0 at the border of regions I and II (x = 0)
and diffuses to both sides. The spin current has a magnitude Jy0 ∝ Pi Jc, where Pi

and Jc are the injector’s polarisation and charge current, respectively. An inverse
transformation of the coordinate system is performed to obtain µ⃗s in the original
coordinates

x = x′ cos(ϕ)− y sin(ϕ)

y = x′ sin(ϕ) + y cos(ϕ) .
(5.11)

Thus,

µ⃗s =
(

µx , µy , µz

)
=
(

µx′ cos(ϕ)− µy′ sin(ϕ) , µx′ sin(ϕ) + µy′ cos(ϕ) , µz

)
. (5.12)

The detector, located at the border of regions IV and V (at x = L), is sensitive only
to the component of µ⃗′

s collinear with the FM’s magnetisation, which is along ŷ.
Therefore,

Vnl =
Pd µy(L)

e
=

Pd

(
µx′(L) sin(ϕ) + µy′(L) cos(ϕ)

)
e

. (5.13)

Finally, the effect of the tilting of the FMs’ magnetisation under an external magnetic
field should be considered. Due to the tilted M⃗ of the FMs, spins are injected and
detected in the yz plane. Injection is defined by

J⃗′∗s0
=

(
J′x0

cos
(

γ(β, B)
)

, J′y0
cos
(

γ(β, B)
)

, Jy0

(
B sin(β)

Bsat + B cos(β)

))
(5.14)

instead of Eq. 5.4 and detection is defined by

V∗
nl =

Pd µ∗
yz(L)
e

(5.15)

instead of Eq. 5.13, where

µ∗
yz(L) = µy(L) cos

(
γ(β, B)

)
+µz(L)

(
B sin(β)

Bsat + B cos(β)

)
. (5.16)

Here, Bsat is the saturation field and γ(β, B) is the out-of-plane tilt of the FMs when a
magnetic field of magnitude B is applied at an angle β and was defined by Eq. 3.15. In
the following sections, we set Bsat = 1 T when simulating the precession lineshapes,
which approximately corresponds to the experimentally determined value in our
devices (FM injector/detector made of 30 nm thick Co).
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Fig. 5.1: Spin-dependent electrochemical potential across the graphene/PdSe2 device. a. Schematics
of the graphene/PdSe2 device regions. b,c,d. Spin-dependent electrochemical potentials along x̂, ŷ,
and ẑ (µx, µy, µz) across the device when ϕ = 10◦ (b), ϕ = 40◦ (c), and ϕ = 100◦ (d). The red arrow

represents the dominant SOF (x̂′).

5.2 Calculated spin density across anisotropic samples

Figures 5.1b-d show the calculated µx, µy and µz across the graphene/TMDC device
for three different orientations of the dominant SOF (see the insets of Figs. 5.1b-d).
The geometry of the device and set parameters are

l = 3 µm τs
x′ = 200 ps

wH = 1 µm τs
y′ = 20 ps

Ds = 0.05 m2s−1 τs
z = 5 ps

τs = 1 ns ϕ = var.


(5.17)

which are typical values for our graphene/PdSe2 devices.
By definition, the dominant SOF is along x̂′ and its direction is defined by the

angle ϕ, which is varied to see its effect on µ⃗s(x). In Fig. 5.1b, ϕ = 10◦, i.e. the
dominant SOF is almost aligned with the graphene channel. Such an orientation
of the SOF induces a sharp decrease of µy, where the spin lifetime is significantly
shorter. Moreover, since the component of µy parallel to µx′ has a spin lifetime 10
times longer than that parallel to µy′ , the spins effectively rotate in the proximitized
region, leading to the generation of a non-zero µx. The generated µx then diffuses
equally to both sides of the channel from below the TMDC. The effective rotation
of the spins towards x̂ is even more pronounced when ϕ = 40◦ (Fig. 5.1c). As the
generated µx has a relatively large magnitude in this case, the magnetic field By
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induces a noticeable out-of-plane spin precession of this component, leading to the
appearance of the component µz (dashed blue line in Fig. 5.1c). In Fig. 5.1d, the
dominant SOF is close to the spin injection direction (ϕ = 100◦) and a much less
pronounced decrease in µy is observed compared to ϕ = 10◦ and 40◦. The small
misalignment between the dominant SOF and ŷ leads to the generation of a small
(negative) µx.
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Fig. 5.2: Spin rotation as a function of ϕ, ζxy, and wH . a,b. Direction of spins exiting the anisotropic
region as a function of ϕ for different ζxy when wH = 1µm (a) and wH = 3µm (b), respectively. The
direction is defined by an angle γ (see inset of a). The red areas represent the range of ϕ where the
spin rotation is largest. The dashed vertical lines outline ϕ = 25°. c. Direction of the exiting spins as a
function of ζxy at ϕ = 25° for wH = 1, 2, 3µm. Tuning the SOF (and thus ζxy) by an external electric

field (inset in c) could be used to manipulate spins in spin-logic devices.

The extent to which spins exiting an anisotropic region are effectively rotated
depends on ϕ, ζxy and wH. Figures 5.2a,b shows this effective rotation as a function
of ϕ for different ζxy in a device with wH = 1 µm and wH = 3 µm, respectively. ζxy is
varied by changing τs

x = 20, 40, 100, 200, 400, 600 ps and keeping the other in-plane
lifetime constant, τs

y = 20 ps. The exiting spins point in the direction defined by angle
γ (see the inset of Fig 5.2a). Naturally, no deviation from the spin injection direction
γ = 90° is observed in the isotropic case (ζxy = 1). However, spins are rotated when
ζxy > 1. The magnitude of the rotation grows with ζxy and wH. Figure 5.2c shows γ

as a function of ζxy at ϕ = 25° for wH = 1, 2, 3 µm and demonstrates that the direction
of spin polarisation can be significantly rotated away from the spin injection axis
when ζxy is large. Even for ζxy = 15 spins are still rotated by ≈ 39°, 53°, and 70°
(= 90° − γ) when wH = 1, 2, 3 µm, respectively. This means that spin orientation in
the device can be manipulated by modulating ζxy.

The in-plane anisotropy results from induced SOFs in graphene and can be in
principle controlled by an external electric field. Thus, a graphene device showing
gate-tunable in-plane anisotropy would allow for spin manipulation constituting an
important step towards developing spin-logic devices. However, not that rotation
must be accompanied by significant spin relaxation, along the direction with short
spin lifetime.
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5.3 Simulations of curves in spin valve configuration

Next, let us examine the effect of ϕ on the lineshape and magnitude of Rnl vs By curves,
i.e with the magnetic field along the orientation of the injected spins (τs

x′ = 200 ps,
τs

y′ = 20 ps τs
z = 5 ps). The injector-to-detector distance is set to L = 11 µm. As

shown in Fig. 5.3a, the magnitude of the spin signal increases as the angle increases
from 0° to 90°. The anomalous decrease in Rnl as a function of By is seen only for
intermediate angles (ϕ ̸= 0°, 90°). For ϕ = 0°, spins are injected perpendicularly to
the long spin lifetime axis x̂′, and there is no component along x̂′. For ϕ = 90° spins
are injected along x̂′ and there is no component along ŷ′. Therefore, no effective spin
rotation occurs in either of the two cases.

Figures 5.3b,c show the effect of varying τs
z and τs

x′ on the lineshape of Rnl vs By

curves for ϕ = 40° and constant τs
y′ = 20 ps. When τs

x′ = 20 ps is kept constant, even
a large variation of τs

z (5 ps → 400 ps) causes only a slight change in the lineshape
(Fig. 5.3b). In contrast, changing τs

x′ strongly influences the lineshape and magnitude
of the curves (Fig. 5.3c). As τs

y′ is kept constant, the in-plane spin lifetime anisotropy
ζxy changes from ζxy = 1 (for τs

x′ = 20 ps) to ζxy = 20 (for τs
x′ = 400 ps), which leads

to a strong modulation of the lineshape.

�� �z
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a b c

y y y

Fig. 5.3: Influence of ϕ, τs
z , and τs

x on the lineshape of spin valve curves. a,b,c. Influence of ϕ (a), τs
z (b),

and τs
x (c) on the lineshape and magnitude of Rnl vs By curves. The constant parameters have the same

value as in Box 5.17.

5.4 Simulations of in-plane precession curves

Next, we examine the influence of geometric parameters, namely, the injector’s and
detector’s distances from the TMDC. In the case of Rnl vs By, only the total injector-to-
detector distance L matters. Naturally, it influences the magnitude of the measured
signal; however, it does not affect the overall shape. In contrast, for Rnl vs Bz curves,
the distance of the injector (l) and the detector (ld) from the TMDC are important
geometric parameters (see Fig. 5.4a).

Figure 5.4b illustrates the lineshape of the RN
nl vs Bz curves (RN

nl = Rnl/R0
nl) versus

ld. When ld < l, the deeper minimum appears for negative Bz. When ld = l, i.e. when
ld = 3 µm, the two minima have the same magnitude and the precession curve is



5.4. Simulations of in-plane precession curves 73
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Fig. 5.4: Influence of the geometry on the lineshape of in-plane precession curves a. Geometric
parameters of the device: distance of the injector (l) and detector (ld) from the TMDC. b,c. RN

nl vs
Bz precession curves for different ld (b) and l (c). In a symmetric device (l ≈ ld, dashed line), the

precession curve is symmetric. All the other parameters are kept constant (see Box 5.17).

symmetric Rnl(Bz) = Rnl(−Bz). Finally, when ld > l, the deeper minimum appears
for positive Bz. Figure 5.4c shows that changing ld, while keeping l constant, results
in spin precession profiles that mirror the ones in Fig. 5.4b.

Experimentally, this can be observed when interchanging the role of the injector
and detector in an asymmetric device. Thus, the distances of the FM electrodes
from the TMDC are important parameters to consider when designing devices for
experimental investigation of in-plane anisotropy. Unveiling in-plane anisotropy
in devices with l ≈ ld is more challenging because the precession curves remain
symmetric around Bz = 0. In a symmetric device, changing ϕ influences the depth
of both extrema equally (Fig. 5.5a). Therefore, it is beneficial to design devices with
pronounced geometric asymmetry, as it leads to different depths of the two extrema
for most ϕ, providing a strong signature of in-plane anisotropy (Fig. 5.5b,c).

Identifying the anisotropy could still be challenging when ϕ ≈ 90° (Fig. 5.6a). If
ϕ ≈ 90°, having a device with a wider TMDC flake improves the visibility of the
induced anisotropy, as it leads to a complete suppression of the negative oscillation
(Fig. 5.6b).

b ca
� ��

l= ld l≠ ld l≠ ldζxy= 20 ζxy= 20 ζxy= 20

N N N

Fig. 5.5: Dependence of the lineshape on ϕ in a symmetric and asymmetric device. a. RN
nl vs Bz

precession curves for different ϕ in a symmetric device (l = ld). Precession curves remain symmetric
RN

nl(Bz) = RN
nl(−Bz) irrespective of ϕ in a symmetric device. b,c. RN

nl vs Bz precession curves for
different ϕ in an asymmetric device (l ̸= ld) in the range <0°, 90°> (b) and <90°, 180°> (c). Notice the
symmetry RN

nl(Bz, ϕ) = RN
nl(−Bz, (180° − ϕ)). Precession curves are symmetric even in an asymmetric

device when ϕ = 0° or 90° (dashed lines).
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In contrast, when ϕ ≈ 0°, the in-plane anisotropy is still noticeable even for
narrower TMDC (Fig. 5.6c), with the anisotropy becoming more visible in devices with
wider TMDC (Fig. 5.6d). Nevertheless, it is important to note that an increase in the
TMDC’s width significantly reduces the magnitude of the spin signal (not apparent
here as all curves are normalised). Thus, spin transport can only be experimentally
investigated in graphene channels partially covered with a relatively narrow TMDC
flake to measure appreciable spin signals.
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Fig. 5.6: Dependence of the in-plane precession lineshape on ζxy and wH
for ϕ = 90° and 0°. a,b. RN

nl vs Bz precession curves for ϕ = 90° when ζxy

(a) and wH (b) are modulated. c,d. RN
nl vs Bz precession curves for ϕ = 0°

when ζxy (c) and wH (d) is modulated.

5.5 Simulations of oblique precession curves

The out-of-plane precession can be induced by an in-plane magnetic field applied
perpendicularly to the easy axis of the FMs. However, a small saturation field
and inhomogeneous rotation of the magnetisation of the FMs complicate the data
analysis [2]. The out-of-plane lifetime τs

z is most accurately determined using oblique
precession measurements (see Sec. 3.3). Figure 5.7 shows the precession curves
for representative angles β = 0°, 20°, 30°, 40°, 60°, 90° (top to bottom) when τs

x′ =

200 ps, τs
y′ = 20 ps, τs

z = 5 ps and ϕ = 10°, 40°, and 100°, respectively. Figures. 5.7a,b,c
and Figures 5.7d,e,f display oblique precession curves for symmetric (l = ld = 5 µm)
and asymmetric (l = 1 µm, ld = 9 µm) devices, respectively, and wH = 1 µm. As
the spins acquire all three spatial components under oblique magnetic fields, the
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lineshape of the curves is also sensitive to τs
x′ and τs

y′ . This is why the lineshape
of the curves is sensitive to ϕ even for oblique magnetic fields. In an asymmetric
device, the oblique precession curves remain asymmetric. Fitting a set of oblique
data (especially those displaying asymmetric features) accurately determines the spin
lifetimes τs

x′ , τs
y′ , τs

z and angle ϕ.
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Fig. 5.7: Dependence of the lineshape of oblique precession curves on ϕ in a symmetric and asymmetric
device. a. RN

nl vs Bz precession curves for different ϕ in a symmetric device (l = ld). b,c. RN
nl vs

Bz precession curves for different ϕ in an asymmetric device (l ̸= ld) in the range <0°, 90°> (b) and
<90°, 180°> (c). β = 0°, 20°, 30°, 40°, 60°, 90° top to bottom.

Figure 5.8 shows pronounced changes in the lineshape of precession curves for
an asymmetric device when τs

z is gradually reduced from 400 ps to 5 ps. The oblique
angle is set to β = 45° and the influence of the lineshape on τs

z is investigated for
ϕ = 10°, 40° and 100°. Figure 5.8 shows that oblique precession experiments are
highly sensitive to τs

z , regardless of the specific value of ϕ.
In conclusion, this chapter presented the solution of Bloch diffusion equations for

a partially proximitized graphene channel. It predicted the lineshape of precession
curves for various magnetic field orientations. The misalignment between the spin
injection direction and the long spin lifetime direction was demonstrated to cause an
effective rotation of the spins. The simulations demonstrate the lineshape dependence
of Rnl vs B⃗ curves on the device geometry and the spin lifetime hierarchy. The
asymmetric devices display features absent in the symmetric ones; therefore, they
were identified as a better choice for the experiments. The strong in-plane SOF
along x̂′ causes an anomalous decrease of Rnl as a function of By if ϕ ̸= 0°, 90°. The
anomalous decrease is associated with the in-plane anisotropy-induced rotation of
the spins below the TMDC and the subsequent out-of-plane precession of the rotated
spin components.
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Taking into account the the observed dependences of the precession curves on
spin transport parameters, the most suitable protocol for experimental determination
of τs

x′ , τs
y′ , τs

z and ϕ can be identified. The protocol involves:

1. Fabrication of devices with pronounced geometrical asymmetry (l ̸= ld).

2. Determination of τs, Ds, and PiPd in the reference graphene region.

3. Determination of τs
x′ , τs

y′ , and ϕ in the proximitized region from the Rnl vs Bz

data.

4. Independent verification of τs
x′ , τs

y′ , ϕ, and first estimation of τz in the proximi-
tized region from the Rnl vs By data.

5. More accurate determination of τs
z from the Rnl vs Bβ dataset.

6. Verification of extracted τs
x′ , τs

y′ , τs
z , and ϕ by interchanging the role of injector

and detector and repeating previous measurements.

N NN N

b ca

�= 10º �= 40º �= 100º
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Fig. 5.8: Influence of τs
z on the lineshape of 45° oblique precession curves (τs

z = 400, 100, 25, and 5 ps
top to bottom). a. ϕ = 10°. b. ϕ = 40°. c. ϕ = 100°.
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Chapter 6

Anisotropic spin dynamics in
graphene/PdSe2 heterostructures

Spin transport in vdW heterostructures comprising graphene and 2H-TMDCs is
characterised by the large anisotropy between in-plane and out-of-plane spin lifetimes.
Nevertheless, spins relax isotropically within the graphene plane due to the C3v

symmetry of these heterostructures. The dominant SOFs for spin relaxation for
in-plane spins point out-of-plane and emerge due to the strong proximity-induced
valley-Zeeman SOC. In contrast, symmetry-free heterostructures of 2D crystals with
mutually incompatible lattices have been predicted to show in-plane anisotropic spin
relaxation [1]. This chapter demonstrates a giant in-plane spin lifetime anisotropy
in graphene proximitized with pentagonal crystal PdSe2. Furthermore, the induced
SOC is shown to be highly tunable by the carrier density, opening avenues for
gate-controlled spintronic devices. The results presented have been submitted for
publication "Room-temperature anisotropic in-plane spin dynamics in graphene
induced by PdSe2 proximity"; J. F. Sierra*, J. Světlík*, W. Savero Torres, L. Camosi, F.
Herling, T. Guillet, K. Xu, J. S. Reparaz, V. Marinova, D. Dimitrov, and S. O. Valenzuela
in Nature Materials.

6.1 Introduction

Strongly anisotropic spin relaxation has been observed up to room temperature in
hybrid graphene/TMDCs systems [2–4], with the out-of-plane lifetime τs

⊥ being
much larger than in-plane spin lifetime τs

∥ due to the valley-Zeeman SOC [5, 6] (see
Sec. 2.8). While a Rashba SOC has also been predicted and observed, the SOFs and
the spin relaxation in the graphene plane remain isotropic due to the C3v symmetry
of the heterostructure.

In-plane spin lifetime anisotropy has not been conclusively demonstrated. Only
indications have been observed at low temperatures in the intrinsically anisotropic
black phosphorus [7]. A recent theoretical study has proposed that giant in-plane
anisotropy could be achieved in graphene when integrated into a heterostructure with
orthorhombic SnTe, a buckled vdW material with disparate crystalline symmetries
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[1] (see Sec. 2.8). Therefore, this, or a similar low-symmetry heterostructure, could
enable gate-tunable in-plane anisotropic transport at room temperature.

We note that unconventional CSI components have been observed in graphene
combined with low-symmetry semimetals MoTe2 [8, 9] and WTe2 [10, 11]. However,
the bulk contributions from these semimetals complicate the analysis, making it
challenging to isolate the CSI occurring in graphene by proximity effects and identify
the corresponding proximity-induced spin textures.

6.2 Graphene/PdSe2 device design

This chapter investigates spin transport in heterostructures made of graphene and
PdSe2, a low-crystal symmetry material. PdSe2 is a semiconducting TMDC with a
band gap of about 1.3 eV in monolayer form that decreases with thickness [12, 13].
Similar to SnTe, its unit cell is orthorhombic and both materials are centrosymmetric,
however, the space group is Pbca (61) and Pnma (62) for PdSe2 and SnTe, respectively.
A monolayer of PdSe2 comprises irregular pentagons and has a buckled structure
along the a-axis. Pentagonal PdSe2, vertically stacked with hexagonal graphene,
forms a symmetry-free heterostructure (Fig. 6.1a).
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Fig. 6.1: Graphene/PdSe2 device geometry. a,b. Top (a) and side (b) view of the pentagonal
lattice of monolayer PdSe2 on hexagonal graphene resulting in symmetry-free heterostructure.
The rectangle denotes the unit cell. The side view shows the buckled structure along the a-axis.
c. Device schematic: monolayer graphene spin channel with four FM contacts along ŷ and two
NM contacts. Blue arrows indicate PdSe2 crystalline axes a and b; red arrows denote in-plane
spin directions x̂′ and ŷ′ for the longest and shortest spin lifetimes, respectively. The angle θ

characterises the rotation between x̂′ and a.

The valley-Zeeman SOC imprinted into graphene by TMDCs has been described
as directly induced by interlayer tunnelling [14]. Within this band-to-band tunnelling
framework, electrons in graphene can tunnel to any of the three atomic layers of
PdSe2, however, the probability of reaching the first Se layer is exponentially higher.
Consequently, considering the proximity SOC in these terms, the buckled structure
of PdSe2 —characterised by its highly anisotropic arrangement of Se atoms (Fig. 6.1b)
— may give rise to novel spin textures with strong in-plane anisotropy.
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To test this hypothesis, we have characterised the spin lifetimes in graphene/PdSe2

heterostructures along three orthogonal axes using the non-local spin device illus-
trated in Fig. 6.1c. The experiments systematically investigate in-plane and out-of-
plane spin precession with selected magnetic field B⃗ orientations [15–17], relative
to the x̂, ŷ and ẑ axes. Here, ẑ is perpendicular to the graphene plane and ŷ is
along the length of the FM electrodes, FM1-FM4. A PdSe2 single crystal is stacked
with graphene between electrodes FM1 and FM2. It is beneficial to place the PdSe2

off-centre, i.e. closer to one of the electrodes, as it leads to the appearance of spin
precession features in the lineshape that would be otherwise absent (for details see
Sec. 5.4). PdSe2 introduces proximity SOC in graphene, which modifies the spin
dynamics and relaxation. The spin lifetimes τs

x′ , τs
y′ , τs

z′ , along x̂′, ŷ′ and ẑ′ = ẑ, directly
correlate with the induced SOC and spin textures. As introduced in Chapter 5, we
adopt the convention that x̂′ (ŷ′) points along the in-plane direction for which the
spin lifetime is the longest (shortest).

Because of the low symmetry of the heterostructure, the induced spin textures
are not necessarily aligned to the crystalline axis of graphene or PdSe2. The angle θ

characterises the x̂′ orientation relative to â, the crystallographic orientation of the
PdSe2. The distance between FM1 and FM2 is chosen to be approximately 10 µm in
the fabricated devices. This length is sufficient to ensure large-angle spin precession
and complete dephasing of the spin accumulation perpendicular to B⃗ at moderately
low B for spins diffusing between FM1 and FM2 [15] (see Sec. 3.2). Two additional
FM electrodes, FM3 and FM4, in combination with FM1 and FM2, form two reference
devices for characterising the spin dynamics in pristine graphene.
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Fig. 6.2: a. Polarised Raman spectra of PdSe2 flake on Device 1 for several different α. The intensity
of A2

g mode shows pronounced dependence on the polarisation of incident light. b,c. Polar plots
of the angular dependence (top) of Device 1 (b) and Device 2 (c) and their optical images (bottom).

The crystallographic directions of PdSe2 flakes in both devices were identified by
polarised Raman spectroscopy. Figure 6.2a illustrates Raman spectra under parallel
polarisation configuration for several rotation angles α between 0◦ and 360◦ relative
to x̂. PdSe2 has Raman modes with symmetry assignments Ag and B1g. The Ag peaks
display intensity modulation with a 180◦ period, enabling the identification of the
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crystalline axes of the crystal [18]. The angular dependence of the intensity of the
A2

g mode for PdSe2 flake on Device 1 (Device 2) is shown in Fig. 6.2b (c), indicating
that the a axis is tilted 20◦ counter-clockwise from ŷ in the case of Device 1 and 30◦

clockwise from ŷ in for Device 2.

6.3 Back-gate characterisation of graphene/PdSe2 devices

A back-gate voltage applied to the Si/SiO2 substrate allows us to tune the carrier
density in the graphene/PdSe2 heterostructures. Figure 6.3 shows two fabricated
graphene/PdSe2 devices and their back-gate characterisation. Device 1 comprises a
PdSe2 crystal that is 1.4 µm wide and 20 nm thick (Fig. 6.3a). The CNP for both pristine
graphene (Fig. 6.3b) and proximitized region (Fig. 6.3c) is close to 0 V demonstrating
that the graphene channel is undoped. Device 2 was fabricated using a 2.8 µm
wide and 6 nm thick flake of PdSe2. A thinner flake (with a wider band gap in
dispersion spectra), was selected to limit potential parallel conduction through PdSe2

in the proximitized region. In Device 2, graphene is slightly n-doped with the CNP
approximately at -12 V in the reference region (Fig. 6.3e). The back-gate measurement
of the proximitized region shows two maxima (Fig. 6.3f). The position of the left
maximum coincides with the one measured in the reference region. The second peak
at around 18 V hints at possible charge transfer between graphene and PdSe2 in the
proximitized region (p-doping of proximitized graphene).
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Figures 6.4a,b show two configurations, used to investigate the Vg dependence
of the drain-source current Ids across graphene/PdSe2 interface and PdSe2 alone,
respectively. The 20-nm thick PdSe2 layer in Device 1 has a small estimated bandgap
(∼ 30 meV) and a finite, albeit very low, conductivity σPdSe2 at room temperature [12].
The PdSe2 exhibits ambipolar transport behaviour, transitioning from hole to electron
carriers across the measured Vg range, with the lowest conductivity around Vg ≈ −12
V (Fig. 6.4c,d). The behaviour of the 6-nm thin PdSe2 in Device 2 is investigated at a
low temperature (77 K). The Ids remains undetectable for all measured −50 V < Vg <

50 V at negative and low positive Vds, while sharply increasing only when Vds > 0.2
V and positive Vg is applied (Fig. 6.4e,f). This behaviour demonstrates the presence of
a wider band gap in 6-nm PdSe2 that suppresses charge transport between graphene
and PdSe2 [19, 20].
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Fig. 6.4: a,b. Measurement configuration to investigate charge transport across
graphene/PdSe2 interface (a) and PdSe2 alone (b), respectively. c,d. Ids vs Vg
measurements of 20-nm thick PdSe2 (Device 1) in the configurations A (c) and B
(d), respectively. e,f. Ids vs Vg (e) and Ids vs Vdv (f) measurements of 6-nm thin

PdSe2 (Device 2).

6.4 Spin transport in Device 1

All measurements of Device 1 were performed at room temperature, following the
protocol designed in Chapter 5 . The reference graphene region (the spin channel
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between FM1 and FM3) is characterised by measuring Hanle spin precession with
Bz (Fig. 6.5a) at different back-gate values. Fitting the data to the solution of Bloch
diffusion equation yields spin transport parameters τs and Ds. Figures 6.5b,c show
their values, extracted for different back-gates. Both τs and Ds increase away from the
CNP, a typical signature of FM contacts with pinholes in the TiO2 tunnel barrier [21].
Despite the pinholes, the reference device has a large spin signal. The spin diffusion
length is determined to be λ ≈ 5 µm with the exact value depending on the carrier
density.
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Fig. 6.5: a. Hanle spin precession for Bz. b,c. Spin diffusion constant (b) and spin lifetime (c) as a
function of Vg.

After the characterisation of the reference, the spin-lifetime anisotropy in the
graphene/PdSe2 region (spin channel between FM1 and FM2) is investigated by
sweeping B⃗ along the ẑ, ŷ and x̂ directions while monitoring Rnl. Figure 6.6 illus-
trates the dramatic impact of PdSe2 on the graphene spin dynamics for Bz and By

configurations in Device 1. Figures 6.6a,b show Rnl for pristine graphene, obtained
using the reference graphene device, while Figs. 6.6c,d present the corresponding
measurements in the graphene/PdSe2 device.

The magnetisations M⃗ of the FM electrodes tend to be aligned along their long
axis (i.e. along ŷ), owing to shape anisotropy. Therefore, Bz causes spins to precess
exclusively in the xy plane (see Fig. 6.6e). Because the spin relaxation in graphene
on SiO2 is isotropic [15–17], the spin dynamic in the reference does not depend on
the spin orientation and the spin precession lineshape is symmetric about Bz = 0
(Fig. 6.6a). In stark contrast, the spin precession profile in graphene/PdSe2 is strongly
asymmetric (Fig. 6.6c). The values of Rnl differ at the two minima located at Bz ≈ ±20
mT by a factor ∼ 3.5. This result shows that the spin relaxation in the graphene
channel underneath PdSe2 differs when spins precess counter-clockwise (Bz < 0) or
clockwise (Bz > 0), suggesting a strong in-plane spin relaxation anisotropy. It also
demonstrates that neither x̂′ nor ŷ′ are parallel to ŷ (i.e., the orientation of the injected
spins). Otherwise, the precession profile would be symmetric about Bz = 0, albeit
with a different lineshape than in Fig. 6.6a (see Figs. 5.5b,c and Fig. 5.6 in Sec. 5.4
). Fit of the data obtained for isotropic reference graphene region (Fig. 6.6a) yields
τs = 0.9 ns. The solutions of the Bloch equations in Figs. 6.6c,d assume τs

x′ = 260 ps,
τs

y′ = 21 ps, τs
z′ = 18.5 ps and θ = 71◦.

Further evidence of in-plane spin relaxation anisotropy is displayed in Fig. 6.6d.
In this configuration, B⃗ is aligned along ŷ (Fig. 6.6f). Therefore, the injected spins are
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Fig. 6.6: Rnl as a function of B⃗ along ŷ and ẑ in Device 1. a,b. Measurements
of the isotropic reference graphene region. c,d. Measurements of the anisotropic
graphene/PdSe2 region. Open circles represent experimental data and lines are the fits.
a,c. Spin precession measurements as a function of Bz, for parallel (blue) and antiparallel
(red) FM configurations. e. Illustration of the spin precession in the graphene plane xy.
b,d. Rnl as a function of By. f. Illustration of the spin valve configuration. Injected spins,
initially parallel to ŷ and B⃗, rotate towards x̂′ when diffusing under PdSe2. Because they
misalign from B⃗, they precess out of plane, making Rnl field-dependent and sensitive
to τs

x′ , τs
y′ and τs

z (e). In isotropic graphene, Rnl is field independent (b). Measurements
were performed with Vg = −30 V.

parallel to B⃗ and do not precess when diffusing in the isotropic graphene. The Rnl

is independent of By, as demonstrated in the reference device (Fig. 6.6b). However,
Rnl becomes dependent on By in graphene/PdSe2 (Fig. 6.6d). To understand this
behaviour, we note that the injected spins along ŷ are misaligned with x̂′ and ŷ′,
as concluded from the analysis of Fig. 6.6c. As explained in Chapter 5, given that
by definition τs

x′ > τs
y′ , spins diffusing in graphene/PdSe2 not only relax but also

effectively rotate towards x̂′, losing the alignment with ŷ even for B = 0 (Fig. 6.6f).
Therefore, when applying B⃗ along ŷ, the spins are no longer parallel to B⃗ and they
start precessing around ŷ, acquiring an out-of-plane component (see also simulations
in Fig. 5.1 and related discussion). Consequently, the signal becomes dependent on
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By and is influenced not only by τs
x′ and τs

y′ , but also by τs
z′ .

Spin precession was also investigated with B⃗ along x̂ (Fig. 6.7a,c). For low Bx,
spins precess out-of-plane but, for sufficiently large Bx, the magnetisation of the
FMs rotates and ultimately aligns parallel to x̂ at the saturation magnetic field Bsat

x

(see schematics in 6.7e). Since B⃗ is within the graphene plane, the measurements
are largely unaffected by magnetoresistance effects [15, 16]. In isotropic graphene,
Rnl(B = 0) ≈ Rnl(Bx ≥ Bsat

x ) (Fig. 6.7a). However, the graphene/PdSe2 region
features in-plane anisotropy; thus, Rnl(B = 0) and Rnl(Bx > Bsat

x ) will typically differ,
as observed in Fig. 6.7c. The precession profile hinges upon the spin lifetimes in all
orthogonal directions and, similar to Fig. 6.6d, misalignment between x̂ and both x̂′

and ŷ′ leads to a signal dependence on Bx, even for Bx > Bsat
x .

Having established in-plane spin lifetime anisotropy in graphene/PdSe2, the
anisotropy can be quantified by estimating τs

x′,y′,z. This is achieved by modelling the
experimental results using the solution of the Bloch diffusion equations (see Sec. 3.3,
Sec.3.4, and Chapter 5).

First, θ and τs
x′,y′ for graphene/PdSe2 are extracted from the data in Fig. 6.6c using

τs and Ds as fixed parameters (extracted beforehand from the reference device). Then,
an initial estimate of τs

z is obtained using the results shown in 6.6d, with τs
x′,y′ and θ

taken as fixed parameters. The estimation of τs
z can be improved by forcing the spins

to precess out of graphene plane with B⃗ along x̂ (Fig. 6.7c). To fit the results in Fig. 6.7c,
the Stoner-Wohlfarth approximation is adopted with in-plane saturation magnetic
field Bsat

x = 0.18 T. The diffusion model precisely accounts for subtle differences
in the measurements for Bx < 0 and Bx > 0, attributed to the rotation of the FMs’
magnetisations.

The extraction of τs
z from spin precession measurements with Bx is affected by the

substantial non-uniform rotation of the FMs magnetisations even under moderate
Bx. As explained in Sec. 3.3 and Sec. 5.5, a more reliable approach to determine
τs

z requires applying an oblique B⃗ [15, 16], characterised by an angle β measured
from the graphene plane (Fig. 6.7f). An oblique magnetic field induces conical spin
precession; thus the measurement is sensitive to all spin lifetimes τs

x′,y′,z. By varying
β and the magnitude of B⃗, the orientation of the spin in the graphene/PdSe2 region
relative to the graphene plane changes continuously from 0 to 180◦. This allows a
systematic scanning of the spin dynamics over all possible spin orientations and
derivation of more accurate values of τs

x′,y′,z.
Figures 6.7b,d show Rnl as a function of a magnetic field Bβ applied at an angle β

for reference graphene region and graphene/PdSe2 region, respectively. Fitting the
oblique spin precession data in the reference region with an isotropic Bloch diffusion
equation provides excellent results (Fig. 6.7b). Oblique data for the graphene/PdSe2

region unequivocally demonstrate that spin lifetimes differ in all three spatial direc-
tions. Modelling the precession curves with Bloch diffusion equations, assuming the
same values of spin transport parameters as for previous fits (τs

x′ = 260 ps, τs
y′ = 21

ps, τs
z′ = 18.5 ps and θ = 71◦), yields excellent results (Fig. 6.7d).



6.4. Spin transport in Device 1 85

-400 -200 0 200 400

-20

-10

0

10

20

M

x
y

z

x’y’
z’

B

Graphene

B (mT)x

R
(�

)
nl

-400 -200 0 200 400

-2

-1

0

1

2

B (mT)x

R
(�

)
nl

a

c

e

s� = 260 psx’

s� = 21 psy’

o� =71

s� = 18.5 psz

s� = 0.9 ns

0 100 200

0

1

2

R
(�

)
nl

B (mT)�

Graphene/PdSe2

0 100 200 300
-5

0

5

10

15

20

Graphene
s� = 0.9 ns

B (mT)�

R
(�

)
nl

b

d

f
B

M

�

s� = 260 psx’

s� = 21 psy’
o� =71

s� = 18.5 psz

Graphene/PdSe2

Fig. 6.7: Rnl as a function of B⃗ along x̂ and oblique fields applied in the yz plane for
Device 1. a,b. Measurements of the reference graphene region. c,d. Measurements of
the graphene/PdSe2 region. Open circles represent experimental data and lines are the
simulations. a,c. Spin precession measurements as a function of Bx, for parallel (blue)
and antiparallel (red) FM configurations. In c, the dashed line represents the solution for
M⃗ aligned with x̂, valid for Bx > Bsat

x ; solid lines use the Stoner-Wohlfarth approximation
with Bsat

x = 0.18 T. For low Bx, injected spins precess perpendicular to the substrate. e.
Illustration of the spin precession below PdSe2 due to the in-plane anisotropy. b,d. Rnl
as a function of Bβ for parallel configuration and β = 3◦, 20◦, 29◦, 41◦, 51◦ and 90◦ (top

to bottom). All measurements were performed with Vg = −30 V.

To further confirm the validity and accuracy of our model, Rnl as a function of
Bβ was measured for two different configurations: using FM1 as injector and FM2 as
detector (Fig. 6.8a) and using FM2 as injector and FM1 as detector (Fig. 6.8b). The
interchange of the FM1/FM2 roles alters the spin orientation in the graphene/PdSe2

region for the chosen β at a given B due to the non-equidistant positioning of PdSe2

relative to FM1 and FM2 (see Sec. 5.4). Both configurations exhibit complete dephas-
ing at B = Bdp ≈ 0.1 T, however, noticeable differences are observed in the precession
profiles. Specifically, using FM1 as the injector (Fig. 6.8a) results in a less prominent
Rnl extremum at B ≈ 20 mT compared to using FM2 as the injector (Fig. 6.8b). The
difference is particularly evident at β = 90◦. As β is reduced, an anomalous decrease
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in Rnl is observed, even for B > Bdp. This behaviour contrasts with that of the pristine
graphene, where Rnl asymptotically approaches a constant value and then slowly
increases due to the out-of-plane tilting of the FM1/FM2 magnetisations at high B
[15, 16].
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All measurements were performed with Vg = −30 V.

The agreement between the model with the experimental results is remarkable,
capturing all experimental trends. This is particularly noteworthy considering the
breadth of measurements and experimental conditions being examined.

Finally, the spin lifetimes τs
x′,y′,z were investigated as a function of back-gate

voltage Vg (Fig. 6.9), which changes the carrier density in the device. Although
the spin dynamics remains anisotropic over the measured Vg range, the in-plane
anisotropy, defined as ζxy ≡ τx′/τy′ , decreases from ζxy ≈ 12.4 at Vg = −30 V down
to ζxy ≈ 2.5 at Vg = 25 V. The decrease is driven by the change in τs

x′ , as τs
y′ and

τs
z remain roughly constant with ζyz ≡ τs

y′/τs
z ≈ 1.1 − 1.3. Tunable anisotropy has

been predicted in conventional 2H-TMDCs/graphene heterostructures [5]. However,
systematic experimental investigation of gate control of spin-relaxation anisotropy in
these heterostructures have not been performed prior to our results.

Anisotropic behaviour similar to that observed could arise from anisotropic spin
absorption in PdSe2. This would require PdSe2 to be conductive and to exhibit spin
relaxation lengths that differ depending on the spin orientation. In such a scenario,
the observed effective anisotropy would result from variations in spin absorption
rather than from differing spin lifetimes within graphene. Although the conductivity
of PdSe2 is very low, it is non-zero, and thus this possibility must be considered.
However, the presented comprehensive measurements and analysis establish that the
anisotropic spin relaxation is an interfacial effect induced by the proximity of PdSe2

to graphene, rather than the result of spin absorption. This conclusion is supported
by three key observations:

1. The significant misalignment between the primary spin relaxation axes, x̂′ and
ŷ′, and the crystalline axes of PdSe2 (θ = 71◦).
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y′ as a function of Vg. τs

y′ , τs
z are largely independent of Vg and around 20 ps,

while τs
x′ decreases from 260 ps at Vg = −30 V to 52 ps at Vg = 25 V, resulting in ζxy

decreasing from 12.5 to 2.5. Lines are guides for the eye.

2. The strong agreement between our experimental data and a spin diffusion
model that excludes spin absorption.

3. The absence of any correlation between the gate dependence of the spin lifetimes
and anisotropy ratios and the gate-dependent transport properties of PdSe2

(compare Figs. 6.4a,b with Fig. 6.9d).

While it is conceivable that spin absorption within PdSe2 could influence spin
lifetimes and thus anisotropy ratios, this scenario also appears improbable. There is
no discernible correlation between the gate-invariant τs

y′ and τs
z , or the monotonically

decreasing τs
x′ and ζxy, and the transport characteristics of PdSe2, contrary to what

would be expected if spin absorption was a contributing factor.

6.5 Spin transport in Device 2

These conclusions are further supported by the spin precession measurements of
the graphene/PdSe2 device with thinner PdSe2 at low temperatures (Device 2). In
the case of 6-nm thin PdSe2 integrated into Device 2 the band gap is estimated to be
larger than 500 meV [13]. To completely suppress the charge transport through PdSe2,
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Device 2 was measured at liquid nitrogen temperature. Thus, all the spin transport
data presented in this section were gathered at T = 77 K.
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graphene/PdSe2 region. Open circles represent experimental data and lines are the fits.
a,c. Spin precession measurements as a function of Bz, for parallel (blue) and antiparallel
(red) FM configurations. c,e. As ŷ is almost collinear with x̂′ (illustration e), the curve
is symmetric about Bz = 0. e. Illustration of the spin precession in the graphene plane
xy. b,d. Rnl as a function of By. h. Illustration of the spin valve configuration. Injected
spins are already almost colinear with x̂′, therefore, they undergo only a slight change of
orientation when diffusing below PdSe2 and only a small decrease of Rnl is seen when

increasing By.

Figure 6.10 shows Rnl for Bz and By at Vg = 50 V in Device 2. Similar to Device
1, the spin transport in the isotropic reference graphene region is first characterised
(Fig. 6.10a). The spin lifetime and diffusion constant are lower in Device 2, possibly
due to the contamination of the graphene channel during the device fabrication (see
Fig. 6.3e,f).

The spin transport across the graphene/PdSe2 region was investigated with
applied Bz (Fig. 6.10c). While the spin precession lineshape appears symmetric, it
notably differs from the typical profile observed in pristine graphene (Fig. 6.10a).
Specifically, |Rnl| in the graphene/PdSe2 region diminishes with increasing |Bz|,
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reaching zero without a discernible change in sign. This behaviour suggests that x̂′ is
nearly aligned to ŷ, i.e., the orientation of the injected spins, as discussed in Sec. 5.4.
This observation is reinforced by the weak variation of Rnl with By (Fig. 6.6d) and
is conclusively established by the dramatic suppression of Rnl when Bx forces the
rotation of the FM magnetisations towards x̂ (Fig. 6.11b). Indeed, Rnl(|Bsat

x |) = 0
in the proximitized region, in contrast to Rnl(|Bsat

x |) = R0
nl in the reference region

(Fig. 6.11a). This decrease in Rnl is much more pronounced than in Device 1, because
once |Bx| > Bsat

x , the spins are injected close to a short spin lifetime direction (ŷ′).
The effect is also magnified by the larger width of the PdSe2, which covers 2.8 µm
of the graphene channel length in Device 2, compared to just 1.4 µm in Device 1.
Consequently, the contrast in the exponential decay for spins aligned with x̂′ and ŷ′,
characterised by different relaxation lengths, increases. The spin lifetimes and θ are
estimated using oblique spin precession (Fig. 6.11d), yielding τs

x′ = 160 ps, τs
y′ = 20

ps, τs
z = 5 ps and θ = 18◦. Extracted spin lifetimes and ζxy ≈ 8 are similar to those

observed in Device 1.
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6.6 Novel SOC in graphene/PdSe2 heterostructure

The results from Device 2 confirm the reproducibility of the findings. The comparable
anisotropy between Devices 1 and 2 reinforces that spin absorption is not the source
of the observed anisotropy. Moreover, if the observed anisotropy was due to an
anisotropic spin absorption, its anisotropy directions would correlate with the PdSe2

crystallographic directions. Therefore, the substantial misalignment between the
PdSe2 a axis and x̂′ in both devices (71◦ for Device 1 and 18◦ for Device 2, see
Fig. 6.12) supports the conclusion that the observed anisotropy is due to proximity
effects rather than spin absorption. When symmetries are broken, the orientation
of the SOFs can vary dramatically with small differences in the structure properties,
such as twisting angle [22]. This could explain the differing misalignment between
the PdSe2 a axis and x̂′ in the two devices.
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The observed spin-lifetime hierarchy τs
x′ ≫ τs

y′ ≳ τs
z suggests the presence of a

momentum-independent (persistent) spin texture component along τs
x′ , which domi-

nates the spin relaxation. Persistent spin textures have been predicted in structures
with reduced symmetry like monolayers of topological insulators 1Td-MoTe2 and
1Td-WTe2 [23]. Significant in-plane spin relaxation anisotropy is expected in the
conduction band of 1Td-MoTe2 monolayers, as the band edge is approached [23],
although this has yet to be observed experimentally. A novel SOC term has been
anticipated in graphene/SnTe, attributed to the crystal gradient potential in the
low-symmetry SnTe [1]. As a result, the in-plane spin texture in the proximitized
graphene would be predominantly polarised in a direction closely perpendicular to
this gradient. The predicted spin lifetimes in graphene/SnTe reveal a large anisotropy
below the valence band maximum, exhibiting a hierarchy akin to that observed in
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our experiments. Experimental signatures of anisotropic in-plane spin transport has
been reported in ultra-thin black phosphorus at low temperatures (1.5 K), with a
small ζxy ≈ 1 − 1.8 and a larger ζzy ≈ 6 [7]. However, the spin lifetime hierarchy
τs

z ≫ τs
x′ ≳ τs

y′ differs from that of graphene/PdSe2 and is similar to that of graphene
proximitized by 2H-TMDCs. The origin of the anisotropy in black phosphorous re-
mains unknown, as the spin relaxation is expected to be dominated by the Elliot-Yafet
mechanism for which τs

z < τs
x′,y′ [24].

Spin dynamics in proximitized graphene is governed by the Dyakonov-Perel
mechanism [2, 3, 5]. The spin relaxation rates are described as

(τs
i )

−1 = [⟨Ω2
j ⟩p + ⟨Ω2

k⟩p] τp + [⟨Ω2
j ⟩iv + ⟨Ω2

k⟩iv] τiv (6.1)

with {i, j, k} ⊆ {x′, y′, z}, where τp and τiv represent respectively the momentum
and intervalley scattering times and ⟨Ω2

i ⟩p,iv are the average momentum-dependent
(index p) and momentum-independent (index iv) effective SOF components. In
graphene/2H-TMDC heterostructures preserving the C3v symmetry, ⟨Ω2

i ⟩p are deter-
mined by the conventional Rashba SOC and the pseudospin inversion asymmetry
SOC terms with ⟨Ω2

z⟩p = 0, while ⟨Ω2
i ⟩iv is given by the valley-Zeeman SOC with

⟨Ω2
x′⟩iv = ⟨Ω2

y′⟩iv = 0 [5]. Accordingly, the out-of-plane spins follow the usual
Rashba-SOC relaxation, while the in-plane spins are affected by both the Rashba SOC
and valley-Zeeman SOC. The resulting spin lifetime anisotropy is

ζzx(y) ≡
τs

z
τs

x(y)
=

(
λVZ

λR

)2 (τiv

τp

)
+

1
2

, (6.2)

where λR and λVZ are the Rashba (R) and valley-Zeeman (VZ) SOC strengths, τiv

the intervalley scattering time and τp the momentum relaxation time [5]. Because
typically τiv/τp ≫ 1, and λR and λVZ are of similar magnitude, then ζzx(y) ≫ 1.
In graphene/PdSe2, the momentum-independent SOF is along x̂′, thus ⟨Ω2

y′⟩iv =

⟨Ω2
z′⟩iv = 0. Therefore, the spin relaxation along x̂′ is dominated by the Rashba SOC,

while the spin relaxation along ŷ′ and ẑ include contributions from both the Rashba
SOC and the persistent SOF. In this case, we obtain

ζxy = 2
(

λpers

λR

)2 (τiv

τp

)
+ 1 (6.3)

and ζzy ≡ τs
z /τs

y ≲ 1.
To estimate λR and λpers, it is necessary to know the characteristic timescales τp

and τiv. The intervalley scattering time in graphene has been determined through spin
relaxation anisotropy experiments [2, 3] and weak localization measurements [25–27].
Regardless of the substrate or fabrication process, the reported τiv consistently cluster
within the 5-20 ps range. Assuming τiv ≈ 10 ps and taking τp ≈ 0.4 ps, as estimated
from the conductivity of Device 1, our experimental ζxy ≈ 12.5 in graphene/PdSe2

corresponds to λpers/λR ≈ 0.5. The experimental estimation of λR for graphene
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proximitized with 2H-TMDCs falls within the range of 5 and 30 meV [26, 28–30].
Taking a conservative value of λR = 5 meV for graphene/PdSe2, we obtain λpers ≈ 2.5
meV.

The origin of θ remains an open question and requires density functional theory
calculations as a function of twist angle in the graphene/PdSe2 heterostructure,
similar to those performed for graphene/SnTe [1]. However, predicting θ can be
challenging; for instance, in the simpler case of proximity Rashba SOC in graphene
coupled with high-symmetry 2H-TMDCs, the spin texture rotation angle away from
tangential was found to be highly sensitive to the heterostructure’s properties, with
no discernible trend as a function of twist angle [22].

The reported spin-lifetime anisotropy in graphene/PdSe2 underscores the versatil-
ity of proximity effects in van der Waals heterostructures. Our findings offer valuable
insights into innovative strategies for tailoring spin textures through the combina-
tion of materials with distinct crystal symmetries. The observation of persistent
spin textures in graphene/PdSe2, akin to those predicted in monolayer 1Td-MoTe2

and 1Td-WTe2, introduces promising avenues for advancing spin manipulation tech-
niques and exploring topologically non-trivial states. The ability to tune the spin
relaxation anisotropy opens new opportunities for developing directionally tunable
spin transport.
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Chapter 7

Charge–spin interconversion in
graphene/WTe2 heterostructures

The ability to generate spins in arbitrary directions, ideally by electrical means, is
a long-sought goal in spintronics. Charge–spin interconversion (CSI) phenomena
offer FM-free electrical injection and detection of spins. The direction of the spin
currents and the spin polarisation generated by CSI strongly depend on the crystal
symmetries. The requirement for mutual perpendicularity between charge current,
spin current, and spin polarisation is lifted in low-symmetry systems, allowing for CSI
with unconventional components. This chapter presents a measurement protocol for
the disentanglement of spin currents and spin densities in low-symmetry systems and
provides an experimental demonstration of unconventional CSI in graphene/WTe2

heterostructure. The chapter is based on the work published in 2D Materials 9, 035014
(2022). [1].

7.1 Introduction

Spin–orbit coupling (SOC) strongly modifies the electronic states in crystals lacking
inversion symmetry [2]. Such modifications result in spin-polarised bands and
intriguing topological phases [3–6], which allow charge-spin interconversion (CSI)
[7–9]. The spin Hall effect (SHE) [8, 10–12], inverse spin galvanic effect (ISGE) [13],
and the corresponding reciprocal effects (related to the former by Onsager reciprocal
relations [14, 15]) are fundamental CSI phenomena that have been widely studied to
achieve FM-free spin injection and detection [7–9] (see Sec. 2.5 for an introduction of
CSI phenomena).

Experimental observations of the SHE and ISGE were originally obtained in
semiconductors [13, 16, 17] and metals [18–20]. Although it was known that, given
their SOC-related origin, the SHE and ISGE are often concomitant, those early works
usually focused only on one of the two and its reciprocal effect. Understanding the
relation between the SHE and ISGE has become essential in light of their potential
technological relevance, particularly for magnetic recording [8, 21]. Research on SHE
and ISGE has been further stimulated by recent results demonstrating relatively high
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CSI efficiency in vdW heterostructures comprising graphene and high SOC materials
[22–24].

In some cases, it is possible to discriminate between SHE and ISGE, for instance,
when graphene is modified by the proximity of a semiconducting TMDC in high-
symmetry heterostructures. In these systems, SHE is driven by the valley-Zeeman
SOC and ISGE by the Rashba SOC, leading to spin populations that are orthogonal to
each other [25, 26] and, therefore, can be easily disentangled [22, 24, 27]. However,
if the TMDC conducts charge, the separation of CSI contributions from the TMDC
bulk, the graphene/TMDC interface, and proximitized graphene becomes more
challenging [23]. Moreover, CSI with unconventional spin orientations is expected
in the low-symmetry TMDCs (e.g., MoTe2 or WTe2) and twisted graphene/TMDC
heterostructures, further complicating the analysis.

WTe2 has been used as a spin current source in spin-orbit torque (SOT) ex-
periments to demonstrate the possibility of injecting spins with new polarisation
components unavailable in high-symmetry materials [28]. Graphene/MoTe2 and
graphene/WTe2 nonlocal spin valve studies have found an unexpected spin-polarisation
component along the direction of charge current [29, 30]. This component is prohib-
ited by bulk symmetries and was attributed to broken symmetries due to uncontrolled
strain during device fabrication. However, these measurements were performed with-
out characterising the strain and direct knowledge of the crystal orientation. It has
been only argued that the crystals generally cleave in a preferential direction [29].

Furthermore, a recent study suggests that a widespread method used to identify
the ISGE (SGE) by rotating the FM detector’s (injector’s) magnetisation is unreliable
due to significant charge current contribution to the signal [31]. The Hall effect in
graphene induced by stray fields was identified as a probable source of this artefact.

These observations demonstrate the need for careful nonlocal measurement pro-
tocols that would allow the identification and quantification of competing CSI effects.
Additionally, CSI experiments that identify the crystallographic directions of WTe2

and the strain at the interface are required. This chapter first discusses CSI effects
in WTe2 in the context of crystal symmetries. Polarised Raman spectroscopy is used
to determine the WTe2 crystal orientation and characterise the strain. Subsequently,
a measurement protocol that can be used to resolve the contributions of SHE and
ISGE is presented. Measurements of the graphene/WTe2 device are then shown and
analysed. Finally, the possible origins of the observed CSI components are discussed.

7.2 Symmetry considerations for CSI in Td-WTe2

WTe2 is a vdW TMDC that is stable in several different phases. The orthorhombic Td

phase (Pmn21) is characterised by a lack of bulk inversion symmetry. Compared to
the monoclinic (centrosymmetric) T’ phase, the Td phase has only a mirror plane Ma

and glide mirror plane M̃b perpendicular to the â and b̂ crystallographic direction,
respectively (Fig. 7.1). An out-of-plane two-fold screw rotational symmetry C2a
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present in T’ WTe2 is slightly broken [32]. Multilayer Td-WTe2 is a type II Weyl
semimetal [33, 34], while in monolayer form it is a 2D topological insulator [35–37].

The SHE is described by linear response theory [38] as

Jk
s,i = σk

ij Ej ⇒ J⃗k
s = σk E⃗ , (7.1)

where Ej is the external electric field in the ĵ direction that generates the spin current
Jk
s,i in the î direction with spin polarisation S⃗ in the k̂ direction. σk is the spin Hall

conductivity tensor whose terms depend on the composition of the crystal and its
symmetries. In a high-symmetry crystal, only off-diagonal σk

ij terms with i ̸= j ̸= k

are nonzero, resulting in conventional SHE (⃗Jc ⊥ J⃗s ⊥ S⃗). Reduced symmetries allow
additional σk

ij terms that can break the mutual perpendicular relationship between J⃗c,

J⃗s and S⃗ [39].
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Fig. 7.1: Crystal structure of Td-WTe2. It has two mirror symme-
tries Ma and M̃b that allow only conventional CSI components.

In the case of bulk Td-WTe2, mirror planes Ma and M̃b (Fig. 7.1) allow only
conventional SHE. Nevertheless, there are 6 independent conventional configurations
due to the crystal’s low symmetry (Laue group mmm and space group 31) [38]
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and the SHE is anisotropic, i.e. the magnitude of induced J⃗k
s depends on the direction

of the charge current. This property could be used, for instance, to modulate the
strength of SOTs in spintronic devices.

At the graphene/PdSe2 interface, M̃b is broken. Only Ma possibly remains if
the two 2DMs are aligned, i.e. there is no twist between them (Fig. 7.2a). In this
case, an electric field Ex perpendicular to Ma induces a transverse J⃗s with S⃗ that
can be anywhere in this plane, possibly colinear with J⃗s (Fig. 7.2b). However, Ma
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still forbids transverse J⃗s with S⃗ along J⃗c. This restriction disappears if the mirror
symmetry Ma is broken at the twisted graphene/WTe2 interface and S⃗ is allowed in
any direction.

a

Js,z

Js,y

MaMb

b c

Fig. 7.2: a. Aligned graphene/ Td-WTe2 interface (i.e. without twist), where M̃b is broken and only
Ma is preserved. b,c. SHE and ISGE occurring at the aligned graphene/Td-WTe2 interface. Ex induces
spin Hall current along ẑ (Jyz

s,z) and ŷ (Jyz
s,y) with spin polarisation S⃗ within the xy plane (b) and an

out-of-equilibrium distribution of spin population (c). The circles in b and c show the planes where S⃗
(represented by the arrows) is allowed by symmetry.

The ISGE depends directly on the electronic band structure polarisation and is
governed by the same symmetry considerations [40, 41]. In a high-symmetry crystal, a
spin polarisation can only arise when the inversion symmetry is broken at a boundary
or an interface, leading to the Rashba effect [42, 43]. At the interface of the aligned
graphene/Td-WTe2 heterostructure, the spin polarisation must be contained in the
plane Ma (Fig. 7.2c). Again, this constraint is removed at the interface of twisted
graphene/Td-WTe2 heterostructure.

The CSI effects can be resolved with nonlocal measurements of lateral spin valve
devices. The next section presents the device geometry and the measurement protocol
that allows the disentanglement of spin currents and spin densities generated by SHE
and ISGE in WTe2/graphene heterostructures.

7.3 Device geometry and measurement protocol for CSI dis-
entanglement

Nonlocal spin-dependent measurements have been widely used to investigate CSI
phenomena [18] and extract the polarisation of the generated spins. In these measure-
ments, a charge current I is applied along the CSI region generating a spin-polarised
population through SHE and ISGE. The spin-polarised population diffuses from
the CSI region and induces a nonlocal voltage Vnl between FM and a reference NM
contact. The polarisation of the CSI-generated spins can be extracted by studying the
Vnl as a function of a magnetic field B⃗ of different magnitudes and orientations [44,
45].

When the spins originating from the SHE and the ISGE are mutually perpendic-
ular, they can be fully resolved by investigating spin precession with in-plane and
out-of-plane magnetic fields [24] or by a symmetry analysis in oblique magnetic fields
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[22, 27]. These approaches are insufficient in graphene/WTe2 and graphene/MoTe2

heterostructures because the low-symmetry TMDC is conducting [29, 30, 46]. How-
ever, the ISGE induces a local spin density that homogeneously diffuses to both
sides of the sample, whereas the SHE generates a directed spin current. Thus, it is
possible to discern between the SHE and ISGE-generated spins by comparing spin
accumulations along the spin current direction at opposite sides of the CSI region, as
illustrated in Fig. 7.3.

a b

P

FM FM

NM

NM

Jsd

+yd-yd

Jsc

M

nl nl

 μsd

 μsc

Fig. 7.3: a. Sketch of the device geometry and generated spin Hall current (Jsc) and spin density (Jsd)
(top) and spin electrochemical potentials µ⃗sc and µ⃗sd (bottom). The spins generated in the CSI region
(depicted by violet stripe) diffuse in the spin channel towards ±ŷ and are detected by the FM electrodes.
Jsc originates from the spin Hall current along ŷ (Js,y). The spin density originates from the uniform
spin accumulation in the CSI region due to Js,z and ISGE. b. Illustration of the CSI spin polarisation

orientation characterised by angles ϕ and θ.

When the current I is applied along x̂ in the CSI region, the SHE generates spin
currents along ŷ (Js,y) and ẑ (Js,z) (Fig. 7.2b), which coexist with the spin density
induced by the ISGE (Fig. 7.2c). Diffusing spins induce nonlocal voltages V(±yd)

nl . A
direct comparison between the V(±yd)

nl measured by the two equally spaced detectors
at a distance ±yd away from the CSI region differentiates the spins generated by
the spin current Js,y from those generated by the ISGE and Js,z. Indeed, the spin
current component Jsc diffusing away from the CSI region, which originates from
Js,y, generates opposite spin accumulation at ±yd. In contrast, the spin current Jsd,
associated with ISGE and Js,z, generates the same spin accumulation at ±y. Therefore,

(V(+y)
nl + V(−y)

nl )/2 ∝ Jsd , (7.3)

whereas
(V(+y)

nl − V(−y)
nl )/2 ∝ Jsc . (7.4)

These measurements do not distinguish between ISGE and Js,z, since both induce
a spin density whose orientation does not vary in the CSI region [23]. However,
these components can be disentangled by analysing (V(+y)

nl + V(−y)
nl )/2 as a function

of the thickness of the SOC material [8]. In particular, when the thickness is much
smaller than the spin relaxation length along ẑ, Js,z vanishes [47, 48], and only ISGE
contributes to the nonlocal signal.
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Considering the previous discussion, we focus on characterising the spins gener-
ated by Jsc and Jsd employing spin detectors placed at ±yd to measure spin precession
signals. The steady-state spin diffusion and precession in the narrow spin channel
are governed by the 1D Bloch diffusion equation (see Eq. 5.1), which we reproduce
here [49, 50]

Ds
∂2µ⃗s

∂y2 + γc µ⃗s × B⃗ − µ⃗s · τs
−1 = 0 , (7.5)

where µ⃗s = (µx , µy , µz) and µi is the spin electrochemical potential for spins
along î, γc is the electron gyromagnetic ratio, Ds is the diffusion constant and τs

−1

characterises the spin lifetimes τs
i . In the case of graphene τs

x = τs
y = τs

z = τs and spin
relaxation is isotropic [51]. The graphene/WTe2 bilayer serves as a spin injector. The
CSI spin injection efficiency P⃗± is characterised by effective spin polarisation factors

P⃗± = (P±
x , P±

y , P±
z ) = (J±x /I , J±y /I , J±z /I) w , (7.6)

where ± stands for the injection at opposing sides of the CSI region, Ji is the cor-
responding spin current with contributions from Jsc and Jsd, and w is the width of
the spin channel. The FM detectors have magnetisation M⃗ along ±x̂ and are charac-
terised by the polarisation factor Pd. Nonlocal resistance is defined as Rnl ≡ Vnl/I.
By solving Eq. 7.5, the following expressions for Rnl are obtained for B⃗ along ŷ and
for B⃗ along ẑ

Rnl(By) =
Rsh Pd

4 w
Re


(Px − i Pz) exp

[
−
√

1−i τs ω
D τs

yd

]
4
√

1−i τs ω
D τs

+ h.c.

 (7.7)

Rnl(Bz) =
Rsh Pd

4 w
Re


(Px + i Py) exp

[
−
√

1−i τs ω
D τs

yd

]
4
√

1−i τs ω
D τs

+ h.c.

 , (7.8)

where ω = γc B and Rsh is the sheet resistance of the spin channel.
Spin injection efficiency P⃗ can be determined by fitting the spin precession re-

sponse to Eqs. 7.7 and 7.8. The spin-injection angles for spins moving towards ±ŷ,
defined as

θ± ≡ arctan
(

P±
z /
√
(P±

x )2 + (P±
y )2

)
(7.9)

and
ϕ± ≡ arctan(P±

y /P±
x ) , (7.10)

fully characterise the orientation of the injected spins on both sides of the CSI region.
Therefore, comparing θ+ with θ− and ϕ+ with ϕ− provides direct information on Jsc

and Jsd. In addition, systematic errors related to possible differences in polarisations
of the FM detectors, can be eliminated by focusing on θ± and ϕ±, rather than P⃗±.
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The above discussion does not address the spin dynamics within the graphene/WTe2

bilayer, which may exhibit anisotropy as in the case of the graphene/PdSe2 bilayer
(see Chapter 6). This information, along with the CSI conversion angles, is contained
in P⃗± and cannot be independently extracted from these devices. Nevertheless, this
is not required for the present analysis.

7.4 Determination of crystallographic directions of WTe2

The crystallographic orientation of the WTe2 crystal in the device is determined with
linearly polarised Raman spectroscopy. The polarisation of incident laser light E⃗ is
rotated at an angle α relative to the long edge of WTe2, corresponding to x̂ (inset
of Fig. 7.4). As for PdSe2 (Chapter 6), the Raman spectra of WTe2 display several
characteristic vibrational modes whose magnitude varies with α (Fig. 7.4a). Knowing
the relationship between the intensity of the modes and the polarisation angle of the
incident light [52], crystallographic axes of WTe2 can be determined. Fig. 7.4b shows,
that the ratio A5

1 (164 cm−1)/A2
1 (212 cm−1) is maximum at α = 0, which means that

â ∥ x̂ in the device.
In addition, Raman spectroscopy allows one to determine the presence or absence

of strain in WTe2. The presence of strain in crystals influences their vibrational modes,
leading to shifts of characteristic Raman peaks from their normal position [53]. Even
a small strain of 0.5% results in noticeable shifts of the Raman modes. However, the
Raman spectra of the thin WTe2 flake integrated into the graphene device do not
show any shift of the peaks compared to the bulk flake on SiO2, and the positions of
the peaks are identical to those reported in the literature. Thus, the strain in the WTe2

flake is negligible and the symmetry breaking due to the strain can be excluded.
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7.5 Charge and spin transport in graphene/WTe2 device

The graphene/WTe2 device fabrication follows the steps established in Chapter 4.
WTe2 was exfoliated in a glovebox and a thin flake was selected to limit the bulk CSI
contributions. The device comprises an 8-nm thick WTe2 flake stacked on a 1.5 µm
wide graphene channel and several lithographically defined spin-sensitive FM and
spin-insensitive NM electrodes. The thickness of the WTe2 flake was obtained by
AFM measurement. WTe2 of this thickness appears magenta on the 440 nm SiO2/Si++

substrate (Fig. 7.5a).
The spin transport properties of the bare graphene and FM electrodes are charac-

terised using the two reference regions on both sides of WTe2 (Ref1 and Ref2; marked
by green and orange ellipses in Fig. 7.5a). Spin precession under an out-of-plane mag-
netic field Bz enables the extraction of parameters τs, Ds, and Pd required for fitting
CSI data (see Eqs. 7.7 and 7.8). The parameters extracted from the measurements in
Fig. 7.5b) are τs = (100 ± 10) ps, Ds = (0.020 ± 0.004) m2s−1, and Pd = (12 ± 3)%,
with the spin diffusion length λs =

√
τsDs ∼= 1.4 µm in bare graphene. The rather

small λs can be attributed to contamination introduced during sample fabrication.
This contamination can be seen in the AFM image taken once the spin-transport
experiments were finished (inset of Fig. 7.5c). The extent of graphene channel con-
tamination can also be deduced from the back-gate measurements of longitudinal
resistance measured in a four-point configuration (R4p vs Vg). Fig. 7.5c shows back-
gate measurements for the three regions — Ref1, Ref2, and graphene/WTe2 bilayer.
In those measurements, a charge current I is always applied between electrodes NM3
and NM4, while voltage drop is measured between FM4 and FM3 (Ref1), FM2 and
FM1 (Ref2) or FM3 and FM2 (bilayer).

Indeed, CNP points are shifted to 27 V and 34 V for Ref1 and Ref2, respectively,
indicating the presence of p-type dopants on the graphene channel. The resistance
measurement in the region with the bilayer displays two local maxima likely because
the proximitized graphene covered with WTe2 flake is protected from contamination
and has a CNP close to 0 V; however, the shift could also be due to charge transfer.
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The CSI is investigated by applying a charge current I along the WTe2 crystal (â ∥ x̂
direction). Nonlocal voltages V(+yd)

nl and V(−yd)
nl are measured at ±yd with M⃗ of the

FM detectors saturated in ±x̂ direction, i.e. M⃗(+x) and M⃗(−x) (Fig. 7.6a). The blue
and red lines in Fig. 7.6b, show R(+yd)

nl vs. Bz for these two M⃗ configurations giving
R+

nl and R−
nl, respectively. The average of the two curves (R+

nl + R−
nl)/2 provides the

background of the measurement. The background is associated with spin-unrelated
spurious signals and the FM magnetisation rotation (as B⃗ ⊥ M⃗). The background
is removed by taking the difference between the two curves R(+yd)

nl = (R+
nl − R−

nl),
providing the pure spin signal in Fig. 7.6b. This protocol is used to obtain pure spin
signal at both ends of the sample (±yd) and for both magnetic field configurations —
Bz and By.
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Figure 7.7 shows the pure spin signals R(+yd)
nl and R(−yd)

nl vs. By and Bz. Remark-
ably, R(+yd)

nl and R(−yd)
nl have nearly indistinguishable lineshapes for Bz (Fig. 7.7a, b).

In contrast, they differ significantly for By (7.7c, d).
In the case of Bz, only the in-plane (xy) spin components of the injected spins

contribute to the precession lineshape. Therefore, the fact that R(+yd)
nl ∼ R(−yd)

nl

demonstrates that the spins diffusing toward −ŷ and +ŷ have the same in-plane spin
polarisation, which is an indication of a uniform in-plane spin polarisation in the
CSI region (associated with Jsd in Fig. 7.3). Moreover, because R(+yd)

nl and R(−yd)
nl are

neither fully symmetric nor fully antisymmetric about Bz = 0, the spin polarisation
has nonzero components along both x̂ and ŷ.

In contrast, in the case of By only the spin components in the xz plane contribute
to the precession lineshape. The marked difference between R(+yd)

nl and R(−yd)
nl demon-

strates that the spins diffusing towards −ŷ and ŷ have different spin polarisation
orientations in the xz plane. Combined with the results for Bz, this observation is
an unambiguous indication of a spin-polarised current in the CSI region with a po-
larisation along ẑ (associated with Jsc in Fig. 7.3). Furthermore, R(+yd)

nl being rather
symmetric about By = 0 (Fig. 7.7d) demonstrates the presence of a uniform spin
density along ẑ, originating from Jsd, which partially compensates the contribution
from Jsc.
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Fig. 7.7: Pure spin signals R(−yd)
nl (a, c) and R(+yd)

nl (b, d) measured as a function
of Bz (a, b) and By (c, d). Open circles show the experimental data and the blue
lines corresponding fits obtained with Eqs. 7.7 and 7.8. The insets represent the
magnetic field direction and the correspondent spin precession plane. CSI angles

extracted from the fits of R(−yd)
nl (e) and R(+yd)

nl (f).

To quantify the relative magnitudes of each CSI component, the data in Fig. 7.7
are fitted to Eqs. 7.7 and 7.8. The spin polarisation angles θ± and ϕ±, are:

(ϕ− , θ−) = (−40◦ ± 5◦ , −34◦ ± 4◦) and (ϕ+ , θ+) = (−41◦ ± 3◦ , −10◦ ± 6◦).

As the homogeneously diffusing spins Jsd lead to identical spin accumulations on both
sides of the sample (±y), they are characterised by the symmetric angular component

(ϕsym , θsym) =

(
1
2
(ϕ+ + ϕ−) ,

1
2
(θ+ + θ−)

)
= (−41◦ ± 4◦ , −22◦ ± 5◦).

In contrast, the spins originating from the directed Jsc lead to spin accumulations with
opposite signs on each side and are characterised by the antisymmetric component

(ϕasym , θasym) =

(
1
2
(ϕ+ − ϕ−) ,

1
2
(θ+ − θ−)

)
= (0◦ ± 4◦ , −12◦ ± 5◦).
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The symmetric CSI angular components suggest the coexistence of uniform spin
density with polarisation components along all three coordinate axes. In contrast, the
antisymmetric CSI angular components hint at a directed spin-Hall current Js,y with
spin polarisation along ẑ (ϕasym ≈ 0).

Unequivocal identification of the underlying CSI mechanisms requires analysis
based on the symmetries of the investigated system. CSI can originate from either
the ISGE or the SHE, in the bulk of WTe2, at the graphene/WTe2 interface or in
proximitized graphene. The next section discusses the possible origins of each of the
measured CSI components.

7.6 Origin of the observed CSI in graphene/WTe2

The spin density in the CSI region has components along all three spatial axes.
According to the bulk Td-WTe2 crystal symmetries, for a current along a (x̂) only
the spin polarisation component along ŷ is allowed. The ISGE can generate a spin
density with spin polarisation along ŷ, while the spin Hall current flowing along
ẑ (Js,z) should also be polarised along ŷ. Therefore, the components of Jsd along x̂
and ẑ are not expected in the bulk of Td-WTe2, indicating that they originate from an
interfacial or proximity-induced effect in graphene [54].

The symmetry of a heterostructure or thin crystal can be equal to or lower than that
of its bulk constituents, permitting additional nonzero spin polarisation components.
Indeed, in the graphene/WTe2 interface, the glide symmetry is absent, possibly
leaving only the single mirror symmetry plane Ma (see Fig. 7.2). The generation of a
spin density along c (ẑ), when Jc is along a (x̂), would then be allowed.

A spin density along x̂ was previously observed in graphene/MoTe2 and graphene/
WTe2 and was ascribed to additional bulk mirror symmetry breaking induced pos-
sibly by strain in the TMDC [29, 30]. In our experiments, Raman spectroscopy
demonstrates that WTe2 is not under strain, making this explanation implausible.
Alternatively, the spin density along x̂ could be generated by a current component
along ŷ. Recent theoretical publications reported anisotropic SHE in WTe2 and MoTe2

as a function of the direction of the charge current and the position of the Fermi energy
[55, 56]. However, the elongated geometry of our WTe2 flake implies that the current
component along ŷ is small; therefore, a large CSI efficiency would be required to
make this scenario viable. These observations suggest that the spin density along x̂ is
likely generated in proximitized graphene.

Recent first-principles calculations that address the twist angle dependence of
proximity-induced SOC in graphene by 2H TMDCs (MoS2, MoSe2, WS2 and WSe2)
have shown that the Rashba SOC could exhibit a radial component, thus deviating
from the typical tangential orientation [57, 58]. The radial component is allowed for
twist angles between the graphene and TMDC lattices that are different from 0◦ and
30◦, where mirror symmetries are broken. Similarly, an arbitrary twist angle between
the graphene and WTe2 crystal lattices can break the remaining symmetry. At their
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interface, with radial Rashba SOC coupling, a spin polarisation component parallel
to Jc may arise.

Finally, although the symmetries of bulk WTe2 allow spin Hall current along ŷ,
which is polarised along ẑ (Jz

s,y), it has not been reported in prior graphene/WTe2

studies [30, 46]. This component is allowed even in high-symmetry structures and has
been reported in graphene-MoS2 and graphene-WS2 [22–24]. In these experiments, a
spin density with polarisation along ŷ was also found. Furthermore, it was confirmed
that the spin current polarised along ẑ and the spin density along ŷ can originate
solely from the SHE and ISGE in proximitized graphene, respectively.

The previous discussion strongly suggests that the unconventional CSI compo-
nents in graphene/WTe2 originate from proximity effects. In contrast, the observed
spin current with polarisation along ẑ and the spin densities with polarisation along ŷ
(conventional CSI components) are permitted also in the bulk of Td-WTe2. Quantify-
ing spin absorption in WTe2 could help to separate these remaining CSI contributions;
however, the analysis is not straightforward or free of ambiguities. Spin absorption
estimation requires detailed knowledge of heterostructure properties that cannot be
readily obtained in these nonlocal devices incorporating a high conductivity WTe2

semimetal (compare with the discussion on PdSe2 in Chapter 6). The properties
include the precise interface resistance between graphene and WTe2 and the spin
relaxation parameters in the proximitized graphene and WTe2. Any subtle change
in these parameters or the implementation of the spin absorption model can lead
to divergent conclusions. In addition, due to the 2D nature of graphene, the spin
absorption is not uniform at the graphene/WTe2 interface, even if the spin current
absorption occurs along ẑ. This can be easily understood by considering the inverse
SHE, commonly used in CSI experiments. Because of the spin relaxation and the fact
that there is no alternative path for spins to cross the CSI region, as in a 3D system,
most spins will be absorbed on the side of graphene/WTe2 closest to the FM injector.
This could lead to a spin accumulation gradient (and a spin current) in the TMDC
along the spin channel.
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Chapter 8

Conclusions and Outlook

The use of SOC in spintronic devices to interconvert charge and spin and manipulate
the flow of spin currents shows great promise for future energy-efficient information
technologies. Graphene is a perfect material for spin transport over long distances
because of its intrinsically small SOC. However, spin manipulation without SOC is
challenging. Graphene proximitized with 2DMs containing heavy atoms such as
TMDCs exhibits a sizeable SOC on the order of a few to tens of meV while preserving
its superior charge transport properties. The proximity-induced SOC in graphene
allows for efficient FM-free spin injection or detection through CSI. Moreover, induced
spin textures can be used for spin filtering due to the large spin relaxation anisotropy
between spins in different directions. However, a deep understanding of proximity-
induced SOC physics is required to master the control the spin dynamics. Recently,
heterostructures comprising crystals with disparate lattices were predicted to exhibit
novel SOC and spin textures. Moreover, the low symmetry of such heterostructures
may result in unconventional CSI components. In this context, this thesis explored the
proximity-induced SOC in heterostructures comprising graphene and low-symmetry
TMDCs through spin relaxation and CSI measurements. The main achievements are:

• Theoretical analysis of spin diffusion and precession in partially proximitized
graphene displaying distinct spin lifetimes along three spatial directions. Mod-
elling the spin density across the sample and the expected lineshape of preces-
sion curves for various geometric and spin transport parameters.

• Development of a measurement protocol for identifying spin lifetimes in a
highly anisotropic system and characterising the dominant spin textures driving
spin relaxation within a Dyakonov-Perel mechanism.

• Demonstration of a large proximity-induced in-plane spin relaxation anisotropy
in low-symmetry graphene/PdSe2 vdW heterostructures up to room temper-
ature. Such robust in-plane anisotropy has not been observed in any prior
work.

• Demonstration of efficient control of the in-plane spin relaxation anisotropy in
the graphene/PdSe2 vdW heterostructure by an external electric field. The in-
plane anisotropy is highly gate tunable exhibiting a modulation from ζxy ≈ 12.5
to ζxy ≈ 2.
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• Development of a measurement protocol for disentangling spin currents and
spin densities generated by CSI.

• Demonstration of the possibility to generate spins with polarisation compo-
nents in three spatial directions through unconventional CSI in graphene/WTe2

heterostructures.

Previous works have demonstrated a large spin relaxation anisotropy between
in-plane and out-of-plane spins in graphene/2H-TMDC heterostructures resulting
from the out-of-plane valley-Zeeman SOC directly imprinted into graphene from the
2H-TMDC [1–3]. Graphene/2H-TMDC heterostructures may serve as spin-filtering
devices that predominantly transmit the out-of-plane spin component. However, the
in-plane relaxation remains isotropic in these heterostructures.

In contrast, the experimental data presented in Chap. 6 demonstrate that graphene/
PdSe2 heterostructures are characterised by large in-plane relaxation anisotropy
where strong in-plane persistent SOF dominates spin transport. Therefore, in-plane
spin filtering is achievable in devices based on graphene/low-symmetry TMDCs.
Moreover, the simulations performed in Chap. 5 and the experimental data presented
in Chap. 6, demonstrate that magnetic-field-free spin rotation can be achieved in de-
vices where the long spin lifetime axis is neither parallel nor perpendicular to the spin
injection direction. This is a consequence of a faster relaxation of the spin component
parallel to the short spin lifetime axis. The spin rotation angle depends strongly on
ζxy, which is highly gate-tunable, therefore, spin polarisation of transmitted spins can
be controlled by an external electric field. The possibility of in-plane spin filtering
and magnetic-field-free manipulation of spin polarisation opens pathways for new
spin-circuit architectures.

The identified direction of the persistent SOF is different for the two measured
samples presented in Chap. 6 suggesting that it likely depends on the twisting
between graphene and PdSe2. Further research is needed to address the twist an-
gle dependence . Namely, theoretical calculations of the expected spin texture in
graphene/PdSe2 should be performed, focusing on the influence of twisting and
Fermi level position similar to studies conducted for high-symmetry graphene/2H-
TMDC heterostructures [4–7]. Additional experiments exploring the carrier density
dependence would also be of interest. While our results demonstrate that carrier
density significantly modifies the anisotropy in one of our devices, the Fermi level in
the graphene/PdSe2 region was not unambiguously identified. No distinct CNP was
observed in this region, potentially because it coincides with that of pristine graphene
or due to the narrowness of the PdSe2 flake, which reduces the impact on the overall
resistance of the spin channel.

The results in Chap. 7 demonstrate that the CSI in graphene/WTe2 heterostruc-
tures, with a current along the a axis of WTe2, can generate spin-polarised carriers
with polarisation components in all three spatial directions. As a spin accumulation
with polarisation along the applied current is not allowed in the WTe2 bulk, it can
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only stem from the graphene/WTe2 interface. It likely involves the emergence of
a radial component in proximity-induced Rashba SOC, originating from twisting
[4, 5]. The radial component in graphene proximitized by semiconducting TMDCs
has been predicted to be extremely sensitive to twist angle, unintended doping, and
carrier density [5]. Therefore, systematic investigations of the dependence of spin
accumulation parallel to the current as a function of twist angle and gate voltage
are needed to understand its origin. Another important experiment that should be
conducted to understand proximity-induced spin textures in graphene/WTe2 is the
investigation of a device comprising graphene Hall-cross and a monolayer WTe2.
In the monolayer limit, bulk CSI phenomena will be absent and only the interfacial
CSI will generate spins. Finally, investigating the CSI in graphene/PdSe2 could
directly circumvent the challenges posed by semimetals as WTe2 and MoTe2, as in
this material spin absorption is shown not to affect spin dynamics.
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