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Chapter 1.

Introduction

In 2015, 196 countries signed the Paris Agreement, committing to efforts to limit the increase
in global average temperature to 1.5°C above pre-industrial levels. Over 140 countries
pledged to reach net-zero emissions by 2030 or 2040. Numerous policies have been put in
place around the world to achieve those targets. However, the implemented and planned
policies are not sufficient to meet the mitigation commitments. The commitments, in turn,
are not sufficient to limit warming to 1.5°C, the global goal for averting far more severe
consequences of climate change.

Partly due to our own failures — or, more optimistically, delays — in implementing
mitigation policies, climate impacts and adaptation strategies have moved to the forefront.
Temperatures are rising rapidly, and damages are no longer just a problem of the future.
The summer of 2024 has been the hottest on record. From a policy standpoint, addressing
climate change requires an integrated approach that considers impacts, adaptation, and
mitigation policy.

These are three incredibly broad and continuously expanding areas of research, reflecting
the scale of the challenge we face. Climate change, as an existential threat, has far-reaching
consequences that touch every aspect of (human) life. Countless other essays on impacts,
adaptation, and mitigation policy must be written; this thesis is another piece of this extra-
large puzzle. Through it, I address important gaps in the literature of these three subfields.
At the same time, I strive to open new research avenues by, whenever possible, providing
new data and demonstrating its potential to answer other research questions.

When considering the impacts of climate change on health, most studies focuses on
mortality, and, to a lesser extent, hospitalization rates. Considering subclinical outcomes
is fundamental to account for the total cost of climate change and allow for comprehensive
policy analysis. I thus look at the effects of high temperatures on four well-being indicators
in the 50+ population: fatigue, reduced appetite, irritability and difficulty sleeping. I
provide such estimates for Europe, whereas the great majority of studies so far have focused
on the United States. Europe is actually, with climate change, the fastest-warming region
in the world1.

As impacts take their toll, individuals, and governments, try to adapt in multiple ways.
Yet, quantitative studies on the effectiveness of adaptation strategies are lacking. A recent
review (Berrang-Ford et al. 2021) shows that, out of 1,628 papers on climate adaptation

1See the EEA European Climate Risk Assessment.
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reviewed, only 30 articles present primary quantitative evidence on the effectiveness of
adaptation, and only 15 articles provide quantitative estimates. The existing evidence in
the empirical economic literature is still piecemeal and confined mostly to the United States.

I address this gap by providing new empirical evidence on the protective effect of a
specific form of adaptation, Air Conditioning (AC). Papers on the mitigating role of AC for
subclinical outcomes are almost absent. Some assessments have been conducted in relation
to mortality (Sera et al. 2020). Moreover, AC ownership in Europe is far from the norm,
including in warmer regions. I consider a representative sample of the 50+ population in
Europe, an expanding portion of the population with high heat vulnerability. I consider
mediating factors, namely lifetime exposure to high temperatures, building characteristics,
health status and wealth. I then strive to provide causal estimates for the protective effect
of AC, a very challenging task which I can undertake thanks to the granular nature of our
dataset. I am able to disentangle individual exposure to temperature from regional exposure
to temperature, and thus distinguish individual vulnerability from regional adaptation.

Individuals will undoubtedly be negatively affected by climate change, particularly in the
absence of well-designed policies. Yet the population does not necessarily perceive this risk
(Capstick and Pidgeon, 2014). Being concerned about climate change is a precondition for
supporting the climate action and policies which are fundamental to tackle the climate crisis.
This is a topic where impacts spill over to policy. I look at whether in Europe individuals
more exposed to temperature anomalies are more likely to express concern about climate
change. In tandem, I look at the impact of the United Nations Climate Change Conferences
of Parties (COP meetings) on climate change concern. The goal is to study factors behind
the recent increase in climate change concern in the EU, considering both long-term, slow
moving factors - temperature anomalies - and short-term factors such as increased media
and political attention.

While similar exercises have been undertaken in the literature, I use a cross-national,
EU- wide, representative, individual survey, which allows us to take into consideration
numerous important confounding factors. I consider heterogeneity of respondents across the
right-left ideological spectrum to identify whether drivers of climate change concern differ
depending on political orientation, which, to the best of my knowledge, has not yet been
done. Alongside concern about climate change, I consider beliefs about effective government
action on the matter, a topic which is under explored in the literature.

Designing effective climate policy is fundamental, and can possibly increase confidence
among individuals on the capability of governments to coordinate and tackle the climate cri-
sis. Carbon pricing counts on most support from economists, yet, renewable-energy support
is the most frequent climate policy in practice. They often co-exist, despite microeconomic
arguments suggesting their combination brings no additional emissions reduction in the case
of cap-and-trade, while in the case of a carbon tax only potentially but at a social cost. Un-
der a renewable-energy target, a certain volume of emissions is abated in the energy sector.
Yet, this means in the case of emissions trading there is scope for higher emissions elsewhere
while staying within the emissions cap, the so-called ’waterbed effect’. Therefore, overall
emissions will not go down. Moreover, costs of meeting the cap will be higher whenever the
cheapest abatement opportunities are not in the energy sector. In the case of a carbon tax,
a renewable-energy target or subsidy might contribute to additional emissions reduction,
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if the marginal abatement cost of renewable energy is higher than the tax. But in that
case, provided the carbon tax is optimal, the marginal cost will be higher than the marginal
benefit of abatement, meaning that the extra abatement comes at a net social welfare loss.

To identify possible reasons why implementation differs from the simpler theoretical
rationale, I collect quantitative estimates of any synergistic effects in emissions reduction
between carbon pricing and renewable-energy policies in ex-ante economic modelling studies.
This is the contribution of this thesis to the field of mitigation policy. No systematic analysis
had yet been done on the matter, despite the prevalence of these policies. I consider not
only synergy in terms of emissions, but also potential welfare gains in the form of higher
consumer utility, addressing other market and government failures, innovation externalities
and environmental co-benefits. This exercises is consistent with the overarching goal of
informing climate policy by aggregating and analysing pre-existing data.

Through this thesis, I also make available EU-wide, representative, datasets, derived
from two pre-existing surveys, the Survey on Health, Ageing, and Retirement in Europe
(SHARE) and the European Social Survey (ESS). This new data allows for the study of
varied impacts of climatic variables. The main outcomes of interest pertain to health and to
political/social attitudes, respectively. The exercise is simple: I link pre-existing, publicly
available, individual level surveys with different environmental exposure variables. I build
the latter from publicly available gridded datasets of climatic variables, pollution, and floods.
To link exposure to individuals, I explore the most granular information possible on location.
I use simultaneously the regions where individuals report living in and how urbanized their
surroundings are and calculate population-weighted averages.

This strategy can, hypothetically, be used for any survey which provides such location
information. I strive to show robust analyses can be built, especially in what pertains
to climatic variables, even without information on postal codes or exact coordinates. At
the same time, I hope these essays, by demonstrating the potential of individual surveys for
climate change research, motivate data providers to make more detailed location information
available (while respecting privacy concerns). More granular location information would
reduce measurement error. Moreover, concerning the impacts of pollution, this would reduce
biases compared to the current approach.

Taken together, these essays tackle several important aspects related to climate change
and climate change policy in Europe: health impacts and adaptation strategies, evolving
public opinion and, finally, the design of mitigation policy. I create and make available new
datasets and illustrate their potential. I hope new studies will build on this work and tackle
quantitatively other, closely-related, open research questions on climate changes impacts
and adaptation.

In the next chapter, I introduce SHARE-ENV, a dataset obtained by expanding the
EU representative, individual-level, longitudinal dataset SHARE, with environmental ex-
posure information on temperature, radiation, precipitation, pollution, and flood events.
In the third chapter, I study the impacts of climate change on well-being indicators for
the 50+ population in the EU. I then consider the effectiveness of an adaptation strategy,
Air-Conditioning, in mitigating these negative effects. I do so through a first empirical
application of SHARE-ENV. In the fourth chapter, through the ESS, I look into the im-
pacts of climate change and of global political initiatives on public opinion. I consider how
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concerned with the topic individuals are in the EU and how much they trust the govern-
ment to enact effective action. In the fifth chapter, I turn to mitigation policy, focusing
on renewable-energy support and carbon pricing, specifically, conducting a meta-analysis of
the synergy between these two instruments in ex-ante economic modelling studies.
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Chapter 2.

SHARE-ENV: a dataset to advance
our knowledge of the
environment-wellbeing relationship

Abstract
Climate change interacts with other environmental stressors and vulnerability factors. Some places
and, owing to socioeconomic conditions, some people, are far more at risk. The data behind current
assessments of the environment-wellbeing nexus is coarse and regionally aggregated, when consid-
ering multiple regions/groups; or, when granular, comes from ad hoc samples with few variables.
To assess the impacts of climate change, we require data that is granular and comprehensive, both
in the variables and population studied. We build a publicly accessible dataset, the SHARE-ENV
dataset, which fulfils these criteria. We expand on EU representative, individual-level, longitudinal
data (the SHARE survey), with environmental exposure information on temperature, radiation,
precipitation, pollution, and flood events. We illustrate through four simplified multilevel linear
regressions, cross-sectional and longitudinal, how full-fledged studies can use SHARE-ENV to con-
tribute to the literature. Such studies would help assess climate impacts and could then estimate
the effectiveness and fairness of several climate adaptation policies. Other surveys can be expanded
with environmental information to unlock different research avenues.

Keywords: climate change risk, environmental impacts, climate adaptation, population
health, longitudinal data
JEL codes: I1, I31, D10, Q54

Note: The contents of this chapter have been published in Environment & Health as a joint
work with Enrica de Cian, Giacomo Pasini, Sara Pesenti and Malcolm M. Mistry.
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2.1. Introduction

The Glasgow Climate Pact adopted at the 26th United Nations Conference of Parties
(COP26) climate conference calls for an improved understanding of the geography of climate
change impacts, related adaptation needs, and response options. Climate and environmen-
tal risks affect people in different ways, depending on the context in which they live and on
their individual characteristics (see, for example, Hsiang et al. 2013 or Vona 2021).

Analyses conducted at the territorial level provide important insights into the regional di-
mensions of climate and environmental impacts, but even subnational studies do not address
how environmental risk affects the wellbeing of different groups within wider geographies
over time and across generations (Mitchell and Norman 2012). Moreover, they cannot create
the quasi-experimental settings needed to evaluate the effectiveness of adaptive behaviors.
A recent review on the climate adaptation literature underscores the lack of quantitative as-
sessments of climate adaptation (Berrang-Ford et al. 2021). Out of 1,628 papers on climate
adaptation reviewed, only 30 articles present primary quantitative evidence on the effec-
tiveness of adaptation, and only 15 articles provide quantitative estimates. At least three
reasons can explain the paucity of studies in climate adaptation evaluation: the lead time
between actions and effects; the difficulty in causally linking exposure with the outcome;
and the difficulty in measuring outcome variables. The existing evidence in the empirical
economic literature is still piecemeal and confined mostly to the United States; and, more-
over, to a few outcome and adaptation variables, namely, mortality and air-conditioning
(Barreca et al. 2016), and learning and air-conditioning (Park et al. 2020). In the epidemi-
ology field, a few studies provide conflicting evidence on the ability of air-conditioning to
reduce mortality (Sera et al. 2020, Ostro et al. 2010).

Wellbeing is a complex and contested concept (Lamb and Steinberger 2017). Health-
related dimensions that incorporate physical health and mental health, perceived and ob-
jectively measured, are, unambiguously, some of its defining dimensions. Vulnerability links
to numerous individual characteristics, among them age, gender, education, and socioeco-
nomic status, and to many health-related dimensions, such as pre-existing health conditions,
lifestyles, and awareness of risk. Individuals can act to reduce the impacts of climate change
only if they have access to safe housing, access to appropriate healthcare, and the ability to
devote resources to unforeseen expenses in times of need.

We argue that granular, individual-level, representative longitudinal survey data, can
be expanded with variables on environmental hazards, to advance the causal assessment
of both environmental impacts and adaptation interventions. This strategy can provide
the much-needed information for evaluation of climate actions and the pursuit of climate
justice (Breil et al. 2021). Longitudinal studies, following individuals over long periods, can
uncover causal relationships between exposure, vulnerability, and policy interventions and
actions. Built to represent populations of interest and providing a wide wealth of data,
these studies also hold more promise than current causal inference studies, which resort to
ad-hoc samples.

We show the potential of this strategy by expanding on the longitudinal Survey on
Health, Ageing and Retirement in Europe (SHARE), a European Union (EU)-funded ini-
tiative. The SHARE survey interviews approximately 120,000 individuals every two years
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since 2004 and is representative of 50+ EU-27 residents (plus Israel). Importantly, two spe-
cific interviews, conducted in the third and seventh waves (2008, 2016), called SHARELIFE,
reconstruct retrospective life history, providing year on year information on respondents’
life conditions, health history, healthcare use, and working lives. We expand on SHARE by
building variables on individual-specific yearly and cumulative exposure to different envi-
ronmental hazards. The result is the SHARE-ENV dataset (currently available in an online
repository). We demonstrate that these data can be used to study relationships between
environment and wellbeing, and ultimately, to advance the climate adaptation and climate
policy literatures. The data can uncover links between climate change and human health
that are usually hidden in purely regional analyses.

We use the SHARE-ENV dataset and develop several illustrative analyses as proof of
concept of its potential to shed light on the heterogeneity and ramifications of climate
change impacts. The remainder of the paper is organized as follows. Section 2 describes
the data sources and the construction of SHARE-ENV. Section 3 provides examples of
the type of relationships that can be explored with SHARE-ENV through cross-sectional
and longitudinal multilevel regressions. We consider impacts on labor productivity, whose
reduction is a well-established climate change impact, and on health and wellbeing, on
which SHARE provides extensive information. In section 4, we discuss in more detail the
advantages of SHARE-ENV which become visible through our illustrating examples. We
describe why and how full-fledged analyses based on SHARE-ENV could give substantive
contributions to the literature. In section 5, we discuss the potential of SHARE-ENV for
future research, focusing on its potential to study adaptation.

2.2. Methods: SHARE-ENV dataset

Our database combines a set of environmental hazards - extreme temperatures, solar radi-
ation exposure, heavy precipitation, average and/or high concentration of ozone, nitrogen
dioxide, and two particulate matter measurements PM2.5 and PM10 and flood events -
with a comprehensive set of variables on individual-level health, on behavioral risks and on
risk-averting behaviors at different points in life in Europe, from the SHARE database.

SHARE is a longitudinal stratified sample representative of 50+ EU-27 residents (plus
Israel). It contains approximately 120,000 individuals and 300,000 interviews (Börsch-Supan
et al. 2013). The regular panel waves (2004-2019) of SHARE follow individuals (and their
spouses) over time. Respondents are interviewed every two years. In addition, the SHARE-
LIFE modules (waves 3 and 7 in 2008 and 2016) reconstruct the retrospective life history of
respondents. These histories include key focal points, such as the age at which a person left
school, the dates when the person started and ended any given job, the dates of the onset
of any illness, and details about changes in housing circumstances and family composition.
Importantly, the retrospective accommodation models provide information on all regions
where individuals have lived throughout their lives, which we explore to build exposure
variables.
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2.2.1. Main outcomes of interest

The SHARE database contains numerous variables which can be used to characterize the
impacts of climate change on an array of morbidity types, subjective health indicators
and clinical and subclinical health outcomes. SHARE quantifies perceived health status
at the individual level, from poor to excellent. Clinical objective health indicators can be
retrieved through questions on whether an individual has ever been diagnosed or bothered
by a disease, whether he or she is taking drugs for certain illnesses, and the age of the
onset for a range of illnesses, such as heart attack, stroke, high blood pressure, asthma,
lung disease, cancer, diabetes, arthritis, Alzheimer, Parkinson, mental disorders/depression
amongst others.

Respondents provide information on up to three periods of prolonged ill health through-
out life, with a start and an end year, and what health conditions were responsible for such
periods. Questions about the severity of illness include whether they brought on negative
consequences at work, whether they limited social life and leisure activities or whether they
otherwise impacted the family negatively. From this SHARE primary data, we generate
additional health variables to facilitate the analysis of environmental factors. We describe
them in Table S3 in the Appendix.

There are also clinically measured health outcomes, some targeted to older age indi-
viduals. These include depression scores, cognitive scores for different cognitive functions,
physical health measures (difficulties with Activities of Daily Living (ADL) and difficulties
with Instrumental Activities of Daily Living (IADL), lung functioning, walking speed, grip
strength and dried blood spots).

Childhood health is considered separately. Beyond perceived childhood health status
(variable takes values from 1 to 5, excellent to poor), other questions measure possible
severity of health conditions during childhood . Respondents answer whether they had any
of a list of illnesses, of note, infectious diseases, asthma, respiratory problems other than
asthma, allergies, severe diarrhea, severe headaches, emotional problems, childhood diabetes
and heart trouble. Respondents provide information on illness onset and duration .

In addition to morbidity and health outcomes, a wide range of other individual and
household-level characteristics are available. These include, for example, quality of housing,
location of dwelling (big city, the suburbs or outskirts of a big city, a large town, a small town,
a rural area or village), type of housing situation (e.g., owner versus renter), occupation
including ISCO coding, education including ISCED codes and job conditions. Information
commonly collected in longitudinal surveys about income, wealth, material wellbeing and
migration is likewise available. Some variables of particular relevance for health outcomes
are also available, namely, variables on behavioral risks (e.g., smoking, drinking; stress levels;
parental behavioral risks). Several other research questions, outside the health/wellbeing
framework, can be tackled using the wealth of information provided by SHARE, namely
those related to labor supply and labor productivity.

2.2.2. Construction of environmental variables

To generate variables on exposure to environmental hazards we resort to high-resolution
gridded datasets and the information derived from SHARE on where individuals have lived
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in each year of their lives, from birth until last survey participation. Individual location
is provided in the retrospective accommodation modules of SHARELIFE and through the
region in which the household was located at the moment of sampling in the regular waves.
The regions are cantons in the case of Luxembourg and NUTS regions (Nomenclature of
territorial units for statistics) for the remaining EU countries, in their majority NUTS2 (see
Appendix for more details on the NUTS classifications used).

With gridded datasets of temperature, radiation, precipitation, pollutant concentrations
and emissions, and flood events, we generate, first at the grid cell level, yearly variables on
environmental hazards. From the high-resolution, daily, near-surface temperature, precip-
itation and radiation gridded-observational data E-OBS, made available by the European
Climate Assessment & Dataset (ECA&D) at 0.1° X0.1° resolution (Cornes et al. 2018), we
generate: bins of daily mean, minimum, and maximum temperature, average seasonal tem-
perature, heating degree days and cooling degree days, yearly and seasonal average radiation
and number of days with precipitation above 10 and 20 mm.

From the Dartmouth Flood Observatory (DFO) database (Brakenridge 2021) we build
variables on number of flood events and flood intensity. From the Copernicus Atmosphere
Monitoring Service (CAMS) global reanalysis (EAC4) monthly averaged fields on pollu-
tant concentration (Inness et al. 2019), we build average yearly concentration of PM2.5,
PM10, and NO2, and yearly and summer average concentration of ozone. From the Emis-
sions Database for Global Atmospheric Research (EDGAR, ver 5.0), made available by the
European Commission Joint Research Centre (JRC) (Crippa et al. 2019), we build yearly
emissions of PM2.5 and PM10. We elaborate on the choice and construction of variables
in the Appendix. We aggregate these variables from grid cells to the regions reported by
SHARE respondents, using unweighted and population-weighted means. The next maps
show average yearly bins of average temperature, specifically, the average number of days
per year where average temperature was above 27.5°C and below 0°C for each SHARE re-
gion. We show one map for the average between 1980-2009 and one for the average between
2010 and 2019:

12



(a) (b)

(c) (d)

Figure 1: Selected environmental variables: Number of average annual days with daily aver-
age temperature above 27.5°C (top) and with daily average temperature below 0° (bottom)

We merge these aggregate variables to SHARE respondents, based on yearly informa-
tion on their residence, from birth until the last SHARE wave. From yearly variables, we
construct cumulative variables, measuring exposure that had occurred from the time an
individual was born until the wave in question and in critical periods, namely childhood.
This process is summarized in Figure 2. A second version of the dataset, to be released after
additional robustness checks, provides more granular geographical information. In such a
version we divide each NUTS region into five subregions and provide population-weighted
average environmental exposure in big cities, suburbs, large towns, small towns and rural
areas of every NUTS region. This brings additional, within region, variation.
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Figure 2: SHARE-ENV construction. Environmental data available at: 1European Climate
Assessment & Dataset (ECA&D); 2Copernicus Atmosphere Monitoring Service (CAMS);
3JRC EDGAR v5.0 Global Air Pollutant Emissions; 4Dartmouth Flood Observatory (upon
request).

2.2.3. Data structure

The construction of the SHARE-ENV database is illustrated in Figure 2. The resulting
SHARE-ENV database consists of seven modules, all of which are available in an online
repository. The following table provides a short description of each of them:

Four of these modules, the individual year panel, the yearly module, the life module and
the illness during module, are longitudinal. The first module, individual year panel, refers
to yearly variables (i.e., environmental-hazard exposure in a specific year, as opposed to
cumulative exposure or averages over longer time periods). It is not merged with current-
wave information, and, instead, provides a full individual-year panel for the period from
birth until most recent participation in SHARE. This dataset can be of particular interest
when merged with other retrospective modules of SHARE, such as the jobs-episode module.
A long-term longitudinal analysis is then feasible. The second module, the yearly module,
has the same variables, but merged with wave-on-wave information. For each individual-
wave observation, we report environmental-hazard exposure in the year of that wave, in the
year before, and in the year two years before, signaled by suffixes “t0”, “t 1bf,” and “t 2bf,”
respectively. Such module only provides information on the waves in which respondents
participated (alongside the information from one year and two years immediately prior to
those waves). This module is most suited for longitudinal analysis on short-term effects,
exploiting wave on wave variation in exposure and outcomes. The life module is in all similar
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except it provides cumulative and average exposure variables instead of yearly variables, to
study cumulative effects of environmental factors.

The illness before and illness during modules include own-generated variables on illness
length and intensity. These are best suited to study, respectively, how environmental factors
might trigger/accelerate disease onset and how they might affect disease progression. In
the illness during module, variables differ between waves only for individuals for whom
the illness period intersects with the SHARE interview period. The young age module is
designed to study the impact of environmental factors during critical life periods. The job
module is designed to study outcomes related to labor supply and labor productivity, known
to be adversely affected by climate change.

Four of these modules, the individual year panel, the yearly module, the life module and
the illness during module, are longitudinal. The first module, individual year panel, refers
to yearly variables (i.e., environmental-hazard exposure in a specific year, as opposed to
cumulative exposure or averages over longer time periods). It is not merged with current-
wave information, and, instead, provides a full individual-year panel for the period from
birth until most recent participation in SHARE. This dataset can be of particular interest
when merged with other retrospective modules of SHARE, such as the jobs-episode module.
A long-term longitudinal analysis is then feasible. The second module, the yearly module,
has the same variables, but merged with wave-on-wave information. For each individual-
wave observation, we report environmental-hazard exposure in the year of that wave, in the
year before, and in the year two years before, signaled by suffixes “t0”, “t 1bf,” and “t 2bf,”
respectively. Such module only provides information on the waves in which respondents
participated (alongside the information from one year and two years immediately prior to
those waves). This module is most suited for longitudinal analysis on short-term effects,
exploiting wave on wave variation in exposure and outcomes. The life module is in all similar
except it provides cumulative and average exposure variables instead of yearly variables, to
study cumulative effects of environmental factors.

The illness before and illness during modules include own-generated variables on illness
length and intensity. These are best suited to study, respectively, how environmental factors
might trigger/accelerate disease onset and how they might affect disease progression. In
the illness during module, variables differ between waves only for individuals for whom
the illness period intersects with the SHARE interview period. The young age module is
designed to study the impact of environmental factors during critical life periods. The job
module is designed to study outcomes related to labor supply and labor productivity, known
to be adversely affected by climate change.

2.3. Illustrative analyses

We use the SHARE-ENV dataset to illustrate relationships between environmental stressors
and four types of subjective and objective outcomes. These examples use four of the seven
different modules of SHARE-ENV: the life module, the young age module, the job module
and the yearly module respectively. The exact estimation equations are listed below, as
well as the definition of the variables used. Analysis i), ii) and iii) are cross-sectional
analysis, where we keep only one observation per individual – the last wave of participation
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in SHARE unless stated otherwise -, while analysis iv) on cognitive decline explores the panel
component of the dataset. We consider individual-level confounders. All cross-sectional
analyses include country fixed effects. We estimate all regressions through Ordinary Least
Squares (OLS) except for the analysis on cognitive decline where we also resort to fixed
effects estimation. To ensure estimates are robust to heteroskedasticity, we use White
standard errors in the cross-sectional analyses and cluster at the individual level in the
panel analysis (White 1980, Stock and Watson 2008).

Health/wellbeing is one of the areas in which SHARE has a competitive advantage
vis-à-vis other surveys. Three of our illustrative analyses use such outcomes, which are
directly connected to environmental damages: i) the prevalence of breathlessness; ii) per-
ceived health status through life and iv) cognitive decline. These examples are far from an
encompassing analysis of possible research questions. Several other research questions can
be tackled by using the wealth of information provided by SHARE. We provide a quick illus-
tration, analysis iii), where we consider the effect of temperature on an outcome connected
to labor productivity: perceived comfort at one’s job. Results are summarized in Table 2
and presented in more detail in Tables A4, A5 and A6 in the Appendix.

2.3.1. The empirical model

Cross-sectional analysis

Our generic estimation equation for analysis i), ii) and iii) is a multilevel cross-sectional
linear regression between yi, an indicator of health/wellbeing outcomes observed for a given
individual i in the wave of participation in the survey, and K average environmental variables
ENV k

seq, averaged over a sequence seq of regions where the individual has lived until the
wave of participation:

yi = α + β1ENV 1
seq + ...+ βkENV k

seq + xiγ + θc

where yi is measured with selected illustrative health/wellbeing outcomes:

1. Ever experienced breathlessness (100 if yes, 0 otherwise);

2. Perceived reported health (1= poor, until 5=excellent) at different points during the
lifetime – 15 years of age, first wave of participation and last wave of participation;

3. Uncomfortable job (100 if yes, 0 otherwise).

and ENV k
seq =

1
T

∑T
t=t0

ENV k
rt, where:

ENV k
rt is the environmental variable k in year t for the smallest region r the individual

reports living in in year t, from the beginning of the relevant period (t = t0) until wave
of participation (t = T ). Our ENV k

seq variables are rolling averages, following individuals
throughout the regions they move to during their life. For these illustrative relationships,
various indicators of environmental and climate risk have been chosen in relation to the
specific outcome variable. We consider only one observation per individual. The period of
interest determines the precise sequence seq considered for the rolling averages:
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1. Episodes of breathlessness are related to average PM2.5 concentration, average number
of days with temperatures above 30°C and average number of days with temperatures
below 0°C. In this case, the sequence seq pertains to the period since birth until last
wave of participation.

2. Perceived health status is related to the average number of days with temperatures
above 30°C, the average number of days with temperatures below 0°C, and, in the case
of childhood perceived health, average radiation. When we consider childhood health,
the sequence seq pertains to the period since birth until 15 years of age. We consider
two different periods for old age health, with t0 being birth and T either the first or
the last wave of participation in SHARE.

3. Perceptions about whether one’s job is uncomfortable is related to average winter
temperatures, average summer temperatures and average radiation. In this case, t0 is
the year when the individual started the job and T is the last wave of participation
while employed.

All specifications include a vector (xi) of individual level variables, which are possible
confounders, specifically: age, household income and other measures of material depriva-
tion, whether an individual had any illness at birth, Body Mass Index (BMI), whether an
individual ever smoked, frequency with which the individual practices sports and whether
the individual’s job is uncomfortable . In the case of childhood health, we also include
indicators of parental education, childhood abuse/neglect and time spent living in urban
areas. All specifications include country-specific fixed effects, θc. In analysis iii), we demon-
strate how to assess heterogeneity across groups by interacting certain variables with our
environmental exposure variables. Specifically, we interact physicali, a binary indicator of
whether the job of individual is physically demanding, with the ENV k

seq variables (summer
and winter temperatures and radiation). We resort to the following estimation equation:

yi = α + γpphysicali + β1ENV 1
seq + β′

1physicali × ENV 1
seq

+...+ βkENV k
seq + β′

kphysicali × ENV k
seq + xiγ + θc

Panel analysis

For analysis iv), we consider the relationship between the rate of cognitive decline and the
exposure to PM2.5. This analysis illustrates two different ways to use the panel nature of
the yealy module. The first equation is estimated through pooled OLS, and includes lagged
individual level variables, which we use to isolate factors commonly related to the rate of
cognitive decline, such as general health, income, or education levels. The second equation
represents an individual fixed effects model, which we estimate through the within estimator.
We can only estimate the impact of time-varying variables, and include household income,
age, exercise frequency and a measure of depression.

We use two different estimation equations:

1[∆yit ≤ −0.15] = α + β1∆ENV 1
rt + β2∆ENV 2

rt + xit−1γ + θc
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and

∆yit = α + β1ENV 1
rt + β2ENV 2

rt + xit−1γ + ηi

where:

1[∆yit ≤ −0.15] is an indicator function taking value 100 if the annual decline in the
cognitive score yit was higher than 15% and taking value 0 otherwise;

yit is the cognitive score of respondent i, from the words list learning cognitive test;

ηi are individual fixed effects;

ENV 1
rt is the concentration of PM2.5 in region r in year t;

ENV 2
rt are heating degree days (HDD) in region r in year t.

2.3.2. Results

Having ever experienced breathlessness in one’s lifetime is positively related to average expo-
sure to pollution (concentration of fine particulate matter, PM2.5), and the relative impact
of actual exposure grows once one accounts for the relevant individual-level variables xi. A
10 µg/m3 higher daily average exposure to PM2.5 through life (an increase of approximately
2 standard deviations) is associated with a 1.9 percent point (p.p.) higher probability of
experiencing breathlessness; for comparison, having ever smoked is associated with a 3.9
p.p. higher probability of breathlessness.

We find that perceived health in childhood is positively related to exposure to more
frequent high temperatures. Such a relationship remains equally strong once we consider
the significant positive effect of average solar radiation (positively correlated with high
temperature extremes). If we consider an ordered probit model (as opposed to a liner
regression) we find the same positive associations, as measured through average marginal
effects (AME, not shown). Higher temperature and higher radiation increase the probability
of reporting excellent health and decrease the probability of reporting poor, fair or good
health (not shown). A possible channel through which frequent high temperatures might
have a positive impact on young age health is by allowing children to engage in more
activities outdoors, a behavior we do not observe.

Cumulative exposure to extreme temperatures affects one’s perceived health status dif-
ferently depending on when in one’s lifetime the question is posed. Exposure to both
extremely high and extremely low temperatures is associated with worse perceived physical
health in old age, unlike in childhood. When we consider only the information provided
in the first wave of individual interviews, only extremely low temperatures are significantly
associated with worse health. By contrast, when we consider the most recent wave, in which
individuals are considerably older (69 years old on average, 6 years older than the average
age in their first wave), only extremely high temperatures are significantly associated with
worse health status (see Supplementary Table A5). Ordered probit models, as opposed to
linear regressions, confirm these variables increase the probability of reporting poor and fair
health, and decrease the probability of reporting good, very good, or excellent health (in
terms of AME, not shown).
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We show that, for jobs which are physical, higher summer temperatures and higher
summer radiation averages are associated with a higher probability of stating that one’s job
is uncomfortable. For each additional degree in average summer temperature, individuals
working physical jobs are 0.56 (0.831-0.268) p.p. more likely to report having an uncomfort-
able job. For this same type of job, in winter, milder/less cold temperatures are associated
with a lower probability of having a job perceived as uncomfortable – each additional degree
in winter temperature is associated with a -0.43 (0.748-1.18) p.p. change in the probabil-
ity of feeling one’s job as uncomfortable. For non-physical jobs, radiation does not have a
significant effect, while a higher summer temperature reduces the probability of considering
one’s job uncomfortable.

In our analysis regarding cognitive scores, in both specifications, we consider differences
instead of levels of cognitive scores since a deterioration of from one wave to another is
expected; we are thus interested in differences in the rate of deterioration. We find that
the higher the exposure, the higher the cognitive decline. An increase of 10 µg/m3 in the
average daily exposure to PM2.5 is associated with a 3.7 p.p. increase in the probability
of showing large cognitive decline. We find a meaningful protective effect of several factors
such as better general health and educational levels – for example, having primary school
education instead of no schooling is associated with a 3.5 p.p. decrease in the probability of
high cognitive decline (see Table A4). The same 10 µg/m3 increase in PM2.5, as estimated
through the fixed effects model, is associated with an average decrease of 7 p.p. in cognitive
scores (see Table A6 in the Appendix).

2.4. Discussion

The simplified analyses above show some of the characteristics of the SHARE-ENV dataset
which full-fledged analyses can explore to give meaningful contributions to the literature.

A first characteristic is that the outcomes of analyses i), ii) and iv) on health and wellbe-
ing are not the most commonly found in the literature. Regarding the association between
health and pollutant concentration, a great part of the literature focuses on mortality (Sheri-
dan and Allen 2015). The same is true for the effects of extreme temperatures, focusing
either on mortality or hospitalization rates (Deschenes 2014). Using pre-clinical outcomes
such as breathlessness has two main advantages. The most obvious is definitional: one
can assess impacts that arise at an earlier stage. The second advantage, by comparison to
healthcare data, is minimizing sample selection. Individuals who resort to healthcare are
wealthier and sicker on average. Information on early-stage cognitive decline is especially
difficult to collect through healthcare data, as many individuals only resort to medical care
in later stages of disease progression. We find statistically significant results in the three
analyses conducted, showing associations between environmental hazards and non-acute
negative health outcomes.

The literature on the relationship between pollution and cognitive decline is more lim-
ited than that on effects of pollution or temperature on morbidity or perceived health,
though recent years have seen an increase in contributions. A recently published study
(Zare Sakhvidi et al. 2022) contributes to the literature by considering multiple pollutants,
multiple outcomes regarding cognitive capacity, and a large sample of individuals aged 45+
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in metropolitan France, which “contrasts with most available studies which compare popula-
tions with relatively high exposure with those living in rural areas or small cities”. Through
SHARE-ENV, a full-fledged analysis could likewise consider multiple pollutant and cogni-
tive measures, but with an even more extensive sample, spanning multiple EU countries
and time periods.

In fact, the simplified analysis of high cognitive decline in the previous section already
uses the multiple time periods, i.e., the panel component of the longitudinal SHARE-ENV
modules. We firstly exploit year-on-year variation on pollution concentration, finding a
significant effect of pollution concentration on the likelihood of large cognitive decline. In
that same analysis, we consider some possible risk factors for higher cognitive decline and
find, as in the literature, that higher education levels and higher level of physical activity
are protective against cognitive deterioration. It is commonly assumed in the literature
that year-on-year temperature variation is as good as random (Deschenes 2018). Variation
on pollution instead is only partly driven by as-good-as-random atmospheric conditions.
While individuals are less likely to sort into regions based on yearly variation than on
average values, we reduce this possible sorting bias by considering individual fixed effects.
We find, once more, meaningful associations between variation in PM2.5 and faster cognitive
decline, while controlling for time variation in regional and individual factors.

Individual level analysis, even if cross-sectional, has great potential to advance the lit-
erature on the impacts of pollution and temperature on health outcomes whenever we can
consider additional confounders. Important behavioral risk variables, such as whether an
individual has ever smoked, are not easily found in regionally aggregated analysis nor in
hospital admissions datasets, one of the most granular sources of data used in epidemiology
literature. Socioeconomic variables, such as household income, are also not available at the
individual level in such datasets and are often, at best, proxied by postal code indicators.
Such datasets are thus still less granular and provide fewer variables than SHARE. More-
over, instead of being publicly available, they are usually licensed on a study-by-study basis
due to their sensitive nature. The importance of these confounders is clear in analysis i),
relating exposure to pollution and breathlessness: smoking behavior and household income
are highly significant and correlated with regional level pollution. Once included, the impact
of pollution become statistically significant. Additional variables, if important confounders,
must be included to ensure unbiased estimation of effects. Even if they are not related with
the environmental variables of interest, their inclusion can reduce unexplained variance and
increase the power of the analysis.

Another advantage of using individual-level variables is to put environmental hazards
into perspective. As observed in analysis ii), the magnitude of the association between higher
temperatures/higher average solar radiation and improved childhood health is two orders of
magnitude smaller than the association between childhood health and material deprivation
(see Table S4 in Appendix). In analysis ii) we looked at three different points – childhood,
first wave of participation in the SHARE and last wave of participation. High temperatures
are associated with better health in childhood and worse health only in the last wave of
participation, when individuals are on average 69 years old. Such differences demonstrate
the importance of considering different age groups separately for assessing vulnerability and
ultimately to design adaptation policies.
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Other longitudinal surveys span a few decades of data collection as well but do not
provide detailed retrospective life histories. A particularly unique feature of the SHARE-
ENV dataset is the ability to look at very early periods of life and at cumulative variables
of exposure to hazards. Early life exposure is extremely relevant; for example, extreme
temperatures are shown to have negative impacts on birth weight, which are then related
to several negative health outcomes later in life (Deschenes et al. 2009). Disentangling the
effects of short-term and long-term exposure to extreme temperature is also fundamental,
as they have been shown to differ (Zivin et al. 2018).

Often studied climate change impacts other than reductions in wellbeing can also be
revisited through SHARE-ENV, as the analysis on job comfort shows. Reductions of labor
productivity are one of the most widely discussed climate change impacts. The empirical
literature on the topic is extensive, yet, even when at the micro-level, is not without its
issues. SHARE-ENV, given its detailed information about the sectors where individuals
work, allows studying heterogeneity of effects by sector. This differs from many micro-level
analyses which are based on ad hoc samples (for instance, considering a sample of factories)
and focus only on certain sectors, particularly agriculture or manufacturing.

The literature mostly considers aggregate measures of labor productivity, looks at one
specific component of it, or, more rarely, considers jointly the number of hours worked and
productivity during those hours together (Dasgupta et al. 2021). With SHARE-ENV, it
becomes possible to disaggregate specific mechanisms explaining why productivity is lower
in the hours worked - comfort at the job is one example, but we can also consider attitudes
towards work. It is also possible to look at channels driving the overall reduction in hours
worked, such as early retirement and illness onset.

In this quick example, we interacted exposure with whether a job is physical, finding such
driver determines how temperatures and radiation affect comfort. Through SHARE-ENV,
numerous similar heterogeneity analyses can be conducted to identify vulnerable groups.

2.5. Conclusions

The existing evidence in the empirical economic literature regarding adaptation is limited
and focused on the United States. In the epidemiology field, a few studies provide conflicting
evidence on the ability of air-conditioning to reduce mortality (Sera et al. 2020,Ostro et al.
2010). As of now, only one study (Park et al. 2020) considers the mitigating effects of AC
on learning outcomes in a quasi-experimental setting. SHARE-ENV, which provides infor-
mation on AC ownership, can be used to study the mitigating effect of AC on varied health
outcomes, encompassing dimensions of both mental and physical health. A forthcoming
paper investigates this research question in detail.

Quasi-experimental evidence on heat alert systems, another adaptation policy, could also
be expanded through SHARE-ENV. Reviewing the literature on the topic, we found only two
papers which look at the effectiveness of heat warning systems in reducing morbidity (and
22 in reducing mortality) by considering hospitalizations (Marinacci et al. 2009,Weinberger
et al. 2021). Comparatively, a study using SHARE-ENV could consider different outcomes
or consider hospitalizations while adding more confounders on behavioral risk and economic
conditions. Unlike for AC, the treatment variable must be constructed, that is, a variable on
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where and when heat alert systems were implemented and/or triggered must be built and
merged with SHARE-ENV. A similar policy which requires additional quantitative evidence
is the availability of climate refuges.

The quality of building insulation is thought to be an important and cost-effective strat-
egy for climate adaptation. Yet, again, quantitative assessments are lacking. Variables on
building stock can be merged to the SHARE-ENV dataset, such as those provided in EU-
BUCCO(Milojevic-Dupont et al. 2023). Other potential treatment variables would relate
to retrofitting policy interventions.

Other regional level adaptation measures whose effectiveness can be estimated through
SHARE-ENV are the availability of green and blue spaces. Treatment variables must be
built, yet they are easily attained through the same aggregation process we applied to
our gridded datasets. Time-varying, gridded information on land use and cover is easily
transformed into regional time-varying variables capturing the extension of public parks
and public water bodies. The literature on the effects of green spaces on mental health
generally (not as an adaptation channel specifically) is primarily qualitative. However, some
quantitative studies exist. One to which a SHARE-ENV based analysis would resemble is
Astell-Burt et al. (2014), who use the British Household Panel Survey (BHPS) and consider
the relationship between general health and green space availability through longitudinal
representative samples.

A great part of the adaptation literature focuses on econometric techniques to disen-
tangle climate and weather effects and estimate adaptation by comparing the two (Bento
et al. 2023). Yet, estimation is almost always conducted at the regional level. While some
adaptation is place-based (city-wide initiatives of climate refuges being an example), indi-
viduals greatly adapt to climate conditions. They do so physiologically and behaviorally.
In SHARE-ENV, we know when individuals move to a new region – and what tempera-
tures that region has been exposed to - as well as their cumulative life exposure to extreme
temperatures. How much individuals who recently moved to new regions are affected by
extreme temperatures compared to individuals who have always been there, can help make
inferences about the importance of behavioral and individual factors versus place-specific
infrastructure and adaptation policies.

Merging environmental information with geographically localized, individual-level, lon-
gitudinal survey data can open new research avenues. We have demonstrated that is the
case for the SHARE-survey. The wealth of variables in SHARE and its representative, ex-
tensive, EU samples, allow researchers to disentangle heterogeneity of impacts of climate
change and of effectiveness of adaptation policies. Moreover, it can help determine if poli-
cies favor specific socioeconomic groups, a crucial endeavor to design fair policies, both
national and EU-wide. SHARE-ENV can help respond to the mission of climate justice by
considering such factors. Better research on the connection between climate and health,
which SHARE-ENV unlocks, is more important than ever, as the COP28 Climate Change
Conference moves to feature a Health Day for the first time since conception.
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Chapter 3.

Heat and wellbeing in the old
continent

Abstract
Climate change is bringing abnormally high temperatures to Europe. With them comes a sub-
stantial physical and mental health burden, especially for older populations. We expand the in-
dividual longitudinal Survey on Health, Ageing and Retirement (SHARE) on the 50+ population
in Europe, with temperature exposure information from gridded datasets and derived household
location. We estimate that heat negatively affects well-being: ten extra days in a year at 31º
(an increase predicted for many European regions under current climate forecasting exercises),
without Air-Conditioning (AC), increases by 2 - 5 p.p. the probability of reporting fatigue, by 2
- 6 p.p. of reporting reduced appetite, by 2 - 4 of reporting irritability and by 1 - 3 of reporting
issues sleeping. Taking into account several possible biases in estimating the mitigating effect of
AC ownership, we find that it constitutes an effective adaptation strategy against reduced appetite
and particularly against fatigue. We do not find evidence of such protection against irritability
nor sleeping difficulties. We estimate that the effects of heat and the protection provided by AC
accrue over time. To put results in context, future research shall estimate the protective effect of
other, less energy-intensive and more equitable, adaptation strategies. Such climate adaptation
research questions can be further explored through the developed dataset.

JEL Classification: D12, O13, Q41, Q5
Keywords: Climate Adaptation, Air Conditioning, Heat, Well-being, Climate Change

Note: This chapter is joint work with Enrica de Cian.
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3.1. Introduction

Record-breaking high temperatures are now frequently making the headlines and heat ex-
posure is rising in most places. Climate change is bringing abnormally hot winters and
summers to the European old continent, the fastest-warming region in the world1. These
trends, combined with the aging of the European population, imply an accentuated vulner-
ability to heat impacts compared to other regions (Falchetta et al., 2024b). Globally, 37%
(range 20.5–76.3%) of warm-season heat-related deaths observed between 2000 and 2020
have been attributed to anthropogenic climate change (Vicedo-Cabrera et al., 2021). In
Europe, despite the growing number of heat-health action plans, the number of premature
deaths attributed to record-hot summer of 2022 remains substantial. Significant associa-
tions have also been found between rising temperatures and hospital admissions (Adéläıde
et al., 2022), mental health issues (Mullins and White 2019,Thompson et al. 2018), suicide
attempts (Burke et al., 2018), respiratory and infectious diseases (VanDaalen et al., 2022),
cognitive performance (Martin et al., 2019), criminality (Stevens et al., 2024) and broader
social conflicts (Helman and Zaitchik 2020, Hsiang et al. 2013).

Following the unprecedented temperatures experienced in Europe, Air-Conditioning
(AC) has been spreading. While recent studies examined how air-conditioning can put
pressure on the electricity load (Colelli et al., 2023) and on energy expenditure (Randazzo
et al., 2020), to what extent AC can sustain human well-being is less known, and its pro-
tective effect has mostly been assessed in relation to mortality (Barreca et al. 2016, Sera
et al. 2020). Whether AC adaptation brings benefits also in terms of sub-clinical outcomes
in Europe remains largely unexplored.

In this paper, we use a longitudinal survey augmented with climate information to
causally estimate how heat impacts the 50+ population in Europe. We look into four mea-
sures of well-being: fatigue, reduced appetite, irritability, and trouble sleeping, and evaluate
how AC ownership can mitigate the negative effects of heat on these outcomes. These are
of interest themselves but also as precursors to physical and mental health deterioration.
We focus on the effect of heat exposure over a year as opposed to acute effects. Our interest
is not on how, when an interview takes place in a hot day/week, individuals might indicate
they are more tired. Our interest instead is whether accumulated heat exposure over a cer-
tain period of time will result in worse well-being outcomes throughout old age. We believe
this is the relevant approach to draw parallels to climate change.

We transform and merge two different sources of publicly available data to obtain a
novel dataset, SHARE-ENV. Our starting points are 1) the SHARE survey, an individual
longitudinal survey on health and ageing for European residents aged 50 and above and 2)
gridded climate data. We retrieve lifetime information on the location of all houses where
each individual has lived since he was born, from the dedicated module of the SHARE survey.
By merging lifetime locations with environmental information, we are able to measure not
only present climate exposure but also lifetime exposure to different climate conditions.

We find that exposure to heat has a negative effect on well-being, measured by the four
outcome variables of fatigue, reduced appetite, irritability, and trouble in sleeping. We show
that 10 extra Cooling Degree Days (CDDs) over a year, for individuals without AC, increase

1https://www.eea.europa.eu/publications/european-climate-risk-assessment
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by 0.2 - 0.5 p.p. the probability of reporting fatigue, by 0.2 - 0.6 p.p. the probability of
reporting reduced appetite, by 0.2 - 0.4 p.p. the probability of reporting irritability and by
up to 0.3 p.p. the probability of reporting issues sleeping. An extra 10 CDDs in a year
occur when, for example, there is an extra day with 31º, i.e., with average mean temperature
exceeding 21º by 10. Current climate forecasts estimate for the majority of European regions
more than 100 extra CDDs per year by 2041-2070, even under optimistic climate scenarios.

We find AC ownership provides substantial protection against the negative effects of
heat on fatigue, regardless of the specification considered. Our IV estimates indicate that
AC provides full protection against some outcomes (fatigue and reduced appetite) and, in
fact, there might be positive effects of (moderate) heat exposure when individuals have AC
in their home. We confirm these results by restricting our sample to individuals for whom
endogeneity concerns are minimized and by using an alternative measure of heat exposure,
which considers long-standing regional climate adaptation (anomalies in CDDs).

Our paper contributes to the literature in several ways. The first contribution is to
illustrate the importance of advancements in data accessibility to study the effectiveness of
climate adaptation strategies. The proposed dataset, by combining the longitudinal personal
history of individuals with environmental information, makes it possible to trace exposure,
vulnerability, and, therefore, risk, over time and across space. We consider this paper a
demonstration of the potential of such dataset to answer research questions on adaptation.
We expect follow-up analyses building on this dataset and illustrate ways in which it can
be used.

The second contribution of this paper is to evaluate the impacts of heat and high temper-
atures on sub-clinical, well-being outcomes, which, unlike mortality, have only rarely been
considered, especially in Europe. High temperatures are associated with excess mortality
(Gasparrini et al. 2015), have negative impacts on mental health (Thompson et al. 2018),
and influence subjective well-being (Noelke et al. 2016) and life satisfaction (Barrington-
Leigh and Behzadnejad 2017). Well-being is a complex concept (Lamb and Steinberger
2017), but physical and mental health are part of its defining dimensions, and presence of
fatigue, reduced appetite, irritability, and trouble sleeping are certainly precursors of health
deterioration.

The third contribution is to provide new empirical evidence on the protective effect of a
specific form of adaptation in Europe. Papers on the mitigating role of AC for such outcomes
are almost absent. Some assessments have been conducted in relation to mortality (Sera
et al. 2020). Park et al. (2020) is the only study examining protection from AC against an
outcome other than morbidity or mortality: high school test scores. Moreover, considering
well-being outcomes is fundamental to account for the total cost of climate change and allow
for comprehensive policy analysis. We provide such estimates for Europe, whereas the great
majority of studies so far have focused on the United States. AC ownership in Europe is far
from the norm, including in warmer regions. We consider a representative sample of the 50+
population in Europe, an expanding portion of the population with high heat vulnerability.

The fourth contribution is to provide causal evidence on adaptation effectiveness, while
accounting for the potential confounding effect of other mediating factors. Numerous epi-
demiological studies have investigated the direct relationship between mortality/morbidity
and environmental stressors (such as air pollution and extreme temperatures). Nonetheless,
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the methods and the data from the biomedical science literature do not allow for causal
identification of the effect of people’s adaptive behaviours. Importantly, they are often un-
able to consider the mediating effect of socioeconomic confounders (Zivin and Neidell 2016).
We highlight there might be important omitted variable biases in non-causal estimates of
the protective effect of residential AC. Such biases are problematic whenever estimates are
used to forecast the health-burden of climate change or to estimate impacts of adaptation
policy. We propose an Instrumental Variable (IV) approach to instrument for residential
AC ownership, where we exploit individuals who have moved between regions. This goes
in the direction of paving the way for a new stream of literature on policy evaluation of
adaptation policies and actions.

The remainder of the paper is organized as follows. Section 2 summarizes the existing
literature on the effects of heat on well-being and on the protective effect of AC. Section
3 presents our dataset. Section 4 introduces our econometric approach and identification
strategy and section 5 presents our results. Section 6 concludes the paper.

3.2. Background

3.2.1. Effects of heat on well-being

There is ample evidence on the effects of heat on mortality (see Sheridan and Allen 2018 for
a review), and numerous meta-analyses are also being published, especially by the biomed-
ical literature (see, among others, Moghadamnia et al. 2017 and Hu et al. 2022). Empirical
assessments of the effects of heat on morbidity are more sparse but have increased in recent
years, and meta-analyses summarizing the existing literature have also being published (Wu
et al. 2022), mostly with a focus on hospital admissions. A 2018 review (Thompson et al.
2018) shows the literature finds heat to be associated with increased admissions due to men-
tal illness (namely, depression, bipolar disorder and schizophrenia), as well as to increased
suicide frequency. While mental health outcomes are not analogous to well-being measures,
they are related. In fact, questions about feeling fatigued or on lack of energy are part of
both depression scales and well-being scales.

Negative self-assessment of well-being can also be seen as a precursor of deterioration in
mental state and ultimately a predictor of mental illness. Mullins and White (2019) look at
self-reported mental state and find a significant negative effect of heat2. Through the same
self-reported data, they find evidence that heat impacts negatively quality of sleep, a likely
explanatory mechanism to reduced mental well-being. Thermoregulation is fundamental for
sleep and the possible sleep loss associated with climate change has been singled out as an
important health concern, especially for the elderly (see Obradovich et al. 2017). Their heat
exposure is built at the county-level and associated to respondents, but when they perform
the same analysis with state-level temperature variation, they obtain similar results (our
regions are substantially smaller than U.S. states, since we work, as we explain ahead, with
5 subregions within each NUTS2/NUTS3 region). We also consider self-reported outcomes,

2”Now thinking about your mental health, which includes stress, depression, and problems with emotions,
for how many days during the past 30 days was your mental health not good?””
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specifically on whether individuals report troubles sleeping and irritability.

Our paper is also similar to Noelke et al. (2016), who look into the effect of heat on a
well-being index, built from self-reported well-being outcomes. The underlying self-reported
outcomes include fatigue - an outcome we also look into - as well as stress and anger, which
relate to our irritability outcome. Barrington-Leigh and Behzadnejad (2017) have a similar
underlying dataset as well - an individual longitudinal survey for Canada - and consider
the effect of weather on reports of life satisfaction. The paper mostly focuses on the effects
of weather on the day of the interview, finding that worse weather leads to lower reports
of life satisfaction. While this is not the same research question, it informs our decision
to, as a robustness check, divide the period of exposure into the month of preceding the
interview - to which the questions on well-being relate - and the previous 11 months (we
include temperature exposure during the month preceding the interview, since that is the
most granular information we have about its timing). While the study is not focused on
yearly exposure, Barrington-Leigh and Behzadnejad (2017) do find that the yearly difference
between average maximum and minimum temperatures, with individual fixed effects, is
associated with lower self-reported life satisfaction.

3.2.2. Protective effects of Air-Conditioning

Most of the existing assessments on the protective effect of AC have focused on mortality
or hospital admission outcomes, and have been conducted in the United States. Ostro
et al. (2010) perform logistic regressions relating hospital admissions from California to
temperatures in the preceding days. Through separate regressions for several 25km radius
regions (buffers), they obtain an estimate for the effect of AC by doing a random effect meta-
regression on the coefficients. AC ownership is aggregated at the buffer level and thus it
captures differences in AC penetration at the regional level, as opposed to individual. Socio-
demographic characteristics were included alongside regional AC prevalence (analogous to
including interactions beyond AC in a regression setting). They find AC reduces by about
50% admissions related to cardiovascular disease.

Bobb et al. (2014) look into heat-related mortality for 79 U.S. cities. They firstly per-
form Poisson regressions of the count of daily deaths, separately for each city, and estimate
the effect of daily temperatures. They allow the coefficient of daily temperatures to change
linearly yearly. They then test whether the city-specific estimates of change (decrease) in
mortality risk are associated to the city-specific changes in AC prevalence through Bayesian
hierarchical models. They, however, do not find a statistically significant effect. Barreca
et al. (2016) consider the evolution through time in U.S. state-level heat-related mortality.
They find heat mortality reduced by 75% and attribute the decrease almost entirely to the
penetration of AC. The impact of AC is estimated through interactions of the temperature
variables with the state’s rate of residential AC prevalence. They consider also the inter-
action of temperature variables with doctors per capita and electrification and still find a
protective effect of AC.

Outside the United States, Sera et al. (2020) is the only multi-country longitudinal study
(considering Japan, US, Spain and Canada). They show that AC has had an attenuating
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effect on heat-related mortality, but that several other unidentified factors, correlated with
increases in AC penetration, account for a larger part of adaptation. They estimate reduc-
tions in mortality attributable to AC in the range of 14 to 20%. Similarly to Ostro et al.
(2010) and Bobb et al. (2014), they calculate place-specific quasi-Poisson regressions and
then aggregate estimates through a meta-regression. This is the only paper we have found
which includes estimates on Europe, though only on capital cities in Spain.

Although Mullins and White (2019) consider a self-reported outcome in investigating
the impacts of heat, they do not study AC’s mitigation potential for said variable. They
do investigate AC’s role in preventing heat related suicides and mental health hospital
admissions, but find no statistically significant effect. Burke et al. (2018), similarly, do
not find evidence that AC reduces the impact of heat on suicide. Both papers include an
interaction term, as Barreca et al. (2016). They then study differences in trends and conclude
there is no significant difference in the association between heat and suicide through time.

Our paper is most similar to Park et al. (2020), which look at high school test results
(PSATs) and at how heat affects them negatively. They consider the mitigating effect
of AC in schools, focusing on an outcome outside of mortality and morbidity, and find
that, without air conditioning, a 1 degree F hotter school reduces learning outcomes by 1
percent. The heat exposure variable of interest, is, like ours, exposure to heat accumulated
over the year preceding observation. The endogeneity concerns around the estimation of
the interaction term are also very similar; an important possible confounder is AC outside
school (AC protection elsewhere) as well as sociodemographic characteristics. As we do, they
expand the initial model (of the simple interaction between AC and heat exposure) with
interactions with the possibly meaningful confounders. Recognizing such approach is not
yet causal they provide a triple-difference estimate. We, instead, propose an Instrumental
Variable (IV) approach, as detailed in the Econometric Approach section.

3.3. Data

3.3.1. The individual survey SHARE

We use the Survey of Health, Ageing, and Retirement in Europe (SHARE), which is a
dataset on a wide range of individual-level socio-economic, demographic characteristics and
health information. SHARE is a longitudinal stratified sample representative of European
residents aged 50+ for 27 European countries and Israel. The SHARE survey interviews
approximately 120,000 individuals every two years since 2004 (wave 1). We use waves 1 to
7, which was conducted in 20173. The regular panel waves of SHARE follow individuals
(respondents and their spouses) over time. In addition, two specific interviews, conducted
in the third and seventh waves (2008/2009 and 2017), called SHARELIFE, reconstruct
retrospective life history, providing year on year information on respondents’ life conditions,
health history, healthcare use, and working lives. They include information on every house
where the individual has lived since they were born, namely their region and the degree of

3Wave 8 conducted in 2019 has not been considered in this study since no detailed location information
is available.
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urbanization of their surrounding area4.

Well-being measures

The SHARE database contains numerous variables that can be used to characterize the
impacts of climate change on an array of morbidity types, subjective health indicators
and clinical and subclinical health outcomes. We consider four self-reported outcomes -
fatigue, reduced appetite, irritability and issues sleeping - for which there is evidence, in
the clinical literature, of negative impacts due to exposure to excess heat; see, for example,
Gonzàlez-Alonso et al. (1999), Richardson et al. (2018), Anderson (2001) and Obradovich
et al. (2017), respectively. Below we report the explicit questions that are posed to those
being interviewed:

1. Fatigue: In the last month, have you had too little energy to do the things you wanted
to do? (No=0, Yes=100)

2. Reduced appetite: What has your appetite been like? (No diminution in desire for
food=0, Diminution in desire for food=100)

3. Irritability: Have you been irritable recently? (No=0, Yes=100)

4. Issues Sleeping: Have you had trouble sleeping recently? (No=0, Yes=100)

Table 1 summarizes the descriptive statistics for the key variables used in this paper.
Individuals report fatigue and trouble sleeping on more than 30% of answers, while they
report feeling irritable for 25% and having reduced appetite only for 9%. In 14% of answers,
individuals had been hospitalized at least once over the preceding 12 months. On average,
they rate themselves as 3.1 health-wise, which is coded from 1 (poor health) until 5 (excellent
health). Considering all waves, between 20 and 30% individuals change status between two
consecutive waves, i.e., they either start reporting a negative state or stop reporting a
negative state. There is considerable variation in the outcomes considered.

Air conditioning

Air conditioning (AC) is a binary variable that takes value 1 in case the household possesses
an air conditioner, 0 otherwise. Information on whether a household owns AC in their main
residence is reported in waves 1 (2004) and 2 (2006/2007), but not in the subsequent waves.
When we consider the 11 countries for which there is AC information on both waves, AC
ownership is 11% in both wave 1 and wave 2, hinting that at least for the 50+ population,
the penetration of AC was not yet significantly increasing at the time. According to the
European Environmental Agency, in 2010, household ownership of AC was 14%, having
increased to 20% by 20195. On average, today, this share has increased above 30% (Falchetta
et al., 2024a).

Out of the final individuals in our sample, 9,861 individuals never have AC throughout
the period and 1,801 individuals always have AC. Only 49 individuals change their AC

4In our analysis we require information at wave 1 or 2 in order to construct AC availability, as well as
detailed regional information, which restricts our analysis to 12 countries instead of 27.

5https://www.eea.europa.eu/publications/cooling-buildings-sustainably-in-europe
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status between wave 1 and wave 2. The AC ownership rate is 13% for the responses used
in our analysis.

Figure 1 map the percentage of individuals with AC in wave 2 for each of the NUTS1
region of SHARE. As expected, they are mostly located in southern Europe, though high
prevalence rates are also observed in Nordic countries. We do not have information on the
type of air conditioner, nor whether they can also be used as electric heater in winter time.
This could well be the case in countries like Sweden and Norway, which have a prevailing
share of electricity as heating source, and a relatively high share of AC despite the low value
of CDDs (see Table A3).

Figure 1: AC Ownership in SHARE survey weighted with SHARE cross-sectional weights.
Only regions for which there are at least 10 observations are plotted
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3.3.2. Heat exposure

This study builds upon the SHARE-ENV dataset (Midões et al. 2024), which expands on
SHARE by creating variables on individual-specific yearly and cumulative exposure to differ-
ent environmental and meteorological indicators. SHARE-ENV combines a high-resolution
gridded dataset of daily meteorological variables over Europe, E-OBS, with information on
where individuals have lived in each year of their lives, from birth until last survey partic-
ipation, from the retrospective accommodation modules of SHARELIFE and the regular
wave6.

The E-OBS is a daily gridded observational dataset of daily meteorological variables
over Europe. It resorts to data collected from the meteorological station network of the
European Climate Assessment & Dataset (ECA&D). It has a geographic resolution of 0.1
degrees, which means that each grid cell is roughly the size of 10 kilometers by 10 kilometers7.
From gridded daily datasets of temperature we build bins of maximum temperature (i.e.,
number of days per month where the maximum temperature exceeds 30ºC) and Cooling
Degree Days (CDDs), the main exposure variable used throughout this paper.

Cooling Degree Days (CDDs) is a measure of the need for indoor cooling. Degree-
days have been routinely used by building designers and engineers to estimate indoor space
cooling energy consumption and by policy makers and researchers for forecasting energy
demand, consumption patterns and associated carbon emissions. This is partly rooted in
their simplicity but yet powerful capability to represent a relationship between climate and
cooling or heating requirements. We use the EUROSTAT definition of CDDs, where 24ºC is
considered the temperature threshold above which indoor cooling is required8. Specifically,
in a given day d where the mean temperature is above 24ºC, a degree day is the difference
from the mean temperature to 21ºC. For example, a day with a mean temperature of 27ºC
registers 6 CDDs. A day with a mean temperature of 22ºC, or with any mean temperature
below 24ºC, registers 0 CDDs:

CDDd = (TAV Gd − 21) ∗ 1[TAV Gd ≥ 24]

Degree-days are defined as the monthly or annual sum of the difference between a base
temperature and daily mean outdoor air temperature. We aggregate daily CDDs to monthly
CDDs by summing daily CDDs for each month.

CDDm =
d=M∑
d=1

CDDd

where M is the last day of the month, M ∈ [28, 29, 30, 31].
Heating Degree Days, which we include as a control variable, are defined in a similar

way, with the EUROSTAT threshold set at 15ºC:
6The regions are cantons in the case of Luxembourg and NUTS regions (Nomenclature of territorial units

for statistics) for the remaining EU countries, in their majority NUTS2 (see the Appendix in Midões et al.
(2024) for more details).

710km x 10km at the equator
8https://ec.europa.eu/eurostat/cache/metadata/en/nrg_chdd_esms.htm
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HDDd = (18− TAV Gd) ∗ 1[TAV Gd ≤ 15]

HDDm =
d=M∑
d=1

HDDd

The effect on indoor heat of the same level of atmospheric heat will depend on factors
such as urban planning and building insulation. Regions whose climate is warmer might
have long standing climate adapted street and building structure (building orientation and
materials, street organization, to name a few examples). In order to account for these region-
specific characteristics, we consider as a third exposure variable the anomaly in CDDs, which
is the difference between the value of CDDs and the 30-year average CDDs in that same
region.

Regional aggregation

Resorting to the Degree of Urbanization DEGURBA methodology (the EU/OECD standard
for urbanization classification), we classify each gridcell from the monthly CDDs/HDDs as
being either part of a city, of towns and suburbs, or of a rural area. Using a historical annual
population 0.1º gridded dataset9, we compute for each SHARE region-DEGURBA region
pair a population-weighted average of the gridded monthly CDDs. Each SHARE region
thus has three sub-regions, for which we construct population-weighted average monthly
CDDs.

With estimated country-specific weights, we then transform the averages of SHARE
region-DEGURBA regions into averages for the five regions indicated by SHARE respon-
dents. Specifically, individuals report they live in one of the following: i) a big city; ii)
the suburbs of a big city; iii) a large town; iv) a small town or v) a rural area or village.
Appendix B1. gives full details on how the we map the three categories of DEGURBA into
the five urbanization categories of SHARE. We merge on interview month, SHARE region,
and urbanization category, the monthly CDDs and HDDs. We then obtain yearly CDDs
(and HDDs) by summing the CDDs (and HDDs) in the 12 months preceding the month of
the interview of each individual:

CDD =
12∑

m=1

CDDm

HDD =
12∑

m=1

HDDm

An analogous process is done for the alternative exposure variables (CDD anomalies
and bin variables). For historical exposure, we know the SHARE region and urbanization
category of the region where individuals lived for each year of their lives. We thus construct
yearly CDDs and merge based on the year of the interview.

9ISIMIP Population, available at: https://data.isimip.org/datasets/fc1e4a06-bd4a-4044-b8e6-
46ce86346489/
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We identify a household’s SHARE region through the NUTS regions reported in the
retrospective accommodation waves 3 and 7, or through the NUTS in which the household
was located at the moment of sampling in the regular waves10. The latter is reported in the
housing modules of the regular panel waves.

3.3.3. Building age

We resort to the JRC LUISA Reference Scenario 2016 (Baranzelli and Ronchi 2011) for
constructing age of buildings at the SHARE region level. The JRC provides data on the
percentage of buldings built before 1950 at the city and Functional Urban Area (FUA)
level, depending on the country, based on National Census and building stock statistics. We
overlay the cities and the FUA with SHARE regions and construct area-weighted averages
of the percentage of buildings built before 1950. We do not differentiate between level of
urbanization, i.e., the variable constructed is constant within the SHARE region.

3.3.4. Summary statistics

House ownership is quite widespread in Europe particularly for those aged 50+, and 74%
of households own the dwelling in which they live. The average age of the respondents,
66.5 years, reflects the design of the survey. Average househoold income in euros PPP is
approximately 32,900. GDP per capita, at the NUTS level, is on average 27,513 euros. On
average, individuals live in regions where 32% of buildings were built before 1950.

10The NUTS regions indicated are a mix of NUTS2 and NUTS3 regions (with the exception of Germany
and Belgium which report NUTS1 regions only). For Luxembourg, cantons are reported instead of NUTS
regions
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Table 1: Summary statistics

N mean sd min max

AC 46,816 0.134 0.341 0 1
Fatigue 46,816 33.81 47.31 0 100
Reduced appetite 42,344 8.877 28.44 0 100
Irritability 46,771 25.09 43.35 0 100
Trouble sleeping 46,799 32.59 46.87 0 100
Health (perceived) 40,682 3.099 1.077 1 5
Hospitalized in the last 12 months 46,800 14.40 35.11 0 100
Household income 46,816 32900 42900 0 4,242,000
Household networth 46,816 252900 368,900 -479,000 31,210,000
Age 46,816 66.47 9.855 50 104
Education 46,816 0.613 0.487 0 1
Owner 46,816 0.736 0.441 0 1
GDPpc 46,816 27,513 11,948 5,000 93,800
Historical individual CDD 46,815 72.7 116 0 633.3
CDD 46,816 102.4 154.5 0 642.6
HDD 46,816 2638.2 1003.3 0 6219.2
CDD anomalies 46,816 23.6 72.8 -478.9 382
Bins (# days ≥ 30 ) 46,816 22.1 25.5 0 110.7
% buildings built before 1950 38,901 0.319 0.158 0.0243 0.654

Notes: Household income refers to the SHARE imputed variable thinc, which sums the in-
come across all components, converted to euros PPP (purchasing power parity). Household
networth refers to the SHARE imputed variable hnetw, converted to euros PPP. Household
education level has been coded as 1 if the highest educated member of the household has at
least upper secondary education, as 0 otherwise. GDP per capita comes from EUROSTAT
series [nama 10r 3gdp].

Figure 2 shows the gridded exposure to CDDs and bins of maximum temperature in
waves 1 and 7. The well-known North-South gradient is evident for both CDDs and days
with daily average temperature above 30 degrees Celsius. Between the two waves, 2004 and
2017, 50% of the EU NUTS regions have experienced an increase in CDDs greater than 10.
In about 35% (10%) of them, CDDs have increases by more than 18% (58%).
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Figure 2: Exposure variables

3.4. Econometric approach

The main objective of our empirical analysis is to investigate the effectiveness of AC at
mitigating the impacts of extreme temperatures on a number of selected health outcomes.
We model in a linear way the relationship between high temperatures experienced by each
individual i at a given point in time t, CDDit, and well-being outcomes for each individual
at time t, yit:

yit = β1CDDit + xitγ + zrtϕ+ ηi + ϵit (3..1)

i: individual; t: year; r: region where individual i is living at time t.
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yit are well-being outcomes, specifically fatigue, reduced appetite, irritability and diffi-
culty sleeping (’Yes’=100,’No’=0)

CDDit is the number of CDDs over the last 12 months preceding the month of the
interview in the area where the individual i has lived

xit is a vector of individual-level, time-varying controls, specifically, household income,
age, age2, Heating Degree Days (HDDs), and month of interview

zrt is a vector of region-level, time-varying controls, namely GDP per capita.

Our identification strategy relies on the randomness of interannual weather variation
by region and year. Exploiting the randomness of interannual variation in weather for
identification is routinely done in the literature (e.g., Barreca et al., 2016, Deschenes, 2018).
We include individual-level fixed effects in all specifications considered and cluster standard
errors at the individual level.

The most direct way to obtain an estimate of how AC can protect against heat is to add
an interaction of our heat exposure measure with AC:

yit = β1CDDit + β2CDDit × ACi + xitγ + zrtϕ+ ηi + ϵit (3..2)

ACi is a dummy variable:

1: individual has AC at the beginning of the period.

0: individual does not have AC at the beginning of the period.

We expect the coefficient β2 to be negative, reflecting the protective effect of AC. Given
there is only AC information on waves 1 and waves 2, we use as a variable AC ownership
in the first period of participation in SHARE.

In that short time window, only 49 individuals changed AC status, which does not allow
us to rely on within-individual variation for identification of the effect of AC. Moreover, this
information limitation implies that we can only consider individuals who participated in
wave 1 and/or wave 2. Yet, we do not use only waves 1 and 2, but also subsequent waves in
which those individuals participated. While it is true that between 2004 and 2007 there were
very few changes in AC ownership, AC penetration in Europe has increased since. Though
this trend accelerated mainly after 2019 (see section 3.3.1.), we cannot be sure that the AC
status of individuals did not change until wave 7, which takes place in 2017. In our main
specification, we drop waves if the individual has since changed house. In fact, in our final
sample, the result is only 33% of observations are from waves after wave 2 - 14% in wave
4, 9% in wave 5, 10% in wave 6 and only 0.2% in wave 7. It is not likely for individuals to
remove AC from their accommodation. As an additional robustness check, for individuals
who do not have AC, we consider their answers only until wave 4 even if they did not move
house, as they might have installed AC since.

Our primary econometric problem is selection into treatment, i.e., selection into AC,
which, if correlated with heat impacts, is a source of omitted variable bias. Considerable
underestimation of the effect of AC is likely, since individuals who are most affected by
heat are more likely to select into AC ownership (Table 2, second column). Our control
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group, thus, will be composed of individuals who are less vulnerable to heat, making our
counterfactual lower than it should be. This issue of underestimation from sample selection
is common across studies of the effectiveness of protective behaviours. For an illustrative
example, pertaining to flood damages and the adoption of mitigation behaviours, see En-
dendijk et al. (2023).

Vulnerability to heat is however unobservable. To address the issue, we propose an
Instrumental Variable (IV) approach. We instrument AC ownership exploiting individuals
who move regions and focus on a subsample for which the exclusion restriction is more likely
to hold. There are, nonetheless, other factors influencing AC ownership whose omission
could lead to instead some overestimation of the impacts of heat, as described in Table 3 (first
column). These include income, past exposure to heat, house ownership, and education.
Income is highly associated with AC ownership (De Cian et al., 2019). But income is
also associated with being able to access better healthcare, including preventive healthcare
(Mielck et al., 2009). Past exposure to heat, as described by the climate conditions in the
area an individual lives in, can also be a central determinant of AC ownership. Yet, it also
leads to biological adaptation, where an individual becomes better equipped to deal with
high temperatures physiologically (Dong et al., 2022). Home owners are more likely to have
AC, but also to invest in other ways in thermal comfort (Ameli and Brandt, 2015). Finally,
more educated individuals might choose to purchase AC to defend against heat, and also to
adopt behaviours which reduce their exposure and protect their health (Terraneo, 2015). We
introduce additional modifier variables which could induce positive bias (an overestimation
of the protective effect of AC) in our basic model described in Equation (2).

Other adaptation measures might be responsible for biases, but of uncertain direction
(Table 2, third column). Fans, house insulation and other adaptation measures will lead to
an over or an underestimation of the protective effect of AC, depending on whether they
are, respectively, complements or substitutes to AC.

Table 2: Examples of possibly meaningful omitted variables

+ (Overestimation) - (Underestimation) Uncertain direction

Higher income Higher vulnerability Fans
Past exposure House insulation
House ownership Other adaptation measures
Higher education

3.4.1. Augmented model

A first strategy to address these potential sources of bias would be to add all omitted
variables in the regression. Park et al. (2020) when estimating the mitigating potential
of AC, likewise, expand their model with additional interactions. However, how well an
individual handles heat, i.e., his heat vulnerability, is unobservable. Concerning the variables
in Table 3, column 3, their impact is uncertain and data are not available. We focus on the
factors in column 1, which could lead to an overestimation of the effect of AC.
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We firstly confirm that the variables listed in the first column of Table 2 influence the
decision of a household to adopt AC. We estimate a linear probability model with AC
(No=0, Yes=1) as dependent variable. We exploit variation across individuals. We use one
observation per individual from either wave 2 or, when no AC answer exists in wave 2, from
wave 1:

ACi = β1owni + β2incomei + β3edui + β4CDDi + β5sizei+

ak + γc + ρdatei

c: country of region r.

owni: indicator of whether the individual owns their house (1=Yes, 0=No)

incomei: household income at first wave of participation in SHARE

edui: indicator of whether the most educated individual in the household has at least
upper secondary education (1=Yes, 0=No)

CDDi :
∑Tm−1

t=tb
CDDi,t

(Tm−1−tb)
past average exposure to heat of individual i, measured by the

average annual CDDs experienced from birth (tb) until the year before the wave of
interview (Tm − 1)

sizei: number of individuals in the household

ak: area of urbanization fixed effects (1:big city, 2:suburbs, 3:large town, 4:small town,
5:rural area, 999: undefined.)

datei: date of the interview (time trend, expressing the association between having AC
and the interview taking place one day later)

Table A5 in the Appendix shows our results. We find, as in the literature, that income
and home ownership are positively related with AC ownership, as are higher levels of edu-
cation. Regarding heat exposure, we find that higher average exposure to CDD through life
is positively associated with AC ownership. The augmented model, expressed in Equation
(3), adds to Equation (2) these individual-level modifiers we identified:

yit = β1CDDit + β2CDDit × ACi + β4CDDit × ownit0+

β5CDDit × incomeit0 + β3CDDit × edui + β6CDDit × CDDit−1+

xitγ + zrtϕ+ ηi + ϵit (3..3)

where:

CDDit−1 =
∑(Tm−1)

t=tb
CDDi,t

((Tm−1)−tb)
is the past average exposure to heat of individual i, measured

by the average annual CDDs experienced from birth (tb) until the year before the wave of
interview (Tm − 1);
t = t0 is the year preceding first participation in the SHARE normal waves.

Our expectation is for the coefficient β2 from the augmented model in Equation (3) to
be smaller compared to the basic model of Equation (2).
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We also consider whether AC still has an attenuating effect once we explicitly consider
interactions of heat exposure with region-specific linear and quadratic trends. While in-
tuitively, these could represent a measure of regional adaptation, they also partly capture
individual adaptation, particularly physiological adaptation. In such a model, we see AC as
a proxy of behavioural adaptation. Since other individual confounders remain, we run anal-
ysis with interactions with both individual confounders and region-specific trends, adding
region-specific trend interactions to Equation (3), ρr × t:

yit = β1CDDit + β2CDDit × ACi + β4CDDit × ownit0+

β5CDDit × incomeit0 + β3CDDit × edui + β6CDDit × CDDit−1 + βrCDDit × ρr × t+

xitγ + zrtϕ+ ηi + ϵit
(3..4)

This should give a lower bound of the protective effect of AC, since we address only
possible sources of overestimation.

3.4.2. Instrumental variable approach

The previous estimate of the protective effect of AC cannot be considered causal. We cannot
fully augment our model since we cannot control for unobserved modifiers, such as insulation
and fans, nor for unobservable modifiers, such as vulnerability to heat. Park et al. (2020),
after expanding their model with additional interactions, take a triple-difference approach.
We take an Instrument Variable (IV) approach, and choose as instrument a variable that
is related to AC ownership, but not to the other unobserved and unobservable individual-
specific mitigating factors.

In search for a causal estimate, we propose an IV that exploits individuals who have
moved across regions. Whether an individual lives in a house with AC, especially in Europe
at the time these answers were recorded, also depends on the availability of houses with AC
in the region. For individuals who have moved to a new region, their individual exposure
to past high temperatures - possibly affecting biological adaptation and behaviours - differs
from the new region’s exposure to past high temperatures. It is the individual exposure
which determines individual physiological/behavioural ”readiness” to handle extreme tem-
peratures, but it is only the region’s exposure to past high temperatures which determines
regional-level supply of houses with AC.

We choose as an instrument a determinant of AC prevalence in the region where the
individual i currently lives, namely the 1-year-lagged CDD average in that region, CDDrt−1:
where

CDDrt−1 =

∑(Tm−1)
t=t0

CDDr,t

((t− 1)− t0)

is the lifetime average heat exposure of region r, measured by the average annual CDDs
experienced in region r since birth (t0) and until the year before he moved to his current
region of residence (Tm). We add as a control the 1-year-lagged CDD average experienced
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by the individual, CDDit−1, where:

CDDit−1 =

∑(Tm−1)
t=t0

CDDi,t

((t− 1)− t0)

is the lifetime average heat exposure of individual i, measured by the average annual CDDs
experienced from birth (t0) until the year before the wave of interview (Tm − 1). These
two variables only differ from each other for individuals who have moved at some point
in their lives. Identification relies on the regional 1-year-lagged CDD average CDDrt−1

being conditionally (on the individual CDD average CDDit−1) exogenous. Both averages
are taken over the entire life of the individual (or for the maximum number of years of their
life for which we have location information).

We use a two-stage least squares (2SLS) approach and model the interaction of ACi with
CDDit in a first-stage regression as follows:

CDDit × ACi = ρ0CDDit × CDDrt−1 + ρ1CDDit+ (3..5)

ρ2CDDit × CDDit−1 + ρ3CDDit−1 + xitλ+ xrtθ + ωi + vit

Our final estimation equation thus reads as follows:

yit = β1CDDit + β2CDDit × ACi+ (3..6)

β3CDDit × CDDit−1 + β4CDDit−1 + xitγ + xrtϕ+ ηi + ϵit

Importantly, we are not exploiting mainly individuals who moved during our window
of observation, but, instead, those who have moved at any point during their lives. The
relevance of the instrument is widely supported by other modelling exercises, which take
long-term averages of previous temperatures as predictors of AC prevalence. In our own
model of AC ownership, the regional average CDD is statistically significant (p-value=0.000)
for AC ownership when controlling for individual exposure and country-specific time trends
(see Table A5).

Exclusion restriction

Since there is the risk that, after a certain age, individuals move because of temperatures
- choosing a retirement location due to weather - we restrict our IV sample to individuals
who moved while in employment and before 60 years of age.

Another threat to exogeneity would come from the regional CDD average affecting other
strategies of regional adaptation. Individual adaptation is not a concern, since we explicitly
add such a control. We believe there have been very few regional adaptation measures which
could have safeguarded individuals from the impacts of heat. Following the 2003 heatwave,
a few countries implemented heat adaptation plans and heat warning systems between 2004
and and 2010. Green areas have also changed over time, but changes are quite slow and
changes in surface temperature are captured by our exposure variable itself, which does also
disaggregate regions by their level of urbanization. The type of buildings might, however,
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affect insulation and thus the effects of higher outdoor temperatures. We add to the IV
model an interaction of temperature exposure with the percentage of buildings built before
1950 in each NUTS2/NUTS3 region (buildingr). The rationale is that the type of buildings
in a region (and thus, their insulation ability) has been mostly driven by the historical period
in which they were built and the type of construction taking place at the time. The final
estimation equation at the second-stage thus includes an additional interaction variable:

yit = β1CDDit + β2CDDit × ACi+ (3..7)

β3CDDit × CDDit−1 + β4CDDit−1 + β5CDDit × buildingr+

xitγ + xrtϕ+ ηi + ϵit
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3.5. Results

3.5.1. The effects of heat and the protection awarded by Air-
Conditioning

We firstly examine the impact of heat (in terms of estimated marginal effect of an extra
CDD) on the prevalence of fatigue, reduced appetite, irritability, and trouble sleeping with-
out considering AC ownership. We thus use the full (50+) SHARE sample, which contains
many more individuals than when we require reporting AC information (specifically, we
can include individuals who joined the survey after wave 2 for which no AC information
exists). We find evidence of a strong association between heat and higher prevalence of all
the negative states but trouble sleeping (Table A4). Note that our main variables of interest
are binary variables and yet our main specifications are linear. This is for two main rea-
sons: the first, to consider individual fixed effects; and the second, because although linear
probability model are necessarily misspecified, they yield similar average marginal effects
to probit or logit models (averaged across the distribution of the covariates) (Wooldridge,
2010). We confirm, as Table A4 and Figure 2 show, that the estimated marginal effects
are very similar when using instead the (Mundlak) probit specification, i.e., a pooled probit
model with averages of the time-varying covariates (Mundlak, 1978).

We find evidence that one extra CDD increases the probability of feeling fatigued by
0.005 percentage points (p.p.), the probability of experiencing reduced appetite by 0.0234
percentage points, and the probability of feeling irritable by 0.0135 percentage points. This
means that, an extra day at 31º, which corresponds to 10 extra CDDs, brings an increase
in the probability of reporting each of the states from 0.05 p.p. for fatigue to 0.234 p.p.
for reduced appetite. A rise in CDDs by 100 - a value that ha been experienced by some
EU regions between 2004 and 2017 - leads to more significant numbers, from 0.5 p.p. to
2.3 p.p. for fatigue and reduced appetite and 1.35 for irritability. The probability of being
fatigued, having reduced appetite, or being irritable, at mean values of the covariates in the
full sample is 30%, 9% , and 26% respectively.

When the effect of heat is estimated on the sub-sample of individuals with AC informa-
tion (Table 4), we find that, for individuals who do not own AC, heat is always associated
with higher prevalence of all the negative states, in this case, also trouble sleeping. An extra
day at 31º, i.e., 10 extra CDDs, bring an increase between 0.1 p.p. (trouble sleeping) and 0.2
p.p. (reduced appetite) in the probability of reporting each of the states. The probability of
being fatigued, having reduced appetite, being irritable, or having trouble sleeping at mean
values of the covariates in the reduced sample is 30%, 7% , 25%, and 32% respectively.

Our results for fatigue and irritability echo in sign and magnitude Noelke et al. (2016)’s
results on temperature and subjective well-being for American residents. Baylis (2020)
looks at the relationship between social media language content and heat. They consider
a metric of aggressive profanity intended to capture the association between expressed ver-
bal aggression and temperature. They find an increase in the percentage of tweets with
aggressive profane content when temperature rises above 30 . Hou et al. (2023) find a
significant statistical association between six symptoms of depressions (feeling frustrated,
nervous, hopeless, perceiving life as difficult or meaningless) and days with temperature
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above 30 degree Celsius across 25 provincial administrative units in China. Our results
are also consistent with (Mullins and White, 2019), which consider mental health outcomes
of different severity, including self-reported mental health in relation to stress, depression,
and problems with emotions. Taken together, our results corroborate the robust evidence
between high temperatures and well-being related outcomes.

Individuals who own AC (Table 4, Columns 1-4) experience considerably smaller effects.
AC appears to fully cancel the negative effects of CDD on fatigue and difficulty sleeping
and partly for reduced appetite. If we consider only waves 1 through 4 for individuals who
do not own AC - to minimize concerns on AC status changing -, results are qualitatively
and quantitatively similar (not shown). Figure 2 compares how the average marginal effects
of heat change with AC across the (Mundlak) probit specification and the fixed effects. We
find once more similar results across the linear and the non-linear specification, this time in
what regards the protective effects of AC. No impact is found on the outcome of irritability,
a result that aligns with Mullins and White (2019), who measure hospitalization due to
mental health. It is in contrast with Hou et al. (2023), who consider a mental health score,
but the effect of short-term temperatures instead.

Under our augmented model (Table 4, Columns 5-8), as expected, we find smaller pro-
tective effects of AC, but still significant for fatigue and reduced appetite. In this model,
lifetime exposure to CDD is associated with lower effects of heat (see negative coefficient
on CDD × CDDit−1), possibly highlighting individual adaptation and potentially regional
adaptation through mechanisms other than AC. When we add interactions with region-
specific trends, we still find a significant protective effect of AC but only for fatigue (see
Tables A9 through A12).

The IV specification’s impact estimates of heat are bigger in magnitude (between 0.2
and 0.7 p.p. for 10 additional CDDs) and so is the protective effect of AC for fatigue and
reduced appetite. An extra day at 31º (10 extra CDDs), bring an increase between 0.2 p.p.
(irritability) and 0.6 p.p. (reduced appetite) in the probability of reporting each of the states.
AC appears to provide protection against reduced appetite and particularly against fatigue,
allowing individuals to feel tired less often when experiencing moderate heat. AC does not
seem to, however, ameliorate individuals’ troubles at sleeping and irritability, as previously
demonstrated by Mullins and White (2019). Considering that sleeping deprivation strongly
correlates with mental health (Lõhmus 2018), the evidence for significant residual impacts,
net of AC private adaptation, call for more research on alternative adaptation measures.
Results from the first-stage regression match the expectations of a strong and positive
association between our instrument and the interaction of heat with AC exposure (see
Table A6). In our model of AC ownership, likewise, the regional average temperature
is statistically significant when controlling for individual average exposure and country-
specific time trends (see Table A5). Based on Montiel-Pflueger (Olea and Pflueger, 2013)
the instrument is not overtly strong: we reject at the 5% level that the IV bias is above
30% of the worst case scenario, but not that is above 20% (see Table A7).

For the IV estimates we present results considering only individuals who moved to their
current region during their working lives. The concern is that otherwise, some individuals -
those less vulnerable to heat - might choose to move to warmer regions and thus select into
AC ownership, resulting in an overestimation of AC’s protection (the opposite situation to
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the simple FE, where it is the most vulnerable who select into AC, leading to underestima-
tion). When we consider the full sample for our IV we do indeed find a higher protective
effect of AC (see Table A8). This is consistent with our sample restriction in fact reduc-
ing this source of endogeneity. Table 3 reports the average marginal protective effect of
AC, computed as the average difference in the probability of each given outcome to occur,
without and with AC.

Table 3: Average Marginal Effect of AC (in p.p.)

O1 O2 O3 O4
BAS -2.1656*** -1.670*** -0.3133 -1.3679*
AUG -1.4834* -0.9727* 0.0273 -0.6365
IV -10.1067* -5.2125* -2.1171 -0.9536
Notes: O1=Fatigue; O2=Reduced appetite; O3=Irritability;
O4=Trouble sleeping; No=0, Yes=100. Average Marginal Effects are
the average difference in predicted probability when AC=0 and AC=1
from the models in Table 4. Predicted probabilities were censored into
the 0-1 range. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

46



T
ab

le
4:

M
ai
n
re
su
lt
s

B
a
si
c

A
u
g
m
en

te
d

IV
(w

o
rk
in
g
li
fe

m
o
v
er
s)

(O
1
)

(O
2
)

(O
3
)

(O
4
)

(O
1
)

(O
2
)

(O
3
)

(O
4
)

(O
1
)

(O
2
)

(O
3
)

(O
4
)

C
D
D

0
.0
2
1
1
*
*
*

0
.0
2
4
0
*
*
*

0
.0
2
1
2
*
*
*

0
.0
1
2
2
*
*

0
.0
4
8
4
*
*
*

0
.0
4
0
7
*
*
*

0
.0
5
0
5
*
*
*

0
.0
3
3
6
*
*
*

0
.0
7
2
3
*
*
*

0
.0
6
2
8
*
*
*

0
.0
3
8
7
*

0
.0
5
8
4
*
*
*

(0
.0
0
6
3
)

(0
.0
0
5
0
)

(0
.0
0
5
9
)

(0
.0
0
5
7
)

(0
.0
1
2
9
)

(0
.0
0
9
9
)

(0
.0
1
2
7
)

(0
.0
1
1
8
)

(0
.0
2
6
3
)

(0
.0
1
8
7
)

(0
.0
2
0
7
)

(0
.0
1
9
4
)

C
D
D

×
A
C

-0
.0
2
1
2
*
*
*

-0
.0
1
7
6
*
*
*

-0
.0
0
3
1

-0
.0
1
3
4
*

-0
.0
1
4
7
*

-0
.0
1
0
9
*

0
.0
0
0
3

-0
.0
0
6
3

-0
.2
3
5
9
*
*

-0
.1
2
7
3
*

-0
.0
3
8
2

-0
.0
1
7
0

(0
.0
0
7
9
)

(0
.0
0
5
6
)

(0
.0
0
7
5
)

(0
.0
0
7
1
)

(0
.0
0
8
8
)

(0
.0
0
6
2
)

(0
.0
0
8
5
)

(0
.0
0
8
0
)

(0
.1
0
9
8
)

(0
.0
6
6
2
)

(0
.0
8
1
8
)

(0
.0
7
1
6
)

C
D
D

×
o
w
n

-0
.0
1
3
9

0
.0
0
2
4

-0
.0
1
8
9
*

-0
.0
0
6
4

(0
.0
1
0
7
)

(0
.0
0
7
3
)

(0
.0
1
0
3
)

(0
.0
0
8
7
)

C
D
D

×
in

co
m
e

-0
.0
1
9
2

-0
.0
0
8
2

-0
.0
2
4
0
*

0
.0
0
5
9

(0
.0
1
2
6
)

(0
.0
0
7
3
)

(0
.0
1
3
5
)

(0
.0
1
1
2
)

C
D
D

×
ed

u
0
.0
0
9
8

0
.0
0
7
3

-0
.0
0
8
9

0
.0
0
3
1

(0
.0
0
8
2
)

(0
.0
0
5
7
)

(0
.0
0
8
0
)

(0
.0
0
7
5
)

C
D
D

×
C
D
D

it
−
1

-0
.0
0
0
1
*

-0
.0
0
0
1
*
*
*

-0
.0
0
0
0

-0
.0
0
0
1
*
*
*

(0
.0
0
0
0
)

(0
.0
0
0
0
)

(0
.0
0
0
0
)

(0
.0
0
0
0
)

C
D
D

it
−
1

-0
.0
1
8
5

0
.0
1
5
9

0
.0
4
2
0

0
.0
0
1
1

(0
.1
2
7
6
)

(0
.0
8
4
1
)

(0
.1
1
4
2
)

(0
.1
0
6
5
)

C
D
D

×
C
D
D

it
−
1

0
.0
0
0
3

0
.0
0
0
1

0
.0
0
0
0

-0
.0
0
0
1

(0
.0
0
0
2
)

(0
.0
0
0
1
)

(0
.0
0
0
1
)

(0
.0
0
0
1
)

C
D
D

×
bu

il
d
in

g
-0
.1
4
1
7
*
*

-0
.0
3
3
3

-0
.0
6
0
8

-0
.0
8
3
8
*

(0
.0
6
5
4
)

(0
.0
4
2
9
)

(0
.0
5
2
0
)

(0
.0
4
8
5
)

T
o
ta
l
A
v
g
.
M
a
rg
.
E
ff
ec
t
o
f
C
D
D

0
.0
1
8
2
*
*
*

0
.0
2
1
6
*
*
*

0
.0
2
0
8
*
*
*

0
.0
1
0
4
*
*

0
.0
3
0
8
*
*
*

0
.0
3
6
8
*
*
*

0
.0
2
1
3
*
*
*

0
.0
2
7
1
*
*
*

0
.0
1
0
3

0
.0
3
6
5
*
*
*

0
.0
1
5
6
*

0
.0
1
8
8
*
*

A
v
g
.
M
a
rg
.
E
ff
ec
t
o
f
C
D
D

w
h
en

A
C

=
0

0
.0
2
1
1
*
*
*

0
.0
2
4
0
*
*
*

0
.0
2
1
2
*
*
*

0
.0
1
2
2
*
*

0
.0
3
2
7
*
*
*

0
.0
3
8
3
*
*
*

0
.0
2
1
2
*
*
*

0
.0
2
8
0
*
*
*

0
.0
5
2
9
*
*
*

0
.0
6
0
6
*
*
*

0
.0
2
2
5

0
.0
2
1
9

A
v
g
.
M
a
rg
.
E
ff
ec
t
o
f
C
D
D

w
h
en

A
C

=
1

-0
.0
0
0
1

0
.0
0
6
5

0
.0
1
8
1
*
*
*

-0
.0
0
1
2

0
.0
1
8
0
*

0
.0
2
7
4
*
*
*

0
.0
2
1
5
*
*

0
.0
2
1
7
*
*

-0
.1
8
3
0
*
*

-0
.0
6
6
7

-0
.0
1
5
7

0
.0
0
5
0

O
b
se
rv
a
ti
o
n
s

4
6
8
1
6

4
2
3
8
7

4
6
8
0
8

4
6
8
4
9

4
5
8
1
8

4
1
5
3
3

4
5
8
1
0

4
5
8
4
7

2
7
4
0
2

2
4
4
5
4

2
7
3
9
3

2
7
4
1
0

N
o
te

s:
A
ll

m
o
d
el
s
in
cl
u
d
e
in
d
iv
id
u
a
l
fi
x
ed

eff
ec
ts

a
n
d

m
o
n
th

o
f
in
te
rv
ie
w

fi
x
ed

eff
ec
ts
,
a
s
w
el
l
a
s
th

e
fo
ll
o
w
in
g
co

n
tr
o
ls
:
H
D
D
,
h
o
m
e
o
w
n
er
sh

ip
,
h
o
u
se
h
o
ld

in
co

m
e,

a
g
e,

a
g
e2

a
n
d

G
D
P

p
er

ca
p
it
a
.

O
1
=
F
a
ti
g
u
e
(N

o
=
0
,
Y
es
=
1
0
0
);

O
2
=
R
ed

u
ce
d

a
p
p
et
it
e
(N

o
=
0
,
Y
es
=
1
0
0
);

O
3
=
Ir
ri
ta
b
il
it
y

(N
o
=
0
,
Y
es
=
1
0
0
);

O
4
=
T
ro
u
b
le

sl
ee
p
in
g

(N
o
=
0
,
Y
es
=
1
0
0
).

S
td

.
er
ro
rs

cl
u
st
er
ed

a
t
th

e
in
d
iv
id
u
a
l
le
v
el
.

∗∗
∗
p
<

0
.0
1
;
∗∗

p
<

0
.0
5
;
∗
p
<

0
.1
.

47



3.5.2. Acute and non-acute effects

High temperatures have a contemporaneous effect on thermal comfort and thus on the
outcomes we consider. Noelke et al. (2016) show a positive association between higher
temperatures in a certain day and reporting having felt fatigued on that same day, alongside
associations with lower aggregate well-being and less (more) pronounced positive (negative)
feelings. Physiologically this is also the case, with higher temperatures leading to faster
onset of fatigue. The same is true for irritability, as direct physical discomfort from hot
temperatures is accepted to cause violence and aggression (for example, Stechemesser et al.
2022 show that in days with hot temperature extremes, hate speech in the forms of tweets
is more than 20% higher).

In the SHARE survey, respondents are asked about a recent time period (”previous
month” or the more vague ”recently”). A contemporaneous effect is expected, i.e., individ-
uals are likely to report having felt more fatigued if the period of reference was hotter. We
consider this to be an acute effect of heat: a possibly transitory period where well-being
is diminshed due to ambient temperatures. Yet, we are interested on whether individu-
als who experience higher temperatures are more likely to feel fatigued any given point in
time, highlighting a persistent or cumulative negative effect of heat on mental state. In
other words: for the same temperature exposure in the previous month, is well-being in the
previous month related to earlier temperature exposure?

Due to the two different reference periods used in SHARE - ”last month” and ”recently”
- we build two different specifications to distinguish between acute and non-acute effects
of heat. In the first, we divide exposure over the previous 12 months into exposure in the
previous month and in the 11 months before; in the second, we divide exposure into the
previous three months and the 9 months before. We find that CDD1, i.e., the CDDs in
the month preceding the interview, increase the probability of reporting all negative states
except for trouble sleeping. Importantly however, when including CDD1 in our specification,
the CDDs experienced before this more recent month remain significant, signalling effects
are not purely acute. Individuals who own AC are partly protected from these longer-term
effects from heat, yet, we do not find evidence of protection against its acute effects. If
we divide effects into the 3 months preceding the interview (CDD3) and the preceding 9
months (CDD − CDD3), we confirm the protective effects of AC takes place mostly over
the longer term.
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Table 5: Different horizons

1 month 3 months

(O1) (O2) (O3) (04) (O1) (02) (O3) (O4)
CDD1 0.0596∗∗∗ 0.0432∗∗∗ 0.0536∗∗∗ -0.0001

(0.0149) (0.0107) (0.0135) (0.0131)
CDD1 × AC -0.0234 -0.0233∗ 0.0117 0.0264

(0.0181) (0.0123) (0.0171) (0.0164)
CDD − CDD1 0.0168∗∗∗ 0.0219∗∗∗ 0.0174∗∗∗ 0.0128∗∗

(0.0064) (0.0051) (0.0061) (0.0058)
(CDD − CDD1) × AC -0.0234∗∗∗ -0.0171∗∗∗ -0.0068 -0.0180∗∗

(0.0081) (0.0058) (0.0078) (0.0074)
CDD3 0.0418∗∗∗ 0.0331∗∗∗ 0.0366∗∗∗ 0.0112

(0.0094) (0.0068) (0.0083) (0.0080)
CDD3 × AC -0.0200∗ -0.0218∗∗∗ -0.0041 0.0023

(0.0118) (0.0082) (0.0110) (0.0104)
CDD − CDD3 0.0168∗∗∗ 0.0223∗∗∗ 0.0181∗∗∗ 0.0112∗

(0.0063) (0.0051) (0.0060) (0.0057)
(CDD − CDD3) × AC -0.0247∗∗∗ -0.0173∗∗∗ -0.0052 -0.0160∗∗

(0.0080) (0.0057) (0.0076) (0.0072)
Observations 46,816 42387 46808 46849 46816 42387 46808 46849

Notes: All models include individual fixed effects and month of interview fixed effects, as well as the following controls: HDD, home ownership,
household income, age, age2 and GDP per capita. O1=Fatigue (No=0, Yes=100); O2=Reduced appetite (No=0, Yes=100); O3=Irritability (No=0,
Yes=100); O4=Trouble sleeping (No=0, Yes=100). Std. errors clustered at the individual level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

3.5.3. Alternative exposure variables

We consider two alternative exposure variables: the number of days over the previous 12
months where the maximum temperature was above 30 and anomalies in CDD, i.e., the de-
viation from CDD to the 30-year local CDD average. The estimated impact of the anomalies
are, across all specifications, higher than those of the CDD, indicating that some adapta-
tion to regional temperatures is taking place. When considering anomalies, our IV approach
delivers estimates of similar magnitude of the protective effect of AC (see Table 7). This
further minimizes concerns of endogeneity of our IV, which could arise if the CDD regional
average was related to meaningful local forms of adaptation, minimizing the effect of heat
inside people’s homes. The estimated impact of one extra day with maximum temperature
above 30º are about 6 times the estimated impact of one extra CDD, regardless of the
specification considered (see Table 6).

3.5.4. Alternative outcomes

We consider two other outcomes: one subjective - self-perceived health - and one objective
- whether individuals were ever hospitalized in the preceding 12 months, in Table 8. We
find consistently negative effects of heat. One extra CDD decreases self-perceived health.
Both in the basic and in the augmented specification we find evidence that AC decreases
this effect. One extra CDD also increases the probability of hospitalization, by 0.01 to
0.02 percentage points. This effect is about half the effect on the incidence of fatigue. We
do not find statistically significant evidence for AC decreasing this effect. Although the
IV estimates are larger in magnitude as would be expected, the protective effect is not
statistically significant.
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Table 8: Different outcome variables

Basic Augmented IV (working life movers)

(O5) (O6) (O5) (O6) (O5) (O6)
CDD 0.0004∗∗∗ 0.0129∗∗∗ 0.0014∗∗∗ 0.0165∗ 0.0010∗∗ 0.0214

(0.0001) (0.0045) (0.0002) (0.0097) (0.0004) (0.0153)
CDD × AC -0.0007∗∗∗ -0.0046 -0.0004∗∗ -0.0031 -0.0016 -0.0531

(0.0001) (0.0053) (0.0002) (0.0060) (0.0015) (0.0505)
CDD × own -0.0003∗ 0.0012

(0.0002) (0.0067)
CDD × income -0.0005∗∗ 0.0081

(0.0002) (0.0084)
CDD × edu -0.0002 0.0011

(0.0001) (0.0053)

CDD × CDDit−1 -0.0000∗∗∗ -0.0000
(0.0000) (0.0000)

CDDit−1 0.0008 -0.1223
(0.0022) (0.0768)

CDD × CDDit−1 -0.0000 0.0001
(0.0000) (0.0001)

CDD × building -0.0004 -0.0367
(0.0010) (0.0375)

Total Marginal Effect of CDD 0.0003*** 0.0122*** 0.0007*** 0.0189*** 0.0006*** 0.0073
Avg. Marg. Effect of CDD when AC=0 0.0004*** 0.0129*** 0.0007*** 0.0193*** 0.0008*** 0.0169*
Avg. Marg. Effect of CDD when AC=1 -0.0003*** 0.0083** 0.0004* 0.0162** -0.0007 -0.0363
Observations 41048 47171 40020 46143 24420 27583

Notes: All models include individual fixed effects and month of interview fixed effects, as well as the following controls:
HDD, home ownership, household income, age, age2 and GDP per capita. O5= Health (self-perceived), 1 = excellent, 2
= very good, 3=good , 4=fair and 5=poor. 06 = Hospitalized in the previous 12 months (No=0, Yes=100). Std. errors
clustered at the individual level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

3.5.5. Analysis of heterogeneity by wealth and health status

We investigate whether populations with different baseline conditions present a different sus-
ceptibility to temperature. We look at preexisting health conditions and at socio-economic
affluence. We first divide our sample into two groups based on whether, at the beginning of
the period, their perceived reported health is fair or poor (bad status) or good, very good
or excellent (good status). Figure 3 shows that individuals who report poor or fair health
at the start of the period are more negatively affected by heat. For both groups, having AC
results in a smaller impact from heat.
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Figure 3: Marginal effect (in p.p.) of one extra CDD, by health status at the start of the
period (Basic model)

We then divide our sample into four groups based on wealth quartiles, computed at the
country level, based on household networth11. We chose wealth to consider a single variable
but which correlates with both income levels and home ownership, two different mechanisms
which favour adaptation (as seen in the augmented model regressions in Table 4).

We find that, for individuals without AC, larger wealth is associated with lower impacts
of extreme temperature, signaling the possibility to undertake perhaps other adaptation
actions, as also found by Obradovich et al. 2018. On the other hand, for individuals who
own AC, wealth status does not seem to provide additional protection. However, this could
be exactly because individuals who own AC are wealthier, thus budget constraints are not
relevant for them. Another way of looking at this results is that AC provides particularly
meaningful protection for poorer individuals who cannot easily afford alternative adaptation

11Using the the SHARE variable hnetw, on first wave of participation. On average, for our sample,
household networth is approximately 42,000 euros PPP for the first quartile, 135,000 euros PPP for the
second quartile, 261,000 for the third quartile and and 590,000 for the fourth quartile, but with substantial
country variation (average networth for the first quartile ranges fom 6,000 euros PPP in Poland to 90,000
in Spain, and for the fourth quartile from 151,000 in Poland again to 713,000 in France).
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responses, such as higher quality housing.

Figure 4: Marginal effect (in p.p.) of one extra CDD, by wealth quartile at the start of the
period (Basic model)

3.6. Discussion and conclusions

In Europe, the rising risks posed by heat will compound with socio-demographic trends
and expose a growing fraction of households to deteriorating living conditions, making the
challenge of adaptation even more urgent. Thermal comfort inside buildings is fundamental,
as Europeans spend approximately 80% to 90% of their time indoors12. Here we investigate
the protective effect of AC after documenting the negative impact of heat on four self-
reported well-being metrics. We find that 10 extra CDDs over a year (an extra day at 31º),
for individuals without AC, increases by 0.2 - 0.5 p.p. the probability of reporting fatigue,
by 0.2 - 0.6 p.p. the probability of reduced appetite, by 0.2 - 0.4 the probability of reporting
irritability and by 0.1 - 0.3 the probability of reporting issues sleeping. We find that heat
also relates to negative outcomes in terms of perceived health and increases the likelihood
of hospitalization (0.1 to 0.2 p.p.).

12https://www.eea.europa.eu/publications/cooling-buildings-sustainably-in-europe
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Climate forecasts for 2041-2070 predict that the majority of regions of Europe will ex-
perience an increase of at least 100 CDDs per year (compared to 1980-2010), even under
optimistic climate scenarios (Spinoni et al., 2018). Thus, our results would indicate that for
a great part of Europe, there would be at least an increase in the order of 2 - 6 percentage
points in the prevalence of the negative states we consider.

The negative effects of heat are not purely acute, i.e., once we consider most recent
exposure (1 or 3 months) versus exposure over the remaining months of the year, most of
the negative effects come from this second, mid-run, exposure. AC also seems to provide
value over the mid-run as opposed to during the month of the interview.

We find AC ownership provides substantial protection against the negative effects of heat
on fatigue, regardless of the specification considered. When considering our IV estimates,
we find protection against both fatigue and reduced appetite. Our IV estimates point to AC
providing full protection against these two outcomes and, in fact, we estimate there might
lower levels of fatigue from (moderate) heat exposure for individuals who AC in their home.
Positive effects from heat seem to accrue in terms of improved sleeping whenever baseline
health conditions are good, based on the heterogeneity analysis. It is conceivable that with
AC, especially fragile individuals might actually benefit from (moderate) exposure to heat.
This might be because, while they usually face difficulties thermoregulating, when there is
both outdoor heat and AC they can manage to adapt. Individuals might for example be
able to enjoy sunlight without sacrificing thermal comfort. A 2019 review of the scientific
literature (Larriva and Garćıa 2019) shows that on average, those above 65 need higher
temperatures for thermal comfort.

Our results indicate that AC does not seem to work as effectively to reduce irritability
nor on average difficulties sleeping. It is worth remembering our AC variable pertains
to ownership, not use, of AC. Households might refrain from using AC during the night,
or its noise may disturb sleep. That AC appears to, on average, provide considerable
protection against fatigue, and that it provides particularly meaningful protection for poorer
individuals, might signal that utilization and ownership, at least in the day time, are not
too far apart in the population we consider. Ostro et al. (2010) show this to be the case in
California (USA), suggesting that budget-constrained individuals are willing to forego other
expenses to keep cooling on. This also means that AC bears the risk of introducing a new
source of inequalities, much more than other policies.

If we consider irritability and difficulties at sleeping the outcomes most directly related to
mental health, these results align with studies conducted in the US on temperature-mental
health relationships (Mullins and White, 2019). Differently from (Mullins and White, 2019),
our analyses reveal the existence of groups that are particularly at risk. AC is more effective
if people are in good health and it provides particularly meaningful protection for poorer
individuals, who cannot easily afford alternative adaptation responses.

The three specifications considered (basic model, augmented, IV) point to robust nega-
tive effects of heat as well as to a protective effect of AC across self-reported health outcomes.
The range in the estimated magnitude of the coefficients indicates that the augmented mod-
els might not be able to capture hidden vulnerabilities that go beyond individual factors
- which we control for - as well as the multiplicity of intended and unintended adaptation
strategies that might be available in a different way across regions and over time and that
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can complement the effectiveness of AC. The model that considers the anomalies in CDDs
as exposure variable attempts to account for some of these region-specific characteristics
and shows similar results. AC protects individuals from CDD anomalies when it comes to
fatigue and to a lower extent reduced appetite. Regional characteristics might affect not
only the availability of adaptation options (e.g. air-conditioned malls, blue areas) but also
the accessibility to them (e.g. public transportation). While some threats to the exogeneity
of our instrument might remain unaddressed, we find a substantially larger protective effect
of AC under the IV approach as opposed to the simple FE, which is expected given the
issue of selection into adaptation by the most vulnerable, and in line with similar papers.

Our results overall show AC is effective as a protective measure against some outcomes
only, and that important well-being subjective indicators that have been related to more
severe mental health issues - irritability and trouble sleeping - are not as effectively protected.
Moreover, we have not performed any cost-effectiveness analysis. It should not be inferred
that AC and particularly residential AC is an ideal adaptation strategy. It might be that
building insulation, for example, is similarly effective and at lower cost, and in fact, we find
an association between older buildings and lower negative effects of heat. AC availability
at work and in public spaces are relevant too, and possibly more cost-effective as policy
measures. The idea of providing for cooling common spaces in cities is already a reality.
For example, Paris provides maps of all cooling locations to citizens, where these include
air-conditioned libraries and museums. In the US Pacific Northwest, cooling centers were
open in 2021 ahead of record-breaking temperatures13.

This same dataset can be used to estimate the potential of other adaptation strate-
gies. This can be done by looking, for example, into exogenous policy interventions around
building insulation or heat warning systems. Another angle which deserves further consid-
eration is individual adaptation versus regional adaptation outside the specific topic of AC
ownership. In our models with additional interactions, we find that individuals who have
experienced higher average exposure to heat since birth are less impacted by additional
CDD. The dynamics of accumulated exposure to heat through life - to what extent/until
what stage it provides protection and when does it become a burden on health - are a fun-
damental topic to understand the overall impacts of climate change on human health.

13https://www.reuters.com/world/us/cooling-centers-open-us-pacific-northwest-ahead-life-threatening-
heat-2021-06-25/
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Chapter 4.

Concern about climate change in
Europe: ideology, temperature
anomalies and global political
initiatives

Abstract
Climate change concern is a precondition for supporting climate action. Concern is becoming
more widespread in Europe, yet, it remains polarized along ideological lines. Both temperature
anomalies and political initiatives have been found to shape attitudes towards Climate Change. I
merge responses to Waves 8 and 10 of the European Social Survey with daily gridded tempera-
ture data. I find that respondents exposed to upwards temperature anomalies are more likely to
be concerned about climate change, regardless of their left-right ideological position. They also
reveal concern more often as anomalies accumulate. Yet, those on the right and center are also
prone to attributing to climate change single events. I then study two global, bipartisan, political
initiatives, 2021’s COP26 in Glasgow and 2016’s COP22 in Marrakech, which took place during
the ESS interviews. Respondents interviewed throughout Glasgow’s COP26 — but not COP22
— were more likely to express concern about climate change. In this case, it is center and par-
ticularly right-wing respondents who express increased concern. The latter also report a higher
belief in the anthropogenic origins of climate change. Despite these changes, ideological barriers
to policy support might remain: those on the right remain equally skeptical that governments will
act, while the remaining respondents, when exposed to climate anomalies and to COP26, become
more confident action will take place.

JEL Classification:
Keywords: Climate Change, COP26, COP22, Climate Action, Public Opinion.
Note: This chapter is solo work. An earlier version was joint work with Riccardo di Leo.
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4.1. Introduction

Climate change skepticism remains non-negligible in Europe, even if it is substantially lower
than in the US.1 This is an urgent problem, given it reduces support and willingness to
pay for climate policies (Gaikwad et al., 2022, Kotchen et al., 2013), and is positively
associated with greenhouse gas emissions (Tjernström and Tietenberg, 2008). On a positive
note, climate change concern has been increasing in the Old Continent, the fastest-warming
region in the world2. Possible explanations are that individuals are experiencing climate
change and that climate-related political initiatives are increasing in importance and media
coverage. Exposure to upward temperature anomalies has been found to increase climate
change concern (Bergquist and Warshaw, 2019, Egan and Mullin, 2012, Hoffmann et al.,
2022) and so have extreme events (Hoffmann et al., 2022, Konisky et al., 2016). Studies
on the United Nations Climate Change Conferences (hereafter, COPs) have found they
increase climate change-related internet searches (Sisco et al., 2021), and that news on
COP20 increased climate change awareness for US citizens (Bakaki and Bernauer, 2017).

Attitudes towards climate change are however entangled in political tones. Several au-
thors have investigated the role of social norms (Bechtel et al., 2019) and individual socio-
political factors (Lubell et al., 2007). It is not surprising that the interpretation of political
initiatives depends on ideology. For example, Valentim (2023) finds that in Germany, the
Fridays for Future protests increased concern with climate change for those on the left, but
decreased it for those on the right.

Yet, also the interpretation of atypical, climate change related, weather patterns, can
depend on ideology. Climate is “intangible” (Moser and Ekstrom, 2010), and vulnerability
factors linked to climate change are not perceived as such by the population (Capstick and
Pidgeon, 2014). Climate attribution, i.e., determining to what extent an event was made
more likely by climate change, is a scientific field in and of itself, reflecting the difficulty in
inferring climate change from single events. Biases are thus likely to transpire for individuals.
Citizens, possibly due to their preconceived ideas, might on one hand erroneously use single
events to believe or not in climate change and on the other, not be able to identify climate
change effects despite repeated, anomalous, patterns.

The paper studies how individual climate change concern responds to i) temperature
anomalies and ii) global, bi-partisan, and (mostly) economically impact-free political ini-
tiatives — COP meetings. I use a EU-wide, individual-level, representative survey, the
European Social Survey (ESS). I make use of the fact that two COP meetings took place
during the interview dates: COP26, taking place in Glasgow in 2021, and COP22, held in
Marrakech five years earlier. I then study whether the effects of anomalies and of COP
meetings differ across the political spectrum. I consider, besides likelihood to be concerned
about climate change, likelihood to believe in anthropogenic climate change and the degree
of confidence in effective government action on the matter. I also consider whether actual
temperatures at the time of the interview, from which one should not infer climate change,
influence the responses of individuals.

COP26 led 197 countries to sign the Glasgow Climate Pact, reaffirming the emissions

1See for example the Report on International Public Opinion on Climate Change.
2See the EEA European Climate risk Assessment
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goals stated in the Paris Agreement. It was significantly more successful than its predeces-
sors in intensifying global attention towards climate change (Figure 1a), arguably due to
the grassroots protests that accompanied the Conference, culminating in the Global Day of
Action for Climate Justice.3 I argue that the bipartisan nature of the Conference, its high
media salience (Figure 1b), and the lack of immediate repercussions on citizens’ life of the
Glasgow Climate Pact4 make COP26 an ideal proxy for a pure increase in climate change
salience.

I contribute to the literature in several ways. First, I expand on the European Social
Survey (ESS) by adding exposure to temperature and temperature anomalies. I show this
dataset can be used to consider climate change attitudes, but it could also answer numerous
other questions, such as the impact of temperatures on perceived well-being. Second, I study
the effect of both temperature anomalies and of COP meetings via a cross-national, EU-
wide, representative, individual survey, which allows to take into consideration numerous
important confounding factors. Third, I focus on heterogeneity in Europe across the political
spectrum regarding the effect of temperature anomalies, which, to the best of my knowledge,
has not yet been done.

I find that a one-standard deviation increase in temperature anomalies is associated
with a 0.9 percentage point increase in the probability of being concerned with climate
change, with no significant differences across the political spectrum. I also find that lower
temperatures during the interview make those on the center and right less likely to worry,
while having no effect on left-wing respondents. The first finding suggests individuals are
able to update their beliefs appropriately; while the second indicates some confirmation
biases might lead individuals to erroneously infer climate change patterns from single events.
COP26 increases the likelihood of expressing belief in the anthropogenic origins of climate
change for those on the right. Yet, these individuals are substantially less likely than those on
the left to believe in effective government action on climate change following COP meetings
or temperature anomalies. This could indicate that the ideological barrier is thick: certain
individuals might be convinced of the urgency of the climate crisis but still not support
policy due to skepticism towards the government.

I estimate a 3 percentage points increase in the likelihood of expressing concern over
climate change relative to the pre-COP26 week. COP26 was particularly successful in
raising climate change concern among right-wing respondents, as well as in reducing their
skepticism on human responsibility behind climate change. The fact that I do not estimate
a comparable effect of 2016’s COP22 is compatible with an increased overall “attention”
of the European public to climate change, as confirmed by the growing media coverage of
COP worldwide. The effect of COP26 appears short-lived, though possibly enduring slightly
longer (up to three weeks) for right-wing respondents.

The paper is organized as follows. Section 2 provides additional background on the
literature on the effects of climate change experience and of political events on attitudes
towards the matter. Section 3 gives details on the data. I describe response variables,
control variables, and the construction of temperature data (temperature anomalies and
average temperatures). Section 4 describes the methods. Section 5 provides the main

3The Guardian (06/11/2021). Online resources were last accessed on: September 24, 2024.
4Nature (14/11/21).
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results. Section 6 provides robustness checks. Section 7 discusses the results and concludes.
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Figure 1: Internet search activity and news relating to Climate Change and COP
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4.2. Background

Notwithstanding the important role played by socio-economic conditions (Poortinga et al.,
2011), gender differences (Bush and Clayton, 2023), information (Kellstedt et al., 2008,
Krosnick et al., 2006) , institutional trust (Lubell et al., 2007) and values (Leiserowitz,
2006), direct exposure to extreme events — including unusually high temperatures (Donner
and McDaniels, 2013, Zaval et al., 2014) — has been found to affect the salience of climate
change, and attitudes towards it (Baccini and Leemann, 2021, Konisky et al., 2016).

A significant strand of research has focused on how increasingly frequent exposure to
extreme weather might change attitudes towards climate change. (Konisky et al., 2016).
Yet, natural events exhibit an inherently political nature: ideological preconceptions and
partisan affiliations mediate their impact on individual attitudes (Capstick and Pidgeon,
2014), and, in turn, in the voting booth (Healy and Malhotra, 2009). As a result, most
studies have struggled to disentangle the effect caused by the source of increased climate
change salience, from that of the political response to it.5

To overcome this issue, a possible approach is to consider temperature anomalies, i.e.,
how much temperature differ from long-term averages. This is, like extreme events, a
measure which increases, and will keep increasing, as the effects of climate change transpire.
The seminal paper on the matter of the effects of climate change experience on environmental
concern in Europe, Hoffmann et al. (2022), considers both types of events, and their impact
on the percentage of individuals within a region who are concerned about the environment,
through Eurobarometer data. In terms of heterogeneity, they focus on heterogeneity across
socioeconomic conditions. They find that in wealthier regions, support for climate action is
more responsive to temperature anomalies. Other papers have also confirmed that exposure
to upward temperature anomalies raises climate change concern (Bergquist and Warshaw,
2019, Egan and Mullin, 2012).

I decide to focus on anomalies, which, if not extreme, do not require a political response.
Some evidence for the US has been collected on the issue, but with somewhat contradicting
results. Hamilton and Stampone (2013), for example, find that - in the US - belief in
anthropogenic climate change is indeed predicted by temperature anomalies, but only among
Independents, i.e., not Democrats or Republicans. On the contrary, Deryugina (2013)
identifies an impact of (longer-run) temperature fluctuations on climate change beliefs, only
among Republicans.

Temperature anomalies can be one factor behind the increased concern about climate
change in Europe. They are, however, a slow-moving phenomenon. Another possibility
for the increased concern in recent years is increased political and media attention. This
might affect concern too, but in the short-term. Elite cues (Carmichael and Brulle, 2017,
Constantino et al., 2021), contested legislative actions (Stokes, 2016, Colantone et al., 2022),
grassroots participation (Sisco et al., 2021, Barrie et al., 2023, Valentim, 2023) and media
coverage (Bell, 1994, Wilson, 2000) are indeed all important in the formation of the public
opinion on climate change. So are less visible, but possibly as substantial, political decisions
on budget allocation (Cohen and Werker, 2008, Neumayer et al., 2014), and on the legislative

5Gasper and Reeves (2011) represent a notable exception, yet their data does not allow for individual-
level analyses.
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framing of climate policies (Druckman, 2001, Lakoff, 2010).

4.3. Data

I gather individual-level attitudes towards Climate Change from the European Social Survey
(ESS), covering nationally representative samples across 24 European countries. I focus on
Waves 8 (conducted in 2016-17) and 10 (2020-21), since these are the only waves which
included questions about climate change. They happen to overlap with, respectively, the
2016 COP22 in Marrakech and the 2021 COP26 in Glasgow.

I construct a proxy for climate change concern from the question asking: “How worried
are you about climate change?”. Respondents could answer on a scale from 1 (“Not at all”)
to 5 (“Extremely worried”). I classify individuals as Left, Center and Right based on their
self-reported position on a spectrum defined as (0 “Left-wing” - 10 “Right-wing”), building
a categorical variable with three levels: ‘Left’ coming from 0-3, ‘Center’ from 4-6 and ‘Right’
from 7-10.

The ESS data confirms findings from other surveys (namely, the Pew Research Center
Global Attitudes survey and the Edelman Trust Barometer6): there is an increase in climate
change concern from Wave 8 to Wave 10. As expected, concerns decreases as individuals
report being more right-wing. Interestingly, regardless of whether they are on the left,
center, or right, on average, there has been an increase in climate change concern (see
Figure 2).

6As summarised in the following Clean Energy Wire report.
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Notes: Source: ESS Wave 8 (2016-17) and 10 (2020-21). The dashed vertical line captures the mean
value for each sub-figure.

Figure 2: Distribution of climate change concern in 2016-17 and 2020-21.

Climate change attitudes are captured by questions covering beliefs in anthropogenic
climate change and optimism towwards government action on climate change. These come,
respectively, from the following questions: “Do you think that climate change is caused
by natural processes, human activity, or both? (1 “Entirely by natural processes” - 5
“Entirely by human activity”” and “And how likely do you think it is that governments in
enough countries will take action that reduces climate change?” (0 “Not at all likely” - 10
“Extremely likely”)”. In the same way as with climate change concern, those on the left
are more likely to believe that climate change has important anthropogenic origins.

4.3.1. Control variables

Among the independent variables, I include: age of the respondent, years of completed
full-time or part-time schooling, domicile (big city; suburbs; town; village; countryside).
I include variables for perceived household income (0 “Very hard to cope” - 3 “Living
comfortably”), interest in politics (0 “Not at all” - 3 “Very interested”), and ideology (0
“Left-wing” - 10 “Right-wing”). Finally, I employ a number of indicator variables equal to
one if the respondent’s self-reported gender was “male”, if they were born in the country,
if they were unemployed at the time of the interview, and if they had any child living in
their household. Descriptive statistics for both dependent and independent variables are
provided in Table A1.
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4.3.2. Temperature data

I build temperature and temperature anomalies starting from a gridded dataset of average
temperatures, the E-OBS. E-OBS is a gridded observational dataset gathering daily meteo-
rological variables across Europe, resorting to information collected from the meteorological
station network of the European Climate Assessment & Dataset (ECA&D).7 The data has
a geographic resolution of 0.1 degrees (i.e., each grid cell is roughly 10 × 10 kilometers at
the equator).

I then merge the computed indicators with the ESS by using the most detailed location
information provided in the survey (Midões et al., 2024, perform a similar exercise employ-
ing SHARE data). First, I identify an approximate location for each ESS respondent by the
NUTS region where their interview took place. The regions provided in the ESS are either
NUTS2 — Austria, Belgium, Switzerland, Denmark, Greece, Spain, France, Croatia, Italy,
Norway, Poland, Portugal, Sweden — or NUTS3 — Bulgaria, Czech Republic, Estonia,
Finland, Croatia, Hungary, Ireland, Iceland, Lithuania, Latvia, Macedonia, Sweden, Slove-
nia and Slovakia. Germany and the United Kingdom (and, in some waves, Italy) provide
NUTS1 identifiers only.

Second, I resort to the Degree of Urbanization (DEGURBA) methodology— the EU/OECD
standard for urbanization classification — to classify each gridcell in the E-OBS average
temperature dataset as part of either: (1) a city; (2) a town or suburb; (3) a rural area.
Each NUTS region is therefore subdivided into three sub-regions. Using a historical annual
population 0.1º-gridded dataset — ISIMIP Population8 — I compute, for each NUTS-
DEGURBA regional couplet, a population-weighted average temperature.

Finally, I exploit the ESS item asking respondents about their domicile, i.e., whether
they live in a big city, a suburb, a town, a village, or in the countryside. Each ESS-defined
region can therefore be divided into five — as opposed to three, for the temperature data —
sub-regions. To obtain the average daily temperature in each of the five ESS sub-regions,
I compute a weighted average across the three, DEGURBA-defined, sub-regions, applying
country-specific weights. In doing so, I consider how perceptions of living in a ‘small town’
or in a ‘suburb’ vary across countries.

From daily temperatures, I build (positive) temperature anomalies following Hoffmann
et al. (2022). For each day of the year, I subtract the long-term average temperature (30
year average from 1980 to 2010) for that same day. I standardize this deviation. At that
point, I have a daily indicator of temperature anomalies. I then take the average of that
indicator over the 365 days preceding the two days before the interview.

Tables A2 and A3 display descriptive statistics for: (a) mean temperatures experienced
by ESS respondents, averaged between the day of the interview and the previous one; (b)
upward temperature anomalies — relative to the long-run local climate mean (1980-2010)
— . In both cases, statistics are computed across all ESS respondents interviewed in Wave
8 and 10, coming from countries covered by the E-OBS data.9

7For more information, see: E-OBS.
8Available online.
9Following the literature, standardized deviations below 0.5 are set to 0, i.e., not considered for the

rolling average.
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4.4. Methods

In the main specifications, I choose to code climate change concern (CCi) as a binary indica-
tor, taking value 1 if the respondent is somewhat, very, or extremely worried about climate
change (else 0). This shrewdness is employed for a twofold reason. First, to resemble Hoff-
mann et al. (2022), the existing study which is closest to ours. Second, to increase the
comparability of the findings to the literature studying the impact of temperature anoma-
lies on climate change attitudes (as opposed to climate change concern). The majority of
existing survey studies tend in fact to aggregate answers into indicators capturing whether
individuals believe (or not), in climate change (see: Howe et al., 2019, for a review). Ar-
guably, if someone does not believe in climate change, she is bound to be not at all concerned
about it. Nonetheless, given the ordered nature of the variable, I reproduce the analysis
with ordered probit models in section 4.6.3.

When considering the anthropogenic origins of climate change, I likewise use a binary
indicator, ‘CC Anthropogenic’. This variable takes value 1 if individuals consider that
climate change is either caused about equally by natural processes and human activity (‘3’
in the original variable), mainly by human activity (‘4’ in the original variable) or entirely by
human activity (‘5’ in the original variable). When looking into belief in government action, I
resort to the original variable, taking values 0 (“Not at all likely”) to 10 (“Extremely likely”)
from responses to ‘How likely do you think it is that governments in enough countries will
take action that reduces climate change?’.

I focus on the full sample of interviews taking place in Waves 8 and 10 of the ESS —
when questions about climate change were asked. I estimate the following regression:

CCi = α + δ1 Temp. Anomrt−2 + δ2 Temp. Interviewrt + ρ Zi + σc + θs + λcτt + ϵi (4..1)

Temp. Anom.rt−2 captures average positive temperature anomalies in the respondent i’s
region r in the 365 days preceding the second day before the interview (t − 2), relative to
the 30-years average (1980-2010). I also acount for the average temperature experienced by
the respondent on the interview day and in the previous one — Temp. Interviewrt — as this
may impact climate change concern (Joireman et al., 2010). Standard errors are clustered
at the country-by-wave level.10

I include country fixed effects (σc) and a vector of individual predictors of climate change
attitudes (Zi): self-reported gender, nationality and age of the respondent (both in level and
squared), education level, domicile, children living in the household, unemployment status,
perceived household income, political interest and ideology. Standard errors clustered at
the country-by-wave level. I include seasonal fixed effects (θs) and either country specific
time-trends (λcτt) or a time-trend common across countries (λc = λ). Descriptive statistics
are presented in SI C1.

To study the effect on climate change attitudes coming from global climate conferences
— controlling for exposure to temperature anomalies and for temperature at the time of the

10In a second specification, displayed in Columns 3 and 4 of Table A5, I employ Temp. Anom.r,t−1:
the average upward temperature anomalies in the 365 days preceding the first — rather than second —
day before i’s interview (t− 1), relative to the usual 30-years average. In this second specification, I do not
control for average temperature levels, following Hoffmann et al. (2022).
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interview — I focus on the subset interviewed during, respectively, COP22 (Nov7-Nov11,
2016) and COP26 (Oct31-Nov13, 2021). I estimate the following specification, via an OLS
regression:

CCi = α + β COPt + δ1 Temp. Anom.rt−2 + δ2 Temp. Interviewrt + ρ Zi + σc + ϵi (4..2)

where CCi captures climate change attitudes of respondent i, from region r, in country c,
interviewed on day t. COPt is an indicator taking value 1 if the respondent was interviewed
during COP26 (or COP22), 0 if during the previous week (see Figure 3). I include numerous
control variables, addressing possible imbalances between the treatment and control groups.
In Section 4.6.1. I instead increase comparability via Propensity Score Matching (PSM).

23Oct2021

‘Pre-COP26’

COP26 Starts

31Oct2021

‘COP26’

Climate March

06Nov2021

COP26 Ends

13Nov2021

Figure 3: Timeline and construction of the ‘COP26’ and ‘pre-COP26’
groups.

In studying the effect of COP22 and COP26, the variables on temperature serve as
control variables, in case the event coincided with a particularly anomalous period in terms
of temperature. These become potentially relevant once I extend the period of analysis
further, from two to four weeks, in the analysis of the duration of effects in section 4.5.2..

The heterogeneity analysis adds interactions between the coefficients of interest - δ1, δ2
and β - and the categorical variable of political ideology (Left, Right or Center).

4.5. Results

The estimates support the consensus in the literature: exposure to upward temperature
anomalies is associated with a 9.3 percentage points increase in the likelihood to express
concern about Climate Change. For better interpretation of the magnitude, it is worth
noting that the temperature anomaly variable has a standard deviation of 0.1, meaning one
additional standard deviation in anomalies increases the probability of being concerned by
approximately 0.9 percentage points. I also find evidence of an effect of the temperature
(but not of the temperature anomaly) felt during the day of the interview and the day before
(Table A5 provides full details).

Regarding COP26, I estimate a 3 p.p. increase in the likelihood of expressing some
concern over climate change (see Table A6 for full details). This likely represents a downward
estimate of the effect, given that COP26 was already on the news in the weeks preceding
the Conference. I do not recover any statistically significant effect of 2016’s COP22. In
Figures 3 and 4, I show how the estimates for the impact of temperature anomalies and of
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COP26 on climate change concern do not vary significantly in magnitude when I iteratively
remove respondents from a specific country. Regressions are reported in full in SI C4.

4.5.1. Heterogeneity based on ideology

I test whether experiencing upward temperature anomalies prior to the interview date af-
fects climate change concern differently among self-identified left-, center- and right-leaning
respondents. The results, plotted in Figure 4, suggest that, although the latter two groups
report lower levels of concern ex ante, their attitudes do not respond differently to the
experience of temperature anomalies compared to left-wing respondents (Table A13 shows
full results). The right panel shows that instead, in what pertains to COP26, respondents
who self-identified as right-wing are significantly more affected. I consider this is not simply
a result of ’ceiling’ effects on the left (there is still a substantial proportion of left-wing
individuals with minimal climate change concern). COP22 does not reveal any statistically
significant effect across ideological positioning (not shown in Figure 4, but estimates are
presented in Table A14).

(a) Temp. Anomalies (b) COP26 (Glasgow, 2021)
Notes. Source: ESS. Thick (thin) lines signify the 90% (95%) confidence interval. Full regression tables are reported in Tables
A13-A14.

Figure 4: Ideology heterogeneity of Temperature Anomalies (left-panel) and of COP26 (right
panel).

I also find evidence of heterogeneity of the effects of temperature during the interview,
with respondents on the center and right being less (more) likely to express concern if
temperatures are colder (warmer), as plotted in Figure 5:
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Notes. Source: ESS. Thick (thin) lines signify the 90% (95%) confidence interval. Full regressions are reported in Table A13.

Figure 5: Ideology heterogeneity of temperature during interview.

4.5.2. Duration of effects

Temperature anomalies are argued to increase climate change concern through both recency
and threshold factors (Hoffmann et al., 2022). To confirm this pattern in the novel dataset, I
consider different time horizons for the anomalies. Small effects transpire when considering
anomalies over the previous month (but not in shorter time periods), and grow steadily
until one-year. This finding is compatible with Deryugina (2013) who studies beliefs about
global warming and only finds effects of fluctuations experienced over at least 1 month.
As in Hoffmann et al. (2022), the strongest effect comes from anomalies recorded over the
previous year. Results are summarized in Figure 6, with full details in Table A8.

Notes. Source: ESS and E−OBS. Thick (thin) lines signify the 90% (95%) confidence interval. Full regressions are reported
in Table A8. The window starts counting backwards from 2 days before the interview. 30d is 30 days before, 60d is 60 days
before, 90d is 90 days before, 180d is 180 days before, 1y is 365 days - the standard specification across the paper - and 2y is
730 days.

Figure 6: Alternative reference windows for Temperature Anomalies

I then turn to the duration of the effect of the COP meetings. I extend the treatment
group to individuals interviewed 1,2,3 and 4 weeks after the end of COP. I no longer find
statistically significant effects, hinting that the effect of COP is on average short lived. For
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right-wing respondents, substantially more affected by COP26, the effect of COP26 might
last slightly more, with statistically significant effects (at the 10% level) still present at the
three-week mark as show in Figure 8.
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(b) COP22 (Marrakech, 2016)
Notes. Source: ESS. In 7a, in each column I shift the date of COP26 in Glasgow (Oct31-Nov13, 2021) by 5 weeks from
the original one, and estimate Equation 4..2 keeping the same control group, i.e., respondents interviewed during the week
preceding COP26. In 7b, I replicate the analysis for COP22 in Marrakech (Nov7-Nov11, 2016). Country fixed effects apply,
standard errors clustered at country-by-wave. Thick (thin) lines signify the 90% (95%) confidence interval. Full regression
tables are reported in Tables A9-A12.

Figure 7: Climate change concern before and after COP26 (left-panel) and COP22 (right
panel).
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Notes. Source: ESS. In each column I shift the date of COP26 in Glasgow (Oct31-Nov13, 2021) by 5 weeks from the original
one, and estimate Equation 4..2 keeping the same control group, i.e., respondents interviewed during the week preceding
COP26. I subset the sample to consider only right-wing respondents. Country fixed effects apply, standard errors clustered at
country-by-wave. Thick (thin) lines signify the 90% (95%) confidence interval.

Figure 8: Climate change concern in the weeks before and after COP26 for right-wing
respondents
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4.5.3. Climate change beliefs beyond concern

Interestingly, increased anomalies do not only increase the concern about climate change
but also the belief that governments will act on the matter (coded as 1 to 10, an additional
anomaly is associated with a 0.6 increase in the belief in government action, see Table A7).
Such an effect is exclusive to center and left-wing respondents (Figure 9, left panel). COP26,
despite increasing concern, does not on average bring such an effect. I identify an increased
belief in anthropogenic climate change but only for right-leaning respondents interviewed
during COP26 (Figure 10). Once again, 2016’s COP22 does not exert a significant impact
on the attitudes of either group of respondents (results not shown). In a nutshell, despite
right-wing respondents becoming more concerned about climate change and expressing less
climate skepticism during COP26, their skepticism towards effect government action on the
matter remains. Their skepticism is also not reduced by temperature anomalies.

(a) Temp. Anomalies (b) COP26 (Glasgow, 2021)
Notes. Source: ESS. Thick (thin) lines signify the 90% (95%) confidence interval. Full regression tables are reported in Tables
A13 and A14.

Figure 9: Ideology heterogeneity of Temperature Anomalies (left-panel) and of COP26 (right
panel) on belief in government action.
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(a) Temp. Anomalies (b) COP26 (Glasgow, 2021)
Notes. Source: ESS. Thick (thin) lines signify the 90% (95%) confidence interval. Full regression tables are reported in Tables
A13 and A14.

Figure 10: Ideology heterogeneity of Temperature Anomalies (left-panel) and of COP26
(right panel) on belief in anthropocentric origin of climate change.

4.5.4. Specific events within COP26

While I have considered COP26 as a whole, effects might be driven by specific events related
to it. I first ask whether the highly-debated marches co-organized by Greta Thunberg’s
Fridays for Future and taking place worldwide during the Global Day of Action for Climate
Justice on November 6, 2021 (during COP26), might have played a role in shaping climate
change concern, as suggested by the literature (Sisco et al., 2021). Second, I check whether,
rather than the Conference itself, it was the contested Glasgow Climate Pact, signed on the
final day of the event, that drove the boost in climate change debates.

As illustrated in the timeline in Figure 11, to study the effect of the Climate Ac-
tion March, I restrict the sample to respondents interviewed during COP26, and define
the broadly-defined ‘treatment’ (‘control’) group as interviewees during Nov7-Nov12, 2021
(Oct31-Nov5). When the focus is on the end of COP26, the ‘treatment’ (‘control’) group
is composed of individuals interviewed after (during) the conference, hence between Nov14
and Nov21, 2021 (Oct31-Nov12). Estimates presented in Figure 12 suggest that, if any-
thing, the end of COP26, coinciding with the approval of the Glasgow Climate Pact, led to
a slight decrease in the probability of being concerned about climate change. There is some
evidence that, instead, Fridays for Future might have increased this probability, over and
above COP26 as a whole.
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COP26 Starts

31Oct2021

‘Control’ Group

Climate March

06Nov2021

‘Treatment’ Group

COP26 Ends

13Nov2021

COP26 Starts

31Oct2021

‘Control’ Group

Glasgow Climate Pact

13Nov2021

‘Treatment’ Group

21Nov2021

Figure 11: Timeline and construction of the ‘treatment’ and ‘control’
groups.
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COP26 Agreement (13/11/21)
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Notes: Source: ESS. The outcome variable is climate change concern. Country fixed effects apply, standard errors clustered
at country-by-wave. Thick (thin) lines signify the 90% (95%) confidence interval. Full regressions are reported in Table A15.

Figure 12: Concern about climate change: Glasgow Climate Pact and Climate Justice Day.
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4.6. Robustness checks

4.6.1. Propensity score matching

In this section, I check the comparability in observable characteristics between ESS re-
spondents interviewed right before and during COP26, and try to reduce the imbalance in
covariates across the two groups, by means of a Propensity Score Matching (PSM) algo-
rithm. This exercise yields an estimate of the effect of COP26 on climate change concern
that is consistent in magnitude and significance with the non-PSM specification.

To increase the comparability of the two groups, I match respondents interviewed during
and before COP26 based on their observable characteristics, using a PSM algorithm with
replacement. After estimating the Propensity Score (PS) through a logistic regression,
respondents within both groups are randomly sorted from a uniform distribution, and each
individual interviewed during COP26 is compared to its closest PS-based match among
those contacted in the week preceding the Conference. As shown in Figure 1, the two
groups are relatively comparable. Figure 2 confirms how, when matched on observables,
the two groups are de facto indistinguishable from each other: the B-statistic is 12.2, and
the R-statistic of 1.05 (Rubin (2001) recommends the former to be below 25, and the latter
between 0.5 and 2, for the samples to be considered as balanced).

I retrieve again a statistically significant effect of being interviewed during COP26,
rather than just before, on climate change concern. I estimate an Average Treatment
Effect of 0.032, with AI-robust Standard Error 0.0139, significant at 5% (p-value = 0.018,
z-stat=2.37, N=5,107), only slightly higher than those estimated in the OLS setting (see
Table A6). This exercise — whilst not addressing potential selection on unobservables
— is reassuring about the robustness of the findings across an increasingly similar set of
respondents.

4.6.2. Subset on the same set of countries

In this section, I restrict the sample to the intersection of countries used in the three analyses
(temperature anomalies, COP26 and COP22). The goal is to confirm the contrasting results
on ideology - playing a role in the impact of COP26, but not in the impact of anomalies -
is not driven by this difference in sample composition.

When using only the 14 countries present across both COP analyses, I find that anomalies
bring the probability to report concern up, but the effect is only statistically significant for
those on the left, the only group for which the effect is not statistically significant. Results
for COP26 are similar to using the full sample available: the likelihood of reporting climate
change concern during COP26 is highest among the right and then the center than on the left
(statistically significant differences at the 5% and 10% level respectively). The magnitude
of the effect of both COP26 and anomalies is very close to those previously reported. Full
results are presented in Table A16.

It seems that COP26 showing effect only on individuals on the right is not driven by a
ceiling effect, i.e., from the possibly already generalized concern about climate change for
left-wing individuals. In fact, resorting to this new subset, those on the left are not affected
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by COP26 but they still are affected by anomalies, showing there are possible increases in
climate concern for respondents who are not right-wing.

4.6.3. Alternative coding of outcome: ordered probit models

In this section I estimate ordered probit models, keeping the original coding of climate
change concern as provided by ESS. I report Average Marginal Effects (AME) of the vari-
ables of interest on the probability of reporting each of the five levels of concern about
climate change. For both temperature anomalies and COP26, individuals are more likely
to report being very or extremely concern about climate change; they are instead less likely
to report being not at all, not very or only somewwhat concerned. Results on Temperature
Anomalies are however not statistically significant under this specification (p-value=0.104).

(a) Temp. Anomalies (b) COP26 (Glasgow, 2021)
Notes. Source: ESS. Thick (thin) lines signify the 90% (95%) confidence interval. Average Marginal Effects from an ordered
probit model.

Figure 13: AME of Temperature Anomalies (left-panel) and COP26 (right panel).

4.7. Discussion

I confirm the finding in the literature that exposure to upward temperature anomalies raises
climate change concern (Bergquist and Warshaw, 2019, Egan and Mullin, 2012, Hoffmann
et al., 2022). A one-standard deviation increase in temperature anomalies is associated
with approximately a 0.9 percentage point increase in the probability of being concerned
with climate change. At the same time, I also find that warmer temperatures during the
interview increase climate concern (as found in Risen and Critcher 2011 and Joireman et al.
2010). The impact of temperature anomalies on climate change concern does not differ
based on ideology. The impact of temperature during the interview, however, does, with
center and right-wing respondents being less (more) likely to be concerned with climate
change if temperatures are lower (higher) than usual.
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Whilst “there is an elemental quality to the personal witnessing of such manifestations
of natural forces, [...] a direct encounter with contrary or supportive first-hand evidence can
initiate powerful rationalising defenses for some, as well as confirmation and validation for
others” (Reser et al., 2014, 530-31). Indeed, I find both. It appears respondents, regardless
of political orientation, on average are more likely to be concerned about climate change
after experiencing temperature anomalies. Moreover, they react to recent anomalies, but
only over one month, and, as they accumulate up to one-year, the effect on concern increases.
This would mean individuals are correctly updating their beliefs. However, individuals on
the center and right appear influenced also by single events, which can be argued is part of
a confirmation bias.

I then focus on a global political initiative which was bi-partisan in nature, and did
not impact the citizens’ lives (and pockets) in the short-run. This should overcome the
challenge of separating “events beyond the control of a politician (e.g., a natural disaster)”
from “areas where politicians can take action (e.g., the response to a natural disaster)”
(Gasper and Reeves, 2011, 340). This sets this paper apart from existing research on
contested policy-making (Colantone et al., 2022), contextual disaster management (Bechtel
and Hainmueller, 2011), and costly investments (Cohen and Werker, 2008).

I find respondents are 3 percentage points more likely to be concerned about climate
change during COP26, but find no similar effect for COP22. This could signal an increased
sensitivity of the European public opinion to political and media stimuli on climate change
over the years (supported by Figure 2). It could also simply be a result of the magni-
tude of the media attention, which was much higher during COP26 than during any other
COP to that date (see Figure 1a). The findings are in line with the online survey experi-
ment conducted by Bakaki and Bernauer (2017), who find that climate change awareness
increased among US-based respondents exposed to slanted news about 2014’s COP20, es-
pecially among the less engaged. I cannot distinguish the effects of COP26 from those of
Fridays for Future, as the events overlap. I do find an even larger increase in reported
concern (compared to pre-COP26 weeks) after the Fridays for Future Climate March.

The findings indicate that more right-leaning respondents, on average less worried about
climate change and more doubtful about its anthropocentric origin, not only respond to
temperature anomalies, but were also the most affected by COP26. They were more likely
to express concern and less likely to be skeptic about human-caused climate change. This
finding could suggest that global, bi-partisan political initiatives may help convince the
skeptical segments of the European population about the urgency of climate change. I
gather some evidence that these effects might last up until three weeks before the end of
the event.

Nonetheless, individuals on the right did not become more confident that governments
would act effectively on the matter of climate change upon experiencing climate anomalies,
while those on the center and on the left did. They were also significantly less likely than
those on the left to believe in such government action during COP26. This could indicate
that such individuals might not support additional government measures, even if they were
to change their mind on the seriousness of the climate crisis.
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Chapter 5.

A meta-analysis of synergy between
carbon pricing and renewable energy
policies

Abstract

Microeconomic arguments suggest that combining carbon pricing with renewable-energy policies
will bring no additional emissions reduction in the case of cap-and-trade, while in the case of
a carbon tax only potentially but at a social cost. Yet, implemented policy in many countries
combines carbon pricing with renewable-energy incentives. To go beyond theory and assess the
evidence, we systematically collect quantitative estimates of any synergistic effects in emissions
reduction between carbon pricing and renewable-energy policies. On average, combining the two
instruments leads to 6.5% more emissions reduction. In 50% of cases, the two instruments are
found to be more effective in reducing emissions than either one alone. Additional reduction is
more common when a carbon tax is in place, as predicted by the theoretical literature. However,
additional abatement is also found for cap-and-trade. In 70% of studies, there is either additional
emissions reduction or a positive welfare outcome due to combining the two instruments. The
deviation of these outcomes from theoretical predictions is due to particular model choices, no-
tably: welfare metrics limited to consumer utility; incomplete emissions coverage by one or both
instruments (e.g., some sectors exempted); lagged, intermittent or otherwise constrained policy
implementation; or additional market and government failures, such as fossil fuel subsidies, inno-
vation externalities, learning-by-doing, and environmental co-benefits.

Keywords: Instrument interaction, carbon tax, carbon market, cap-and-trade, renewable-
energy target
Note: This article is joint work with Jeroen van den Bergh and Ivan Savin and has received
a R&R from a top field journal.
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5.1. Introduction

Among potential instruments of climate policy, carbon pricing can count on most support
from economists1. Nonetheless, renewable-energy support is the most frequent policy in
practice. As of December 2022, 47 national and 36 subnational jurisdictions have intro-
duced carbon pricing2. In comparison, 156 countries have renewable subsidies – feed-in-
tarifs/premiums or net metering - or renewable mandates – implemented through targets
or tenders -in place.

Worldwide, whenever carbon pricing is in place, it often co-exists with renewable-energy
targets or subsidies. This holds true, for example, for many countries in Europe, several
states in the USA, Japan and China. However, such overlap defies microeconomic arguments
on the expected direction of synergy of instrument combinations, as summarised by, for
example, Fankhauser et al. (2010). Theory predicts that combining carbon pricing with
renewable-energy policies will bring no additional emissions reduction in the case of cap-
and-trade, and only potentially, and at a social cost, in the case of a carbon tax. Under a
renewable-energy target, a certain volume of emissions is abated in the energy sector. Yet,
this means in the case of emissions trading there is scope for higher emissions elsewhere
while staying within the emissions cap, the so-called ’waterbed effect’. Therefore, overall
emissions will not go down. Moreover, costs of meeting the cap will be higher whenever the
cheapest abatement opportunities are not in the energy sector. In the case of a carbon tax,
a renewable-energy target or subsidy might contribute to additional emissions reduction,
if the marginal abatement cost of renewable energy is higher than the tax. But in that
case, provided the carbon tax is optimal, the marginal cost will be higher than the marginal
benefit of abatement, meaning that the extra abatement comes at a net social welfare loss.

The review by van den Bergh et al. (2021) provides a framework to assess and classify
synergy in emissions reduction. Such synergy is judged by comparing the effects on emissions
of each instrument separately with those of the policy mix. We build on this review in
four main ways. First, we expand the classification of synergy, distinguishing additional
outcomes. Second, we collect quantitative evidence on instrument synergy and compare it
to theoretical expectations. Third, we assess welfare outcomes and their association with
synergy. Fourth, through meta-regressions and case-by-case analysis of model assumptions,
we identify factors influencing synergy and welfare outcomes.

The remainder of the paper is organized as follows. Section 2 describes the search
procedure undertaken to identify papers suitable for meta-regressions. Section 3 explains
how we obtain synergy estimates from the selected papers and classify them into categories.
Section 4 provides descriptive information about the estimates, such as policy instruments
used, model type, category and magnitude of estimates, and welfare effects. Section 5
undertakes regression analysis to assess the factors associated with higher (positive) synergy
and welfare outcomes. Section 6 discusses, on a case-by-case basis, the empirical regularities

1As an example, the European Association of Environmental and Resource Economists” Statement
of 2019 (https://www.eaere.org/statement/), ”proposed for endorsement to the whole community of
economists in Europe and worldwide” reads: ’Economists encourage the emergence of a global carbon
price”, as ’carbon price is the most cost-effective lever to reduce carbon emissions’.

2REN21 Renewables Global State Report, available at https://www.ren21.net/wp-
content/uploads/2019/05/GSR2022 Full Report.pdf
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and modelling assumptions that lead to deviations from theoretical predictions. Section 7
concludes.

5.2. Search and selection of studies

For the literature review, we first undertake a snowball search, starting with the studies
collected in the recent review by van den Bergh et al. (2021); we complement this with a
systematic search in Web of Science. The first strategy ensures we identify a set of papers
directly relevant to the theme, which informs the search terms for the systematic search. The
second step is required to ensure completeness, also as new papers might have been published
in the meantime, and because the original review did not have the exact same scope as the
current one. While the previous review was geared towards papers addressing instrument
interactions in general, here we intend to capture all studies that assess or simulate a
combination of the two specific instruments (carbon pricing and renewable-energy policies),
even if that is not always their main objective. Another reason for a systemic search is
that there are numerous ways to denote carbon pricing and renewable-energy instruments.
By expanding the terminology in the search process, we can find a wider set of potentially
suitable studies.

As a starting point for the snowball search, we took the papers that reported on the
combination of carbon pricing and renewable-energy policy in van den Bergh et al. (2021).
We skimmed the reference lists of all these papers. Lehmann and Gawel (2013) stood out
as it provided 11 references with quantitative estimates of synergy, divided by the type
of model employed. We then proceeded with the snowball approach by searching for any
papers citing Lehmann and Gawel (2013) or any of the 11 references it provided. Through
this strategy we found a total of 23 suitable papers.

Next, we undertook a systematic search in Web of Science. We structured the search
terms to return any article in which carbon pricing instruments and renewable-energy in-
struments are mentioned in the article title or abstract, while terms hinting at empirical
or quantitative results and policy combinations or mixes were referred to anywhere in the
text. This strategy is similar to Capstick et al. (2015) whose search term considers certain
words as a prerequisite in the title while others can be present anywhere in the text. The
search term was informed by the findings of the snowball approach3. This specific structure
of the search terms allows us to identify studies relevant to our aim, while limiting the total
number of papers.

To understand our approach, note that we combined four groups of terms, E (identifying
carbon pricing instruments), R (identifying renewable-energy instruments), N (identifying
quantitative results) and C (identifying combination of instruments). Table D2 in Appendix
A lists all the elements of each group E, R, N and C. The search terms comprise all possible
combinations of the elements from these groups, named e, r, n and c. In formal terms, the
search procedure can be described as:

In abstract[ (e) AND (r) ] AND [Anywhere in the text [ (n) AND (c) ] ]

3For example, papers identified often reported quantitative estimates and looked at a combination of
instruments but without explicit mention of these in the abstract.
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As an example, the following two combinations are included in our search terms:

In abstract[ (”ETS”) AND (”green certificate”) ] AND [Anywhere in the text [ (”nu-
meric”) AND (”interaction”) ]]

In abstract[ (”carbon tax”) AND (”renewable target”) ] AND [Anywhere in the text [
(”general equilibrium”) AND (”combination”) ]]

This search uncovered 277 papers, including 18 of the 23 papers obtained through the
snowball approach. From the 5 not detected in the Web of Science search, 3 are unpublished
papers (Abrell and Weigt 2008, Morris 2009, and Böhringer and Rosendahl 2011). One
paper, van den Bergh et al. (2013), by what appears to be a technical error, does not have
a searchable full text in Web of Science. The fifth paper, Boeters and Koornneef (2011),
uses the unusual expression ’carbon policy’ to refer to carbon pricing instruments and thus
was not captured by our search.

From the 277 papers found through the Web of Science search, we excluded 228. The
exclusion criteria are as follows:

1. ’Different topic’ refers to papers which are not about policy instruments. Examples in-
clude papers where the ETS acronym stands for something other than Emissions Trading
Scheme.

2. ’No simulation of policy instrument scenarios’ refers to papers which speak of policy
instruments and their interaction, but do not simulate specific scenarios with numeric
results. These papers are discursive or use theoretical microeconomic models. While they
cannot be included in the meta-analysis, we do consider them in the discussion of Section
5.6..

3. ’Another instrument combination’ and ’more than 2 instruments’ refers to, respectively,
papers which are focused on interaction between policy instruments other than carbon
pricing and renewable-energy instruments, and papers on combinations of more than two
instruments.

4. ’Insufficient scenarios’ means a paper did not cover sufficient policy scenarios with quan-
titative results, to allow for a conclusion on the synergy between carbon pricing and the
renewable-energy instrument.

5. ’Neither emissions nor welfare outcomes’ means a paper did not have emissions outcomes
nor welfare outcomes. While our primary focus is on emissions, we also keep papers which
look at welfare under different instrument combinations even if emissions are exogenously
fixed. These are not used for our synergy analysis, but allow to say something about the
trade-off between effectiveness and welfare

6. ’Included in another paper’ refers to multiple papers reporting the same results with
respect to policy synergy4.

4For example, Kalkuhl et al. (2015), extending Kalkuhl et al. (2013), includes additional results on carbon
capture and storage but no new results regarding the interaction of interest to us. Verma and Kumar (2013)
results had been previously published as conference proceedings in Verma and Kumar (2012) (both versions
were identified by Web of Science).
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Figure 1: Sample construction

Note that the same paper might provide more than one estimate of the interaction
between instruments. This explains why 42 papers generate 55 synergy estimates.5

5.3. Synergy estimates

The review by van den Bergh et al. (2021) proposed four categories of synergy: ’positive
synergy’, ’no synergy’, ’negative synergy’ and ’backfire’. We suggest two additional cate-
gories, as illustrated in Figure 2. The boundary between ’negative synergy’ and ’backfire’
becomes a category of its own, called ’border of backfire’. This is handy as we will refer a
lot to it later. ’Border of backfire’ means the combination is redundant. This distinction
determines whether there is any advantage in terms of emissions in piling instruments, i.e.,
any additional abatement. ‘Negative synergy’ denotes that the combination of instruments

5For example, Böhringer et al. (2009) generate three synergy estimates, using three different computable
general equilibrium models. Choi and Thomas (2012) provide two estimates of synergy, one where the
emission cap is implemented with emission allowances and one without. Fagiani et al. (2014) also provide
two estimates of synergy, one where the renewable-energy incentive is a green certificate market and one
where it is an feed-in tariff. Liu et al. (2018), De Jonghe et al. (2009) and van den Bergh et al. (2013) provide
two estimates of synergy, one with a carbon tax and another with a carbon quota. Liu and Wei (2016)
provide two estimates of synergy, one where the emissions trading schemes implemented by two regions are
independent and one where they are integrated. Arnette (2017) and Arnette and Zobel (2011) undertake
multi-objective linear optimization and generate multiple synergy estimates (3 and 5, respectively) using
distinct sets of weights for objectives.
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achieves more emissions reduction than either instrument alone but excludes the case of
backfire. We divide backfire into ’single backfire’ and ’double backfire’: the first denotes
that the combination of instruments reduces emissions less than the most, but more than
the least, effective instrument; the second indicates that the combination of instruments
reduces emissions even less than the least effective instrument.

To assess the exact synergy between two instruments, four scenarios are needed: no
instrument, one instrument only (instrument 1 with abatement A), the other instrument
only (instrument 2 with abatement B), and the two together (combination of instruments
1 and 2 with abatement effect A&B).

Figure 2: Synergy categories

We have found only 31 estimates that are based on simulations covering all four scenar-
ios. We decided to keep 24 additional estimates coming from simulations with only three
scenarios - no instrument, one instrument, and their combination. Of these, 19 involve sim-
ulation of a carbon pricing instrument alone, but not of the renewable-energy instrument
alone (Table 1).
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Table 1: Number of estimates by the number of scenarios simulated

Scenarios No. of estimates

all four scenarios 31
missing ’renewable-energy instrument alone’ 19
missing ’carbon pricing instrument alone’ 5

Total 55

If one scenario is missing, we cannot categorize the synergy with certainty and must
instead provide a range. To aid deriving insights from studies with only three scenarios, we
classify papers where one scenario with one of the instruments alone is missing into three
types:

• Type I: The combination of instruments 1 and 2 has the same effect as instrument 1 (A&
B equals A);

• Type II: The combination of instruments 1 and 2 has a larger effect than instrument 1
(A&B is larger than A);

• Type III (not found in our sample): The combination of instruments 1 and 2 has a smaller
effect than instrument 1 (A&B is smaller than A).

We now determine, using Figure 3, the range of synergy effects for papers of Type I and
of Type II by varying the (unknown) effect B. We start in Figure 3a, where B ¿ A&B for
papers of Type II, and reduce B step by step, until we reach Figure 3f. We highlight the
changes in the synergy categories in bold.

The range of possible synergy effects for Type I results is limited, from backfire (cases
3a, 3b and 3c) to border of backfire (cases 3d, 3e and 3f). The range of possible synergy
for Type II results, instead, is broader, namely from single backfire (cases 3a) until positive
synergy (case 3f). In all cases, studies of Type II have better synergy outcomes. We will
also make use of the distinction between Type I and Type II in the descriptive results and
statistical analysis in subsequent sections.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Possible synergy categories when instrument 2 is missing
(in bold when there is an improvement in the synergy category)
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5.4. Descriptive results

5.4.1. Policy instruments

The estimates we collect cover four instruments - carbon caps, carbon taxes, renewable-
energy targets (RET) and renewable-energy subsidies (RES). The term ’carbon cap’ en-
compasses mandated ceilings on emissions without tradable certificates and carbon mar-
kets. The RETs are likewise either mandated and modelled as constraints in a model, or
represented by a Green Tradable Certificates market. Most estimates (33/53) come from
models with carbon caps instead of carbon taxes. RETs are more common than RES (34
vs. 19). Table 2 provides more details on the instrument combination.

Table 2: Type of instrument interaction

Type of Interaction No. of estimates

Carbon cap 33
of which, with RES 11
of which, with RET 22

Carbon tax 20
of which, with RES 8
of which, with RET 12

generic carbon price* 2

Total 55

*Estimates come from models with an exogenously set
carbon price.

5.4.2. Model type

All models considered in the review represent ex-ante assessments, as opposed to empirical
ex-post studies of synergy. The synergy estimates thus come from model simulations and not
from observational or experimental data. However, models use empirical data (to different
extents) to calibrate model parameters.

Most estimates derive from partial equilibrium models (17), followed by models opti-
mizing the power sector (16) and general equilibrium (GE) models (16). The first consider
endogenous demand when maximizing profits for the energy sector, while the second fix
demand and minimize the cost of energy provision.

Partial equilibrium models can be classified by the level of detail of the energy engi-
neering system compared to that of the economic system. Out of 17 estimates, 7 come
from ’energy system models’, several of which are based on the MARKAL framework. The
remaining models have a stylized energy dispatch system, but higher economic complex-
ity. Some consider energy providers to have market power (instead of assuming perfecting
competition), others include innovation, investment, environmental externalities other than
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CO2-related or a social planner.
One paper, Rezai and van der Ploeg (2017), uses an integrated assessment model (IAM).

Two papers (three estimates) use agent-based modelling (ABM) - Fagiani et al. (2014) and
Richstein et al. (2015). Two papers use the 3EME modelling framework (Mercure et al.
2014 and Knobloch et al. 2019), a self-designated macro-econometric approach. These
use structural equations with econometrically estimated parameters, and do not impose
equilibrium conditions.

Figure 4: Types of model used

5.4.3. Estimates of synergy

As explained in Section 5.3., we know with certainty the synergy from 31 estimates. Of these,
16 estimates indicate that the combination of instruments results in additional abatement.
In one of these, the synergy is positive, but, in all the remaining cases, it is negative.

For the 24 estimates for which the synergy is not known with certainty we provide a
range, following the approach of section 5.3.. We find 12 estimates of Type I – where the
combination of instruments achieves no additional abatement, with the possible synergy
ranging from double backfire to border of backfire. The remaining 12 are of Type II and
the combination of instruments might deliver additional abatement, with possible outcomes
ranging from single backfire to positive synergy.

These results do not indicate striking differences between papers with four and three
scenarios (compare Tables 3 and 4). In the latter group, we know 12/24 do not result in
additional abatement (papers of Type I). If we assume that for most papers of Type II the
combination of instruments contributes some additional emissions reduction - arguably a
realistic assumption6 -, we would end up with similar shares of papers with an emissions

6As shown in Figure ??, in 4 out of 6 cases, papers of Type II are better than ’border of backfire’. More-
over, the two cases where they are not - 3a and 3b - require the missing instrument to provide substantially
more abatement than the instrument analysed. The instrument most often missing is the renewable-energy
one (in 9 out of the 12 Type II estimates), which, accordingly to the literature, is highly unlikely to provide
substantially more abatement than carbon pricing on its own.
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reduction in terms of piling instruments.

Table 3: Synergy category when four scenarios are present

Synergy category No. of estimates

backfire 1
border of backfire 14
negative, no border of backfire 15
positive 1

Total 31

Table 4: Synergy range when three scenarios are present

Synergy range No. of estimates

at best border of backfire (Type I) 12
at best positive synergy (Type II) 12

Total 24

We express additional abatement as the increase (or decrease) in emissions reduction
when implementing both instruments versus implementing only the most effective one. This
means in the ’border of backfire’ case – 14 out of 31 estimates - additional abatement is
0. In the single backfire case, emissions reduction is -3.2%. In the single positive synergy
case, additional abatement is between 4% and 10%. Of those with negative synergy, the
additional emissions reduction is on average 13.8%, with a maximum increase of 38.5%
(and a median of 10.7%). If we take the average of all estimates, the additional reduction
in emissions is 6.5%.

5.4.4. Welfare benefits from instrument combination

We now look at whether there are any positive effects of implementing two instruments
as opposed to only one, apart from the emission impact. Studies in which emissions are
exogenously fixed were omitted from the analysis on emission synergy, but are included here
if they present welfare outcomes.

The definition of ’welfare’ varies widely across papers. Some papers, for example, ex-
clusively look at generation costs of the energy system or at producer surplus, while others
consider GDP, or focus only on consumers. A total of 32 estimates provide information on
consumer-focused metrics, namely, Hicksian equivalent variation , consumer surplus, dis-
counted consumption and lower retail electricity prices. For 33 out of the 58 estimates we
find some advantage in terms of welfare when implementing both instruments instead of
only one (see Table 5).
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Table 5: Welfare effects of two instruments versus only one

Welfare effects No. of estimates

Negative 22
Zero 3
Positive 33

Total 58

5.5. Regression analysis

Next we undertake a meta-regression of theoretical models, similar to Patuelli et al. (2005).
We construct binary variables, as done in the meta-regression by Anderson (2020). We
run several logistic and Tobit regressions to identify factors explaining positive results of a
policy interaction, in terms of abatement or welfare. For abatement, we consider two binary
independent variables: carbon tax, i.e., taking a value of 1 if the carbon pricing instrument
is a tax (and 0 if it is a market), and GE model, taking value 1 if the model is a general
equilibrium model and 0 otherwise. We consider carbon tax as a variable of interest, given
the literature predicts additional abatement for taxes but not markets. We choose to look
at GE models separately since the ‘waterbed effect’ would require considering also markets
other than energy.

If we consider only estimates from papers with four scenarios, we find through a logistic
regression that GE models are associated with lower probability of additional abatement.
We do not find any significant effect regarding carbon taxation (see Table D3 in Appendix
B). To increase statistical power, we combine the synergy estimates from models with four
and three scenarios, and use two different specifications: an ordered logistic model and a
Tobit model. We also include an indicator variable signalling whenever estimates come from
models with four scenarios. Using the terminology of Section 5.3., for papers with three
scenarios, we know that those of Type I have a zero probability of additional abatement.
Papers of Type II, instead have a probability of additional abatement of 16/31 (as shown
in Table 3). We thus can treat our variable on the probability of additional abatement as a
continuous variable, bounded between 0 and 1, and resort to Tobit regressions.

The combination of instruments is more likely to bring additional abatement with a
carbon tax rather than with a cap. However, this result is only significant in the Tobit
model when the variable ’four scenarios’ is omitted, and only at the 10% level. In the
ordered logistic models in Appendix, described in Tables D4 and D5, the variable is also
only significant at the 10% level, regardless of whether we consider the number of scenarios
simulated. We find that GE models are less likely to find additional abatement from the
instrument combination, regardless of the specification.

Regarding welfare impacts, through a logistic regression, we find that models where the
welfare function explicitly considers environmental damages are 50% more likely to find
positive welfare outcomes. The association between consumer-focused welfare metrics and
positive welfare effects is not statistically significant. Likewise, we do not find any evidence
of a trade-off between emission synergy and welfare effects - the association between positive
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Table 6: Tobit of the probability of additional abatement from an instrument combination

Probability of additional abatement

Carbon tax 0.377∗ 0.364
(0.223) (0.230)

GE model −0.531∗∗ −0.501∗

(0.257) (0.291)

Four scenarios 0.055
(0.257)

Constant 0.110 0.078
(0.172) (0.228)

Observations 53 53

welfare outcomes and non-redundant emission outcomes is not significant (and positive).

Table 7: Average marginal effects of logistic regression of positive welfare outcomes

Positive welfare outcomes

Positive probability of 0.0707
additional abatement (0.143)

Consumer metric 0.1808 0.1809
(0.1383) (0.1432)

Damages 0.5017∗∗∗ 0.5031∗∗∗

(0.0727) (0.0728)

Carbon tax 0.1812 0.1957
(0.1383) (0.1322)

GE model 0.1646 0.1331
(0.1969) (0.1862)

Four scenarios -0.2120 -0.2330
(0.1806) (0.1732)

Observations 45 58
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5.6. Discussion

5.6.1. Additional emissions reduction

We find that papers with a carbon tax, as opposed to a carbon cap, are more likely to
find additional abatement from the instrument combination. Nonetheless, this association
is only weakly significant (at the 10% level). Furthermore, some papers go against what
the theory predicts and find additional emissions reduction even with cap-and-trade. In our
sample, this is a result of either: i) partial coverage of policies or ii) intermittent, lagged, or
otherwise constrained climate policy. We expand on these two cases below.

In the case of partial coverage, one of the policy instruments does not cover all regions
or sectors. In Fais et al. (2015) and Weigt et al. (2013), the FIT only covers Germany, while
the cap is the EU-ETS. Weigt et al. (2013) not only find additional emissions reduction, but
actually positive synergy. Liu and Wei (2016) find that when a China ETS and a EU-ETS
are set up independently – each only covers one of the regions-, renewable-energy policy
results in additional emissions reduction.

In terms of constrained carbon pricing , Lecuyer and Quirion (2013,2019) find that
intermittent or non-dynamic carbon pricing implies combining it with a renewable-energy
subsidy results in additional abatement. Intermittent carbon pricing means that in certain
periods carbon pricing might be suspended. Non-dynamic carbon pricing, instead, reflects
that the carbon price might not be easily adjusted upwards . Political constraints can lead
to both situations. Shahnazari et al. (2017) similarly argue that RET leads to a reduction
of political uncertainty compared to a carbon tax. Under the RET, a signal is sent to the
market which makes investment into renewable-energy less risky. Through a real options
model, they conclude abatement will be less costly for private investors under the instrument
combination than with either instrument alone. They refer to Australia as a case study,
where a carbon tax was implemented, and a posteriori removed.

Yi et al. (2019) present a case for China where carbon pricing only has meaningful effects
after several years. This is because carbon pricing triggers the construction of nuclear energy
infrastructure which takes considerably more time to build than renewable alternatives.
They estimate that due to learning by doing and lock-in effects, the combination of the
policies leads to higher abatement in the short-run.

5.6.2. Welfare effects

Whenever the welfare function explicitly includes environmental damages - in 6 estimates
- we find a positive welfare effect from the instrument combination. Clancy and Moschini
(2018) find, under a carbon tax, additional abatement from the combination and simul-
taneously higher welfare. They include innovation externalities and co-benefits (pollution
reduction). Silva et al. (2021), with the same instrument types, finds additional abatement
from the combination, and higher welfare.

Even though this association is not statistically significant, measures which focus on con-
sumers more often find gains in our sample. All papers which consider as the only outcome
retail electricity prices find lower prices under the combination than with carbon pricing
alone. Often, using the renewable-energy instrument alone reduces consumer costs (Jensen
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and Skytte (2003) expand on the issue). However, in several instances, the existence of
emissions trading makes the introduction of renewable energy more beneficial to consumers
as well (see Linares et al. (2008) for a stylized example based on the Spanish electricity
market).

Other papers find lower financial costs for consumers namely, Fagiani et al. (2014),
who report it alongside additional abatement, and Huang et al. (2013). Kalkuhl et al.
(2013) also find benefits in terms of retail electricity prices from the policy combination.
Knobloch et al. (2019) find additional emissions reduction and, simultaneously, a reduction
in consumer costs. One of the three computable general equilibrium estimates provided in
Böhringer et al. (2009) reports slightly higher welfare as measured by Hicksian equivalent
variation (with a carbon cap) due to ’prior distortions in the energy market’, specifically,
fossil fuel subsidies. Bauer et al. (2012), also focusing on consumption, find higher welfare of
the combination of instruments when carbon pricing policy lags. This is explained through
a learning by doing externality7.

Including environmental damages or focusing on consumers are not a necessary condition
for welfare gains, however. Rausch and Reilly (2015) find GDP gains from the instrument
combination, alongside emissions reduction. This is explained by avoiding adjustment costs
of energy capacity expansion. Similarly, Rezai and van der Ploeg (2017), focusing on a
carbon tax, obtain higher GDP from the instrument combination due to learning by doing
in renewable-energy technologies alongside emissions reduction8.

Fischer et al. (2017) and Hirth and Ueckerdt (2013) find that the combination leads
to higher consumer surplus, but much lower producer surplus, than carbon pricing alone.
Whether the policy mix is advisable, given carbon pricing is first-best in terms of total
surplus, depends on whether redistribution – in the previous cases, from producers to con-
sumers - is feasible. A flagrant example of possibly limited redistribution is Liu and Wei
(2016), who find that the combination brings higher consumer welfare for both the EU and
China under the instrument combination but only higher total welfare in China. Imple-
menting carbon pricing is first-best in terms of allocative efficiency, yet, it would require
transfers across borders. Several papers such as Kalkuhl et al. (2013) and Kalkuhl et al.
(2015) analyse the policy mix from this second-best perspective, admitting that a global
carbon tax is infeasible due to limits to social transfers between countries.

5.7. Conclusions

We have collected quantitative results from the literature on the synergy effects in emissions
reduction from a combination of carbon pricing and renewable-energy policies. All estimates
come from ex-ante assessments. Indeed, ex-post studies cannot easily estimate a synergy
effect. Doing so would require a region to have alternated carbon pricing and renewable-
energy policy, before finally overlapping the two.

In about 50% of cases, the two instruments are more effective in reducing emissions than
either one alone. There is scope for additional emissions reduction, albeit admittedly small:

7The model keeps emissions fixed.
8Likely reduction, simulations has three scenarios and is of Type II
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we find that combining a carbon pricing and a renewable-energy instrument on average leads
to 6.5% more emissions reduction than using only the most effective instrument. Among
cases with additional abatement, we find the mean (median) additional abatement is 13.8%
(10.7%).

An important finding from this review is the lack of complete information in many papers.
Typically, model simulations omit a scenario with only a renewable-energy instrument. We
collect 24 additional estimates from studies which omit one scenario. We cannot classify
the synergy with absolute certainty, but are able to provide range. We find similar results,
with about 50% of estimates likely reflecting additional abatement.

Additional abatement, according to theoretical arguments, should not be found if a
carbon cap (as opposed to a tax) is in place. We find such an association, but it is only
weakly statistically significant. Some studies do find additional abatement, due to either:
i) partial coverage of policies or ii) intermittent, lagged, or otherwise constrained carbon
pricing. The partial coverage of carbon pricing will endure while policy is not coordinated
at the global scale. Even at the national level, due to political constraints, carbon pricing
might become intermittent – in certain periods applied, in other periods removed. Its
adoption might lag, i.e., be substantially slower than the more popular renewable-energy
policies. It might also lose its stringency due to changing market conditions, which, if
the instrument is not fully dynamic, can require new lengthy political negotiations. Under
these conditions, adding renewable-energy policy gives a stable price signal and locks in
investments, triggering earlier the construction of energy infrastructure which will not be a
posteriori disposed of. This can bring increases in total welfare by providing an ”assured”
minimum level of abatement. It is largely a matter of political economy if it is feasible
to reduce these long-standing constraints and thus improve carbon pricing, or if, instead,
combining the two instruments is the best workable option.

Regarding welfare, we find gains in 57% of cases. Whenever co-benefits are consid-
ered, there is a welfare gain from the instrument combination. Measures focused on the
consumer, such as Hicksian equivalent variation, consumption, and, particularly, retail elec-
tricity prices, also often find advantages in combining the instruments, yet this association is
not statistically significant in the meta-regressions. Some studies find gains in GDP, along-
side additional abatement, thanks to learning by doing in renewable-energy technologies
and lower adjustment costs in the energy system. In these cases, similarly to the co-benefits
case, there is a market failure which renewable-energy policy tackles. Innovation exter-
nalities might be better targeted by R&D subsidies (Fischer et al. 2017). We do not find
evidence of a trade-off between additional abatement and welfare gains. In 70% of studies,
there is either additional emissions reduction or a positive welfare outcome due to combining
the two instruments.

Regarding limitations of our study, some remarks are in order. Firstly, a meta-regression,
compared to primary studies, can achieve considerable statistical power by combining statis-
tical estimates. In our case, the estimates are deterministic (conditional on the assumptions
of the models). It is important to clarify what is the interpretation of the meta-regressions:
the papers collected should be seen as a sample of the population of all ex-ante assessments
of synergy which could be constructed. Our meta-regressions thus allow us to make infer-
ences about ex-ante assessments of synergy in general. The direction of a possible sample
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selection bias is unknown. It is not clear which results are more likely to be published:
those confirming, or those deviating, from a theoretical base case. Furthermore, to extrap-
olate from ex-ante assessments to reality, we must examine, for any given situation, which
assumptions are likely to hold and to what extent. Our review, in fact, reveals that spe-
cific modelling assumptions - for example, in terms of externalities considered or emissions
coverage by a policy instrument - might co-determine the type of synergy.
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Appendix A

Chapter 2 appendix

A1. Details on environmental variables

A1.1. Climate data

The E-OBS gridded datasets (Cornes et al. 2018) on temperature, radiation and precipita-
tion, are the starting point for the climate data generated.

Temperature Bins

For yearly measures of the full temperature distribution, we focus on bins of temperature,
i.e., the number of days in a year where the minimum (TN variable in E-OBS), mean (TG
variable in E-OBS) and maximum (TX variable in E-OBS) temperature fall in one of the
sixteen 2.5°C temperature intervals: ¡-5, -5 to -2.5, -2.5 to 0, 0 to 2.5, 2.5 to 5, 5 to 7.5,
7.5 to 10, 10 to 12.5, 12.5 to 15, 15 to 17.5, 17.5 to 20, 20 to 22.5, 22.5 to 25, 25 to
27.5, 27.5 to 30 and ≥ 30, computed at the grid cell level. The use of temperature bins
allows flexibility in considering the non-linear impacts of temperature on health and other
variables of interest. We then assign the grid cells to the SHARE regions by employing a
shapefile of the SHARE regions and geospatial routines from R packages sf and raster. We
constructed a shapefile of the SHARE regions by resorting to EUROSTAT NUTS shapefiles
(downloadable from EUROSTAT) and to a shapefile of Luxembourg cantons (downloadable
from data.public.lu). Once the bins are computed at grid cell level and georeferenced to a
SHARE region, we aggregate them into two regional measures: median and mean. We also
calculate the standard deviation between the cells of a SHARE region, given that, especially
for larger regions, spatial variability might be substantial. Accordingly, the variable names
end with ‘ median’, ‘ mean’ or ‘ std’.

Average (seasonal) temperature

We calculate the average annual temperature and the average seasonal temperatures –
spring, summer, fall and winter - in the SHARE region where the respondent lived in a
certain year. These are calculated for each grid cell as the average of the mean temperature
(TG variable in E-OBS) in all days of the year, or in the days pertaining to each season
(December, January and February were allocated to winter; March, April and May to spring;
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June, July and August to summer; and September, October and November to fall). These
grid cells values are aggregated to the SHARE region through both the median and the
mean.

Heating and Cooling Degree days

Following the EUROSTAT definitions1, at each grid cell we calculate the number of heating
degree days (HDD) and cooling degree days (CDD) using the average temperature from the
E-OBS dataset (TG variable). Thus, for HDD, we sum over a year, for each grid cell, the
differences between 18ºC and the recorded mean daily temperatures, for every day when the
temperature in that grid cell was equal or below 15ºC (average temperature coming from
TG variable of E-OBS). For CDD, the process is analogous, except we sum the differences
between the recorded mean daily temperature and 21ºC, only for those days where the mean
temperature was above 24ºC. Each grid cell thus has, for each year, an HDD and a CDD
index. These are aggregated to the SHARE regions through both the median and the mean,
as with the remaining variables.

Radiation

The 0.1° gridded E-OBS dataset provides data on daily radiation starting in 1950 through
variable QQ. For each grid cell, we calculate for any given year, the average of the radiation
over all the days in that year, or in the days pertaining to each season. These grid cell
values are aggregated to the SHARE region through both the median and the mean.

Precipitation

For precipitation we likewise provide yearly variables and cumulative variables calculated
from them, starting from the E-OBS dataset, resorting to daily near-surface precipitation
(E-OBS variable RR). At each grid cell, we calculate the number of days in each year where
the sum of precipitation exceeds 10 mm and 20 mm - heavy and very heavy precipitation
days-, as defined in the Agroclimatic indicators datasets part of the C3S Global Agriculture
Sectoral Information Systems (SIS). As with temperature variables, these are georeferenced
to SHARE regions, and aggregated using the median and mean, alongside the standard
deviation to analyze intra-region variation.

A1.2. Pollution data

The variables considered for pollution relate to the four most explored pollutants in the
context of health: particulate matter 2.5 microns (in diameter) (PM2.5), particulate matter
10 microns (PM10), ozone (O3) and nitrogen dioxide (NO2) (as put forward in the WHO
Review of evidence on health aspects of air pollutionS1).

1https://ec.europa.eu/eurostat/cache/metadata/en/nrg chdd esms.htm)
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Concentration

For PM2.5, PM10 and NO2, there is limited evidence for the existence of a threshold below
which health effects are negligible. Negative health outcomes have been found at very low
concentrations (WHO 2014). We therefore resort to yearly average exposures, starting from
the dataset CAMS global reanalysis (EAC4) on monthly averaged fields whose first year is
2003.

The original CAMS EAC4 monthly dataset resolution is 0.75° X 0.75°. We disaggregate
the dataset into 0.1° X 0.1° through bilinear interpolation, and, at the grid cell level, take
the average of the 12 months of each year. As done with the temperature dataset, each grid
cell is associated with the SHARE region when its centroid falls within the region boundary,
and the three variables, mean, median and standard deviation, are then constructed.

For O3, the literature documents mixed evidence on the existence of thresholds. Several
papers find an association between health outcomes and summer ozone concentration, but
not winter season concentration; a finding attributed to the existence of a threshold by some
studies or due to confounding effects or seasonal behavioral differencesS2. Other studies that
specifically analyze the threshold question arrive to different conclusions (e.g., evidence of
thresholds is found in some studiesS3 but not in othersS4). We follow the recent literature
on long-term effects of ozone exposure and operate with yearly averages of daily maxima
and warm-season averages of daily maximaS5, S6, S7. The dataset used is CAMS EAC4
(Inness et al. 2019), from which we use the average O3 concentration at 3-hour intervals of
each day at the surface level, whose first year is 2004. For each day, we keep the maximum of
the 6 observations reported, at the grid cell level (after disaggregating the spatial resolution
from the gridded 0.75° to 0.1° as mentioned above). We then take either the yearly average
or the warm months average (April to September) of the daily maxima, for each grid cell.
The grid cells are overlapped with the SHARE regions, as with the temperature datasets,
and we calculate the mean, median, and standard deviation at the SHARE region level.

Emissions

The datasets on pollution concentration mentioned begin in 2003 (or in 2004 for O3), thus,
enabling coverage for the regular SHARE waves (which start in 2004), but not for the cu-
mulative exposure. To allow us to go further back in time we use a dataset not on pollution
concentration, but on pollutant emissions, the EDGAR v5.0 Global Air Pollutant Emissions
dataset, which covers the period 1970-201513. The relevant variable for direct health ef-
fects is concentration, thus, the health impacts of emissions will be different across regions,
depending, namely, on meteorological conditions and topography. Even so, especially given
that emissions are the variables which can be affected policy-wise, considering their (indi-
rect) effects on other variables can be of interest. The variables obtained from EDGAR are
estimates of yearly emissions of PM2.5 and PM10 at the grid cell level which we overlap with
SHARE regions to obtain the yearly mean, median and standard deviation at the region
level. Information on concentration could also be derived from the EDGAR dataset if com-
bined with advanced chemical transport models (CTMs). The original dataset is available
a 0.1° X 0.1° resolution.
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A1.3. Flood events data

For floods, we resort to the DFO dataset (Brakenridge 2021), which provides information
on flood events from 1985 until the present. We report 6 variables: the number of flood
events, the number of casualties, the number of displaced individuals, a weighted number
of flood events (weighted by an indicator 1, 1.5 or 2, representing the severity of the flood
event), the total days during which there were floods events, and the weighted total days
(weighted by an indicator 1, 1.5 or 2 representing the severity of the flood event).

The variables correspond to whether the individual was living in a region considered
in the dataset to be affected by the flood event (more specifically, if the region where the
individual was living overlaps with the region provided as ‘affected’ in the DFO dataset).
Since depending on the country, individuals might report a NUTS2 or NUTS1 region, other
12 variables are created. The first 6 refer to whether the NUTS1 region where the individual
resided was affected by flood events and the latter 6 to whether the NUTS2 region where
the individual resided was affected by flood events.

A1.4. Regional aggregation and population weighting

We identify households’ location through the SHARE regions reported in the retrospective
accommodation waves 3 and 7, or through the NUTS in which the household was located at
the moment of sampling in the regular waves. The latter is reported in the housing modules
of the regular panel waves. We use information from the housing modules on whether
individuals changed house to expand forward regional information.

SHARE regions are mostly NUTS2 (Austria, Bulgaria, Croatia, Czechia, Denmark, Fin-
land, Greece, Hungary except for Budapest and Pest, which are reported together as the
NUTS1 region of Central Hungary, Italy, Latvia, Lithuania, Poland, Portugal, Romania,
Slovakia, Slovenia, Spain and Sweden) with a few countries reporting NUTS1 only (Bel-
gium, France, Germany and one region of Hungary, Central Hungary).

Whenever individuals lived in a country different to that in which they were now sampled,
we do not know in which region they lived, but only the country. Country-level information
is considered too aggregate to provide useful environmental exposure measures. Thus, for
periods where respondents were outside the country, we do not have any environmental
information. Cumulative exposure variables, therefore, do not consider such years. Averages
which explicitly consider this fact can be calculated by dividing cumulative exposures by the
number of years for which there is information (which excludes the years when individuals
were abroad). We provide the variables necessary for users to build said averages.

From gridded raw datasets, we generate transformed variables at the grid cell level,
as explained in the previous sections. We finally aggregate them to the SHARE regions:
we detect in which SHARE region the grid cells are located by overlaying them with a
shapefile of the SHARE regions, constructed resorting to EUROSTAT NUTS shapefiles
(downloadable from EUROSTAT) and to a shapefile of Luxembourg cantons (downloadable
from data.public.lu, see SI for more details on the NUTS classifications used.) For climate
and pollution variables we provide unweighted variables and population-weighted variables.
For population-weighted variables, we resort to the historical gridded population dataset
from ISIMIP , which provides annual population estimates for 1901-2020. Weighting is
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done at the moment of regional aggregation.
A second version of the dataset, currently undergoing further robustness checks, explores

more granular geographical data. Resorting to the Degree of Urbanization DEGURBA
methodology (the EU/OECD standard for urbanization classification), we classify each grid
cell within a SHARE region as being either part of a city, of towns and suburbs, or of
a rural area. We compute for each SHARE region-DEGURBA region pair population-
weighted exposure variables. With estimated country-specific weights, we transform these
into averages for the five regions indicated by SHARE respondents - big cities, suburbs,
large towns, small towns and rural areas.

A1.5. Cumulative variables

The SHARE dataset is a panel dataset. Environmental hazards might have a cumulative
impact on health. Situations which took place at a young age might also only later tran-
spire into health consequences. We therefore construct cumulative variables of exposure to
environmental hazards, reflecting not the exposure to for instance extreme temperatures in
the year of a wave, but instead exposure since an individual was born until the wave in
question, amongst other cumulative indicators.

If a variable has no prefix, it refers to the exposure to the environmental hazard in the
year of the wave. Prefixes starting with ‘s’ correspond to a rolling sum of exposure, with
the simple ‘s ’ corresponding to the rolling sum of exposure from birth (or from the oldest
year available) up until the year of the wave in question.

The prefixes starting with ‘y’ are simple sums instead of rolling sums; they correspond
to total exposure during certain, relevant, years. For early age exposure, ‘y5 ’, ‘y10 ’ and
‘y15 ’ correspond to total exposure during the first 5, 10 and 15 years of age. ‘yjob ’
corresponds to exposure during the years at current job or at the most recent job. We also
generate variables for exposure to environment in the years preceding periods of ill health
during adulthood. Respondents indicate up to 3 periods where they experienced ill health,
specifying the start and end (more details in Appendix 2). For individuals indicating illness
periods, we construct variables with prefix ‘yill1 ’, ‘yill2 ’ and ‘yill3 ’ denoting exposure
during the years of illness periods 1,2 and 3 respectively. We construct variables with prefix
‘y1bf ’, ‘y3bf ’ and ‘y5bf ’ to represent exposure to hazards during the 1 year, the 3 years
and the 5 years preceding the start of each illness period.

We generate cumulative variables since birth for 6 of the 16 temperature bins, on the
low extremes and on the high extremes, i.e., for temperatures below 5ºC, between -5ºC
and -2.5 ºC and between -2.5 ºC and 0 ºC; and for temperatures between 25 ºC and 27.5
ºC, between 27.5 ºC and 30 ºC, and above 30 ºC. Other bins can be made available on
request. On the temperature variables, we report cumulative exposure since birth for CDD
and HDD. Cumulative variables since birth are also available for precipitation. We report
cumulative variables for flood variables as well.

As auxiliary variables, we report the rolling sum of the number of years for which cu-
mulative measures were computed. We choose to provide both cumulative exposures and
years for which cumulative exposure is available, instead of only averages, since even for
the same variable, the information for the same number of years for all individuals is not
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available. This is for two reasons: i) individuals who were born before the years where the
environmental variables start and ii) periods in which individuals were outside their coun-
try of interview. By providing both cumulative and years available, averages can be readily
computed through their ratio, if averages are the variables of interest, and simultaneously,
subsets of the sample based on the number of years available (e.g., necessarily all years since
birth) can be analyzed separately.

We report as well average spring, summer, fall, winter, and yearly temperatures and
average radiation, since birth and during the first 5, 10 and 15 years of life. For these, we
directly provide these averages alongside the rolling sum of the number of years, instead of
cumulative exposure as we do for the remaining (count) variables.

The cumulative variables are created using the yearly variables; therefore, their names
are the same, but with added prefixes which indicate over what period are the cumulative
measures taken.
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Table A1: Environmental variables list

Variable name Variable description

Temperature Variables

Bins
[tn/tg/tx] neg5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. below -5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] neg5 neg2p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt -5 and -2.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] neg2p5 0 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt -2.5 and 0ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 0 2p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 0 and 2.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 2p5 5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 2.5 and 5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 5 7p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 5 and 7.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 7p5 10 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 7.5 and 10ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 10 12p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 10 and 12.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 12p5 15 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 12.5 and 15ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 15 17p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 15 and 17.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 17p5 20 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 17.5 and 20ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 20 22p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 20 and 22.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 22p5 25 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 22.5 and 25ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 25 27p5 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 25 and 27.5ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] 27p5 30 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. bt 27.5 and 30ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]
[tn/tg/tx] g30 [median/mean/w][none/ t1bf/ t2bf] No. days [min/avg/max] temp. above 30ºC
(3*2*3 vars) ([median/mean/population weighted mean] grid cells) at [year wave/year before/2years before]

Average temperatures
temperature [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) Avg. daily mean temperature ([median/mean/population weighted mean] grid cells)

at [year wave/year before/2years before]
summer [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) Avg. summer daily mean temperature ([median/mean/population weighted mean]] grid cells)

at [year wave/year before/2years before]
spring [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) Avg. spring daily mean temperature ([median/mean/population weighted mean] grid cells)

at [year wave/year before/2years before]
fall [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) Avg. fall daily mean temperature ([median/mean/population weighted mean] grid cells)

at [year wave/year before/2years before]
winter [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) Avg. winter daily mean temperature ([median/mean/population weighted mean] grid cells)

at [year wave/year before/2years before]

CDD/HDD
CDD [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) EUROSTAT Cooling degree days index ([median/mean/population weighted mean] grid cells)

at [year wave/year before/2years before]
HDD [median/mean/w][none/ t1bf/ t2bf] (2*3 vars) EUROSTAT Heating degree days index ([median/mean/population weighted mean] grid cells)

at [year wave/year before/2years before]

Radiation Variables

radiation [median/mean/w][none/ t1bf/ t2bf] Average daily radiation ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
radiation spring [median/mean/w][none/ t1bf/ t2bf] Average daily radiation in spring months ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
radiation summer [median/mean/w][none/ t1bf/ t2bf] Average daily radiation in summer months ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
radiation fall [median/mean/w][none/ t1bf/ t2bf] Average daily radiation in fall months ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
radiation winter [median/mean/w] [t0/t 1bf/t 2bf] Average daily radiation in winter months ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
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Precipitation Variables

prec10 [median/mean/w][none/ t1bf/ t2bf] No. days total precipitation above 10mm ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
prec20 [median/mean/w][none/ t1bf/ t2bf] No. days total precipitation above 20mm ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]

Flood Variables

fl no floods [SHARE/NUTS1/NUTS2] [none/ t1bf/ t2bf] No. flood events in SHARE region / NUTS1 region / NUTS2 region
(3*3 vars) at [year wave/year before/2years before]
fl tot dead [SHARE/NUTS1/NUTS2] [none/ t1bf/ t2bf] No. casualties of flood events in SHARE region / NUTS1 region / NUTS2 region
(3*3 vars) at [year wave/year before/2years before]
fl tot displaced [SHARE/NUTS1/NUTS2] [none/ t1bf/ t2bf] No. displaced by flood events in SHARE region / NUTS1 region / NUTS2 region
(3*3 vars) at [year wave/year before/2years before]
fl weighted floods [SHARE/NUTS1/NUTS2] [none/ t1bf/ t2bf] Weighted No. of flood events in SHARE region / NUTS1 region / NUTS2 region
(3*3 vars) at [year wave/year before/2years before]
fl tot days [SHARE/NUTS1/NUTS2] [none/ t1bf/ t2bf] No. days of flood events in SHARE region / NUTS1 region / NUTS2 region
(3*3 vars) at [year wave/year before/2years before]
fl weighted [days SHARE/NUTS1/NUTS2] [none/ t1bf/ t2bf] Weighted No. days of flood events in SHARE region / NUTS1 region / NUTS2 region
(3*3 vars) at [year wave/year before/2years before]

Pollution vars

Concentration
conc pm2p5 [median/mean/w][none/ t1bf/ t2bf] Avg monthly concentration PM2.5 ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
conc pm10 [median/mean/w][none/ t1bf/ t2bf] Avg monthly concentration PM10 ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
conc no2 [median/mean/w][none/ t1bf/ t2bf] Avg monthly concentration NO2 ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
conc yearly o3 [median/mean/w][none/ t1bf/ t2bf] Avg daily max O3 concentration ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
conc warm o3 [median/mean/w][none/ t1bf/ t2bf] Avg daily max O3 concentration in warm months ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
Emissions
emissions pm2p5 [median/mean/w][none/ t1bf/ t2bf] Yearly emissions of PM2.5 ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]
emissions pm10 [median/mean/w][none/ t1bf/ t2bf] Yearly emissions of PM10 ([median/mean/population weighted mean] grid cells)
(2*3 vars) at [year wave/year before/2years before]

Table A2: Cumulative environmental variables list

Cumulative variable prefix Prefix meaning Yearly Variables for which the cumulative measure is calculated Module

s Rolling sum since birth (or earliest available year) Bin variables (1920), HDD (1920), CDD (1920), lifemodule
until present wave Precipitation Variables (1920), Flood Variables (1985)

avg Rolling average since birth (or earliest available year) Average temperature variables (1920), Radiation Variables (1950), lifemodule
until present wave Concentration Variables (2003/2004), Emissions Variables (1970)

y5/y10/y15 Cumulative exposure during the Bin variables, HDD, CDD, Precipitation Variables2 youngagemodule
first 5/10/15 years of life

avg5/avg10/avg15 Average during the Average temperatures variables, Radiation Variables, youngagemodule
first 5/10/15 years of life (no concentration variables), Emission Variables

yjob Cumulative exposure during the most recent job Bin variables, HDD, CDD, Precipitation Variables, jobmodule
(no flood variables)

avgjob Average exposure during the most recent job Average temperature variables (1920), Radiation Variables (1950), jobmodule
Concentration Variables (2003/2004), Emissions Variables (1970),

yill[1/2/3] Cumulative exposure during illness period 1/2/3 Bin variables, HDD, CDD, Precipitation Variables, illnessduringmodule
Flood variables

avgill[1/2/3] Average exposure during illness period [1/2/3] Average temperature variables (1920), Radiation Variables (1950), illnessduringmodule
Concentration Variables (2003/2004), Emissions Variables (1970)

y[1/3/5]bf[1/2/3] Cumulative exposure during the [1/3/5] year(s) Bin variables, HDD, CDD, Precipitation Variables, illnessbeforemodule
preceding illness period [1/2/3] Flood variables

avg[1/3/5]bf[1/2/3] Average exposure during the [1/3/5] year(s) Average temperature variables (1920), Radiation Variables (1950), illness beforemodule
preceding illness period [1/2/3] Concentration Variables (2003/2004), Emissions Variables (1970)
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A2. Details on illness variables

Table A3: Generated morbidity variables

Variable Variable Description

ill length [1/2/3] Length of illness period 1/2/3
ill age onset [1/2/3 Age of onset of illness period 1/2/3
ill start [1/2/3] Year when illness period 1/2/3 started
ill end [1/2/3] Year when illness period 1/2/3 ended
ill any issue[1/2/3] Any issue in period 1/2/3
Ill any env related issue[1/2/3] Any environment-related issue in period

1/2/3
[environment-related illness name][1/2/3] Whether it was [angina or heart attack/

stroke/asthma/other respiratory problems/
migraines/emotional distress/fatigue/
infectious diseases/allergies] (one of) the
issue(s) responsible for illness period 1/2/3

Notes: Environment-related issues are angina or heart attack, stroke, asthma, (other) respiratory problems, mi-
graines, emotional distress, fatigue, infectious diseases and allergies. These variables are provided as part of the
‘illness before module’ and ‘illness during module’. Respondents report on only up to three periods of illness, coded
as 1/2/3 respectively.
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Table A5: Effect of temperature exposure on old age health at first wave of participation
(younger age) and at last wave of participation (older age)

Old age (≥50) perceived reported health (1=poor; 5= excellent)
First wave of participation Last wave of participation

Exposure

Avg. exposure to temp. ≥ 27.5°C (# days) -0.0005 -0.0018∗∗∗

(0.0005) (0.0005)
Avg. exposure to temp. ≤ 0°C (# days) -0.0008∗∗∗ -0.0002

(0.0003) (0.0002)
Occupation and educational effects

ISCED educ. level 2 0.0809∗∗∗ 0.0582∗∗∗

(0.0160) (0.0154)
ISCED educ. level 3 0.2071∗∗∗ 0.1382∗∗∗

(0.0149) (0.0141)
ISCED educ. level 4 0.3274∗∗∗ 0.1689∗∗∗

(0.0296) (0.0255)
ISCED educ. level 5 0.3992∗∗∗ 0.2493∗∗∗

(0.0164) (0.0159)
ISCED educ. level 6 0.3911∗∗∗ 0.2897∗∗∗

(0.0515) (0.0468)
Job is uncomfortable [disagree] -0.1036∗∗∗ -0.0903∗∗∗

(0.0116) (0.0110)
Job is uncomfortable [agree] -0.1887∗∗∗ -0.1707∗∗∗

(0.0136) (0.0130)
Job is uncomfortable [strongly agree] -0.2310∗∗∗ -0.2284∗∗∗

(0.0170) (0.0162)
Total household income 0.0000∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000)
Household net worth 0.0000∗∗∗ 0.0000∗∗∗

(0.0000) (0.0000)
Behavioural effects

Ever smoked daily -0.0788∗∗∗ -0.0651∗∗∗

(0.0094) (0.0090)
Body mass index -0.0304∗∗∗ -0.0285∗∗∗

(0.0011) (0.0010)
Sports [once a week] -0.1365∗∗∗ -0.0667∗∗∗

(0.0135) (0.0157)
Sports [one to three times a month] -0.1729∗∗∗ -0.0884∗∗∗

(0.0155) (0.0168)
Sports [hardly ever, or never] -0.4852∗∗∗ -0.3778∗∗∗

(0.0113) (0.0126)
Year of birth 0.0152∗∗∗ 0.0206∗∗∗

(0.0005) (0.0005)
Female -0.0049 0.0561∗∗∗

(0.0097) (0.0094)
Depression score -0.4179∗∗∗ -0.4476∗∗∗

(0.0098) (0.0118)

Country Fixed Effects Y Y
Year Fixed Effects Y Y

Observations 41,133 45,123
R-squared 0.272 0.223
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Table A6: Effect of PM2.5 concentration on cognitive decline, fixed effects regression

Difference in cognitive score

avg. PM2.5 conc. median (µg/m3) -0.0067∗∗∗

(0.0011)
Heating degree days -0.0000

(0.0000)
Age 0.0010

(0.0008)
Depression score -0.0077∗∗∗

(0.0011)
Total household income 0.0000

(0.0000)
Sports [once a week] -0.0030

(0.0049)
Sports [one to three times a month] 0.0025

(0.0060)
Sports [hardly ever, or never] -0.0108∗∗

(0.0044)

Individual Fixed Effects Y

Observations 98,861
R-squared 0.005
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A3. Extended regression results

A4. Summary statistics

Table A7: Summary statistics of variables in Table A4

VARIABLES N mean s.d. min max

Young age health

Young age (≤ 15) perceived health (1=poor; 5= excellent) 90,103 3.853 1.035 1 5
Avg. first 15 years solar radiation (W/m2) 59,602 136.9 24.14 58.52 222.2
Avg. first 15 years exposure to temperature ≥ 30°C (# days) 71,230 10.87 15.79 0 86.07
Avg. first 15 years exposure to temperature ≤ 0°C (# days) 71,230 87.87 45.77 0 237.4
Loneliness in childhood 61,212 0.203 0.402 0 1
Physical harm in childhood 56,245 0.401 0.49 0 1
Ever poor in childhood 59,183 0.309 0.462 0 1
House at 15 years had no basic amenities 89,747 0.321 0.467 0 1
Rooms / people when 10 years old 88,139 0.714 0.441 0 16.67
Born with an illness 90,103 0.0104 0.101 0 1
Father ISCED educ. level 41,006 2.371 1.331 1 6
Mother ISCED educ. level 40,414 1.965 1.096 1 6
% of time in urban area 69,825 0.183 0.373 0 1
Parental ISCO codes (1digit) 90,103 6.748 3.107 1 11
Year of Birth 90,078 1,947 10.54 1910 1995

Ever experienced breathlessness

Ever experienced breathlessness 84,171 0.165 0.371 0 1
Avg. PM2.5 conc. median (µg/m3) 108,460 15.93 4.825 3.059 36.87
Avg. lifetime exposure to temperature ≥ 30°C (# days) 108,464 14.4 16.93 0 115
Avg. lifetime exposure to temperature ≤ 0°C (# days) 108,464 79.48 43.83 0 227.1
Household Income (average) 139,010 25,384 41,728 0 5.04E+06
Born with an illness 206,725 0.00993 0.0991 0 1
BMI (Body Mass Index, average) 136,226 27.66 4.885 12.4 99.09
Current Age 124,812 68.82 11.07 22 111
Job is uncomfortable 77,373 2.253 0.987 1 4
Frequency of exercise 119,412 3.023 1.247 1 4
Ever smoked 118,381 0.461 0.498 0 1

Uncomfortable job

Uncomfortable job 57,617 0.393 0.489 0 1
Average radiation 66,337 135.1 24.53 40.37 223.5
Average summer temperature 66,451 16.41 3.746 -5.867 33.74
Average winter temperature 66,451 4.67 3.716 -12.7 25.77
Physical job 57,657 0.582 0.493 0 1
Household Income (average) 139,010 25,384 41,728 0 5.04E+06

Cognitive decline

High cognitive decline 144,107 0.162 0.368 0 1
Difference avg. PM2.5 (µg/m3) 134,644 3.135 2.389 0.255 23.52
Difference in average summer temperature 133,376 2,608 985.8 21.5 6,489
Lagged cognitive score 216,992 8.913 3.696 0 20
Age (lagged) 206,047 66.77 10.18 15 106
ISCED education level 206,473 2.873 1.418 1 6
Lagged health status 203,727 1.823 1.086 0 4
Lagged depression score 209,283 2.435 2.267 0 12
Diff. in depression score 122,660 0.018 2.135 -12 12
Gender 523,291 0.529 0.499 0 1
Type of area 216,109 3.441 1.443 1 5
Ever moved region 296,090 0.277 0.448 0 1
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Table A8: Summary statistics of variables in Table A5

VARIABLES N mean s.d. min max

Constant across all observations

Gender 81,806 1.554 0.497 0 1
Year of birth 81,806 1,946 10.28 1,902 1,980
Job is uncomfortable 55,468 2.177 0.977 1 4

First observation

Old age (>49) perceived reported health (1=poor; 5= excellent) 81,806 2.885 1.092 1 5
Avg. lifetime exposure to negative temperature (# days) 63,929 74.65 42.75 0 228
Avg. lifetime exposure to temperature >27.5°C (# days) 63,929 28.79 26.73 0 147
Ever smoked 80,652 0.455 0.498 0 1
Sports frequency 81,590 2.533 1.335 1 4
BMI (current) 78,946 26.89 4.592 12.76 86.59
Depression score (EUROD) 80,780 0.398 0.49 0 1
Household Income (current) 81,806 34,360 50,546 0 3.71E+06
Household Net worth 81,806 261,255 533,757 -718,856 3.63E+07

Last observation

Old age (>49) perceived reported health (1=poor; 5= excellent) 81,806 2.687 1.069 1 5
Avg. lifetime exposure to negative temperature (# days) 67,454 75.13 42.71 0 227.1
Avg. lifetime exposure to temperature >27.5°C (# days) 67,454 28.65 26.59 0 147
Ever smoked 81,093 0.454 0.498 0 1
Sports frequency 38,609 2.832 1.311 1 4
BMI (current) 78,683 26.88 4.664 12.46 74.05
Depression score (EUROD) 36,901 0.397 0.489 0 1
Household Income (current) 81,806 15,027 69,562 0 1.00E+07
Household Net worth 81,806 124,386 325,012 -7.24E+06 1.50E+07

Table A9: Summary statistics of variables in Table A6

VARIABLES N mean s.d. min max

Sports frequency 98,861 2.683 1.323 1 4
Household income 98,861 30,845 67,542 0 1.00E+07
Depression score (EUROD) 98,861 2.371 2.244 0 12
Age 98,861 68.26 9.774 26 103
Diff. in cognitive score (annualized) 98,861 0.0435 0.3 -1 7.5
Cumulative HDD 98,861 169,268 95,738 0 599,069
Avg. PM2.5 conc. median (µg/m3) 98,861 14.38 5.334 0 36.87
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Appendix B

Chapter 3 appendix

B1. Regional aggregation

We build monthly exposure variables at the SHARE region - urbanization level, i.e., for each
SHARE region, there are five subregions - big cities, suburbs, large towns, small towns and
rural areas. The starting point for this process are daily gridded datasets of temperature
and an yearly gridded dataset of population, which we use for weighing and for constructing
urbanization levels. We provide a step by step example for the NUTS2 region of Veneto.
Starting with a daily gridded dataset of E-OBS on average temperatures we build CDDday

as described in the main text.

CDDd = (TAV Gd − TAV G∗) ∗ 1[TAV Gd ≥ 24]

We aggregate daily CDDs to monthly CDDs by summing daily CDDs for each month.

CDDm =
d=M∑
d=1

CDDd

At this stage we have monthly CDDs for each grid (see Figure 1). We overlay these
datasets with shapefiles of the SHARE regions, as exemplified for Veneto in Figure 1. Re-
sorting to a 50+ population gridded dataset from ISIMIP1, we follow the DEGURBA Man-
ual by the European Union (2021) and classify regions into rural, semi-urban and highly
urban. This allows us to calculate CDDs for three subregions within each NUTS, which we
calculate as a population-weighted average of CDDs. Table A1 shows us this intermediate
result.

1ISIMIP Population, available at: https://data.isimip.org/datasets/fc1e4a06-bd4a-4044-b8e6-
46ce86346489/
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Figure 1: Aggregation and weighting procedure: illustration for August 2011 CDDs and the
Veneto region

(a) EU-wide CDDs (b) Close-up on Veneto

(c) Population (d) Urbanization

Table A1: Example: CDDs by urbanization level in the Veneto region by DEGURBA
aggregates

area 08/2011 CDDs
High urban 104.48
Low Urban 88.13
Rural Area 84.29

To add extra variability and a plausible merge to SHARE, we transform these three
subregions into the five self-reported SHARE subregions - big city, suburbs, large town,
small town and rural areas - using data motivated, country-specific weights.

For all countries, we assume that individuals who in SHARE report living in a big city
live in (DEGURBA-classified) highly urban areas, and that individuals who report living
in a rural area or village live in (DEGURBA-classified) rural areas. We then estimate, for
each country, for the remaining, intermediate, areas - suburbs, large towns, and small towns
- the percentage which live in each of the three DEGURBA regions. We start by assuming
certain values to be zero: for individuals who report living in the suburbs of a big city, we
assume they do not live in rural areas, but are divided between highly urbanized and low
urbanized areas; for those living in a small town, we assume they do not live in a highly
urban area, and thus are divided in low urbanized area and rural areas. For those in a large
town, we assume they might live in any of the three region types.
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We estimate the non-zero percentages by approximating the population distribution of
SHARE subregions to the population distribution of DEGURBA areas. From our gridded
population dataset, we compute, for each NUTS region, what percentage of the 50+ pop-
ulation lives in rural, low urban, and high urban areas. From SHARE, we compute the
percentage of respondents who report living in each of the five regions. We then choose the
country-specific percentages that minimize the squared distance between the proportion of
individuals living in a rural/low-urban/high-urban area according to the gridded dataset
and according to SHARE.

Table A2: Example: CDDs by urbanization level in the Veneto region by SHARE aggregates

area within Veneto 08/2011 CDDs
1. Big city 104.48
2. Suburbs of a big city 95.06
3. A large town 91.15
4. A small town 87.11
5. A rural area or village 84.29

We identify the household location, i.e., their SHARE region, through the NUTS regions
reported in the retrospective accommodation waves 3 and 7, or through the NUTS in which
the household was located at the moment of sampling in the regular waves2. The latter is
reported in the housing modules of the regular panel waves.

B2. Summary statistics

Table A3: Summary statistics, by country

AC Year CDDs: CDD12

n mean sd min max mean sd min max
Austria 2,534 0.03 0.16 0 1 39.50 39.11 0 171.87
Belgium 6,904 0.02 0.14 0 1 19.67 14.21 0 60.26
Czechia 3,692 0.03 0.17 0 1 35.22 22.23 0 165.72
Denmark 4,526 0.01 0.11 0 1 0.68 1.33 0 7.36
France 908 0.02 0.15 0 1 28.17 19.00 9.05 54.15
Germany 5,092 0.02 0.13 0 1 29.38 22.17 0 136.71
Greece 4,653 0.60 0.49 0 1 349.13 170.41 0 642.60
Italy 5,398 0.21 0.41 0 1 235.48 104.05 15.11 626.45
Poland 3,387 0.01 0.07 0 1 26.39 23.32 0 97.60
Spain 3,962 0.22 0.41 0 1 317.34 172.96 0.01 637.34
Sweden 5,749 0.17 0.37 0 1 1.34 2.73 0 13.50
Switzerland 11 0.00 0.00 0 0 5.07 5.56 0.05 14.91

2The NUTS regions indicated are a mix of NUTS2 and NUTS3 regions (with the exception of Germany
and Belgium which report NUTS1 regions only). For Luxembourg, cantons are reported instead of NUTS
regions
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B3. Effects of heat

Figure 2: Basic model versus pooled Mundlak probit: Moderating effect of AC on the
marginal effect of CDD. O1=Fatigue (No=0, Yes=100); O2=Reduced appetite (No=0,
Yes=100). O3=Irritability (No=0, Yes=100); O4=Trouble sleeping (No=0, Yes=100).
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B4. Selection into AC

Table A5: AC Ownership

AC

CDDi 0.000620*** 0.000662*** 4.24e-05 8.48e-05
(3.67e-05) (3.71e-05) (0.000160) (0.000160)

CDDr 0.000582*** 0.000581***
(0.000155) (0.000155)

age -0.000330* -0.000341* -0.000328* -0.000338*
(0.000193) (0.000193) (0.000193) (0.000193)

owner 0.00719* 0.00747* 0.00706* 0.00734*
(0.00387) (0.00387) (0.00387) (0.00387)

income 0.0186*** 0.0185*** 0.0185*** 0.0185***
(0.00660) (0.00654) (0.00656) (0.00651)

education 0.0554*** 0.0544*** 0.0556*** 0.0546***
(0.00454) (0.00453) (0.00454) (0.00453)

household size 0.00188 0.00201 0.00170 0.00184
(0.00177) (0.00177) (0.00177) (0.00177)

areatype=2 -0.0334*** -0.0348*** -0.0310*** -0.0324***
(0.00917) (0.00918) (0.00919) (0.00919)

areatype=3 -0.0242*** -0.0240*** -0.0197** -0.0195**
(0.00780) (0.00779) (0.00780) (0.00779)

areatype=4 -0.0307*** -0.0314*** -0.0275*** -0.0281***
(0.00741) (0.00739) (0.00741) (0.00739)

areatype=5 -0.0563*** -0.0558*** -0.0523*** -0.0518***
(0.00681) (0.00679) (0.00681) (0.00679)

areatype=999 -0.0567*** -0.0591*** -0.0538*** -0.0561***
(0.00689) (0.00689) (0.00688) (0.00689)

time trend 2.09e-05*** 4.42e-06 2.08e-05*** 4.39e-06
(5.12e-06) (1.03e-05) (5.12e-06) (1.03e-05)

Country FE Yes No Yes No
Country × time trend No Yes No Yes
Observations 26,524 26,524 26,504 26,504
R-squared 0.314 0.317 0.315 0.318

Notes: Household size: number of individuals in the household. Time trend corresponds to the
month and year of interview. White std. errors. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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B5. IV details

Table A6: IV, first stage regression for fatigue

AC × CDD

CDD × CDDrt−1 0.00113***
(0.000322)

CDDit−1 -0.0543
(0.183)

CDD × CDDit−1 0.000471
(0.000368)

CDD 0.0249
(0.0281)

HDD12 0.00313***
(0.000816)

wealth Y
income Y
owner Y
GDPpc Y
age Y
age2 Y

Observations 23,868

Table A7: Montiel-Pflueger robust weak instrument test

Fatigue

Effective F-statistic 12.258

% of Worst Case Bias CV TSLS (α=5%) CV TSLS (α=10%)
τ = 5% 37.418 33.105
τ = 10% 23.109 19.748
τ = 20% 15.062 12.374
τ = 30% 12.039 9.650

Observations 23,868
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Table A8: IV (no moving age restriction)

(O1) (O2) (O3) (O4) (O1) (O2) (O3) (O4)
CDD 0.0372∗∗∗ 0.0522∗∗∗ 0.0212∗∗ 0.0240∗∗ 0.0797∗∗∗ 0.0596∗∗∗ 0.0445∗ 0.0387∗

(0.0108) (0.0091) (0.0099) (0.0095) (0.0291) (0.0198) (0.0232) (0.0206)
CDD × AC -0.2004∗∗ -0.1362∗∗ -0.0571 0.0718 -0.2671∗∗ -0.1327∗ -0.0911 0.0295

(0.0958) (0.0682) (0.0822) (0.0781) (0.1304) (0.0762) (0.1015) (0.0849)
CDDit−1 -0.1214∗∗ -0.0407 -0.0612 0.0222 -0.1348∗∗ -0.0351 -0.0700 0.0088

(0.0558) (0.0429) (0.0505) (0.0475) (0.0624) (0.0419) (0.0522) (0.0450)
CDD ×CDDit−1 0.0003∗ 0.0001 0.0001 -0.0002 0.0003∗ 0.0001 0.0001 -0.0001

(0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001)
CDD × building -0.1617∗∗ -0.0281 -0.0861 -0.0401

(0.0743) (0.0473) (0.0592) (0.0525)
AME CDD 0.0301*** 0.0428*** 0.0208** 0.0198** 0.0116 0.0386*** 0.0137* 0.0194**
AME CDD at AC = 0 0.0569*** 0.0617*** 0.0284* 0.0102 0.0532*** 0.0600*** 0.0284* 0.0154
AME CDD at AC = 1 -0.1435*** -0.0745 -0.0286 0.0820 -0.2091* -0.0705 -0.0642 0.0403
Observations 46815 42387 46807 46848 38901 35153 38892 38921
Notes: All models include individual fixed effects and month of interview fixed effects, as well as the following controls: HDD, home ownership, household income,
age, age2 and GDP per capita. O1=Fatigue (No=0, Yes=100); O2=Reduced appetite (No=0, Yes=100); O3=Irritability (No=0, Yes=100); O4=Trouble sleeping
(No=0, Yes=100). Std. errors clustered at the individual level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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B6. Regional interactions
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Appendix C

Chapter 4 appendix

C1. Descriptive statistics

Table A1: Descriptive statistics: Dependent and Independent Variables

Mean Std. Dev. Min. Max. N.

Dependent Vars.
CC Concern (1-5) 3.20 0.94 1 5 87624
Some CC Concern (0-1) 0.80 0.40 0 1 87624
CC Anthropogenic (1-5) 3.49 0.80 1 5 86643
Feel Responsib. reducing CC (0-10) 5.97 2.67 0 10 86558
People limit energy: reduce CC (0-10) 4.46 2.32 0 10 47955
People limit energy: how likely (0-10) 5.33 2.36 0 10 47741
Govt’s act against CC: how likely (0-10) 4.64 2.24 0 10 47578
Scientists deceive public (1-5) 2.56 1.20 1 5 44816
Important Environment Care (0-5) 3.81 1.05 0 5 72383
Subjective income (0-3) 2.10 0.81 0 3 88299
Trust: Science (0-10) 7.09 2.24 0 10 42704
Trust: EU Parliament (0-10) 4.51 2.56 0 10 84816
Trust: United Nations (0-10) 5.16 2.57 0 10 83832
Time on current news (0-2) 0.38 0.54 0 2 88349
Subjective Health (1-5) 3.80 0.90 1 5 89390
Happiness (0-10) 7.32 1.93 0 10 89210
Temperature
Avg. temperature: int. day 9.73 7.15 -23 32 89507
Avg. temperature: int. day-1 9.79 7.14 -22 32 89507
Avg. temperature: int. day and -1 9.76 7.07 -22 31 89507
Upward temp. anomalies: prev. 365 days (Int. Day-1) 0.47 0.10 0 1 89507
Upward temp. anomalies: prev. 365 days (Int. Day-2) 0.47 0.10 0 1 89507
Control Vars.
Domicile type (1-5) 2.93 1.20 1 5 89507
Years of education 13.14 4.04 0 76 87753
Age 50.08 18.58 15 100 89507
Male (0-1) 0.47 0.50 0 1 89507
Child living at home (0-1) 0.46 0.50 0 1 88147
Born abroad (0-1) 0.09 0.29 0 1 89420
Currently unemployed (0-1) 0.04 0.19 0 1 89507
Subjective income (0-3) 2.10 0.81 0 3 88299
Political interest (0-3) 1.40 0.91 0 3 89288
Political interest: quite/very interested (0-1) 0.47 0.50 0 1 89288
Ideology (0-10) 5.05 2.32 0 10 79148
Ideology: Left (0-3) 0.23 0.42 0 1 79148
Ideology: Center (4-6) 0.51 0.50 0 1 79148
Ideology: Right (7-10) 0.25 0.43 0 1 79148

Notes. We report here the descriptive statistics for all the variables employed in our analysis. Data for the depen-
dent and independent variables comes from Wave 8 and 10 of the European Social Survey. Daily gridded data on
temperature comes from E-OBS.
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Table A2: Country averages: avg. temperature (°C), interview day and previous day.

Wave 8 Wave 10

Country Mean (°C) Std. Dev. N. Mean (°C) Std. Dev. N.

Austria 5.89 4.537 2001 9.41 3.556 1852
Belgium 9.29 5.036 1766 10.40 5.220 1027
Bulgaria 22.01 4.126 2695
Croatia 18.38 5.063 1545
Czech Republic 3.55 3.428 2269 18.58 2.747 2472
Estonia 0.35 3.726 2019 11.30 7.207 1542
Finland 0.11 4.957 1923 4.96 6.271 1577
France 5.89 3.875 2069 13.91 5.575 1974
Germany 7.93 7.373 2849 8.57 2.602 8021
Greece 6.46 3.702 1363
Hungary 22.19 2.895 1614 22.52 3.439 1844
Iceland 1.85 3.245 499 7.96 3.911 734
Ireland 8.16 2.451 2714 11.33 3.278 924
Italy 14.63 4.014 2610 8.45 3.837 2591
Lithuania 5.67 3.461 2105 9.00 8.425 1656
Macedonia 5.21 4.473 1412
Montenegro 6.23 4.721 1259
Netherlands 9.00 6.002 1681 7.71 3.004 1460
Norway 6.80 6.007 1542 7.60 6.942 1409
Poland 1.43 4.603 1687 4.36 4.883 1904
Portugal 13.74 4.065 1268 14.18 4.508 1835
Slovak Republic 14.18 4.508 1835 18.89 4.764 1366
Slovenia 9.15 4.103 1304 15.81 5.266 1250
Spain 12.53 3.415 1947 10.88 2.676 2237
Sweden 7.75 6.141 1542 5.11 5.081 2224
Switzerland 9.18 6.508 1519 9.87 6.523 1512
United Kingdom 10.64 4.315 1923 10.31 4.040 971

Total 8.18 4.485 40686 11.09 4.661 50656

Notes. Source: E-OBS. Country averages computed, respectively, in Wave 8 (2016-17) and 10 (2020-
21) of the ESS.
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Table A3: country averages: Standardized Upward Temperature anomalies in the 365 days
before the interview date-2.

Wave 8 Wave 10

Country Mean (°C) Std. Dev. N. Mean (°C) Std. Dev. N.

Austria 0.53 0.033 2001 0.41 0.021 1852
Belgium 0.54 0.075 1766 0.39 0.058 1027
Bulgaria 0.53 0.076 2695
Croatia 0.50 0.036 1545
Czech Republic 0.51 0.027 2269 0.42 0.030 2472
Estonia 0.46 0.037 2019 0.62 0.053 1542
Finland 0.50 0.044 1923 0.59 0.044 1577
France 0.43 0.053 2069 0.44 0.032 1974
Germany 0.50 0.050 2849 0.38 0.029 8021
Greece 0.49 0.152 1363
Hungary 0.43 0.031 1614 0.51 0.041 1844
Iceland 0.53 0.035 499 0.62 0.102 734
Ireland 0.43 0.062 2714 0.55 0.045 924
Italy 0.57 0.175 2610 0.49 0.237 2591
Lithuania 0.33 0.021 2105 0.53 0.056 1656
Macedonia 0.50 0.072 1412
Montenegro 0.59 0.039 1259
Netherlands 0.54 0.054 1681 0.38 0.022 1460
Norway 0.45 0.040 1542 0.50 0.052 1409
Poland 0.49 0.032 1687 0.42 0.037 1904
Portugal 0.41 0.064 1268 0.33 0.061 1835
Slovak Republic 0.33 0.061 1835 0.50 0.038 1366
Slovenia 0.49 0.038 1304 0.51 0.079 1250
Spain 0.44 0.099 1947 0.40 0.070 2237
Sweden 0.50 0.057 1542 0.56 0.042 2224
Switzerland 0.49 0.049 1519 0.37 0.054 1512
United Kingdom 0.52 0.070 1923 0.42 0.060 971

Total 0.47 0.055 40686 0.48 0.061 50656

Notes. Source: E-OBS. Country averages computed, respectively, in Wave 8 (2016-17) and 10 (2020-
21) of the ESS.
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C2. Propensity score matching details

Table A4: Covariates balance: respondents interviewed during and before COP26.

Mean (pre-COP26) Mean (during-COP26) Diff. p-value
Years of education 13.65 13.50 0.15 0.176
Age 51.14 51.56 -0.42 0.426
Age2 2967.81 2997.52 -29.71 0.584
Male (0-1) 0.48 0.47 0.00 0.779
Child living at home (0-1) 0.57 0.56 0.01 0.582
Born abroad (0-1) 0.10 0.09 0.00 0.819
Currently unemployed (0-1) 0.02 0.03 -0.01 0.003
Subjective income (0-3) 2.32 2.22 0.11 0.000
Political interest (0-3) 1.71 1.62 0.08 0.000
Ideology (0-10) 4.84 4.79 0.05 0.477
Domicile: Big City 0.18 0.19 -0.01 0.601
Domicile: Suburbs 0.15 0.13 0.02 0.074
Domicile: Town 0.31 0.30 0.01 0.488
Domicile: Village 0.28 0.32 -0.04 0.002
Domicile: Countryside 0.08 0.06 0.02 0.005
Upward temp. anomalies: prev. 365 days (Int. Day-2) 0.46 0.43 0.03 0.000
Avg. temperature: int. day and -1 8.21 7.83 0.37 0.000
Observations 2156 2951 5107

Notes. We report here the covariate balance for respondents interviewed during COP26 (Oct31-Nov13, 2021), and in the week prior (Oct23-
Oct30, 2021). Data comes from Wave 8 and 10 of the European Social Survey and E-OBS.

Figure 1: Common support for the Propensity Score.

.2 .4 .6 .8 1
Propensity Score

Untreated Treated

Notes. Source: ESS. We plot here the density of the Propensity Score (PS) across interviews taking place during COP26
(Oct31-Nov13, 2021), and in the week prior (Oct23-Oct30, 2021). The PS captures the probability of being interviewed during
COP26, rather than before, and is estimated via a logistic regression, without replacement.
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https://www.europeansocialsurvey.org/data/round-index.html
https://www.ecad.eu/download/ensembles/download.php


Figure 2: Covariate bias: pre and post propensity score matching.
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Notes. Sources: ESS and E-OBS. In each row, crosses (dots) indicate the post-matching (pre-matching) between respondents
interviewed during COP26 (Oct31-Nov13, 2021), and in the week prior (Oct23-Oct30, 2021).
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C3. One-country out

Figure 3: Preoccupation about CC and Temp. Anom., removing one country from the
sample.
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Notes. Source: ESS. Each sub-figure’s title indicates the country which is removed from the sample when the estimation is
performed. Country fixed effects apply, standard errors clustered at country-by-wave. Thick (thin) lines signify the 90% (95%)
confidence interval. Full regression tables are reported here.
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https://www.dropbox.com/scl/fi/v1cza50f3vg621v8i54cs/Onecountry_out_table.html?rlkey=4m5ltcqma2rsu2ma0d2buw7du&dl=0


Figure 4: Preoccupation about climate change and COP26, removing one country from the
sample.
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Notes. Source: ESS. Each sub-figure’s title indicates the country which is removed from the sample when the estimation is
performed. Country fixed effects apply, standard errors clustered at country-by-wave. Thick (thin) lines signify the 90% (95%)
confidence interval. Full regression tables are reported here.
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C4. Full regression tables

Table A5: Climate change concern and Temperature Anomalies: full sample (Wave 8 and
10).

(1) (2) (3) (4)
Some CC Concern (0-1) Some CC Concern (0-1) Some CC Concern (0-1) Some CC Concern (0-1)

Temp. Anom. (t-2) 0.087∗∗∗ 0.093∗∗∗

(0.026) (0.028)
Temp. Interview 0.001∗∗ 0.001∗∗∗

(0.001) (0.001)
Temp. Anom. (t-1) 0.097∗∗∗ 0.104∗∗∗

(0.026) (0.027)
Years of education 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Age 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
Age2 -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)
Male (0-1) -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗

(0.006) (0.006) (0.006) (0.006)
Child living at home (0-1) 0.017∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗

(0.006) (0.006) (0.006) (0.006)
Born abroad (0-1) 0.001 0.001 0.001 0.001

(0.008) (0.008) (0.008) (0.008)
Currently unemployed (0-1) -0.015 -0.014 -0.014 -0.014

(0.010) (0.010) (0.010) (0.010)
Subjective income (0-3) -0.001 -0.001 -0.001 -0.001

(0.004) (0.004) (0.004) (0.004)
Political interest (0-3) 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.004) (0.004) (0.004) (0.004)
Ideology (0-10) -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗

(0.002) (0.002) (0.002) (0.002)
Domicile: Suburbs 0.015∗ 0.015∗ 0.015∗ 0.015∗

(0.008) (0.008) (0.008) (0.008)
Domicile: Town -0.003 -0.003 -0.003 -0.003

(0.007) (0.007) (0.007) (0.007)
Domicile: Village -0.006 -0.006 -0.007 -0.006

(0.007) (0.007) (0.007) (0.007)
Domicile: Countryside -0.038∗∗∗ -0.038∗∗∗ -0.038∗∗∗ -0.038∗∗∗

(0.010) (0.010) (0.010) (0.010)
Constant -0.080 0.689∗∗∗ -0.089 0.698∗∗∗

(0.090) (0.026) (0.091) (0.026)
Controls Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Season FE Yes Yes Yes Yes
Time Trends Yes No Yes No
Country-Specific Time Trends No Yes No Yes
Observations 74980 74980 74980 74980
R-squared 0.078 0.078 0.078 0.078
No. of Clusters 48 48 48 48

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect on CC Concern of temperature anomalies experienced by respondents
interviewed during Waves 8 and 10 of the ESS. Coefficients are estimated using an OLS regression with country fixed-effects and individual controls. Standard
errors are clustered at the country-by-wave level. Sources: ESS and E −OBS.
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Table A6: Climate change concern and COP meetings

(1) (2) (3) (4)
Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No)

COP26 (2021) 0.029∗∗∗ 0.030∗∗∗

(0.009) (0.011)
COP22 (2016) -0.008 -0.005

(0.015) (0.022)
Years of completed education 0.006∗∗∗ 0.007∗∗∗

(0.001) (0.002)
Age 0.001 0.002

(0.001) (0.002)
Age, squared -0.000 -0.000∗

(0.000) (0.000)
Male -0.074∗∗∗ -0.096∗∗∗

(0.009) (0.012)
Children in the hh 0.011 0.017

(0.018) (0.018)
Immigrant 0.017 0.011

(0.020) (0.018)
Unemployed -0.038 0.006

(0.029) (0.049)
Subjective household income 0.012 -0.023∗∗

(0.008) (0.009)
Interest in Politics 0.027∗∗∗ 0.072∗∗∗

(0.005) (0.014)
Left - Right Scale -0.018∗∗∗ -0.011∗∗∗

(0.003) (0.002)
Suburbs -0.015 -0.017

(0.012) (0.024)
Town -0.006 -0.016

(0.010) (0.014)
Village -0.019 -0.047∗∗

(0.015) (0.016)
Countryside -0.040 -0.024

(0.025) (0.044)
Temp. Anom. 0.271∗ 0.176

(0.152) (0.319)
Temp. interview 0.001 0.002

(0.002) (0.002)
Constant 0.841∗∗∗ 0.654∗∗∗ 0.695∗∗∗ 0.585∗∗∗

(0.005) (0.080) (0.010) (0.170)
Country FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 5987 5107 5452 4973
R-squared 0.031 0.069 0.066 0.104
No. of Clusters 20 20 16 16

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect on Climate change concern — coded as a 1/0 indicator — of being interviewed during COP26 in Glasgow
(Oct31-Nov13, 2021) and COP22 in Marrakech (Nov7-Nov11, 2016), rather than in the previous week. Coefficients are estimated using an OLS regression with country fixed-effects and individual
controls. Standard errors are clustered at the country-by-wave level. Source: ESS.
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Table A7: Climate change beliefs

(1) (2) (3) (4) (5) (6)
CC Anthropogenic CC Anthropogenic CC Anthropogenic CC Gov. Action CC Gov. Action CC Gov. Action

Temp. Anom. 0.002 -0.076 -0.092 0.633∗∗∗ 3.544∗∗ -0.176
(0.024) (0.190) (0.138) (0.183) (1.273) (1.423)

Temp. interview 0.000 0.002 -0.001 -0.005 0.005 0.011
(0.000) (0.002) (0.001) (0.003) (0.040) (0.010)

COP26 (2021) 0.009 -0.132
(0.009) (0.166)

COP22 (2016) -0.006 -0.071
(0.012) (0.088)

Years of completed education 0.003∗∗∗ 0.002∗∗ 0.005∗∗∗ -0.017∗∗∗ 0.000 -0.022∗

(0.000) (0.001) (0.001) (0.005) (0.024) (0.011)
Age -0.000 0.000 -0.001 -0.012∗∗ -0.054∗∗∗ -0.013

(0.000) (0.001) (0.002) (0.005) (0.016) (0.008)
Age, squared -0.000 -0.000 0.000 0.000∗∗∗ 0.001∗∗∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Male -0.028∗∗∗ -0.034∗∗∗ -0.031∗∗∗ -0.050∗ -0.249 -0.027

(0.003) (0.005) (0.010) (0.026) (0.189) (0.065)
Children in the hh 0.009∗∗∗ -0.010 0.006 0.030 0.761∗∗∗ -0.020

(0.002) (0.008) (0.017) (0.032) (0.233) (0.068)
Immigrant -0.019∗∗∗ -0.028 0.012 0.239∗∗∗ 0.471 0.027

(0.005) (0.021) (0.014) (0.082) (0.275) (0.219)
Unemployed -0.010 -0.030 0.019 0.023 0.247 0.029

(0.006) (0.036) (0.021) (0.060) (0.367) (0.122)
Subjective household income 0.003 0.004 -0.006 0.118∗∗∗ 0.288∗ 0.108

(0.002) (0.005) (0.004) (0.028) (0.158) (0.090)
Interest in Politics 0.003∗ 0.007∗ -0.000 0.074∗∗∗ 0.030 0.078

(0.002) (0.004) (0.005) (0.024) (0.134) (0.050)
Left - Right Scale -0.006∗∗∗ -0.007∗∗∗ -0.005∗∗ 0.048∗∗∗ 0.052 0.029

(0.001) (0.002) (0.002) (0.010) (0.065) (0.024)
Suburbs 0.007∗ 0.006 0.001 -0.051 0.089 -0.067

(0.004) (0.011) (0.016) (0.060) (0.288) (0.099)
Town 0.001 0.000 0.013 -0.018 0.144 -0.040

(0.004) (0.014) (0.009) (0.044) (0.219) (0.095)
Village -0.001 0.009 -0.007 -0.024 -0.028 -0.058

(0.003) (0.013) (0.011) (0.066) (0.258) (0.079)
Countryside -0.018∗∗ -0.006 0.017 -0.147∗∗ -0.319 -0.139

(0.008) (0.024) (0.025) (0.060) (0.194) (0.136)
spring 0.009 -0.031

(0.005) (0.068)
summer 0.003 0.020

(0.006) (0.089)
winter 0.007 -0.035

(0.005) (0.033)
Trend 0.000∗∗∗ 0.000∗∗

(0.000) (0.000)
Constant 0.828∗∗∗ 0.952∗∗∗ 0.978∗∗∗ 2.669∗∗∗ 3.062∗∗∗ 4.860∗∗∗

(0.039) (0.101) (0.083) (0.651) (0.918) (0.973)
Country FE
Controls
Observations 74476 5093 4946 41458 716 4896
R-squared 0.026 0.035 0.023 0.041 0.094 0.041
No. of Clusters 48 20 16 43 16 16

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect on climate change concern — coded as a 1/0 indicator — of temperature anomalies, and of
being interviewed during COP26 in Glasgow (Oct31-Nov13, 2021) and COP22 in Marrakech (Nov7-Nov11, 2016), rather than in the previous week. Coefficients are estimated
using an OLS regression with country fixed-effects and individual controls. Standard errors are clustered at the country-by-wave level. Source: ESS.
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Table A8: Climate change concern and Temperature Anomalies: alt. reference windows.

(1) (2) (3) (4) (5) (6)
Some CC Concern (0-1) Some CC Concern (0-1) Some CC Concern (0-1) Some CC Concern (0-1) Some CC Concern (0-1) Some CC Concern (0-1)

Anomalies: prev. 30d 0.018∗∗

(0.008)
Prev. 60 days 0.050∗∗∗

(0.011)
Prev. 90 days 0.061∗∗∗

(0.015)
Prev. 180 days 0.093∗∗∗

(0.022)
Prev. 365 days 0.097∗∗∗

(0.026)
Prev. 24 months 0.091∗∗∗

(0.033)
Years of education 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Age 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Age2 -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Male (0-1) -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Child living at home (0-1) 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.018∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
Born abroad (0-1) 0.001 0.001 0.001 0.001 0.001 0.001

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Currently unemployed (0-1) -0.013 -0.014 -0.014 -0.014 -0.014 -0.014

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Subjective income (0-3) -0.001 -0.002 -0.002 -0.001 -0.001 -0.001

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Political interest (0-3) 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.040∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Ideology (0-10) -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗ -0.013∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Domicile: Suburbs 0.015∗ 0.015∗ 0.015∗ 0.015∗ 0.015∗ 0.015∗

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)
Domicile: Town -0.002 -0.003 -0.003 -0.003 -0.003 -0.003

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Domicile: Village -0.006 -0.006 -0.006 -0.006 -0.007 -0.006

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)
Domicile: Countryside -0.038∗∗∗ -0.039∗∗∗ -0.039∗∗∗ -0.039∗∗∗ -0.038∗∗∗ -0.038∗∗∗

(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)
Constant -0.018 -0.033 -0.058 -0.058 -0.089 -0.016

(0.090) (0.088) (0.087) (0.086) (0.091) (0.088)
Controls Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Season FE Yes Yes Yes Yes Yes Yes
Time Trends Yes Yes Yes Yes Yes Yes
Observations 74980 74980 74980 74980 74980 74980
R-squared 0.078 0.078 0.078 0.079 0.078 0.078
No. of Clusters 48 48 48 48 48 48

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect on CC Concern of temperature anomalies experienced by respondents interviewed during Waves 8 and 10 of the ESS. Coefficients are
estimated using an OLS regression with country fixed-effects and individual controls. Standard errors are clustered at the country-by-wave level. Sources: ESS and E −OBS.
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Table A9: Concern about Climate Change in the four weeks before COP26.

(1) (2) (3) (4) (5) (6) (7) (8)
Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No)

COP26-5 Weeks 0.029∗ 0.016
(0.016) (0.019)

-4 Weeks 0.001 -0.005
(0.012) (0.014)

-3 Weeks 0.007 0.006
(0.014) (0.014)

-2 Weeks -0.001 -0.004
(0.011) (0.011)

Years of completed education 0.007∗∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.003∗ 0.003∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Age 0.001 0.001 -0.000 -0.000 0.002 0.002 0.001 0.001

(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Age, squared -0.000 -0.000 0.000 0.000 -0.000 -0.000∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Male -0.091∗∗∗ -0.091∗∗∗ -0.076∗∗∗ -0.076∗∗∗ -0.071∗∗∗ -0.071∗∗∗ -0.094∗∗∗ -0.094∗∗∗

(0.012) (0.012) (0.008) (0.008) (0.019) (0.019) (0.016) (0.016)
Children in the hh 0.022 0.022 0.025∗∗ 0.025∗∗ 0.012 0.012 0.023∗∗ 0.023∗∗

(0.015) (0.015) (0.011) (0.011) (0.011) (0.011) (0.009) (0.009)
Immigrant 0.011 0.011 -0.026 -0.024 -0.016 -0.017 0.003 0.004

(0.028) (0.027) (0.017) (0.017) (0.012) (0.013) (0.022) (0.023)
Unemployed -0.015 -0.019 -0.042 -0.044 -0.010 -0.010 -0.020 -0.022

(0.049) (0.050) (0.029) (0.029) (0.035) (0.035) (0.035) (0.035)
Subjective household income 0.009 0.010 0.014 0.014 0.015 0.015 0.014∗ 0.014∗∗

(0.007) (0.007) (0.010) (0.010) (0.010) (0.010) (0.007) (0.007)
Interest in Politics 0.022∗∗∗ 0.022∗∗∗ 0.024∗∗∗ 0.024∗∗∗ 0.022∗∗∗ 0.022∗∗∗ 0.027∗∗∗ 0.027∗∗∗

(0.006) (0.006) (0.005) (0.005) (0.005) (0.005) (0.004) (0.004)
Left - Right Scale -0.025∗∗∗ -0.025∗∗∗ -0.024∗∗∗ -0.024∗∗∗ -0.026∗∗∗ -0.026∗∗∗ -0.028∗∗∗ -0.028∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)
Suburbs -0.019 -0.020 0.005 0.005 0.000 0.001 -0.006 -0.005

(0.016) (0.016) (0.007) (0.007) (0.009) (0.009) (0.009) (0.010)
Town -0.027 -0.026 -0.003 -0.003 -0.015∗ -0.013 -0.013 -0.010

(0.019) (0.019) (0.012) (0.011) (0.007) (0.008) (0.011) (0.011)
Village -0.035 -0.033 -0.008 -0.007 -0.027∗∗∗ -0.025∗∗ -0.029∗∗ -0.025∗∗

(0.021) (0.022) (0.009) (0.009) (0.009) (0.009) (0.011) (0.012)
Countryside -0.047 -0.045 -0.036∗∗ -0.035∗∗ -0.048∗∗∗ -0.046∗∗∗ -0.058∗ -0.055∗

(0.030) (0.030) (0.016) (0.016) (0.016) (0.015) (0.030) (0.030)
Temp. Anom. 0.246 0.254∗∗∗ -0.084 0.050

(0.152) (0.076) (0.138) (0.190)
Temp. interview 0.003 0.001 0.001 0.004

(0.003) (0.002) (0.001) (0.003)
Constant 0.827∗∗∗ 0.686∗∗∗ 0.833∗∗∗ 0.710∗∗∗ 0.859∗∗∗ 0.882∗∗∗ 0.868∗∗∗ 0.813∗∗∗

(0.045) (0.074) (0.039) (0.053) (0.052) (0.047) (0.028) (0.089)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Temperatures No Yes No Yes No Yes No Yes
Observations 3082 3082 4837 4837 6591 6591 5064 5064
R-squared 0.087 0.088 0.076 0.077 0.089 0.089 0.100 0.100
No. of Clusters 22 22 20 20 19 19 19 19

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Keeping the control group constant, we artificially shift the COP26 dates by 4 weeks around the real one. Coefficients are estimated using an OLS regression with country fixed-effects and individual controls. Standard errors are clustered at the country-by-wave level. Source: ESS.

Table A10: Concern about Climate Change in the four weeks after COP26.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No)

COP26 0.026∗∗ 0.030∗∗∗

(0.010) (0.011)
+1 Week 0.010 0.019∗

(0.008) (0.011)
+2 Weeks 0.012 0.019

(0.011) (0.016)
+3 Weeks 0.030∗ 0.041

(0.015) (0.037)
+4 Weeks 0.004 0.027

(0.018) (0.032)
Years of completed education 0.006∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗

(0.002) (0.001) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Age 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Age, squared -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Male -0.074∗∗∗ -0.074∗∗∗ -0.080∗∗∗ -0.080∗∗∗ -0.088∗∗∗ -0.088∗∗∗ -0.088∗∗∗ -0.088∗∗∗ -0.082∗∗∗ -0.081∗∗∗

(0.009) (0.009) (0.013) (0.013) (0.015) (0.015) (0.013) (0.013) (0.011) (0.010)
Children in the hh 0.010 0.011 0.010 0.010 0.022 0.022 0.020∗ 0.019 0.030∗ 0.032∗

(0.017) (0.018) (0.014) (0.014) (0.013) (0.013) (0.011) (0.011) (0.017) (0.018)
Immigrant 0.017 0.017 0.015 0.016 0.030 0.030 0.008 0.009 0.007 0.007

(0.021) (0.020) (0.023) (0.022) (0.026) (0.026) (0.027) (0.027) (0.030) (0.029)
Unemployed -0.035 -0.038 0.016 0.014 -0.009 -0.011 -0.036 -0.038 -0.081 -0.086

(0.029) (0.029) (0.052) (0.052) (0.037) (0.037) (0.043) (0.043) (0.060) (0.060)
Subjective household income 0.011 0.012 0.023∗∗∗ 0.024∗∗∗ 0.009 0.009 0.011 0.011 -0.001 0.001

(0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.011) (0.011)
Interest in Politics 0.027∗∗∗ 0.027∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.043∗∗∗ 0.043∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.027∗∗∗ 0.026∗∗∗

(0.005) (0.005) (0.008) (0.008) (0.007) (0.007) (0.006) (0.005) (0.007) (0.006)
Left - Right Scale -0.018∗∗∗ -0.018∗∗∗ -0.020∗∗∗ -0.020∗∗∗ -0.022∗∗∗ -0.022∗∗∗ -0.021∗∗∗ -0.021∗∗∗ -0.023∗∗∗ -0.023∗∗∗

(0.003) (0.003) (0.004) (0.004) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004)
Suburbs -0.014 -0.015 -0.027 -0.028 -0.002 -0.003 0.006 0.005 0.001 -0.003

(0.012) (0.012) (0.016) (0.017) (0.015) (0.015) (0.016) (0.016) (0.023) (0.022)
Town -0.005 -0.006 -0.005 -0.006 0.016 0.016 -0.008 -0.009 -0.010 -0.016

(0.010) (0.010) (0.012) (0.012) (0.011) (0.012) (0.015) (0.016) (0.027) (0.024)
Village -0.020 -0.019 -0.032∗ -0.031∗ -0.010 -0.010 -0.030∗ -0.030 -0.024 -0.030

(0.015) (0.015) (0.016) (0.017) (0.012) (0.012) (0.017) (0.018) (0.026) (0.023)
Countryside -0.040 -0.040 -0.062∗∗ -0.062∗∗ -0.014 -0.013 -0.056∗ -0.056∗ -0.056 -0.061

(0.025) (0.025) (0.026) (0.026) (0.028) (0.029) (0.029) (0.029) (0.042) (0.041)
Temp. Anom. 0.271∗ 0.225∗∗ 0.081 0.146∗ 0.389∗∗∗

(0.152) (0.093) (0.125) (0.071) (0.126)
Temp. interview 0.001 0.001 0.001 0.001 0.001

(0.002) (0.003) (0.002) (0.003) (0.003)
Constant 0.788∗∗∗ 0.654∗∗∗ 0.750∗∗∗ 0.637∗∗∗ 0.762∗∗∗ 0.718∗∗∗ 0.810∗∗∗ 0.736∗∗∗ 0.843∗∗∗ 0.657∗∗∗

(0.048) (0.080) (0.059) (0.058) (0.055) (0.064) (0.046) (0.048) (0.067) (0.092)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Temperatures No Yes No Yes No Yes No Yes No Yes
Observations 5107 5107 3441 3441 3107 3107 3020 3020 2932 2932
R-squared 0.068 0.069 0.088 0.089 0.085 0.085 0.080 0.081 0.088 0.091
No. of Clusters 20 20 20 20 21 21 21 21 22 22

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Keeping the control group constant, we artificially shift the COP26 dates by 4 weeks around the real one. Coefficients are estimated using an OLS regression with country fixed-effects and individual controls. Standard errors are clustered at the country-by-wave level. Source: ESS.
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Table A11: Concern about Climate Change in the four weeks before COP22.

(1) (2) (3) (4) (5) (6) (7) (8)
Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No)

COP22-5 Weeks -0.007 -0.013
(0.011) (0.017)

-4 Weeks -0.013 -0.016
(0.016) (0.018)

-3 Weeks -0.017 -0.022
(0.012) (0.013)

-2 Weeks -0.019 -0.028∗

(0.012) (0.014)
Years of completed education 0.007∗∗∗ 0.006∗∗∗ 0.007∗∗ 0.006∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.008∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Age 0.000 0.000 0.002 0.002 0.001 0.001 0.001 0.001

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)
Age, squared -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Male -0.075∗∗∗ -0.075∗∗∗ -0.084∗∗∗ -0.084∗∗∗ -0.083∗∗∗ -0.083∗∗∗ -0.091∗∗∗ -0.091∗∗∗

(0.010) (0.010) (0.015) (0.015) (0.010) (0.010) (0.010) (0.010)
Children in the hh 0.026 0.027 0.034∗ 0.035∗ 0.030∗ 0.030∗ 0.043∗∗ 0.043∗∗

(0.018) (0.018) (0.018) (0.018) (0.016) (0.016) (0.018) (0.018)
Immigrant -0.004 -0.005 -0.008 -0.008 -0.017 -0.018 0.023 0.021

(0.023) (0.023) (0.025) (0.025) (0.039) (0.039) (0.034) (0.033)
Unemployed -0.004 -0.002 -0.062 -0.062 -0.008 -0.009 -0.008 -0.006

(0.029) (0.029) (0.036) (0.036) (0.033) (0.034) (0.037) (0.037)
Subjective household income -0.015 -0.015 -0.041∗∗∗ -0.040∗∗∗ -0.038∗∗∗ -0.038∗∗∗ -0.033∗∗∗ -0.033∗∗∗

(0.012) (0.013) (0.009) (0.010) (0.006) (0.006) (0.009) (0.009)
Interest in Politics 0.066∗∗∗ 0.066∗∗∗ 0.069∗∗∗ 0.068∗∗∗ 0.062∗∗∗ 0.062∗∗∗ 0.075∗∗∗ 0.075∗∗∗

(0.013) (0.013) (0.013) (0.013) (0.012) (0.012) (0.009) (0.009)
Left - Right Scale -0.012∗∗∗ -0.012∗∗∗ -0.009∗∗ -0.009∗∗ -0.009∗∗ -0.009∗∗ -0.012∗∗∗ -0.013∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004)
Suburbs -0.026 -0.027 -0.004 -0.004 -0.014 -0.014 0.005 0.002

(0.029) (0.030) (0.025) (0.024) (0.027) (0.026) (0.031) (0.031)
Town -0.035∗ -0.036∗ -0.048∗∗ -0.048∗∗ -0.038∗∗ -0.039∗∗ -0.008 -0.007

(0.019) (0.019) (0.018) (0.017) (0.016) (0.016) (0.021) (0.018)
Village -0.026 -0.027 -0.032 -0.031 -0.029∗∗ -0.028∗∗ -0.033∗ -0.031∗

(0.019) (0.019) (0.021) (0.021) (0.012) (0.012) (0.016) (0.015)
Countryside -0.038∗ -0.039∗ -0.095∗∗∗ -0.094∗∗∗ -0.070 -0.070 -0.029 -0.027

(0.019) (0.018) (0.025) (0.024) (0.042) (0.042) (0.021) (0.021)
Temp. Anom. 0.211 0.219 0.254 0.431∗∗

(0.253) (0.186) (0.154) (0.177)
Temp. interview 0.001 0.002 0.001 0.004

(0.002) (0.004) (0.003) (0.004)
Constant 0.722∗∗∗ 0.605∗∗∗ 0.745∗∗∗ 0.622∗∗∗ 0.751∗∗∗ 0.611∗∗∗ 0.694∗∗∗ 0.448∗∗∗

(0.062) (0.143) (0.044) (0.098) (0.059) (0.094) (0.049) (0.101)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Temperatures No Yes No Yes No Yes No Yes
Observations 3310 3310 3291 3291 3290 3290 3344 3344
R-squared 0.095 0.095 0.101 0.102 0.095 0.095 0.105 0.106
No. of Clusters 14 14 14 14 14 14 14 14

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Keeping the control group constant, we artificially shift the COP26 dates by 4 weeks around the real one. Coefficients are estimated using an OLS regression with country fixed-effects and individual controls. Standard errors are clustered at the country-by-wave level. Source: ESS. The full set of fixed effects
is available here.

Table A12: Concern about Climate Change in the four weeks after COP22.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No) Concerned about CC (Yes/No)

COP22 -0.018 -0.005
(0.017) (0.022)

+1 Week -0.008 0.005
(0.017) (0.021)

+2 Weeks -0.006 0.007
(0.017) (0.018)

+3 Weeks -0.017 0.008
(0.018) (0.031)

+4 Weeks -0.034 0.005
(0.023) (0.029)

Years of completed education 0.007∗∗∗ 0.007∗∗∗ 0.009∗∗∗ 0.008∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.009∗∗∗ 0.007∗∗∗ 0.007∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Age 0.002 0.002 0.002 0.002 0.005∗∗ 0.005∗∗ 0.001 0.001 0.005∗∗ 0.005∗

(0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)
Age, squared -0.000∗ -0.000∗ -0.000 -0.000 -0.000∗∗ -0.000∗∗ -0.000∗ -0.000∗ -0.000∗∗ -0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Male -0.096∗∗∗ -0.096∗∗∗ -0.066∗∗∗ -0.066∗∗∗ -0.064∗∗∗ -0.064∗∗∗ -0.067∗∗∗ -0.066∗∗∗ -0.084∗∗∗ -0.083∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.019) (0.019) (0.011) (0.012) (0.012) (0.012)
Children in the hh 0.017 0.017 0.039∗∗ 0.039∗∗ 0.029 0.029 0.025 0.025 0.033∗ 0.033∗

(0.018) (0.018) (0.017) (0.016) (0.018) (0.018) (0.019) (0.018) (0.017) (0.017)
Immigrant 0.010 0.011 -0.022 -0.022 -0.043 -0.044 -0.018 -0.019 -0.021 -0.021

(0.018) (0.018) (0.025) (0.024) (0.029) (0.028) (0.036) (0.035) (0.044) (0.044)
Unemployed 0.005 0.006 0.024 0.026 -0.059∗ -0.058∗ -0.032 -0.031 0.001 0.005

(0.048) (0.049) (0.037) (0.037) (0.031) (0.031) (0.038) (0.037) (0.030) (0.031)
Subjective household income -0.023∗∗ -0.023∗∗ -0.030∗∗∗ -0.030∗∗∗ -0.035∗∗∗ -0.035∗∗∗ -0.027∗∗∗ -0.027∗∗∗ -0.039∗∗∗ -0.038∗∗∗

(0.009) (0.009) (0.009) (0.009) (0.007) (0.008) (0.007) (0.007) (0.007) (0.007)
Interest in Politics 0.072∗∗∗ 0.072∗∗∗ 0.063∗∗∗ 0.063∗∗∗ 0.055∗∗∗ 0.055∗∗∗ 0.079∗∗∗ 0.080∗∗∗ 0.073∗∗∗ 0.072∗∗∗

(0.014) (0.014) (0.015) (0.015) (0.013) (0.013) (0.011) (0.011) (0.013) (0.013)
Left - Right Scale -0.011∗∗∗ -0.011∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.010∗∗∗ -0.010∗∗∗ -0.007∗∗∗ -0.008∗∗∗ -0.009∗∗ -0.009∗∗

(0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003)
Suburbs -0.017 -0.017 0.027 0.027 0.007 0.008 -0.009 -0.011 0.014 0.016

(0.024) (0.024) (0.033) (0.033) (0.029) (0.029) (0.023) (0.023) (0.032) (0.032)
Town -0.018 -0.016 -0.023 -0.022 -0.007 -0.008 -0.019 -0.021 -0.025 -0.021

(0.014) (0.014) (0.018) (0.017) (0.024) (0.025) (0.023) (0.021) (0.021) (0.021)
Village -0.049∗∗∗ -0.047∗∗ -0.040∗ -0.040∗ -0.012 -0.013 -0.002 -0.004 -0.029 -0.024

(0.016) (0.016) (0.021) (0.020) (0.020) (0.021) (0.021) (0.019) (0.019) (0.018)
Countryside -0.026 -0.024 -0.065∗∗ -0.065∗∗ -0.051∗∗ -0.051∗ -0.073∗∗ -0.074∗∗ -0.024 -0.022

(0.044) (0.044) (0.027) (0.027) (0.024) (0.024) (0.026) (0.027) (0.037) (0.037)
Temp. Anom. 0.176 0.344 0.311 0.410 0.267

(0.319) (0.303) (0.232) (0.267) (0.270)
Temp. interview 0.002 0.003 0.000 -0.000 0.007∗∗

(0.002) (0.002) (0.003) (0.003) (0.003)
Constant 0.691∗∗∗ 0.585∗∗∗ 0.689∗∗∗ 0.493∗∗∗ 0.578∗∗∗ 0.414∗∗∗ 0.635∗∗∗ 0.420∗∗ 0.646∗∗∗ 0.468∗∗∗

(0.043) (0.170) (0.070) (0.148) (0.055) (0.101) (0.060) (0.147) (0.055) (0.157)
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Temperatures No Yes No Yes No Yes No Yes No Yes
Observations 4973 4973 3781 3781 3657 3657 3273 3273 2959 2959
R-squared 0.104 0.104 0.105 0.105 0.100 0.100 0.104 0.105 0.111 0.112
No. of Clusters 16 16 16 16 17 17 17 17 17 17

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Keeping the control group constant, we artificially shift the COP26 dates by 4 weeks around the real one. Coefficients are estimated using an OLS regression with country fixed-effects and individual controls. Standard errors are clustered at the country-by-wave level. Source: ESS. The full set of fixed effects is available here.

147

https://www.dropbox.com/scl/fi/tnko0l2ztupi2my9e3jw1/Table_7d.html?rlkey=zks6b43bf5a200w3aufby73x6&dl=0
https://www.dropbox.com/scl/fi/tnko0l2ztupi2my9e3jw1/Table_7d.html?rlkey=zks6b43bf5a200w3aufby73x6&dl=0


Table A13: Climate change concern and temperature: Ideological Bias

(1) (2) (3) (4)
CC Concern CC Concern CC Concern CC Concern

Temp. Anom. (t-2) 0.083∗ 0.061
(0.045) (0.042)

Center × Temp. Anom. (t-2) 0.005 -0.007
(0.040) (0.040)

Right × Temp. Anom. (t-2) 0.001 -0.009
(0.083) (0.084)

Temp. Anom. (t-1) 0.085∗ 0.062
(0.045) (0.043)

Center × Temp. Anom. (t-1) 0.014 0.001
(0.042) (0.042)

Right × Temp. Anom. (t-1) 0.019 0.009
(0.088) (0.089)

Temp. Interview -0.000 -0.001
(0.001) (0.001)

Center × Temp. Interview 0.002∗∗ 0.002∗∗

(0.001) (0.001)
Right × Temp. Interview 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001)
Ideology: Center -0.052∗∗∗ -0.044∗∗ -0.038∗ -0.032

(0.018) (0.019) (0.020) (0.020)
Ideology: Right -0.115∗∗∗ -0.108∗∗ -0.093∗∗ -0.088∗∗

(0.040) (0.040) (0.043) (0.044)
Years of education 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
Age 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001)
Age2 -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)
Male (0-1) -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗ -0.072∗∗∗

(0.006) (0.006) (0.006) (0.006)
Child living at home (0-1) 0.018∗∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.016∗∗∗

(0.006) (0.006) (0.006) (0.006)
Born abroad (0-1) 0.001 0.001 0.001 0.001

(0.008) (0.008) (0.008) (0.008)
Currently unemployed (0-1) -0.015 -0.015 -0.014 -0.015

(0.010) (0.010) (0.010) (0.009)
Subjective Income (0-3) -0.001 -0.001 -0.001 -0.001

(0.004) (0.004) (0.004) (0.004)
Political Interest (0-3) 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.041∗∗∗

(0.004) (0.004) (0.004) (0.004)
Domicile: suburbs 0.015∗ 0.015∗ 0.015∗ 0.015∗

(0.008) (0.008) (0.008) (0.008)
Domicile: town -0.003 -0.003 -0.004 -0.003

(0.007) (0.007) (0.007) (0.007)
Domicile: village -0.006 -0.006 -0.007 -0.007

(0.007) (0.007) (0.007) (0.007)
Domicile: Countryside -0.038∗∗∗ -0.039∗∗∗ -0.039∗∗∗ -0.039∗∗∗

(0.010) (0.010) (0.010) (0.010)
Constant -0.097 -0.488∗∗∗ -0.124 -0.535∗∗∗

(0.093) (0.060) (0.095) (0.062)
Country FE Y Y Y Y
Controls Y Y Y Y
Trend Y N Y N
Country Trends N Y N Y
Observations 74980 74980 74980 74980
R-squared 0.079 0.082 0.079 0.082
No. of Clusters 48 48 48 48

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect on CC Concern of
temperature anomalies experienced by respondents interviewed during Waves 8 and 10 of the ESS. Coef-
ficients are estimated using an OLS regression with country fixed-effects and individual controls. Standard
errors are clustered at the country-by-wave level. Sources: ESS and E −OBS.
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Table A15: Climate change concern and specific events within COP26

(1) (2) (3) (4)
CC Concern CC Concern CC Concern CC Concern

Glasgow Pact -0.026∗ -0.019
(0.013) (0.015)

Climate March 0.019 0.027∗

(0.012) (0.013)
Years of education 0.004∗ 0.006∗∗

(0.002) (0.002)
Age 0.002 0.001

(0.002) (0.002)
Age2 -0.000 0.000

(0.000) (0.000)
Male (0-1) -0.066∗∗∗ -0.064∗∗∗

(0.010) (0.009)
Child living at home (0-1) 0.004 0.005

(0.018) (0.023)
Born abroad (0-1) 0.022 0.019

(0.017) (0.021)
Currently Unemployed (0-1) 0.022 -0.025

(0.038) (0.028)
Subjective income (0-3) 0.025∗∗∗ 0.017

(0.007) (0.012)
Interest in Politics (0-3) 0.032∗∗∗ 0.025∗∗∗

(0.008) (0.009)
Domicile: Suburbs -0.033∗∗ -0.032∗

(0.016) (0.017)
Domicile: Town -0.012 -0.013

(0.016) (0.015)
Domicile: Village -0.023 -0.018

(0.019) (0.021)
Domicile: Countryside -0.064∗∗ -0.046

(0.025) (0.029)
Temp. Anom. 0.174 0.214

(0.142) (0.295)
Temp. Interview 0.003∗ 0.004∗

(0.002) (0.002)
Constant 0.873∗∗∗ 0.668∗∗∗ 0.864∗∗∗ 0.641∗∗∗

(0.004) (0.097) (0.005) (0.141)
Country FE Yes Yes Yes Yes
Controls No Yes No Yes
Observations 4784 4055 3307 2800
R-squared 0.031 0.066 0.029 0.060
No. of Clusters 20 20 20 20

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect on CC Concern
of temperature anomalies experienced by respondents interviewed during Waves 8 and 10 of the ESS.
Coefficients are estimated using an OLS regression with country fixed-effects and individual controls.
Standard errors are clustered at the country-by-wave level. Sources: ESS and E −OBS.
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Table A16: Climate change concern: same countries across Temp. Anomalies and COP
analyses

(1) (2) (3)
CC Concern CC Concern CC Concern

COP22 (2016) -0.019
(0.035)

COP22 × Center 0.004
(0.047)

COP22 × Right -0.038
(0.049)

COP26 0.002
(0.005)

COP26 × Center 0.029∗

(0.013)
COP26 × Right 0.075∗∗

(0.026)
Temp. Anom. (t-2) 0.405∗ -0.076 0.155∗∗

(0.195) (0.307) (0.073)
Temp. Anom. (t-2) × Center -0.080∗

(0.045)
Temp. Anom. (t-2) × Right -0.051

(0.123)
Temp. Interview 0.002 0.003 0.001

(0.002) (0.003) (0.001)
Temp. Interview × Center 0.000

(0.001)
Temp. Interview × Right 0.001

(0.109) (0.194) (0.119)
Center -0.058∗∗∗ -0.020 -0.009

(0.012) (0.039) (0.021)
Right -0.179∗∗∗ -0.048 -0.097∗

(0.015) (0.043) (0.055)
Country FE Y Y Y
Time trend N N Y
Controls Y Y Y
Observations 4507 3434 46840
R-squared 0.076 0.093 0.077
No. of Clusters 14 14 28

Notes. ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. We report here the estimates of the effect
on Climate change concern of COP26, COP22 and temperature anomalies, considering
ideology heterogeneity. We resort to 14 countries only for the three regressions, those
present for all analyses. Coefficients are estimated using an OLS regression with country
fixed-effects and individual controls. Standard errors are clustered at the country-by-wave
level. Sources: ESS and E −OBS.
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Table D1: Distribution of sample by journal

Journal No. of papers

American journal of agricultural economics 1
Applied energy 2
Climate policy 3
Climatic change 1
Ecological economics 1
Energies 2
Energy 2
Energy conversion and management 1
Energy economics 3
Energy efficiency 1
Energy policy 15
Energy systems-optimization modeling simulation and economic aspects 1
Environment development and sustainability 1
Environmental & resource economics 1
Environmental economics and policy studies 1
European economic review 1
International journal of electrical power & energy systems 1
International journal of environmental research and public health 1
Journal of environmental planning and management 1
Journal of modern power systems and clean energy 1
Mitigation and adaptation strategies for global change 1
National tax journal 1
Regional environmental change 1
Renewable & sustainable energy reviews 2
Renewable and Sustainable Energy Reviews 2
Resource and Energy Economics 1
The energy journal 1
Utilities policy 1

Working Paper 3

Total 54

D2. Search terms for the meta-analysis

D3. Alternative specifications for synergy regression

When we restrict our sample to cases with four scenarios, we find through a logistic regression
that GE models are more likely to find additional abatement. However, we do not find any
statistically significant association regarding implementation of a carbon tax instead of a
cap.
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Table D3: Average marginal effects of logistic regression of the probability of additional
abatement from an instrument combination (papers with four scenarios)

Prob. of additional abatement

Carbon tax 0.0489
(0.1760)

GE model -0.5737∗∗∗

(0.0976)

Observations 29

In an attempt to increase statistical power, we combine estimates from papers with four
and three scenarios. In the main text, we show results from a Tobit specification, where the
probability of additional abatement is not a binary variable but instead, estimates of Type
II are given the empirically estimated probability of additional abatement (16/31). This
resulted in a continuous variable, bounded between 0 and 1. Next, we implement an ordered
logistic model, which involves aggregating synergy results into categories. We choose three
categories: 0: no additional abatement (’backfire’, ’border of backfire’, and estimates of Type
I when only three scenarios area available), 1: possible additional abatement (estimates of
Type II when only three scenarios area available), and 2: certain additional abatement
(’negative synergy’ and ’positive synergy’). While the categories are in increasing order in
terms of expected synergy, they are not entirely separate, since category 1, or estimates of
Type II, can be in category 0 or in category 2, depending on what the real (unknowable)
synergy is. We find that carbon taxes are associated with higher probability of additional
abatement (at the 10% level), both without and with an indicator variable for papers with
four scenarios (Tables D4 and D5, respectively).

Table D4: Average marginal effects of ordered logistic model

0: no additional abatement 1: possible additional abatement 2: certain additional abatement

Carbon tax -0.254* 0.04 0.214*
(0.131) (0.033) (0.120)

GE model 0.308** -0.087 -0.221**
(0.135) (0.058) (0.095)

n 53
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Table D5: Average marginal effects of ordered logistic model, considering the number of scenarios

0: no additional abatement 1: possible additional abatement 2: certain additional abatement

Carbon tax -0.229* 0.035 0.194
(0.136) (0.032) (0.123)

GE model 0.266* -0.071 -0.195*
(0.152) (0.059) (0.105)

Four scenarios -0.115 0.024 0.091
(0.151) (0.034) (0.121)

n 53
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