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Resum (catala)

La malaria és una de les malalties infeccioses més prevalents a I'Africa subsahariana, amb 263
milions de casos reportats a tot el mén durant el 2023 segons I'Organitzacié Mundial de la Salut
(OMS). L'esquistosomiasi és catalogada per I'OMS com a malaltia tropical desatesa, amb més de
253 milions de persones en risc d'infeccid. La microscopia continua sent la técnica gold standard
pel diagnostic d’ambdues malalties. No obstant aix0, es tracta d'un métode professional
dependent amb un alt nivell d’implicacié a la rutina diaria dels laboratoris. Com a alternativa,
s'estan desenvolupant noves técniques de diagnostic basades en |'analisi d'imatges amb eines

d'Intel-ligencia Artificial (I1A).

La Intel-ligéncia Artificial és una de les tecnologies en desenvolupament més disruptives durant
el segle present, que ha impulsat i millorat els métodes tradicionals d'analisi d'imatges.
L'aprenentatge profund i I'Us de xarxes neuronals convolucionals (XNC) per a la deteccio
d'objectes en imatges i videos podria ser una alternativa adequada al diagnostic convencional
per microscopia. Els algoritmes d'IA utilitzen xarxes neuronals pre-entrenades per detectar
formes biologiques en imatges de microscopia. Pel seu desenvolupament i implementacié és
essencial disposar de conjunts de dades d'imatges digitals. Aquestes sén comunament
etiquetades pels experts mitjangant caixes contenidores que permeten delimitar les arees de la
imatge amb les formes bioldgiques d'interés. Es determinant comptar amb un conjunt de dades
d'imatges suficientment gran, per fer possible I'entrenament de XNC. Aquesta tecnologia
confereix un diagnostic rapid, precis i automatitzat. D’altra banda, els teléfons intel-ligents sén
una solucié optima de baix cost per realitzar tot el diagnostic mitjangant técniques d'lA. La
capacitat de capturar imatges de suficient qualitat amb una camera propia, i la possibilitat
d'integrar models de XNC per executar algoritmes d'lA i realitzar una detecciod sén, a dia d’avui,

les principals caracteristiques d'aquests dispositius per al diagnostic.

Per abordar aquest problema, en el projecte presentat, hem desenvolupat un nou sistema
automatitzat basat en tecniques d'analisi d'imatges per al diagnostic de la malaria i
I'esquistosomiasi urogenital. El sistema es basa en una aplicacio per a telefons intel-ligents, i un
microscopi robotitzat de baix cost. Per automatitzar tot el procés, es va dissenyar un prototip de
peces impreses en 3D per a la robotitzacié de la microscopia Optica convencional, capag
d'autoenfocar i fer un escaneig de tota la mostra. L'objectiu principal de l'estudi és el

desenvolupament d’un nou sistema automatitzat pel diagnostic de la malaria i I'esquistosomiasi

17



urogenital utilitzant eines d’intel-ligencia artificial i un microscopi robotitzat universal de baix
cost, dissenyat per la seva implementacié en entorns amb pocs recursos on aquestes malalties

son endemiques.

Pel diagnostic automatitzat de la malaria es van utilitzar 148 mostres de gota gruixuda tenyides
amb Giemsa per capturar imatges digitals microscopiques. Es va crear un conjunt de dades de
2571 imatges etiquetades, i I'analisi comparatiu de xarxes neuronals (YOLOv5, Faster R-CNN,
SSD i RetinaNet) va demostrar un rendiment optim del model You Only Look Once versié 5x
(YOLOvV5x). Els resultats demostren, utilitzant metriques d’aprenentatge automatic per avaluar
el rendiment, una precisié del 92.10%, un recall de 93.50% i un valor F de 92.79% per a la
deteccid de trofozoits de Plasmodium immadurs, madurs i leucocits. En el cas de
I’esquistosomiasi urogenital, un total de 1017 imatges digitals etiquetades de 24 mostres de
sediment urinari van ser emprades per l'entrenament dels algoritmes. Els ous de S.
haematobium, tant ous viables com calcificats, van ser etiquetats manualment en imatges
digitals per professionals de laboratori i utilitzats per entrenar els models YOLOv5 i YOLOVS. Les
imatges de sediments urinaris també es van utilitzar per realitzar una classificacié binaria
d'imatges per detectar la preséncia d'eritrocits/leucocits en l'orina. L'entrenament de YOLOv5x
va demostrar una precisié del 99.3%, un recall de 99.4% i un valor F de 99.3% per a la deteccié
d’ous de S. haematobium. El model de xarxa neuronal NasNetLarge va demostrar una precisio
del 85.6% per a la deteccid d'eritrocits/leucocits en orina. Les imatges digitals de Plasmodium
spp. i S. haematobium van ser capturades per la camera de microscopia digital integrada, i la
camera del teléfon intel-ligent al laboratori de Drassanes del Departament de Microbiologia de

I'Hospital Vall d'Hebron.

Els algoritmes de diagnostic es van integrar en una aplicacié per telefons intel-ligents i un
software de laboratori dissenyat pel seu maneig en ordinador. El sistema és capag de realitzar
un diagnostic totalment automatitzat mitjancant: I'autoenfocament de la imatge i els
moviments en els eixos X-Y del microscopi robotitzat, els models de XNC entrenats per a l'analisi
d'imatges digitals i el telefon intel-ligent. El nou prototip és capag de determinar si (i) una mostra
de gota gruixuda tenyida amb Giemsa és positiva/negativa per a la infeccié de Plasmodium, i els
seus nivells de parasitemia; (ii) detectar la presencia d'ous de S. haematobium i

d’eritrocits/leucocits en imatges de sediments urinaris.

Es va realitzar una validacié diagnostica preliminar del sistema per comparar-la amb la tecnica

gold standard de microscopia convencional. Els resultats obtinguts a la validacié del Centre
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Drassanes Vall d’'Hebron van demostrar una sensibilitat del 81.25% i una especificitat del 92.11%
pel diagnostic de la malaria. D’altra banda, s’ha realitzat una prova de concepte a I'Hospital
Nossa Senhora da Paz (Cubal, Angola) pel diagnostic de la malaria, demostrant resultats

satisfactoris per a la implementacié del sistema en laboratoris amb pocs recursos.

El projecte té un enfocament holistic amb un impacte transversal en la salut global. Altres
aplicacions de la tecnologia podrien ser: (i) garantia de control de qualitat analitica i diagnostica,
(ii) generacid de bases de dades d'imatges i digitalitzacié de mostres biologiques, (iii) programes
digitals educatius per a la formacié de microscopistes i/o professionals de laboratori i (iv)
notificacié i vigilancia per a la deteccid de brots epidémics. Finalment, la coalescéncia del
sistema totalment automatitzat, la deteccié autonoma de parasits/cel-lules en imatges digitals
amb un programari per a teléfon intel-ligent i algoritmes d'lA, i altres aplicacions transversals
confereixen al prototip les caracteristiques optimes per unir-se a |'esfor¢ global per la lluita

contra la malaria i les malalties tropicals desateses.
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Resumen (castellano)

La malaria es una de las enfermedades infecciosas mas prevalentes en Africa Subsahariana, con
263 millones de casos reportados en todo el mundo durante el 2023 segulin la Organizacién
Mundial de la Salud (OMS). La esquistosomiasis es catalogada por la OMS como enfermedad
tropical desatendida, con mds de 253 millones de personas en riesgo de infeccion. La
microscopia continda siendo la técnica gold standard para el diagndstico de ambas
enfermedades. Sin embargo, se trata de un método profesional dependiente con un alto nivel
de implicacién en la rutina diaria de los laboratorios. Como alternativa, se estan desarrollando
nuevas técnicas de diagndstico basadas en el andlisis de imagenes con herramientas de

Inteligencia Artificial (1A).

La Inteligencia Artificial es una de las tecnologias en desarrollo mas disruptivas durante el siglo
presente, que ha impulsado y mejorado los métodos tradicionales de analisis de imagenes. El
aprendizaje profundo y el uso de redes neuronales convolucionales (RNC) para la deteccién de
objetos en imdagenes y videos podria ser una alternativa adecuada al diagnéstico convencional
por microscopia. Los algoritmos de IA utilizan redes neuronales pre-entrenadas para detectar
formas bioldgicas en imagenes de microscopia. Para su desarrollo e implementacion es esencial
disponer de conjuntos de datos de imagenes digitales. Estas son comunmente etiquetadas por
los expertos mediante cajas contenedoras que permiten delimitar las dreas de la imagen con las
formas bioldgicas de interés. Es determinante disponer de un conjunto de datos de imagenes
suficientemente grande, para realizar el entrenamiento de las RNC. Esta tecnologia confiere un
diagndstico rapido, preciso y automatizado. Por otro lado, los teléfonos inteligentes son una
solucidn dptima de bajo coste para realizar todo el diagndstico mediante técnicas de IA. La
capacidad de capturar imagenes de suficiente calidad con una cdmara propia, y la posibilidad de
integrar modelos de RNC para ejecutar los algoritmos y realizar una deteccién son las principales

caracteristicas de estos dispositivos para el diagndstico.

Para abordar este problema, en el proyecto presentado, hemos desarrollado un nuevo sistema
automatizado basado en técnicas de analisis de imagenes para el diagndstico de la malariay la
esquistosomiasis urogenital. El sistema se basa en una aplicacion para teléfonos inteligentes, y
un microscopio robotizado de bajo coste. Para automatizar todo el proceso, se disefié un
prototipo de piezas impresas en 3D para la robotizacidn de la microscopia dptica convencional,

capaz de auto-enfocar y hacer un escaneo de toda la muestra. El objetivo principal del estudio

20



es el desarrollo de un nuevo sistema automatizado para el diagndstico de la malaria y la
esquistosomiasis urogenital utilizando herramientas de inteligencia artificial y un microscopio
robotizado universal de bajo coste, disefiado por su implementacién en entornos con pocos

recursos donde estas enfermedades son endémicas.

Por el diagndstico automatizado de la malaria se utilizaron 148 muestras de gota gruesa teiidas
con Giemsa para capturar imagenes digitales microscépicas. Se cred un conjunto de datos de
2571 imagenes etiquetadas, y el andlisis comparativo de las redes neuronales (YOLOvVS5, Faster
R-CNN, SSD y RetinaNet) demostré un rendimiento éptimo del modelo You Only Look Once
version 5x (YOLOv5x). Los resultados demuestran, utilizando métricas de aprendizaje
automatico para evaluar el rendimiento, una precisién del 92.10%, un recall de 93.50% y un
valor F de 92.79% para la deteccidn de trofozoitos inmaduros y maduros de Plasmodium, y
leucocitos. En el caso de la esquistosomiasis urogenital, un total de 1017 imdgenes digitales
etiquetadas de 24 muestras de sedimento urinario fueron empleadas por el entrenamiento de
los algoritmos. Los huevos de S. haematobium, tanto huevos viables como calcificados, fueron
etiquetados manualmente en imdgenes digitales por profesionales de laboratorio y utilizados
para entrenar los modelos YOLOv5 y YOLOvVS. Las imagenes de sedimentos urinarios también se
utilizaron para realizar una clasificacién binaria de imagenes para detectar la presencia de
eritrocitos/leucocitos en la orina. El entrenamiento de YOLOv5x demostré una precision del
99.3%, un recall de 99.4% y un valor F de 99.3% para la deteccion de huevos de S. haematobium.
El modelo de red neuronal NasNetLarge demostré una precisidon del 85.6% para la deteccion de
eritrocitos/leucocitos en orina. Las imagenes digitales de Plasmodium spp. y Schistosoma
haematobium fueron capturadas por la cdmara de microscopia digital integrada, y la cdmara del
teléfono inteligente en el laboratorio de Drassanes del Departamento de Microbiologia del

Hospital Vall de Hebron.

Los algoritmos de diagndstico se integraron en una aplicacidn para teléfonos inteligentes y un
software de laboratorio disefiado para su manejo por ordenador. El sistema es capaz de realizar
un diagndstico totalmente automatizado mediante: el auto-enfoque de la imagen y los
movimientos en los ejes X-Y del microscopio robotizado, los modelos de RNC entrenados para
el analisis de imagenes digitales y el teléfono inteligente. El nuevo prototipo es capaz de
determinar si (i) una muestra de gota gruesa tefiida con Giemsa es positiva/negativa para la
infeccidn por Plasmodium, y sus niveles de parasitemia; (ii) detectar la presencia de huevos de

S. haematobium y de eritrocitos/leucocitos en imagenes de sedimentos urinarios.
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Se realizé una validacién diagnéstica preliminar del sistema para compararla con la técnica gold
standard de microscopia convencional. Los resultados obtenidos en la validacidn del Centro
Drassanes Vall de Hebrdn demostraron una sensibilidad del 81.25% y una especificidad del
92.11% para el diagndstico de la malaria. Por otro lado, se ha realizado una prueba de concepto
en el Hospital Nossa Senhora da Paz (Cubal, Angola) para el diagndstico de la malaria,
demostrando resultados satisfactorios para la implementacion del sistema en laboratorios con

POCOS recursos.

El proyecto tiene un enfoque holistico con un impacto transversal en la salud global. Otras
aplicaciones de la tecnologia descrita son: (i) garantia de control de calidad analitica y
diagnéstica, (ii) generaciéon de bases de datos de imagenes y digitalizacion de muestras
bioldgicas, (iii) programas digitales para la formacién de microscopistas y/o profesionales de
laboratorio y (iv) notificacién y vigilancia epidemioldgica. Finalmente, la coalescencia del sistema
totalmente automatizado, la deteccion autdonoma de parasitos/células en imagenes digitales
con un software para teléfonos inteligentes y algoritmos de IA, y otras aplicaciones
transversales, confieren al prototipo las caracteristicas dptimas para unirse al esfuerzo global

por la lucha contra la malaria y las enfermedades tropicales desatendidas.
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Abstract (english)

Malaria is one of the most prevalent infectious diseases in sub-Saharan Africa, with 263 million
cases reported worldwide in 2023 according to the World Health Organization (WHO).
Schistosomiasis is classified by the WHO as a neglected tropical disease, with more than 253
million people at risk of infection. Microscopy remains the gold standard technique for
diagnosing both diseases. However, it is an expert dependent technique and results are difficult
to reproduce. As an alternative, new diagnostic techniques are being developed based on image

analysis with Artificial Intelligence (Al) tools.

Artificial Intelligence is one of the most disruptive developing technologies during the present
century, which has promoted and improved traditional methods of image analysis. Deep
learning and Convolutional Neural Networks (CNN) for object detection in images and videos
could be an appropriate alternative to conventional microscopy diagnosis. Al algorithms are able
to detect biological forms in microscopy images by using pre-trained neural networks with
microbiological data. Image datasets are crucial to developing and implementing Al algorithms
for diagnosis. Digital images are commonly labeled by experts to determine by bounding boxes
the areas of an image with biological forms of interest. It is decisive to have a set of image data
sufficiently large, to perform CNN training properly. This technology provides a fast, accurate
and automated diagnosis. On the other hand, smartphones are an optimal low-cost solution to
perform all the diagnosis using Al techniques. The ability to capture images of sufficient quality
with their own camera, and the possibility of integrating CNN models to execute Al algorithms

and perform a detection are nowadays the main characteristics of these devices for diagnosis.

To address this problem, in the presented project, we have developed a new automated system
based on image analysis techniques for the diagnosis of malaria and urogenital schistosomiasis.
The system is based on a smartphone application, and a low-cost robotized microscope. To
automate the entire process, a prototype of 3D printed pieces was designed for the robotization
of conventional optical microscopy, capable of auto-focusing the sample and scanning the entire
slide. The main objective of the study is the development of a new automated system for the
diagnosis of malaria and urogenital schistosomiasis using artificial intelligence tools and a low-
cost universal robotized microscope, designed for its implementation in resource-poor settings

where these diseases are endemic.
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For the automated diagnosis of malaria, 148 samples of Giemsa stained thick blood smears were
employed to capture microscopic digital images. A dataset of 2571 labelled images was created,
and the comparative analysis of neural networks (YOLOv5, Faster R-CNN, SSD and RetinaNet)
demonstrated optimal performance of the You Only Look Once model 5x version (YOLOv5x). The
results demonstrate, using machine learning metrics to evaluate performance, a precision of
92.10%, a recall of 93.50% and an F-score of 92.79% for the detection of early and mature
Plasmodium trophozoites, and leukocytes. In the case of urogenital schistosomiasis, a total of
1017 digital labelled images from 24 urinary sediment samples were employed for algorithm
training. The eggs of S. haematobium, both viable and calcified eggs, were manually labeled in
digital images by laboratory professionals, and employed to train the YOLOv5 and YOLOv8
models. Images of urinary sediments were also used to perform a binary classification, to detect
the presence of erythrocytes/leucocytes in urine. YOLOv5x training demonstrated a 99.3%
precision, a 99.4% recall and a 99.3% F-score for the detection of S. haematobium eggs in digital
images. The NasNetlLarge neural network model demonstrated an accuracy of 85.6% for the
detection of erythrocytes/leucocytes in urine. The digital images of Plasmodium spp. and
Schistosoma haematobium were captured through an integrated digital microscopy camera, and
a smartphone camera in the Laboratory of the Drassanes-Vall d’Hebron Intenational Health and

Infectious Diseases Centre.

Diagnostic algorithms were integrated into a smartphone application and a laboratory software
designed for computer handling. The system is able to perform a fully automated diagnosis
through: (i) the auto-focusing of the sample and the slide scanning through the movements in
the X-Y axes of the robotic microscope, (ii) the CNN models trained for the analysis of digital
images and the smartphone. The new prototype is capable of determining whether a thick blood
smear sample is positive/negative for Plasmodium infection, and its parasite levels; (ii) detecting
the presence of S. haematobium eggs and erythrocytes/leucocytes in images of urinary

sediments.

A preliminary diagnostic validation of the system was performed to compare it with the
conventional gold standard microscopy technique. The results obtained at the validation of the
Vall d'Hebron Drassanes Center demonstrated a diagnostic sensitivity of 81.25% and a diagnostic
specificity of 92.11% for the diagnosis of malaria. On the other hand, a proof of concept has

been carried out at the Nossa Senhora da Paz Hospital (Cubal, Angola) for the diagnosis of
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malaria, demonstrating satisfactory results for the implementation of the system in laboratories

with low resources.

The project has a holistic approach with a transversal impact on global health. Other applications
of the technology could be: (i) guarantee of analytical and diagnostic quality control, (ii)
generation of image databases and digitalization of biological samples, (iii) e-learning programs
for microscopists and/or laboratory professionals and (iv) notification and surveillance for the
detection of epidemic outbreaks. Finally, the coalescence of the fully automated system, the
autonomous detection of parasites/cells in digital images with smartphone software and Al
algorithms, and other transversal applications give the prototype the optimal characteristics to

join the global effort to fight against malaria and neglected tropical diseases.
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4

1. Introduccio

1.1. La malaria

La malaria o paludisme és una malaltia tropical produida per parasits del génere Plasmodium. El
parasit és un protozou unicel-lular intracel-lular de mida variable. La malaltia es transmet per la
picada de mosquits femella infectats del genere Anopheles, amb una gran prevalenca a arees
tropicals i subtropicals a nivell global [1]. Principalment, les cinc espécies del parasit que infecten
als humans sén Plasmodium (P.) falciparum, P. vivax, P. ovale, P. malariae i P. knowlesi. De totes
elles, P. falciparum és la que produeix un major nombre de casos de malaria i morts associades,

amb especial rellevancia a regions desfavorides i amb pocs recursos de I’Africa subsahariana [1].

El cicle biologic del parasit Plasmodium és complex, i requereix el mosquit, que actua com a
vector (Figura 1). Els esporozoits entren al corrent sanguini de I'ésser huma mitjancant una
picada a nivell cutani d'una femella de mosquit Anopheles infectada. Les formes parasitaries sén
transportades pel corrent sanguini fins als hepatocits, que sén envaits i infectats pels
esporozoits. Passats entre 5i 15 dies després de la picada, els esquizonts desenvolupats al fetge
alliberaran merozoits mitjangant el trencament de les cel-lules hepatiques. El temps d’incubacio
dependra de I'espécie de Plasmodium, sent P. malariae la més tardana. Els merozoits entraran

al corrent sanguini, iniciant aixi la fase intraeritrocitaria del cicle biologic [2].

El desenvolupament del parasit es pot donar per via asexual o sexual, donant a formes
morfologicament diverses. La via asexual té lloc durant les properes 24-72 hores depenent de
I’especie de Plasmodium. En primer lloc, els merozoits evolucionen a trofozoits joves o trofozoits
en forma d’anell, seguits de trofozoits madurs i esquizonts. Un cop els esquizonts (esquizogonia)
son suficientment madurs, alliberen merozoits per tornar a infectar nous eritrocits i repetir el
cicle asexual. Es conegut que P. falciparum infecta eritrocits de totes les edats, P. malariae té
tendeéncia pels més vells i P. ovale iUnicament envaeix els reticulocits que expressen la proteina
CD71 (receptor de transferrina). Aquests factors tindran conseqliéncies directes en la
parasitémia, conjuntament amb molts d’altres com I'estat d'immunologic del pacient, I'edat i la
desnutricid. En el cas concret de la infeccid per P. vivax i/o P. ovale es desenvolupen al fetge
unes formes parasitaries anomenades hipnozoits, responsables de reactivar la malaltia,
setmanes, mesos o anys després de la infeccio [3,4]. A aquest fenomen se’l coneix com a recidiva
o recaiguda. Per altra banda, la via sexual s’acostuma a produir a la medul-la 0ssia, on els

trofozoits es desenvolupen fins a gametocits. Els gametocits maduren en un periode d’entre 2-
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12 dies, sent de 9-12 per P. falciparum i de 2-3 per P. vivax. Un cop al corrent sanguini, els
gametocits madurs sén ingerits per la picada del mosquit on, a l'intesti de I'insecte, es produira
la reproduccid sexual. Els gametocits mascle i femella es diferencien donant lloc a
microgametocits i macrogametocits, respectivament. Els microgametocits fertilitzen els
macrogametocits per produir el zigot [5]. El zigot es transformara en ooquinets, que
seguidament formaran els ooquists. Els ooquists contenen centenars d’esporozoits, que
migraran fins a les glandules salivals del mosquit per infectar de nou a I’'huma mitjangant una

picada. El cicle biologic de la malaria esta representat i simplificat a la Figura 1.
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Figura 1 Representacio esquematica del cicle biologic del parasit Plasmodium spp. [6].

Actualment, I'estratégia de I’Organitzacié Mundial de la Salut (OMS) per combatre la malaria a
nivell global esta basada en diverses estrategies: prevencid, millora del diagnostic i tractament
[1]. La prevencio de la malaria ha estat un repte global des de fa décades. L’eliminacié de zones
amb aiglies estancades i I'Us de mosquiteres sén clau per evitar la proliferacié del vector, i per
tant la transmissié de la malaltia. S'utilitzen insecticides que redueixen la proliferacié dels
mosquits, la seva reproduccio i inclus la seva infectivitat [7]. Encara aixi, molts mosquits estan
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desenvolupant resistencies als insecticides, que dificulten les tasques de control vectorial [8,9].
D’altres estrateégies com la vacunacio i la quimioprevencié també s’estan utilitzant. En alguns
paisos de I’Africa subsahariana s’estan implementant programes de quimioprevencié massius
per a infants en escoles, i per embarassades durant les epoques d’altra transmissié de la malaria
[10,11]. D’altra banda, la vacunacio del paludisme continua sent un repte global. Les vacunes de
la malaria les podem dividir segons el moment on pretenem que actuin: (i) vacunes basades en
les fases eritrocitaries, (ii) vacunes basades en les fases preeritrocitaries, (iii) vacunes basades
en la malaria placentaria, i (iv) vacunes basades en el control de la transmissid, responsables
d’eliminar les fases sexuals del cicle biologic del parasit i les fases propies del mosquit. Algunes
vacunes com la RTS,S/ASO1E han estat recomanades per 'OMS, amb |'objectiu de vacunar
infants en arees amb alta transmissié de la malaltia [12]. Encara aixi, els avencos en la vacuna

de malaria s’han d’optimitzar per obtenir immunitat a escala global.

1.1.1.  Ressenya historica

La malaria i les seves conseqiiéncies ocupen un lloc Unic en els annals de la historia. Al llarg del
temps ha tingut victimes conegudes; des d’habitants neolitics, xinesos i grecs primitius, fins a
personatges historics com el farad Tutankamon, I'explorador i metge britanic David Livingston o
el navegant i explorador portugués Vasco de Gama. Només durant el segle XX la malaria va
produir entre 150 i 300 milions de morts a nivell mundial, el que representava entre el 2-5% de

tota la poblacié del planeta [13].

Determinar l'inici i descobriment de la malaria en humans és una controversia. La prova
inequivoca més antiga del parasit de Plasmodium ha estat la deteccié de I'acid desoxiribonucleic
(ADN) del parasit en mosquits atrapats a pedres d’ambre de fa 30 milions d’anys [14]. Alguns
estudis determinen que s’han trobat escriptures, manuscrits i taules d’argila de Mesopotamia
on s’esmenen febres mortals periodiques que podrien referir-se a la malaria [15]. Estudis
moleculars, han detectat antigen de Plasmodium a restes egipcies datades de I’'any 3200 a.C.
[16], i a I'antiga india anomenaven el paludisme com “el rei de totes les malalties” (entre els
anys 1500 800 a.C.) [13]. Hipocrates al seu llibre “Epidémies” de I'any 460-370 a.C. va descriure
les primeres febres periodiques, sense referir-se com a tal a la malaria [17]. A I'antic I'lmperi
Xinés anomenat Nei Chin, la medicina tradicional de la regidé durant el 270 a.C., es descrivien
febres amb periodicitat cada 3 o 4 dies, augment de la mida de la melsa, mals de cap i tremolors;
tots ells simptomes tipics de la malaria [13]. També, al poema d’Homer “La lliada” es menciona

la malaltia [18]. Totes aquestes proves escrites demostren que el paludisme ha tingut una
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rellevancia social gran durant segles, en cultures diverses i en persones de qualsevol estatus

social.

Els primers tractaments descrits contra la malaltia daten del 168 a.C., quan es va comencar a
utilitzar a la Xina la planta medicinal Artemisina annua, també coneguda com a Qinghao en

xines, que conté 'alcaloide artemisinina, actualment utilitzat per la mateixa funcié [19].

El cientific Francesco Torti (1658-1741) és considerat la persona que va posar el nom de
“malaria” a la malaltia [23]. També va postular que es transmetia a través de l'aire que sortia
dels pantans i llacunes estancades, sense mencionar la transmissié vectorial a través dels
mosquits. El descobridor de I'agent causal de la malaria va ser Charles Louis Alphonse Laveran,
un cirurgia francés de I'exercit que estava de servei a Algeria, qui va rebre el premi Nobel per
aquest descobriment I'any 1907. Durant I'observacié al microscopi de la sang d’un pacient va
percebre gametocits de P. falciparum. També, va suggerir que podia haver-hi una relacié directa
entre la malaria i els mosquits. Encara aixi, no va ser fins a la década de 1870, quan Patrick
Manson va relacionar per primera vegada una malaltia amb el mosquit com a vector. Es tractava
de la filariasis, una de les Malalties Tropicals Desateses (MTD) actuals, transmesa per mosquits
i tabacs. Finalment, els descobriments de Manson, Ronald Ross, Giovanni Battista i Amico
Bigmani van postular que la picada dels mosquits era la responsable de la transmissio de la
malaria als humans. L'any 1902, Ronald Ross va guanyar el Premi Nobel de Medicina gracies a

aquest descobriment [20].

Actualment, es coneix amb detall el cicle de vida, la transmissié del parasit, i les manifestacions
cliniques de la malaltia. Encara aixi, la malaria continua sent un problema de salut global, amb

una amplia distribucid al llarg de tot el planeta.

1.1.2. Epidemiologia

Actualment, les principals zones afectades per la malaltia sén arees amb pocs recursos de I’Africa
subsahariana, el Sud-est Asiatic, les conques de I’Amazones i d’altres regions tropicals. Encara
aixi, actualment, aproximadament el 40% de la poblacid mundial viu en llocs amb risc de
contraure la malaltia, sent P. falciparum I'espécie que produeix la majoria de morts per malaria

a nivell global [1].

Les dades més recents sobre I'epidemiologia global de la malaria sén les descrites al World
Malaria Report 2024 [21]. A nivell mundial durant el 2023, es van estimar uns 263 milions de

casos de malaria en 83 paisos endémics. Respecte a I'any anterior s’ha observat un augment
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d'11 milions de casos. Entre el 2000 i el 2019, el nombre de casos anuals de malaria es va
mantenir estable, variant entre 227 i 248 milions en els 108 paisos afectats. Des del 2020, el
nombre de casos de malaria estimats ha augmentat constantment, i la major part d'aquest
augment s'ha produit en paisos de la Regid Africana (89,7%) i de la Regid de la Mediterrania
Oriental (15,5%), ambdues regions delimitades per 'OMS. Els principals paisos que van
contribuir al'augment de casos entre el 2022 i el 2023 van ser Etiopia (+4,5 milions), Madagascar
(+2,7 milions), Pakistan (+1,6 milions), Nigéria (+1,4 milions) i la Republica Democratica del
Congo (+600.000). Les dades epidemiologiques sobre el nombre de casos i morts produits per la

malaria des de I’'any 2000 fins al 2023 estan representats a les Figura 2 i Figura 3.

La incidencia de la malaltia va disminuir entre els anys 2000 i 2015, passant de 79.0 a 58.0 per
cada 1000 persones en risc. En canvi, entre 2015 i 2022, la incidencia es va mantenir estable.
L’any 2023, la incidéncia de casos de malaria va augmentar lleugerament en comparacié amb el
2022, de 58.6 a 60.4 per cada 1000 persones en risc. Des de I'any 2000 les morts per malaria van
disminuir de 861.000, fins a 567.000 al 2019. Pero, I'any 2020, es va produir un augment de
55.000 morts per malaria, fins a augmentar el nimero a uns 622.000, com a resultat col-lateral
de la pandémia de la COVID-19. Entre el 2021 i el 2023, les morts es van reduir de nou a 597.000.
El percentatge de morts totals per malaria en nens menors de 5 anys va disminuir entre el 2000
i el 2023, passant del 86.7% al 73.7%. Al 2023, 29 dels 83 paisos (incloent-hi el territori de La
Guaiana Francesa) endémics de la malaria representaven gairebé el 95% dels casos de la malaltia
i el 96% de les morts a tot el mdén. Cinc paisos en concret: Nigéria (25.9%), la Republica
Democratica del Congo (12.6%), Uganda (4.8%), Etiopia (3.6%) i Mogambic (3.5%); van
representar poc més de la meitat de tots els casos globals. Tanmateix, quatre paisos van
representar poc més de la meitat de totes les morts per malaria a tot el mén: Nigéria (30.9%), la
Republica Democratica del Congo (11.3%), el Niger (5.9%) i la Republica Unida de Tanzania
(4.3%). Nigeria va representar el 39.3% de les morts globals de malaria en menors de cinc anys,

dada que s’ha de tenir en compte a causa de la gran poblacié del pais africa [21].
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Figura 2 Nombre de casos de malaria per cada 1000 persones en risc entre els anys 2000 i 2023.

Incidéncia de la malaria a nivell mundial [21].
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Figura 3 Nombre de morts per malaria per cada 100.000 persones en risc entre els anys 2000 i

2023. Mortalitat de la malaria a nivell mundial [21].

L’OMS posa a disposicié estimacions, i no dades del tot confirmades, tenint en compte que en
moltes ocasions, en paisos de mitjana i baixa renda, no es registren les dades epidemiolodgiques

o no es disposa de registres a escala regional ni de districte.

En concret, durant el 2023 es van registrar 246 milions de casos i 569.000 morts a la regid
africana de I'OMS. Centrant-nos en aquesta regio en els Ultims 5 anys, entre el 2019 i el 2023 els
casos i les morts estimades per malaria han augmentat en 23 milions i 24.000, respectivament,
amb un pic de 598.000 morts estimades durant el 2020 vinculades a la COVID-19. Des de llavors,

el nombre de morts estimades ha disminuit en 29.000. Aquesta regid ha representat al voltant
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del 94% dels casos i el 95% de les morts a tot el mdn; el 76% de totes les morts en aquesta regié

es van produir per infants menors de 5 anys al 2023, enfront del 91% a I’any 2000 [21].

11.3. Manifestacions cliniques i patogenia

La simptomatologia més comuna de la malaria és la febre, encara que poden apareixer altres
simptomes com tremolors, mal de cap, mialgies, nausees, vomits, diarrea, dolor abdominal i tos
[22]. La malaltia es caracteritza per provocar simptomes clinics, dels quals es poden trobar
periodes asimptomatics i estones amb un gran nivell de malestar. Els periodes febrils s’associen
a la ruptura dels esquizonts. En el cas de P. vivax i P. ovale els episodis de febres solen ser més
espaiats en el temps, degut a la maduracid dels esquizonts cada 48 h. Amb aquestes dues
especies, els simptomes poden aparéixer després de setmanes o fins i tot anys després de la
infeccid, si no son tractades correctament [23]. Per P. malariae, en canvi, els periodes febrils
apareixen cada 72 h. En fases més avancades de la malaltia també es pot produir
esplenomegalia, hepatomegalia, ictericia, hipertensié i major dolor a la palpacié abdominal. En
I'ambit de laboratori, es poden observar multitud d’anormalitats que inclouen: anémia
normocromica, normocitica, trombocitopénia, leucocitosi o leucopénia, hipoglucémia,
hiponatrémia, proves elevades de funcié hepatica i renal, proteindria i coagulacio intravascular

disseminada. Al contrari que d’altres malalties parasitaries, la malaria no produeix eosinofilia.

En casos on el diagnostic no esta disponible i no es tracta al pacient, la malaltia pot derivar a
fases anomenades complicades o malaria greu [24]. En aquests casos els pacients acostumen a
mostrar hemolisi intravascular massiva amb hemoglobinémia i hemoglobindria. Principalment,
si pateixen una infeccid per P. falciparum es pot produir malaria cerebral i anémia severa.
L’anomenada malaria cerebral es defineix com a qualsevol estat d’anormalitat de I’estat mental
degut a les afectacions neurologiques, en una persona que pateix malaria. La malaria cerebral
presenta un percentatge de mortalitat d’entre el 15-50%. Altres alteracions cliniques i
biologiques comunes de la malaria severa sén: hiperparasitémia, hipoglucémia greu, acidosi
lactica, hipertermia prolongada, estat de xoc, disfuncié pulmonar, cardiaca, hepatica o renal,
convulsions i sagnats espontanis. Les persones considerades d’alt risc de malaltia greu soén les
persones d’edat avangada (>65 anys), les dones embarassades, persones immunodeprimides o

amb malalties croniques, i els infants menors de cinc anys.

Els simptomes clinics sén provocats principalment per les fases eritrocitaries de la malaltia. En

canvi, no s’associa simptomatologia amb la presencia dels esporozoits, les formes parasitaries
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del fetge, els merozoits o els gametocits [22]. Els primers simptomes de |la malaria s’associen
amb la ruptura continuada dels eritrocits a causa de la reproduccid asexual dels parasits.
L'alliberacié de parasits al corrent sanguini provoca la reaccié immunologica. Per tant, el nivell
de parasitemia que pateixi el pacient va directament associat a I'estat d’anemia, i per tant la
severitat de la malaltia. En el cas de la malaria per P. falciparum, els eritrocits infectats
s'adhereixen a I'endoteli dels capil-lars i les venules post capil-lars, provocant I'obstruccié de la
microcirculacié i I'anoxia del teixit local. En el cervell aquest fet causa malaria cerebral; en els
ronyons pot causar necrosi tubular aguda i insuficiéncia renal; i en els intestins pot causar
isquemia i ulceracid, donant lloc a hemorragies gastrointestinals i a bacteriemia secundaria per

I'entrada de bacteris intestinals en la circulacio sistémica.

1.1.4. Diagnostic

El diagnostic de la malaria és crucial per tractar i erradicar les infeccions del parasit Plasmodium.
La infeccid podria produir malaria en diverses formes i/o manifestacions: asimptomatica,
placentaria, no complicada, i severa; depenent de la simptomatologia i fase de la infeccié. Un
diagnostic precoc és determinant en la lluita efectiva contra la infeccié. Es per aixo, que el
diagnostic clinic i de laboratori s’utilitzen globalment per a la deteccié de la malaria. Hi ha
diverses tecniques disponibles i utilitzades per detectar directament o indirectament la
preséncia de parasits de malaria en sang. Encara aixi, el context i recursos sén determinants a

I’hora d’escollir o aplicar cadascuna de les tecniques [25].

11.4.1 Diagnostic clinic

El diagnostic clinic és el primer pas pel diagnostic de la malaria. Els antecedents epidemiologics,
I’edat i la regié d’origen o regid visitada, en el cas dels viatgers o els Visit Friends and Relatives
(VFR), sén claus per correlacionar els simptomes amb la infeccié. La simptomatologia no és
especifica i, per tant, és possible confondre-la amb altres infeccions o malalties amb
manifestacions similars, com el dengue o d’altres arbovirosis [26]. Tanmateix, la
simptomatologia clinica podria variar en funcié de la fase de la malaltia i de I'espécie del parasit
de Plasmodium que produeix la infeccié. Els principals simptomes de la malaria sén: les febres
recurrents, calfreds, diaforesis i mals de cap [26]. El diagnostic clinic s'ha de complementar amb
tecniques de diagnostic de laboratori, per confirmar la preséncia de parasits a nivell microscopic

i/o molecular.
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114.2 Diagnostic de laboratori

El diagnostic de laboratori de la malaria engloba un conjunt de técniques globalment emprades
per la deteccié del parasit del genere Plasmodium. Les mostres de sang s'utilitzen en la gran
majoria de tecniques diagnostiques. A continuacié s’exposen les metodologies més utilitzades i

acceptades als laboratoris d’arreu.

Exploracio microscopica de gota gruixuda i extensio fina de sang

La visualitzacié microscopica de mostres de gota gruixuda i extensié fina de sang per observar
parasits de la malaria és la tecnica gold standard pel seu diagnostic [27,28]. Abans de
I'observacié, la mostra es tenyeix principalment amb tincié de Giemsa o Leishman, per
diferenciar els parasits a través del microscopi. Les mostres de gota gruixuda de sang (Figura 4)
son més eficients i proporcionen una major sensibilitat diagnostica en comparaciéo amb les
mostres d’extensio fina [29]. Per altre banda, la visualitzacié microscopica de mostres d’extensio
fina de sang permet identificar a I'espécie de Plasmodium. La combinacié d'ambdds métodes
permet als experts determinar el tipus i la gravetat de la infeccié amb un diagnostic precis. Es
una tecnica senzilla i rapida per visualitzar la forma activa intraeritrocitaria dels parasits en sang.
El procediment operatiu estandard de microscopia de malaria és el protocol recomanat per
I'OMS, complementat amb manuals que permeten assegurar i avaluar la qualitat dels

diagnostics [30].

Coneixer el cicle de vida dels parasits de Plasmodium (Figura 1) és important per realitzar una
correcta identificacio de les diferents etapes del desenvolupament dels parasits i de I'espécie de
Plasmodium (Taula 1). Plasmodium falciparum normalment causa nivells de parasits en sang alts
o molt alts. Les taques de Maurer, els eritrocits poli-infectats i la caracteristica forma de platan
dels gametocits sén trets distintius de la infeccid per P. falciparum [31]. En canvi, P. vivax i P.
ovale sOn especies que comparteixen algunes similituds en la morfologia i cicle de vida. Els
hipnozoits, o formes dorments del fetge, sén caracteristiques d’aquests dos tipus de
Plasmodium, ambdues espécies infecten els eritrocits joves, presenten el puntejat de Schiiffner,
tendeixen a no tenir multiples anells per eritrocit infectat, i contenen pigment de malaria

[32,33].
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Figura 4 Imatges microscopiques de parasits de Plasmodium en mostres de gota gruixuda de
sang tenyides amb Giemsa. Imatges a 1000x augments. S’observa la preséencia trofozoits
immadurs, madurs, esquizonts i gametocits. Imatges del Laboratori de Microbiologia del Centre

de Malalties Transmissibles i Salut Internacional Drassanes-Vall d’Hebron.

Per altra banda, P. malariae normalment causa nivells de parasitemia més baixos, a causa del
seu cicle de desenvolupament de 72h (24 h més llarg que en el cas de P. falciparum i P. vivax),
genera una menor produccido de merozoits per cicle eritrocitari, i té predileccié per
desenvolupar-se dins dels eritrocits més vells [34]. Finalment, P. knowlesi esta present al Sud-
est asiatic i originalment era coneguda com la “malaria del simi”. A causa del seu cicle asexual
curt, de 24 hores de desenvolupament, la infeccid per P. knowlesi pot progressar rapidament i
causar malaria greu. Les formes de trofozoit jove de P. knowlesi s'assemblen a les de P.

falciparum, i els trofozoits i esquizonts madurs sén similars a les formes de P. malariae [35,36].
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« All stages present in blood smears

« Geographical distribution: southeast Asia
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Taula 1 Taula resum de les espécies de Plasmodium que infecten als humans en mostres
d’extensio fina. Es detallen les caracteristiques morfologiques dels parasits i de les seves fases

del desenvolupament [2].

Aixi doncs, la morfologia dels eritrocits i les caracteristiques distintives en funcidé de I'espécie
permeten determinar, amb els coneixements necessaris, quina espécie/s de Plasmodium
trobem a la mostra biologica observada. En el cas de la gota gruixuda de sang els parasits es
visualitzen fora dels eritrocits, ja que s’"hemolitzen durant el procés de fixacié i tincid. L'abséncia
dels eritrocits en les mostres de gota gruixuda dificulta la diferenciacié de les espécies de
Plasmodium en aquest tipus de mostres, encara aixi la visualitzacié de gametocits de P.
falciparum o la presencia d’esquizonts o trofozoits madurs tipics de P. malariae, permeten
realitzar una orientacid diagnostica abans de la visualitzacid de I'extensio fina de sang. Els calculs
de la densitat de parasits en sang es realitzen manualment en ambdds tipus de mostres.
L'observacié per microscopia optica directa és una tecnica tediosa i que requereix experiéncia i

entrenament. El procés d’observacié de la preparacid se sol realitzar mitjancant moviments
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rectes horitzontals i verticals, per evitar observar els mateixos camps. La zona observada també
és determinant, sobretot en les mostres d’extensio fina, sent la part distal la més optima a causa
de la no superposicid dels eritrocits [37]. La visualitzacid continua de les mostres podria
desencadenar errors diagnostics a causa de la dificultat del procediment i la fatiga. La qualitat
del microscopi i els reactius de tincié també sén factors determinants, i limitants en cas de no
disposar de bona qualitat. Els casos de falsos negatius condueixen a la progressio de la malaria
greu, derivant, en ocasions, en la mort del pacient. No obstant aix0, I'examen microscopic
s'utilitza habitualment en zones endemiques i en entorns amb pocs recursos, a causa de la seva
disponibilitat i facil maneig. La microscopia també s’utilitza en paisos industrialitzats,
conjuntament amb altres tecniques analitiques que poden complementar i millorar I'examen

microscopic.

Quantitative Buffy Coat (QBC)

El test Quantitative Buffy Coat (QBC) és un metode de deteccid qualitativa per detectar
rapidament la presencia de parasits de malaria en sang centrifugada, tant capil-lar com venosa
[38]. La sang és centrifugada en tubs QBC capil-lars, especialment recoberts, i es visualitza per
microscopia optica de fluorescencia. La técnica es basa en un gradient de densitat que separa
les cél-lules sanguinies i permet la identificacié de formes parasitaries mitjangant |'observacio
microscopica fluorescent del tub capil-lar [39,40]. El tint que s'utilitza habitualment és taronja
d’acridina, que permet la identificacid de parasits entre les arees d'eritrocits i leucocits. Els tubs
QBC també tenen un anticoagulant per a la correcta visualitzacid de la mostra i per evitar
artefactes a causa de la coagulacié de la sang. Presenta una sensibilitat diagnostica més alta que
la microscopia convencional a causa de la concentracié addicional de parasits a la zona estreta
dels tubs de sang. En canvi, té alguns inconvenients: requereix personal especialitzat,
instrumentacié especifica, és més costosa que la microscopia convencional, i és dificil
determinar I'espécie i el nombre de parasits. Encara aixi, és una técnica de gran utilitat per

realitzar diagnostics rapids, sempre que es disposi del material necessari.

Proves antigéniques de diagnostic rapid

Les proves antigeniques de diagnostic rapid (PDR) sén una opcié adequada i complementaria
per detectar la infeccid per Plasmodium. Les PDR sén immunoassaigs de flux lateral que
permeten la visualitzacié d’interaccions especifiques de reconeixement antigen-anticos [41,42].
Atorguen un diagnostic qualitatiu amb un temps de resposta rapida, en la majoria dels casos de

menys de 15-20 minuts. Les PDR funcionen envers I'observacié d'una banda visible d'una tira de
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nitrocel-lulosa produida per la captura d'anticossos etiquetats amb marcadors colorimetrics.
Una gota de sang periféricai una solucié tampé s'utilitzen normalment per realitzar el diagnostic
en el dispositiu PDR mitjangant la deteccié d'antigens especifics de Plasmodium. La majoria de
les PDR es basen en la deteccid de la proteina especifica de P. falciparum anomenada Proteina
Rica en Histidina Il (PRH2) [43]; o dianes d’antigen universals per a qualsevol espécie de
Plasmodium, com ara la lactat deshidrogenasa (p-LDH) o I'aldolasa [44]. Diversos estudis han
observat delecions genetiques en el gen codificant per la PRH2 (pfhrp2) i la seva homologa, la
PRH3 (pfhrp3) de P. falciparum, fet implicat en la ineficacia de les PDR, produint resultats de
falsos negatius [45—47]. Aquests resultats de falsos negatius a causa de la mutacié del gen
pfhrp2/3 podrien desencadenar un problema de salut global. La baixa densitat del parasit en
sang, la interpretacié incorrecta dels resultats o la dificultat per detectar les infeccions per P.
malariae i P. ovale amb antigens panmalarics també sén causes de resultats falsos negatius.
L’efecte prozona a causa de |'excés d'antigen podria provocar un diagnostic incorrecte, tot i que
no és un esdeveniment comu [48,48,49]. Els resultats de falsos positius sén menys comuns, pero
plausibles. La reactivitat creuada a causa d'alts nivells d’antigen del parasit o la presencia d'altres
antigens son les principals causes de resultats falsos positius [50]. Les PDR sén una eina util de

suport al diagnostic, perd no haurien de substituir I'examen microscopic.

Reaccio en cadena de la polimerasa (PCR)

El diagnostic molecular mitjancant la tecnica de la reaccidé en cadena de la polimerasa (PCR) és
una alternativa complementaria adequada a les tecniques convencionals. Es basa en
I'amplificacio de I'ADN de Plasmodium, i té una alta sensibilitat, especificitat i una complexitat
metodologica relativament baixa [51]. Es més sensible que la microscopia, i permet identificar
els parasits de malaria a nivell d'especie quan els métodes convencionals no sén capagos de
detectar-los. A més, la determinacid d'espécies de Plasmodium mitjangant I'assaig PCR permet
el diagnostic inequivoc en la infeccid mixta per varies espécies o amb nivells baixos de
parasitémia, que sén dificils de detectar mitjangant I'examen microscopic. Alguns dels principals
inconvenients del diagnostic amb PCR sén: laimplementacid d'una tecnica no rutinaria en zones
remotes, el temps necessari (2-3 h) pel diagnostic, els requeriments de reactius i equipaments,
i I'alt cost de la tecnologia. Actualment, la PCR s'esta implementant com a técnica diagnostica
per a la malaria, tot i que no és el procediment gold standard i no s'utilitza majoritariament en
paisos endémics. Les tecniques moleculars sén Uutils per detectar infeccions en pacients

asimptomatics o amb nivells de parasitemia molt baixos; el seu rendiment amb aquesta
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casuistica és considerablement millor al que tenen les altres tecniques diagnostiques
habitualment emprades. Aquesta técnica de diagnostic molecular s'usa majoritariament en
paisos o regions d’index de desenvolupament alt i/o molt alt per realitzar estudis
epidemiologics, per confirmacié del diagnostic i per cribratges en pacients asimptomatics

[52,53].

Amplificacio isotermica per bucles (LAMP)

L'amplificacid isotérmica per bucles, més coneguda com a Loop Mediated Isothermal
Amplification (LAMP), és una técnica molecular basada en I'amplificacié d'acids nucleics
mitjancant I'ADN polimerasa de Bacillus stearothermophilus [54,55]. Alguns estudis determinen
gue la LAMP té una sensibilitat del 95.6% per a la deteccié de parasits de malaria en comparacié
amb la microscopia, i no requereix termocicladors [56]. Normalment, es necessita un
espectrofotometre de fluorescencia per llegir els resultats diagnostics, la qual cosa dificulta
I'aplicabilitat a les zones més rurals. No obstant aixd, els nous assajos amb LAMP estan
dissenyats amb una unitat de lectura de fluorescéncia integrada per tal de detectar parasits de
P. falciparum, i en alguns casos permeten interpretar el resultat per canvis de terbolesa [57]. No
esta ampliament implementat com a metode diagnostic, tot i que es postula com una alternativa
interessant als métodes moleculars convencionals, i podria ser progressivament implementat

en entorns amb POCS recursos.

Tecniques serologigues

La serologia es basa en la deteccid d'anticossos contra els parasits de la malaria. No s'utilitza
habitualment per a un diagnostic rapid de la malaltia, sind per realitzar estudis de
seroprevalenca. Com a exemple, el Testing d'Anticos d'Immunofluorescencia (TAI) utilitza
antigens especifics per a la quantificacié d'anticossos IgG i IgM en mostres de serum [58]. Les
estrategies combinades que utilitzen dades serologiques, de deteccid d'antigens i d'ADN

s'utilitzen per estimar la transmissié de la malaria i realitzar estudis epidemiologics [59].

Citometria de flux

La citometria de flux és un metode de comptatge de cél-lules basat en un laser que permet la
quantificacid d'eritrocits infectats per parasits de la malaria. Ofereix els nivells de parasitémia
de manera automatitzada i té una sensibilitat generalment baixa. Nous avencos basats en la

citometria de flux de fluorescencia han demostrat que el dispositiu Sysmex XN-31 pot
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determinar l'especie de Plasmodium i quantificar els parasits en sang [60]. No obstant aix0, pot

generar falsos positius en cas de morfologia cel-lular anormal dels eritrocits.

Biomarcadors

Els biomarcadors sdn alteracions cel-lulars, bioquimiques o moleculars que indiquen la presencia

de respostes biologiques, patogeniques o terapeutiques, amb un alt potencial diagnostic [61].

El desenvolupament de la deteccié de biomarcadors de malaria, de biomarcadors multiplex per

a multiples infeccions, i de biosensors sén noves propostes a considerar com a eines de

diagnostic.

La Taula 2 mostra un resum dels avantatges i inconvenients de

esmentades.

Diagnostic technique

Microscopic examination

Quantitative Buffy Coat (QBC)

Rapid Diagnostic Tests (RDTs)

PCR

LAMP

Serology

Flow cytometry

Biomarkers

Advantages

(i) Availability

(ii) Low-cost diagnosis

(iii) Parasite level calculations
(iv) Species identification

(i) Fast preparation and diagnosis
results

(i) High sensitivity

(i) Fast preparation and diagnosis
results

(ii) Easy handling

(iii) Low-cost diagnosis

(iv) Species identification (usually

P. falciparum from non-P,

falciparum species)

(i) High sensitivity and specificity
(i) Species identification
(iii) Reference tool for comparative

studies

(i) High sensitivity and specificity
(ii) Species identification

(iii) No thermocyclers needed

(i) Seroprevalence

(ii) Malaria transmission

(i) Quantification of infected
erythrocytes

(ii) Automated parasite level
calculations

(i) High diagnostic potential

(i) Easy handling

Disadvantages

(i) Requires expert personnel

(ii) Results are expert-dependent

(i) Requires expert personnel

(ii) Requires fluorescent microscopy

(iii) Specialized instrumentation

(i) pfHRP2/3 gene deletions

(ii) Low sensitivity with low parasite levels
(iii) Low sensitivity with P. ovale and P
malariae species.

(iv) Cross-reactivity

(v) Prozone effect

(i) Specialized instrumentation
(ii) Difficult implementation in endemic areas

(iii) Expensive diagnosis

(i) Specialized instrumentation

(i) Expensive diagnosis

(i) Non-reliable diagnostic technique
(ii) Not indicative of active infection
(i) Low sensitivity

(ii) Specialized instrumentation

(iii) Difficult implementation in endemic areas

(i) Specialized instrumentation

cadascuna de les técniques
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Taula 2 Avantatges i desavantatges de les téecniques de diagnostic de la malaria [6].
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1.1.5. Tractament

El tractament de la malaria dependra de I'espécie de Plasmodium que infecti al pacient, i de la

fase i severitat de la malaltia. Es per aixd que dividim el tractament segons malaria no

complicada o malaria severa. A la Taula 3 esta representat un resum dels tractaments

recomanats per la malaria segons I'OMS.

Panel 2: Malaria treatment®

Severe malaria

Firstline

+ Intravenous artesunate: 2-4 mg/kg per dose at O h, 12 h, and
24 h, then every 24 h if necessary; if bodyweight is <20-0 kg,
give 3-0 mg/kg per dose to ensure equivalent exposure to
the drug

Alternatives if artesunate not available

+ Intramuscular artemether: initial dose 3-2 mg/kg, then
1.6 mg/kg every 24 h

+ Intravenous quinine diluted in 5% dextrose: loading dose of
20 mg/kg infused over 4 h, then 10 mg/kg every 8 h infused
no fasterthan 5 mg/kg per h

+ Pre-referral rectal artesunate: recommended in primary
health-care settings in which parenteral drug administration
is not possible'™

Once eating and drinking

+ Give full course of oral antimalarial treatment as per
guidelines for uncomplicated malaria

+ Avoid mefloquine-containing artemisinin-based
combination therapies (ACT) in patients initially presenting
with impaired consciousness because of increased risk of
post-malaria neurological syndrome

Uncomplicated malaria

Uncompiicated Plasmodium falciparum, Plasmodium knowlesi,

or chloroquine-resistant Plasmodium vivax malaria

+  Artemether-lumefantrine: 0-83-4.00 mg/kg artemether
and 4-83-24-00 mg/kg of lumefantrine given twice a day
for 3 dayswith fatty food; the first two doses should be
given 8 hapart

+ Artesunate-mefloquine: 4 mg/kg per day artesunate (range
2-10 mg/kg) and 8-3 mg/kg per day mefloguine
(7-11 mg/kg) given once a day for 3 days

+ Dihydroartemisinin-piperaquine: 4 mg/kg per day
dihydroartemisinin (range 2-10 mg/kg) and 18 mg/kg per
day piperaquine (16-27 mg/kg) given once a day for 3 days

for adults and children weighing =25 kg; children weighing
<25 kg: at least 2.5 mg/kg per day dihydroartemisinin and
20 mg/kg per day piperaquine given once a day for 3 days

« Artesunate-amodiaquine (sensitive P falciparum only):
4 mg/kg per day artesunate (range 2-10 mg/kg) and
10 mg/kg per day amodiaquine (7-5-15 mg/kg) once a day
for 3 days

» Artesunate-sulfadoxine-pyrimethamine (sensitive
P falciparum only): 4 mg/kg per day artesunate (range
2-10 mg/kg) given once a day for 3 days and asingle
administration of at least 25 mg/kg sulfadoxine
(25-70 mg/kg) and 1-25 mg/kg pyrimethamine
(1-25-3-5 mg/kg) given as a single dose on day 1

« Infantsweighing <5 kg with uncomplicated P falciparum
malaria: treat with ACT at the same mg/kg dose as for
childrenweighing 5 kg

+ Inthe first trimester of pregnancy, use artemether-
lumefantrine in preference to the other ACTs

Reducing risk of transmission of P falciparum in endemic areas
Primaquine* single dose of 0-25 mg/kg without G6PD
testing (maximum 15 mg base) given concomitantly with
blood schizontocidal treatment

Uncomplicated chloroquine-sensitive P vivax,

Plasmodium malariae, and Plasmodium ovale malaria
Chloroquine: 10 mg base per kg day 1 and day 2, 5 mg base
per kg on day 3; for children aged <5 years, total dose
30 mg/kg over 3 days

Antirelapse therapy for P vivax or P ovale malaria

+ Primaquine®: 0-25-0-50 mg/kg per day for 14 days given
concomitantly with blood schizontocidal therapy and after
exclusion of GEPD deficiency; lower risk of relapse in areas of
high relapse periodicity if a dose of 0-5 mg/kg per day is used

*Primaquine is contraindicated in pregnant women, infants aged <6 months, and women
breastfeeding infants aged <6 months.

Taula 3 Taula resum del tractament de la malaria recomanat per I’Organitzacié Mundial de la

Salut [2].

Per la malaria no complicada, els pacients han de ser tractats amb combinats de les artemisines.

Agquests tipus de tractaments eliminen el parasit rapidament de la sang, i progressivament van

eliminant els romanents. Els tractaments combinats de les artemisines estan recomanats i
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aprovats per I’'OMS [28]. El més utilitzat a nivell global és el artemeter-lumefrantina (Coartem®)
[62], encara que d’altres com el artesunat-pyronaridina han demostrat la mateixa eficacia. La
cloroquina també pot ser utilitzada per la infeccié de totes les espécies de Plasmodium, encara
que es va deixar d’utilitzar per P. falciparum degut a 'augment de resistencies [63]. Actualment,
I’OMS recomana el tractament amb combinats d’artemisina per les embarassades amb malaria

no complicada, a excepcio del artesunat-sulfadoxina-pyrimethamina [28].

Els pacients amb malaria severa han de ser tractats amb artesunat intravends el més aviat
possible, a causa de les disfuncions vitals que no els permeten prendre tractament oral [28]. En
cas que l'artesunat no estigui disponible, es recomana injectar intramuscularment arthemeter,
encara que és una mesura menys efectiva considerada de segona linia. La quinina intravenosa
solament hauria de ser utilitzada en cas que no es disposi de tractament amb artemisines, o en
regions on hi hagi resistencies. Es recomana un minim de 24 h amb tractament parenteral abans
de passar a I'oral. Hi ha un seguit de tractaments de suport per la malaria severa, que permeten
mitigar i/o resoldre altres afectacions cliniques associades a la infeccid [2]. En un 5-12% dels
casos de malaria severa per P. falciparum en infants s’observa la coinfeccid per I'espécie del
bacteri Salmonella [64]. La infeccid per aquest bacteri pot produir sépsia i/o meningitis, i és
normalment tractada amb antibiotics d’ampli espectre degut a les dificultats per la identificacié
bacteriana en arees amb pocs recursos. Els nivells de parasitéemia dels pacients amb malaria
severa es recomana que es monitoritzin cada 12-24 hores, per aixi també comprovar |'eficacia
del tractament [65]. Altres mesures adjuntives, com el paracetamol, poden ajudar a reduir la

simptomatologia del pacient.

En casos d’infeccié amb les espécies P. vivax i P. ovale s’han d’administrar tractaments especifics
per eliminar les formes d’hipnozoits del fetge. L'opcié més utilitzada és la 8-aminoquinolina
primaquina (3.5-7.0 mg/kg), encara que d’altres tractaments com la tafenoquina també estan
disponibles en algunes regions. Les dues drogues sén incompatibles amb el deficit de glucosa 6
fosfat deshidrogenasa (G6PD), i per tant és imprescindible estudiar I’enzim abans de prescriure
el tractament [66]. Encara aixi, en molts paisos amb pocs recursos no es realitza la prova de la
G6PD, amb el risc de poder induir hemolisi en els pacients amb aquest deficit. Alguns estudis
demostren que el tractament amb primaquina en dosis més baixes (0.75 mg/kg) durant vuit
setmanes, i amb els controls hematologics pertinents, poden ser una opcid pels pacients amb

deficit de G6PD [67].
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1.2. Les Malalties Tropicals Desateses

Les Malalties Tropicals Desateses (MTD) sén un grup divers de malalties causades per multitud
de patogens (virus, bacteris, parasits, fongs i toxines) i associades a devastadores conseqliéncies
sanitaries, socials i econdomiques. Les MTD son predominants entre les comunitats empobrides
de les zones tropicals del Sud Global, encara que algunes tenen una distribucié geografica molt
més amplia. S'estima, segons dades de 'OMS del 2024, que les MTD afecten més de 1.000
milions de persones, mentre que el nombre de persones que requereixen intervencions a causa

de les MTD, tant preventives com terapeutiques, és d'uns 1.600 milions [68].

L'epidemiologia de les MTD és complexa i sovint relacionada amb les condicions ambientals.
Moltes d’aquestes malalties son transmeses per vectors, tenen reservoris d'animals i estan
associades a cicles de vida complexos. Tots aquests factors fan que el seu control a nivell de salut

publica i global sigui un repte.

El llistat oficial de les MTD I'any 2024 segons I’'OMS engloba les seglients malalties: ulcera de
Buruli; malaltia de Chagas; dengue i chikungunya; dracunculiasis; equinococcosi; trematodiasi
alimentaria; tripanosomosi humana africana (malaltia de la son); leishmaniosi; filariasi limfatica;
micetoma, cromoblastomicosi i d’altres micosis; sarna; oncocercosi; rabia; esquistosomasi;

helmintiasis transmeses pel sol; teniasis/cisticercosi; tracoma; i malaltia del Pian [68].

1.3. L'esquistosomiasi

L'esquistosomiasi és una malaltia parasitaria aguda i cronica causada per cucs del trematode del
génere Schistosoma (S.), considerada per ’'OMS com una MTD [69]. Es la malaltia parasitaria
amb major morbimortalitat a nivell global, després de la malaria [70]. Hi ha dues formes
principals d'esquistosomiasi: I'esquistosomiasi intestinal (El) i I'esquistosomiasi urogenital (EU)
[71]. L'El és causada per S. mansoni, S. japonicum, S. mekongi, S. guineensis i S. intercalatum.
L'EU és causada per una Unica espécie anomenada S. haematobium. La distribucid geografica de
la malaltia esta relacionada amb el tipus d'infeccid i I'espécie. Es troba principalment a Africa,

regions del Carib, Brasil, Xina, Indonésia i Filipines.

Els simptomes de I'esquistosomiasi sén causats per la reaccié immunologica i fisica del cos als
ous dels parasits. El resultat d’aquesta infeccié pot derivar en dolor abdominal, diarrea i sang a
les femtes/orina. També pot produir engrandiment hepatic i de la melsa, acumulacié de fluid a

la cavitat peritoneal i hipertensié dels vasos sanguinis abdominals. Altres manifestacions
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cliniques i biologiques de I'EU son: I’lhematdria, la fibrosi de la bufeta i I'dter, i el dany renal. En
fases croniques greus pot produir cancer de bufeta, afectacié de zones genitals, infertilitat, i

insuficiencia hepatica i renal [72].

La técnica gold standard pel diagnostic de I’esquistosomiasi és la deteccid d'ous dels parasits en
mostres de femta i/o orina. La visualitzacié microscopica amb concentracié prévia ens permet
augmentar la sensibilitat diagnostica. Els anticossos i la deteccié d'antigens en mostres de sang
o orina també sén utilitzats com a indicadors d'infeccid. Les técniques moleculars PCR també
s’estan implementant en paisos industrialitzats per la deteccié del material geneétic dels parasits

en mostres d'orina i femta.

El praziquantel és el tractament antiparasitari recomanat contra totes les formes
d’esquistosomiasi. Es eficac, segur i de baix cost. La reinfeccié pot océrrer després del
tractament, encara que el risc de desenvolupar una malaltia greu es redueix. També, el risc de

reinfeccio es reverteix quan el tractament s'inicia i es repeteix durant la infancia.

En les persones, els ous d’esquistosoma s'eliminen en els excrements o en |'orina, segons
I’especie del parasit. A la Figura 5 es representa el cicle biologic simplificat de Schistosoma spp.
En aigua, en condicions optimes, els ous eclosionen i alliberen larves d'esquistosoma immadur
anomenades miracidia o miracidis. Els miracidis neden i penetren en cargols del génere
Biomphalaria i Bulinus, entre d’altres, que actuen com a hostes intermediaris. Els miracidis
evolucionen en esporocists dins del cargol. Els esporocists maduren a fase de cercaria, que sén
alliberades a I'aigua pel cargol i penetren a la pell dels humans. Les cercaries perden la cua i es
converteixen en esquistosomuls quan penetren a la pell. Les persones o hostes s'infecten quan
les formes larvals del parasit (cercaria) penetren a la pell durant el contacte amb ['aigua
infestada. Seguidament, els esquistosomuls es mouen al fetge per madurar fins a la forma
adulta. Els mascles i les femelles es tornen corpulents i es desplacen a les vénules intestinals o
blaves depenent de la seva espécie. S. japonicum, per exemple, es troba amb més freqliencia en
les venes mesenteriques superiors que drenen l'intesti prim, mentre que S. mansoni es troba
amb més freqiiéncia en les venes mesenteriques inferiors que drenen l'intesti gros. Les dues
especies, d'altra banda, poden viure en qualsevol lloc i moure's entre ambdues zones.
Schistosoma intercalatum i S. guineensis es troben en el plexe mesenteéric inferior, pero es
troben més baixos a l'intesti que S. mansoni. En el cas de Schistosoma haematobium es troba en
el plexe vends vesicular i pelvia de la bufeta, aixi com en les vénules rectals. Alla, on romanen,

les femelles comencen a pondre els ous. Els ous es mouen progressivament cap al lumen de
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I'intesti (S. mansoni, S. japonicum, S. mekongi, S. intercalatum/quineensis) o de la bufeta i

uretres (S. haematobium), i s'expulsen amb la femta o I'orina, respectivament.
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Figura 5 Representacio del Cicle biologic de Schistosoma spp. [27].

1.3.1. Ressenya historica

L’esquistosomiasi és una malaltia parasitaria coneguda des de I'antiguitat. Fou descrita per
primera vegada pel metge alemany Theodor Bilharz el 1851 al Caire, associant-la a ’hematuria,
un problema comu entre els pagesos egipcis. La malaltia també és coneguda com a
“bilharziasis”, en honor al seu descobridor [70]. Durant els segles posteriors, es van identificar
altres espécies com Schistosoma japonicum al Japd, I'any 1847, i Schistosoma mansoni a I'any
1915 [73]. Va ser Patrick Manson, el "pare de la medicina tropical”, qui va identificar el paper
dels cargols aquatics com a hostes intermediaris en el cicle vital del parasit. Finalment, Robert
Thomson Leiper va completar la comprensié del cicle biologic i va diferenciar entre les especies

S. haematobium i S. mansoni.
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L'esquistosomiasi es va fer rellevant militarment des del segle XVIII, afectant les tropes de
Napoled a Egipte i soldats britanics i australians durant la Guerra dels Boers. Tot i ser més
limitada a la Primera Guerra Mundial, es registraren nimeros notables de casos fins al 1921 i en
campanyes posteriors, com la invasié d’Etiopia. A la Segona Guerra Mundial, destaca entre
tropes alemanyes a |'Africa i britaniques a Nigéria, aixi com entre nord-americans al Pacific, amb

144 casos documentats a Leyte el 1944.

La transmissio del parasit esta directament vinculada a I'aigua contaminada, fet que connecta la
malaltia amb I'evolucié de la civilitzacié. L'Us de técniques de regadiu permanent durant el segle
XIX, especialment a Egipte, va augmentar dramaticament la prevalenca de la malaltia, afectant
fins al 70% de la poblacié masculina. També s'han trobat evidéncies de transmissio a través del

comerg d'esclaus a América, introduint S. mansoni al Carib [74].

Mitjancant tecniques de biologia molecular, s'han descobert fragments d'ADN de parasits en
momies egipcies del 1250 a.C., confirmant la preséncia de la malaltia fa mil-lennis. Aquests
estudis han permes tracar la relacié continua entre |'esquistosomiasi i la humanitat, destacant
el seu impacte sanitari al llarg de la historia. Tot i els avengos medics, la malaltia encara és un
repte de salut global, amb més de 250 milions de persones afectades durant I'any 2021, i

complicacions associades com la fibrosi hepatica i el cancer de bufeta.

En conclusio, I'esquistosomiasi ha estat una amenacga recurrent en zones endémiques, amb un
impacte especialment significatiu durant conflictes bel-lics del segle XX i durant I'actualitat en

regions amb pocs recursos a nivell global.

1.3.2. Epidemiologia

L'esquistosomiasi és freqlient en zones tropicals i subtropicals, especialment en comunitats amb
pOCs recursos sense accés a aigua potable segura, i sanejament adequat. S'estima que almenys
el 90% de les persones que requereixen tractament per a I'esquistosomiasi viuen al continent
Africa. Les estimacions de la OMS mostren que almenys 251.4 milions de persones van requerir
tractament preventiu per a I'esquistosomiasi durant I'any 2021, dels quals més de 75.3 milions
van ser tractats [75]. L'esquistosomiasi afecta sobretot les comunitats pobres i rurals,
especialment a les poblacions agricoles i pesqueres. Les dones que fan tasques domeéstiques en
aigua infestada, com rentar roba, també estan en risc i poden desenvolupar esquistosomiasi
genital femenina. La higiene inadequada i el contacte amb |'aigua infectada fan que els nens

siguin especialment vulnerables a la infeccié. També, la migracid a les zones urbanes i els
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moviments de poblacié estan introduint la malaltia a noves regions. L'augment de la poblacié i
les necessitats creixents de I'accés a I'aigua, sovint, donen lloc a reestructuracions dels entorns,
fet que facilita la transmissid de la malaltia. Amb I'augment de I'eco-turisme i els viatges a zones
remotes, un nombre creixent de turistes estan contraient I'esquistosomiasi, que encara sent un
problema menor, pot agreujar-se amb el pas dels anys, i introduir la malaltia a zones

potencialment endemiques.

La distribucié geografica de la malaltia depen de I'espécie del parasit. L'espécie S. mansoni es
troba a I’Africa, I’Orient Mitja, la regié del Carib, Brasil, Venecuela i Surinam. Tant Schistosoma
japonicum com S. mekongi es troben en regions dels Sud-est Asiatic i la Xina. Per altra banda, S.
guineensis i S. intercalatum sén propis d’arees boscoses de I’Africa central. En el cas de S.
haematobium el trobem distribuit a I’Africa, I'Orient Mitjd i s’han reportat alguns casos
autoctons a l'illa de Corsega (Franca) i a Almeria (Espanya) [76]. La distribucié geografica de

I’esquistosomiasi a nivell global esta representada a la Figura 6.

Schistosomiasis

B ALTA (Prevalencia mayor o igual 50%)

B MODERADA (Prevalencia 10-49%)
BAJA (Prevalencia < 10%)
ESTADO DE TRANSMISION POR DETERMINAR
Sin dato

Q

Fuente: WHO

Figura 6 Mapa interactiu de distribucio geografica i prevaleng¢a de Schistosoma spp. [69].
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1.3.3. Manifestacions cliniques i patogenia

Els simptomes de I'esquistosomiasi humana sén causats per la reaccid del cos envers els ous dels
parasits, i no pels mateixos parasits. Moltes infeccions sén asimptomatiques durant llargs
periodes de temps. Després de la penetracié de les cercaries a través de la pell, es poden produir
reaccions cutanies d'hipersensibilitat, manifestant-se com a petites i picants nafres
maculopapulars. La sindrome de Katayama és una reaccio sistemica d'hipersensibilitat causada
per S. japonicum i S. mansoni que es pot produir setmanes després de la infeccié inicial [77]. Els
simptomes i signes clinics més comuns sén: dolor estomacal, diarrea, febre, tos, eosinofilia i

hepatosplenomegalia.

Les infeccions amb el parasit d’esquistosoma poden causar lesions en el sistema nervids central.
Els ovuls ectopics de S. japonicum en el cervell poden causar malaltia granulomatosa cerebral.
També, les lesions granulomatoses al voltant dels ovuls ectopics a la medul-la espinal poden
ocdrrer en infeccions per S. mansoni i S. haematobium. La infeccid persistent pot donar lloc a
respostes granulomatoses, i fibrosi en el fetge i la melsa. Diverses complicacions hepatiques
inflamatories i les reaccions granulomatoses al cervell i la medul-la espinal s'associen amb S.
mansoniiS. japonicum. L’hematuria, la calcificacié de la bufeta urinaria, el carcinoma de cel-lules
escamoses i els granulomes en el cervell i la medul-la espinal sén tots simptomes, signes clinics

i complicacions de I'esquistosomiasi produida per S. haematobium.

1.3.4. Diagnostic
13.4.1 Diagnostic clinic

El diagnostic clinic de I'esquistosomiasi, com el de moltes altres malalties tropicals, ve
determinat per la regié d’origen del pacient, aixi com la clinica. L'epidemiologia de la malaltia
ens pot determinar si és probable o no que el pacient estigui infectat per esquistosomiasi, i quina
de les potencials espécies és la més probable. L'exploracio fisica, I’historial medic del pacient (si
se’n disposa), i els simptomes tipics poden donar una orientacié diagnostica abans de realitzar
el diagnostic de laboratori. A I'exploracié fisica, en ocasions, pot existir hepatosplenomegalia
dolorosa. Una estrategia emprada és el diagnostic de I'esquistosomiasi mitjancant el cribratge
del pacient asimptomatic, ja que la majoria de la poblacié (40-60%) infectada de regions
endémiques és asimptomatica, i no presenta complicacions fins passats un minim de 3 mesos
des de la infeccio [70]. Aquest tipus de pacients, en moltes ocasions, no presenten una clinica

compatible, pero els antecedents epidemiologics i la regié d’origen sén determinants per a
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detectar la malaltia. En els nens és frequent trobar, com a Unica simptomatologia, una
hematuria terminal indolora. Es important preguntar de manera especifica per aquest simptoma
tant en els infants com en els adults en risc, ja que en moltes ocasions els pacients migrants no
viuen I'hematuria com una malaltia a causa de la molt elevada prevalenca que presenta a les

seves regions d'origen [70].

13.4.2. Diagnostic de laboratori
Visualitzacio dels ous de Schistosoma spp. per microscopia

La tecnica gold standard pel diagnostic de I'esquistosomiasi, tant I'urogenital com la intestinal,
és la visualitzacid dels ous del parasit mitjangant microscopia optica. En el cas de I'EU s’observen
els ous de S. haematobium en mostres d’orina (Figura 7). Les técniques de sedimentaci¢, filtracid
amb filtres de nitrocel-lulosa i centrifugacid sén oOptims per optimitzar I'eficiencia en el
diagnostic de I'esquistosomiasi urogenital. Es important destacar que d’altres parametres
biologics com I'eosinofilia i/o I’hematuria i leucocituria sén indicatius de la infeccid. En el cas de
I’'El s"observen mostres de femtes concentrades o en fresc per I'observacié d’ous de S. mansoni,
S. japonicum, S. mekongi i/o S. intercalatum/qguineensis. Algunes de les técniques més utilitzades
per I'observacié microscopica dels ous en femtes son les basades en formol i sedimentacid, i el
Kato-Katz. Les infeccions no produeixen ous visibles en femtes/orina fins dos mesos després del

contacte amb l'aigua infestada, fet que limita el diagnostic primerenc en moltes ocasions [78].
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Figura 7 Imatges microscopiques d’ous de Schistosoma haematobium en mostres de sediment
urinari. Imatge de I'esquerra 400x augments, dreta 100x augments. S’observa la preséncia de
leucocits i eritrocits a I'orina. Imatges del Laboratori de Microbiologia del Centre de Malalties

Transmissibles i Salut Internacional Drassanes-Vall d’Hebron.
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Técniques de biologia molecular

Les tecniques moleculars també son utilitzades per la deteccié d’ADN del parasit en mostres de
femtes, sérum i plasma. Aquest tipus de proves, com la PCR i LAMP, han demostrat resultats
prometedors amb sensibilitats superiors al 90% [79]. La PCR és altament especifica i sensible,
pero requereix equips de laboratori sofisticats i personal capacitat, la qual cosa limita el seu Us
en arees rurals o amb recursos limitats. D'altra banda, LAMP és una técnica més accessible per
a l'usuari i pot ser realitzada en condicions de camp amb un menor equipament. Actualment,
també s’estan desenvolupant tecniques moleculars de PCR a temps real per la deteccié de S.
haematobium en mostres d’orina, amb resultats prometedors en infeccions de diferent
intensitat [80]. Aquests tipus de técniques permeten, en ocasions, detectar les fases més

primerenques de la malaltia, aixi com la sindrome de Katayama.

Técniques serologiques

Les teécniques indirectes per la deteccid de I'esquistosomiasi es basen principalment en la
serologia. Es una técnica ampliament utilitzada, sobretot pel cribratge en pacients
asimptomatics i en pacients amb simptomatologia compatible, sobretot viatgers. Encara aixi,
acostuma a donar un elevat nombre de falsos positius degut a les reaccions creuades, i no és
considerada una técnica confirmatoria. També s'utilitza per a la realitzacié d’estudis
epidemiologics de la malaltia, sobretot en arees endémiques o potencialment endémiques. Els
kits immunodiagnostics disponibles sdn menys especifics que els examens fecals multiples a
causa de la reactivitat creuada d'anticossos amb antigens d'altres helmints. La majoria de les
tecniques detecten IgG, IgM o IgE contra I'antigen de I’helmint adult o I'antigen de I'ou, ambdés
solubles; assaig immunoabsorbent lligat a enzim (ELISA); hemaglutinacié indirecta; o
immunofluorescéncia. La serologia no és una técnica emprada per diferenciar una infeccié activa

o passada, i tampoc s’utilitza pel control de I'efectivitat del tractament [70].

Deteccio d’antigens

Actualment, els antigens circulants anodics i catodics s’utilitzen pel diagnostic d’infeccions
actives per Schistosoma. Ambdds antigens sén glico-conjugats procedents dels cucs adults, que
poden ser detectats tant en serum com en orina [81]. Les tires reactives de I'antigen circulant
catodic, emprades per detectar les glicoproteines [82], poden ser d’utilitat pel cribratge de les
especies S. haematobium i S. mansoni, encara que no és considerada una tecnica definitiva pel

diagnostic [78].
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Técnigues d'imatge radiologica

Les exploracions radiologiques tenen un paper important en el diagnostic de la malaltia i les
seves complicacions. La radiografia d'abdomen pot servir per mostrar principalment
calcificacions en la paret de la bufeta. L'ecografia és |'exploracid més rendible, que permet
diagnosticar lesions en bufeta urinaria com I'engruiximent de la mucosa, noduls, o la fibrosi
periportal. Altres exploracions com la Tomografia Computada (TAC) o la Ressonancia Magnetica
Nuclear (RMN) poden ajudar al diagnostic, sobretot en casos de localitzacions ectopiques com

pot ser el pulmé o el sistema nervids [70].
Biopsia
La biopsia de bufeta i de la mucosa rectal son utils en pacients amb manifestacions cliniques

tipiques de la malaltia, pero sense I'expulsié dels ous. Encara aixi sén tecniques invasives i que

requereixen intervencions quirdrgiques menors.

El resum de les principals técniques diagnostiques per I'esquistosomiasi, amb els seus

avantatges i inconvenients, esta representat a la Taula 4.

Técnica diagnostica Comentarios

Analitica general - La eosinofilia es una constante en la fase aguda. En las
formas cronicas su presencia es variable y cuando esta
presente suele ser leve
- Otras alteraciones del hemograma: anemia (sobre todo en
nifos), trombocitopenia
- Elevacion de transaminasas, enzimas de colestasis y
bilirrubina, prolongacion tiempos de coagulacion (fases
avanzadas), ferropenia, elevacion urea y creatinina (si
uropatia obstructiva)

- Tira reactiva de orina: hematuria, proteinuria, en ocasiones
leucocituria

Deteccion de huevos en heces y orina - Baja sensibilidad
- Precisa de laboratorios con cierta experiencia
- Precisa de técnicas de concentracion o filtracion
- En la esquistosomiasis aguda tardan en detectarse los huevos
de 30 a 50 dias

Diagnaostico serologico - Multiples técnicas comercializadas (ELISA,
radioinmunoanalisis, hemaglutinacion indirecta,
inmunofluorescencia indirecta, Western Blot y fijacion del
complemento)

- Elevada sensibilidad pero muy variable entre las diferentes
técnicas

- Son las técnicas recomendadas para el cribado de la
enfermedad en poblaciones de riesgo

- No diferencian entre infeccion activa o pasada ni sirven para
el control de la efectividad del tratamiento

Diagnostico molecular y deteccion de antigenos - Varias técnicas moleculares (PCR, LAMP) y de deteccion de
antigenos (ACC) pero disponibles solo en centros de referencia

Radiologia - La radiologia simple es (til para detectar calcificaciones
vesicales

- La ecografia es la técnica mas rentable tanto para el
diagnostico de las lesiones a nivel urinario como
hepatoesplénico

ACC: antigeno catidnico circulante; LAMP: loop mediated isothermal amplification (amplificacion isotérmica mediada por bucles); PCR:
reaccion en cadena de la polimerasa.

Taula 4 Resum de les técniques diagnostiques emprades pel diagnostic de I'esquistosomiasi

[70].
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1.3.5. Tractament

El compost més efica¢ i ampliament utilitzat és el praziquantel, un derivat de la quinolina-
pirazina acilat que ha estat el pilar del tractament de I'esquistosomiasi durant més de trenta
anys. Els assajos clinics van demostrar que el tractament oral amb aquest antiparasitari és segur
i eficac contra els cucs adults de totes les especies de Schistosoma spp. que afecten als humans,
encara que el seu mecanisme precis d'accid esta per establir. El praziquantel també és el
tractament d’eleccié dels programes globals basats en el control i prevencié de la malaltia,
centrats en la subministracio massiva del tractament (SMT), per reduir la morbiditat. El
tractament és efica¢c una hora després de ser ingerit; encara que ben absorbit, se sotmet a un
extens primer pas hepatic. Una fraccido del farmac (80%) es metabolitza en el fetge i els
metabolits inactius son eliminats per via renal a través de l'orina. El praziquantel també és
secretat en la seva forma activa en la llet materna, pero no s'esperen esdeveniments o efectes
adversos pels nadons, encara que es recomana que les dones no hagin de donar el pit el dia del
tractament i durant les 72 hores posteriors. El praziquantel es pot utilitzar per tractar els infants

menors de quatre anys i les dones embarassades després del primer trimestre [71].

En els programes de control de l'esquistosomiasi basats en el subministrament massiu de
drogues, una sola dosi de praziquantel és recomanada per I'OMS, encara que aquest régim ha
estat qliestionat i dades farmacodinamiques i farmacocinetiques recents postulen una dosi més
alta, especialment per a infants de sis anys o majors d'edat. Infeccions de Schistosoma spp. i els
helmints transmesos pel sol sén molt comuns en zones on aquests cucs sén co-endémics, com
a Africa i Asia. En aquestes arees, la terapia preventiva conjunta de I'albendazole (un farmac
antihelmintic) i praziquantel és recomanada per I'OMS [83,84]. Els efectes adversos associats a
la terapia amb praziquantel, en general es consideren minims, incloent-hi mareig, mal de cap,
dolor abdominal, nausees transitories, prurit i erupcid, i és probable que es deguin a les
conseqtiencies de l'alliberament antigénic de cucs morts i no a al propi farmac. Les reaccions
al-lergiques al praziquantel sén també poc freqlients. En individus amb esquistosomiasi i
cisticercosi concurrent, provocada per Taenia solium, el praziquantel pot induir convulsions i/o
infart cerebral i lesions oculars permanents. Es la conseqiiéncia de les greus reaccions

inflamatories causades pels cucs de T. solium a I'aplicar-hi el tractament.
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1.4. Nous meétodes de diagnostic basats en la
Intel-ligencia Artificial

La Intel-ligencia Artificial (IA) es considera un camp d’estudi molt ampli, que engloba totes
aquelles tasques o funcions que es poden realitzar mitjancant sistemes computacionals. Segons
la Real Académia de la Lengua Espafiola la |A es defineix com “Disciplina cientifica que se ocupa
de crear programas informdticos que ejecutan operaciones comparables a las que realiza la
mente humana, como el aprendizaje o el razonamiento l6gico.” [85]. Dintre de la IA trobem
I'aprenentatge automatic o Machine learning, que descriu tots aquells algoritmes automatitzats
gue permeten treballar amb dades per poder realitzar una tasca. Per ultim, l'aprenentatge
profund o deep learning és un conjunt de processos computacionals en el camp de la
intel-ligéncia artificial, que permeten l'aprenentatge automatitzat i la generacioé d'algoritmes
mitjangant una metodologia molt similar a la del cervell huma. Aquesta classificacid esta

representada a la Figura 8.
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Figura 8 Classificacio jerarquica dels conceptes “Intel-ligéncia Artificial”, “Aprenentatge

Automatic” i “Aprenentatge Profund” [86].
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La base de I'aprenentatge és la informacié de les bases de dades, que han de ser amplies i
completes. Els sistemes basats en deep learning consisteixen en xarxes neuronals artificials amb
multiples capes per entrenar i generar algorismes d'lA. L'aprenentatge profund ha desbancat els
procediments de les tecniques tradicionals d’analisi d'imatge, molt menys automatitzades i que
requerien gran coneixement per a la seva aplicacié. Les Xarxes Neuronals Convolucionals (XNC)
representen un ampli conjunt d’arquitectures de xarxes neuronals artificials. Es basen en la
incorporacié de filtres aplicats sobre els conjunts de dades, en una operacié denominada
convolucié. Els models d’arquitectura de XNC s’entrenen per realitzar multiples tasques, entre
d’altres detectar objectes en imatges o videos digitals. Les XNC s'apliquen en molts camps
cientifics, en concret destaguen com a eina d'atencid sanitaria en el diagnostic medic per

analitzar i extreure caracteristiques eficients de les imatges biologiques digitals.

Les tecniques més utilitzades son en I'ambit de la radiologia i la dermatologia pel diagnostic
precog¢ [87,88]. Kim et al. 2024 va desenvolupar un model basat en IA mitjancant imatges de
radiografia de torax i els valors de Cycle threshold (Ct) d’un sistema de PCR a temps real
anomenat Xpert MTB/RIF, per predir els resultats del tractament de la tuberculosi [89]. Com a
altre exemple, Papachristou et al. 2024, va avaluar una aplicacid per a telefons intel-ligents capacg
de detectar, mitjancant I'analisi d'imatges demoscopiques, lesions de la pell amb potencialitat
per ser identificades com a melanomes [90]. Aquest tipus d’aplicacions, cada vegada s’utilitzen
més per les malalties infeccioses i la microbiologia clinica [91,92]. L'analisi d'imatges digitals de
microscopi utilitzant una U-Net (arquitectura de xarxa neuronal convolucional) per segmentar i
detectar promastigots, amastigots i parasits adherents de leishmaniosi és un estudi
representatiu de la gran varietat de possibilitats de les XNC [93]. També, s’han desenvolupat
sistemes d’IA pel diagnostic de la malaltia d’Alzheimer. Uysal et al. 2020 va utilitzar imatges de
ressonancia magnetica de I’hipocamp per detectar possibles afectacions relacionades amb fases
primerenqgues de la malaltia [94]. Un altre exemple és I'Us de la |IA pel diagnostic i prevencié de
diversos tipus de cancer [95]. Algunes de les aplicacions desenvolupades es basen en el
diagnostic del cancer colorectal mitjangant la deteccié de polips, biomarcadors o la prediccio
metastatica de la malaltia amb models de xarxes neuronals [96]. En I'ambit de laboratori, Park
et al. 2021 van dissenyar i entrenar un model d’IA per determinar quines malalties patien una
cohort de pacients, mitjancant I'analisi de les dades de les proves de laboratori [97]. L'alta
capacitat de computacié aconseguida en els Ultims anys i I'augment de les bases de dades han

impulsat I'ds d'aquesta tecnologia per a aplicacions mediques i d’altres ambits.
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L'impacte en la salut global de la malaria i I'esquistosomiasi ha accelerat el desenvolupament i
la implementacié de noves estrategies diagnostiques per lluitar contra aquestes malalties.
S'estan desenvolupant noves técniques diagnostiques basades en |'analisi d'imatges digitals
mitjangant IA per a la deteccidé de parasits. Aquest tipus de sistemes sén una emulacié de la
visualitzacid microscopica, mitjancant la captura i processament d'imatges digitals, postulada
com una alternativa rapida i eficient a la realitzacid tradicional del diagnostic. En els ultims anys,
els metodes computacionals basats en I'analisi d'imatges per a la deteccié d'objectes han tingut
cada cop més importancia en estudis medics i biomedics. S'estan desenvolupant diverses
aplicacions de programari i eines per detectar parasits de malaria i/o d’altres patologies, en

imatges de mostres biologiques utilitzant microscopia d’optica convencional [98—-102].

Els seglients subapartats descriuen les etapes per a I'adquisicid i processament automatic
d’imatges digitals, que inclouen les técniques tradicionals i les tecniques actuals, que incorporen

la intel-ligéncia artificial.

1.4.1. Adquisicio d'imatges

La captura d'imatges és el primer pas per generar una base de dades d'imatges per a la seva
analisi i identificacid. L'adquisicié depén, principalment, de I'equipament i la infraestructura dels
laboratoris. Les cameres integrades al microscopi s'utilitzen sovint per adquirir imatges digitals
amb microscopia optica convencional. No obstant aix0, les cameres de teléfons intel-ligents o
smartphones sén una alternativa assequible per a aplicacions automatitzades de diagnostic. Aixi,
en paisos amb pocs recursos, les cameres de telefons intel-ligents poden ser una eina util per a
la captura d'imatges digitals i facilitar la substitucié de les cameres digitals integrades dels
microscopis, que solen ser molt més costoses. La qualitat, resolucié i morfologia de la imatge
digital determinaran el processament i I'analisi de la imatge. L'adquisicio d'imatges és el primer
pas, tant per a les tecniques tradicionals de processament d'imatge com per als métodes
d'aprenentatge profund. Una bona captura d’imatges digitals marcara la qualitat final de la base

de dades, i conseqlientment la dels models d’IA.

1.4.2. Tecniques tradicionals de processament d'imatge

Les técniques tradicionals del processament d’imatge, es basen en l'aplicacid d’un seguit
d’operacions per arribar a la deteccid i analisi d’objectes en imatges digitals. A continuacié

s’inclou un breu resum que ajuda a interpretar les diferents passes a seguir.

95

L 4

Parasite 0,581



El preprocessament de la imatge s'utilitza en les primeres passes de les técniques tradicionals
de visid per computador. Aquestes modificacions faciliten els procediments posteriors
d’identificacié de caracteristiques de manera automatitzada. La majoria de les estrategies estan
basades en la reduccid de soroll, millora del contrast d'imatge i redimensionament d'imatge
[103,104]. Per exemple, els filtres mitjans gaussians o filtres de pas baix s'utilitzen per reduir el
soroll de les imatges de microscopia, per aixi detectar millor les formes d’interés abolint els
possibles artefactes generats per la tincid de la mostra biologica. A més, la normalitzacio i
correccio del color per reduir els efectes de la il-luminacié és una solucié assequible per reduir
els errors d'imatge associats a les cameres digitals. La normalitzacié del color també és un
metode de preprocessament per minimitzar problemes de tincié. En el cas de I'adquisicid
d'imatges amb teléfon intel-ligent, métodes com la normalitzacié del color i I'eliminacié del fons

son també eines utils per preparar imatges pel diagnostic automatitzat [105].

La segmentacioé de la imatge és molt sovint necessaria per extreure caracteristiques rellevants,
i consisteix a classificar cada pixel com a part dels objectes de la imatge original. Les operacions
morfologiques, la transformacid de Hough, I'agrupament de K-mitjanes, |'algorisme de conques
hidrografiques, els algorismes de segmentacid basats en vores, la segmentacié basada en regles,
la coincidéncia de plantilles i la conca controlada per marcadors sén tecniques de segmentacio
habituals [106]. També s’ha utilitzat en malaria per a imatges d’extensié i gota gruixuda [107].
Moltes d'elles es complementen amb técniques de llindar (threshold) com a pas final per

extreure i definir les diferents regions segmentades.

L'extraccié de caracteristiques o feature extraction és el seglient procediment. Aquest
procediment facilita els seglients passos d'aprenentatge i classificacioé proporcionant informacio
quantitativa sobre determinats parametres d'imatge. Les caracteristiques de les imatges, com
la composicio de colors, la textura i la morfologia sén acuradament seleccionades. Per exemple,
en el cas de la malaria en mostres d’extensié fina de sang, Nugroho et al. 2015 va utilitzar una
caracteristica que es basa en un histograma de parametres de textura per detectar parasits en
forma de trofozoit, esquizont i gametocit de P. falciparum [108]. Com a altre exemple per
malaria mitjancant un software, els calculs de les caracteristiques dels eritrocits en imatges
d’extensié fina es realitzen mitjancant plataformes de codi obert com PyRadiomics

Documentation (Harvard) [109].

L'aprenentatge automatic pel reconeixement de patrons és el pas final del procediment abans

de la identificacio, i no solament s’utilitza en el camp de I'analisi d’imatges. Hi ha técniques
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d’aprenentatge automatic, entre les quals destaquen: els arbres de decisions, els algoritmes de
regles d’associacio (Eclat, Frequent Pattern, entre d’altres), els algoritmes genérics, les xarxes
neuronals artificials, les maquines de vectors de suport (MVS), els algoritmes d’agrupament i les
xarxes bayesianes [110]. Com a exemple de models d’aprenentatge automatic, Moslehi et al.
2022 van utilitzar un sistema basat en arbres de decisions per classificar els factors que
afectaven la mortalitat per la COVID-19 [111]. Per altra banda, Kumari et al. 2024 va emprar el
model d’aprenentatge automatic Equivalence Class clustering and bottom-up Lattice Traversal

(ECLAT) per predir la severitat de la diabetis [112].

En el cas de la malaria, els metodes de classificacid s'utilitzen per a la identificacié de parasits i
leucocits en mostres d’extensio fina i gota gruixuda. Com a exemple, la identificacié d'especies
de parasits i I'etapa de desenvolupament es poden detectar utilitzant tecniques tradicionals de
reconeixement de patrons que inclouen, per exemple, la MVS [113] o classificadors de regressio
logistica [114]. La complexitat augmenta el temps de resposta, tot i que un balan¢ entre

complexitat i temps és crucial per realitzar una identificacié correcta i rapida [6].

Els sistemes d’analisi d’imatges tradicionals han evolucionat cap a métodes cada cop més
automatitzats, que faciliten el procediment manual [115]. Les xarxes neuronals profundes van

irrompre superant ampliament els resultats de les técniques tradicionals [116].

1.4.3. Aprenentatge profund

Les tecniques convencionals d'aprenentatge automatic eren limitades en la seva capacitat de
processar dades. Durant décades, s’"han desenvolupat sistemes de reconeixement de patrons o
d'aprenentatge automatic requerint una considerable experiéncia i domini de I'ambit.
L'aprenentatge profund ha millorat exponencialment el rendiment dels sistemes basats en

I’'aprenentatge automatic.

Els metodes d'aprenentatge profund sén metodes d'aprenentatge amb mdltiples nivells de
representacid, obtinguts mitjangant la composicié de moduls simples pero no lineals que eleven
la representacio a un nivell (dades d’entrada o input), en una representacio a un nivell superior.
Amb la composicié de suficients transformacions de nivell, es poden aprendre funcions molt
complexes. Per a les tasques de classificacio, les capes més altes de representacié amplien
aspectes de l'entrada (input) que sén importants per a la discriminacid, i suprimeixen les
variacions irrellevants. Una imatge, per exemple, ve en forma d'una matriu de valors de pixels, i

les caracteristiques apreses en la primera capa de representacid representen tipicament la
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preséncia o absencia d'arestes en orientacions i ubicacions particulars de la imatge. L'aspecte
clau de l'aprenentatge profund és que aquestes capes de caracteristiques no estan
parametritzades pels humans, sind que s'aprenen de dades utilitzant un procediment
d'aprenentatge de proposit general automatic. Aquest canvi de paradigma és el responsable de

I’optimitzacio de I'aprenentatge automatic [117].

Els models d'aprenentatge profund de deteccid d'objectes sén capacos d'identificar i localitzar
objectes d'una determinada classe en imatges i videos digitals. Durant els ultims anys, s'han
millorat els models de deteccié d'objectes i la majoria dels detectors d'dltima generacid utilitzen
xarxes d'aprenentatge profund. Normalment, com a molt les imatges en brut necessiten un
preprocessament simple per redimensionar-les i proporcionar-les a la xarxa. El mateix model
decideix i calcula les caracteristiques apropiades, i proporciona una sortida que condueix a la

identificacio i localitzacié d'objectes [118].

Les XNC soén sistemes computacionals inspirats en neurones biologiques dissenyats per
processar dades (Figura 9). L'entrada d'imatge s'analitza per reconeixer patrons visuals i
completar la futura identificacié d'objectes com a sortida. Els filtres convolucionals estan
dissenyats per detectar patrons o caracteristiques especifiques en les dades d'entrada. En
I'aprenentatge profund, els pesos d'aquests filtres s'aprenen automaticament a través de
I'entrenament amb grans conjunts de dades. Les neurones en xarxes profundes (deep neural
networks) estan controlades per una funcié d'activacid, que és I'encarregada de controlar la
sortida (output). Operacions com els regularitzadors, amb normes L1, L2, la normalitzacié per
lots o I'abandonament sén elements clau perquée els models predictius aprenguin millor i més

rapid.

Un fetimportant a tenir en compte a I'hora d'entrenar XNC és disposar de dades representatives
suficients. En I'aprenentatge automatic, aixi com en I'aprenentatge profund, les dades es
distribueixen comunament en tres conjunts: entrenament, validacié i testatge o testing. El
model de prediccid apren dels multiples exemples del conjunt de dades i les mateixes dades
d'entrenament s'introdueixen repetidament a la XNC en un procediment iteratiu. Durant
I'entrenament, el conjunt de dades de validacid permet la sintonitzacié hiperparameétrica i
I'avaluacio de models mitjangant una optimitzacid continua. Finalment, s'utilitza un conjunt de
dades de prova o testing per avaluar el model després de completar el procés d'entrenament,
amb dades no vistes o inédites per la xarxa [119]. Si la suma ponderada esta per sobre d'un

llindar, I'entrada es classifica com pertanyent a una categoria determinada [117].
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Un dels principals problemes de les xarxes neuronals a causa d'una memoritzacié de dades en
detriment d'aprendre podria interferir en el resultat final de I'entrenament i I'obtencié de
prediccions finals prou robustes. Aquest concepte és I'anomenat overfitting, molt comu quan
les bases de dades no son suficientment grans o robustes, i present en tots els processos

d’aprenentatge automatic [120].

Convolution Neural Network (CNN)
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Figura 9 Representacio de I'arquitectura d’una xarxa neuronal convolucional [121].

1.4.4. Deteccio d'objectes amb xarxes neuronals convolucionals

Els detectors d'objectes basats en XNC es classifiquen segons funcionen en una o dues etapes.
Els detectors de dues etapes tenen una alta precisid de localitzacid i reconeixement d'objectes,
mentre que els detectors d'una etapa aconsegueixen una alta velocitat d'inferéncia. El detector
de dues etapes més representatiu és el Faster R-CNN i els detectors d'una etapa sén You Only
Look Once (YOLO) i Single-Shot Detector (SSD). La xarxa neuronal YOLO ha demostrat ser una
alternativa optima per la deteccié d’objectes en imatges digitals, amb un alt rendiment i millora

al llarg de totes les seves versions [122—-131].

En la majoria dels casos es requereixen dades d’imatges etiquetades manualment per realitzar
tots els processos esmentats. L’entrenament no supervisat o semisupervisat sén una alternativa,
encara que la majoria dels estudis d'imatge medica es realitzen amb dades d'entrenament
supervisat. L'aprenentatge supervisat basat en I'anotacié d'imatges és divers i s'han descrit
multitud d’estrategies. La classificacié d'imatge completa és I'anotacié de tota la imatge com a
tipus o classe. Els objectes no discernibles es detecten a la imatge, de manera que tota la imatge

es classifica com un tipus. La deteccié d'objectes utilitzant caixetes o bounding boxes és una altra
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estrategia basada en l'anotacié de diversos objectes dins de cada imatge. Requereix un
procediment d'anotacid supervisada de les coordenades dels diferents objectes de la imatge.
Les XNC utilitzen el conjunt de dades i identifiquen cada quadre contenidor com una classe
d'objecte. En el cas de la segmentacié d'imatges, la identificacié d'objectes es basa en una
classificacié a nivell del pixel. Cada pixel es classifica com un objecte de classe amb el seu propi
valor, i les anotacions s'afegeixen manualment a les imatges. No obstant aix0, és una tasca que
requereix encara més temps per a generar grans bases de dades anotades, per tant, s'estan

desenvolupant procediments d'anotacié automatics com els domain adaptations [132].

1.4.5. Bases de Dades d'Imatges

La necessitat d’obtenir grans bases de dades pot arribar a ser un problema a I’hora de generar
algoritmes eficients. ImageNet és un dels majors conjunts de dades disponibles d'imatges
universals per a investigadors i amb un Us no comercial [133]. En el cas particular de la malaria,
es necessita un conjunt de dades prou gran d'imatges anotades per entrenar models de XNC i
realitzar una identificacié automatitzada dels parasits. DataPort és un conjunt de dades d'imatge
de codi obert [134]. Malauradament, no hi ha molts conjunts de dades publiques i de codi obert
disponibles d'imatges de gota gruixuda i extensid, ni tampoc en el cas de I'esquistosomiasi. Les
tecniques d'augment de dades, per ampliar artificialment els conjunts de dades d'imatge i
obtenir millors rendiments, s'utilitzen actualment amb resultats prometedors [135]. El nombre
d’etiquetes que es requereixen per obtenir un bon rendiment de les xarxes neuronals és una
incognita en molts casos, degut a la complexitat de cada model i a la tasca que han de realitzar
dependent de la morfologia i tipus d’imatges. Encara aixi, alguns estudis, com Mancebo-Martin
et al. 2024 van comprovar que un minim de 100 etiquetes per cada categoria de classificacio
eren suficients per obtenir valors de valor F (F-score) superiors a 0.8, en mostres de sang per la

identificacié de multiples especies de parasits [136].

1.4.6. La Intel-ligencia Artificial pel diagnostic de la malaria i
lesquistosomiasi
S'ha demostrat que les XNC tenen un rendiment optim amb aplicacions de diagnostic per la
imatge mitjancant computadors en camps d'estudi especifics, i es poden generalitzar per a altres
tasques d'imatge medica. Els models de deteccid d'objectes, com YOLOv3, YOLOv4, YOLOVS,
YOLOVS8 i YOLOv11 s'utilitzen per a aquest tipus d’aplicacions. A més, Faster R-CNN [100,137] i
SPPnet sén xarxes neuronals optimitzades que s'utilitzen per accelerar i millorar el temps

d'identificacié d’objectes. Estudis recents demostren el potencial de models anomenats
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transformadors (transformers). Es tracta d’una técnica basada en xarxes neuronals profundes,
perd no convolucionals, que utilitza mecanismes d’atencid i que esta assolint resultats de gran

qualitat, sobretot quan es disposa de grans bases de dades [138,139].

L'analisi automatitzada d'imatges de microscopia podria ser una alternativa a I'examen de
microscopia convencional per al diagnostic de la malaria i I’esquistosomiasi. La preparacié i el
tipus de mostra son fets importants a tenir en compte per realitzar la correcta identificacié de
les caracteristiques biologiques dels parasits. La visualitzacid de la gota gruixuda és crucial per a
un diagnostic correcte de la malaria, fet que permet la consegiient visualitzacié de I'extensid
fina per a la identificacio d'especies de Plasmodium. La visualitzacid microscopica de la gota
gruixuda té una sensibilitat analitica més elevada per a la deteccid del Plasmodium, i sobretot té
especial rellevancia en casos de baixes parasitémies. No obstant aixo, la freqiieéncia d'artefactes
observats en aquest tipus de mostres és més alta en comparacié amb extensions. Segons la
bibliografia actual, les XNC per a la deteccié de parasits de malaria en gotes gruixudes sén menys
utilitzades i/o desenvolupades en comparacid amb les d’extensié fina [6]. Altres factors
importants a considerar en el cas de la visualitzacié de gotes gruixudes sén I'hemolisi dels
eritrocits, la ruptura del citoplasma dels leucocits, i les formes variables dels trofozoits en la fase
intra-eritrocitaria; fets que poden explicar la major dificultat per generar algoritmes d’IA per

aquest tipus de mostres.

La majoria dels métodes publicats per a la identificacié del parasit de la malaria es basen en
procediments supervisats, que requereixen un procediment d'etiquetatge manual previ de les
imatges microscopiques [140]. En el cas de I'esquistosomiasi urogenital, el procediment és molt
similar, sent en la majoria dels casos XNC entrenades amb bases de dades d’imatges, en aquest
cas de sediments urinaris. Les imatges digitals han de ser etiquetades per crear un conjunt de
dades suficientment ampli per permetre la generacié d'un model de deteccié optim. Quan es
tracta de la deteccid, aquest procés requereix definir manualment I’espai a la imatge on es troba
cada parasit, per entrenar el model de xarxa neuronal. Encara aixi, nous metodes com els
“domain adaptations” es comencen a postular com a alternatives a I'etiquetatge convencional,
i permetre etiquetar automaticament les imatges mitjancant un petit grup d’imatges

manualment etiquetades [141].
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Calculs automatics de la densitat parasitaria mitiancant métodes d'aprenentatge
profund

El recompte automatic de parasitéemia mitjangant I'analisi d'imatges és una eina util que podria
superar i donar suport a la quantificacié manual del nivell de parasits, sobretot en el cas de la
malaria. Els calculs convencionals de la parasitémia de les mostres de malaria no sén precisos i
en ocasions dificils de reproduir. Normalment, es realitza una estimacié manual del nombre de
parasits en funcié dels eritrocits parasitats i/o el nombre de leucocits. També, quan la
concentracié de parasits en sang és elevada, és una técnica tediosa i que requereix temps. La
guantificacié parasitaria de la gota gruixuda es realitza de manera rutinaria en els laboratoris
d’arreu, comptant el nombre de parasits i leucocits, i utilitzant la mesura de referencia de 8000

leucocits/uL de sang (Equacié 1).

parasits  nombre de parasits comptats x 8000
uL de sang ~ nombre de leucdcits comptats

Equacio 1: Calcul del nombre de parasits de Plasmodium per microlitre (uL) de sang en mostres

de gota gruixuda.

En canvi, la quantificacié de I'extensio fina de sang es basa en el recompte d’eritrocits infectats
en cada camp microscopic, suposant que tenim aproximadament 100 hematies/camp i donant

el resultat en percentatge (%).

Com a alternativa, la quantificacid dels nivells de parasit en sang mitjangant tecniques d'analisi
d'imatge digital requeririen periodes de temps més curts. Per acomplir aquestes tasques és, per
tant, necessari no solament detectar els parasits, sind també els leucocits i els eritrocits
depenent del tipus de mostra que analitzem. Durant els inicis de la decada del 2010 es va
comencar a desenvolupar un programari d'analisi d'imatges per a realitzar aquesta funcié
automaticament amb imatges de gota gruixuda [142]. Per als calculs automatitzats de
parasitémia amb mostres d’extensio fina hi ha eines d'analisi d'imatges disponibles per millorar
el recompte manual convencional, moltes provinents d’escaners utilitzats en hematologia. Com
a exemple, Plasmodium AutoCount és una eina digital d'analisi d'imatges per realitzar un
recompte automatic de parasits en mostres d’extensio fina de sang tenyides amb Giemsa [143].
Altres eines de processament d'imatges basades en llibreries de programari OpenCV també van
demostrar la seva eficacia en mostres també d’extensid. Els métodes anteriorment esmentats
utilitzaven técniques de processament d'imatges, com ara la reduccié del soroll amb filtres i

transformacions binaries, per determinar la preséncia de parasits de malaria dins dels eritrocits
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i realitzar un calcul final del nivell del parasit. Actualment, també existeixen técniques basades
en la |IA per aquest tipus de tasques, que permeten quantificar amb precisié el nombre de

parasits en mostres tant de gota gruixuda [144] com d’extensio fina [145].

Aplicacions de telefonia mobil per a la deteccio de parasits

S'estan desenvolupant aplicacions de telefonia mobil per a la deteccié automatica de parasits
de la malaria i I'esquistosomiasi. La captura d'imatges mitjancant teléfons intel-ligents és una
alternativa adequada i facil per a I'adquisicié d'imatges a través de la lent del microscopi. Només
es necessita un microscopi optic, un adaptador pel telefon mobil i un teléfon intel-ligent
convencional per realitzar un diagnostic per la imatge. Les cameres de telefonia mobil podrien
substituir les cameres de microscopia integrades o externes, i realitzar un diagnostic optim
mitjancant l'analisi d'imatges. A la Figura 10 esta representat un exemple d’aplicacié per a

teléfons intel-ligents pel diagnostic de I'EU.

La integracid de models predictius de XNC en una aplicacid de programari per a teléfons
intel-ligents és possible actualment. Els models de XNC adaptats realitzen tot el diagnostic en un
Unic dispositiu. La coalescencia entre el diagnostic automatitzat i el programari per a teléfons
intel-ligents és una fita i un repte per a la seva futura implementacié en laboratoris de tot el
mon. L'analisi d'imatges i els procediments d'aprenentatge profund permeten que els teléfons
intel-ligents siguin una de les millors alternatives per a la implementacié de la deteccié
automatitzada de parasits de malaria i esquistosomiasi. Fins i tot en entorns amb pocs recursos,
els teléfons intel-ligents sdn una opcié disponible i relativament barata. Un dels principals
problemes de les cameres de telefons intel-ligents és la qualitat de la captacié de la imatge i
I'adaptacio a les lents del microscopi, fet que limita la seva implementacié. Actualment, les
cameres de teléfon intel-ligent proporcionen una alta qualitat d'imatge, encara que I'adaptacié
al microscopi pot ser un problema. Les imatges podrien ser pertorbades per problemes en
I’'adaptacid de la lent, o degradacions de la qualitat de la imatge relacionades amb I'enfocament.
L'enfocament automatic de la imatge del microscopi també és un problema a resoldre. Encara
es requereix tecnologia per automatitzar completament tot el procediment d’adquisicio i

enfocament de la imatge per la identificacié de parasits en un Unic dispositiu.
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Figura 10 Esquema del funcionament i circuit de I’aplicacio per teléfon intel-ligent presentada a
la tesi doctoral. L’esquema representa la deteccid d’ous de Schistosoma haematobium

mitjangant un microscopi robotitzat de baix cost i xarxes neuronals convolucionals [146].

La gamificacio o ludificacié de la tecnologia per a la identificacié de parasits de malaria en
imatges digitals també és una aplicacié innovadora. Com a exemple, es va desenvolupar un
videojoc, on els jugadors voluntaris en linia analitzen imatges de sang per detectar parasits de
malaria. Aquesta aplicacié anomenada Malaria Spot va permetre la creacié d'una base de dades

d'imatges anotades privada per usos comercials [147].

En resum, les aplicacions per a telefons intel-ligents podrien ser el futur per a I'adquisicio i
I'analisi d'imatges de manera automatitzada per part de les tecnologies d'lA, i una alternativa
adequada per al diagnostic de la malaria i les malalties tropicals desateses. La possibilitat
d'integrar models predictius i I'adquisicio d'imatges en un Unic dispositiu confereix una amplia

gamma d'aplicacions en el camp de |'analisi d'imatges per al diagnostic.

1.4.7. Automatitzacio del hardware per a microscopia optica

La robotitzacié del microscopi per escanejar i autoenfocar les mostres biologiques és una opcié
per automatitzar la visualitzacié al microscopi. L'automatitzacio ajuda a resoldre les limitacions
relacionades amb el procediment de diagnostic. Els metodes de processament d'imatges
permeten |'automatitzacio del diagnostic, encara que, en moltes ocasions, es necessita personal
tecnic per moure l'eix X-Y i enfocar la mostra. Actualment, es disposa de multiples cases

comercials que ofereixen dispositius automatitzats per realitzar funcions de microscopia, pero
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el cost sol ser molt elevat i no solen estar pensats per la seva implementacié en paisos de mitjana
o baixa renda. L'adaptacié de sistemes de baix cost a les técniques de microscopia tradicionals
és crucial per implementar plenament la tecnologia esmentada en practiques cliniques i
diagnostiques reals de qualsevol laboratori. Per aix0, I'optimitzacié de maquinaria o hardware
de baix cost amb models d'impressié 3D per fabricar peces especifiques del microscopi seria una
opcié adequada en entorns amb pocs recursos. Alguns estudis han presentat la possibilitat de
desenvolupar un dispositiu optic que emuli o substitueixi un microscopi optic [148]. No existeix
bibliografia descrivint I'adaptacié de peces 3D a microscopis optics convencionals per la seva

automatitzacio pel diagnostic.

1.4.8. Implementacio de tecnologies d'Intel-ligencia Artificial en
entorns amb pocs recursos
Els entorns amb pocs recursos son considerats aquelles zones o regions amb index de
desenvolupament huma baix o molt baix. En moltes ocasions sén zones altament afectades per
les malalties infeccioses associades a la pobresa, especialment per les MTD. D’altra banda, els
pocs recursos dels quals es disposa en aquests entorns pot limitar la qualitat dels diagnostics, i
per contrapart la qualitat de vida de les persones. Noves técniques accessibles basades en la IA
podrien donar suport a aquest tipus d’entorns a nivell global, refor¢ant els plans nacionals de la

lluita contra aquestes malalties.

Els telefons intel-ligents ja sén actualment dispositius accessibles a nivell global, i sén una
alternativa portatil i adequada pel diagnostic mitjancant tecniques d’analisi d'imatges digitals
[149], que es podrien implementar en entorns amb pocs recursos i zones endemiques remotes.
Els models de XNC poden integrar-se dins del programari per a teléfons intel-ligents i no seria
necessaria una connexioé a Internet. La provisio de centres sanitaris amb dispositius mobils per
part d'organitzacions governamentals i programes nacionals contra la malaria seria un factor
determinant per a la correcta implementacido d'aquesta nova tecnologia per al diagnostic
mitjangant la visualitzacid microscopica i utilitzant la IA. No obstant aix0, a causa de les
restriccions especifiques de moltes zones endemiques, aquest pot ser un problema important
que s'abordara en els proxims anys per voluntat politica. Els beneficis dels teléfons intel-ligents
per al diagnostic poden ser de gran valor, no només per a la malaria, sind també pel diagnostic
de moltes altres malalties tropicals o MTDs. Per tant, la implantacié en hospitals regionals o

petits centres sanitaris suposaria un repte per a futurs estudis. Els nous models de deteccid
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d'objectes entrenats amb imatges digitals per a teléfons intel-ligents sén adequats pel

desplegament del diagnostic de la malaria en entorns amb pocs recursos.

Els estudis de rendiment per validar la tecnologia sén un requisit indispensable per a la futura
implementacié d'una eina diagnostica. L'avaluacid del sistema s'ha de realitzar en condicions
ideals, i també amb recursos limitats, per determinar la seva eficacia en diferents entorns. Hi ha
moltes barreres a superar per a passar d'un producte o tecnologia en desenvolupament a la
introduccié i implementacié com a producte comercial. Algunes de les principals barreres sén
I'ajust als sistemes de salut i laboratori necessaris per garantir I'adaptacid, la posada en practica
efectiva, la demostracié del valor de la tecnologia, I'avaluacié de la viabilitat operativa, les
politiques i els requisits reguladors de les organitzacions governamentals, la investigacio
operativa per avaluar l'efecte net de la tecnologia en el camp, la distribucié, el servei de

manteniment i reparacid, i el control de qualitat [150].

La implementacié de noves técniques diagnostiques en entorns de laboratori ha de ser regulada
i controlada pels protocols a nivell mundial de I'Administracié d'Aliments i Medicaments, i de
I'OMS. La tecnologia ha de ser validada i acceptada per les autoritats internacionals i nacionals
tal com es descriu a les regulacions [151,152]. La majoria dels esfor¢os per implementar noves
eines diagnostiques en entorns pobres en recursos es centren en malalties infeccioses com el
VIH, la tuberculosi i la malaria. La comprensié profunda i la coordinacié dels actors implicats en
el desenvolupament i la implementacié del diagnostic son fites per a I'exit de les intervencions

diagnostiques en arees amb pocs recursos.

1.4.9. Aspectes etics de la IA pel diagnostic biologic

L’Us de la IA en el diagnostic biologic planteja importants qiiestions etiques que han de ser
abordades per garantir una aplicacid segura i justa. Un dels primers aspectes a considerar és la
privacitat i seguretat de les dades, ja que aquests sistemes requereixen grans quantitats
d’informacié medica confidencial per entrenar-se i millorar la seva precisié. La proteccié
d’aquestes dades és essencial per evitar usos indeguts i complir amb normatives en I'ambit
Europeu i global, mitjancant tecniques com I’anonimitzacid i I'encriptacié de les dades [153].
D’altra banda, la responsabilitat en la presa de decisions és un repte crucial. La IA ha de ser una
eina de suport i no un substitut del professional de laboratori, assegurant sempre la supervisio
humana. La questid de l'equitat i el biaix algoritmic s’ha de tenir en compte a I'hora de

desenvolupar sistemes basats en IA, ja que poden reflectir i amplificar desigualtats presents en

66



les dades amb qué han estat entrenats. Aix0 podria portar a diferéncies en la qualitat del
diagnostic segons el genere, I’étnia o la situacié socioecondmica del pacient. Per evitar aquestes
discriminacions, és necessari treballar amb conjunts de dades representatius i aplicar

mecanismes per detectar i corregir possibles biaixos.

1.5. Cooperacio internacional pel desenvolupament

Actualment, la cooperacié internacional pel desenvolupament és un mecanisme global per
mitigar les diferéncies entre regions, i aportar recursos i/o coneixements a les zones més
desfavorides. Moltes de les accions que es duen a terme en aquest aspecte tenen com a objectiu
millorar la qualitat de vida de les persones. En contextos amb pocs recursos, les malalties
infeccioses sén molt prevalents i tenen un gran impacte a la societat, agreujat pels déficits en
recursos humans i técnics, i la poca disponibilitat de proves diagnostiques i de medicaments. Es
per aixo que les accions han de ser viables i sostenibles a llarg termini, fins a la seva transferencia
als centres de salut on s’hagi implementat, i anar orientades a obtenir autonomia per part de
les regions intervingudes. També és crucial la implicaci6 de les organitzacions de base
comunitaria tant en la preparacid del projecte com en la seva implementacid, i sempre
respectant la cultura, les creences i costums del lloc on s’actua, encara que puguin semblar
contradictories amb la ciéncia. Identificar els problemes i les necessitats de la contrapart local
és molt important per la implementacié de qualsevol projecte de col-laboracié. Tanmateix, la
cooperacid entre les entitats governamentals i internacionals poden ajudar a implementar

definitivament aquest tipus d’estrategies.
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2. Justificacio

Durant I'any 2023, es van produir 263 milions de casos de malaria i 597.000 morts per la malaltia
a nivell mundial. Sobre els casos d’esquistosomiasi globalment, no es disposa de dades tan
fiables com en el cas de la malaria. S’estima que 251.4 milions de persones van requerir
tractament profilactic I’'any 2021 contra 'esquistosomiasi, per tant, que estaven en alt risc de
contraure la malaltia; mentre que només van rebre el tractament 75.3 milions d’individus. El
diagnostic gold standard de la malaria i 'esquistosomiasi urogenital, segons I'OMS, és la
visualitzacid dels parasits mitjancant microscopia Optica convencional. Per contrapart, sén
tecniques professional dependents i que requereixen un alt nivell de coneixement i formacié
per realitzar-les correctament. Tanmateix, quan el volum de mostres rebudes al laboratori és
molt elevat, es poden cometre errors a I'hora d’observar les preparacions. Els sistemes
automatitzats fiables, accessibles, sostenibles i pensats per la seva implementacié en entorns
amb pocs recursos podrien ser una eina de suport al diagnostic d’aquestes malalties. Es per aixd
gue hem dissenyat i desenvolupat un nou sistema automatitzat pel diagnostic de la malaria i
I’esquistosomiasi urogenital, accessible i de baix cost. El sistema esta basat en una aplicacié de
telefon intel-ligent pel diagnostic mitjancant I'analisi d’imatges digitals utilitzant eines d’IA. El
sistema funciona amb algoritmes d’intel-ligéncia artificial, i un conjunt de peces 3D i servo
motors per emular els moviments X-Y de la platina del microscopi i d’autoenfocament de la
mostra. A causa de la problematica del diagnostic a nivell global, i especialment en regions
endémiques on es disposa de pocs recursos, creiem que el sistema pot donar suport a les
tecniques convencionals de diagnostic de laboratori. També, pot ser una eina util per a la
formacié de microscopistes, la digitalitzacio de les mostres biologiques mitjancant bases de
dades d’imatges, com a sistema de control de qualitat i/o per a la vigilancia epidemiologica

d’aquestes i d’altres malalties.
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3. Objectius

A continuacié esmenem els objectius generals i especifics de la tesi doctoral.

3.1. Objectiu general

Desenvolupament d’un nou sistema automatitzat pel diagnostic de la malaria i I'esquistosomiasi
urogenital utilitzant eines d’intel-ligencia artificial i un microscopi robotitzat universal de baix

cost.

3.2. Objectius especifics

» Captura i etiquetatge d’imatges digitals de mostres cliniques de malaria i
esquistosomiasi urogenital per a la creacié d’una base de dades d’imatges.

» Entrenament de models basats en intel-ligéncia artificial per la creacié d’algoritmes
capacos de detectar automaticament els parasits/cel-lules en imatges digitals.

» Creacid i disseny de peces 3D per la robotitzacié universal de baix cost de microscopis
optics convencionals.

» Creacid d’una aplicacié per a teléfons intel-ligents capag de guiar els moviments de la
platina del microscopi i I'autoenfocament de la mostra, i integrar els algoritmes
diagnostics per la malaria i I'esquistosomiasi urogenital.

> Validacié del desenvolupament del sistema pel diagnostic de malaria i esquistosomiasi
urogenital als laboratoris del Departament de Microbiologia de I'Hospital Vall d’"Hebron
i al Centre de Malalties Transmissibles i Salut Internacional Drassanes-Vall d’"Hebron.

» Validacié diagnostica del sistema automatitzat pel diagnostic de malaria als laboratoris
del Departament de Microbiologia de I'Hospital Vall d’"Hebron i al Centre de Malalties
Transmissibles i Salut Internacional Drassanes-Vall d’"Hebron, i al laboratori de I'Hospital

Nossa Senhora da Paz (Cubal, Angola).
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4.1.1. IMAGING. a novel automated system for malaria diagnosis by
using artificial intelligence tools and a universal low-cost
robotized microscope
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Impacte (any de publicacid): Factor d’'impacte 5.2 ; Quartil 1 (Q1) Microbiologia
Data de publicacio: 24 de novembre de 2023

DOI: 10.3389/fmicb.2023.1240936
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Resum del treball:

La malaria és una de les malalties infeccioses més prevalents a I'Africa subsahariana, amb 247
milions de casos reportats a tot el mén durant el 2021 segons |'Organitzacié Mundial de la Salut.
La microscopia Optica continua sent la técnica gold standard pel diagnostic de la malaria, pero
requereix experiencia, temps i és dificil d’estandarditzar. Com a alternativa, les noves técniques
de diagnostic basades en l'analisi digital d'imatges mitjangant eines d'intel-ligencia artificial

poden millorar el diagnostic i ajudar a automatitzar-lo.

En aquest estudi, es va crear un conjunt de dades de 2571 imatges etiquetades de gota gruixuda
de sang. Les xarxes neuronals YOLOv5x, Faster R-CNN, SSD i RetinaNet van ser entrenades per a
la deteccié d'objectes en el mateix conjunt de dades, i es va avaluar el seu rendiment en la
deteccié de parasits de Plasmodium. Es van aplicar moduls d'atencié i es van comparar amb els
resultats de YOLOv5x. Per automatitzar tot el procés de diagnostic, es va dissenyar un prototip
de peces impreses en 3D per a la robotitzacié de la microscopia Optica convencional, capacg

d'autoenfocar la mostra i fer I'escaneig de tota la preparacio.

L'analisi comparativa va demostrar un rendiment per a la xarxa YOLOv5x de 92.10% de precisid,
93.50% de recall, 92.79% de valor F i 94.40% mAPOQ.5 per a la deteccié general de trofozoits de
Plasmodium primerencs, madurs i leucocits. Els valors F corresponents a cada categoria van ser
del 99.0% per als leucocits, del 88.6% per als trofozoits primerencs i del 87.3% per a la deteccio
de trofozoits madurs. El rendiment dels moduls d'atencié va demostrar diferencies estadistiques
no significatives en comparacié amb el model original entrenat de YOLOv5x. Els models
predictius es van integrar en una aplicacid per a teléfons intel-ligents per al diagnostic basat en
I'analisi d’imatges. El sistema és capag¢ de realitzar un diagnostic totalment automatitzat:
mitjancant els moviments d'enfocament automatic, d’escaneig en els eixos X-Y del microscopi
robotitzat, els models de XNC entrenats per a I'analisi d'imatges digitals i el telefon intel-ligent.
El nou prototip és capag¢ de determinar si una gota gruixada de sang tenyida amb Giemsa és
positiva/negativa per a la infeccié de Plasmodium i els seus nivells de parasitémia. Tot el sistema

es va integrar a |'aplicacié per a teléfons intel-ligents anomenada iMAGING.

La coalescéncia del sistema totalment automatitzat a través de moviments de rastreig i
d'enfocament automatic, i la deteccié autonoma de parasits de Plasmodium en imatges digitals
amb un programari per a teléfons intel-ligents i algoritmes d'lA confereix al prototip les
caracteristiques optimes per unir-se a l'esforg global per la lluita contra la malaria, les malalties

tropicals desateses i altres malalties infeccioses.
T



4"
.
-
? frontiers Frontiers in Microbiology

® Check for updates

OPEN ACCESS

EDITED BY
Axel Cloeckaert,

Institut National de recherche pour
'agriculture, l'alimentation et 'environnement
(INRAE), France

REVIEWED BY
Praveen K. Bharti,

National Institute of Malaria Research (ICMR),
India

Juan Carlos Rodriguez Diaz,

Instituto de Investigaciones Biomedicas y
Sanitarias de Alicante, Hospital General
Universitario de Alicante, Spain

*CORRESPONDENCE

Elisa Clols Sayrol
esayrol@tecnocampus.cat

Joan Joseph-Munné
joan.joseph@vallhebron.cat

These authors have contributed equally to this
work and share first authorship

RECEIVED 16 June 2023
ACCEPTED 06 November 2023
PUBLISHED 24 November 2023

CITATION
Maturana CR, de Oliveira AD, Nadal S, Serrat FZ,
Sulleiro E, Ruiz E, Bilalli B, Veiga A, Espasa M,
Abello A, Suné TP, Segu M, Lopez-Codina D,
Clols ES and Joseph-Munné J (2023) iMAGING:
a novel automated system for malaria diagnosis
by using artificial intelligence tools and a
universal low-cost robotized microscope.
Front. Microbiol. 14:1240936

doi: 10.3389/fmich.2023.1240936

COPYRIGHT

© 2023 Maturana, de Oliveira, Nadal, Serrat,
Sulleiro, Ruiz, Bilalli, Veiga, Espasa, Abelld,
Sune, Segu, Lopez-Codina, Clols and Joseph-
Munné. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the criginal publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Microbioclogy

TyPE Original Research
PUBLISHED 24 November 2023
pol 10.3389/fmicb.2023.1240936

IMAGING: a novel automated
system for malaria diagnosis by
using artificial intelligence tools
and a universal low-cost robotized
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Introduction: Malaria is one of the most prevalent infectious diseases in sub-
Saharan Africa, with 247 million cases reported worldwide in 2021 according to
the World Health Organization. Optical microscopy remains the gold standard
technique for malaria diagnosis, however, it requires expertise, is time-consuming
and difficult to reproduce. Therefore, new diagnostic techniques based on digital
image analysis using artificial intelligence tools can improve diagnosis and help
automate it.

Methods: In this study, a dataset of 2571 labeled thick blood smear images were
created. YOLOvSx, Faster R-CNN, SSD, and RetinaNet object detection neural
networks were trained on the same dataset to evaluate their performance in
Plasmodium parasite detection. Attention modules were applied and compared
with YOLOv5x results. To automate the entire diagnostic process, a prototype
of 3D-printed pieces was designed for the robotization of conventional optical
microscopy, capable of auto-focusing the sample and tracking the entire slide.

Results: Comparative analysis yielded a performance for YOLOv5x on a test
set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAPO.5
for leukocyte, early and mature Plasmodium trophozoites overall detection.
F-score values of each category were 99.0% for leukocytes, 88.6% for early
trophozoites and 87.3% for mature trophozoites detection. Attention modules
performance show non-significant statistical differences when compared to
YOLOv5x original trained model. The predictive models were integrated into a
smartphone-computer application for the purpose of image-based diagnostics
in the laboratory. The system can perform a fully automated diagnosis by the
auto-focus and X-Y movements of the robotized microscope, the CNN models
trained for digital image analysis, and the smartphone device. The new prototype
would determine whether a Giemsa-stained thick blood smear sample is positive/
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negative for Plasmodium infection and its parasite levels. The whole system was
integrated into the iIMAGING smartphone application.

Conclusion: The coalescence of the fully-automated system via auto-focus
and slide movements and the autonomous detection of Plasmodium parasites
in digital images with a smartphone software and Al algorithms confers the
prototype the optimal features to join the global effort against malaria, neglected
tropical diseases and other infectious diseases.

KEYWORDS

malaria, malaria diagnosis, convolutional neural networks, artificial intelligence,
robotized microscope, smartphone application, YOLOVS5, thick blood smears

1 Background

Malaria is a vector-borne disease caused by parasites of the genus
Plasmodium (1). It is transmitted to humans by the bite of an infected
female mosquito of the species Anopheles and has a high prevalence
in tropical regions worldwide (Talapko et al., 2019). According to
World Health Organization (WHO) estimates, 247 million cases of
malaria were reported globally in 2021, increasing from 245 million
in 2020 (World Health Organization, 2022). Malaria heavily affects the
African Region with about 95% of all cases and 96% of all deaths
(World Health Organization, 2022). There are five species of
Plasmodium parasites that can infect humans: P. falciparum, P. vivax,
P ovale, P. malariae, and P. knowlesi (‘Talapko et al., 2019).

Microscopic visualization of blood smears is still the gold-standard
method for malaria diagnosis (Calderaro et al., 2021). The examination
of thick and thin blood smear samples by traditional optical microscopy
allows the visualization of active parasitic forms in peripheral blood
(WHO, 2022). Differentiation of parasite species is performed by the
visualization of thin blood smears with Giemsa staining (WHO, 2016).
Thick blood smear is a 20-40-fold more sensitive technique compared
with thin smears and, therefore, can visualize lower parasite levels
(Wangai et al,, 2011). Microscopy is an inexpensive and efficient
technique that allows the identification of Plasmodium parasites at the
species level, the determination of different developmental stages of the
parasites, and the quantification of parasite density. It is widely used in
endemic and low-income areas from Sub-Saharan Africa and reference
laboratories worldwide. However, it is an expert-dependent technique,
can generate diagnostic mistakes due to the consecutive visualization
of a high number of samples, and can lead to diagnostic inaccuracies
due to fatigue and workload.

Rapid Diagnostic Tests (RDTs) are blood antigen detecting tests
with an immunochromatographic lateral flow device that allows the
diagnosis of malaria parasites (Cunningham et al,, 2019). The limit of
detection of malaria RDTs is about 100-200 parasites/pL of blood
(Berzosa et al., 2018; Acquah et al., 2021). However, the emergence of
gene deletions coding for the HRP2/3 proteins is causing an increase
in false-negative results due to the lack of the detection antigen with
consequences for the final diagnosis (Jejaw Zeleke et al, 2022).
Polymerase Chain Reaction (PCR) for malaria diagnosis (i) is a highly
sensitive technique (Leski et al., 2020); (ii) allows to distinguish
between Plasmodium species (van Bergen et al., 2021); (iii) requires
specific material, and (iv) is costly and relatively complex (Fitri et al,,
2022). Quantitative Buffy Coat (QBC), Flow cytometry, or biomarker
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identification are used to complement traditional methods (Calderaro
ctal, 2021). Nevertheless, malaria diagnosis is still an issue in some
regions, which could lead to misdiagnosis and generate several
complications due to the difficulty of implementing these techniques
in resource-poor settings (Boyce and O'Meara, 2017). The lack of
resources and health care personnel in malaria-endemic areas are a
limitation for accurate diagnosis (Wambani and Okoth, 2022).
Moreover, traditional diagnostic techniques are time-consuming and
require high-level trained professionals. Thus, the development of
accessible, low-cost, automated diagnostic techniques is a major
challenge for malaria parasite detection and would be a supportive
complement to traditional techniques.

Nowadays, Artificial Intelligence (Al) is a disruptive technology
with a high impact on health-related goals. Convolutional Neural
Networks (CNNs) are artificial neural network models commonly
used to analyze and classify images with deep learning tools; and they
have improved traditional image-processing techniques through their
faster and highly automated procedure. Novel diagnostic techniques
based on Al are being developed and optimized for the detection of
Plasmodium parasites in thick and thin blood smear digital images
(Sankaran et al., 2017; Fatima and Farid, 2020; Yang et al., 2020;
Abubakar et al, 2021; Islam et al, 2022). CNN-based malaria
detection algorithms able to detect P. falciparum parasites in Giemsa
stained thick blood smear slides were developed and demonstrate
robustness with a wide variety of field-prepared samples (Mchanian
ctal, 2017a,b). As another example, DeepMCNN system was able to
calculate parasitaemia estimations by counting parasites and
leukocytes as recommended by the WHO (Manescu et al,, 2020).
Algorithm analysis is a crucial step to correctly evaluate and
implement machine learning solutions for clinical usage with effective
metrics (Delahunt et al.,, 2022).

Mobile software applications are used to integrate the technology
and provide a fast and efficient diagnosis for Plasmodium detection
(Rosado et al., 2016; Vasiman et al., 2019). However, smartphones
have several limitations that should be addressed such as: image
resolution required for malaria diagnosis, optical attachment and
adaptation to the microscope, high number of fields-of-view (FoVs)
for diagnosis, and the need for focused images and Z-stacks
(Mehanian et al., 2017a,b; Delahunt et al., 2022).

Moreover, automation of the entire process, including
autofocusing and slide tracking movements, would be of significant
help to obtain an optimal diagnostic tool. Robotized microscopes that
move the slide and capture images are usually expensive and not
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designed for implementation in malaria-endemic countries.
Observational studies to evaluate the performance of automated
detection systems for malaria diagnosis were performed in in-field
settings with promising results, such as EasyScan Go and Autoscope
(Torres et al., 2018; Horning et al., 2021; Das et al., 2022). This type of
device could be a useful diagnostic tool, not only for malaria diagnosis,
but also for other infectious or Neglected Tropical Diseases (NTDs),
such as schistosomiasis, trypanosomiasis, and filariasis. However,
specific peculiarities in terms of optical train, number of FoVs for
diagnosis, parasite sizes and sample preparation should be considered.
In this study, we trained multiple computational state-of-the-art
deep learning models for malaria parasite detection in thick blood
smear digital images. A malaria-labeled image database was created
and employed to train the CNN models. We compared the
performance of different neural networks with the same dataset, and
applied attention modules. In addition, a low-cost robotized
microscope was designed to automate the image auto-focus and slide
movements. Arduino controllers, 3D-printed pieces, and servo motors
were used to create a single prototype for the universal automation of
optical microscopes. The system does not need internet connection
and was power supplied by portable solar batteries. Finally, the
diagnosis technology has been integrated into a smartphone
application called iMAGING, which controls the microscope’s slide
movements and detects malaria parasites in digital images via trained
CNN's on a computer. According to our knowledge, it is the first fully
automated low-cost system for malaria diagnosis with artificial
intelligence tools, and specially designed for low-income regions and
malaria endemic regions. We consider that the development of this
novel digital image diagnosis technology would contribute to
erradicate malaria and other neglected tropical diseases, and would
join the global effort to fight against infectious diseases of poverty.

2 Materials and methods

2.1 Convolutional neural network
algorithms

To generate the malaria digital image database and train CNN
algorithms, the following methodologies, summarized in Figure 1,
were employed. The same dataset was used to train the different CNN
models. This methodology follows quality standards and was the same
for all experiments. This type of work allows us to standardize the
methods thus obtaining reliable and comparable results between the
neural network models employed.

2.1.1 Image acquisition

Giemsa-stained thick blood smear samples were used to capture
microscopic digital images for further image labeling and
identification. Thick blood smear biological samples were provided by
the (i) Vall d’'Hebron University Hospital (Barcelona, Spain), (ii)
Drassanes-Vall dHebron International Health and Infectious Diseases
Centre (Barcelona, Spain), (iii) Malaria collection samples of
Drassanes-Vall d'Hebron, and (iv) Saint John of God Hospital (Lunsar,
Sierra Leona). Parasites of P falciparum, P. vivax, P. ovale, and
P, malariae species were visualized in the samples used to correctly
detect Plasmodium infection. Samples were validated by three expert
clinical parasitology microscopists from Drassanes-Vall d’Hebron
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International Health and Infectious Diseases Centre Laboratory. All
thick blood smear samples were positive for Plasmodium infection
with parasite levels ranging from 80 to +10,000 parasites/pL. A Leica
ICC50W integrated digital microscopy camera (5.0 MP) and the
digital camera of a Samsung Galaxy S20 (64 MP, 0.8 um, {/2.0, OIS)
smartphone device were employed for image acquisition. Image pixel
size (resolution) was 3,024 x 4,032 pixels for smartphone-captured
images, and 2,992 x 1944 pixels for the Leica ICC50W digital camera.
An adapter 3D bracket attached to the ocular lens of the microscope
was used to standardize the image-capturing procedure with the
smartphone device. Both, integrated camera and smartphone images
were captured by the visualization of blood smear samples through a
Leica DM750 microscope lens with 1,000x total magnification (10x
ocular; 100x immersion oil objective).

2.1.2 Image pre-processing

The images were cropped to highlight the area of interest and
eliminate the black borders typical of acquisition with a smartphone
device. Cropping was only performed in smartphone-acquired images
to remove the outer edges without losing information. Original
smartphone images were cropped automatically (Python script) to
obtain a 4:3 image in the center, and subsequently rotated 90° for
image reorientation. With this procedure, it is possible to crop an
image regardless of its dimensions and number of pixels, as
proportions were used to perform the cropping. The cropped images
have the same 4:3 image proportion as those acquired with the
microscope-integrated camera. Cropping confers a recomposition of
the image that may positively affect the final results, providing a
clearer image and removing elements irrelevant to the prediction and
identification functions of the neural networks (Cheng et al., 2022).
Pre-processed images were used for image annotation and
CNN training.

2.1.3 Image annotation

Both, integrated digital camera and smartphone camera acquired
images were labeled by experts of the Drassanes-Vall d’'Hebron
International Health and Infectious Diseases Centre. Parasite forms,
leukocytes, and artifacts were labeled in malaria thick blood smear
digital images. A personalized annotation software was developed
with the Python programming language for digital image labeling
(Python Software Foundation, 2019). For image annotation, the area
of interest was selected by creating a bounding box with the object
inside. Labels were considered single-object detections on digital
database images, therefore an image contains multiple annotations.
Parasite forms (malaria blood stage cycle) as early trophozoites and
mature trophozoites were labeled. Leukocytes were annotated in
digital malaria images for further parasite density calculations.
Artifacts and confusing forms due to illumination issues, sample
preparation, Giemsa staining reagents, or image capturing were also
labeled. The annotation procedure is represented in Figure 1. Once
labeling is finished, the Annotation App software creates a json file
with annotations linked to the original image file, in which the
coordinates of the labeled objects are specified.

2.1.4 Convolutional neural networks training

A comprehensive comparative study to evaluate the performance
of several state-of-the-art object-detection CNN models was designed.
The comparison of the convolutional neural networks has been
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Seguential procedure of CNN algorithm generation for malaria parasite detection in thick blood smear digital images. 1. Images were acquired through
the microscope lens with an ICC50W integrated digital camera or a smartphone camera. 2. Smartphone-acquired images were pre-processed to
eliminate black borders from the surroundings of the original raw image by image cropping and rotation. New images have a 4:3 proportion, emulating
integrated camera-acquired images. 3. Image labeling by image annotation software. Parasites, leukocytes, and artifacts were labeled for further CNN
training. JPG (image) and JSON (labels linked to image) files were generated. 4. Split image dataset into 80% training, 15% validation, and 5% testing
Train and compare YOLOvSx, Faster R-CNN, RetinaNet, and SSD performances.

designed based on previous similar studies (Dong et al, 2017;
Pattanaik et al., 2019). Pre-trained YOLOvS5 (Redmon et al., 2016),
Faster R-CNN (Ren et al., 2017), SSD (Liu et al., 2016), and RetinaNet
(Pardede et al., 2020) models with the COCO dataset (Dataset, n.d.)
were fine-tuned with our malaria thick blood smear positive
Plasmodium infection samples dataset. CNNs were trained for multi-
class classification with three categories: early trophozoites, mature
trophozoites, and leukocytes. Their performances were evaluated by
precision, recall, F-score, and mAP0.5 descriptive values with
validation and test sets. The malaria dataset was split into the same
proportions for each CNN model: 80% images for training, 15% for
validation and 5% for testing. Images/samples for each subset were the
same to standardize and compare performances under equal training
conditions, preserving patient-level structure.

2.1.5 Attention modules

Preliminary tests to check attention modules perfomance in our
malaria dataset with the same proportion split (80% train / 15%
validation / 5% test) were carried out. In particular, we have trained
the YOLOv5x with the Squeeze and Excitation (SE) attention module,
as well as the Convolutional Block Attention Module (CBAM) as
stated in Hu et al. (2018) and Woo et al. (2018) respectively. Their
performances were evaluated by precision, recall, F-score, and
mAPO.5 descriptive values with test set and compared with YOLOv5x
results as demonstrated in other studies (Gong et al., 2022).

2.1.6 Statistical analysis

Statistical analyses to determine significant differences between
validation and test subset performance for each CNN model was
performed. Metric means were calculated individually for each CNN
model and subset (validation/test) by t-test analysis (p<0.05). To
evaluate significant statistical differences between CNNs models and
attention modules a paired #-test analyses (p <0.05, t-value>2/-2),
mean (M) and standard deviation (SD) were employed. Statistical
analyses were performed with IBM SPSS Statistics environment.
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2.2 Microscope automation and
smartphone application

2.2.1 Design of a 3D-printed prototype for
microscopy automation

An Ender-3 Creality 3D printer was used to build Polylactic Acid
(PLA) and Polyethylene terephthalate glycol (PETG) pieces for
microscope focus automation. The entire prototype was designed with
Tinkercad Open Source specialized software and Ultimaker Cura
software (Ultimaker Cura: software de impresion 3D potente y facil de
usar | Ultimaker, n.d.). Autofocusing and two-dimensional X-Y track
slide movements were performed by low-cost servo and step-by-step
motors. Power requirements are: servo motor 9G / 5V and 500 mA
each; stepper motor Rohs 28BYJ-48 / 5V and 240mA; and Arduino
MKR Wifi 1,010 / 5V and 700 Ma. The whole system requirements are
5V and 2A.

2.2.2 Auto-focus algorithm

In our mechanism we have employed the variance of Laplacian
as a reference method for image auto-focusing. This method allows
the calculation of a value for each image, which indicates the level
of focusing of the acquired picture. Therefore, the analysis of
variance of Laplacian values would determine which is the best
focused image for each Field of View (FoV) (Salido et al., 2020). The
variance calculation is performed in each FoV determined by X-Y
movements of the robotized microscope. In a single FoV the
smartphone camera observes different focused images by the
continuous movement of the step-by-step motor on the fine
adjustment wheel. The smartphone device by Bluetooth (BLE)
connection with the controllers guides the step-by-step motor to
move the wheel in both directions of rotation (30 position units of
movement in each direction) in order to focus the biological
sample. During the auto-focusing process a Laplacian variance
value is computed to each of the images. The system visualizes the
centroid of the original image by creating a new cropped image for
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Laplacian analysis. This procedure allows the observation of only
the center of the image, without the black borders produced by the
ocular lens attachment. Once the image scanning in the two
directions of rotation has been completed, the mechanism is able to
return to the position of highest focus by analyzing the variance
values. An image was captured in the focused position by the
smartphone camera for further image analysis.

2.2.3 Integration of trained CNN models into
computer software

A Lenovo ThinkPad intel Core i5 computer was employed to run
CNN algorithms. A smartphone app was developed with the official
open-access integrated development environment, Android Studio
(Android Developers, 2021). The iMAGING smartphone app confers
the possibility of integrating CNN and automated microscope
technology into a single software. To increase computational power
and speed up neural network detection, images captured from the
smartphone device are sent via a BLE connection to the computer for
further analysis by CNN models. This type of transmission does not
depend on an internet connection.

3 Results

A novel automated diagnostic method for malaria parasite
detection in thick blood smear digital images was developed and
integrated into a smartphone app. The flowchart of the operational
procedure is represented in Figure 2.

3.1 Convolutional neural network

3.1.1 Malaria thick blood smear image database
analysis

Once all images were captured and labeled, a digital image
database of malaria thick blood smears was generated; a total of 148
thick blood smear samples were used for image database generation.
Between 10 and 20 images of different microscopy fields were
captured for each sample employed. A total of 2,571 labeled images
were imported into the database for further CNN training and
diagnosis algorithm generation. Annotation numbers for each label
class were: 24437 leukocytes, 37,820 early trophozoites and 1,641
mature trophozoites were labeled taking into account all database
images. A total of 2,238 images were captured with the integrated
microscope camera LEICA ICC50W and 333 images were acquired
with the Samsung Galaxy $20 smartphone camera. Malaria thick
blood smear image database summary information is represented
in Table 1. The total number of images and labels employed for
CNN training was decided considering other similar studies
(Mehanian et al., 2017a,b; Torres et al., 2018; Yang et al., 2020), and
were conditioned by the number of Plasmodium infection samples
available in the laboratory and CNN algorithms proven
performance results.

3.1.2 Convolutional neural network comparison
Object-detection  state-of-the-art CNNs were trained and

compared to evaluate their performance. Table 2 shows the most

relevant metrics to evaluate the performance of YOLOv5x, Faster
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R-CNN, SDD, and RetinaNet with validation and test data image
subsets. Results of the t-test analysis indicated that there was a
non-significant statistical difference between neural network
performance with validation and test data subsets, as expected
(Table 2).

Precision test values ranged between 0.8913-0.9562, setting
considerably optimized results with all trained CNN models.
Precision parameter analysis indicates that all CNNs have an
optimized identification algorithm, with low rates of failures when
parasite and leukocyte detections were performed. Analysis of recall
(sensitivity) test values generated a wide range of values: 0.4789-
0.9331. These remarkable differences between CNNs indicate that
YOLOv5x and Faster R-CNN, with recall values of 0.9350 and
0.9638, respectively, were the optimal CNNs for these type of
detections. Low recall values, as for SSD, indicate that the algorithm
could not detect all objects of interest and, therefore, high levels of
false-negative results were obtained.

The F-score is the harmonic mean of precision and recall
(Equation 1); therefore, F-score analysis of the different trained
CNNs was relevant to determine the model with the best
performance. The highest F-score value was 0.9279, corresponding
to the YOLOv5x neural network. The Faster R-CNN F-score value
was just lower than that of YOLOv5x, with a final result of 0.9261.
Both neural networks were optimal in terms of accuracy and,
therefore, with high precision and
Supplementary Figure 1, the precision-recall graph of the YOLOv5x
algorithm demonstrates the aforementioned results.

recall values. In

recision - recall
F score = 2 - LTECISI0n " recarr

¢V

precision + recall

Equation (1): F-score value calculation.

Finally, mAP values were between 0.9133-0.9489, indicating a
high accuracy value for the trained object-detection models.

Once all descriptive parameters were analyzed, we concluded that
YOLOv5x and Faster R-CNN were the best CNNs based on object
detection for our image database. Results of the paired t-test indicated
that there was a non-significant difference between YOLOv5x
(M=0.9; SD=0.02) and Faster R-CNN (M =0.9; SD=0.03), (7)=0.8,
p=0.429. The low recall values for the SSD model indicate a
non-reliable algorithm for parasite detection. The RetinaNet model
had acceptable results, although not as positive as YOLOv5x and
Faster R-CNN. As a result, we present several digital labeled images of
a test data subset in Figure 3, and predictions performed by the
YOLOV5x trained model.

Finally, in order to evaluate the multi-class model for each
category, results of YOLOv5x were shown in Table 3. Descriptive
parameters of each class are important to evaluate the model for each
category. Leukocytes have higher predictive values than early and
mature trophozoites for all descriptive metrics.

3.1.3 Attention modules comparison

Attention modules results of SE and CBAM training with
YOLOv5x algorithm are shown in Supplementary Table 1. Precision
values of CBAM (0.9350) are slightly better when compared with
original YOLOv5x (0.9210) and SE (0.9040). In the particular case
of recall values, SE showed the best performance (0.9380) just
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1. Automated image acquisition by
the robotized conventional
microscope and a smartphone
device. IMAGING App software was
employed.

2, Smartphone-acquired digital
images were cropped in a pre-
processing training step. The crop
optimized further image
identification by CNN trained
models. (Images could be sent by

3. Automated parasite
detection with CNN models for
image analysis. YOLOvSx was
used to detect parasites and
leukocytes in thick blood
smear digital images.

FIGURE 2
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(BLE connection)

BLE connection to a computer
device for image analysis).
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4, Final Diagnosis report for validation
by laboratory professionals. The
report contains positive/negative

result for Plasmodium infection,
clinical information and parasitaemia
levels.

Flowchart of the malaria diagnostics procedure by iMAGING technology. The robotized microscope and smartphone were used as an emulation of
traditional microscopic examination. 1. The smartphone captures images via its camera using the iMAGING app. Images of the system prototype were
represented. 2. Images are cropped to eliminate areas of no interest for imaging diagnosis. Images are sent by a Bluetooth (BLE) connection to a
computer for further analysis. 3. Images are analyzed by computational technology and Convolutional Neural Network models for parasite detection
4. Finally a malaria diagnosis report containing clinical information is generated

higher than that of YOLOv5x (0.9350). Therefore, F-score and
mAPO0.5 values of attention modules were similar to the original
YOLOv5x trained model. Results of the paired t-test analysis
indicated that there is a non-significant difference between
YOLOv5x (M=09, SD=0.01) and CBAM (M=0.9, SD=0.01),
t(3)=0.3, p=0.779; and that there is a non-significant difference
between YOLO (M=0.9, SD=0.01) and SE (M=0.9, SD=0.02),
t(3)=1.1, p=0.348. These results lead us to conclude that the
application of attention modules in our database could help to
obtain comparable results, although they did not improve on the
performance of the original YOLOv5x CNN.

3.1.4 YOLOvV5x negative sample validation

Analysis and validation tests were performed to evaluate the
reliability of YOLOv5x model with confirmed negative samples.
Thick blood smear samples from asymptomatic individuals (healthy
control) from malaria endemic areas were (n=>5) provided by the
Drassanes-Vall d’Hebron International Health and Infectious
Diseases Centre with a negative RT-PCR result for Plasmodium
infection (RealStar® Malaria Screen & Type PCR kit 1.0, Altona,
22,767 Hamburg, Germany). A total of 166 images were acquired
from thick blood smear samples and analyzed by the trained
YOLOv5x model (confidence threshold 0.5). The employed images
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were not used for CNN algorithms training. A minimum number of
200 leukocytes were detected in each sample to emulate microscopy
examination. After analysis, 161/166 digital images (96.98%) were
negative for Plasmodium infection, and five false-positive results
were reported (five artifacts detected as early trophozoites). A total
of 1,008 leukocytes were detected in all digital images. Validation
tests were crucial to evaluate the reliability of the system and
illustrate the importance of clinical validation by professionals to
report a final diagnosis. Inspection by laboratory professionals is
desirable to conclude that the sample was negative and discard false-
positive results.

3.1.5 YOLOv5x Low-parasite density validation
Analysis and validation tests were performed to evaluate the
reliability of YOLOv5x model with confirmed low parasite density
Plasmodium infected samples. Thick blood smear samples (1 =>5)
provided by the Drassanes-Vall d’'Hebron International Health and
Infectious Diseases Centre with a positive microscopy examination
result (<800 parasites/pL) for Plasmodium infection were analyzed
(confidence threshold 0.5). A total number of 50 Plasmodium
positive images (10 images/sample) were acquired. Low-parasite
images with a single Plasmodium parasite were analyzed to detect
false-negative results. 47/50 images (94%) were correctly analyzed,
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TABLE 1 Summary of Malaria thick blood smear sample/image database.

Category

Sample source

Centre (Barcelona, Spain)

Malaria collection samples of Drassanes-Vall d'Hebron (Barcelona, Spain)

Drassanes-Vall d'Hebron International Health and Infectious Diseases

10.3389/fmicb.2023.1240936

Sub-Total Total

55 (samples/patients) 148 (samples/patients)

82 (samples/patients)

Saint John of God Hospital (Lunsar, Sierra Leona)
Plasmodium species P, falciparum
P. vivax/P. ovale
P. malariae
Mixed infection
Parasite density Low (<1,000 p/uL)
Medium (10,000-1,000 p/pL)
High (+10,000 p/pL)
Image acquisition type Integrated camera (ICC50W Leica)
Smartphone (Samsung Galaxy s20)
Annotations category Early trophozoites
Mature trophozoites

Leukocytes

13 (samples/patients)

47 (samples) 80 (samples)
24 (samples)

7 (samples)

2 (samples)

57 (samples) 148 (samples)

57 (samples)
- 34 (samples)

2,238 (annotated images) 2,571 (annotated images)
333 (annotated images)
37,820 (labels) 63,898 (labels)

1641 (labels)

24,437 (labels)

p, parasites; uL, microliter. Organizational database scale: Patient > Sample > Annotated Image > Annotation.

TABLE 2 Comparative table of object-detection CNN models’ performance.

Validation dataset

Precision Recall F-score mAP 0.5
YOLOvS5x 0.8975 0.9197 0.9085 0.9490
Faster 0.8753 0.9331 09033 0.9194
R-CNN
SSD 0.9501 0.4789 0.6368 0.8491
RetinaNet 0.9369 0.8155 0.8720 0.9180

Test dataset
Precision Recall  F-score mAPO.5  p-value
0.9210 0.9350 09279 0.9440 0.157
0.8913 0.9638 0.9261 09412 0.144
0.9562 0.5599 0.7063 09133 0.354
0.9407 0.8719 0.9050 0.9489 0.187

Descriptive parameter values of Precision, Recall, F-score, and Mean Average Precision (mAP0.5) are represented for Validation and Test datasets. YOLOv5x: You Only Laok Once version 5
madel x, Faster R-CNN: Faster R-Convolutional Neural Network, SSD: Single Shot Detector. Statistical analysis (t-test) to compare the performance of CNN models with validation and test
data subsets (p<0.05). Bold values represent the higher values of each parameter, in validation and test datasets.

with a total of three false-negative results (undetected mature
trophozoites in a single sample). Final validation by laboratory
professionals is desirable to conclude that the sample was positive
and discard false-negative results.

3.1.6 Automated parasite density calculations

The parasite level calculation procedure was based on the
(CDC)
recommendations for parasite density calculation in thick blood
smear samples (CDC - DPDx — Diagnostic Procedures — Blood
Specimens, n.d.). The system can acquire images and detect the

Centers for Disease Control and Prevention

Parasite density =

(NDP : number of detected parasites) * (8,000 Ieukocytes)

(NDL : number of detected leukocytes = 200)
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number of parasites and leukocytes in each microscopic field. Once
the system has quantified 200 leukocytes, a parasite density result
is obtained. The number of Plasmodium parasites and leukocytes
was simultaneously counted to obtain a quantitative result. The
CDC estimates that 1 pL of blood contains 8,000 leukocytes (CDC
- DPDx - Diagnostic Procedures - Blood Specimens, n.d.),
therefore, an automatic calculation of parasite number per
microliter could be performed. In cases where less than 200
leukocytes were counted, an approximate value would be obtained
with the same calculation. Equation (2) represents the algorithm for
automatic parasite density calculation by image analysis.

= parasites | uL (2)
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FIGURE 3

(A) Labeled test images by Vall d'Hebron-Drassanes professionals. (B) YOLOv5x trained model predictions of a test image subset with confidence

values.

TABLE 3 YOLOv5x model parameters for each label classification
category.

Category Precision Recall F-score mAPO0.5
Leukocytes 0.989 0.993 0.990 0.994
Farly 0.908 0.866 0.886 0938
Plasmodium

trophozoites

Mature 0.838 0912 0.873 0.905
Plasmodium

trophozoites

Equation 2: Parasite density calculation in thick blood smear
samples by image analysis. The number of Plasmodium parasites
and leukocytes detected in several digital images would
determine the number of parasites per microliter of blood. A total
number of 8,000 leukocytes were assumed in 1uL of

peripheral blood.

3.2 Microscopy automation and
smartphone application

3.2.1 Universal microscopy automation prototype

A low-cost prototype was designed to automatically capture and
detect malaria parasites in thick blood smear images on a
conventional optical microscope. The main aim of microscope
automation was to move the X-Y axis of the microscope stage and the
auto-focus of the sample.

For the X-Y axis, an adapter was constructed to fit onto the
microscope stage and hold the sample easily. Two servo-motors, one for
each axis, capable of horizontal and vertical movements by means of
toothed rotors, were attached to the same part. These pieces allow the
movements across the sample, thus emulating the tracking of
conventional microscopy. The X-Y control of the slide movement allows
microscopic images to be captured for malaria diagnosis without
overlapping each other. Each digital image corresponds to a microscopic
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field. The servo motors are controlled by Arduino controllers and
connected via Bluetooth (version 5.0) to the smartphone device.

A step-by-step motor with an adapter arm was used for sample
auto-focus. This was also monitored by Arduino controllers and
connected via BLE to the smartphone device. For sample autofocusing
the Variance of Laplacian has been employed (Salido et al., 2020).
Additionally, an external cage was designed to store Arduino
controllers, cables, and electronic parts. All 3D parts were designed as
generic adapters by using measurements from various conventional
optical microscopes commonly employed in laboratories (see Figure 2).

The motors used were finally controlled by a smartphone device,
which captures microscopic images of different microscopy fields to
detect biological forms in digital images. Image-capturing optimization
was crucial for correct image acquisition. A smartphone adapter was
designed to correctly attach the mobile phone lens to the ocular lens.

The whole 3D prototype was able to move the sample on the
microscope stage, auto-focus the preparation, and capture digital
images by means of a smartphone device. This mechanism allows
automation of malaria diagnosis by the observation of thick blood
smears and detection of parasite forms, thus emulating conventional
microscopy. The smartphone device, step-by-step and servo motors,
and controllers are powered by portable solar batteries.

3.2.2 Autofocus evaluation

An auto-focus experiment was performed to calculate the time of
focus and prediction time of YOLOv5x CNN. A total number of 50 FoV
of thick blood smear samples were auto-focused and analyzed by
iMAGING prototype system. Results show an average time of focus of
8,144 +56 ms/FoV; and an average analysis time by YOLOv5x CNN and
a Lenovo ThinkPad intel Core i5 of 2,126 +179 ms/image. Analyzed
images show 6.2+2.3 leukocytes/image and 7.1+2.7 trophozoites/
image (ring stange and mature), with a total of 13.3 3.9 objects/image.

3.2.3 Imaging app software for malaria diagnosis
The imaging app software for smartphone devices was developed
using the Android Studio development environment (Android
Developers, 2021). The application allows the integration of all the
technology developed for autonomous diagnosis. The smartphone, via the
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application, could control and guide the movements of the microscope
slide via a BLE v5.0 connection and capture digital images in each
microscopic field. Therefore, the mobile device acts as the key element of
the process and is responsible for capturing the images that will
subsequently be analyzed by the trained CNN models on the computer.
Mobile phone devices are relatively low-cost and available worldwide; for
this reason, they are ideal for imaging diagnostics and might be a suitable
option for implementation in areas with resource-poor settings.

4 Discussion

CNNs have been employed for the detection of Plasmodium
parasites in thick and thin blood smear microscopic images. However,
whole procedure automation, huge labeled image datasets, system
implementation in clinical laboratories and effectiveness are some of
the major issues of these technologies.

To address some of the main limitations, we have developed a fully
automated diagnostic system for the detection of Plasmodium
trophozoites and leukocytes in thick blood smear digital images by using
Al tools and a low-cost robotized microscope. Training results showed
optimal performance for early trophozoite, mature trophozoite, and
leukocyte detection in a test dataset with the YOLOvS5x and Faster
R-CNN algorithms. Moreover, the adaptor 3D pieces confer the
microscope the possibility to auto-focus the sample, scan the entire slide,
and capture digital images with a smartphone camera for further image
analysis and diagnosis. However, the system still has some limitations: (i)
the need of trained personnel to prepare the Giemsa stain; (ii) it is able
to detect Plasmodium spp. infection for malaria diagnosis, although it is
not able to differentiate between Plasmodium species; and (iii) the
difficulties that might appear in the field for its routinely implementation.

In our study, thick blood smears were used as reference samples for
Plasmodium parasite detection. Thick blood smears should be the first
step in microscopic visualization for malaria parasite detection, resulting
in a positive/negative result for the sample analyzed (Maturana et al,,
2022). Its observation is crucial to perform a malaria diagnosis and is
widely employed in resource-poor settings due to its accessibility,
conferring a valuable feature to the system. The detection of Plasmodium
parasites and leukocytes by CNN algorithms provides a fast and efficient
diagnosis. Moreover, species identification should be complemented
with thin blood smear visualization for a complete diagnosis. Several
studies demonstrate the possibility of detecting malaria parasites in thick
(Kaewkamnerd et al., 2012; Rosado et al., 2016; Yang et al., 2020) and
thin blood smear samples (Mushabe et al., 2013; Fatima and Farid, 2020),
although few distinguish between species. The major limitation for
Plasmodium species differentiation is the morphological similarities
between them such as P, ovale and P, vivax (CDC, 2013), and the large
image database required for the proper development of algorithms
capable of differentiating between species (Krishnadas et al,, 2022).
Differentiation between P, falciparum and P, vivax could be the first step
toward the generation of new models capable of detecting malaria
parasites at the species level (Penas et al, 2017).

Moreover, the creation of a large database of thick blood smear
labeled images (a total number of 63,898 labels) by professionals from an
international health reference center confers an additional value to the
diagnosis system. The employment of clinical biological samples is of vital
importance for the acquisition and labeling of digital images as they more
accurately emulate the practice of a microbiological diagnostic laboratory.
In this study, there was an imbalance in label proportions between
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parasite stage forms due to biological reasons and the type of samples
used. When thick blood smears were observed for Plasmodium parasite
detection, the most common forms were early trophozoites or immature
trophozoites (Phillips et al., 2017). In addition, most samples employed
for database generation contain P, falciparum parasites, in which the
majority of parasitic forms in peripheral blood are early trophozoites.
Therefore, YOLOV5x, Faster R-CNN, SDD, and RetinaNet CNN models
were trained with leukocyte, early trophozoite, and mature trophozoite
image data labels. Generated models can detect the most common
parasitic forms in thick blood smear samples and count leukocyte
numbers to calculate parasite levels. Thus, trained CNNs could determine
whether a sample is positive or negative for Plasmodium infection. F-score
values are an optimal descriptive metric to evaluate or determine the best
CNN model in cases of unbalanced data (Lopez-Nava et al., 2020). In
cases of low-parasite levels a laboratory expert would be required to
determine if the sample is positive/negative for Plasmodium infection. As
demonstrated, with samples under 800 parasites/pL the system could
trigger false-negative results (6%). Considering WHO guidelines in
microscopy diagnosis, a parastitaemia of 80-200 parasites/pL are defined
as difficult detection samples for certified WHO microscopists. Therefore,
our system performance would be acceptable, although it should
be evaluated following WHO microscopy diagnosis guidelines in clinical
validation studies. RDTs might have a higher sensitivity and could also
complement the final diagnosis (Slater et al., 2022).

Parasite density estimations by thick blood smear samples are
performed following CDC recommendations to obtain autonomous
calculations (CDC - DPDx - Diagnostic Procedures — Blood
Specimens, n.d.). Parasite levels are crucial in Plasmodium infection
and could determine the severity of malaria disease; therefore,
leukocyte labeling is important and could provide valuable descriptive
diagnostic information.

Descriptive metrics (precision, recall, F-score) can be compared
with other predictive models based on CNNs for malaria parasite
detection. When thick blood smear algorithms were compared with our
predictive models, in most cases, F-score values (0.92-0.93) were very
similar to the state-of-the-art reported in the literature (Yang et al., 2020;
Kassim et al., 2021). In addition, a remarkable characteristic of our
database is the heterogeneity of samples/images from different
laboratories, preparation procedures, staining, smartphone/integrated
camera acquisition, and Plasmodium species. Most studies used
samples/images from a single laboratory or a single Plasmodium specie,
commonly P, falciparum. In contrast, the addition of different images in
terms of visual differences would affect the final descriptive parameters
of the algorithm, although it would confer robustness to detect diverse
preparations (Maron et al, 2021). Thin blood smear algorithms for
parasite detection usually have higher values of precision, recall and,
consequently, F-score, when compared with thick blood smears (Loddo
etal, 2022; Magotra and Rohil, 2022). In addition, the customization of
CNNs to improve detection results is generating optimal algorithms,
such as the REONet method (modified ResNet-18) to classify malaria
parasites on thin blood smears with 96.68% specificity, 94.79%
sensitivity, and a 95.69% F-score (Zhu et al., 2022). This fact would
explain the higher values of descriptive parameters in that type of study.
Another important aspect was the comparative study of different object-
detection CNNs. As demonstrated, the neural network model is crucial
to obtain a reliable diagnosis, and the different structures and processing
of each one would determine the final results. The same dataset was
evaluated with different object detection CNNs, demonstrating optimal
results with the YOLOv5x and Faster R-CNN models. The most efficient
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neural network is YOLOVS5, however, the recall values of the Faster
R-CNN model are slightly higher, and may perform better for the
detection of samples with low parasite concentrations. In our study,
YOLOWV5X has the highest F-score value (92.79%) in comparison with
other evaluated CNNs and attention modules, and is the most balanced
neural network in terms of descriptive metrics. In addition, it is the
model that best fits with our technology, as the processing and analysis
of the images are fast (Li et al,, 2022), and allows it to be integrated into
the software of smartphone devices (Liu et al., 2022). By analyzing the
metrics, speed and applicability of the YOLOv5x neural network,
we could determine that it is the most suitable option for our system.
However, the Faster R-CNN model could be a similar alternative with
comparable results, at the expense of the RetinaNet and the SSD models.
In the medical field, the minimization of false positive and negative
results is an added value for the diagnosis. The neural network with the
best sensitivity and recall, and consequently F-score, is the one that will
generate the lowest errors. This factor reaffirms the choice of the
YOLOv5x model for our system. Recent studies demonstrated that
modification by increasing the feature scale and adding detection layers
to the YOLOv3 and YOLOv4 algorithms could be an optimal solution
to improve their performance in thick blood smear images
(Abdurahman et al., 2021). Modified YOLOv4 obtains a mAP value of
96.32% for the detection of early trophozoites in thick blood smear
digital images. When compared with our database results, their
performance is slightly better, although mature trophozoites were not
included for training and detection. Finally, single category results
demonstrate that the detection of leukocytes is superior (F-score 0.990)
when compared with early and mature trophozoites (F-scores of 0.886
and 0.873 respectively). YOLOv5x is demonstrated to be better with the
detection of larger objects in digital images, as our results confirmed and
in concordance with other studies (Liu et al., 2022). SE and CBAM
attention modules were applied to YOLOv5x model, although they did
not improve its final performance as demonstrated in statistical analysis.
However, precision values of CBAM and recall values of SE were slightly
better when compared to YOLOv5x, leading to a lowest ratio of false-
positive and false-negative results, respectively. As an alternative to
CNNs, there are transformer-based methods such as Detection
Transformer (DETR) which are a transformer encoder-decoder
architecture and a set-based global loss that forces unique predictions
via bipartite matching for object detection (Carion et al., 2020).

It is important to note that the descriptive metrics of the neural
networks evaluate the models generated and determine the final
development validation of the whole prototype, however, they do not
provide information on the sensitivity and specificity of the entire
diagnostic system. Image auto-focusing issues, illumination changes,
staining artifacts, or microscope model could affect the quality of the
acquired images, therefore CNN prediction values would be negatively
affected. In order to reliably evaluate the complete diagnostic tool,
clinical validation tests should be pursued in reference laboratories
and resource-poor settings. However, an earlier development phase,
such as the one presented in this study, is crucial to provide the basis
for future validation and implementation studies.

In addition, one of the key added values of the project is the universal
microscope automation by means of the movement of the slide and the
auto-focusing of the sample. The low-cost mechanism allows us to
automate the process from beginning to end. A recent study
demonstrated that the automation of a microscopic system for malaria
detection could provide valuable results (Yoon et al., 2021). Yoon et al.
(2021), developed a system with 100% sensitivity and specificity for the

Frontiers in Microbiology

10.3389/fmicb.2023.1240936

detection of P. falciparum cultures and P. vivax samples (Yoon et al.,
2021). Lower-resolution images or microscope models could explain our
different results, however, our novel diagnostic system is affordable, easy
to use, universally adaptable, cheap, and specifically designed for any
type of laboratory and infrastructure. Portable solar batteries provide an
alternative to relying on electrical power to operate our system. Other
design proposals for robotization and implementation based on a
3D-portable mobile microscope are of significant value to this area of
study, and help improve and advance the development of portable and
automated diagnostic systems (Garcia-Villena et al,, 2021).

Moreover, several studies demonstrated the utility of smartphone
devices for the automatic diagnosis of malaria parasites via imaging
techniques (Cesario et al., 2012; Poostchi et al., 2018; Yang et al., 2020;
Yu et al,, 2020; Zhao et al,, 2020). Its powerful analog, digital, and
telecommunication functions, combined with cloud data processing,
confer smartphones with a wide range of diagnostic possibilities
(Merazzo et al., 2021). Yu et al., 2023 evaluated the performance of a
smartphone-based malaria diagnostic application in thick blood
smear images with promising results, and could be considered as a
milestone for further studies (Yu et al., 2023). However, parasite levels
were not evaluated as distinct from our system.

The validation and implementation of the iMAGING prototype in
resource-poor setting environments would be the next step. The
continuous loss of microscopist experts is a major problem for clinical
laboratories, although microscopy should remain a reference method
of high relevance in microbiological diagnosis (Bradbury et al., 2022).
Therefore, the system was designed to be a supportive tool for
microscopists, in order to facilitate their routinely laboratory practice
for malaria diagnosis and could be a suitable option for their training,
by the continuous visualization of Plasmodium parasites in digital
microscopy images. It is crucial to understand traditional microscopy
to validate and implement novel diagnostic techniques based on AL The
direct visualization of parasites by microscopic observation of blood
smears is an unequivocal sign of a positive diagnosis, one of the major
strengths of this procedure compared with molecular or RDT
techniques (Bradbury et al,, 2022).

5 Conclusion

Automated malaria diagnosis is a major challenge to improve and
support traditional microscopic techniques. Artificial intelligence
diagnostic techniques would not only be useful for implementation in
malaria-endemic countries but also for professional training, sample
digitization, and diagnostic support for any laboratory, regardless of
their resources. It is only a matter of time before novel diagnostic
techniques based on AT and image digitalization erupt into medical
environments to provide support for traditional microscopy.
Microscopic visualization of thick blood smears can be tough and
complex, therefore, assisted diagnostic methods based on Al such as
the one described herein, could be a suitable supportive tool of great
potential. The automation of the entire process by the robotization of
conventional optical microscopes provides added value to the
diagnostic system. The possibility of completely emulating traditional
microscopy with its X-Y slide movements and sample autofocus issues
is a major challenge. The system has great potential, however, it needs
to be refined and validated in different laboratories to evaluate its
performance in clinical practice. Furthermore, comparison with other
diagnostic techniques already established and regulated for malaria
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diagnosis, such as conventional optical microscopy, RDTs, and PCR,
would allow Al-based diagnostic techniques to be more accurately
positioned within the currently available set of malaria diagnostic
techniques. The diagnostic system described in this study, has
significant value due to the automation of the process, the design of the
prototype, the automated calculation of parasite density, and the
support which it provides to conventional microscopy. However, the
detection system would be optimized in terms of object detection, and
the algorithms for differentiating the Plasmodium species should
be implemented to provide a complete diagnosis in further studies.

In conclusion, we are ever closer to developing an Al-based
diagnostic method for malaria parasite detection. Recent advances
and improvements in convolutional neural network models confer a
promising future for this type of methodology. The development of an
effective automated diagnostic system with Al technology for malaria
diagnosis is still a great challenge. Therefore, the coalescence of the
fully-automated system via auto-focus and slide movements and the
autonomous detection of Plasmodium parasites in digital images with
a smartphone software and Al algorithms confers the prototype the
optimal features to join the global effort against malaria, neglected
tropical diseases and other infectious diseases of poverty.
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Resum del treball:

En un context clinic, la microscopia Optica convencional s'utilitza habitualment per a la
visualitzacid de mostres biologiques per al diagnostic. No obstant aixo, la disponibilitat de
tecniques moleculars i proves de diagnostic rapid estan reduint I'Us de la microscopia
convencional als laboratoris, i en conseqiéncia el nombre de professionals experimentats
comenca a disminuir. A més, la visualitzacid continua durant llargs periodes de temps a través
d'un microscopi Optic podria afectar els resultats del diagnostic final a causa d'errors humans
induits per la fatiga. Per tant, I'automatitzacid de la microscopia és un repte a assolir, per abordar
aquest problema. L'objectiu de I'estudi és desenvolupar un sistema automatitzat de baix cost
per a la visualitzacid de mostres microbiologiques/parasitologiques mitjancant un microscopi
optic convencional, i especialment dissenyat per a la seva implementacié en laboratoris amb
pocs recursos. Es va dissenyar un prototip 3D per automatitzar la majoria de microscopis Optics
convencionals. Les peces van ser construides amb tecnologia d'impressié 3D i material
biodegradable d'acid polilactic (PLA), i amb els programaris de treball Tinkercad/Ultimaker Cura
5.1. Els components del sistema es van dividir en tres subgrups: peces de microscopia, peces
d'emmagatzematge/autoenfocament, i peces per al telefon intel-ligent. El prototip es basa en
I’Gs de servo motors controlats per la plataforma electronica de codi obert Arduino, per emular
els moviments X-Y i autoenfocament (Z) del microscopi. Es requereix un temps mitja de
27.004£2.58 segons per a enfocar automaticament un sol FoV. L'avaluacié de I'enfocament
automatic va demostrar un valor mitja maxim de Varianga Laplaciana d'11.83 amb les imatges
testejades. Tot el procés d'automatitzacié esta controlat per un telefon intel-ligent, que
s'encarrega d'adquirir imatges per a realitzar el diagnostic a través de xarxes neuronals
convolucionals. El prototip esta especialment dissenyat per a entorns amb pocs recursos, on el
diagnostic per microscopia encara és un procés rutinari. La coalescéncia entre els models
predictius de xarxes neuronals convolucionals i I'automatitzacié dels moviments d'un microscopi
optic convencional confereixen al sistema una amplia gamma d'aplicacions de diagnostic
basades en imatges. L'accessibilitat del sistema podria ajudar a millorar el diagnostic i

proporcionar noves eines als laboratoris de tot el mon.
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Abstract

In a clinical context, conventional optical microscopy is commonly used for the visualization
of biological samples for diagnosis. However, the availability of molecular techniques and
rapid diagnostic tests are reducing the use of conventional microscopy, and consequently
the number of experienced professionals starts to decrease. Moreover, the continuous visu-
alization during long periods of time through an optical microscope could affect the final
diagnosis results due to induced human errors and fatigue. Therefore, microscopy automa-
tion is a challenge to be achieved and address this problem. The aim of the study is to
develop a low-cost automated system for the visualization of microbiological/parasitological
samples by using a conventional optical microscope, and specially designed for its imple-
mentation in resource-poor settings laboratories. A 3D-prototype to automate the majority of
conventional optical microscopes was designed. Pieces were built with 3D-printing technol-
ogy and polylactic acid biodegradable material with Tinkercad/Ultimaker Cura 5.1 slicing
softwares. The system’s components were divided into three subgroups: microscope stage
pieces, storage/autofocus-pieces, and smartphone pieces. The prototype is based on servo
motors, controlled by Arduino open-source electronic platform, to emulate the X-Y and auto-
focus (Z) movements of the microscope. An average time of 27.00 + 2.58 seconds is
required to auto-focus a single FoV. Auto-focus evaluation demonstrates a mean average
maximum Laplacian value of 11.83 with tested images. The whole automation process is
controlled by a smartphone device, which is responsible for acquiring images for further
diagnosis via convolutional neural networks. The prototype is specially designed for
resource-poor settings, where microscopy diagnosis is still a routine process. The
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coalescence between convolutional neural network predictive models and the automation of
the movements of a conventional optical microscope confer the system a wide range of
image-based diagnosis applications. The accessibility of the system could help improve
diagnostics and provide new tools to laboratories worldwide.

Introduction

Microscopy is a fundamental pillar in laboratories all over the world. The observation of the
forms by magnifying the image through microscope lenses facilitated laboratory practice. One
of the main functionalities of microscopy is diagnostics. Conventional microscopy is still used
globally in clinical laboratories as a standardized diagnostic technique. Moreover, it is still the
gold standard technique for the diagnosis of many diseases, such as malaria and some
Neglected Tropical Diseases (NTD) [1]. In addition, microscopy remains a crucial tool in
resource-poor settings, where the availability of novel and more expensive techniques is lim-
ited. The accessibility and easy-handling of microscopy allows its usage in laboratories world-
wide. The direct observation of biological samples is expert dependent; needs high levels of
expertise and knowledge for each type of observed sample; and could trigger on diagnostic
errors due to fatigue or long periods of visualization time [2]. This casuistry is producing a
decrease in the use of traditional microscopy as a reference diagnostic method, although it is
still the mainstay of laboratories worldwide. In addition, because of the increasing failure of
malaria rapid diagnostic tests (RDTs) due to pflirp2/3 gene deletions [3] and the low sensitivity
in cases of low parasite density [4], microcopy remains the gold standard and reference tech-
nique for malaria diagnosis. Furthermore, its relevance in the diagnosis of parasitic infectious
diseases is still important, and should be considered as a reference method regardless of the
novel molecular techniques and the loss of microscopy professionals.

Last years, novel technologies based on the automation of the microscope movements and
image acquisition and processing are being developed to solve human fatigue and errors due
to the continuous observation through the lenses. On the one hand, the complete robotization
of a conventional optical microscope should improve the traditional microscopy in terms of
autonomous diagnostics. For this purpose, servo motors can be a proper alternative to emulate
microscope stage movements through the X-Y and Z (focus) axis, with 3D-printed pieces pro-
viding the mechanical support for the device to carry out this type of movement. On the other
hand, several studies based on automatized image-based diagnosis with artificial intelligence
(AI) models have been published during the last years, making use of Convolutional Neural
Networks (CNNs) to automatically detect bacteria, cells, parasites or microalgae in digital
images, thus, becoming a new alternative for traditional microscopy [5-7]. Interestingly, the
combination of an autonomous microscope for image acquisition and an autonomous diagno-
sis by CNN image analysis might be the best solution for supporting microscopy-based diag-
noses. The coalescence of both technologies generates a completely automated diagnostic
procedure, from the movements of the microscope to the final diagnosis by image analysis.
Moreover, low-cost systems are crucial for the easy and accessible implementation of auto-
mated microscopes in any laboratory worldwide, especially in endemic NTD regions and
resource-poor settings [8].

As for the automation of a microscope for image acquisition, stage movements and auto-
focus issue are the main strains. Ze-Jun 2012, developed an automatic movement stage with a
parallelogram linkage mechanism in an optical microscope [9]. Sanz et al. 2021 reviewed state-
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of-the-art autofocus procedures in order to propose a general applicable methodology [10].
Some studies demonstrate, with promising results, the possibility to create that type of autono-
mous devices for the detection of diatoms [11], such as Salido et al. 2020, that designed a fully
operative low-cost automated microscope for diatom detection with you only look once
(YOLO) deep learning library [11]. Other applications for the autonomous detection of Plas-
modium parasites in blood samples [12], or Schistosorna haematobium eggs in urine samples
[13], were also postulated as alternative methods for diagnosis. Moreover, Alexandrov et al.
2020 designed a super-resolution high-speed optical microscope for automated readout of
metallic nanoparticles and nanostructures [14]. As reviewed, microscope automation has a
wide range of applications, mainly for the detection and observation of microscopic objects by
the emulation of traditional microscopy.

In this study, we address the automation of a conventional optical microscope up to the
image acquisition, as a first step to prepare it for a further automated diagnosis. We designed a
low-cost 3D-prototype that can be adapted and implemented to several conventional optical
microscopes. The prototype pieces were designed and built with 3D-printing technology.
Microscope stage and focus movements were performed by servo motors guided by an Ardu-
ino controller. The whole procedure was monitored by a smartphone device, which was
responsible for the robotized microscope movements and the acquisition of digital images for
further analysis. The automated prototype was able to move the sample on the stage of the
microscope through the X-Y axis (horizontal and vertical movements), and on the Z axis by an
auto-focus algorithm. Its characteristics make the prototype available for any laboratory
regardless of their resources or limitations. Importantly, this automated diagnostic system was
designed to be open-source and available.

Materials and methods

The robotized prototype for conventional optical microscopes was designed following the
methods explained in the subsequent section.

List of materials and devices

All material and devices specifications are listed in S1 Table. Below we present the list of mate-
rials and devices employed for the design, development and manufacturing of the robotized
system.

« A conventional optical microscope with the standard characteristics to perform a diagnosis
[15]. Binocular, with quadruple revolving objectives of 4x, 10x, 40x and 100x (immersion
oil) magnification; and an ocular lens of 10x magnification. The microscope should consist
of a fine and coarse adjustment wheels to focus the sample through the Z-axis, a microscope
stage to deposit the sample with motion along X-Y axes, and light illumination.

« A 3D-printer Ender-3 Pro (Creality 3D). Ultimaker Cura 5.1 slicing software [16] and Tin-
kercad open-source software were used to design and print the 3D pieces. The filament
employed for 3D pieces manufacturing was a Polylactic Acid (PLA), an easy-to-use, low-
cost, biodegradable, and recyclable material.

« Three Micro Servo Motors 9G. The servo motors were employed to move the sample on the
microscope stage through the X-Y-Z axes.

Arduino MKR WiFi 1010 based on SAMD21 Cortex®-MO0+ 32bit low power ARM® MCU
microcontroller.

« Electronic components: cables, LED lights, and resistances (200 Q).
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« For the development of the autonomous microscope, three models of smartphones have
been operated. A Samsung Galaxy 520, a Xiaomi Redmi 10C and a Samsung Galaxy A13.

Robotized system design

The system was designed to automatically replicate the movements of a conventional optical
light microscope (Fig 1). It was designed as a universal prototype, which can be adapted to the
majority of microscope models. Several representative microscopes were measured to define a
range of measurements for building the pieces (Table 1). A 3D-prototype for the X-Y (micro-
scope stage) and Z (focus issue) axis movements was designed. For X-Y axis, a rectangular
adapter with 3 independent pieces was built. The adapter was deposited on the microscope
stage, and 2 servo motors SG90 (5V, speed 0.5 seconds/120°), one for each axis X and Y, were
attached to the main 3D-piece to perform the microscope movements. Two metallic bars (86
mm length, 3mm @) were positioned between the adapter pieces to easily allow the movements
of the biological sample on the microscope stage. For the Z axis focusing movements, a third
SG90 servo motor was employed. All motor movements were controlled by an Arduino MKR
WiFi 1010, that is controlled and connected directly via Bluetooth Low Energy (BLE) protocol
connection to a smartphone device. The electronic diagram and configuration of the entire
system is represented in Fig 2.

Design and manufacturing of 3D pieces

3D printing technology was employed to build the pieces for microscope automation. Tinker-
cad and Ultimaker Cura 5.1 slicing software were used to design and print the 3D pieces of the
prototype. The designed pieces were first visualized on a Tinkercad computer viewer to

servo motor (X)

o

servo motor (Z)

BLE connection

Arduino controller

Fig 1. Robotized system representation. Robotized system representation on a Leica DM750 optical microscope from
Microbiology Laboratory of Drassanes-Vall d'Hebron International Health Unit. Red discontinuous arrows represent
space positions. Blue discontinuous lines represent connections. (1) Storage and focus 3D pieces. The Arduino
controller is stored in the grid box. The servo (Z) motor is directly connected to the Arduino controller and subjected
by a holder arm to change the Z position. (2) Microscope stage pieces. Three individual stage pieces were placed on the
microscope stage. Two servo motors are attached to the stage 3D pieces to move the sample through the X-Y axis, and
connected to the Arduino controller. (3) Mobile phone adapter pieces. The smartphone adapter is positioned on the
ocular lens of the microscope. The smartphone is connected via Bluetooth (BLE) to the Arduino controller to guide the
entire robotized procedure.

https://doi.org/10.1371/journal.pone.0304085.9001
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Table 1. Optical microscope measurements for the design of 3D universal adaptable pieces.

Microscope model Microscope stage dimensions Distance from the base to the micrometric wheel Fine adjustment wheel Ocular lens diameter
(length x width x height)
Leica DM750 144mm x 185mm x 18mm 43mm 23mm (external diameter) 34.8 mm
Olympus CH2 152mm x 123mm x 10mm 110mm 24mm (external diameter) 31.7 mm
Nikon Eclipse E200 133mm x 220mm x 15mm 70mm 30mm (external diameter) 37.7 mm
Zeiss KF2 135mm x 125mm x 17mm 96 mm 22 mm (external diameter) 28 mm

Millimeters (mm).

https://doi.org/10.1371/journal.pone.0304085.t001

determine their measurements and lengths. The designed models were exported as a st! file for
further building and exported for slicing to Ultimaker Cura 5.1, generating a gcode file. Finally,
pieces were printed on an Ender-3 Pro printer with PLA material. The design of the 3D parts
has been specially developed for adaptation to most conventional optical microscopes. Dimen-
sions have been empirically collected from four different representative optical microscopes to
establish a range of measurements for the design of the 3D prototype parts (Table 1). The mea-
surements of the different microscope models confer the possibility to design 3D printed
pieces that could be attached in any of the analyzed microscopes. Different microscope brands
(Leica, Olympus, Nikon and Zeiss) were selected in order to obtain diverse designs and mea-
surements with representative data.

A total number of 15 individual different pieces were designed and built to create 3 main
systems or subsets of pieces. Each piece has different parts with specific functions. In Table 2,
all pieces’ designs are specified and classified in each of the subsets: microscope stage pieces
(54 Fig), auto-focus pieces/storage and controller parts (S5 Fig), and mobile phone adapter
pieces (56 Fig).

The pieces were constructed with a 3D-printer Ender-3 Pro (Creality 3D) employing PLA
material.

Three subsets of pieces were designed and constructed for microscope automation. Auto-
focus pieces and storage and controller parts are encompassed in the same subset, although
their individual roles are different.

Arduino MKR 1010

+5V 75

+- AREF 45—
AD VI Jrm—
Al +3V/3 r—

R1 A2 GND
200 Q A3 RESET [prm—
A4 D14ITX [r—
A5 DI13/RX [r—
AB D12/SCIL [rm—
DO D11/SDA pr——
L (5} Cs S Di~  DI0/CIPO f—
- D2~ D9/SCK pr——
D3~ D8/COP| e
¥ N —

)

L

Fig 2. Representation of the electronic circuit and configuration. (S) Servo motor; (V) Volts; (R) Resistance; (€2) Ohms; Ground

(GND).

https://doi.org/10.1371/journal.pone.0304085.9002
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Table 2. Description of all 3D pieces employed for automated system building and assembly.

Subset pieces type

Microscope stage pieces
(5 independent pieces)

Auto-focus pieces / Storage and controller parts (5
independent pieces)

Mobile phone adapter pieces (5 independent pieces)

https://doi.org/10.1371/journal.pone.0304085.t002

Pieces parts names

1. External stage holder

2. Screw hole for servo motor

3. Toothed rail for servo motor

4. Sample holder and internal stage
holder

5. Medium stage holder

6. Sample clamp

7. Gears for toothed rail and servo
motors

1. Storage box cover

2. Storage box

3. Auto-focus servo motor stick
holder

4. Fine adjustment wheel clamps
5. Auto-focus system supports

. Storage template for Arduino
. USB hole

External cables hole

Smartphone holder

Adapter support

. Ocular lens hitch

. Wheels for regulating dimensions
screws

Design
See 54
Fig

See S5
Fig

See S6
Fig

Microscope stage pieces. Specially designed to be attached on the microscope stage.
Three sub-pieces (Fig 3A) confer a single structure to hold the biological sample and move it
through the X-Y axes with the assistance of the servo motors. The original holding stage clip of
the microscope should be removed to place the microscope stage 3D pieces. The three sub-
pieces should be correctly assembled to avoid movement issues and inaccuracies due to gaps

A. Microscope stage pieces B. Auto-focus pieces / Storage

@ and controller parts

C. Smartphone adapter to
ocular microscope lens

Fig 3. Microscope 3D pieces subsets. All pieces were designed with Ultimaker Cura 5.1 slicing and Tinkercad softwares. (A) Microscope stage pieces (1) Biological sample
gripper to hold the slide. A toothed track allows for horizontal movement with the horizontal servo motor. (2) Stage holder. A toothed track allows for vertical movement
with the vertical servo motor. (3) Main microscope stage piece to support the system. (B) Microscope auto-focus and storage pieces (1) Servo motor holder. This piece had
an adjustable height to be attached on the fine adjustment wheel of the microscope. (2) Wheel holder with adjustable diameter. (3) Storage box for Arduino and board
controllers. (C) Mobile phone adapter pieces for microscope ocular lens. An adjustable clamp allows the adapter to be attached to the eyepiece lens. The roughened PLA

mount holds the smartphone device in order to capture images without moving.

https://doi.org/10.1371/journal.pone.0304085.9003
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between items. Microscope 3D stage piece should be fastened on the original microscope stage
with tweezers.

Auto-focus pieces. A holder on the fine adjustment wheel to emulate focusing move-
ments with the motor (Fig 3B). The pieces have an adjustable diameter to be adapted to the
fine adjustment microscope wheel and moving in both directions of rotation. Two metallic
screws allow the subjection of the micrometric wheel, which would be responsible of the con-
sequent auto-focus of the sample by the smartphone camera visualization. The sample must be
correctly focused for further imaging detection of objects; such as bacteria, cells, parasites or
other forms.

Storage and controller parts. A storage cage for Arduino and motor controllers (Fig 3B).
The cage was specially designed to not disturb the adaptation to the microscope. An open port
for USB 2.0 to provide Arduino controller with energy power was placed on the below lateral
part of the box. The storage box has a mesh with small holes to prevent the system from over-
heating. Inside the controller box (Fig 3B, number 3) a template with the dimensions of the
controllers allows them to be stored precisely and without any possibility of displacement.

Mobile phone adapter. A smartphone adapter for ocular microscope lenses (Fig 3C). The
adapter holds the smartphone device for the correct acquisition of microscopic images through
its camera. The dimensions of the adapter were designed by the analysis of the different smart-
phone measurements. A PLA screw on the upper part of the holder allows to fit the adaptor to
the microscope regardless of the diameter of the ocular lens.

Optical microscope stage movements emulation by servo motors

Once the 3D pieces were designed and constructed, a set of three Micro Servo Motor 9G were
used to perform the focusing and shifting microscope movements. Two micro servo motors
SG90 were employed to move the biological sample through the X-Y axes, fastened by micro-
scope stage 3D pieces. The two motors were placed horizontally and vertically respectively, on
the stage adapter and attached with two metallic screws. Two metallic bars allow the move-
ment of the PLA pieces through the X-Y axes by the micro servo motor movements. Two gear-
wheels are positioned on the drive wheel of the servo motors, and by means of toothed rails
allow movement in both X-Y directions. Both servo motors were controlled by the Arduino
MKR WiFi 1010, connected by BLE connection to the smartphone device. One servo motor
was employed to move the fine adjustment wheel of the microscope. The motor was subjected
with a 3D PLA piece with a rounded hole fitting the form of the engine, and a hexagonal base
stick (Fig 3B, number 1). A circular screw with an adaptable dimension was attached to the
servo motor. The screw (Fig 3B, number 2) holds the fine adjustment and moves it in both
rotation directions. The auto-focus device was positioned on the storage box, conferring the
system a more compact structure.

Auto-focus algorithm

An image auto-focusing method was designed to correctly acquire readable and focused
images for further image analysis. The microscope must be in a focused position to capture an
optimal image with the smartphone device. In our mechanism, we have employed the variance
of Laplacian as a reference method for image auto-focusing. The variance of Laplacian allows
the calculation of a value for each image, which indicates the level of focusing of the acquired
picture. Focused images have higher values of variance of Laplacian than blurred images.
Therefore, the analysis of variance of Laplacian values would determine which is the best
focused image for each Field of View (FoV).
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The calculation of the variance of Laplacian is specified in Eg I; where A is the Laplacian
operator (Eq 2) applied to an image I(m,n) by convolving a 3 x 3 Laplacian kernel; and AT is
the average of the Laplacian (Eg 3) [11].

VAR LAP,, = "[|AI(i,j)| — A
i J

Equation 1: The calculation of the variance of Laplacian (VAR_LAP).

0 1 0
Al =Imn)x|1 —4 1
0 1 0

Equation 2: The calculation of the Laplacian operator by convolving the image I(m,n) to the
3 x 3 kernel.

o 1 m n
AI:manZ|AI|

Equation 3: The calculation of the average of the Laplacian. The image (I) has “m” (width
pixels) and “n” (height pixels) of dimensions.

The variance calculation is performed in each FoV determined by X-Y movements of the
robotized microscope. In a single FoV, the smartphone camera observes different focused
images (Z axis) by the continuous movement of the Z-servo motor on the fine adjustment
wheel. The smartphone device by BLE connection with the controllers guides the Z-servo
motor to move the fine adjustment wheel in both directions of rotation [50 position units of
movement (u.m.) in each direction; 1 u.m. = 1°] in order to focus the biological sample.
Pseudo-code details are represented in Fig 4. During the auto-focusing process a Laplacian
variance value is computed to each of the images/frames of a real-time video. In order to avoid
unfocused positions, the system visualizes the centroid of the original image by creating a new
cropped image with 50% width and 33% height image for Laplacian analysis. In addition, a 40
milliseconds delay was added to correctly acquire the images. This procedure allows the obser-
vation of only the center of the image, without the black borders produced by the ocular lens
attachment and the blurred edges. Once the image scanning in the two directions of rotation
has been completed, the mechanism is able to obtain the image with the highest Variance of
Laplacian value for further image analysis.

Ethics statement

This study was conducted in accordance with the Declaration of Helsinki and approved by the
Clinical Research Ethics Committee (CEIm) of the Vall d’'Hebron University Hospital/Vall
d’Hebron Research Institute with reference number PR(AG)40/2023.

Results

Universal system adaptation

The developed system is specially designed to be adaptable to most conventional optical micro-
scopes. The size measurements collected from optical microscopes of different brands and
models allows the design of a universal adaptable system (Table 1). Each of the subgroups of
3D parts has been designed for a range of measurements within the dimensions of the micro-
scopes analyzed. The microscope stage mounted pieces have 141 x 100 x 7.5 mm dimensions.
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Algorithm 1 Android Application

: Initialize Bluetooth connection with Arduino

: BluetoothConnection.initialize()

Send command to Arduino to move microcretic motor

: BluetoothConnection.sendCommand ("MOVE_MOTOR")

: Wait for acknowledgment from Arduino

if BluetoothConnection.receiveAcknowledge() == "ACKNOWLEDGED" then
Motor movement started successfully
Capture and process images while motor is moving

9: ImageProcessing.startCapturingFrames ()

10: while ImageProcessing.getMalariaParasiteCount() < 5 and ImageProcessing.getCapturedImageCount() < 100 do

11: Capture frame

12: capturedFrame = ImageProcessing.captureFrame()

13: Calculate Laplacian difference

14: laplacianDifference = ImageProcessing.calculatelaplacianDifference(capturedFrame)
15: Send image data to Arduino for display (optional)

16: BluetoothConnection.sendImageData(capturedFrame)

T if BluetoothConnection.receiveCommand() == "STOP" then

18: Break & Exit loop if stop command is received from Arduino
19: end if

20: end while

9T Stop capturing frames

22: ImageProcessing.stopCapturingFrames ()

23: Send command to Arduino to stop motor

24: BluetoothConnection.sendCommand ("STOP_MOTOR")

25: Wait for acknowledgment from Arduino

26: if BluetoothConnection.receiveAcknowledge() == "ACKNOWLEDGED" then

27: Motor stopped successfully

28: Process the image with the largest Laplacian difference using YOLOvS

29: bestFocusedImage = ImageProcessing.getBestFocusedImage ()

30: detectionResult = YOLOvSMobile.detectLeukocytesAndParasites(bestFocusedImage)
31: Display or use detectionResult as needed

32: Send acknowledgment to Arduino

33: BluetoothConnection.sendAcknowledge ("PROCESSING.COMPLETE")

34 end if

35: else

36: Motor movement failed, handle error

37: handleError ("Motor movement failed")

38: end if

39: Close Bluetooth connection
40: BluetoothConnection.close()

Algorithm 2 Arduino
1: Initialize Bluetooth connection
2: BluetoothConnection.initialize()
3
1

3: Wait for command from Android app
: receivedCommand = BluetoothConnection.receiveCommand()

5: if receivedCommand == "MOVEMOTOR" then

6: Start the microcretic motor movement from 50 to 0 to 100 and back to 50
T MicrocreticMotor.startMovement ()

8 Send acknowledgment to Android app

9 BluetoothConnection.sendAcknowledge (" ACKNOWLEDGED")

10: Wait for stop command from Android app

11: receivedStopCommand = BluetoothConnection.receiveCommand()
12: if receivedStopCommand == "STOP_MOTOR" then

13: Stop the microcretic motor

14: MicrocreticMotor.stopMovement ()

15: Send acknowledgment to Android app

16: BluetoothConnection.sendAcknowledge ("ACKNOWLEDGED")

17 end if

18: else

19: Handle unknown command or error

20: BluetoothConnection.sendAcknowledge ("ERROR_UNKNOWN_COMMAND")
21: end if

22: Close Bluetooth connection
23: BluetoothConnection.close()

Fig 4. Pseudo-code. Pseudo-code of the android application settings (algorithm 1) and arduino controller (algorithm 2).

https://doi.org/10.1371/journal.pone.0304085.9004

Final measures of length and width can be adjusted to any of the analyzed microscopes. The
height dimension of 7.5mm was designed to be as small as possible in order to not interfere
with the stirring of objective lenses of the microscope. The sample slide is in direct contact
with the stage of the original microscope, in order to emulate a conventional microscopic visu-
alization and do not modify the distances between the objective lenses and the biological
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sample. Auto-focus pieces have a range of diameters of the coupling hitch with a micrometric
wheel of 20-30 mm. In order to attach the auto-focus pieces from the base to the fine adjust-
ment wheel, two vertical holder pieces were built with a range of measures of 38-48 mm
length. Smartphone adapter pieces have a range of measures of 25-50 mm length, regulated by
a metallic screw, on the ocular lens attachment. The specific dimensions of the prototype are
summarized in S1-83 Figs, and 3D pieces’ models are open-source and publicly available in
supplementary material section as st/ files.

Robotized and automated slide scanning

A movement pattern has been developed which can be adapted to the needs of observation
according to the type of biological sample. Horizontal and vertical movements through the
X-Y axis of the sample slide are crucial to scan the maximum area in order to detect pathogens
of interest or morphologies. The biological sample is placed on the glass slide and usually has a
rectangular, circular or square shape, although sometimes the sample has an irregular form. It
is crucial to only observe the area of interest, avoiding non-stained or empty spaces in the
slide. The most efficient scanning procedure to observe the maximum surface of a rectangular
or square shaped sample is a snake like movement from left to right and from the top to the
bottom (Fig 5). To scan a single FoV with 100x objective magnification, servo motors perform
the snake-like movement every 5 units of movement (u.m.) (Operating Speed 0.12 sec/60°).
The system stops in each FoV in order to acquire a new image with unseen information. The
system allows the selection of the sample shape and the magnification of the observation in
order to move the sample and capture images correctly.

Auto-focus scanning

The Arduino is connected via BLE to the smartphone and applies the variance of Laplacian
algorithm to auto-focus the sample. It is necessary to help the system with the first focus in
order to reduce diagnosis time by the observation of a blurred image on smartphone screen.
Once the first focus was performed, the system initiated the auto-focus of the sample in each

Fig 5. Sample scanning X-Y movement representation. Automated snake-like movement of the system to capture
and scan the whole blood smear samples. Automated scanning strategies using imaging techniques for object detection
through X-Y axes. Snake-like movement for image acquisition of a rectangular shape sample. Images from
Microbiology Laboratory of Drassanes-Vall d’Hebron International Health Unit.

https://doi.org/10.1371/journal.pone.0304085.g005
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Variance of laplacian values

microscope FoV, by the observation of a real-time video. Biological samples are not perfectly
plane and have a slight relief that might affect the focus of each FoV. Therefore, the first auto-
focus is wider (50 u.m. of the servo motor) in comparison with the following auto-focus move-
ments of the subsequent FoV (30 u.m. of the servo motor). This procedure allows the process
to be faster, avoiding delays due to autofocusing of individual microscopic fields.

In order to evaluate the performance of the proposed auto-focus algorithm, an analysis
experiment was designed. Auto-focus evaluation was described by the observation of different
FoV of Giemsa stained thick blood smear samples (n = 6) at 1000x total magnification for
malaria diagnosis, with a Zeiss KF2 microscope. A total number of 5 FoV images of each sam-
ple were acquired (30 FoVs in total). The observation was emulated with the digital camera of
a Samsung Galaxy A13 smartphone device. Variance of Laplacian analysis was performed in
each FoV while the servo motor moves the fine adjustment wheel of the microscope in order
to find a focused image/frame of the real-time video. A total number of 60 micro-metric posi-
tions (30° on each side) were postulated in order to scan different focused images of the same
FoV. The system determines the image/frame linked with the higher Variance of Laplacian
value (most focused image), in order to capture it for further CNN analysis. Time of focus and
Variance of Laplacian value were analyzed. Results were presented in Fig 6 and Table 3. An
average time of 27.00 + 2.58 seconds was required to auto-focus a single FoV with the
described technology. Variance of Laplacian values of < 6 are considered unfocused or empty
FoVs. Images with non-biological material or stain (transparent) were not optimal for autofo-
cusing and analysis. Results demonstrate a mean average maximum Laplacian value of 11.83,
representing focused images for further CNN image analysis.

System features were represented in Table 4. Several state-of-the-art published systems were
selected in order to be compared with our purpose in terms of: pieces materials, image acquisi-
tion, autofocus, cost, camera settings, point of care design and power requirements [13, 17-20].

Variance of Laplacian analysis for auto-focus

Z-Servo motor position/image
(micro-metric microscope Wheel)

Fig 6. Variance of Laplacian values for auto-focus system analysis. A total number of 30 microscopic fields (images) of 6
different Giemsa stained thick blood smear samples (5 FoV/sample) for malaria diagnosis were analyzed. Each FoV hasa
range of Variance of Laplacian values depending on the position/image [60 total positions (30° on each side)] of the fine
adjustment microscope wheel. Focused images were represented as the higher Variance of Laplacian values (peaks
correspond to in-focus positions/images).

hitps://doi.org/10.1371/journal.pone.0304085.9006
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Table 3. Autofocus analysis of thick blood smear Giemsa stained.

Sample Number Field Number Time of Focus (milliseconds) Laplacian Variance (maximum) Position/Tmage (0-60)
P1 1 23.131 7.47 54
P1 2 25.116 10,28 41
P1 3 26.123 11,52 35
P1 4 29.878 10,63 11
P1 5 27.451 14,13 26
P25 1 27.584 11,33 26
P25 2 30.082 5,5 10
P25 3 25.657 8,33 38
P25 4 27.213 10,2 28
P25 5 29.767 8,5 12
P26 1 25.177 19,5 41
P26 2 28.167 6,1 22
P26 3 24.161 6,01 47
P26 4 26.584 18,83 32
P26 5 31.504 6,01 1
P19 1 23.428 11,24 51
P19 2 31.620 6,01 1
P19 3 24.454 11,61 44
P19 4 27.967 14,1 23
P19 5 30.837 6,39 5
N3 1 27.046 23,1 30
N3 2 26.003 22,66 36
N3 3 23.273 25,75 52
N3 4 26.959 27,85 29
N3 5 31.222 5,73 3
P40 1 25.405 10,8 39
P40 2 28.174 6,66 22
P40 3 22.830 5,41 55
P40 4 27.445 12,14 27
P40 5 25.721 10,96 38
MEAN 26.999 11,83

Giemsa stained samples (n = 6). Time of Focus, Laplacian Variance and Position/Image values were represented.

https://doi.org/10.1371/journal.pone.0304085.1003

Discussion

According to our knowledge, it is the first fully low-cost adaptable automated system for infec-
tious diseases diagnosis. These characteristics are one of the major strengths of the project, and
facilitates the implementation of the system in any clinical laboratory environment. Out-of-
measures microscopes could also be adaptable for our system, although new pieces should be
designed for its correct implementation. In addition, it is also compatible with microscope sys-
tems containing an integrated camera. However, many of the published automated systems
are based on a single design, and therefore make them difficult to implement in any laboratory
due to their low adaptability. However, the acquisition of complete systems such as EasyScan
Go could complement traditional laboratory tools with promising results [21]. Our system is
low-cost ($220-$300) due to its manufacturing materials and servo motors; its power require-
ments (10W) are accessible; does not need internet connection; has an efficient auto-focus
technology; and is specially designed for resource-poor settings implementation. However,
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Table 4. Summary table comparison of the state-of-the-art automated microscope designs.

Design Pieces materials | Automated | Autofocus Approximate Camera Point of | Power Additional
image (focusing time) | cost care requirements / requirements
acquisition design | Internet

connection

Delahunt Aluminium Yes Yes. Brenner 1500$-4000$ MIGHTEX camera Yes 15.8W / Non-

etal 2015 gradient specified

[17] algorithm (Z-

stack)

Veerendra | Non-specified Yes Non-required Low-cost (non- | Samsung Galaxy Yes Non-specified / Microfluidic-

et al 2015 specified) camera (EK-GC100) Non-needed based system

(20]

Garcla- Polylactic acid Yes Manual focus Low-cost (non- | Samsung S9 camera Yes Stepper drivers (12 | Smartphone

Villenaetal | (PLA) (3D specified) (minimum pixel V), LED light (3W) | device

2021 [18] printing) resolution of / Non-required

1440 x 1080) (desirable)

Oyiboetal | Aluminium Yes Yes. Greyscale | Low-cost (non- | Raspberry Pi High- Yes 60W / Non-

2022 [13] profiles (3D 2D Laplacian specified) Quality Camera specified

printing) filter. Module V2.1, equipped
with a Sony IMX477R
Gordonetal  Aluminiumand | Yes Yes (algorithm | 13008 1.6 MP Yes Non-specified / Microfluidic-
2022 [19] acrylonitrile non-specified) monochromatic Non-required based system.
butadine styrene Blackfly S camera with Fluorescent stain.
(ABS) (3D a Sony IMX273 sensor
printing)

de Oliveira | Polylactic acid Yes Yes. Laplacian 220-300 $ + (300 | Samsung Galaxy $20 Yes 10W / Non-needed | Conventional

etal 2024 (PLA) (3D variance $ smartphone) = | camera (minimum optical

printing) (27.00 + 2.58 520$-600$ 5MP) microscope
seconds) + smartphone
device

https://doi.org/10.1371/journal.pone.0304085.1004

some of the limitations of the system are the conventional microscope requirement for its
operation, the non-automated change of magnification, and the need of an external camera
(smartphone). Other designs described in Table 4, such as Oyibo et al 2022 do not need a con-
ventional optical microscope for its functioning, although its power requirements are higher
and therefore it is not an adaptable design [13]. Garcia-Villena et al 2021 purposes a low-cost
portable prototype specially design for its implementation in resource-poor settings, although
it requires manual focusing [18]. Moreover, Gordon et al 2022 and Veerendra et al 2015
designed similar alternatives based on microfluidic technology for diagnosis and object
detection.

Diagnosis procedures by microscopic visualization of biological forms are different depend-
ing on the type of observed sample and disease. For example, in the case of malaria disease, the
observation of Plasmodium parasites in thick and thin blood smear samples with a total magni-
fication of 1000x (100x immersion oil + 10x ocular lens) is crucial to perform a correct diagno-
sis [22]. Moreover, it is not necessary to observe the whole sample to perform a diagnosis, and
consider a positive/negative result for Plasmodium infection. If a single parasite is observed it
is considered as a positive diagnosis, although if the microscopist observes enough microscope
fields (at least 100) without any parasite observation, the sample is considered as a negative
result [23]. However, for the diagnosis of other parasitic diseases such as Schistosoma haemato-
bium in urine sediment samples, the whole sample should be observed in order to detect the
eggs at 100x and 400x total magnification (10x and 40x objective lens + 10x ocular lens) [13].
These differences in the observation methodologies and procedures are quite common in
microscopy, and should be considered for the development of automated diagnostic methods.

PLOS ONE | https://doi.org/10.1371/journal.pone.0304085 June 21, 2024
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With our system, the snake-like path of the X-Y servo motors allows its movements to be
adaptable to most types of microscopic clinical specimens.

Autofocusing the sample for the correct acquisition of images is crucial to perform a correct
image analysis and automated diagnosis. Variance of Laplacian technique is widely used as a
reference method to evaluate the autofocus of digital images in other studies [24-26]. How-
ever, focus time is an issue when quickness and effectiveness for microscopy diagnosis is a
requirement. As an alternative to our work, Bueno-Ibarra et al. proposed a fast auto-focus
algorithm for automated microscopes by Fourier Transform and Pearson correlation [27]. The
auto-focus algorithm requires time of analysis and the correction of the focus in each FoV
slows down the acquire process. The morphology of biological samples should be correctly
interpreted, assuming three dimensions of observation. The height or Z dimension of a sample
on a microscope slide is variable and often irregular, since the disposition of the cells, bacteria
or staining reagents create a relief on the slide that would consequently affect the autofocus of
the sample in each FoV. In addition, preprocessing techniques such as noise reduction, back-
ground correction, contrast enhancement and image cropping could help to eliminate unde-
sirable artifacts or effects that would affect image focusing [11]. However, these methodologies
would increase even more the time of acquisition and analysis.

It is crucial to determine a balance between time and image quality in order not to obtain
diagnoses that are too slow, or incorrectly captured images that hinder the object detection
and classification performed by the CNN systems.

Diagnostic Al-based applications and perspectives

The developed automated system can be combined with artificial intelligence-based convolu-
tional neural network models to perform fully autonomous diagnostics. Artificial Intelligence
(AI) is one of the most outbreaking developing technologies during the current century.
Improvements in deep learning techniques will allow the development of better and new Al
applications in several research topics. European Parliament published recent studies related
with Al in diplomacy, environmental impact green policies, open-source approaches, capital
flows or data availability [28]. Artificial intelligence, in nowadays years, has played a crucial
role in diagnostic support and biomedical research, and should become even more important
in the near future. As some examples, COVID-19 computer-aided diagnosis by classification
of CT images with deep learning models [29]; Al algorithms for the prognosis, diagnosis and
treatment selection for precision oncology improvements [30]; machine learning and statisti-
cal techniques for differentiating tropical infectious diseases such as malaria, dengue and leish-
maniasis [31]; or an automated microscopy for the diagnosis of Schistosoma haematobium
eggs in resource-poor settings by Al techniques [13], are some of the main applications of this
promising technology.

As discussed in the introduction, the development of novel diagnostic techniques to solve
microscopy issues and improve resource-poor settings environments by its implementation
will be a major challenge for the following years. Therefore, the low-cost automation of a stan-
dard microscope presented in this study in combination with image Al-based diagnosis tools
would be an excellent alternative in these contexts. Evaluation of state-of-the-art CNN algo-
rithms for malaria parasite detection in thin blood smear samples demonstrate a 97% of accu-
racy to distinguish between an infected and an uninfected erythrocyte [32]. Literature shows a
wide variety of systems based on Al able to detect malaria parasites in digital images, in order
to support and complement traditional microscopy [7, 22, 32-37]. Our research group trained
multiple smartphone-based computational state-of-the-art deep learning models for malaria
parasite detection in thick blood smear digital images and tested the robotized iMAGING
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prototype with promising results [38]. This work was part of the same project presented in the
manuscript, in which Al algorithms were a complement to the low-cost automation system
and the smartphone device application. A dataset of 2571 annotated digital images of thick
blood samples were employed. Comparative analysis yielded a performance for YOLOv5x on a
test set of 92.10% precision, 93.50% recall, 92.79% F-score, and 94.40% mAPO.5 for leukocyte,
ring stage and mature Plasmodium trophozoites overall detection. F-score values of each cate-
gory were 99.0% for leukocytes, 88.6% for early trophozoites and 87.3% for mature trophozo-
ites detection [38].

Moreover, schistosomiasis diagnosis is mainly based on the visualization of parasite eggs in
stool (Kato-Katz technique) or urine sediment samples by microscopic examination [39]. As
an alternative, Schistoscope system is an optical diagnostic device for the automated detection
of Schistosoma haematobium eggs through the X-Y-Z-axis movements for sample scanning. A
robust image dataset containing over 5000 FoV images of filtered spiked and clinical urine
samples was employed for the generation of AI models for image analysis detection [13]. Our
research group has assessed if our developed system is able to detect Schistosoma haematobium
eggs in automatically acquired images with YOLOv8x neural network showing 95.3% preci-
sion, 89.9% recall, 92.5% F-score and 96.8% mAP0.5. Example images of thick blood smear
(Fig 7) and urine sediment samples (Fig 8) analysis are represented.

As another example, Soil-transmitted helminthiasis (STH) is an NTD caused by intestinal
parasitic worms transmitted through contaminated soil. Eggs of Ascaris lumbricoides, Trichuris
trichuria, Ancylostoma duodenale and Necator americanus are passed in the feces of infected
people, and could be observed by optical microscopy for diagnosis. Ward et al. 2022 proto-
typed an Al device to detect helminth eggs and Schistosoma mansoni eggs in stool. The system
achieved an average precision of 94.9 + 0.8% and recall of 96.1 + 2.1% for helminth egg species
detection [40]. In addition, american trypanosomiasis or Chagas disease is a NTD produced
by the protozoan parasite Trypanosoma cruzi. During the acute phase of infection, Chagas dis-
ease diagnosis is performed by the direct microscopic observation of Trypanosoma cruzi para-
site in blood smears. Morais et al. 2022 developed an automated system for the detection of
Trypanosoma cruzi parasites in blood smears using machine learning algorithms applied to
smartphone images. The final system demonstrates a final precision of 87.6%, and sensitivity
of 90.5%, illustrating promising results for diagnosis [41]. Finally, Leishmaniasis is a disease
caused by more than 20 species of Leishmania protozoan parasite. Microscopy diagnosis to
detect amastigotes in giemsa-stained lesions of scrapping, biopsies, or impression smears are
commonly employed as a reference diagnostic technique [42]. Zare et al. 2022 developed a
machine learning-based system for detecting leishmaniasis parasites in microscopic images.
The Viola-Jones algorithm was employed for parasite detection, with 50% precision and 65%
recall for infected macrophages detection; and 71% precision and 52% recall for amastigotes
outside macrophages detection [43].

Conclusions

A robotized system for automated diagnosis with a conventional microscope and a standard
smartphone was fully developed for its low-cost implementation in resource-poor setting labo-
ratories. Microscope robotization is a crucial step for automated diagnosis based on AT tech-
nology. Without the robotized movements of the microscope the entire process would not be
completely autonomous. In addition, the design and implementation of a universally adaptable
system should be affordable for any laboratory, regardless of their resources. Low-cost materi-
als and a simple process make our system a valuable technology. Moreover, auto-focus move-
ments are not commonly implemented in low-cost and conventional microscopes for Al
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Fig 7. Microscopic images from Microbiology Laboratory of Drassanes-Vall d’Hebron International Health Unit. Giemsa stained thick blood smear sample with
detection of leukocytes and malaria trophozites by YOLOv5x neural network performance. 1000x magnification.

https://doi.org/10.1371/journal.pone.0304085.9007

detections. Finally, Z-movements confer the system a fully automated analysis without the
mechanical support of a human. The combination of hardware, low-cost materials and accessi-
ble technology, plus the adaptation of the 3D-pieces to a conventional optical microscope and
the use of smartphone devices, gives the system the innovative nature required for its imple-
mentation in the field. Moreover, the freely available 3D-pieces designs provide the scientific
community with open-source prototypes for its improvement and usability.

The digitalization of diagnosis would be the next step for the autonomous diagnosis world-
wide. The standardization of automated diagnosis procedures should be addressed to provide
reliable results and increase its efficiency [44]. Furthermore, the generation of data from
microscopic images would help to generate databases for further AI algorithms training. The
coalescence of autonomous movements and image analysis provides a milestone for the imple-
mentation of available automatic diagnosis with conventional optical microscopes [45].
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Fig 8. Microscopic images from Microbiology Laboratory of Drassanes-Vall d’Hebron International Health Unit. Urine sediment sample with detection of

Schistosoma haematobium eggs by YOLOv8x neural network performance. 100x magnification.

https://doi.org/10.1371/journal.pone.0304085.9008

In conclusion, we are ever closer to develop a fully automated system to perform autono-
mous microbiological diagnosis emulating traditional microscopy techniques. After success-
fully implementing the low-cost automation of a conventional optical microscope, the
irruption of AI technology for the diagnosis during the near years allows us to postulate that
convolutional neural networks for image analysis will be improved, regulated and optimized
to be considered as a reference diagnosis technique for malaria and NTDs detection.

Supporting information

S1 Table. List of materials and devices employed for the development, design and
manufacturing of the robotized conventional optical microscope system.

(DOCX)

S1 Fig. Microscope stage 3D pieces dimensions representation.

(TIFE)
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S2 Fig. Mobile phone adapter 3D pieces dimensions representation.
(TIFF)

S$3 Fig. Auto-focus 3d pieces / Storage and controller parts dimensions representation.
(TIFF)

S$4 Fig. Microscope stage pieces (5 independent pieces). (1) External stage holder; (2) Screw
hole for servo motor; (3) Toothed rail for servo motor; (4) Sample holder and internal stage
holder; (5) Medium stage holder; (6) Sample clamp; (7) Gears for toothed rail and servo
motors.

(TIFF)

S5 Fig. Auto-focus pieces / Storage and controller parts (5 independent pieces). (1) Storage
box cover; (2) Storage box; (3) Auto-focus servo motor stick holder; (4) Fine adjustment wheel
clamps; (5) Auto-focus system supports; (6) Storage template for Arduino; (7) USB hole; (8)
External cables hole.

(TIFF)

S6 Fig. Mobile phone adapter pieces (5 independent pieces). (1) Smartphone holder; (2)
Adapter support; (3) Ocular lens hitch; (4) Wheels for regulating dimension of the screws.
(TIFF)

$1 Data.
(ZIP)
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Resum del treball:

L'esquistosomiasi urogenital és considerada una malaltia tropical desatesa per I'Organitzacié
Mundial de la Salut. S'estima que afecta 150 milions de persones a tot el mén, amb especial
rellevancia en els entorns amb pocs recursos del continent africa. El diagnostic gold standard
continua sent |'observacio directa dels ous de Schistosoma haematobium en mostres d'orina per
microscopia Optica. Les noves técniques de diagnostic basades en I'analisi d'imatges digitals
mitjangant eines d'Intel-ligencia Artificial (IA) sén una alternativa adequada per al diagnostic de

I'esquistosomiasi.

Es van adquirir imatges digitals de 24 mostres de sediments d'orina en area no endémica. Els
ous de S. haematobium van ser etiquetats manualment en imatges digitals per professionals de
laboratori, i les imatges etiquetades es van emprar per entrenar els models de deteccié
automatica YOLOV5 i YOLOv8. Les imatges de sediments d'orina també es van utilitzar per
realitzar una classificacio binaria d'imatges per detectar eritrocits/leucocits amb els models
MobileNetv3Large, EfficientNetv2, i NasNetlLarge. Es va utilitzar un sistema de microscopi

robotitzat per moure automaticament la mostra a través dels eixos X-Y i per I'autoenfocament.

Un total de 1189 etiquetes van ser anotades en 1017 imatges digitals de mostres de sediments
d'orina. L'entrenament de YOLOv5x va demostrar una precisié del 99.3%, un recall del 99.4%, un
valor F de 99.3% i un 99.4% de mAPO.5 per a la deteccié de S. haematobium. NasNetLarge té
una precisio del 85.6% per a la deteccid d'eritrocits/leucocits amb el conjunt de dades de prova.
L'entrenament i comparacié de xarxes neuronals convolucionals va demostrar que el model
YOLOv5x per a la deteccié d'ous, i el model NasNetLarge per a la classificacid binaria d'imatges
per detectar eritrocits/leucocits eren les millors opcions per a la nostra base de dades d'imatges

digitals.

El desenvolupament de noves técniques diagnostiques de baix cost basades en la deteccid i
identificacié d'ous de S. haematobium en orina mitjancant eines d'lA pot ser una alternativa
adequada a la microscopia convencional. Aquest estudi permet establir les bases per a la millora

del sistema, i optimitzar la seva implementacid en els laboratoris d’arreu.
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Abstract

Background

Urogenital schistosomiasis is considered a Neglected Tropical Disease (NTD) by the World
Health Organization (WHO). It is estimated to affect 150 million people worldwide, with a
high relevance in resource-poor settings of the African continent. The gold-standard diagno-
sis is still direct observation of Schistosoma haematobium eggs in urine samples by optical
microscopy. Novel diagnostic techniques based on digital image analysis by Artificial Intelli-
gence (Al) tools are a suitable alternative for schistosomiasis diagnosis.

Methodology

Digital images of 24 urine sediment samples were acquired in non-endemic settings. S. hae-
matobium eggs were manually labeled in digital images by laboratory professionals and
used for training YOLOv5 and YOLOv8 medels, which would achieve automatic detection
and localization of the eggs. Urine sediment images were also employed to perform binary
classification of images to detect erythrocytes/leukocytes with the MobileNetv3Large, Effi-
cientNetv2, and NasNetLarge models. A robotized microscope system was employed to
automatically move the slide through the X-Y axis and to auto-focus the sample.
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Results

A total number of 1189 labels were annotated in 1017 digital images from urine sediment
samples. YOLOv5x training demonstrated a 99.3% precision, 99.4% recall, 99.3% F-score,
and 99.4% mAPO0.5 for S. haematobium detection. NasNetLarge has an 85.6% accuracy for
erythrocyte/leukocyte detection with the test dataset. Convolutional neural network training
and comparison demonstrated that YOLOv5Xx for the detection of eggs and NasNetLarge for
the binary image classification to detect erythrocytes/leukocytes were the best options for
our digital image database.

Conclusions

The development of low-cost novel diagnostic techniques based on the detection and identi-
fication of S. haematobium eggs in urine by Al tools would be a suitable alternative to con-
ventional microscopy in non-endemic settings. This technical proof-of-principle study allows
laying the basis for improving the system, and optimizing its implementation in the
laboratories.

Author summary

Urogenital schistosomiasis, categorized as a Neglected Tropical Disease (NTD) by the
World Health Organization (WHO), affects approximately 150 million individuals glob-
ally, predominantly in resource-limited regions of Africa. Gold standard diagnosis relies
on visually identifying of Schistosoma haematobium eggs in urine samples using optical
microscopy. However, novel diagnostic techniques based on digital image analysis by
Artificial Intelligence (AI) tools are a suitable alternative for schistosomiasis diagnosis. In
this technical proof-of-principle study, a small number (n = 24) of urine sediment samples
were analyzed using Al models in non-endemic settings. The study involved manually
labeling §. haematobium eggs in digital images, for training YOLOv5 and YOLOv8 mod-
els for automatic egg detection, and employing MobileNetv3Large, EfficientNetv2, and
NasNetLarge models for binary classification of erythrocytes/leukocytes. A robotized
microscope system facilitated automated sample movement and focusing. Results indi-
cated high precision (99.3%) and recall (99.4%) for S. haematobium detection with
YOLOv5x. NasNetLarge achieved 85.6% accuracy in erythrocyte/leukocyte detection.
Overall, YOLOv5x for egg detection and NasNetLarge for cell classification proved most
effective. The study suggests Al-based techniques offer a cost-effective alternative to con-
ventional microscopy for diagnosing S. haematobium infections. The automated system’s
robustness and simplicity could facilitate widespread adoption in laboratories worldwide.

1 Introduction

Schistosomiasis is a parasitic disease caused by trematode worms of the genus Schistosoma [1].
It affects more than 250 million people worldwide, with a high prevalence in tropical and sub-
tropical areas [2]. Its transmission occurs by direct contact with contaminated water, in which
Schistosoma cercariae can penetrate human skin thus initiating infection. Freshwater snails of
the genera Biomphalaria, Oncomelania, and Bulinus act as intermediate hosts [3]. Schistosomi-
asis is considered a Neglected Tropical Disease (NTD) by the World Health Organization
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Fig 1. Panel A. S. haematobium eggs in a urine sediment sample (10x ocular; 10x objective lens). Panel B. . haematobium egg in a urine sediment sample
(10x ocular; 40x objective lens).

https://doi.org/10.1371/journal.pntd.0012614.g001

(WHO) due to its impact in resource-poor areas and its correlation with poverty [4]. The most
predominant causative species are Schistosoma haematobium and Schistosoma mansoni, classi-
fied as urogenital and intestinal schistosomiasis, respectively [1]. More than 90% of schistoso-
miasis cases occur in the African continent, and 66% are caused by S. haematobium [5]. Some
of the main countries with a high prevalence of urogenital schistosomiasis are Senegal, Nigeria,
Angola, and Cameroon, among others [6-8]. Therefore, urogenital schistosomiasis has a
major impact globally, with a significant incidence in the pediatric population of endemic
areas [5]. Resource-poor areas near infested rivers are considered high-risk communities in
which the prevalence of urogenital schistosomiasis is considerably high [9]. Digital images of
S. haematobium eggs are represented in Fig 1. Most patients are asymptomatic, although if the
disease is left untreated it can become chronic, cause hematuria and leukocyturia, and in some
cases it can lead to bladder cancer [10].

According to the WHO, the gold standard diagnostic technique for schistosomiasis is the
microscopic observation of parasite eggs in stool/urine samples [1]. Serological tests are also
widely employed for the diagnosis of this disease [11], and molecular techniques such as real-
time PCR are currently being developed to improve the sensitivity and specificity of traditional
techniques [12]. However, in schistosomiasis-endemic areas, microscopy is still the most
employed technique for diagnosis. Microscopic diagnosis is expert-dependent, time-consum-
ing, and could trigger diagnostic errors due to observing large numbers of samples in short
periods of time [13].

As an emulation of traditional microscopy, novel image analysis techniques based on Artifi-
cial Intelligence (AI) tools are being developed to automate the diagnostic procedure. As an
example, a prototype based on Al image analysis was developed for the detection of soil-trans-
mitted helminths and S. mansoni parasites in Kato-Katz stool thick smears [14]. Moreover,
other studies demonstrate the utility of mobile phone-based microscopes for urogenital schis-
tosomiasis diagnosis in Cote d’Ivoire [15]. Nowadays, Convolutional Neural Networks
(CNNs) are the models most employed for object detection in digital image analysis [16]. Par-
ticularly, CNNs for poverty related diseases are postulated as a suitable supportive tool for the
microscopic diagnosis of several diseases, such as malaria [17,18], tuberculosis [19], and NTDs
[20]. Moreover, novel computational strategies, such as attention modules [21] and transform-
ers [22], are improving the performance of traditional CNNs, opening up a new range of pros-
pects for object detection algorithms in digital imaging. Several studies demonstrate that
YOLO models have outperformed other state-of-the-art CNN models for object detection,
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such as Faster R-CNN and RetinaNet [23,24]. YOLOv5 and YOLOvVS used similar backbones
with changes in the CSPLayer/C2f module, and they were considered the best YOLO algo-
rithms [25]. Moreover, each YOLO model has different versions depending on its architecture,
considering YOLOv-s (small) and YOLOv-x (extra-large) as suitable versions for comparison,
regarding the remarkable differences in performance and speed [25]. The YOLOv8 model is
newer and considered an update of YOLOV5, nevertheless, the latter is still considered the best
model for object detection tasks in terms of accuracy [26].

In this study, we fine-tuned object detection algorithms (YOLOv5s, YOLOv5x, YOLOvSs,
and YOLOv8x) for the automated identification of S. haematobium eggs in urine samples. A
small number of biological samples from non-endemic settings were employed for digital
image acquisition and labeling of parasites by a smartphone/microscope camera. CNN train-
ing and metrics comparison were performed to determine the optimal algorithm for schistoso-
miasis diagnosis with our image database. Binary image classification algorithms
(MobileNetv3Large, EfficientNetv2, and NasNetLarge) were also trained to detect digital
images with the presence of erythrocytes and/or leukocytes in urine, as a suggestive, although
not exclusive, clinical sign of urogenital S. haematobium infection.

An automated robotized low-cost microscope prototype was employed for sample analysis,
with X-Y movements of the slide and autofocusing. A first proof-of-principle technical study
in non-endemic settings of the development of the system has been conducted, allowing to
evaluate the performance and to lay the basis to enhance it in further in-field studies.

According to the state-of-the-art there are several studies describing detection methods for
the automated identification of S. haematobium eggs in urine sediment samples. However, our
system could contribute novelties in terms of adaptability to conventional optical microscopes
and its autofocus algorithm, the usage of a smartphone device as a key controller for image
acquisition and Al-analysis, and the identification of erythrocytes and leukocytes in urine for
S. haematobium diagnosis orientation. Many of the published systems involve the detection of
S. haematobium eggs in digital images, although the combination of all system features provide
new advances in low-cost automated detection.

Thus, our image analysis strategy would join the global effort to fight against NTDs, provid-
ing clinical laboratories with novel diagnostic tools able to complement state-of-the-art tradi-
tional technologies.

2 Materials and methods

In this section, we describe the materials and methods used to develop the diagnostic system
based on image analysis by image classification and object detection. The details of all proce-
dures are sufficient to allow for experimentation by third parties.

2.1. Ethics statement

This study was conducted in accordance with the Declaration of Helsinki and approved by the
Clinical Research Ethics Committee (CEIm) of the Vall d’'Hebron University Hospital / Vall
d’Hebron Research Institute, with reference number PR(AG)40/2023. The urine samples were
not collected for the study, they were obtained from the regular clinical visits in our Interna-
tional Health Center and retrospectively analyzed. Formal consent was not obtained with eth-
ics committee approval.

2.2. Sample preparation and observation

In this study, 24 S. haematobium-positive urine sediment samples and eight negative urine
sediment samples from (i) the Drassanes-Vall d'Hebron International Health and Infectious
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Diseases Centre (Barcelona, Spain), and (ii) the Microbiology Department of the Vall
d’Hebron University Hospital (Barcelona, Spain) were employed. Urine sediment samples
were collected directly in a 100 mL recipient. Samples are left to settle for 1 hour, and 10 mL
were centrifuged for 5 minutes at 15,000 rpm. Parasite eggs were searched in urine sediment
samples for microbiological diagnosis. Standard objective lenses, 10x and 40x, were employed
to perform a large-scale observation and confirm the diagnosis, respectively. Between 1-20
images of different microscopy fields were acquired from each sample, considering parasite
densities, presence/absence of erythrocytes and leukocytes in urine, and number of S. haema-
tobium eggs per sample. This range of image numbers avoids an imbalance in the training of
the neural networks by employing a stipulated number of data. Biological samples were
obtained from symptomatic/asymptomatic patients from S. haematobium-endemic areas,
mainly migrants, and Visit Friends and Relatives (VFR), following our reference center’s pro-
tocols [27]. Most individuals came from Sub-Saharan Africa region, mainly from Gambia,
Mali and Senegal. Regarding epidemiological studies, the prevalence of S.haematobium infec-
tion in these countries is between 9% to 10.2% [28-32]. Microscopic examination of clinical
samples was performed following WHO sample observation statements for S. haematobium
diagnosis [32]. Samples were observed at most 48h after extraction and discarded, following
our International Health Laboratory protocols.

2.3. Image acquisition

Digital images of each microscopic Field of View (FoV) were acquired with an integrated
Leica ICC50W camera attached to a Leica DM750 microscope (5.0MP / 2592 x 1944 pixels)
and consecutively with the camera of a Samsung Galaxy $20 smartphone device (64MP,
0.8um, £/2.0, OIS / 3024 x 4032 pixels). Smartphone-acquired images were captured using an
ocular adapter for smartphone attachment to the microscope. A 3D adapter bracket attached
to the ocular lens of the microscope was used to standardize the image-capturing procedure
with the smartphone device. Both, the integrated camera and smartphone-acquired images
were captured by the visualization of urine sediment samples with a Leica DM750 microscope
lens with 100x and 400x total magnification (10x ocular; 10x and 40x objective lens). Image
acquisition is represented in Fig 2.

2.4. Image pre-processing

Images acquired with a smartphone device were cropped to highlight the central area of inter-
est of the image and to eliminate black borders due to ocular lens attachment. Cropping was
performed to remove the outer edges without losing any information (Fig 2). Original smart-
phone images were cropped automatically (Python script) to obtain a 4:3 image in the center
and subsequently rotated 90° for horizontal image reorientation. With this procedure, it is pos-
sible to crop an image regardless of its dimensions and the number of pixels as proportions
were used to perform the cropping. The cropped images have the same 4:3 image proportion
as those acquired with the microscope-integrated camera. Cropping confers a re-composition
of the image that may positively affect the final results, providing a clearer image and removing
elements irrelevant to the prediction and identification functions of the neural networks, as
mentioned in the previous literature [33].

2.5. Image annotation and classification

Digital images were labeled by laboratory professionals from the Drassanes-Vall d’Hebron
International Health and Infectious Diseases Centre. For image labeling, the area of interest
was selected by creating a bounding box with the object inside (Fig 2). This bounding
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Fig 2. Representative scheme of sample visualization, image acquisition, image pre-processing, and image
annotation procedures. Sample/slide, image, annotated image, and label are represented. Schistosoma haematobium
digital images were acquired with an integrated camera/smartphone camera in the Microbiology Laboratory of the Vall
d’Hebron Drassanes International Health and Infectious Diseases Centre, Illustrations were obtained from open source
resources.

https://doi.org/10.1371/journal.pntd.0012614.g002

box defines the label. S. haematobium eggs (viable and calcified) were labeled in digital images
using Annotation App software. Labeling eggs with bounding boxes was required to train the
object detection algorithms based on CNNs. Once labeling was finished, the Annotation App
software created a json type file with labels linked to the original image file, in which the coor-
dinates of the labeled objects are specified (annotated images). Whole-image classification was
performed by creating two subgroups of images depending on whether erythrocytes/leuko-
cytes were present or not in urine sediment samples.

2.6. Binary classification algorithms for hematuria and leukocyturia
detection

Whole-image binary classification models (MobileNetv3Large [34], EfficientNetv2 [35], and
NasNetLarge [36]) were employed to automatically classify digital images in two subgroups.
Digital images with or without the presence of erythrocytes/leukocytes in urine samples, with
100x magnification (10x ocular; 10x objective) were manually classified by three clinical labo-
ratory experts from the Vall d'Hebron International Health and Infectious Diseases Centre.
The image database was divided, allocating 90% for training/validation and 10% for testing.
Images were resized by default to 331x331 pixels for NasNetLarge, 224x224 pixels for Mobile-
Netv3Large, and 300x300 pixels for EfficientNetv2, and trained for 30 epochs and batch size
20. Only 100x magnification images (10x ocular; 10x objective) were employed for binary clas-
sification algorithm training.

2.7. Object detection algorithm training and comparison analysis

CNN object detection models were fine-tuned with our S. haematobium-labeled digital image
database. You Only Look Once (YOLO) [37] versions 5s, 5, 8s, and 8x were trained. YOLO
was considered an optimal algorithm for object detection tasks, with several studies in the area

« »n

of diagnosis [25,38,39]. The YOLO versions were also crucial, considering YOLO “s” (small) as
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a fast and efficient alternative and YOLO “x” (extra-large) as a more accurate algorithm
[25,39]. The Schistosoma image database was divided, allocating 80% for training, 15% for vali-
dation, and 5% for testing. Images were resized by default to 640x640 pixels and CNNs were
trained for 30 epochs and batch size 16. Images were organized randomly considering the pro-
portions, and test subset images were unseen by the CNN model to avoid unreliable results
and preserve patient-level structure [40]. Neural networks were pre-trained with the Common
Objects in Context (COCQ) dataset [41]. Object detection CNNs were compared using the
analytical metrics of precision, recall, F-score, and mAP0.5. Two consecutive image datasets
were employed for CNN training and evaluation. An initial image dataset containing 491
images was employed, and thereafter, a second dataset containing 1017 images, which also
included the images of the initial database (491). The number of images employed for CNN
training was determined considering supervised single-class classifiers performance and other
similar studies, although the minimum amount of labels to obtain reliable results depends on
the labels quality and classifier architecture [42,43].

2.8. Statistical analysis

Statistical analyses were performed to determine significant differences between validation
and test subset performance for each CNN model. Metric means were calculated individually
for each CNN model. To evaluate significant statistical differences between CNN models, a
paired t-test analysis (p-value<0.05, t-value > -2 or 2), mean (M), and standard deviation (SD)
were employed. The same statistical analysis was employed for binary classification algorithms.
The IBM SPSS software statistics environment was used.

2.9. Microscopy automation system

The system [44] was employed to automate a conventional Leica DM750 optical microscope
for malaria diagnosis. This technology can autofocus the image/FoV and guide the automated
movements of the slide through the X-Y axis of the microscope. All the diagnostic technology
is embedded into a smartphone/computer application, responsible for acquiring the images,
automating microscope auto-focus and stage movements, and using CNN algorithms for para-
site detection. The system is designed with 3D-printing technology and does not need an inter-
net connection or an electrical power supply. Smartphone-based, adaptability and auto-focus
results were previously published [44].

3 Results
3.1. Schistosoma haematobium urine sediment image database analysis

S. haematobium urine sediment samples, digital raw images, annotated images, and labels
were analyzed. A total of 1017 annotated digital images were imported into the database for
further CNN training and algorithm generation. A total of 1189 labels identifying S. haemato-
bium eggs (calcified/non-calcified) were annotated in digital images. Of the 1017 digital
images, 744 were acquired with the LEICA ICC50W integrated microscope camera, and 273
were acquired with the Samsung Galaxy $20 smartphone camera. For the detection of erythro-
cytes and/or leukocytes in urine, 762 images were acquired with the integrated microscope
camera LEICA ICC50W and manually classified as urine samples with (493 images) or without
(269 images) erythrocytes/leukocytes, respectively. A summary of the urine sediment sample
image database information is shown in Table 1.
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included the images of the initial database (491). The number of images employed for CNN
training was determined considering supervised single-class classifiers performance and other
similar studies, although the minimum amount of labels to obtain reliable results depends on
the labels quality and classifier architecture [42,43].
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Statistical analyses were performed to determine significant differences between validation
and test subset performance for each CNN model. Metric means were calculated individually
for each CNN model. To evaluate significant statistical differences between CNN models, a
paired t-test analysis (p-value<0.05, t-value > -2 or 2), mean (M), and standard deviation (SD)
were employed. The same statistical analysis was employed for binary classification algorithms.
The IBM SPSS software statistics environment was used.

2.9. Microscopy automation system

The system [44] was employed to automate a conventional Leica DM750 optical microscope
for malaria diagnosis. This technology can autofocus the image/FoV and guide the automated
movements of the slide through the X-Y axis of the microscope. All the diagnostic technology
is embedded into a smartphone/computer application, responsible for acquiring the images,
automating microscope auto-focus and stage movements, and using CNN algorithms for para-
site detection. The system is designed with 3D-printing technology and does not need an inter-
net connection or an electrical power supply. Smartphone-based, adaptability and auto-focus
results were previously published [44].

3 Results
3.1. Schistosoma haematobium urine sediment image database analysis

S. haematobium urine sediment samples, digital raw images, annotated images, and labels
were analyzed. A total of 1017 annotated digital images were imported into the database for
further CNN training and algorithm generation. A total of 1189 labels identifying S. haemato-
bium eggs (calcified/non-calcified) were annotated in digital images. Of the 1017 digital
images, 744 were acquired with the LEICA ICC50W integrated microscope camera, and 273
were acquired with the Samsung Galaxy $20 smartphone camera. For the detection of erythro-
cytes and/or leukocytes in urine, 762 images were acquired with the integrated microscope
camera LEICA ICC50W and manually classified as urine samples with (493 images) or without
(269 images) erythrocytes/leukocytes, respectively. A summary of the urine sediment sample
image database information is shown in Table 1.
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Table 1. Summary of the urine sediment sample image database.

Category Sub-total Total
Drassanes-Vall d’Hebron International Health and Infectious Diseases Centre
Sample source (Barcelona, Spain) 24 (samples/patients) 24 (samples/patients)
Image acquisition type Microscope integrated camera (ICC50W Leica) 744 (annotated
images) 1017 (annotated
Smartphone camera (Samsung Galaxy S20) 273 (annotated images)
images)
Image magnification 10x ocular lens and 10x objective lens 500 (annotated
images) 1017 (annotated
10x ocular lens and 40x objective lens 517 (annotated images)
images)
Schistosoma haematobium eggs 1165 (labels)
Annotation category Schistosoma haematobium calcified eggs 24 (labels) 1189 (labels)
Binary image Presence of erythrocytes and/or leukocytes in urine 493 images
classification Non-presence of erythrocytes and/or leukocytes in urine 269 images 762 images
Negative sample Non-presence of Schistosoma haematobium eggs in urine 8 (samples/patients) 400 images
validation

https://doi.org/10.1371/journal.pntd.0012614.t001

3.2. Convolutional Neural Network performance comparison for S.
haematobium egg detection

CNN models were trained with our S. haematobium image database and compared to evaluate
their performance in a test subset. Table 2 shows the most relevant metrics of the YOLOv5s,
YOLOvV5x, YOLOV5x-DA, YOLOVSs, and YOLOv8x CNNs trained with 491- and 1017-image
databases. Overall analysis confirms that the 1017-image database provides higher metric
results for CNN training than the 491-image database, as expected. Considering the
1017-image database training, precision analysis shows optimal values with the YOLOv5
model, with 99.3% for YOLOv5x and 97.1% for YOLOv5s. Recall analysis demonstrates a
99.4% rate for YOLOv5x and 97.2% for YOLOv5s. Consequently, F-score analysis demon-
strated optimal values with the YOLOv5x (99.3%) and YOLOv5s (97.1%) models. Mean aver-
age precision (mAP0.5) analysis shows higher values for YOLOv5x, YOLOvS5s, and YOLOv8s
with 99.4%, 98.8%, and 98.7% respectively, all with the 1017-image database. Overall metric
analyses in terms of precision, recall, F-score, and mAP0.5 indicated that the best CNN model
for S. haematobium detection in urine sediment samples with our image database was
YOLOv5x (1017).

Table 2. Summary of Convolutional Neural Network training and performance parameters with the test image dataset. DA: Data augmentation, mAP: mean average
precision, YOLO: you only look once.

Neural Network model Epochs Precision (%) Recall (%) F-score (%) mAPO0.5 (%) Images

YOLOv5x 30 92.3 73.3 81.7 81.7 491
YOLOvV5x - DA 30 88.2 724 79.5 85.3 491
YOLOv8s 30 94.3 97.0 95.6 97.3 491
YOLOv8x 30 95.3 89.8 92.5 96.8 491
YOLOv5s 30 97.1 97.2 97.1 98.8 1017
YOLOv5x 30 99.3 99.4 99.3 99.4 1017
YOLOvSs 30 96.3 96.5 96.4 98.7 1017
YOLOv8x 30 96.3 95.1 95.7 96.6 1017

https://doi.org/10.1371/journal.pntd.0012614.t002
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Fig 3. Graphical representation of F-score/mAP0.5 of the different CNNs trained on the test dataset. Orange dots represent the performance of CNNs
trained with the 491-image dataset. Blue dots represent the performance of CNNs trained with the 1017-image dataset.

https://doi.org/10.1371/journal.pntd.0012614.9003

To determine differences between neural network performances for S.haematobium egg
detection in digital images, a statistical analysis was conducted considering the test data subset.
As expected, models trained with a larger image dataset (1017) show considerably higher per-
formance when compared with the previous smaller image dataset (491) (p<0.05). The impact
of the size of the database was studied, even though it might seem obvious, to analyze whether
results using more images were necessary. Results of the paired t-test indicated that there were
significant statistical differences between YOLOv5x-DA-491 (M = 42.3, SD = 41.7) and
YOLOv5x-1017 (M = 51.3, SD = 51), t = 2.4, p<<0.05. Moreover, results of the paired t-test
indicated that there were significant statistical differences between the YOLOv5-491
(M =42.8, SD = 40.1) and YOLOv5-1017 trained versions (M = 50.7, SD = 49), t = 3, p<0.05).
These data demonstrate the performance gain due to the higher number of data/images for
training the YOLOv5x model. In contrast, there are non-statistically significant differences
between models YOLOv8s-491 and YOLOv8s-1017 (p>>0.05) and models YOLOv8x-491 and
YOLOV8x-1017 (p>0.05). The performance gain due to the image dataset increase was not
obtained with model YOLOv8s or YOLOv8x. The optimal results of YOLOvS8 with a relatively
small image database (491) demonstrate the efficiency of the neural network compared with
YOLOVS. F-score values, which are the harmonic mean between precision and recall, and
mAPO.5, provide valuable information to determine the best model for our image dataset.

Fig 3 shows the correlation between the F-score and mAPO.5 values of the multiple trained
neural networks. The dots represented in the top right part of the graph reflect optimal perfor-
mance. Overall analysis and comparisons demonstrate that the YOLOv5x model is the most
optimal CNN for our digital image dataset, although the YOLOv8 models are more efficient in

@ » w »

terms of training and image database size. Differences between small “s” and large “x” CNN
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Fig 4. Panel A. Digital image (400x) of a urine sediment sample with hematuria and leukocyturia and three Schistosoma
haematobium eggs detected with the YOLOv5x trained model. Panel B. Digital image (100x) of a urine sediment sample with
three S. haematobium eggs detected with the YOLOv5x trained model.

https://doi.org/10.1371/journal.pntd.0012614.9g004

architectures were not statistically significant (p>>0.05). Image identification was represented
in Fig 4.

3.3. Binary image classification performance for erythrocyte/leukocyte
detection in urine sediment images

Whole-image classification algorithms were trained with our S. haematobium image database and
compared to evaluate their performance. Table 3 shows the most relevant metrics to evaluate the
performance of the MobileNetv3Large, EfficientNetv2, and NasNetLarge models. There were no
statistically significant differences between the performance of these three models (p>0.05), or
between validation (M = 85.5, SD = 3.9) and test (M = 82.4, SD = 4) subsets in terms of accuracy
results (¢ = 1.8, p > 0.05). However, NasNetLarge was considered the best option for the erythro-
cytes/leukocytes image classification task with an 85.6.0% accuracy, followed by the MobileNetv3-
Large and EfficientNetv2 models, with 83.7% and 77.9% accuracy, respectively.

3.4. Negative sample validation

Analysis and validation tests were performed to evaluate the reliability of the YOLOv5x-1017
model trained with confirmed negative samples. Urine sediment samples (n = 8) with a

Table 3. Summary of binary image classifier training and performance parameters on validation and test image datasets.

Image classifier model Epochs Batch size Validation Accuracy Test Accuracy

MobileNetv3Large 30 20 83.3 83.7
EfficientNetv2 30 20 83.3 77.9
NasNetLarge 30 20 90.0 85.6

https://doi.org/10.1371/journal.pntd.0012614.t003
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negative microscopic examination result for S. haematobium eggs were employed. Samples
were observed and validated by professional microscopists with proven experience in parasito-
logical diagnosis. Five microscope slides of each sample were prepared to observe the whole
urine sediment. A total of 400 images were acquired from urine sediment samples and ana-
lyzed by the trained YOLOv5x model (confidence threshold value = 0.7). These negative sam-
ple images were not used for CNN algorithm training. After analysis, 394/400 (98.5%) were
negative (true-negative) for S.haematobium infection, and six false-positive results were
reported (epithelial cells, urine crystals, and artifacts). All false-positive images were from a
single urine sediment sample.

3.5. Testing analysis with other image databases

To determine the robustness of our trained models, we tested the considered optimal model,
YOLOv5x, with digital images from other sources. However, there are no publicly available
large state-of-the-art S. haematobium urine sediment databases to compare our results. As an
alternative, publicly available single images were obtained from contrasted cited sources [23-
26,45-47]. We selected and employed images with different input sizes (from 1600 x 1200 pix-
els to 400 x 300) and different image weights (from 895 KB to 25.9 KB), ensuring a representa-
tive sample (n = 19). Digital images with parasite eggs were empirically tested with our fine-
tuned YOLOv5x model with positive results (27/27 eggs detected, average detection probabil-
ity value = 0.79).

3.6. Automated microscope for diagnosis and smartphone software
application

To automatically perform an autonomous detection of S. haematobium eggs in urine sediment
samples, we designed a fully automated low-cost robotized microscope. Three-D polylactic
acid pieces for microscope automation were built with an Ender 3-Pro printer. Automation
allows the emulation of optical microscope movements via 9G servo motors and an Arduino
MKR Wi-Fi 1010 controller. X-Y and Z (auto-focus) through the microscope slide permit the
system to acquire images of different FoVs for further CNN detection. To auto-focus each
FoV, a Variance of the Laplacian algorithm was employed [48]. Considering Schistosomiasis-
endemic areas, which are usually resource-poor settings, the microscope was designed with
low-cost materials and does not require continuous electric power supply. However, its imple-
mentation in resource-poor settings should be tested. Portable solar batteries grant the system
energy autonomy if this is not available in the laboratory. In addition, the 3D pieces were
designed with a range of measures as universal adapters for the vast majority of optical micro-
scopes. A smartphone device controls the system’s movements, via servo motors, through the
X-Y-Z axis of the microscope. The Arduino controller is connected to the smartphone device
via a Bluetooth low-energy connection, which additionally acquires the images and auto-
focuses the sample for further CNN object detection analysis. The whole diagnostic process is
integrated into a smartphone-based application developed with Android Studio Programming
environment v.2021 [49]. This automated system has already been employed by our research
group for the automated detection of Plasmodium trophozoites and leukocytes in thick blood
smear samples for malaria diagnosis [50].

4. Discussion

Schistosomiasis diagnosis by microscopic examination of urine and stool samples is still the
gold standard technique and is widely used in resource-poor areas. However, the continuous
reduction in microscopy parasitologist experts [13] requires the development and
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implementation of novel diagnostic techniques for the diagnosis of schistosomiasis and other
NTDs. In this study, we have developed a novel diagnostic technique based on the automatic
detection of S. haematobium eggs in urine sediment samples using Al tools and a robotized
low-cost 3D microscope system. Moreover, a first proof-of-principle study was performed to
evaluate its detection potential and implementation in non-endemic settings.

Following WHO guidelines for Schistosomiasis diagnosis, we have employed urine sedi-
ment samples and consequent image acquisition [32]. Clinical urine sediment samples are cru-
cial to properly acquire digital images of S. haematobium eggs, train CNN models, and finally
emulate a traditional microscopic diagnosis by Al image analysis techniques. In vivo and in
vitro cultures of S. haematobium for laboratory-kept parasite lifecycle were described in the
mid-1960s [51]; according to our knowledge, there are no publications describing their use for
digital image acquisition and database generation for further CNN training. The conservation
of fresh S. haematobium eggs can be difficult due to degradation. It would be optimal to cap-
ture images of S.haematobium eggs in situ at field laboratories, in order to obtain a more
robust and representative database. As a limitation of the study, (i) images should be acquired
at most 24/48 hours after sample collection, if not keptat 4°C [52]. Moreover, (ii) system
development was performed in non-endemic settings, resulting in sample collection difficul-
ties due to the lower number of cases received in comparison with endemic regions. Sample
size was small, therefore further investigation is needed to obtain more robust and conclusive
results. Finally, (iii) a system validation should be pursued in S. haematobium endemic regions,
to evaluate its performance in such environments. Although the system has been designed for
its implementation in resource-poor settings, it has initially been evaluated in non-endemic
areas, Therefore, it is crucial to conduct pilot tests in the field and further studies to assess diag-
nostic performance in such environments. Some of the system aspects that would allow its
implementation in rural areas with few resources are: its adaptability to conventional optical
microscopes, its portability, the low-cost of the system and the non-internet connection
required.

As an attribute of the study, the detection of S. haematobium basal stage and calcified eggs
was implemented to detect both egg forms. Calcified eggs are typically found in chronic blad-
der infections and, sometimes, basal-stage eggs were not present, making their detection essen-
tial for a proper diagnosis [53]. One of the main strengths of our study is the training and
comparison of different YOLO neural network models. The continuous advancements in
CNN development and improvement are generating more efficient models for object detec-
tion. The YOLOv5 and YOLOv8 models were considered optimal options in terms of accuracy
and inference speed for object detection tasks [38]. Our results have shown that YOLOv5x was
the best option for S. haematobium egg detection with our digital image database (Table 2).
The improved YOLOv8 model shows a more efficient performance in terms of training in
comparison with YOLOvS5; YOLOv8 models trained with the 491-image dataset demonstrated
optimal performances for all descriptive parameters. However, when the 1017-image dataset
was employed, the YOLOv5 models demonstrated better performance compared with
YOLOVS (Fig 3). Other studies have compared the performance of the YOLOv5 and YOLOv8
models with very variable results [39,54]. Sary et al. 2023, compared the performance of both
models for human detection in aerial images, showing better precision and F-score values for
YOLOVS and higher recall values for YOLOvS5 [55]. Nevertheless, Sirisha et al. 2023, reported
that the YOLOv5 model has a higher mAPO0.5 value compared with other YOLO versions [38].
In addition, both YOLOv5 and YOLOv8 were employed for diagnostic tasks such as detecting
developmental dysplasia of the hip in radiography images [56], and localization of dermo-
scopic structures [57], conferring the algorithms a contrasted efficacy for image-based
diagnosis.
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Another important aspect of this study was the identification of erythrocytes and leukocytes
in the urine with the NasNetLarge model, allowing a diagnostic orientation due to the high
correlation between the presence of erythrocytes in urine and S. haematobium eggs. It is
important to note that haematuria may appear in multiple clinical situations; however, in
schistosomiasis diagnostic protocols, a high correlation rate (78%) was observed, as shown in
other studies [58]. We could not confirm that haematuria and leukocytes are specific to the
infected individual, although if they were detected through images we could continue observ-
ing several sample replicas to find parasite eggs. Moreover, the NasNetLarge model had pro-
vided contrasted results for binary image classification with other similar diagnostic tasks,
such as melanoma skin lesion detection and classifying diabetic retinopathy severity in digital
images [59,60].

Other studies demonstrated the applicability of object detection algorithms for Schistosoma
egg detection in stool and urine samples [61-64]. Before the irruption of CNNs, other strate-
gies, such as the multi-class support vector machine (MCSVM) for parasite egg classification,
were developed with an overall performance of 97.7% [62]. However, CNNs improved tradi-
tional image object detection in terms of computational potential, speed, and performance.
Werd et al. 2022, developed an affordable Al-based system for the detection of soil-transmitted
helminths and S. mansoni eggs in stool samples with the R-FCN ResNet101 COCO model
[14]. They obtained an F-score of 88.9% for Schistosoma detection in stool samples, in compar-
ison with the 99.3% value in urine samples of our fine-tuned YOLOv5x model. However, we
must consider that the number of artifacts in stool samples is much higher than in urine sam-
ples. In addition, the number of images employed for CNN training was larger in our study.
The difficulty in obtaining parasite egg digital images has led to several studies using data aug-
mentation (DA) strategies [63]. Oliveira et al. 2022, used a DA strategy (66 original images) for
S. mansoni egg detection in microscopy images with the Faster R-CNN model, showing a
76.5% precision [64]. Nevertheless, with our image dataset, we did not observe any statistically
significant differences between DA and non-DA training, as shown in Table 2. As a break-
through, Oyibo et al. 2022, developed an optical automated system based on Al for the detec-
tion of S. haematobium and S. mansoni eggs in urine and stool, respectively, for
implementation in resource-poor settings [65]. Moreover, they mainly used non-clinical sam-
ples for UNET model training, which may interfere with its final performance. In addition,
Schistoscope 5.0 shows an 80.1% sensitivity and 95.3% specificity for S. haematobium detec-
tion. However, it is a non-optimal system for transportation and needs to be suitable for the
WHO target product profile for new diagnostics [66]. Its contribution is a milestone for auto-
mated schistosomiasis diagnosis and could be an alternative to conventional diagnosis in coa-
lescence with other similar studies. Additionally, they have demonstrated that the employment
of negative urines from endemic regions is crucial in validation studies, due to the presence of
abundant artifacts that could be identified as parasite eggs [66]. Therefore, in our study, a neg-
ative sample validation should be pursued with a large amount of samples (>8) to evaluate the
system performance in the field. Oyibo et al. 2023 also developed a detection framework for
the diagnosis of urogenital schistosomiasis in microscopy images with from low-resource set-
tings. The framework demonstrates a clinical sensitivity, specificity, and precision of 93.8%,
93.9%, and 93.8%, respectively, using results from an experienced microscopist as reference
[67]. As another example, Coulibaly et al. 2023 performed a community based schistosomiasis
screening program with a smartphone-based Al device showing 85.7% sensitivity and 93.3%
specificity [15]. Its design is also 3D-printed, innovative and portable; although there are some
differences with our system in terms of adaptability to other smartphone devices or micro-
scopes. An alternative to using CNN-based models such as YOLO would be to use Vision
Transformer models. However, they require larger model sizes, greater memory, and larger
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databases [68]. Since our database is relatively small, we decided to use CNN-based models,
which provide excellent results. AiDx multi-diagnostic microscope was tested in 17 communi-
ties in Abuja, Nigeria; showing 89% sensitivity and 99% specificity for the identification of S.
haematobium eggs in urine with the fully automated AiDx Assist mode [69].

Our system has proven to be robust in our microbiology laboratory (non-endemic settings)
and should be validated for its implementation in resource-poor settings for further evalua-
tion. However, developmental stages, such as the ones presented in this manuscript, were cru-
cial to evaluate the reliability of the system before a diagnostic validation, and were the basis
for further in-field studies. Overall, we believe that this novel automated low-cost Al-based
diagnostic system for parasite detection could join the global effort to fight NTDs and poverty-
related diseases worldwide.

5. Conclusions

Automated schistosomiasis detection is a big challenge to support and optimize traditional
microscopic diagnosis. Deep learning-based diagnostic techniques would help improve diag-
nostics and could be a suitable tool for the training and education of professionals. NTDs,
such as schistosomiasis, are being significantly overlooked by national and international health
organizations; therefore, novel solutions to improve the management of these diseases would
be of significant benefit to the most vulnerable affected populations. Comparison of different
YOLO object detection models allowed us to choose the best algorithm for our detection,
ensuring that these results could be replicated in other similar studies. The automation of the
entire process by robotization with 3D parts and servomotors for a conventional optical
microscope allows the emulation of the X-Y slide movements and sample auto-focus. The inte-
gration of image analysis and microscope automation provides the system with attributes that
render it accessible, affordable, and highly autonomous. Moreover, the low-cost and easy-to-
handle technology was designed to be implemented in any laboratory, regardless of their
resources. To this end, it is important to understand the needs related to the diagnosis of schis-
tosomiasis and other NTDs in the field and to jointly develop solutions for the correct imple-
mentation of new Al-based technologies. In conclusion, we are getting closer to developing an
automated diagnostic system for schistosomiasis diagnosis based on Al tools, to fight NTDs
and other poverty-related diseases.
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Resum del treball:

El diagnostic gold standard de la malaria és la visualitzacié microscopica de mostres de sang per
identificar els parasits de Plasmodium. Es una técnica professional depenent i podria
desencadenar en errors de diagnostic. Les eines d'Intel-ligéncia Artificial (IA) basades en I'analisi
d'imatges digitals es van postular com una alternativa de suport adequada per al diagnostic
automatitzat de la malaria. Al laboratori de referéncia de la Unitat de Salut Internacional
Drassanes-Vall d'Hebron de Barcelona, es va realitzar una avaluacié diagnostica del sistema
basat en IA anomenat iMAGING. iMAGING és un dispositiu automatitzat pel diagnostic de la
malaria mitjancant I'Us d'eines d'analisi d'imatges basades en intel-ligéncia artificial, i un
microscopi robotitzat de baix cost. Es van emprar un total de 54 mostres de gota gruixuda
tenyides amb Giemsa de viatgers i migrants procedents de zones endéemiques, i es van analitzar
per determinar la preséncia/abséncia de parasits de Plasmodium. Els resultats del diagnostic de
la IA es van comparar amb els resultats del metode gold standard. El sistema d'IA mostra una
sensibilitat del 81.25% i una especificitat del 92.11% en comparacié amb el metode convencional
de microscopia. En total, 48/54 (88.89%) mostres van ser correctament identificades [13/16
(81.25%) com a positives i 35/38 (92.11%) com a negatives]. El temps mitja del sistema d'lIA per
determinar un diagnostic positiu de malaria va ser de 3 minuts i 48 segons, amb una mitjana de
7.38 FoV analitzats per mostra. L’analisi estadistica va donar com a resultat en un index Kappa
de 0.721, demostrant una correlacié satisfactoria entre el metode de diagnostic gold standard i
els resultats d'iMAGING. El sistema d'lA va demostrar resultats fiables pel diagnostic de la
malaria en un laboratori de referéncia a Barcelona. La validacié en regions endémiques de

malaria sera el seglient pas per avaluar el seu potencial en entorns amb pocs recursos.
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Abstract: The gold standard diagnosis for malaria is the microscopic visualization of blood
smears to identify Plasmodium parasites, although it is an expert-dependent technique
and could trigger diagnostic errors. Artificial intelligence (Al) tools based on digital
image analysis were postulated as a suitable supportive alternative for automated malaria
diagnosis. A diagnostic evaluation of the iMAGING Al-based system was conducted
in the reference laboratory of the International Health Unit Drassanes-Vall d’'Hebron in
Barcelona, Spain. iMAGING is an automated device for the diagnosis of malaria by using
artificial intelligence image analysis tools and a robotized microscope. A total of 54 Giemsa-
stained thick blood smear samples from travelers and migrants coming from endemic areas
were employed and analyzed to determine the presence/absence of Plasmodium parasites.
Al diagnostic results were compared with expert light microscopy gold standard method
results. The Al system shows 81.25% sensitivity and 92.11% specificity when compared with
the conventional light microscopy gold standard method. Overall, 48/54 (88.89%) samples
were correctly identified [13/16 (81.25%) as positives and 35/38 (92.11%) as negatives].
The mean time of the Al system to determine a positive malaria diagnosis was 3 min and
48 s, with an average of 7.38 FoV analyzed per sample. Statistical analyses showed the
Kappa Index = 0.721, demonstrating a satisfactory correlation between the gold standard
diagnostic method and iIMAGING results. The Al system demonstrated reliable results for
malaria diagnosis in a reference laboratory in Barcelona. Validation in malaria-endemic
regions will be the next step to evaluate its potential in resource-poor settings.

Keywords: artificial intelligence; malaria; automated diagnosis; tropical medicine;
Plasmodium; point-of-care; infectious diseases
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1. Introduction

Malaria is a parasitic disease caused by Plasmodium spp. with a high prevlence
in tropical regions worldwide and transmitted through the bites of Anopheles female
mosquitoes. The five Plasmodium species that cause malaria infection in humans are
Plasmodium falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Regarding World Health
Organization (WHO) data, globally, in 2022, there were 249 million malaria cases and
608,000 deaths [1]. Most of the deaths are caused by P. falciparum, mainly in children
under five years of age from resource-poor setting areas of the Sub-Saharan Africa region.
Therefore, malaria early diagnosis is crucial to decrease morbidity and mortality. The
microscopic examination of thick and thin blood smear samples to determine the presence
and species of Plasmodium parasites is the gold standard technique for malaria diagnosis.
However, it is an expert-dependent methodology and could trigger diagnostic errors. As
a supportive tool for microscopy examination, artificial intelligence (AI) methods are be-
ing postulated due to their easy handling. Novel image analysis techniques encompass
Convolutional Neural Networks (CNNs), attention modules, and transformers, which all
determine and identify objects of interest in digital images [2]. In addition, the robotization
of the microscope stage and image autofocus would provide a fully automatic process.
Low-cost robotized designs were proposed as suitable alternatives for conventional optical
microscopy automation [3]. Moreover, several Al-based systems have been evaluated for
the diagnosis of malaria and schistosomiasis in laboratories from endemic areas [4-6]. Most
systems employ a smartphone device to acquire and analyze digital images or videos by
CNN models in order to identify parasites or bacteria and perform a final diagnosis.

The iMAGING system is based on a robotized low-cost system consisting of 3D pieces
and servo motors to automate a light optical microscope and a smartphone application
responsible for acquiring the images and analyzing them by the You Only Look Once
(YOLOv5) CNN pre-trained model. The development and design of the diagnostic system
were already published in previous studies [7,8].

In this study, a preliminary diagnostic evaluation of the iMAGING system for the
diagnosis of malaria in Giemsa-stained thick blood smear samples was performed. We
evaluated the diagnostic sensitivity and specificity of the Al system in comparison with
the gold standard methodology. Therefore, this study represents the initial step before the
diagnostic validation in malaria-endemic settings.

2. Materials and Methods
2.1. Study Design

A diagnostic validation study was conducted using a collection of samples from
travelers, Visit Friends and Relatives (VFR), and migrants coming from malaria-endemic
areas (mainly Sub-Saharan Africa, South America, and Southeast Asia regions [9]) attending
the International Health Unit Drassanes-Vall d’"Hebron. The sample collection period was
encompassed between 1 February 2023 and 30 November 2023. A total of 54 samples
from 46 individuals were analyzed. Different samples from the same individual/ patient
were drawn at different times, before and after antimalarial drug treatment. Giemsa-
stained thick blood smear samples were examined by conventional optical microscopy and
were analyzed by the iMAGING system for malaria diagnosis. All Plasmodium-negative
samples were also analyzed by RT-PCR (RealStar® Malaria, Altona, Hamburg, Germany)
for diagnosis confirmation. Positive samples were classified according to parasite density
(<800 parasites/uL; 801-10,000 parasites/uL; or >10,000 parasites/uL). Plasmodium species
information was also collected. All samples were retrospectively revised by a laboratory
technician to ensure sample quality.
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2.2. Sample Size

A total of 54 thick blood smear samples were estimated to be statistically representative
of our study. The sample size was calculated from epidemiological data of the International
Health Unit Drassanes-Vall d’'Hebron laboratory, following statistics guidelines for sample
size calculation with proportions [10]. The sample size equation requires population size,
probability of a condition (malaria positive), confidence level, and accepted error. Since
malaria is not endemic in Spain, an approximation with real clinical data was employed.
The population size was taken to be the number of blood smears analyzed from patients
with suspected malaria (84 patients from 1 January 2020 to 31 December 2020), with a
prevalence of 10.71% in our center. The calculations were performed using a value of 95%
confidence and a 5% accepted error.

2.3. Microscope Automation

Samples were analyzed using the iMAGING software version 1.0. smartphone appli-
cation for Plasmodium parasite detection in thick blood smear samples. Sample scanning
was automated by the robotization of a conventional optical microscope (Olympus CH-2,
Olympus, Feasterville-Trevose, PA, USA) with polylactic acid (PLA) 3D pieces. Micro-
scope stage movements and autofocus issues were automated by three 9G low-cost servo
motors, one for each axis, X-Y and Z (focus). All the system was controlled by an MKR
Wifi 1010 Arduino controller (Arduino, Monza, Italy), connected by Bluetooth (BLE) to the
smartphone device (Xiaomi Redmi 10, Xiaomi Corporation, Beijing, China). The robotized
microscope system design has been published in open-access format [8]. Samples were
analyzed through a snake-like movement in order to correctly visualize the thick blood
smear sample. Autofocus analysis was performed via the Laplacian Variance algorithm in
each Field of View (FoV).

2.4. Image Analysis and Diagnostic Algorithm

Digital images were acquired through the ocular lens of the robotized microscope with
a Xiaomi Redmi 10C smartphone device (Camera: 720 x 1650 pixels resolution; Dual 50 MP,
£/1.8,26 mm (wide), PDAF 2 MP, £/2.4, (depth), HDR). A minimum of 30 MP resolution
camera is required for image analysis. A two-step process was designed for the analysis
of the images via the YOLOv5 CNN model to obtain more reliable results. YOLOVS5 is a
state-of-the-art CNN algorithm with high-performance results in multiple image analysis
applications in terms of accuracy and speed. The detection of objects (parasites and cells) in
digital images is a suitable task for that kind of model. Previous studies also demonstrate
that the YOLOv5 model is the best option for the iMAGING diagnostic system for thick
blood smear image analysis [7].

First, a live video of each FoV was recorded and analyzed using the Laplacian Vari-
ance algorithm. The captured video frame with the highest value of Laplacian Variance
was analyzed by the neural network model YOLOv5s (smartphone) integrated into the
iMAGING smartphone application. The YOLOvbs confidence threshold value was set to
0.25 for leukocyte and Plasmodium trophozoite detection via a smartphone device. This
screening procedure was repeated until the identification of 15 possible parasites or the
observation of 100 FoV, following data from previous studies.

Secondly, analyzed images were sent by BLE connection to ARIS software (computer
device) for diagnosis confirmation. YOLOv5x (computer) confidence threshold value was
set to 0.25 (iIMAGING) and 0.50 (iIMAGINGv?2) for leukocyte and Plasmodium trophozoites
detection via a computer device. The variation in the threshold value (0.25 or 0.50) allows us
to evaluate the diagnostic results of the CNN according to the level of restriction for object
detection. Leukocyte detection allows us to confirm that the sample is correctly stained and
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serves as a quality control. If a single Plasmodium parasite was detected with the YOLOv5x
model, the sample was considered positive. Conversely, if parasites were not detected
in the analyzed images, the sample was considered negative for Plasmodium infection.
The YOLOv5 metrics performance has already been published in previous studies by our
research group [7]. A diagnostic flowchart is represented in Figure 1.
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Figure 1. Diagnostic flowchart of the iMAGING smartphone application software and ARIS software
for Plasmodium parasites detection in thick blood smear samples.

2.5, Statistical Analysis

iMAGING diagnostic results were compared with the reference gold standard diag-
nostic method (conventional optical microscopy). SPSS (version 27) and Excel 2016 were
employed for statistical analysis. Diagnostic performance parameters for the iMAGING
system were calculated: sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), parasitemia densities, and time of analysis.

3. Results
3.1. Diagnostic Accuracy of the iMAGING System Compared with Light Optical Microscopy

A total of 54 thick blood smear samples from 46 individuals were collected and eval-
uated by optical microscopy (gold standard) and iMAGING (Al system). Among the
46 participants of this study, 35/46 (76%) were male and 11/46 (24%) female. Their mean
age was 32 years old (y.0.) [Interquartile range (IQR): 21-42 y.0.], and 24/46 (52.2%) were
migrants, 11/46 (23.9%) VFR, and 11/46 (23.9%) travelers. Samples analyzed by optical mi-
croscopy show 16/54 (29.6%) positive and 38 /54 (70.3%) negative for Plasmodium infection.
The positive samples showed parasitemia ranges between 80 to >10,000 parasites/pL of
blood [7/16 (43.75%) show <800 parasites/uL; 4/16 (25.0%) show 801-10,000 parasites/uL;
and 5/16 (31.25%) show >10,000 parasites/pL]. Samples were predominantly 10/16 (62.5%)
P. falciparum infections. A total of 4/16 (25%) samples were P. vivax/P. ovale infections,
and 2/16 (12.5%) were P. malariae infections. All negative samples, 38/38 (100%), were
screened by RT-PCR (RealStar® Malaria, Altona), showing negative results for Plasmodium
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infection. When compared to light microscopy, the iMAGING system demonstrated an
81.25% sensitivity (CIL 95%: 53.69, 95.03), 92.11% specificity (CI 95%: 77.52, 97.94), 81.25%
PPV (CI 95%: 53.69, 95.03), and 92.11% NPV (CI 95%: 77.52, 97.94). Overall, the Al system
demonstrates an 88.89% accuracy (48/54). The iMAGING system correctly identified 48/54
samples, with three false-positive (3/16) and three false-negative results (3/38). Results
are represented in Table 1. The Kappa value (CI 95%) = 0.721 (0.511, 0.931) demonstrated a
relatively strong correlation.
Table 1. Diagnostic evaluation of the iIMAGING system versus light optical microscopy for the
diagnosis of malaria in Giemsa-stained thick blood smear samples.
. . P e Kappa
Light Microsco Sensitivit Specificity PPV NPV - . .
(Gold Standard)  (CI95%)  (CT95%)  (CI98%)  (C95%) e Value Mean Time of Analysis
Positiv Negative
= ) Tl 01 005 (ppamodiums)  (Plasmodinm—)
IMAGING  (+) 13 3 8125 92.11 81.25 92.11 (0511,
(AI system) (FP) (53.69, (77.52, (53.69, (77.52, 0.931) 3min48 5min5s
o 3 s 3 95.03) 97.94) 95.03) 97.94) Signifi- s/sample </sample
(EN) cant*
Total 16 38 54

PPV: positive predictive value; NPV: negative predictive value; Al: artificial intelligence; CI: confidence interval;
FP: false positive; FN: false negative. * In most occasions, less than 100 Fields of View (FoV) were observed,
significantly reducing the meantime of analysis. * Kappa Cohen’s value interpretation following Landis JR, Koch
GG. The measurement of observer agreement for categorical data. Biometrics. 1977 criteria.

3.2. Parasite Density and Plasmodium Species

In detail, diagnostic results comparisons are represented in Table Al. Regarding
positive samples (1 = 16), 13/16 (81.25%) were correctly considered positive for Plasmodium
infection by the iMAGING device. False-positive and false-negative results were analyzed
in detail to avoid diagnostic errors. Parasite density is a crucial feature for malaria diag-
nosis, and discordant results were interpreted. Regarding positive samples, 5/5 (100%)
with >10,000 parasites/pL, 4/4 (100%) with 801-10,000 parasites/puL, and 4/7 (57.14%)
with <800 parasites/uL were correctly diagnosed by the iMAGING system. A high per-
centage of false-negative results (3/7, 42.85%) were reported in low-parasitized samples
(<800 parasites/uL), representing 5.55% (3/54) of all analyzed samples. Regarding nega-
tive samples (1 = 38), 35/38 (92.10%) were correctly considered negative for Plasmodium
infection by the iMAGING device. Overall, there were 3/38 (7.89%) false-positive results,
mainly due to the high presence of artifact samples because of the Giemsa staining proce-
dure. Diagnostic evaluation results are summarized in Figure 2. In terms of Plasmodium
species, the system is not able to distinguish them, although results were analyzed regard-
ing diagnostic positivity/negativity. In summary, 8/10 (80%) of P. falciparum samples, 3/4
(75%) of P. vivax/P. ovale, and 2/2 (100%) of P. malarine were correctly considered positive
Plasmodium infections.

3.3. iMAGING System Scanning Performance

The mean number of FoV observed was 7.38 FoV for positive samples and 21.86 FoV
for negative samples. Considering parasite density, a mean number of 4.4 FoV was observed
in samples with >10,000 parasites/uL, 10 FoV in samples with 801-10,000 parasites/uL,
and 8.5 FoV in samples with <800 parasites/uL (Figure 2). The number of observed FoV
was considerably higher in negative samples than in positive samples (p < 0.01) due to the
stop scanning criteria (15 possible parasites detected or 100 FoV observed).

In terms of time of analysis, the iMAGING system demonstrates a mean time of
scanning of 3 min and 48 s for positive samples (n = 16). Negative samples (n = 38) were
scanned in a mean time of 5 min and 5 s, considering that in most occasions the stopping
criteria of 100 FoV observed was not reached.

arasite 0.881
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Figure 2. Diagnosis accuracy results of the iMAGING system. Positive samples were divided by
parasite densities (>10,000 parasites/pL, 801-10,000 parasites/uL, and <800 parasites/uL). Green
crosses represent the mean number of Fields of View (FoV) observed for each sample category.

4. Discussion

The iMAGING Al-based diagnostic system has demonstrated reliable results for
malaria diagnosis in non-endemic settings. A fully automated procedure in a smart-
phone application and a low-cost robotized microscope confer the system the suitable
features to complement traditional microscopy diagnosis. Diagnostic evaluation results
of sensitivity and specificity by using the iMAGING Al system are in concordance with
other similar studies [6,11,12]. A similar system, called EasyScan GO, based on Al malaria
diagnosis with deep neural networks, demonstrated a range of 88.0-91.1% sensitivity and
75.6-89.0% specificity [6,11,12]. In terms of specificity, our system demonstrated more
optimal results, although, in terms of sensitivity, EasyScan GO outperforms iMAGING.
Other similar devices, such as miLAB™, an automated microscope for the detection of
Plasmodium parasites in thin blood smears, were evaluated for detecting the parasites in
samples from symptomatic patients at point-of-care in Sudan [12]. Accuracy results demon-
strate a 91.1% sensitivity and 66.7% specificity in the automated mode, although specificity
increased to 96.2% with operator intervention [12]. The cited devices demonstrate the
applicability of automated tools, such as iMAGING, as supportive tools for point-of-care
malaria diagnosis. However, Al-systems comparison should be pursued with the same
samples and in the same laboratory conditions in order to reliably compare the diagnostic
potential of each device.

The two-step diagnostic procedure allows the system to avoid possible false-positive
results by the YOLOv5s model. YOLOv5s was executed by the smartphone device; there-
fore, its computational potential and performance were lower in comparison with YOLOv5x
(computer). All sample scanning analyses were stopped by the >15 possible parasites
detected criteria (Figure 1) and screened via the YOLOv5x model to discard false-positive
results. However, less than 100 FoV were observed in each sample, causing negative results
to depend on the reliability of the observed fields. Although the proposed methodology
significantly reduces the time of analysis for each sample, equaling that of a microscopist.
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Another determinant factor for the diagnostic evaluation is the previous development
validation of the diagnostic system, as performed with the iMAGING system [3]. Neural
network validation should be performed before a diagnostic validation. Convolutional
Neural Network (CNN) performance is crucial to obtain a reliable diagnosis, although
optimal CNN metrics are not sufficient to evaluate a diagnostic system, as they provide
information about the accuracy of the detection of objects in digital images and not about
the final diagnosis of the analyzed sample. Several studies demonstrate optimal CNN
metrics for malaria detection in thick and thin blood smear samples [13-15]. However,
diagnostic validations should be the next step in order to evaluate detection software as a
supportive novel diagnostic tool. Artificial intelligence-based systems could be a suitable
supportive tool for malaria diagnosis in non-endemic settings, although low parasite-
density infections continue to challenge diagnostic accuracy [16]. The implementation
of this type of technology in real clinical diagnostic conditions must be accompanied
by microscopists, and the results should be interpreted by observing the digital images
displayed by the system. In addition, we could avoid the number of false-positive and
false-negative results due to errors in image analysis by means of CNNs.

This is the first diagnostic evaluation study of the IMAGING system. Therefore, further
validation studies will be needed in reference laboratories and in the field. Preliminary
results demonstrate that the iMAGING device could be a suitable supportive solution for
the diagnosis of malaria in cases of medium and high Plasmodium parasite density samples
and negative samples, although it should be supervised by laboratory technicians to detect
low parasite densities. The diagnostic system algorithm could be improved by modifying
the threshold value, by adding more digital images to our dataset, or by improving image
quality [17,18]. These strategies could be the future steps for the iMAGING validation in
non-endemic settings.

Some of the challenges of our study were (i) to increase the sample size (n = 54) em-
ployed for diagnostic evaluation, (ii) the non-identification by the Al system of Plasmodiun
species, (iii) smartphone camera (image resolution), and (iv) the false-negative results in
some of the low parasitized samples. Thus, further studies in endemic areas should be
pursued in order to evaluate the robustness of the Al-based system diagnostics in other
laboratories with a larger number of patients and samples and with low parasite densities.
Retraining Al algorithms and improving the smartphone camera resolution, or the 3D
pieces of the device, could also positively improve image analysis. Moreover, Giemsa
staining, laboratory infrastructure, and microscope lenses could affect the image acquisition
procedure and, therefore, the final diagnosis [3]. Plasmodium identification models should
also be integrated into the system to perform a complete malaria diagnosis, as published in
other similar studies [19,20]. The availability of electricity and the diagnostic protocols of
each country or region can also be significant when implementing this type of device.

5. Conclusions

To conclude, the iIMAGING system has demonstrated a reliable diagnostic correlation
with the gold standard methodology. The improvement of the system via the retraining of
CNN models and the validation in other laboratory settings are needed to optimize the
system, especially for low-parasitized samples. Furthermore, the training of microscopists
remains a global priority, and in order not to lose awareness, strategies could be generated
based on accessible digital tools. We believe that this novel diagnostic system will join the
global effort to fight against malaria and poverty-related diseases, breaking the digital gap
between the north and the south.
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Appendix A

Table Al. Comparison of the diagnostic performance of the iMAGING system with the 54 analyzed
samples in comparison with the gold standard diagnosis (International Health Unit Vall d'Hebron-
Drassanes). All negative samples were also confirmed with RT-PCR (RealStar® Malaria, Altona).

. . Light Microscopy Al System
Sample Codification (Reference Laboratory) (Number of FoV Observed)

POSITIVE

1 (P. falciparum; +10,000 parasites/pL) POSITIVE (2)
POSITIVE

2 (P. falciparum; +10,000 parasites /L) POSITIVE (3)
POSITIVE

3 (P. falciparum; +160 parasites/uL) NEGATIVE (26)
POSITIVE

4 (P. falciparum; +160 parasites/uL) POSITIVE (13)
POSITIVE

5 (P. falciparum; +640 parasites/uL) NEGATIVE (43)
POSITIVE

6 (P. falciparum; +7600 parasites/uL) POSITIVE (24)

7 NEGATIVE NEGATIVE (45)

8 NEGATIVE NEGATIVE (18)

9 NEGATIVE NEGATIVE (8)

10 NEGATIVE NEGATIVE (15)
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Table Al. Cont.

Sample Codification (R‘:}Lgr:;xlf:;?;}gry) (Numbe? olfSFyos\tfegbserved)
11 NEGATIVE NEGATIVE (16)
12 NEGATIVE NEGATIVE (7)
13 NEGATIVE NEGATIVE (9)
14 NEGATIVE NEGATIVE (20)
15 NEGATIVE NEGATIVE (17)
16 NEGATIVE POSITIVE (33)
17 NEGATIVE NEGATIVE (5)
18 NEGATIVE NEGATIVE (22)
19 NEGATIVE NEGATIVE (88)
20 NEGATIVE POSITIVE (21)
21 NEGATIVE POSITIVE (27)
2 (P. vivax; E&SOIZEESHGBS /uL) NEGATIVE (32)
3 (P. vivax; Egls()ITp{avrfsites /ul) POSITIVE (12)
24 (P. fal ciparumfj?lsﬂl,gég };arasites /uL) POSITIVE (1)
5 (P. falciparumf)ﬁsﬂl,gég iarasites /uL) POSITIVE (14)
26 NEGATIVE NEGATIVE (18)
27 NEGATIVE NEGATIVE (6)
28 NEGATIVE NEGATIVE (29)
29 NEGATIVE NEGATIVE (31)
30 (P. falcipmfﬂcz);SSIg?;fasites /uL) POSITIVE (5)
3 (P. falcipurztfn?gigrgiasites/ uL) POSITIVE (4)
32 NEGATIVE NEGATIVE (7)
33 NEGATIVE NEGATIVE (7)
34 NEGATIVE NEGATIVE (18)
35 NEGATIVE NEGATIVE (17)
36 NEGATIVE NEGATIVE (16)
37 NEGATIVE NEGATIVE (93)
38 NEGATIVE NEGATIVE (45)
39 NEGATIVE NEGATIVE (22)
40 NEGATIVE NEGATIVE (10)
41 NEGATIVE NEGATIVE (15)
42 NEGATIVE NEGATIVE (7)
43 NEGATIVE NEGATIVE (21)
44 NEGATIVE NEGATIVE (12)
45 POSITIVE POSITIVE (2)

(P. ovale; +10,000 parasites/uL)
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Table A1l. Cont.

Light Microscopy Al System
(Reference Laboratory) (Number of FoV Observed)
POSITIVE

% (P. ovale; +8200 parasites/uL) POSITIVE (6)

Sample Codification

47 NEGATIVE NEGATIVE (53)
48 NEGATIVE NEGATIVE (36)
49 NEGATIVE NEGATIVE (9)
50 NEGATIVE NEGATIVE (10)

POSITIVE
o (P. malariae; +5600 parasites/pL) POSITIVE (6)

POSITIVE
52 (P. malariae; +5400 parasites /pL) POSITIVE (4)

53 NEGATIVE NEGATIVE (9)
54 NEGATIVE NEGATIVE (4)
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Resum del treball:

La malaria és una malaltia infecciosa causada per parasits del genere Plasmodium. Es transmet
als humans per la picada d'un mosquit femella infectat del génere Anopheles. Es la malaltia més
comuna en entorns amb pocs recursos, amb 241 milions de casos de malaria reportats I'any
2020 segons |'Organitzacié Mundial de la Salut. L'examen microscopic de gotes de sang és la
tecnica gold standard pel diagnostic de la malaria; no obstant aix0, és un métode que requereix
molt de temps i es necessita un microscopista ben entrenat per realitzar el diagnostic
microbiologic. Les noves tecniques basades en lI'analisi d'imatges digitals mitjangant
I'aprenentatge profund i els meétodes d'intelligéncia artificial sdn una eina alternativa
desafiadora per al diagnostic de malalties infeccioses. En particular, els sistemes basats en xarxes
neuronals convolucionals per a la deteccid d'imatges dels parasits de la malaria emulen la
visualitzacid de microscopia d'un expert. L'automatitzacié de microscopis proporciona un
diagnostic rapid i de baix cost, que requereix menys supervisio. Els teléfons intel-ligents sén una
opcié adequada per al diagnostic microscopic, que permet la captura d'imatges i la identificacié
dels parasits. A més, les técniques d'analisi d'imatges podrien ser una solucié rapida i optima per
al diagnostic de la malaria, la tuberculosi o les malalties tropicals desateses en zones
endémiques amb baixos recursos. La implementacié del diagnostic automatitzat mitjancant I'Us
d'aplicacions per a teléfons intel-ligents, i noves tecnologies d’analisi d'imatge digital en zones
amb pocs recursos és un repte. A més, automatitzar els moviments del microscopiil'enfocament
automatic de les imatges sistematitzaria el procediment. Aquestes noves eines diagnostiques se
sumen a l'esforg global per lluitar contra la malaria i altres malalties infeccioses relacionades

amb la pobresa.
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5. Discussio

El diagnostic de les malalties tropicals, especialment el de la malaria i les MTDs, continua sent
un repte de salut global. Les dades epidemioldgiques de I'OMS sobre el nombre de casos
estimats de malaria i I’esquistosomiasi a nivell mundial, descriuen la problematica actual, amb
especial rellevancia en regions amb pocs recursos. La falta de recursos técnics i de personal
qualificat per la realitzacié del diagnostic microscopic és un problema en moltes de les regions
on aquestes malalties sGn endemiques. La globalitzacio, I’alta mobilitat de les persones i el canvi
climatic contribueixen a I'expansié de malalties tropicals en regions préviament no endemiques,
ja que afavoreixen la preséncia i la dispersié de vectors com els mosquits Anopheles,
responsables de la transmissié de la malaria, i d’hostes intermediaris com els cargols Bulinus,
implicats en el cicle de vida de l'esquistosomiasi urogenital. Per tant, aquests factors
contribueixen a corroborar el concepte de salut global i One Health, molt importants per

I’epidemiologia i la salut publica a nivell mundial [154].

Les alternatives al diagnostic per microscopia convencional, considerada la técnica gold
standard tant per la malaria com I'esquistosomiasi urogenital, segueixen sent millorables, i
requereix un grau d’expertesa alt per poder realitzar correctament la interpretacié diagnostica
de les mostres biologiques. La visualitzacié de multiples mostres durant la jornada de treball,
especialment en regions endémiques amb gran incidéncia, també poden derivar en fatiga i
errors per part del personal de laboratori, especialment en el cas de la malaria. Degut a la
casuistica descrita, les alternatives al diagnostic tradicional sén motiu d’estudi i
desenvolupament durant els uUltims anys. En concret, les eines d’analisi d’imatges digitals
basades en la intel-ligéncia artificial es postulen com a opcions eficients per donar suport i

optimitzar el gold standard diagnostic actual.

El sistema proposat a la tesi doctoral és innovador, i integra diversos ambits del coneixement en
una sola aplicacio per a telefons intel-ligents. S’ha desenvolupat i validat un sistema universal de
diagnostic automatitzat per la malaria basat en IA i un sistema de robotitzacié microscopica de
baix cost per analitzar mostres de gota gruixuda de sang tenyides amb Giemsa. El sistema també
ha estat desenvolupat per la deteccié d’ous de S. haematobium en mostres d’orina. El dispositiu
és capag d’autoenfocar les mostres biologiques, i escanejar-les automaticament emulant els
moviments de la platina del microscopi. Mitjancant una aplicacid per a telefons intel-ligents
anomenada “iMAGING", s’han integrat els models entrenats de XNC i el control dels moviments

del microscopi amb un sistema d’Arduino i servo motors. D’altres grups de recerca i/o empreses
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estan treballant en la mateixa direccid, fent propostes similars pel diagnostic que poden ajudar
a millorar I'estat de I'art d’aquest ambit d’estudi. Actualment, s’estan desenvolupant i validant
multitud de técniques complementaries a la microscopia convencional, no solament per la
malaria i I'esquistosomiasi urogenital, siné també per altres malalties parasitaries com, la
filariasi o la malaltia de Chagas [155—157]. La irrupcié de la intel-ligéncia artificial durant la
década del 2010 fins a I'actualitat, i la millora de la tecnologia a nivell computacional estan
permetent generar i entrenar algoritmes més potents capagos de realitzar tasques cada cop més
complexes. Concretament, les xarxes neuronals profundes han permés fer grans avengos en
I'ambit del reconeixement d’objectes en imatges digitals [158]. Les XNC estan revolucionant
aquest tipus de tasques, aixi com d’altres metodologies com els transformers [138,139,159—

161], I'augment de dades [162,163] o els models d’atencié [164,165].
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5.1. Diagnostic de la malaria amb intel-ligencia
artificial

Diversos estudis demostren que les XNC sén optimes per la deteccié de Plasmodium en mostres
de gota gruixuda i extensio fina de sang [166—169]. En concret, |la deteccié de Plasmodium en
mostres d’extensié fina és la tasca més utilitzada en aquest tipus d’investigacions. Estudis
recents, han realitzat comparatives de diversos models de xarxes per la deteccié d’eritrocits
infectats o no infectats en mostres d’extensié fina de sang [170]. En canvi, ’analisi de parasits
de malaria en gota gruixuda de sang mitjancant I'Gs de tecniques d’imatge amb IA és menys
freqlient, degut al major nombre d’artefactes i la dificultat per detectar-los respecte a I'extensio
fina. Nakasi et al. 2020, va desenvolupar un sistema d’analisi d’imatges basat en la xarxa
neuronal Faster R-CNN capa¢ de detectar parasits de la malaria i leucocits amb un valor de
mAPQ.5 de 94.48% i un temps d’inferéncia de 2.24 mil-lisegons [171]. El nostre sistema va
demostrar els millors resultats (94.40%) comparatius de mAPOQ.5 amb el model YOLOVS5, encara
gue amb la Faster R-CNN es van obtenir resultats (94.12%) molt similars als presentats per
Nakasi et al. 2020. Altres estudis també demostren la possibilitat de distingir les diferents
especies de Plasmodium en mostres d’extensié fina, fet principal en el diagnostic diferencial
d’aquesta malaltia. Wang et al. 2023 proposa un sistema per detectar parasits de P. falciparum,
P. vivax, P. ovale, P. malariae, P. knowlesi i P. cynomolgi mitjancant el model YOLOv7 [172].
Encara aixi, no especifica si el sistema també és capac de classificar i diferenciar els parasits
segons I'especie, o Unicament detectar-los. Malaria Screener és una solucié assequible i efectiva
per a la deteccié automatica de la malaria mitjangant una aplicacidé per teléfons intel-ligents
[173], un concepte molt similar al sistema iIMAGING descrit a la tesi doctoral. Combina
I'adquisicio d'imatges, l'analisi i la visualitzaci6 de resultats. Es tracta d'un sistema
semiautomatitzat basat en imatges digitals i models de XNC per predir la preséncia de parasits
de P. falciparum, en ambdds tipus de mostres, extensio fina i gota gruixuda. En el cas del nostre
sistema iIMAGING, la diferenciacié de les espécies de Plasmodium encara no esta integrada a
I'aplicacio, pero s’han realitzat els primers entrenaments per la diferenciacid de les especies P.
falciparum, P. vivax/ovale i P. malariae mitjancant I'entrenament de la xarxa neuronal
YOLOv11n. La xarxa neuronal ha demostrat una precisié de 87.8%, recall de 88.2%, valor F de
87.9% i mAP0.5 de 92.2% (resultats no publicats) per la diferenciacié de les espécies de

Plasmodium mitjangant el nostre sistema en mostres d’extensié fina de sang.
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S’han desenvolupat altres aplicacions per combinar la deteccié automatica de parasits de
malaria a través d'un prototip d'ampliacié optica amb un dispositiu de telefon intel-ligent que
realitza processament i analisi d'imatges. El model de classificacié VGG16-CNN, o altres models
de XNC, es van integrar en aplicacions de teléfons intel-ligents per detectar automaticament la
preséncia de patogens com la malaria o infeccions pulmonars bacterianes [174-176]. Un altre
sistema és I'anomenat EasyScan GO, un escaner digital que ha estat testejat per realitzar el
diagnostic de la malaria mitjancant I'analisi d’imatges digitals amb XNC de mostres de gotes
grosses i extensions fines de sang. L'estudi es va realitzar en viatgers retornats al Regne Unit
(UK), demostrant una sensibilitat diagnostica del 88% i una especificitat del 89% [177]. Aquests
resultats diagnostics sén molt similars als obtinguts a la validacid diagnostica del sistema
iIMAGING, 81.25% sensibilitat i 92.11% especificitat, perd la mida mostral de I'estudi que utilitza
EasyScan GO és superior (n=1202). En el diagnostic de la malaria el recompte de la parasitémia
és crucial per determinar la gravetat de la malaltia. El nostre sistema és capac de comptabilitzar
el nombre de parasits de Plasmodium en funcié del nombre de leucocits per determinar la
parasitémia, seguint els protocols de I'OMS [178]. El EasyScan GO té la funcionalitat de fer
quantificacions de parasitémia en gotes gruixudes de sang i donar els resultats en parasits/uL de
sang [148], amb un procediment molt similar al del nostre sistema. El sistema EasyScan GO
també va demostrar resultats satisfactoris de quantificacié de la parasitemia en mostres amb
>2000 parasits/pl, encara que la concordanca amb els comptatges de parasitémia per
microscopia convencional baixaven fins al 30% en mostres amb un rang de 200-2000 parasits/uL
[177]. Nagendra et al. 2024 va testejar el dispositiu miLab MAL, un microscopi digital, capac de
fer comptatges automatitzats de la parasitemia de la malaria en mostres d’extensid fina,
mostrant el resultat en percentatge en funcié del nimero d’eritrocits [179]. El mateix dispositiu
també va ser emprat per Ewnetu et al. 2024 per avaluar mostres de pacients amb
simptomatologia compatible amb malaria a Gondar, Etidopia [180]. El sistema va demostrar
resultats de sensibilitat del 94.3% en mostres amb >200 parasits/pL i ha demostrat, a diferéncia
dels tests antigénics de diagnostic rapid, que és una técnica que no es veu afectada per les

delecions dels gens pfhrp2/3 [180].

La intel-ligencia artificial s’utilitza majoritariament per aplicacions de diagnostic o deteccid
indirecta de la malaria, encara aixi hi ha d’altres funcionalitats centrades en la prediccié de nous
brots o la prevencid. Nazir et al. 2024 va dissenyar un model predictiu per anticipar-se a
I'aparicié de brots de malaria a regions del Pakistan, Bangladesh i I'india [181]. EI model

matematic multidimensional va predir la incidéncia de malaria amb un percentatge d’encert
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superior al 75%, mitjancant dades geo-ambientals, demografiques, sanitaries i nutricionals a

nivell de districte.

La validacié dels sistemes de diagnostic basats en I'analisi d’imatges per intel-ligencia artificial
s’ha de realitzar en diversos laboratoris, per tenir en compte la variabilitat de les mostres degut
a la seva preparacié i/o tincio. Les diferéncies morfologiques a escala d’imatges sén crucials per
avaluar el rendiment d’aquest tipus de sistemes en diferents laboratoris [182]. L’avaluacié
preliminar del nostre dispositiu, pel diagnostic de la malaria mitjangant la visualitzacié de gotes
gruixudes tenyides amb Giemsa al Laboratori de Microbiologia del Centre Drassanes-Vall
d’Hebron, va mostrar un 81.25% de sensibilitat i un 92.11% d’especificitat diagnostiques. També
s’han realitzat proves de concepte prévies a la validacié al laboratori de I'Hospital Nossa Senhora
da Paz (Angola), demostrant un valor de concordanga diagnostica amb la microscopia gold
standard del 64.75%, i d’'un 92.62% quan s’aplica la revisié de les imatges per part de I'operador
degut a la confirmacié de falsos positius i negatius en les imatges digitals analitzades. Els
resultats diagnostics obtinguts a Angola sén preliminars, encara aixi I'estudi ha demostrat la
viabilitat d’'implementar el sistema en un laboratori amb pocs recursos. D’altres estudis també
han realitzar validacions multicéntriques per avaluar el rendiment dels sistemes d’analisi
d’imatges en diferents indrets. Das et al. 2022 va avaluar el rendiment diagnostic del sistema
EasyScan Go a 11 paisos amb diferents prevalences i espéecies de Plasmodium (Brasil, Senegal,
Burkina Faso, Republica Democratica del Congo, Uganda, Kenya, Sud-africa, Nepal, Bangladesh,
Tailandia i Cambodja) [148]. El sistema es va testejar tant amb mostres de gota gruixuda com
d’extensié fina de sang. El dispositiu va demostrar diferents resultats de sensibilitat i especificitat
diagnostiques, segons la qualitat i infraestructura dels laboratoris testejats. En laboratoris amb
bona qualitat de la mostra, segons els criteris descrits a la publicacié, el sistema va demostrar
un 89.1% de sensibilitat i un 85.1% d’especificitat, mentre que amb mostres de mala qualitat es
va observar un 94.2% de sensibilitat i un 51.5% d’especificitat [148]. Aquests resultats estan en
concordanca amb els del nostre sistema iIMAGING, encara que el nombre de mostres emprat
per validar els dispositius és més gran en el cas del EasyScan Go (n=2152) que en el del iMAGING
(n=176). Aquest tipus de validacions no sén exclusives dels sistemes d’imatge per emular la
microscopia. Lam et al. 2022 va realitzar una validacié multicentrica d’un sistema
d’aprenentatge profund per detectar la sindrome inflamatoria multisistemica i la malaltia de
Kawasaki als Estats Units [183]. Suzuki et al. 2022, en una validacié prospectiva multicéntrica, va
avaluar un algoritme d’intel-ligeéncia artificial per classificar electroencefalogrames capacgos de

diferenciar la deméncia provocada pels cossos de Lewy o per I’Alzheimer [184].
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Alguns dels punts febles de I'estudi que es poden aplicar tant al sistema desenvolupat pel
diagnostic de la malaria com de I'esquistosomiasi urogenital son: (i) robustesa de I'algoritme per
obtenir resultats diagnostics en diferents situacions i entorns, i (ii) la disponibilitat de bases de
dades publiques i de qualitat per poder avaluar les xarxes neuronals amb informacié de centres
externs. En ambdds casos, tant la qualitat de la imatge capturada, com la tincié emprada o
microscopi utilitzat poden afectar a la morfologia de la imatge i per tant a la qualitat final del
diagnostic. Per tant, s’han d’optimitzar els models de xarxes neuronals amb imatges d’altres
centres per poder obtenir algoritmes el més robustos possibles, i conseqlientment
implementables en la majoria de laboratoris d’arreu, minimitzant els possibles biaixos de

rendiment segons I'entorn.
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5.2. Diagnostic de l'esquistosomiasi urogenital amb
intel-ligencia artificial

En el cas de I'esquistosomiasi urogenital, hi ha menys aplicacions d’IA per la deteccidé dels
parasits en orina, en comparacié amb tot el que s’ha desenvolupat per malaria. Les tecniques
classiques d’analisi d’imatges, com I’analisi binaria basat en les MVS, ja es van utilitzar per
detectar ous de S. haematobium en imatges digitals d’orina [185]. El métode implicava el
preprocessament de la imatge i I'extraccié de caracteristiques mitjancant el protocol de les

técniques tradicionals de processament d’imatge.

Amb la irrupcié de les noves tecniques d’IA, Pefias et al. 2020 va utilitzar el model YOLOv3 per
la deteccid automatitzada d’ous d’helmints en mostres de femtes, entre els quals destacaven
les especies S. mansoni i S. intercalatum [186]. El model de xarxa neuronal va demostrar un
95.31% de precisio per la deteccidé d’ous de Schistosoma [186], resultats lleugerament inferiors
als del nostre sistema (99.30% de precisid), pero tenint en consideracié que es van emprar
mostres fecals. Com a altre exemple de sistema de deteccid basat en XNC, Oyibo et al. 2022 va
desenvolupar un sistema anomenat Schistoscope [187]. El sistema és capac de detectar ous de
S. haematobium en imatges digitals de mostres d’orina mitjancant XNC [187]. Es tracta d’un
dispositiu Optic mecanitzat capag d’escanejar i analitzar les mostres. Es diferencia del nostre
sistema, ja que en el nostre cas utilitzem microscopis Optics convencionals automatitzats,
mentre que en el cas de l'estudi Oyibo et al. 2020 han dissenyat un aparell independent per
realitzar els diagnostics. El sistema ha estat validat en estudis realitzats en arees rurals del
Gabon, demostrant una sensibilitat diagnostica del 83.1% i una especificitat del 96.3% [188]. Per
altra banda, Makau-Barasa et al. 2023 va avaluar el rendiment d’un sistema de multi diagnostic
anomenat AiDx per la deteccid de I'esquistosomiasi a Abuja, Nigeria [189]. El sistema
completament automatitzat (autoenfocament, escaneig de la mostra, processament i analisi
d’imatge) va demostrar una sensibilitat i especificitat diagnostiques del 89% i del 99%
respectivament [189]. Com a exemple d’Us de models de xarxes neuronals per la identificacio
de Schistosoma, Tallam et al. 2021 va realitzar una prova de concepte d’una aplicacié capag de
diferenciar els cargols Bulinus spp. i diverses fases del cicle de vida de Schistosoma en humans
[190]. A diferéncia del nostre sistema, no esta dissenyat pel diagnostic, pero pot ser d’utilitat pel
control ecologic dels cargols en regions endemiques de la malaltia. En relacié amb la deteccid

dels cargols, Liu et al. 2022 va proposar un sistema d’aprenentatge profund (U-Net) basat en la
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segmentacid d’imatges satel-lit per identificar vegetacié aquatica associada amb la presencia

dels hostes intermediaris, en el riu Basin del Senegal [191].

També trobem aplicacions, fora de I'ambit del diagnostic, centrades en el descobriment de nous
farmacs mitjangant algoritmes d’IA. Zorn et al. 2021 va utilitzar dades de pantalles fenotipiques
contra l'esquistosomula i les etapes adultes de S. mansoni per desenvolupar models
d’aprenentatge automatic. Van generar vuit models d'aprenentatge automatic bayesians basats
en cada etapa del desenvolupament del parasit. Posteriorment, es van utilitzar els models
generats per predir l'activitat de diversos compostos farmacologics. Finalment, es van
seleccionar 40 compostos predits com a actius i 16 compostos predits com a inactius i es van
comprar per a assajos fenotipics in vitro contra I'esquistosomula i estadis adults de S. mansoni

[192,193].
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9.3. Bases de dades d’'imatges

Un dels factors limitants més importants a I’hora de generar i entrenar algoritmes d’lA sén les
dades. En el cas del nostre projecte, les dades emprades per aquesta funcié han estat imatges
digitals etiqguetades de mostres cliniques de sang i orina de pacients. Actualment, no es disposa
de moltes imatges en format open source perque la comunitat cientifica i investigadora pugui
accedir i treballar amb elles. Com a exemple, la web Roboflow permet desenvolupar i entrenar
algoritmes de visio per computador mitjancant bases de dades amb llicencies Creative Commons
(CC) proporcionades pels usuaris particulars [194]. Encara aixi, la qualitat de les bases de dades
d’imatges depen de I'usuari que les ha publicat, i no tenen cap control de qualitat que asseguri
gue estan correctament etiquetades. D’altra banda, ImageNet és una base de dades d'imatges
publiques organitzada d'acord amb la jerarquia WordNet, en la qual cada node de la jerarquia
és representat per centenars i milers d'imatges [195]. Les dades estan disponibles de forma
gratuita per als investigadors d’arreu i per a Us no comercial. Aquest tipus de plataformes en
format obert permeten realitzar avencos a nivell global gracies a la disponibilitat de dades per a
usos exclusivament de recerca. Un altre format de publicacid i que garanteix la qualitat de les
imatges i el seu etiquetatge és el de publicacié en revistes de dades. L'Institut d’Enginyers
Eléctrics i Electronics (IEEE) disposa del repositori I[EEE DataPort [134]. El portal és una
plataforma de dades de recerca dissenyada per donar accés a les dades cientifiques obertament,
i ajudar els investigadors i institucions a compartir la recerca, gestionar les seves dades i
col-laborar [134]. En el cas de la malaria hi ha bases de dades del portal IEEE tant per gota
gruixuda [196] com per extensio fina de sang [197]. Les bases de dades de paisos endemics sén
crucials per obtenir informacio diversa i de qualitat. Nakasi et al. 2024 va publicar una base de
dades d’imatges de I'Hospital Regional de Kampala (Uganda), amb 3000 imatges etiquetades de
gota gruixuda i 1000 imatges etiquetades d’extensié fina de sang capturades amb un telefon
intel-ligent [198]. També, existeix I'anomenat Lacuna Dataset, una base de dades de 3925
d’imatges digitals de mostres de gota gruixuda tenyides amb Giemsa i capturades amb
dispositius mobils [199]. La base de dades té la funcié de ser emprada per millorar models
d’aprenentatge automatic, i ser aplicats en el diagnostic de la malaria a regions endemiques amb
pocs recursos [199]. En el cas de I'esquistosomiasi, els autors Oyibo et al. 2023 van publicar a
I'Institut Nacional d’Al-lergologia i Malalties Infeccioses (NIAID Data Ecosystem, USA) una base
de dades que conté 12.051 imatges microscopiques etiquetades de 103 mostres de sediment

urinari en format open source [200]. Com a exemple de recerca emprant bases de dades obertes,
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Boit et al. 2024 va entrenar el model EfficientNetB2-Dense-Residual-Inception amb la base de

dades de malaria del NIH, que conté 27.558 etiquetes [201].

Les dades obertes, no solament en el cas de les imatges, poden ser de gran utilitat per generar
algoritmes amb inputs de diferents laboratoris a nivell global, molt més eficients i complets que
aquells generats amb dades locals. En el cas dels estudis publicats per la tesi doctoral, hem
utilitzat imatges de diversos laboratoris per obtenir algoritmes de detecciéd més robustos. Aixi i
tot, el futur de les dades obertes pot ser el primer pas per globalitzar aquest tipus de sistemes i
col-laborar entre institucions pel benefici mutu. Informes de la Unié Europea ja descriuen
aquesta casuistica i pronostiquen un futur prometedor a causa dels avencos en IA que s’estan

produint en els ultims anys i els beneficis de treballar amb dades d’accés obert [202].
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5.4. Automatitzacio i digitalitzacio de la microscopia

En I'ambit de I'automatitzacid, el nostre sistema ha estat dissenyat per ser universal i adaptable
a la majoria dels microscopis optics convencionals, i per ser de baix cost. El sistema, també, és
en format open source, i per tant el codi de programacié i els dissenys 3D de les peces estan
disponibles per a tothom qui els requereixi. El procés d’automatitzacié es va realitzar amb
controladors Arduino i servo motors de baix cost per emular els moviments X-Y de la platina del
microscopi, i I'autoenfocament de la mostra. Actualment, es disposa de microscopis robotitzats
capacos d’escanejar mostres biologiques per la seva digitalitzacié. Un exemple podria ser
I'empresa Hamamatsu®, encarregada de desenvolupar microscopis optics per lI'escaneig i
digitalitzaci6 de mostres biologiques [203]. Les empreses Bruker®, Zeiss® o Nikon® també
disposen d’aquest tipus de tecnologies, pero els preus solen ser molt elevats i no solen estar
pensats per la seva implementacié en entorns amb pocs recursos. Com a alternativa, d’altres
sistemes sorgits de treballs de recerca s’han desenvolupat i utilitzat per funcions similars. Lien
et al. 2019 va desenvolupar un sistema open source i de baix cost per la digitalitzacio
automatitzada d’imatges de plantes del genere Arabidopsis thaliana [204]. El sistema no esta
pensat per digitalitzar imatges microscopiques, pero I'automatitzacid i el concepte de I'estudi és
molt similar al desenvolupat en les nostres publicacions. En I'ambit de la microscopia, Garcia-
Villena et al. 2021, van desenvolupar un sistema amb impressié 3D pel diagnostic microscopic
de malalties tropicals desateses i hematologiques mitjangant telefons intel-ligents [205]. El
sistema esta pensat per la seva implementacié en entorns amb pocs recursos, pero es tracta
d’un dispositiu independent no adaptable als microscopis. Requereix un enfocament manual i
ha estat testejat satisfactoriament amb mostres histologiques i de femtes per la seva
implementacié. El sistema també esta pensat per treballar amb una plataforma de telemedicina,
qgue mitjancant XNC, sigui capac¢ d’analitzar les imatges i donar suport al diagnostic [205].
L’anteriorment mencionat EasyScan Go també és un bon exemple de sistema automatitzat
pensat per la seva implementacio en laboratoris del terreny. El dispositiu també esta dissenyat
per utilitzar algoritmes d’IA capagos de detectar les formes d’interés en imatges digitals
microscopiques de mostres biologiques [148]. En aquest cas, el sistema és capa¢ d’autoenfocar

la mostra i realitzar un escaneig complet d’aquesta.

Un dels factors més importants a I’'hora d’autoenfocar mostres com la gota gruixuda i I'extensio
fina de sang és el relleu de la preparacid. Les mostres no son perfectament planes, i per tant és

important ajustar o revisar el focus en cada un dels camps a analitzar, per aixi evitar possibles
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errors d’enfocament i identificacié per part de les XNC. En el nostre cas vam emprar 'algoritme
de Variancga Laplaciana, capa¢ de detectar la imatge més enfocada mitjancant I'assignacié d’un
valor amb Ianalisi del gradient d’entropia. Es un métode de referéncia ampliament contrastat
que s’ha emprat en multitud d’estudis similars [206—-208]. Altres metodologies, com el Harris
Corner Response Measure (HCRM), es basen en la deteccié dels canvis d’intensitat dels pixels
de les vores de les imatges [209]. Sanz et al. 2022 va realitzar un estudi comparatiu de diverses
metodologies d’analisi d'imatge per I'autoenfocament, demostrant que la de millor rendiment

va ser el Squared Gradient seguit del Brener Gradient [210].

El desenvolupament de sistemes basats en IA i automatitzacié pel diagnostic de malalties
tropicals ha de tenir en consideracié els recursos i infraestructura de la majoria dels centres de
salut de les regions endemiques. Sistemes automatitzats de baix cost, amb requisits energétics
baixos i sense necessitat de connectivitat a internet sén caracteristiques optimes per aquest
tipus de contextos. La claredat dels resultats i el facil maneig a I’hora d’usar aquests sistemes
també son punts crucials per implementar-los a laboratoris del terreny. Els dispositius point-of-
care solen ser solucions adients per realitzar diagnostics in situ, sense necessitat d’enviar
mostres a regions amb major infraestructura i endarrerir I'informe de resultats [211]. Més enlla
del diagnostic, la globalitzacié dels telefons intel-ligents, la informatitzacié dels laboratoris, el
desenvolupament de sistemes de dades sociodemografiques per generar algoritmes de suport
al diagnosticila prevencio, i les aplicacions de salut digital; poden arribar a tenir un gran impacte
en regions amb pocs recursos [212]. Actualment, la disponibilitat dels sistemes informatics no
és global, i per tant les eines integrades en softwares per telefons intel-ligents poden ser
alternatives per arribar arreu del mon. Encara aixi, segons informes de les Nacions Unides,
I'escletxa digital entre paisos del Sud-global és un problema, i s’han d’adaptar tots aquells

sistemes que vulguin ser implementats a les necessitats i requeriments de cada situacié [213].
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5.5. Etica i regulacid actual de la intel-ligéncia artificial
pel diagnostic

Recentment, la Unid Europea ha posat a disposicié un document legal (Regulacié EU 2024/1689)
per la regulacio de la IA i els seus potencials avantatges i riscos al continent Europeu [214]. El
document també té la finalitat de reduir les regulacions administratives a I’hora de desenvolupar
i implementar sistemes d’IA, especialment per a empreses. L'objectiu general de la regulacio és
garantir la seguretat, paritat i els drets fonamentals de les persones centrats en I'aplicacié de la
IA. La regulacio defineix 4 nivells de risc dels sistemes d’IA, des d’un risc minim fins a un risc
inacceptable (prohibit el seu Us a la Unié Europea). Algunes de les funcionalitats considerades
d’alt risc son: aplicacions de transport autonom, puntuacié automatica d’examens, cirurgies
assistides per robots, aplicacions pel control de migrants, i aplicacions en I'ambit judicial [214].
Tenint en compte el projecte de la tesi doctoral, el suport al diagnostic es menciona com a
activitat d’alt risc. En els apartats 47 i 50 del document es menciona textualment “en el sector
sanitari, on pot haver-hi repercussions importants en la vida i la salut, els sistemes de diagnostic
i de suport, han de ser fiables i precisos” i “s’escau classificar-los com d’alt risc en virtut del
present reglament [...] productes sanitaris pel diagnostic” [214]. El reglament no prohibeix I'Us
d’aquest tipus de sistemes a la Unid Europea, perd obliga a validar-los seguint els estaments

europeus, abans d'implementar-los com a eines de suport al diagnostic al laboratori.

D’altres documents oficials descriuen I'etica de I'is de la IA en els ambits quotidians, i
concretament en el de la salut. L'OMS ha publicat dues guies que parlen de I'ética de la IA en
salut. L’any 2021 es va publicar la guia “Etica i governanca de la intel-ligéncia artificial per la
salut” [215], i 'any 2024, amb I'aparicié dels models multimodals es va publicar la guia “ Etica i
governanca de la intel-ligéncia artificial per la salut: Guia pels grans models multimodals” [216].
En ambdds casos, es menciona la necessitat de validar els models en diverses ubicacions, per
tenir en compte les necessitats i limitacions de cada un d’aquests llocs, i no esbiaixar els resultats
segons la poblacié d’estudi. El suport i implementacié d’eines d’IA en localitzacions on no es
disposa de personal, han de venir acompanyats de la formacié per a les persones. Un altre dels
temes importants tractats en els documents és la paritat de les dades. Els models d’IA haurien
de ser entrenats amb dades que respectin les diferéncies entre les persones, i sempre seguint el
codi étic i dels drets humans fonamentals. En el cas del nostre projecte i d’altres projectes
publicats a la literatura, el codi etic és crucial pel desenvolupament i implementacié d’aquest
tipus d’eines, que s’han d’adaptar a la legislacid i al codi etic internacional.
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Les aplicacions per a telefons intel-ligents sén una opcié adequada per integrar la tecnologia de
diagnostic en un sol dispositiu i conferir als laboratoris una nova eina pel diagnostic de la malaria
i altres malalties. Nous avencos i millores en I'ambit de la IA i la computacié poden ser la fita
final per a l'optimitzacié i implementacié de la tecnologia de diagnostic per la imatge a nivell
global. En conclusio, cada vegada estem més a prop de desenvolupar noves eines de diagnostic
rapides i eficients per a la deteccié automatitzada de parasits de la malaria i esquistosomiasi
disponibles per a laboratoris d’arreu. Aquest tipus de sistemes estan demostrant el seu potencial
en el diagnostic microbiologic de les malalties infeccioses, i seran, en un futur proxim, técniques
de rutina en els laboratoris clinics. La coalescéncia de les tecniques d’analisi d’'imatges digitals i
la robotitzacié microscopica confereixen autonomia per realitzar els diagnostics, sempre amb la

supervisié del operador i/o del personal de laboratori.
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6.

Conclusions

Aquesta tesi doctoral ha abordat els reptes associats al diagnostic microscopic convencional,

com la dependéncia de personal especialitzat, la variabilitat en la interpretacié microscopica i

I"accés limitat a recursos en entorns empobrits. Durant el projecte de tesi s’ha desenvolupat un

sistema automatitzat integral basat en una aplicacié per a teléfons intel-ligents que combina

algoritmes d’lA, com les xarxes neuronals YOLOvV5 i YOLOv8, amb un microscopi robotitzat

universal de baix cost, fabricat mitjancant peces 3D i open source. Amb aquest sistema s’ha

permés automatitzar el diagnostic microbiologic de la malaria i I'esquistosomiasi urogenital

mitjancant I'adquisicié d’imatges, I'autoenfocament, |'escaneig de mostres biologiques i la

interpretacié diagnostica, reduint la dependéncia de I'expertesa humana i donant suport al

diagnostic tradicional.

Les conclusions de la present tesi doctoral son:

(i)

(ii)

(iii)

La base de dades d’imatges etiquetades permet I'entrenament de xarxes neuronals per
tasques de deteccid d’objectes, la formacid de professionals de laboratori i la docéncia. La
base de dades d’imatges actual (31 de marg¢ de 2025) conté un total de 7684 imatges digitals.
En detall conté: 2803 imatges etiquetades de mostres de gota gruixuda sang (Drassanes),
1028 imatges de mostres de gota gruixuda (Hospital Nossa Senhora da Paz, Cubal, Angola),
1503 imatges etiquetades de mostres d’extensio fina de sang (Drassanes), i 2350 imatges
etiquetades de sediments urinaris.

Els algoritmes d’intel-ligencia artificial han demostrat ser optims per la deteccié de parasits
de Plasmodium i de S. haematobium en imatges digitals de mostres biologiques de sang i
d’orina respectivament capturades amb el telefon intel-ligent i la camera integrada del
microscopi. Els models d’analisi d’imatges basats en IA van assolir un valor F del 92.79% per
la deteccid de la malaria, i del 99.30% per la deteccio de I'esquistosomiasi urogenital.

Els sistemes automatitzats desenvolupats demostren un gran potencial per millorar el
diagnostic de la malaria i I'esquistosomiasi urogenital. No obstant, la incorporacié de
transformers, técniques de domain adaptation, aprenentatge semisupervisat, estratégies de
normalitzacid, i técniques d’augment de dades més robustes podrien optimitzar els
parametres de precisio i reduir la dependencia de dades d’imatges etiquetades per generar

algoritmes de diagnostic més eficients.
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(iv) Els models de xarxes neuronals entrenats han permés generar algoritmes d’analisi d'imatges
implementables no solament en dispositius de baix cost, sind que poden tenir utilitat en
sistemes automatitzats que s’empren en els paisos industrialitzats per automatitzar el
diagnostic microscopic.

(v) Els resultats de la validacié diagnostica demostren un bon rendiment del sistema pel
diagnostic de la malaria en gota gruixuda de sang i permeten la seva optimitzacié en futures
validacions. La validacid diagnostica realitzada al laboratori de Microbiologia de I’Hospital
Vall d’Hebron i al Centre de Salut Internacional Drassanes Vall d’"Hebron va demostrar una
sensibilitat del 81.25% i una especificitat del 92.11% en mostres de gota gruixuda tenyides
amb Giemsa.

(vi) Laintegracio del sistema en una aplicacié mobil i I'Gs de teléfons intel-ligents com a interficie
el converteixen en una eina viable i accessible per a laboratoris amb recursos limitats.
Aquestes caracteristiques permeten la descentralitzacié del diagnostic i una major
cobertura del diagnostic en zones endémiques i llocs remots. Tanmateix, la robotitzacié de
microscopis convencionals mitjangant components de baix cost elimina la necessitat
d’equips comercials d’alt cost, fent la tecnologia accessible a regions amb pocs recursos.

(vii) Les diferencies en el processament de les mostres biologiques i el procediment de tincid
poden afectar la qualitat de les preparacions i, per tant, el rendiment dels models d’IA basats
en I'analisi d’imatges. Es adient estandarditzar el procediment de preparacid i tincié de les
mostres biologiques per la seva visualitzacié mitjancant IA, i aixi evitar diferéncies que poden
afectar els resultats finals del diagnostic.

(viii) La implementacid d’aquest sistema de diagnostic requereix adaptar-se a les
infraestructures locals, incloent-hi la formacié del personal, el manteniment técnic del
sistema i la compatibilitat amb els protocols de diagnostic existents a cada laboratori, i els
plans nacionals de lluita contra aquestes malalties.

(ix) Les col-laboracions amb governs, organitzacions no governamentals, i organitzacions de
base comunitaria sén clau per a la validacié i implementacié del sistema de diagnostic, i la
distribucid equitativa de la tecnologia permetent la sostenibilitat i I'escalabilitat del

producte.

La tesi doctoral demostra que la intel-ligencia artificial i la robotitzacié de baix cost sén eines
atils per millorar el diagnostic de la malaria i I'esquistosomiasi urogenital mitjangant la
microscopia. El sistema no només ajuda a millorar I'eficiéncia i I'accessibilitat del diagnostic sind

gue també contribueix a la justicia global en salut, reduint les desigualtats en regions amb pocs
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recursos. Els resultats obtinguts obren un cami prometedor cap a I’erradicacié de malalties que
afecten milions de persones, alineant-se amb els Objectius de Desenvolupament Sostenible
(ODS) de les Nacions Unides i I'Estrategia Global per la Salut Digital de 'OMS [217]. El futur de
la microbiologia clinica passa per la fusié de la innovacio tecnologica, la cooperacié internacional

i un compromis etic ferm amb les comunitats més vulnerables.
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1. Perspectives de futur

Creiem que la tecnologia desenvolupada pot tenir un gran impacte en salut global en un futur
immediat, no solament pel diagnostic automatitzat de les malalties tropicals, sind també en
altres aplicacions i funcionalitats. El projecte té un caracter transversal que pot permetre

realitzar d’altres projectes relacionats en ambits diferents del presentat.

A continuacié esmenem possibles perspectives de futur relacionades amb el projecte presentat

a la tesi doctoral:

(n Optimitzacié del diagnostic de malaria: actualment el sistema ha estat
desenvolupat i validat pel diagnostic de la malaria mitjancant la gota gruixuda
de sang i, per tant, el diagnostic diferencial per espécies no esta integrat. El grup
de recerca esta treballant en el desenvolupament d’un algoritme, mitjangant la
xarxa neuronal YOLOv11, per la deteccid i diferenciacid de les espécies P.
falciparum, P. vivax, P. ovale i P. malariae en mostres d’extensio fina de sang. El
sistema és capag¢ també de diferenciar les etapes del desenvolupament del
Plasmodium, aixi com els trofozoits joves, trofozoits madurs, esquizonts i
gametocits. Els resultats preliminars demostren una precisié de 87.80%, un
recall de 88.20%, un valor F de 87.99%, i una mAP0.5 de 92.20% per a la deteccio
global de les especies esmenades.

(1) Implementacio del diagnostic d’altres malalties: el diagnostic de la tuberculosi
mitjangant la técnica del Ziehl-Neelsen, I'analisi de mostres tenyides amb Gram
pel diagnostic de la vaginitis bacteriana, I’analisi hematologica o qualsevol altra
aplicacié que empri la visualitzacié de mostres biologiques mitjangant la
microscopia poden ser considerades per aquest tipus de tecnologia.
L’entrenament de noves xarxes neuronals per realitzar aquest tipus de tasques
no diferiria de la metodologia emprada pel diagnostic de la malaria o
I’esquistosomiasi. Per tant, la IA per identificacié d’imatges digitals pot aportar
noves aplicacions si es disposa de bases de dades d’'imatges de qualitat, i pot ser
una eina funcional pels laboratoris d’arreu. D’altres grups de recerca i empreses
estan treballant en aquest ambit, i s’estan comencant a comercialitzar i
implementar aquest tipus de tecnologies.

() Validacid i implementacid en regions endémiques: s’ha realitzat una prova de

concepte al laboratori de Microbiologia de I'Hospital Nossa Senhora da Paz,
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(V)

(V)

(V1)

(Vi)

Cubal (Angola), on s’ha pogut demostrar la viabilitat d’implementacié del
sistema i s’ha avaluat el rendiment de les xarxes neuronals amb mostres
biologiques de gota gruixuda. També, s’ha realitzat una prova de concepte a
Georgetown (Guyana), per un grup de recerca extern que va muntar i testejar
el sistema pel diagnostic de malaria. Encara aixi, validacions diagnostiques amb
nombres de mostres estadisticament significatius s’"han de realitzar per avaluar
rigorosament el rendiment diagnostic del sistema en regions endemiques.
Control de qualitat: el control de qualitat dels diagnostics per microscopia es
podria realitzar mitjancant técniques d’analisi d’imatges basades en IA. La
deteccié de les formes d’interés mitjancant IA ens permetria avaluar la qualitat
dels diagnostics, i comparar-los amb els de la microscopia convencional. També,
es podrien utilitzar técniques d’imatge per valorar la qualitat de les mostres i/o
de les tincions, i millorar el processament de la mostra realitzat al laboratori.
Formacid: la digitalitzacié de les mostres biologiques, la deteccié automatica
dels parasits i la creacié d’eines didactiques digitals poden ser d’utilitat per la
formacié de microscopistes d’arreu. Les aplicacions de teléfons intel-ligents i/o
d’ordinador sén eines de facil maneig que poden aportar coneixements sobre
conceptes de laboratori, i permetre la formacié mitjancant la visualitzacié de les
imatges digitals.

Epidemiologia: molts dels laboratoris del terreny no disposen de dades
epidemiologiques fiables, ni d’un sistema informatic per gestionar les dades. Els
teléfons intel-ligents, degut a la seva portabilitat i computacié, sén capagos de
reportar i registrar els casos. Els resultats del diagnostic automatic mitjangant IA
es poden integrar en softwares de gestid de laboratori, i per tant aixi obtenir
dades epidemiologiques reals. També poden ser emprades per tasques de
vigilancia epidemiolodgica, com per exemple reportar casos en zones molt
remotes, on Unicament es pugui disposar d’aquest tipus de dispositius.

Bases de dades: la digitalitzacid i informatitzacié de les dades de laboratori clinic
permeten generar grans quantitats d’informacid clinica i epidemiologica. En la
tesi presentada, s’ha creat una base de dades d’imatges digitals etiquetades que
es pretén publicar seguint les directrius de I'Hospital Universitari Vall d’Hebron
/ Vall d’Hebron Institut de Recerca. La base de dades d’imatges estara en accés

obert, i permetra entrenar algoritmes d’IA capacos de realitzar tasques
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(Vi)

-

especifiques per donar suport al diagnostic i a la formacio de professionals de
laboratori, excloent els beneficis comercials per a empreses i tercers. La
robotitzacid i automatitzacid de la microscopia també pot ser d’utilitat per
digitalitzar mostres biologiques, i generar bases de dades. Tanmateix, les bases
de dades haurien de ser obertes i accessibles, per contribuir a I'aveng de la
recerca i poder entrenar i generar algoritmes cada cop més precisos degut a
I’heterogeneitat de la d’informacié emprada.

Escalatge i transferéncia tecnologica: el sistema de diagnostic ha de ser escalat
fins a la fase de producte, per poder ser cedit o transferit a les institucions i parts
interessades. Conjuntament amb els departaments d’innovacié del Vall
d’Hebron Institut de Recerca i de la Universitat Politécnica de Catalunya s’ha
acordat realitzar la transferéncia tecnologica del sistema mitjangant una spin-
off sense anim de lucre. Els algoritmes de diagnostic generats podrien permetre
la sinergia amb empreses del sector tecnologic, per ser transferits i
implementats en sistemes de diagnostic més sofisticats i que disposin
d’equipament d’escaneig professional. Per tant, aquest tipus de transferencia
també pot generar com a parts interessades als paisos desenvolupats, que

requereixin I'automatitzacio dels diagnostics microscopics convencionals.
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Malaria is an infectious disease caused by parasites of the genus Plasmodium
spp. It is transmitted to humans by the bite of an infected female Anopheles
mosquito. It is the most common disease in resource-poor settings,
with 241 million malaria cases reported in 2020 according to the World
Health Organization. Optical microscopy examination of blood smears
is the gold standard technique for malaria diagnosis; however, it is a time-
consuming method and a well-trained microscopist is needed to perform
the microbioclogical diagnosis. New techniques based on digital imaging
analysis by deep learning and artificial intelligence methods are a challenging
alternative tool for the diagnosis of infectious diseases. In particular, systems
based on Convolutional Neural Networks for image detection of the malaria
parasites emulate the microscopy visualization of an expert. Microscope
automation provides a fast and low-cost diagnosis, requiring less supervision.
Smartphones are a suitable option for microscopic diagnosis, allowing image
capture and software identification of parasites. In addition, image analysis
technigues could be a fast and optimal solution for the diagnosis of malaria,
tuberculosis, or Neglected Tropical Diseases in endemic areas with low
resources. The implementation of automated diagnosis by using smartphone
applications and new digital imaging technologies in low-income areas is a
challenge to achieve. Moreover, automating the movement of the microscope
slide and image autofocusing of the samples by hardware implementation
would systemize the procedure. These new diagnostic tools would join the
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global effort to fight against pandemic malaria and other infectious and
poverty-related diseases.

KEYWORDS

malaria diagnosis, digital imaging techniques, deep learning, artificial intelligence,
microscopic examination, smartphone application, malaria

Introduction

Malaria is one of the most common infectious diseases
worldwide. It is caused by Plasmodium parasites and transmitted
to humans by the bite of an infected female mosquito of the
Anopheles genus. Over 241 million malaria cases were estimated
in 2020, an increase from the 227 million of 2019 according to the
World Health Organization (WHO) (World Malaria Report WHO
2021). Malaria is endemic in 85 countries and caused 627,000
deaths in 2020. Africa is the most affected continent with 95% of
all malaria cases reported and 96% of all deaths (Talapko et al.,
2019; World Malaria Report WHO 2021). Low-income countries
with non-accessible healthcare resources are the most affected
regions and malaria-related mortality has a high correlation with
poverty rates (Ren, 2019). Socioeconomic data were collected in
several studies to demonstrate the aforementioned correlation,
describing the global health situation of malaria in low-income
countries (Ricci, 2012; Konishi et al., 2016). An early diagnosis,
suitable treatment, and prevention strategies such as vaccination
or mosquito net control are crucial to fighting the infection. Due
to its high global health impact, this infectious disease is still a
global issue. In addition, the COVID-19 pandemic has increased
the number of malaria deaths and cases from previous years, due
to the high impact of this pandemic on the administration of
healthcare resources worldwide (Heuschen et al,, 2021).

Plasmodium infection is produced by several protozoan
parasites of the genus Plasmodium spp. (Tangpukdee et al,, 2009).
Five species of malaria cause infection in humans: P. falciparum,
P vivax, P. ovale, P. malariae, and P. knowlesi. P. falciparum is the
most virulent species and produces the vast majority of deaths
from severe malaria (Heide et al, 2019). The life cycle of
Plasmodium parasites is represented in Figure 1. The life and
infective cycle of the five species are similar, and their morphology
and biology are analogous (Talapko et al., 2019).

Malaria treatment is crucial to reducing mortality. Prompt
treatment is recommended, within 24 h of the onset of fever, and
is fundamental for the reduction of mortality among children
<Syears of age (Simba et al, 2018). After confirmation of
Plasmodium infection by laboratory diagnostic techniques, such
as Rapid Diagnostic Tests (RDT) or microscopy, anti-malarial
drugs are administered. The treatment used should be determined
by Plasmodium species, parasitaemia density, drug-resistant
pattern where the infection was acquired, signs of severe malaria,
and patient tolerance of oral medication (Griffith et al., 2007).
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The implementation of early detection systems for malaria
epidemics is a high priority in Sub-Saharan African regions
(Guintran et al, 2006). New advances in the regulation and
development of malaria vaccines, such as the RTS, S/ASOL
vaccine recommendation by the WHO, can reinvigorate the fight
against malaria (WHO recommends groundbreaking malaria
vaccine for children at risk, 2021). Laboratory techniques for
malaria diagnosis by detecting Plasmodium parasites are
extensively used worldwide; microscopic visualization of thin and
thick blood smears is the gold standard technique for malaria
diagnosis. RDTs are also used as recommended diagnostic tools
and could be an affordable complement for a precise diagnosis due
to their rapidness and easy handling. Both microscopic
visualization and RDTs have their limitations and new diagnostic
techniques are emerging to complement the tools used nowadays.
As a breakthrough, new image analysis techniques based on deep
learning, a subfield in artificial intelligence (AI), are being
developed for the automated diagnosis of blood slides.
Distinguishing between erythrocytes infected or uninfected with
malaria parasites is possible with deep learning detection-based
models. Image analysis techniques allow the detection of malaria
parasites in digital images by pre-trained deep learning models
with large image datasets. This process would emulate the optical
microscope visualization of thick and thin blood smear samples
and automate the procedure. Smartphone applications could
integrate image analysis technology based on Al and would be an
affordable
endemic areas.

option for resource-poor environments in

Identification of the different parasite morphologies in the
whole Plasmodium life cycle is crucial to perform a correct
diagnosis by microscopic examination of blood smears. The life
cycle must be considered when experts perform manual labelling
of digital images. Immature P. falciparum trophozoites (ring
stage), White Blood Cells (WBCs), and erythrocytes are
commonly labelled in malaria thick and thin blood smear digital
images (Manescu et al., 2020). The labelled data would be used to
train deep neural network models and create AI algorithms

capable of detecting parasites and cells.

Malaria diagnosis

Malaria diagnosis is crucial to treat and eradicate Plasmodium
infections. An early diagnosis is determinant in effectively fighting
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against infection. Laboratory diagnosis is accepted worldwide and
recommended for malaria detection (Tangpukdee et al. 2009;
World Malaria Report WHO, 2021). Diagnostic methods for
infectious diseases should be fast, accurate, simple, and affordable
(Vila et al., 2017). Several techniques are available and used to
directly or indirectly detect the presence of malaria parasites in
blood. Table 1 shows the advantages and disadvantages of the
most important diagnostic methods for malaria parasite detection.

Clinical diagnosis

Clinical diagnosis is the least expensive option for malaria
diagnosis (Wongsrichanalai et al., 2007), although the non-specific
symptomatology and possible confusion with other infections or
diseases with similar manifestations could overlap with the final
diagnosis. Patient origin, malaria season, and age group are
important aspects to consider. Clinical symptomatology could
vary depending on the phase of the disease and the Plasmodium
parasite species producing the infection. Plasmodium infection
could produce asymptomatic, placental, uncomplicated, and
severe malaria depending on the symptomatology and infection
phase (Molyneux, 1989; Bartoloni and Zammarchi, 2012; Phillips
etal, 2017).
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Clinical symptomatology should be complemented with
laboratory diagnostic techniques to confirm the presence of
Plasmodium parasites. Blood smear samples are used in the vast
majority of diagnostic techniques.

Microscopic examination of blood
smears

Direct microscopic examination of blood smears to observe
malaria parasites is the gold standard technique for malaria
diagnosis (Guintran et al., 2006; Collins and Jeftery, 2007; Heide
etal, 2019). Prior to examination, the specimen is mostly stained
with Giemsa or Leishman staining (Bejon et al., 2014), to afford
the parasites a distinctive appearance (Malaria diagnosis and
treatment CDC, 2019). The protocol for Giemsa staining of
malaria blood films is a simple and fast technique to visualize the
active form of parasites in blood (Turrientes and Lopez, 2016).
Malaria microscopy standard operating procedure is the protocol
recommended by the WHO (Giemsa staining of malaria blood
Sfilms WHO, 2016). The blood smear examination procedure is
shown in Figure 2.

Knowing the life cycle of Plasmodium parasites (Figure 1) is
important to perform a correct identification of the different

frontiersin.org



Maturana et al.

TABLE 1 Advantages and disadvantages of malaria diagnostic techniques.

Diagnostic technique ~ Advantages

Disadvantages

10.3389/fmicb.2022.1006659

References

Microscopic examination (i) Availability

(i1) Low-cost diagnosis

(iii) Parasite level calculations
(iv) Species identification
Quantitative Buffy Coat (QBC) (i) Fast preparation and diagnosis
results

(ii) High sensitivity

Rapid Diagnostic Tests (RDTs) (i) Fast preparation and diagnosis
results

(ii) Easy handling

(iii) Low-cost diagnosis

(iv) Species identification (usually
P, falciparum from non-P.
falciparum species)

PCR (i) High sensitivity and specificity
(ii) Species identification

(iii) Reference tool for comparative
studies

LAMP (i) High sensitivity and specificity
(ii) Species identification

(iii) No thermocyclers needed
Serology (i) Seroprevalence

(ii) Malaria transmission
Flow cytometry (i) Quantification of infected
erythrocytes

(ii) Automated parasite level
calculations

Biomarkers (i) High diagnostic potential
(ii) Easy handling

(i) Requires expert personnel

(ii) Results are expert-dependent

(i) Requires expert personnel

(ii) Requires fluorescent microscopy

(iii) Specialized instrumentation

(i) pfHRP2/3 gene deletions

(i1) Low sensitivity with low parasite levels
(iii) Low sensitivity with P ovale and P.
malariae species.

(iv) Cross-reactivity

(v) Prozone effect
(i) Specialized instrumentation

(ii) Difficult implementation in endemic areas

(iii) Expensive diagnosis

(i) Specialized instrumentation
(ii) Expensive diagnosis

(i) Non-reliable diagnostic technique

(i) Low sensitivity

(i) Specialized instrumentation

Dowling and Shute (1966), Collins and Jeffery,
(2007), Guintran et al. (2006), Wangai et al. (2011),
Paostchi et al. (2018), Heide et al. (2019), Malaria
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(2009), Bejon et al. (2014), Nima et al. (2017),
Orish et al. (2018), Cunningham et al. (2019),
Response plan to phrp2 gene deletions (WHO, 2019),
Ajakaye and Ibukunoluwa (2020), Kavanaugh et al.
(2021), Kavanaugh et al. (2021)
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(ii) Not indicative of active infection

Poostchi et al. (2018), Khartabil et al. (2022)

(ii) Specialized instrumentation

(iii) Difficult implementation in endemic areas
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QBC: Quantitative Buffy Coat, RDTs: Rapid Diagnostic Tests, PCR: Polymerase Chain Reaction, LAMP: Loop-Mediated Isothermal Amplification, Serology, Flow cytometry, and

biomarkers.

developmental stages of the parasites and the species for diagnosis.
P. falciparum usually causes higher parasite levels and produces
most malaria deaths in Africa (World Malaria Report WHO,
2021). Maurer dots, poly-infected erythrocytes, and the
characteristic banana shape of gametocytes are distinctive traits of
P, falciparum infection (Zekar and Sharman, 2021). P vivax and
P ovale are species sharing some similarities in the shape of
parasites and quiescent liver forms. Both species infect young
erythrocytes, have Schiiffner’s dots, tend not to have multiple rings
per cell, and contain malarial pigment. P. malariae usually causes
lower parasite levels, due to its 72-h development cycle (24h
longer than P. falciparum and P. vivax), the lower production of
merozoites per erythrocytic cycle, the predilection of parasites to
develop inside old erythrocytes and the earlier development of
immunity due to the combination of the previous factors (Collins
and Jeffery, 2007). P. knowlesi is mostly present in Southeast Asia
and was originally known as simian malaria. Due to its 24-h
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development asexual cycle, P. knowlesi infection can rapidly
progress into severe malaria. Ring stage forms of P. knowlesi
resemble P, falciparum and mature trophozoites and schizonts are
similar to P. malariae forms (Amir et al,, 2018). Gametocytes, the
sexual stage of the parasite, are not responsible for clinical
symptoms ( Treatment of malaria CDC, 2013).

Microscopic visualization of thin blood smears allows the
Plasmodium species identification from erythrocyte morphology
and the distinctive features depending on the type of specimen
infection. Thick blood smears are more efficient and provide
higher sensitivity than thin blood smears (Wangai et al., 2011). The
combination of both methods allows experts to determine the type
and severity of the infection with a precise diagnosis. Parasite level
calculations are performed manually in both types of samples.
Direct microscopy observation is a tedious and time-consuming
technique that requires experience and training. Continuous
visualization of blood smears could trigger diagnostic errors due
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FIGURE 2

Blood smear microscopic examination procedure. Thick blood smear is first examined to determine the presence of malaria parasites. If the
sample is positive, a thin blood smear is examined to determine Plasmodium species identification. Parasite quantification is performed to

determine severity of the infection.

to the difficulty of the procedure (Dowling and Shute, 1966). The
quality of the microscope and the staining reagents are also
limiting factors (Malaria diagnosis and treatment CDC, 2019).
False-negative cases lead to the unnecessary use of antibiotics,
other consultations and, in some cases, progression to severe
malaria. False-positive cases imply a misdiagnosis, unnecessary use
of anti-malaria drugs, and suffering their potential side effects
(Poostchi et al., 2018). However, microscopic examination of thin
and thick blood smears is commonly used in endemic areas and
resource-poor settings, due to its availability and easy handling.
Other diagnostic techniques could complement and improve
traditional microscopic examination and resolve its limitations.

Quantitative Buffy Coat

The Quantitative Buffy Coat (QBC) test is a qualitative
screening method for rapidly detecting the presence of malaria
parasites in centrifuged capillary and venous blood (QBC Malaria
Test, 2007). Blood is centrifuged in specially coated QBC tubes
and visualized by optical fluorescence microscopy. The technique
is based on a density gradient that separates the blood cells and
allows the identification of parasitic forms by fluorescent
microscopic observation of the capillary tube. The dye commonly
used is acridine orange, which allows the identification of parasites
between the erythrocyte and leukocyte areas. The QBC tubes also
have an anticoagulant for the correct visualization of the sample
and to avoid artefacts due to blood clotting (QBC Malaria Test,
2007). QBC presents higher sensitivity and specificity than
conventional thick blood smear diagnosis due to the additional
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concentration of parasites in the narrow zone of the blood tubes
(Siciliano and Alano, 2015; About Malaria CDC, 2019). This
technique requires well-trained personnel, specialized
instrumentation, is costlier than conventional light microscopy,
and is difficult to determine the species and number of parasites

(Tangpukdee et al., 2009).

Rapid diagnostic tests

Rapid Diagnostic Tests (RDTs) are a suitable option and
complement for detecting Plasmodium infection. RDTs are
lateral-flow immunoassays that allow visualization of specific
antigen—antibody recognition events (Response plan to phrp2
gene deletions WHO, 2019). They confer a qualitative diagnosis
with a fast response time of less than 30 min (Cunningham etal,
2019). RDTs depend on the observation of a visible band on a
nitrocellulose strip produced by the capture of dye-labelled
antibodies. A drop of peripheral blood and a buffer solution are
usually used to perform the diagnosis on the RDT device by
detecting specific Plasmodium antigens. The majority of RDTs
are based on the detection of the P. falciparum-specific protein
histidine-rich protein II (HRP2) or universal antigen target for
all malaria parasites, such as Plasmodium lactate dehydrogenase
(p-LDH) or aldolase (Tangpukdee et al., 2009). HRP2 is
localized in the cytoplasm of P. falciparum and on the surface
membrane of infected erythrocytes (Murray and Bennett, 2009).
Gene deletions of the parasite target gene pfhrp2 are observed in
several studies in endemic areas such as Ethiopia and Bangladesh
(Wongsrichanalai et al., 2007; Bejon et al., 2014; Giemsa staining
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of malaria blood films WHO, 2016; Treatment of malaria CDC,
2013; Nima et al. 2017). False-negative results due to pfhrp2/3
gene mutation could trigger an incorrect diagnosis. Low parasite
density, incorrect interpretation of results, or P. malariae and
P. ovale infections are also causes of false-negative results and
reasons for an incorrect diagnosis by RDTs (Kavanaugh et al,
2021). A prozone effect due to excess antigen could trigger an
incorrect diagnosis, although it is not a common event (Gillet
etal., 2009). False-positive results are less common and can also
trigger an incorrect diagnosis. Cross-reactivity due to high
parasite levels or the presence of other disease antigens are the
main causes of false-positive results (Orish et al., 2018;
Kavanaugh et al.,, 2021; Pyle-Eilola et al., 2021). RDTs are a
useful diagnostic support feature for conventional diagnosis,
however, they cannot substitute microscopy examination
(Ajakaye and Ibukunoluwa, 2020).

Polymerase chain reaction

Polymerase Chain Reaction (PCR) diagnosis is a suitable
alternative to conventional techniques. It is based on the
amplification of Plasmodium DNA, and has high sensitivity,
specificity and relatively low complexity (Leski et al, 2020). It is
more sensitive than microscopy and capable of identifying malaria
parasites at the species level when conventional methods are not
able to detect the parasite (Johnston et al,, 2006). In addition, the
determination of Plasmodium species by PCR assay allows the
unequivocal diagnosis in mixed species infection (Siwal et al,,
2018) or low parasite levels (Haanshuus et al., 2019), which are
difficult to detect by microscopic examination. Some of the main
disadvantages of PCR diagnosis are the implementation of a
non-routine technique in remote areas, the long-time (2-3h)
needed for diagnosis, and the high cost of the technology
(Poostchi et al., 2018). Nowadays, PCR is being implemented as a
diagnostic technique for malaria, although it is not the gold
standard procedure and is not more widely used in endemic
countries. Molecular techniques are useful to detect asymptomatic
patients or those with very low parasite levels; their performance
with this casuistry is considerably better than the other diagnostic
techniques employed (Mwenda et al,, 2021). This molecular
diagnosis technique is commonly used in high-income countries
or regions to perform epidemiological studies (Li et al., 2014;
Eshag et al., 2020; Feufack-Donfack et al., 2021). As an example,
novel PCR assay, such as MC004 RT-PCR, is demonstrated to be a
useful tool for clinical settings and has a high degree of sensitivity
and specificity (Beyene et al.,, 2022).

Loop-mediated isothermal
amplification

Loop-Mediated Isothermal Amplification (LAMP) is a
molecular technique based on the amplification of nucleic acids
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employing Bacillus stearothermophilus DNA polymerase (Morris
and Aydin-Schmidt, 2021). It has a 99% sensitivity and 93%
specificity for malaria parasite detection compared with
microscopy and does not require thermocyclers (Ocker et al,
2016). A fluorescence spectrophotometer is usually needed to
read-out diagnostic results, which restricts the applicability in
rural areas. However, new LAMP assays are designed with a
fluorescence readout unit in order to detect P. falciparum parasites
(Puri et al., 2022). It is not widely implemented as a diagnostic
method, although it is postulated as an interesting alternative to
conventional PCR methods and could be progressively

implemented in resource-poor settings (Selvarajah et al., 2020).

Other diagnostic techniques

Serology is based on the detection of antibodies against
blood-stage malaria parasites. It is not commonly used for a rapid
malaria diagnosis, although it is mainly used to perform
seroprevalence studies of the disease. As an example,
Immunofluorescence Antibody Testing (IFA) uses specific
antigens for the quantification of IgG and IgM antibodies in serum
samples (Tangpukdee et al., 2009). Combined strategies using
serological, antigen detection, and DNA data are used to estimate
malaria transmission and perform epidemiological studies
(Oviedo et al., 2020).

Flow cytometry is a laser-based cell counting method that
allows the quantification of erythrocytes infected by malaria
parasites. It offers automated parasite level counts and has a low
sensitivity (Poostchi et al, 2018). New advances based on
fluorescence flow cytometry have shown that the Sysmex XN-31
device can determine the Plasmodium species and quantify
parasites in blood. However, it can generate false positive results
in case of abnormal erythrocytes cell morphology and the device
was tested in a non-endemic region (Khartabil et al,, 2022).

Biomarkers are cellular, biochemical, or molecular alterations
that indicate the presence of biological, pathogenic, or therapeutic
responses, with a high potential for diagnosis (Jain et al., 2014).
The development of malaria biomarker detection, multiplex
biomarkers for multiple Plasmodium parasite infections, and
biosensors are new improvements to be considered as diagnostic

tools (Krampa et al., 2017).

Diagnostic methods comparison

To perform a comparison between the different diagnostic
methods for malaria parasite detection it is important to
consider the parasite levels. Low parasite levels are related to
lower sensitivity values due to the less number of parasites in
blood. Higher parasite levels are easier to detect with all the
aforementioned techniques, although in some specific cases, a
prozone effect could trigger antigen detection issues by RDTs
(Gillet et al., 2009). The commercial brand of the techniques
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TABLE 2 Sensitivity and specificity of malaria diagnostic methods.

10.3389/fmich.2022.1006659

Diagnostic methods Sensitivity Specificity Specifications References
Microscopy 75.20% 97.12% Comparative study.Thick blood films are ~ Bejon et al. (2006),
20-40 times more sensitive than thin Wangai et al. (2011),
blood films. Parasite density interferes Feleke et al. (2021)
with the final result and is crucial to
obtain a reliable conclusion.
QBC 55.9% 88.8% Lagos State University Teaching Hospital. ~ Adeoye and Nga (2007)
70.5% 92.1% University College Hospital, Tbadan, Oyo  Ifeorah etal. (2017)
State, Nigeria.
RDTs 84.2% 99.8% BinaxNOW test. DiMaio et al. (2012)
63.4-100% 53.4-99.9% Mixed brands (Comparative study). Boyce and O'Meara (2017)
84.2% 95.2% University College Hospital, Tbadan, Oyo  Ifeorah etal. (2017)
State, Nigeria / pLDH RDT Optimal.
37-88% (37 and 51% in asympt.)  93-100% (28% in one outlier) ~ Mixed brands (Comparative study). Feleke et al. (2021)
LAMP 100% 86-99% LAMP compared with PCR. Feleke et al. (2021),
Puri et al. (2022)
95-98% 91-99% LAMP compared with PCR. Morris and Aydin-Schmidt
(2021)
PCR Considered 100% Considered 100% Used as a reference to be compared with  Feleke et al. (2021),

other techniques. Mwenda et al. (2021)

QBC: Quantitative Buffy Coat, RDTs: Rapid Diagnestic Tests, pLDH: Pl di

Reaction, asympt: Asymptomatic.

(QBC, RDTs, and PCR), RDT storage conditions, and response
time are crucial for the correct interpretation of diagnostic
results and could affect the final outcome. In the case of thick
and thin blood smears, the expertise of the microscopist is
determinant. The reference technique used as the standard
against which others are compared to evaluate the quality of the
method is also decisive (Feleke et al., 2021). Table 2 shows the
diagnostic methods most commonly used for malaria parasite
detection in terms of sensitivity and specificity. In some cases,
no differentiation between thick and thin blood smear samples
was observed in comparative studies and meta-analyses to
determine sensitivity and specificity. However, thick blood
smears provide a higher sensitivity than thin blood smear
samples (Wangai et al, 2011). PCR is considered to have 100%
sensitivity and specificity and is usually used as the

reference method.

Novel diagnostic tools by using
image analysis techniques

The global health impact of malaria has accelerated the
development and implementation of novel diagnostic strategies to
fight against the disease. Novel diagnostic techniques based on
image analysis and Al are being developed for malaria parasite
detection; an emulation of microscopic visualization by image
capturing and processing could be a fast and efficient alternative
to performing the diagnosis. In the last years, computational
microscopic imaging methods for object detection have held

Frontiers in Microbiology

hvd
lactose ds g

07

LAMP: Loop-Mediated Isothermal Amplification, PCR: Polymerase Chain

higher importance in medical and biomedical studies (Das et al.,
2015). Several software applications and tools are being developed
to detect malaria parasites in thick and thin blood smear sample
images using conventional light microscopy (Luengo-Oroz et al.,
2012; Dallet et al., 2014; Das et al., 2015; Pirnstill and Coté, 2015;
Bashir et al., 2017; Oliveira et al., 2017; Laketa, 2018; Manescu
et al,, 2020; Yang et al., 2020; Yu et al., 2020).

Deep learning is a set of computational AI processes and
methodologies that allow automated learning and the generation
of algorithms by emulating the human brain. It is based on
databases information, and uses artificial neural networks with
multiple layers to train and generate AI algorithms (Alzubaidi
etal, 2021). Deep learning has, in many aspects, boosted and
improved the procedure for traditional computer vision imaging
techniques (MK. Georgiefl, 2016). Convolutional Neural
Networks (CNN) are artificial neural networks widely used as
trained classifier models to detect objects in images or videos by
deep learning algorithms. Specifically, CNN classification is
applied in medical diagnosis to analyse and extract efficient
features from images as an Al healthcare tool (Sarvamangala and
Kulkarni, 2021). Imaging radiology techniques for early
diagnosis and treatment of emerging infectious diseases such as
Zika, Ebola, or Chikungunya are other image analysis
applications (Jardon et al., 2019). Microscope image analysis
using a U-Net (convolutional network architecture) to segment
and detect Leishmaniosis (Gorriz et al., 2018) is a representative
study of the wide variety of possibilities of CNNs. The high
computing capacity achieved over the past years and the
increased amount of training data for CNNs have boosted the
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TABLE 3 Visual image differences between thick and thin blood smear samples to distinguish malaria forms by artificial intelligence techniques.
(A) Thick blood smear sample 1,000x Giemsa staining. WBC nuclei and immature trophozoites (T) are distinguished with an arrow. (B) Thin blood
smear sample 1,000x Giemsa staining. Erythrocytes infected with young trophozoites (T) of P. falciparum and uninfected erythrocytes (RBC)
distinguished with an arrow. Maurer dots are present in infected erythrocyte morphology.

Thick blood smear sample

Thin blood smear sample

. LWl *
: d’Heb

s ron
“vall d'Hebron-Drassanes
Laboratori Microbiologia

(A)

Main features

— Positive/Negative diagnosis.

- Possible to distinguish all development stages of the blood life cycle of the parasites.
- Non-species identification (except in the case of P. falciparum gametocytes).

- Haemolysis of erythrocyte cells.

- Amorphous morphology of immature Plasmodium trophozoite cytoplasm.

- High sensitivity.

- Common appearance of Giemsa artefacts.

— Thick blood smear malaria parasite detection by artificial intelligence imaging tools
(Rosado et al,, 2016; Xiong et al., 2019; Manescu et al., 2020; Yang et al., 2020; Yu

et al., 2020).

(B)

Main features

- Plasmodium species identification by parasite and erythrocyte morphology.
- Parasite development stages identification inside erythrocytes.

- High specificity.

- Fewer artefacts and confusion forms,

- Fixing sample with methanol in Giemsa staining technique.

- Erythrocyte and staining artefacts.

- Thin blood smear malaria parasite detection by artificial intelligence imaging tools
(Ross et al., 2006; Tek et al., 2010; Dallet et al., 2014; Kareem et al., 2012; Mushabe
etal,, 2013; Oliveira et al.,, 2017; Rosado et al., 2017; Sankaran et al., 2017; Dantas
Oliveira et al., 2018; Pillay et al., 2019; Pardede et al., 2020; Yu et al., 2020; Abubakar

etal., 2021; Davidson et al., 2021).

use of this technology for medical applications (O'Mahony
et al., 2020).

In particular, automated microscopy imaging analysis could
also be an alternative to conventional microscopy examination for
malaria diagnosis. The preparation and type of sample are
important facts to consider to perform the correct identification of
biological features. Table 3 summarizes the visual image differences
between thick and thin blood smears and their analysis by Al
techniques (Ross et al., 2006; Mushabe et al., 2013; Dallet et al.,
2014; Oliveira et al., 2017; Sankaran et al,, 2017; Dantas Oliveira
etal, 2018). Thick blood smear examination is crucial for a correct
diagnosis of malaria, allowing the consequent visualization of thin
blood smears for species identification (Figure 2). Thick blood
smears are more sensitive and appropriate for low malaria parasite
levels (Dowling and Shute, 1966). Nevertheless, the frequency of
artefacts observed in this type of sample is higher in comparison
with thin blood smears (Prairie, 2012).

CNNs for the detection of malaria parasites in thick blood
smears are less used in comparison with thin blood smears. New
automated parasite detection in thick blood smears based on deep
learning and neural networks is an optimal alternative to
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traditional parasite microscopy visualization, as demonstrated in
several studies (Xiong et al,, 2019; Manescu et al., 2020; Yang et al.,
2020). Other important factors for the visualization of thick blood
smears are erythrocyte haemolysis, WBC cytoplasm rupture, and
the variable shapes of ring-stage trophozoites. Most of the
methods published for malaria parasite identification are based on
supervised procedures that require a previous manual labelling
procedure of microscopic images. Malaria digital images of thick
and thin blood smears need to be labelled to create a dataset large
enough to allow the generation of an optimal detection model
(Shambhu et al., 2022). This process requires to manually define
the bounding box of each parasite of a set of images to train the
neural network model.

Image acquisition

Image capturing/acquisition is the first step towards generating
an image database for future analysis and identification. Acquisition
depends on the equipment and infrastructure of the laboratories.
Microscope-integrated cameras are often used to acquire digital
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images with conventional light microscopy. However, smartphone
cameras with an adapter bracket are an affordable alternative for
automated malaria diagnosis applications (Srikanth et al., 2008;
Dallet et al,, 2014; Rosado et al,, 2016, 2017; Oliveira et al., 2017;
Yu et al, 2020). Thus, in low-income countries, smartphone
cameras would be a useful tool for acquiring digital images and
replacing integrated microscope cameras, which are usually more
expensive. The quality and resolution of the digital image, pixel
morphology and density would determine future image processing
and analysis. Other types of techniques for acquiring malaria
parasite images with different microscopes are also used, such as
fluorescent microscopy, binocular microscopy, or polarized
microscopy (Poostchietal., 2018). Nevertheless, image acquisition
with conventional light microscopy is the most similar procedure
to emulate conventional microscopic malaria diagnosis in endemic
countries. Image acquisition is the first step for both traditional
image processing techniques and deep learning methods (Hegde
etal, 2019),

Traditional image processing techniques
for malaria parasite detection

Image pre-processing is used in traditional computer vision
techniques to automatically detect parasites and allows the
preparation of acquired images to improve further analysis. Most
studies perform noise reduction, enhancement of image contrast,
and image resizing. These modifications would facilitate future
procedures of feature extraction. As an example, Gaussian average
filters or low-pass filters are used to reduce the noise of malaria
microscopy images (Fatima and Farid, 2020). Moreover, background
image assumption and colour normalization and correction to
reduce the effects of illumination is an affordable solution to reduce
image errors (Tek et al, 2016). Colour normalization and grey
world-based colour normalization are pre-processing methods to
minimise sample staining issues that could trigger image artefacts.
Pre-processing imaging methods for smartphone image acquisition
by colour normalization and background removal are useful tools
to prepare images for the automated diagnosis of leishmaniasis or
bartonellosis in remote locations (Cesario et al, 2012). Image
resolution and quality are decisive to perform a correct and precise
diagnosis via imaging methods.

Image segmentation is very often required to extract features.
Segmentation consists of classifying each pixel as part of the
objects in the original image. Morphological operations, Hough
transform, K-means clustering, watershed algorithm, edge-based
segmentation algorithms, rule-based segmentation, template
matching, and marker-controlled watershed are segmentation
techniques used for thin and thick blood smear images, among
other applications (Poostchi et al, 2018). Many of these are
complemented with thresholding techniques as a final step to
extract and define the different segmented regions.

Feature extraction is the next procedure. The characterization
of thin and thick blood smear images by features such as staining
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colours, cell texture, and morphology are carefully chosen
(Poostchi et al, 2018). For example, erythrocyte feature
calculations in thin blood smear images are performed by open-
source platforms such as PyRadiomics 2.2.0 (Savkare and Narote,
2015). Feature extraction facilitates the subsequent learning and
classification steps by providing quantitative information on
certain image parameters.

Machine learning or pattern recognition is the final step of the
image analysis procedure before identification. Classification
methods are used for the identification of parasites and WBCs in
thick blood smear samples, or infected and uninfected erythrocytes
in thin blood smears. It is important to distinguish between the
parasite identification procedures for the two sample types. In both
cases, the performance of the technology developed should
be optimized in terms of accuracy, sensitivity, and specificity
(Poostchi et al., 2018). Most articles published on the identification
of malaria parasites in thick blood smears are for P. falciparum
infections (Yang et al, 2020). Thin blood smear parasite
identification is used to distinguish between erythrocytes infected
or uninfected with malaria parasites. In addition, parasite species
identification and the development stage of the parasite in thin
blood smears are detected by using traditional pattern recognition
techniques that include, for example, Support Vector Machine
(SVM) or logistic regression classifiers (Tck et al., 2010). Response
time depends on the computational complexity of the predictive
model. Complexity increases the time of response, although an
evaluation between complexity and time is crucial to perform a
correct and sufficiently fast identification (F'reire et al., 2021).

Convolutional neural networks for
malaria parasite detection

Convolutional neural networks are computational systems
inspired by biological neurons designed to process data (Anwar
et al.,, 2018). Image input is analysed to recognize visual patterns
and complete the future identification of objects as an output.
Neurons in deep networks are controlled by an activation
function, which is responsible for controlling the output.
Operations such as pooling and regularizers, with L1, L2 norms,
batch normalization, or dropout are key elements to make the
predictive models learn better and faster (Goodfellow et al., 2016;
Anwar et al,, 2018). Overfitting issue due to a memorization of
data instead of learning could interfere in the final training
outcome and obtaining of robust final predictions (Demsar and
Zupan, 2021).

An important fact to consider when training CNNs is to have
sufficient representative data. Data is commonly distributed into
three sets: training, validation, and testing. The prediction model
learns from the multiple examples of the dataset and the same
training data is fed into the CNN repeatedly in an iterative
procedure. During training, the validation dataset allows
hyperparameter tuning and model evaluation by a continuous
optimization. Finally, a test dataset is used to assess the model
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after completing the training process with unseen data (Xu and
Goodacre, 2018).

Object detection deep learning models are able to identify and
locate objects of a certain class in images and videos (Jiao et al,
2019). During the last few years, object detection models have
been improved and most of the state-of-the-art object detectors
use deep learning networks. Usually, raw images need a simple
pre-processing to resize them and fed them into the network. The
model itself decides and computes the appropriate features and
provides an output that leads to the identification and location of
objects. Among other uses, medical imaging may benefit from
object detection techniques, in particular, it could be a useful
alternative to malaria parasite detection (Jiao et al., 2019).

Object detectors are classified as two-stage or one-stage.
Two-stage detectors have high localization and object recognition
accuracy, whereas one-stage detectors achieve high inference
speed (Jiao et al, 2019). The most representative two-stage
detector is Faster R-CNN (Ren et al,, 2017) and one-stage object
characteristic detectors are YOLO (Redmon et al.,, 2016) and SSD
(Konishi et al., 2016).

In most cases, manually labelled data is required to perform
all the aforementioned processes. Unsupervised training is an
alternative, although most medical imaging studies are performed
with supervised training data. Supervised learning based on image
annotation is diverse and several strategies have been described
(Sarangi, 2014). Whole-image classification is the annotation of
the whole image as a type or class. Non-discerning objects are
detected in the image, so the whole image is classified as a type.
Object detection using bounding boxes within each image is
another option when solving classification tasks. It requires a more
time-consuming supervised annotation procedure of the different
objects in the image. CNNs use the dataset and identify every
bounding box as an object class (Ibrahem et al., 2022).

In the case of image segmentation, the identification of objects
is based on a pixel-by-level classification. Each pixel is classified as
a class object with its own value and annotations are manually
added to images. However, it is an even higher time-consuming
task for large databases, therefore automatic annotation
procedures are being developed. Thus, other conventional
machine learning methods and deep learning procedures are used
to automatically annotate images (Murthy et al, 2015; Cao
et al., 2020).

Furthermore, CNNs need large datasets with annotated data.
ImageNet is one of the largest available datasets of universal
images for researchers and non-commercial use (ImageNet, 2021).
In the particular case of malaria, a sufficiently large dataset of
malaria annotated images is needed to train CNN models and
perform an automated identification of parasites. Malaria thick
blood smears from the Institute of Electrical and Electronics
Engineers (IEEE) DataPort is an open-source image dataset
(Malaria Thick Blood Smears | IEEE DataPort, 2021). Strikingly,
there are not many publicly available datasets of malaria thick and
thin blood smear images. Data augmentation techniques, to
artificially enlarge image datasets and obtain better performances,
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is nowadays used with promising results as DACNN model
demonstrates (Oyewola et al., 2022).

CNNs have been shown to have optimum performance with
computer-aided image diagnosis applications in specific fields of
study and can be generalised for other medical imaging tasks
(Shin et al., 2016). Object detection models, such as YOLOv3,
YOLOv4 and YOLOVS5 are used for malaria parasite detection
(Abdurahman et al., 2021; Rocha et al., 2022). Feature scale and
addition of detection layers are modifications that provide better
performances than state-of-the-art articles. Moreover, Faster
R-CNN (Hung and Carpenter, 2017; Ren et al,, 2017) and SPPnet
(Zhou et al., 2018) are optimized neural networks used to speed
up and enhance identification time. Recent studies demonstrate
the potential of CNNs for malaria parasite detection with
promising results, such as VGG-19 model by transfer learning
mechanism (Alnussairi and Ibrahim, 2022; Jameela et al., 2022) or
transformer-based models to obtain optimized performance
parameters (Islam et al, 2022). The general procedure for malaria
parasite detection using deep learning imaging methods is
represented in the bottom part of Figure 3. Nowadays, CNNs have
improved and replaced the use of traditional methods.

Automated malaria parasite level
calculations using deep learning
methods

Automated parasitaemia counting by image analysis is a useful
tool that could overcome and provide support to manual parasite
level quantification. Conventional malaria parasite level calculations
by microscopy visualization of thick and thin blood smears are not
precise and difficult to reproduce. An estimation is usually
performed and, when parasite levels are high, is tedious and time-
consuming. Thick blood smear parasite level quantification is
routinely performed by counting the number of parasites and
leukocytes in a blood smear sample (WHO and Regional Office for
the Western Pacific, 2016). Thin blood smear quantification is based
on the counting of infected erythrocyte cells in each microscopy
field (WHO and Regional Office for the Western Pacific, 2016).
Quantification of parasite levels via digital image analysis techniques
would require the shortest period of time. An image analysis
software was developed to perform this function automatically with
thick blood smear images (Arco et al., 2015). For thin blood smear
automated parasitaemia calculations there are image analysis tools
available to improve conventional manual counting. Determination
of malaria P. vivax parasite concentration is possible using image
processing techniques (Prasad et al., 2020). Plasmodium AutoCount
is a digital image analysis tool to perform an automatic count of
parasites in Giemsa-stained thin blood smears (Ma et al., 2010).
Other image processing tools based on OpenCV software libraries
were satisfactory in determining parasite levels in thin blood smear
samples (Swain et al, 2018). Previously mentioned methods used
image processing techniques, such as noise reduction with filters
and binary transformations, to determine the presence of malaria
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FIGURE 3
Representation of the different procedures using Traditional Computer Vision Imaging methods or Deep Learning methods (Convolutional Neural
Networks) for malaria parasite identification in thick and thin blood smear samples.

parasites inside erythrocytes and perform a final parasite
level calculation.

Mobile phone applications for malaria
parasite detection

Mobile phone applications are being developed for the
automatic detection of malaria parasites (Cesario et al., 2012;
Rosado et al., 2016, 2017; Oliveira et al., 2017; Yu et al., 2020; Zhao
et al,, 2020). Smartphone image capturing is a suitable and easy
alternative for the acquisition of blood smear images through the
microscope lens. Only an optical microscope, a mobile adapter,
and a conventional smartphone are needed to perform an imaging
diagnosis. Mobile phone cameras could substitute integrated or
external microscopy cameras and perform an optimum diagnosis
by image analysis.

The integration of CNN predictive models in a smartphone
software application is possible. Adapted CNN models perform
the entire diagnosis in a single device. The coalescence between
malaria automated diagnosis and smartphone software is a
milestone and challenge for future implementation in worldwide
laboratories. Image analysis and deep learning procedures allow
smartphones to be one of the best alternatives for the
implementation of automated malaria parasite detection. Even in
resource-poor settings, smartphones are an available and relatively
cheap option. One of the main problems of smartphone cameras
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was image quality and adaptation to microscopy lenses. Nowadays,
smartphone cameras provide high image quality, although
adaptation to the microscope is not as good as expected. Images
could be disturbed by light microscopy issues, lens adaptation to
smartphone cameras, or image quality downgrades related to
image focus. Microscope image auto-focus is also an issue to solve.
The technology to fully automate the entire procedure of image
focusing, image acquisition, and parasite identification by an
independent device is still required.

As an example, Malaria Screener is an affordable and effective
solution for automatic malaria parasite detection by a mobile
phone application (Yu et al., 2020). It combines image acquisition,
smear image analysis, and result visualization. It is a semi-
automated system based on digital images and CNN models to
predict the presence of malaria P. falciparum parasites in thin and
thick blood smears. Other applications were developed to combine
automatic detection of malaria parasites via an optical
magnification prototype with a smartphone device that performs
image processing and analysis (Rosado et al., 2016). VGG16
classification CNN, or other CNN models, were integrated into
smartphone applications to automatically detect the presence of
malaria parasites inside erythrocytes in thin blood smear samples
(Zhao et al., 2020).

Gamification of the technology for the identification of
malaria parasites in digital images is also an innovative application.
As an example, a web-based game where online volunteers analyse
thick blood smear images to detect malaria parasites was
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developed for the creation of an annotated image database
(Luengo-Oroz et al., 2012).

To sum up, smartphone applications might be the future for
autonomous image acquisition and analysis by AI technologies,
and a suitable alternative for malaria and Neglected Tropical
Disease (NTDs) diagnosis. The possibility to integrate predictive
models and image acquisition in a single device confers a wide

range of applications in the field of image analysis for diagnostics.

Microscopy automation linked to
smartphone software technology

Microscopy automation to move blood smear samples and
capture focused images automatically is a challenging approach.
Automation would solve the limitations related to the non-fully
autonomous diagnosis procedure performed. Image processing
methods allow automation of the diagnosis, although a person is
still needed to move the X-Y axis and issue focus of the
microscope. A few studies have implemented automatic
hardware devices to solve this problem and optimise the
automation of malaria diagnosis (Kaewkamnerd et al., 2012;
Gopakumar et al., 2018; Muthumbi et al., 2019). Microscopy
adaptation is crucial to fully implement the aforementioned
technology in real clinical and diagnosis practices. Low-cost
hardware optimization with 3D printing models to manufacture
specific parts or pieces of the microscope would be a suitable
option in resource-poor settings with endemic malaria. A
3D-Printed portable robotic mobile-based microscope for the
diagnosis of global health diseases is an example of the potential
of this technology (Garcia-Villena et al,, 2021). As mentioned
before, some studies present the possibility of developing an
optical device that emulates or substitutes an optical microscope.
An optical prototype with 1,000x magnification adapts to the
smartphone camera and avoids possible light issues (Rosado
et al, 2016). Nevertheless, conventional optical microscopy
adaptation is the most suitable technique for image acquisition
and analysis by smartphone applications.

Implementation of malaria digital
microscope imaging diagnosis in
resource-poor settings

More than 90% of severe malaria produced by P. falciparum is
estimated to affect young children under 5years old in
Sub-Saharan Africa, in areas with resource-poor settings
(Schumacher and Spinelli, 2012; Gitta and Kilian, 2020). The gold
standard method for malaria diagnosis by the WHO is still
microscopy, although this is dependent on laboratory resources
and could result in diagnostic errors due to a lack of
instrumentation, medical devices, or well-trained laboratory staff.
Microscopic examination of blood smears and RDTs are the
techniques most used for malaria diagnosis and improvements
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aimed at the development of new and better diagnostic techniques
are being implemented in endemic areas (Gitta and Kilian, 2020).
The increase of RDT usage in malaria-endemic areas is replacing
microscopic examination of blood smears due to the lack of
resources and well-trained personnel. In addition, the biosocial
situation of mothers and children in resource-poor regions, such
as Imo State in south-eastern Nigeria, has an impact on the
increased appearance of complicated malaria cases (Iloh et al,
2013). A non-precise diagnosis or treatment due to the low
availability of resources is a serious issue in endemic areas.
Consequently, the implementation of new and affordable
diagnostic imaging techniques could help solve this problem.

Smartphones are a portable and suitable alternative for
malaria diagnosis via imaging techniques, which could
be implemented in resource-poor settings and remote endemic
areas. They could improve and automate malaria diagnosis with
less need for resources and personnel. CNN models could
be integrated inside smartphone software and an internet
connection would not be required. The provision of health centres
with mobile devices by governmental organisations and national
programs against malaria would be a determinant factor for the
correct implementation of this novel technology for malaria
diagnosis. However, due to the constraints specific to many
malaria endemic areas, this may be a major problem to
be addressed in the coming years by political willingness. The
benefits of smartphones for diagnostics can be of significant value,
not only for malaria, but also for the diagnosis of many other
tropical diseases or NTDs (Vasiman et al., 2019). Due to that,
implementation in regional hospitals or small healthcare centres
would be a challenge for future studies. New object detection
models trained with smartphone camera images are suitable for
malaria diagnosis deployment in resource-poor settings
(Abdurahman et al., 2021).

Diagnostic performance studies to validate the technology are
a must for the future implementation of a tool. The performance
evaluation should be carried out under ideal and resource-poor
conditions to determine its effectiveness in different environments.
There are many barriers to overcome in order to transition a
product or technology from development to introduction and
implementation. Some of the main barriers are the adjustment to
the health and laboratory systems necessary to ensure effective
adoption and implementation, demonstration of the technology’s
value, evaluation of operational viability, policy and regulatory
requirements of government organizations, operation research to
evaluate the net effect of the technology in the field, distribution,
service and repair, and quality assurance and control
(Palamountain et al., 2012),

The implementation of new diagnostic techniques in
laboratory environments has to be regulated and controlled by the
Food and Drug Administration and WHO protocols
(Palamountain et al., 2012). The technology should be validated
and accepted by international and national authorities as
described (Mugambi et al., 2018). Most efforts to implement new
diagnostic tools in resource-poor settings are focused on
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infectious diseases such as HIV, Tuberculosis, and Malaria. Deep
understanding and coordination of the stakeholders involved in
the diagnostic development and implementation are milestones
for the success of diagnostic interventions (Mugambi et al., 2018).

Discussion and concluding
remarks

Epidemic malaria is very prevalent in Sub-Saharan Africa and
tropical regions with low resources. It is still a global health issue
that should be solved by mosquito control strategies, rapid and
accurate diagnosis, and correct treatment (World Malaria Report
WHO, 2021). Therefore, diagnosis is crucial for the eradication of
the disease and to reduce mortality in prevalent regions. However,
the recurrent problems in these environments with conventional
microscopic examination due to lack of resources and
experimented microscopists (Ngasala and Bushukatale, 2019), and
the increasing failure of RDTs mainly due to gene mutations
(Golassa et al., 2020), reinforces the necessity of developing new,
affordable,

Plasmodium infection.

and accessible diagnostic methods for

Advances in image analysis and processing allow and
postulate the implementation of automated malaria diagnosis as
anew diagnostic tool. Thick and thin blood smears would be the
samples analysed by the new technology. Traditional image
analysis techniques were used to automatically detect malaria
parasites in thin and thick blood smears (Turrientes and Lopez,
2016), as demonstrated in several studies (Tek et al., 2010). The
irruption of deep learning methodologies with CNNs has boosted
and improved the results for the identification of malaria parasites
in comparison with traditional computer vision techniques. For
CNN models and, specifically medical image processing and
analysis, it is crucial to have a large image dataset to obtain reliable
results. Unfortunately, open-source image datasets are not globally
available and are usually used for individual CNN training,

Open image availability would be a beneficial resource for the
scientific community. The ImageNet (ImageNet, 2021), parasite
image (Li and Zhang, 2020), and malaria thick blood smear
(Malaria Thick Blood Smears | IEEE DataPort, 2021) databases are
representative examples. Neural networks such as YOLO are used
as CNN models to detect malaria parasites in blood smears
(Abdurahman et al., 2021).

In addition, the integration of CNN models into
smartphone software is possible. Thus, the implementation of
digital image analysis-based diagnostic tools in endemic areas
with smartphone applications could improve and automate
malaria diagnosis by the emulation of the gold standard
microscopy examination technique. As an example, fully
automated systems, such as the slide screening microscope
EasyScan GO, evaluate their performance against WHO slide
samples with promising results (Horning et al, 2021).
CNN-based models are widely used as predictive models with
the capacity to distinguish parasite forms and blood cells and
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could be implemented in low-resource settings (Zhao et al.,
2020). Automated parasite detection, parasite level calculations,
and faster diagnosis are some of the main advantages of image
analysis for malaria diagnosis. This technology could be used
as a fast and precise tool to perform parasite level calculations
(Ma et al,, 2010). Overall, the use of smartphones and artificial
intelligence techniques for diagnosis might help the global goal
of malaria eradication in the coming years. The support and
enhancement of traditional microscopy-based diagnostic
techniques through the use of Al the upgrading of laboratory
infrastructures in malaria endemic areas and the improvement
of computer technology over the years may help to implement
such techniques in most remote areas. Integrating innovations
into the current microscopy method would reinforce malaria
elimination (Nema et al., 2022).

Hardware automation is still in the process of optimization to
complete the goal of independent predictive and mechanized
diagnostics. Other limitations such as image quality dependence,
local  regulatory
organization permissions, or the necessity to create a standardized

laboratory infrastructure requirement,
protocol for the final diagnosis should be addressed. Nevertheless,
several studies are improving predictive models, pre-processing
techniques, microscope automation, and faster detections
(Sriporn et al., 2020; Masud et al,, 2020). Artificial intelligence
improvements and better predictive algorithms due to computing
power evolution could be an advance in terms of automatic image
diagnosis with optimized predictive results in the following years.
In conclusion, with diagnostic techniques based on image analysis,
the samples used are the same (thick and thin blood smear) and
the procedure of sample preparation, parasite observation and
interpretation would be very similar to conventional microscopy.
In addition, it would provide technical support to health
professionals and help to automate the process in order to increase
its efficiency.

In this review, we have summarised the main advances,
challenges, and limitations in the automation of malaria
diagnosis using digital image analysis by Al tools. Smartphone
applications are a suitable option to integrate diagnosis
technology into a single device and confer laboratories a new
tool for malaria and other disease diagnoses. New advances
and improvements in Al would be the final milestone for the
optimisation and implementation of the technology worldwide.
In conclusion, we are ever closer to developing a fast, efficient,
and optimum new diagnosis tool for malaria parasite detection
available for laboratories located in malaria-endemic
regions worldwide.
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