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Thesis Summary

Innovation plays a central role in tackling modern economic challenges, from

stagnant firm productivity growth to climate degradation and worsening health

outcomes. Understanding how and why inventors innovate is therefore of vital

public policy importance.

This thesis examines innovation through patent texts, leveraging recent ad-

vances in text analysis and machine learning. These methods are transforming

daily life, popular culture, and science–including the study of innovation. By

integrating these techniques with rigorous economic theory, this thesis improves

our ability to measure the knowledge held by inventors, teams, and firms and

to understand how they produce the innovations needed to tackle tomorrow’s

challenges.

In Chapter 1, Teams and Text: Modelling Collaboration Through Patent Docu-
ments, I introduce a novel methodology that integrates inventor teams and their

patent texts into a unified framework for studying collaborative innovation. I

develop a Bayesian model of Natural Language Processing that captures the sci-

entific division of labour within teams. By combining high-dimensional patent

data with a statistical model of teamwork, the method developed allows me to

infer each team member’s contribution to a patent’s knowledge content. I use

this to study collaboration dynamics over the life cycle of an inventor’s career.

Building on this framework, Chapter 2, Catalyst or Constraint: The Dual Role
of Prior Innovation for Breakthroughs, examines how prior innovations shape

a team’s ability to push the innovation frontier forward. I once again apply the

model from Chapter 1 to patent text data. In this case mapping inventors, teams,

and research fields into a structure known as the knowledge space. I combine

this with data on premature team member deaths to provide a quasi-random

shock to the research potential of the team. Through a continuous treatment

model, I identify how team innovations change as they pivot to more or less ad-

vanced research areas. This framework offers a flexible and tractable approach

to studying the creation of new research fields, an area largely overlooked in the

literature due to a lack of suitable models and data.
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In Chapter 3, From Shares to Machines: How Common Ownership Drives Automa-
tion, we examine three increasingly important economic phenomena: the rise

of common ownership in public firms, monopsony power, and the shift toward

automated production processes. This chapter is co-authored with Dennis C.

Hutschenreiter, Felix Noth, Stefano Manfredonia, and Tommaso Santini. We

propose a theory that greater overlap in the stockholders of local labour mar-

ket competitors drives automation-related innovation. We measure automation

using a classification derived from the text of each patent produced at a firm.

To estimate a causal effect, we exploit exogenous increases in common owner-

ship due to institutional investor mergers, which provide a quasi-experimental

setting. Our findings confirm that when common ownership among local com-

petitors increases, firms expand automation and reduce employment.
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Chapter 1

Teams and Text: Modelling
Collaboration Through Patent
Documents

Abstract
This paper models the division of scientific labour within inventor teams

and shows how this division can be inferred from patent texts using a

Bayesian model of Natural Language Processing. I find that as inventors

gain experience, they collaborate on more patents per year, but contribute

relatively less to each patent compared to junior co-inventors. Increased

concentration in contribution shares generally reduces patent value, re-

flecting a quantity-quality trade-off made by senior inventors. This trade-

off allows seniors to accumulate more patents, though, on average, each

one has a lower value. However, when junior inventors are of high qual-

ity, this negative effect disappears entirely. Importantly, the quality of the

senior does not make up for concentrating the contribution on low quality

juniors.

I gratefully acknowledge the support of the Spanish Agencia Estatal de Investigación

(MCIN/ AEI /10.13039/501100011033) through grant PID2020-114251GB-I00.
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1.1 Introduction

Teams drive scientific progress, yet how they organise the production of knowl-

edge remains largely a black box. As innovation stems from the recombination

of existing ideas (Weitzman, 1998), understanding how inventors combine to

produce knowledge within teams is crucial. Consider the case of Milton Fried-

man and Anna J. Schwartz’s collaboration on their seminal work A Monetary
History of the United States, 1963. Without additional information about the

authors or their work, it would be difficult to infer that Friedman was a theo-

rist while Schwartz was an empiricist. Yet in fact, Friedman’s theory required

Schwartz’s national accounts data analysis to empirically prove his propositions.

This illustrates both the challenge and importance of understanding the division

of labour within scientific teams.

This paper studies whether inventors organise themselves within teams follow-

ing a scientific division of labour and whether this division can be inferred from

patent texts. Having shown that it can, I ask whether teams in which mem-

bers contribute equally produce more valuable innovations. I use the following

definition of contribution: the share of knowledge components contained in an

innovation contributed by a given inventor. For example, if a drone uses mostly

electronics engineering, a little knowledge on metals, and some on physics, we

might ask which team member provided each part? Importantly, did one in-

ventor alone contribute the electronics, while their co-inventors contributed the

relatively smaller parts on metals and physics? Or did all team members con-

tribute equal shares?1

To infer these contribution shares, I model collaboration through the lens of the

Author-Topic Model (Rosen-Zvi et al., 2012). This model represents a significant

contribution to our ability to disentangle the contributions of individual inven-

tors to team knowledge production. I apply this model to a dataset of 1 million

USPTO patents, selected to represent a sample of well-connected inventor teams.

The approach allows me to present a set of novel descriptive statistics on inven-

tor contributions. In addition, I propose a novel measure for the concentration

of team contributions. This measure captures whether a team divides scientific

1It is important to note that it does not reflect the effort contributed to many facets of col-
laboration: running analysis, writing the patent, applying for grants and other administrative
tasks. In this sense, the paper is different to Xu, Wu, and Evans (2013), who use a definition of
contribution to general scientific work load. They do not, however, observe their measure for
patent texts, and instead use scientific papers as their setting.
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labour equally, or whether a few team members dominate. I start by describ-

ing contributions at an aggregate level. I then move on to present inventor and

team level panel regression models, accounting for unobserved heterogeneity

across teams, inventors, and time. While this approach does not establish strict

causal identification, it provides robust evidence on the patterns linking team

organisation to innovation outcomes.

Teams divide contributions differently across technology classes, and I demon-

strate that teamwork is getting “flatter” over time. Moving to the team and

inventor level, I demonstrate that as inventors gain experience, they collaborate

on more patents per year. In contrast, I find that as inventors become more expe-

rienced, they contribute less to each individual patent. This points to a diluting

effect of gaining experience: senior inventors collaborate on more patents, but

contribute less to each one. If the seniors are contributing less, does the concen-

tration of scientific labour onto a few team members shape patent outcomes?

Xu, Wu, and Evans (2013) argue that flat teams produce more disruptive aca-

demic science. I extend their result by showing that teams in which each member

contributes equally produce more valuable patents.

However, I rationalise this result with the fact that seniors and juniors contribute

differently to team patents. Concentration appears, in the majority of cases,

from juniors contributing more when collaborating with seniors. This alludes to

a potential quantity-quality trade-off for senior inventors. As inventors grow in

experience they collaborate more frequently, but dilute their contribution to each

individual patent. Therefore, if they collaborate with lower quality inventors,

they increase the quantity to quality ratio. As such, the quality of the juniors

drives patent outcomes. I demonstrate this by showing that concentration in

contribution shares correlates with lower patent values. However, this negative

effect disappears entirely when the junior inventor is of high quality. In addition,

I show that the quality of the senior does not make up for concentrating the

contribution on low quality juniors. These results suggest that for seniors looking

to increase their patent output, sourcing quality juniors who will take up the

contribution share is key. There may be valid reasons, however, for which a

senior cannot collaborate with high quality juniors, and these results should be

taken as a first step in understanding this complex dynamic.

This paper’s contribution lies in developing a novel model that allows for the

scientific division of labour within inventor teams, allowing me to truly open the

black box around teamwork. By offering a framework to systematically assess
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how inventors combine knowledge, I provide new insights into the structure

of innovative collaboration. This framework allows me to extend the litera-

ture on how collaboration structure within teams determines outcomes, but also

presents a powerful yet parsimonious framework to model the knowledge pro-

duction function.

Related Literature The notion that innovation occurs as a result of the recom-

bination of existing knowledge is well established within economics (Schum-

peter, 1939; Weitzman, 1998; Fleming, 2001). The definition of contribution

used in this paper relies on innovation being modular, such that each knowledge

component can be described individually. An existing literature argues that inno-

vation is modular to varying degrees (von Hippel, 1990; Brusoni and Prencipe,

2001; Ethiraj and Levinthal, 2004; Vakili and Kaplan, 2021). I frame the defini-

tion of contribution within this literature, which allows the model to infer which

inventor contributed each knowledge component.

Given the rising importance of teamwork, developing empirical methods to de-

code how teams combine individual profiles is key to understanding their pro-

duction process (Ahmadpoor and Jones, 2019). I contribute specifically to the

empirical literature which looks to disentangle individual contributions to team

projects (Bonhomme, 2022; Mindruta et al., 2024). There is a small but impor-

tant literature using highly specific case studies in which individual inputs are

observed (Kahane, Longley, and Simmons, 2013; Devereux, 2018; Weidmann

and Deming, 2021). The method proposed in this paper extends this litera-

ture, which typically focuses on contributions to quality, by disentangling the

knowledge contribution of each member. The most direct method of achieving

this currently is to use the contribution statements published at select journals

(Sauermann and Haeussler, 2017). Xu, Wu, and Evans (2013) develop a highly

flexible method of measuring hierarchy within teams, trained on contribution

data, and show that flat teams produce more disruptive innovations. I develop

this literature by making use of a topic model to infer who contributed each sec-

tion. Bandiera et al. (2020) was a breakthrough paper within economics and the

use of topic modelling. They demonstrate that worker types can indeed be in-

ferred from text. They identify manager types from the text within a manager’s

calendar activities and implement a similar model of text analysis used in this

chapter.

This paper explains a set of within team dynamics that contribute to the liter-

ature on the division of labour within scientific teams. Within this literature,
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recent progress has been made in identifying team leaders, as part of the divi-

sion of scientific labour (Haeussler and Sauermann, 2020; Wu, Esposito, and

Evans, 2024). Given the changing knowledge production function, the man-

ner in which teams distribute contributions matters (Agrawal, Goldfarb, and

Teodoridis, 2016). As a result, there is a growing and important literature on

the role of specialists and generalists within teams (Anderson, 2012; Graves and

Kuehn, 2021). Jones (2009) argues that as knowledge accumulates, this incen-

tivises individuals to specialise and hold deeper knowledge on fewer knowledge

components. Melero and Palomeras (2015), however, defend the role of gener-

alists as inventors who can contribute to various knowledge components within

the innovation. The framework presented here enables us to better understand

which components each inventor contributes to, and therefore track the division

of labour among inventor teams.

Finally, I frame the conclusions of this paper on how the division of labour drives

patent outcomes within the literature on the effect of experience and ageing on

innovation. Gingras et al. (2008) showed that the number of scientific papers

an inventor collaborates on increases before plateauing, as they increase in age.

However, their average ordinal position in the list of authors increases.2 This

suggests that a similar trend to the diluting effect of senior inventors also exists

within academic science. Kaltenberg, Jaffe, and Lachman (2023) look at the

effect of age on innovation through U.S. patents. They find a hump-shaped rela-

tionship between the number of patents collaborated on in a year and inventor

age, with a peak in the late 30s. The results presented here are complementary,

given that I examine the role of experience alone and not age.

Paper Outline The rest of the paper is structured as follows: Section 2 outlines

the statistical model of teamwork; Section 3 describes the data and sampling

method used; Section 4 describes the inference method; Section 5 provides a

validation test; Section 6 presents the descriptive results; Section 7 presents the

full empirical results, and Section 8 concludes.

1.2 Model of Teamwork

In order to disentangle individual contributions to team projects, I present the

Author-Topic Model as a novel model of collaboration. The first version of this

2They show that this result holds for normalising by team size, which, given trends of in-
creasing team sizes, may have biased this result.
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model was presented in Rosen-Zvi et al. (2012) and I follow the notation laid

out in Mortensen (2017). I update their notation to the context of inventors

(authors), who use knowledge classes (topics) to produce patents (texts). I

refer to both seminal papers for further reference.3

A patent p ∈ P describes an innovation. There exists a set of inventors I who

together form teams to produce these patents. Each patent is produced by a

team τ p ∈ T of m inventors. For each patent p there is an associated vector np

of Np words, where each word npn is chosen from a vocabulary of size V. There

exist K knowledge classes, which represent areas of scientific expertise. The

choice of each word npn is governed by the probability of using each word when

describing each knowledge class. The idea being that if you are describing an

automation innovation you are more likely to use the words car, wheel and drive
than you are hospital or medicine.

FIGURE 1.1

INVENTOR-KNOWLEDGE CLASS MODEL

Notes: Plate notation for the baseline Bayesian Hierarchical model behind the Author-Topic Model.
This diagram is adapted from Mortensen, 2017.

A collection of patents therefore includes each vector of words and the corre-

sponding team. This is defined formally as: {(np, τ p) | p ∈ P }. A set of patents

P is produced with the following generative process, assuming a uniform prior

over contribution shares. This model is represented in the following plate dia-

gram in Figure (1.1).

• For each inventor i ∈ I draw θi ∼ Dir(α).
3In addition to following the notation laid out in Mortensen, 2017, they also develop the

Gensim application of the Author-Topic Model. The quantitative model and code for this project
were built directly on top of the scripts provided through this python package.
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• For each knowledge class k ∈ K draw βk ∼ Dir(η).

• For each document p ∈ P :

– Given the team τ p of patent p

– For each word in the patent n ∈ {1, . . . , Np}.

- Select an inventor for the current word ipn ∈ τ p ∼ 1
m

.

- Conditioned on ipn = i, select a knowledge class kpn ∼ θik.

- Conditioned on kpn = k, select a word npn ∼ βkn.

Importantly for the objective of this paper, each word in every patent is attached

to an inventor, knowledge class pair. This allows the model to infer many impor-

tant but latent parameters. These include each inventor’s knowledge distribution

θi and the contribution share of inventor i to patent p. The posterior distribution

given the observed data and Dirichlet priors is given by

P (k, i,β, Θ|α, η,n,T ) = P (n|k,β)P (k|i, Θ)P (i|T )P (β|η)P (Θ|α)
P (n|α, η,T ) (1.1)

This is the probability of observing the data, the proposed mapping from words

to inventor, knowledge class pairs and latent parameters θ and β. As is typical

in Bayesian analysis this posterior is intractable. This is because we have no

estimate for the marginal probability of the observed data in the denominator.

Therefore topic models use an inference method to back out an approximation.

I use a method of Variational Bayes.4 Define q(·) as an approximation to the

posterior

q(k, i,β, Θ|λ, γ, ϕ) = q(Θ|γ)q(β|λ)q(k, i|ϕ) (1.2)

≈ P (k, i,β, Θ|α, η,n,T ) (1.3)

The definition of the variational approximation introduces an essential feature in

order to infer non-uniform contribution shares. The variational approximation

introduces three variational parameters, λ γ and ϕ. The first two λ and γ govern

the distribution of inventors across knowledge classes, and knowledge classes

across words respectively. The key feature is that equation 1.2 now models

the choice of knowledge classes and inventors as dependent random variables

4Gibbs Sampling is an alternative and popular model, which can give good results, however
on large sample sizes can perform very slowly.
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where P (k|i, Θ)P (i|T ) ≈ q(k, i|ϕ). This is known in the literature as a blocking

estimator. This means that the probability of choosing inventor i ∈ τ p is a

function of the knowledge held by inventor i relative to their collaborators, and

the knowledge contained in the patent p. In other words, the choice of the

inventor and knowledge class are now dependent.

If a patent already includes a lot of words discussing medicine, and if one of the

inventors has a larger weight in this knowledge class than others in the team,

then they are more likely to be chosen to contribute again. This allows for non-

uniform contribution weights ωip ̸= ωjp ∀ i, j ∈ τ and for the knowledge profile

of individual inventors to be over (under) represented in the patent knowledge

distribution.

Define the following parametrisation of q(·)

q(k, i,β, Θ|λ, γ, ϕ) = q(Θ|γ)q(β|λ)q(k, i|ϕ)

=
∏

i

q(θi|γi)
∏
k

q(βk|λk)
∏
p,n

q(ipn, kpn|ϕik)

=
∏

i

Dir(θi|γi)
∏
k

Dir(βk|λk)
∏
p,n

q(ipn, kpn|ϕik)

This is the product of the probability of observing I inventor to knowledge class

distributions, K knowledge class to word distributions and a set of inventor and

knowledge class pairs for each word of every patent. By changing the underlying

assumption of how inventors and knowledge classes are drawn to more closely

match reality, the plate diagram of parameter dependence changes. Figure (1.2)

presents the final model.

For patent p, the matrix ϕp,v,i,k gives the discrete joint probability of choosing

each inventor i and knowledge class k pair for a given word n = v ∈ V . Formally,

the probability of inventor i choosing knowledge class k and word v for patent p

is given by

ϕp,v,i,k =

ϕp,v,i,k i ∈ τ p

0, otherwise

The full probability distribution is stored during the estimation as a four dimen-

sional matrix ϕp,v,i,k
5. Where

∑
i

∑
k ϕp,v,i,k = 1.

5In reality the Gensim package uses the exchangeability of the model to develop an online
algorithm to reduce the memory requirements of this matrix, I refer you again to Mortensen,
2017 for further details on this great package.
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FIGURE 1.2
INVENTOR-KNOWLEDGE CLASS MODEL: BLOCKED

Notes: Plate notation for Bayesian Hierarchical model in a blocked model, given the assumption that
the draw of inventor and knowledge class are dependent, thus allowing for non-uniform contribution
shares.This diagram is adapted from Mortensen, 2017.

During inference, the model iterates over each word in every patent, updat-

ing the estimates for each of the parameters and the mapping from words to

inventor, knowledge class pairs. The method is a derivation of Expectation Max-

imisation and solves for the following condition using Jensen’s inequality.6

The right hand side is a lower bound on the marginal probability of the observed

data. Also known in the literature as the Evidence Lower Bound (ELBO). A set

of functional assumptions allows one to solve the right hand side by defining

each of the expected values. The goal is then to maximise this right hand side to

approximate the log-likelihood of the observed data as closely as possible. This

is implemented in the Gensim model using coordinate ascent, which maximises

a multivariate function by iterating over each variable and optimising in that

direction, holding all others constant until convergence.

log p(n|α, η,T ) ≥

Eq

[
log
(
P (k, i,β, Θ,n|α, η,T )

)]
− Eq

[
log
(
q(k, i,β, Θ|λ, γ, ϕ)

)]
= L(λ, γ, ϕ)

6For a full derivation I refer the reader to the original paper on Latent Dirichlet Allocation by
Blei, Ng, and Jordan, 2003.
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On convergence, I back out the θi given γi and βk given λk.7 The contribution of

this paper is to go one step further and use the converged parameter ϕp,v,i,k to

back out a contribution share for each team member. To do so, I sum across the

relevant dimensions of ϕp,v,i,k as

ϕp,v,i,k = exp{Eq[log θik] + Eq[log βkv]}∑
k

∑
i∈τp

exp{Eq[log θik] + Eq[log βkv]} (1.4)

I then calculate the contribution share of inventor i to patent p as follows

ωip =
∑
vk

ϕp,v,i,k

This gives the probability that inventor i contributes a word to patent p, summing

across all words v ∈ V .

1.2.1 Prior Versus Posterior Contributions

The Latent Dirichlet Allocation model outlined previously assumes a uniform

prior over the contribution shares. In other words, each inventor in a team

contributes equally ex-ante. Mathematically, this means that for any given word

in patent p, the probability of selecting inventor i is given by P (ipn = i | τ p) = 1
m

.

However, after observing the patent text and inferring the latent knowledge

classes, the posterior probability P (ipn = i | wp, τ p, . . . ) becomes non-uniform.

This shift is captured by the variational parameter ϕp,v,i,k, which approximates

the posterior distribution over inventor-knowledge class pairs. Summing over

all words and knowledge classes we obtain an ex-post measure of contribution,

captured by ωip.

The estimate for ωip updates the initial uniform prior based on the observed

data. Holding the team fixed, if an inventor’s patenting history, captured by

their knowledge class distribution θi, aligns strongly with the patent’s observed

content, their inferred contribution ωip will increase. This can be seen through

equation 1.4, in that both θik and βkv appear in the numerator of the definition

for ωip. Therefore, while the prior assumes equal contribution shares, the pos-

terior updates this given the knowledge content of the observed patent. This

method allows the data to speak on who contributed more within the team by

leaning on the powerful Bayesian logic behind the topic model implemented.

7I do so using the process outlined in the literature so again, leave the interested reader to
consult Mortensen, 2017 for further details.
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1.2.2 Measuring Concentrated Contribution Shares

I build a measure of the concentration of contribution shares to capture whether

each team member contributes equally, or a few team members dominate. Specif-

ically, I measure concentration as the Euclidean distance between the estimated

vector of contribution shares across team members ωp and a uniform distribu-

tion defined as ω̄m = 1
m
1m, where each member contributes equally. This metric

captures the extent to which contributions are concentrated among a few indi-

viduals rather than being evenly distributed. A higher value indicates a more

vertical team structure, where certain members dominate, while a lower value

suggests a flatter distribution of contribution.

Concentrationτp = ||ω̄m − ωp||2 (1.5)

1.3 Data

I use data on U.S. patents from the United States Patent and Trademark Office,

collected through the repository PatentsView. This publicly available dataset pro-

vides the universe of U.S. patents, and their accompanying texts from 1976 on-

wards. They also provide a set of disambiguated inventor identifiers, allowing

me to track team membership over patents. They also provide inventor charac-

teristics including their gender and location.

1.3.1 Sample Selection

In order to infer a precise estimate of inventor and team level parameters, there

are certain requirements that I make of the data. For example, long inventor

patenting histories provide a richer set of data from which to learn the inven-

tor’s knowledge profile. However, most importantly, I require team switchers.

The argument is similar to that made for the identification of an AKM fixed effect

model (Abowd, Kramarz, and Margolis, 1999). By observing inventors appear

on different teams, I can more accurately back out their knowledge profile and

patent contribution. For example, consider the case of a computing specialist,

who has written many computing patents with other computing experts. If they

suddenly appear on a patent for a self-driving car alongside a transport expert, it

is much easier to disentangle who contributed the automation knowledge com-

pared to the engine structure.
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I designed the following process to select a sample over which I can infer a pre-

cise contribution share. The sampling design prioritises teams that are made

up of inventors who meet the two criteria of long histories, and regular team

switching. Inventors and teams which patent only once are excluded, as their

limited output provides little insight on inter- or intra-team knowledge struc-

tures. Similarly, inventors who have worked with only one team are removed

to ensure that the final sample includes individuals who have contributed to

multiple collaborations. Single-inventor teams are also dropped given that their

contributions are immediate.

With this refined set of teams and inventors, I construct a bipartite network

where nodes represent either inventors or teams, and edges capture the mem-

bership of inventors in teams. This network structure allows me to identify the

most central teams, for which the ATM can precisely measure within-team con-

tribution shares. I compute the betweenness centrality for all teams in the graph.

The betweenness centrality allows me to prioritise teams composed of inventors

who are common bridges across teams. By selecting teams with the highest cen-

trality, the sample is composed of teams that contain inventors for whom I can

get a precise estimate of both inventor and team level parameters.

Having selected the 10,000 most central teams, I extract the complete patenting

history of the approximately 38,000 inventors who make up these teams. The

resulting dataset consists of approximately 1 million patents.8 This approach

means that knowledge class distributions are inferred based on the entire career

trajectory of inventors. Therefore, this is a static model, and the model does

not allow for learning. An inventor’s contribution to a given patent is estimated

using a knowledge distribution learned from all their past and future patents.

1.4 Estimation

Pre-processing the patent texts is an important step to eliminate noise and en-

sure a good representation of the data. I first pre-process each patent p into a

bag-of-words dp. This bag of words contains only the informative words which

characterise the knowledge contained in the innovation. The process begins by

8The fact that 38,000 inventors feature on approximately 1 million patents is in part a re-
flection that by selecting well connected teams, I will be selecting teams with prolific inventors.
It is also a signal of the difficulty in balancing computational requirements and sample selec-
tion, since any small sample of inventors expands exponentially as you require the set of their
co-inventors and their co-inventor’s co-inventors etc.
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converting all text to lower-case and filtering out punctuation. Each patent text

is then tokenised to split it into individual words. Each token is stemmed, re-

ducing words to their base form to consolidate variations of the same word, for

example connect, connecting, connection, connected, all stem to connect. I re-

move a set of stopwords, which carry little semantic value due to their regular

use in patents and scientific texts, alongside words shorter than three charac-

ters.9

TABLE 1.1

LDA PARAMETERS

K η Iterations Passes γ

50 1/K 350 100 0.001

Notes: K is the number of knowledge classes. η the Bayesian Dirichlet prior on the knowledge
class to word distribution. Iterations sets the number of cycles used to update the knowledge class
distributions, passes refers to the number of times the model goes over the entire dataset, and the
gamma threshold sets the stopping point when the difference between topic updates is sufficiently
small. The model has been run various times changing these parameters, and the results remain
similar. Both η and γ are set to the Gensim default values. For more details consult the ATM package
documentation online.

Table 1.1 provides the hyper-parameters which govern the estimation process.

The number of passes defines the number of times that the model sees the entire

dataset. The number of iterations defines the number of times the model iterates

within the EM stage over each document. The model is trained using the online

method where documents are loaded in batches of 2000. The choice of η =
1/K = 0.02 is the Gensim default option but also in line with the literature

as both Hansen, McMahon, and Prat (2018) and Griffiths and Steyvers (2004)

set η = 0.025. I estimate the Bayesian parameter flexibly, rather than setting a

fixed prior. This allows for variation in the importance of a knowledge class on

aggregate, which reflects a more natural state of the world.

Identification in a Bayesian context is not the same as in frequentist regres-

sion models, though there are similarities. If two inventors work together and

produce many patents, but only ever working as a pair, it is impossible to dis-

entangle who did what on those patents. In this case the model defaults to an

equal probability for each team member across the knowledge classes contained

within the patent. This is conceptually equivalent to assigning patent technol-

9I collect these stopwords from a range of sources, but they include common patenting and
scientific words Sarica and Luo, 2020
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ogy classes evenly across all team members (Jaffe, 1986). In addition, a topic

model makes use of all documents fed into the model to identify the knowledge

classes distributions, therefore even if the inventor level parameters are not well-

identified, their patents still contribute to estimating other model parameters.

1.4.1 Convergence

The log-likelihood per-word bound and perplexity are common statistics used

to measure convergence in topic models. Both statistics evaluate how well the

model fits the data. The log-likelihood per-word bound measures the probability

of the observed words given the estimated topic distributions, normalised by the

total number of words. A higher bound indicates a better fit. When the value sta-

bilises, the model has converged. Perplexity, which is the exponentiated negative

log-likelihood per word, provides an interpretable measure of how uncertain the

model is when predicting unseen data. Lower perplexity values correspond to a

better model, as they indicate a more confident and accurate topic assignment.

Figure 1.3 shows that the ATM converges in both these statistics.

FIGURE 1.3
LDA MODEL CONVERGENCE

Notes: Two convergence plots. One showing the log likelihood per word bound, and the second the
model perplexity. Each statistic is calculated after every 25 iterations over the data.

1.4.2 Alternative LDA Parameters

The key parameter chosen by the econometrician for this model is the number

of knowledge classes K. Teodoridis, Lu, and Furman (2022) present a model

in which they optimally back out the parameter K, and they find that K = 77
is optimal on a similar data sample of U.S. patents. Future research can look to
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combine their approach with the one presented here. For now, I take that K = 50
to be a similar solution. Since an inventor’s knowledge profile and contribution

share are both continuous bounded variables, in theory, the choice of K is not a

key determinant of the later empirical analysis.

Choosing K is most important to get a good representation of the text. I run

the model for a K equal to 10 and 50. For the main analysis I proceed with

the K = 50 model. In Figure 1.4, I show that the contribution weights for each

inventor, conditional on a set of team size dummies, are highly correlated. The

Pearson correlation coefficient, again conditional on team size, is 0.872.10

FIGURE 1.4

CONTRIBUTION SHARE FOR K = 10 & 50

Notes: A scatter plot between the contribution share inferred from a model with 10 topics compared
to 50. All other LDA parameters remain constant. The plot contains a linear fit, and reports the
regression model coefficient, standard error and t-score.

1.5 Validation

This paper is the first to estimate the contribution of each team member to the

knowledge contained in a patent. To demonstrate the power of this method, I

validate the inventor contribution weights using a prediction model. I propose

that if the weights capture information on the true contribution share of each
10In the appendix, I present a further set of results comparing across values of K.
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inventor to a patent, then the patenting history of inventors who contribute sig-

nificantly more should be a stronger determinant of the technology classification

awarded to the same patent.

FIGURE 1.5
CONTRIBUTION SHARE VALIDATION

Notes: A plot of the mean difference between the feature importance for either the lead or second
inventor on a patent, when predicting a patent’s CPC classification. The lead and second inventor
are determined from the inferred contribution weights. The prediction model is random forest. For
each bin I run 100 different splits of the data. This is a form of cross-validation that removes the
dependency of the outcome on a random initial seed and allows me to estimate a standard error,
however they are very small and uninformative in the figure.

For each patent in the sample I define the lead and second inventor by ordering

their estimated contribution shares and calculate the percentage difference be-

tween them. I use a random forest to predict the CPC classification awarded to a

patent with two sets of explanatory variables: the five most common CPC classes

used by the lead inventor, prior to the target patent, and the corresponding five

for the second inventor. When using a random forest you can then calculate the

feature importance for each explanatory variable, similar in concept to measur-

ing how each variable contributes to the R2 of a regression.

I propose that if the gap between the contribution shares of the two inventors is

large, then the lead inventor’s patenting history will be a significantly stronger

predictor of the CPC class awarded to a patent. While if that difference is small,

then I predict there to be no significant difference. This corresponds to the total

feature importance for the lead inventor’s patenting history being significantly

larger than that of the second inventor.
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Figure 1.5 plots the difference in feature importance between the first and sec-

ond inventor’s patenting histories, across binned groups of the difference be-

tween their inferred ATM-contribution share. The feature difference is defined

as the feature importance for the second inventor minus that of the lead inven-

tor. Therefore the hypothesis is that this difference is negative, and decreasing

further as the percentage difference between the contribution share of the lead

to second inventor increases. There is a strong negative trend, showing that the

greater the difference in the inferred ATM contribution share, the more infor-

mation the leading inventor’s patenting history provides in the prediction task.

This points to the contribution weights providing economically important and

precise information on who contributed to the knowledge contained.

1.6 Descriptive Results

Table A.1 presents a set of descriptive statistics on the core sample of team-

and individual-level parameters. Given that the sample is selected on the teams

recording the highest centrality within a bipartite inventor to team network,

there may be valid selection concerns. For example, the average team size is far

larger in this sample than for the universe of patents. By selecting the most cen-

tral teams, the method oversamples from larger teams as they are more likely to

connect team nodes through prolific inventors. Therefore, the results presented

here should be considered a proof of concept demonstrating how this framework

can provide novel statistics on collaboration patterns.

1.6.1 Experience and Contribution Shares

Consider the following empirical fact shown in Figure 1.6. The number of

patents an inventor collaborates on in that year increases with each additional

year of patenting experience. This result comes from an inventor fixed-effect

regression, where Yit is the number of patents inventor i appears on in year t.

The sample is the universe of USPTO patents from 1976 to 2024. The regres-

sion includes a set of dummy variables capturing whether inventor i in year t

has exactly s years of patenting experience. I also include year fixed effects (δt).

Formally, the regression is:

Yit = αi +
35∑

s=1
βs · 1(years experienceit = s) + δt + ϵit (1.6)
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FIGURE 1.6

PATENTS PER YEAR OF EXPERIENCE

Notes: Plots the average number of patents that an inventor collaborates on, in each year of their
patenting career. This is taken from the predicted values of a regression of the number of patents
an inventor collaborates on in one year, on an inventor fixed effect and year dummies. The sample
taken is the universe of USPTO patents from 1976-2024.

Does this reflect an increase in productivity with experience? To answer this

question I examine how much each inventor i contributes to patent p through

their contribution share ωip. In order to examine relative contribution within a

team of m inventors, and to facilitate comparison across team sizes, I define the

outcome variable as a normalised contribution share

Yip = ωip

1/nτ

I measure patenting experience as the cumulative count of the number of patents

that inventor has produced, prior to patent p. I split this variable into 4 equally

sized bins to track the experience of inventor i on patent p (expi(p)). These refer

to low, medium-low, medium-high and high experience levels. I build a second

count for the mean number of patents the inventor’s collaborators in team τ

have produced, prior to the patent p. I denote the team τ minus inventor i by

τ̃ . I split this same variable into the same four bins (expτ̃(p)). This allows me to

track whether inventor i collaborated with junior or senior co-inventors.
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I estimate how an inventor’s contribution share varies with their experience level

relative to their co-inventors through a team level fixed-effect regression. I con-

trol for unobserved heterogeneity at the team level through a team fixed effect

ατ . I include indicator functions for inventor experience, average team-mate

experience, and their interaction. I control for CPC technology class indicators

(δc), and year fixed effects (δt). I cluster standard errors at the team level.

Yip = ατ +
4∑

e=1
βe · 1(expi(p) = e) +

4∑
o=1

βo · 1(expτ̃(p) = o)

+
4∑

e=1

4∑
o=1

δeo · 1(expi(p) = e) × 1(expτ̃(p) = o) + δc + δt + ϵip

FIGURE 1.7

CONTRIBUTION SHARE OVER EXPERIENCE

Notes: This figure plots the relative contribution share for an inventor, across each of the four
quartiles of inventor experience. Team experience is defined as the mean experience of each of the
inventor’s co-inventors, removing the focal inventor. This count is also split into four bins, using
the same thresholds as defined by the inventor experience quartiles. The Y-axis gives the predicted
relative contribution share from a regression including team, year and technology class fixed effects.
Standard errors are clustered at the team level.

Normalising by a uniform contribution share, Figure 1.7 allows me to show
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multiple trends simultaneously which together reveal interesting within-team

collaboration dynamics. I define senior inventors as those with high levels (top

quartile) of experience, and juniors those with low levels (bottom quartile).

When collaborating with junior co-inventors, senior inventors contribute rela-

tively less than their junior colleagues. Combined with the result from Figure

1.6, this points to a diluting effect, where senior inventors collaborate on more

projects, but do less on each one. Interestingly however, this effect disappears

when senior inventors collaborate with other seniors, as their relative contribu-

tion share tends to 1. For junior colleagues, again, the same trend holds. When

a junior collaborates with other juniors their relative share is approximately 1.

This indicates that on average they each contribute equally. This points to the

importance of relative seniority in determining the scientific division of labour

within teams.

FIGURE 1.8

CONCENTRATION OVER TECHNOLOGY AREA

Notes: This figure presents the mean concentration of inventor teams across CPC technology classes,
where concentration is measured by the Euclidean distance between the vector of contribution shares
and a uniform distribution. Bars are sorted by mean concentration, with labels corresponding to
CPC sections. CPC titles are abridged.
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I extend these results in appendix section A.3 to introduce inventor gender as a

source of heterogeneity. I show that when you condition only on the inventors

experience level, female inventors contribute more than their male co-inventors.

This result holds for gender-diverse teams : a team that includes at least one

female and one male. Further examination however reveals that this result is

not driven by gender, but also by relative experience level. When conditional on

the interaction of an inventor’s experience level, and that of their co-inventors,

this gap disappears. This points to female inventors having a larger contribution

share, when collaborating with men, as they tend to be junior females collab-

orating with senior males. The same relative experience channel drives any

observed differences across gender.

1.6.2 Concentration over Technologies and Time

I present a set of aggregate descriptive statistics for the concentration measure

introduced in equation 1.5. Figure 1.8 demonstrates that teams divide contribu-

tion shares differently across technology classes. I plot the average concentration

by CPC classification class. I find that contributions in Mechanical Engineering

are, on average, more likely to be concentrated on a few team members. While

Physics, Textiles, and Human Necessities (Medicine) tend to be more evenly

distributed. These differences may be driven by a number of factors such as dif-

ferent levels of capital intensity or labour supply and warrant further research.

I then consider the time dimension. In Figure 1.9 I plot the average concentra-

tion across the patents produced in that year. This result shows that on aggre-

gate, teams are getting flatter.

1.7 Main Results

Concentration varies over technology class, time, and is in part determined by

the relative seniority of team members. The question is then what impact the

division of contribution shares within teams has on patent outcomes? Xu, Wu,

and Evans, 2013 first argued that scientific teams in which team members con-

tributed equally produced more disruptive science and technology. I revisit that

result in a new innovation context.

I measure patent value Yp along five dimensions. I measure the number of cita-
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FIGURE 1.9
CONCENTRATION OVER TIME

Notes: This figure presents the mean concentration of inventor teams over time, measured by the
Euclidean distance between the vector of contribution shares and a uniform distribution. The sample
is taken from 1991-2021.

tions received using USPTO data.11 I measure the market value, in millions of

USD, for the sub-sample of patents awarded to public US firms, using data from

Kogan et al. (2017). I measure whether a patent is a breakthrough using data

provided by Kelly et al. (2021). The breakthrough measure is a binary outcome,

derived from comparing the similarity of the text to patents that came before

and those that came after. This concept of breakthrough captures whether that

patent started a new research area. Finally, I measure a patent’s novelty and

impact using data from Arts, Hou, and Gomez (2021). Novelty is measured

through the number of new words that a patent introduces to the USPTO lexi-

con. Impact is measured by the number of new words, weighted by how many

times they are reused by future patents.12 These dimensions are summarised in

the following table.

11I don’t normalise by technology class year trends at this point, as I will introduce both
technology class and year fixed effects to the regressions.

12Taken directly from the Read Me file for Arts, Hou, and Gomez (2021): “For patent p,
new_word_reusep =

∑n
i=1(1 + ui), where n is the number of new keywords introduced by

patent p and ui is the number of future patents that reuse the new keyword i”
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TABLE 1.2

SUMMARY STATISTICS ON PATENT OUTCOMES

# Outcome Variable N Mean Std. Dev. Skewness

1 Citations 27,127 16.547 46.193 14.768

2 Market Value 14,922 3.810 20.146 26.817

3 Novelty 26,762 3.724 17.933 26.857

4 Impact 26,762 16.212 92.981 32.468

5 Breakthrough 20,129 0.130 0.337 2.194

Notes: This table presents a set of summary statistics on the five patent outcomes. These outcomes
are sourced from external data sources: (1) PatentsView, 2024; (2) Kogan et al., 2017; (3) and (4)
Arts, Hou, and Gomez, 2021; (5) Kelly et al., 2021.

I first run an OLS regression, given by equation 1.7, including the same technol-

ogy class, team size and year dummies as previous.1314

Yτ(p) = β0 + β1concentrationτ(p) + δc + δm + δt + ϵτ(p) (1.7)

The coefficients are large, partly due to the units of the concentration measure.

Therefore, these results are best understood in terms of standard deviations. A

one standard deviation increase in concentration leads to a 17.6% decrease in

citations received by a patent; a 34.4% decrease in the patent’s market value;

a 5.7% decrease in its novelty and a 5.6% decrease in its impact. Finally, the

probability of producing a breakthrough innovation declines by 5.8 percentage

points when concentration increases by one standard deviation. Importantly for

interpretation, each coefficient is negative and highly significant, which backs

up the claim that flat teams drive science.

The results on the market value and citations received remain large, and in part

13I do not include a team fixed effect here, since variation in concentration is largely between
teams, not within. The standard deviation of concentration across all patents is 0.0914, whereas
the mean within team standard deviation is 0.00887. The ratio of mean within team SD to
the overall SD is approximately 0.097. In other words, less than 10% of the total variation in
concentration comes from within team variation.

14One valid potential bias is that teams made up of inventors who patent only a few times will
tend to have more equal contribution shares. This is because the LDA cannot distinguish between
each inventor’s contribution due to short patenting histories. Having few patents may reflect
lower quality inventors, which will therefore correlate with poorer patent outcomes. Therefore,
as a robustness check I introduce a control for the total and mean number of patents awarded
to the team inventors. The results do not change and are available upon request.
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can be explained by the magnifying effect of the distribution of the concentration

measure and each outcome variable. Table 1.2 shows that citations, and partic-

ularly the market value have very strong variance and are highly skewed, which

combined with a highly variable and skewed concentration measure amplifies

the estimated effect.

While novelty and impact also both show significant variance and skewness,

the estimated coefficients suggest that the underlying relationship is weaker;

therefore the amplification effect is smaller. The point estimates may require

further examination, but the trend is clear, concentration tends to correlate with

lower value patents.

TABLE 1.3

CONCENTRATION ON PATENT OUTCOMES

(1) (2) (3) (4) (5)

ln(Citations+1) ln(Market) ln(Novelty+1) ln(Impact+1) Pr(Break)

Concentration -1.9334∗∗∗ -4.6084∗∗∗ -0.6339∗∗∗ -1.0018∗∗∗ -0.2366∗∗∗

(0.0844) (0.2161) (0.0629) (0.0950) (0.0229)

N 27103 14917 26738 26738 20111

R2 0.323 0.227 0.189 0.219 0.194

Notes: This table presents regression estimates examining the relationship between team concentra-
tion and five innovation outcomes: citations, market value, novelty, impact and the likelihood of
producing a breakthrough patent. Concentration is measured as the Euclidean distance between the
vector of contribution shares and a uniform distribution. All models include year fixed effects, and
robust standard errors are used.

1.7.1 Junior and Senior Quality Effects

These results should be interpreted in the context of the empirical facts demon-

strated previously. Concentration is driven largely by senior inventors contribut-

ing less, and their junior colleagues doing relatively more. This can be inter-

preted as the seniors increasing their quantity-to-quality trade-off. Seniors col-

laborate on more patents. However, when collaborating with more junior col-

leagues, they contribute less to each patent. If these junior colleagues are lower

quality, this will drive patent outcomes.

To examine this effect further, I define a simple measure for inventor quality as

a weighted average of the patent outcomes that inventor earns throughout their

career.15 For these weights I use their contribution share to the corresponding
15If the current patent p is dropped from this sum, for concerns that it is driving the outcome
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patent. For an inventor working on the set of Pi patents, I define inventor quality

for each patent outcome Y as

qualityY
i =

∑
p∈Pi

ωipYτ(p)

This quality measure assumes a constant inventor quality, that is revealed through-

out the inventor’s career.16 I then define this at the team × patent level as the

quality of the lead inventor. Where the lead inventor is defined as the inventor

with the largest contribution share on patent p.

Yτ(p) = β0 + β1concentrationτ(p) + β2lead qualityY
τ(p)

+ β3 · concentrationτ(p) × lead qualityY
τ(p) + δc + δm + δt + ϵτ(p)

Both concentration and inventor quality are continuous variables. Table 1.4

shows that if the lead is higher quality, then naturally there is a boost to the

corresponding patent outcome. This is shown through the positive and signifi-

cant coefficient on lead quality, and simply reflects that they have increased the

average quality within the team. Most important however is that the interaction

term between the quality of the lead inventor and the concentration measure

is significant and positive, for all patent outcomes. So while concentration re-

mains negatively correlated with all patent outcomes, this effect is mitigated by

the quality of the lead inventor.

In Figure 1.10, I zero in on the impact of collaborating with high quality juniors.

I split the regression coefficient further with a three-way interaction. I interact

the inventor-team experience interaction with an indicator for the lead being a

junior. I condition on the lead inventor being in the lowest experience bin, which

corresponds to having fewer than 6 previous patents.

In Figure 1.10, I predict the number of citations that a patent will receive over

different levels of concentration, split over the quality of their junior inventor.17

We clearly see that for low quality inventors, concentration reduces the number

of citations received. This is a natural result, since the lower quality inventor is

over-represented in the knowledge contained in the patent. Converting the Y-

measure directly, the results hold.
16If instead the sum was taken over patents produced prior to patent p, this measure would

simply capture the fact that they are junior. For seniors to identify quality juniors, they would
need to predict future outcomes, or identify a constant but not yet revealed quality.

17Given the coefficient estimates in Table 1.4 the same graph for each of the other four out-
comes would be very similar.
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axis from its logarithm scale shows that moving from low to high concentration

decreases citations by almost 40%, when the lead inventor is both junior and low

quality. However, when the lead is a high quality junior, this effect is mitigated

entirely.

TABLE 1.4

CONCENTRATION AND LEAD QUALITY ON PATENT OUTCOMES

(1) (2) (3) (4) (5)

ln(Citations+1) ln(Market) ln(Novelty+1) ln(Impact+1) Pr(Break)

Concentration -1.7693∗∗∗ -3.4897∗∗∗ -0.7392∗∗∗ -1.0770∗∗∗ -0.2959∗∗∗

(0.1023) (0.1937) (0.0682) (0.1026) (0.0207)

Lead Quality 0.0003∗∗ 0.0486∗∗∗ 0.0047∗∗∗ 0.0015∗∗∗ 0.0221∗∗

(0.0001) (0.0032) (0.0009) (0.0003) (0.0084)

Concentration × Lead Quality 0.0105∗∗∗ 0.1106∗∗∗ 0.0520∗∗∗ 0.0147∗∗∗ 0.7829∗∗∗

(0.0013) (0.0318) (0.0073) (0.0023) (0.0686)

N 27103 14917 26738 26738 20111

R2 0.375 0.396 0.209 0.237 0.252

Notes: This table presents regression estimates examining the relationship between team concentra-
tion and five innovation outcomes: citations, market value, novelty, impact and the likelihood of
producing a breakthrough patent. Concentration is measured as the Euclidean distance between the
vector of contribution shares and a uniform distribution. All models include year fixed effects, and
robust standard errors are used.

It is natural to suggest that the quality of the senior inventor may also determine

patent outcomes. A high quality senior, who has taken on a potentially more

backseat role, may guide the junior members to better outcomes. Table 1.5

presents the results from a synonymous regression, however now interacting

the quality of the senior with the concentration measure. A senior is identified

as the inventor with the highest experience level when producing patent p.

Yτ(p) = β0 + β1concentrationτ(p) + β2senior qualityY
τ(p)

+ β3 · concentrationτ(p) × senior qualityY
τ(p) + δc + δm + δt + ϵτ(p)

Interestingly, while again the quality of the senior leads to a jump in levels, it

does not appear to mitigate the role of concentration. Except for the market

value of a patent, and a small effect on their ability to create a breakthrough.

This emphasises that when a senior inventor changes their role within a team,

if collaborating with junior members, patent outcomes are driven more by the

quality of the juniors they collaborate with, than their own innate quality.
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FIGURE 1.10
CONCENTRATION × LEAD JUNIOR QUALITY ON CITATIONS

Notes: A plot of the predicted natural logarithm of citations a patent receives, over the concentration
within the team, split over three levels of quality, low, medium and high. This plot shows the effect
for junior leads. Both inventor quality and concentration are measured as continuous variables, and
low, medium and high are defined as the 10th, 50th and 90th percentile.

TABLE 1.5

CONCENTRATION × SENIOR QUALITY ON CITATIONS

(1) (2) (3) (4) (5)

ln(Citations+1) ln(Market) ln(Novelty+1) ln(Impact+1) Pr(Break)

Concentration -1.8025∗∗∗ -3.3894∗∗∗ -0.5492∗∗∗ -0.9779∗∗∗ -0.2415∗∗∗

(0.0956) (0.1973) (0.0826) (0.1218) (0.0252)

Senior Quality 0.0007∗∗∗ 0.0332∗∗∗ 0.0030∗∗∗ 0.0008∗∗∗ 0.0249∗∗∗

(0.0001) (0.0015) (0.0005) (0.0002) (0.0038)

Concentration × Senior Quality 0.0004 0.0715∗∗∗ -0.0031 0.0002 0.0529∗

(0.0005) (0.0136) (0.0029) (0.0009) (0.0221)

N 27103 14917 26738 26738 20111

R2 0.334 0.394 0.192 0.223 0.203

Notes: This table presents regression estimates examining the relationship between team concentra-
tion and five innovation outcomes: citations, market value, novelty, impact and the likelihood of
producing a breakthrough patent. Concentration is measured as the Euclidean distance between the
vector of contribution shares and a uniform distribution. All models include year fixed effects, and
robust standard errors are used.
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These results demonstrate that if seniors delegate contributions to junior co-

inventors in order to split their time over more individual patents, they face a

potential quantity-quality trade-off. A senior can increase the total quantity of

patents by delegating, but if they concentrate the share onto low quality co-

inventors then the quality of the patent as a whole reduces. This is backed up

in the data through the negative correlation between concentration and value.

One potential outcome could be that the senior makes smaller but more precise,

and therefore equally as important contributions. I present supporting evidence

that the quality of the senior does not make up for the loss of concentrating

contributions onto lower quality team members.

1.8 Conclusion

This paper introduces a novel method for modelling team collaboration that

allows for the scientific division of labour. The statistical model, when leveraged

to high-dimensional patent text data, can disentangle individual contributions

to the knowledge production process. I apply the model to demonstrate a new

set of descriptive statistics on within-team organisation of labour.

By backing out a contribution share, this paper contributes to our understanding

of whether flat teams produce better science. I demonstrate that as inventors

become increasingly experienced they collaborate on more patents each year;

however contribute less to each individual patent. In addition, when seniors col-

laborate with juniors, the juniors have a larger contribution share. This fact can

explain the negative correlation between concentration and patent outcomes,

since I show that if the junior is low quality then indeed concentration is corre-

lated with lower patent value. However, this effect is mitigated entirely if the

junior is of high quality. This opens the door to a wealth of future research on

the direction of technological change, allowing us to better understand the role

of personal and inter-personal dynamics in driving innovation.



Chapter 2

Catalyst or Constraint: The Dual
Role of Prior Innovation for
Breakthroughs

Abstract
This chapter studies the impact of an expanding scientific and technolog-

ical frontier on team innovations. I model collaboration directly through

a Bayesian model of Natural Language Processing. Applied to patent text

data, this model builds a map of inventors, teams, and research fields, re-

ferred to as the knowledge space. Applied to over 2.2 million U.S. patents

from the USPTO, this framework allows me to tackle unanswered ques-

tions on how teams create new knowledge. Specifically, I investigate the

effect of prior work on a team’s ability to produce a breakthrough—an in-

novation that sparks a new and successful research field. Leveraging high-

dimensional patent text data, I back out two new measures: breakthrough

patents and a team’s knowledge field. I combine this with data on pre-

mature inventor deaths as a quasi-natural experiment. This identifies how

team innovations change as they pivot to more or less advanced research

fields. Teams build on existing knowledge, and prior work both supports

and obstructs innovation. I show that teams generate more breakthroughs

when building on enough prior work to incorporate valuable knowledge,

but not so much as to stifle novelty.

I gratefully acknowledge the support of the Spanish Agencia Estatal de Investigación

(MCIN/ AEI /10.13039/501100011033) through grant PID2020-114251GB-I00. This

project was partly developed while visiting the University of California, Merced, for whom I

also give thanks for their support and guidance.
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2.1 Introduction

Organising inventors into effective teams is essential for technological growth

but also for addressing society’s greatest challenges. Literature suggests that

the dominance of teamwork is partly driven by an ever-increasing knowledge

stock (Jones, 2009), as growing fields present increasingly complex problems.

However, this prior literature has largely focused on innovation value through ci-

tations, overlooking how teams contribute to the creation of new and successful

research fields.1

In this paper, I study the impact of an expanding scientific and technological

frontier on team innovations. To do so, I present a novel framework that in-

tegrates inventor teams and their patent texts. I model collaboration directly

through the lens of a Bayesian model of Natural Language Processing (NLP).

Applied to patent text data, this model builds a map of inventors, teams, and

research fields, referred to as the knowledge space. Leveraging high-dimensional

patent text data and a tractable model of collaboration, this framework allows

me to answer questions on which systematic data was missing from the litera-

ture. Specifically, I study the impact of prior work on a team’s ability to produce

a breakthrough—an innovation that sparks a new and successful research field.

Given this, I find that teams produce more breakthroughs when building on

enough prior work to incorporate valuable prior knowledge; however, not too

much that it becomes hard to be novel.

The analysis in this paper proceeds in two steps. I first develop a method to char-

acterise the latent knowledge held by inventors and their patents, disentangling

the individual contribution of each team member. I train the model on 408,774

U.S. patents from 214,535 teams using the USPTO PatentsView database. Us-

ing the trained model, I fit an additional 2.2 million U.S. patent texts into the

knowledge space. This novel space allows me to back out two new empirical

measures. First, a breakthrough patent is an innovation in a research field with

little prior work, which afterwards grew into a vibrant research area. Second, a

team’s knowledge field, defined as the set of all research fields accessible to the

team. In the second stage, I combine this with data on premature team member

deaths (Kaltenberg, Jaffe, and Lachman, 2021). This provides a quasi-random

1Key references studying teamwork and knowledge production through citations include
Pearce, 2022; Bonhomme, 2022; Ahmadpoor and Jones, 2019, consult the literature review
for a more detailed discussion.
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shock to a team’s knowledge field. Through a continuous treatment model, I

identify how team innovations change as they pivot to more or less advanced

research fields.

I document that research fields have become increasingly crowded over time,

which has meaningful consequences for whether teams achieve breakthroughs.

I find that the likelihood of a patent sparking a breakthrough follows an inverted-

U shape with respect to prior work. Building on some prior work boosts inno-

vation impact, but too much stifles novelty. This translates directly to team out-

comes. For teams in advanced fields, removing a member from more established

areas and shifting focus to less-explored fields increases their breakthrough po-

tential by as much as 50%. I show that this is driven by these teams being more

novel, as they introduce more new words to the USPTO lexicon. The oppo-

site occurs for teams in early-stage fields. Reducing the quantity of prior work

on which these early-stage teams can build reduces the chances that their next

patent sparks a breakthrough. I present evidence that these teams, however,

do not become more novel, and that this reduction is driven by a fall in im-

pact. They are in fact on the upward sloping region of the inverted-U shape, and

would do better by incorporating more established knowledge.

I contribute to the literature by constructing a unifying framework for studying

teams. This framework not only consolidates existing insights but also broadens

the scope of team research beyond traditional metrics.2 Previous studies have

largely focused on measuring team value through citations and examined team

composition using low-dimensional categories of inventor types. These methods

are less appropriate to study the creation of new research fields. This paper

addresses these limitations. By combining high-dimensional patent data with

a statistical model of teamwork, I develop a new method to disentangle each

team member’s contribution to a patent’s knowledge content. By leveraging the

high dimensional patent text data the model can back out a representation of

the team in data. This allows me to locate the team in the knowledge space,

describe the research areas on which they could build, and characterise how

much prior work existed in those areas. This represents a contribution to our

ability to study the production of breakthrough innovations, which had often be

neglected due to a lack of data or models capable of capturing the creation of

2To demonstrate its effectiveness, I replicate two well-known findings on team composition
and breakthroughs: small teams are the most disruptive, and flat teams drive radical science
(Xu, Wu, and Evans, 2013; Wu, Wang, and Evans, 2019).
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new scientific fields.

I develop and apply a two-part empirical strategy to demonstrate the results.

First, I represent the latent knowledge held by inventors and patent texts. I

model a patent as a combination of knowledge classes. Each class represents a

specific domain of expertise. For example, a car includes knowledge on engines,

wheels, fuel, etc., and some on computing. The first self-driving car then in-

creased the amount of computing knowledge in order to automate driving. The

first patent to do so was novel, but what can explain why this became a break-

through research area? I define the knowledge space as a probability simplex

across a set of knowledge classes. Inventors are characterised by their position

in this space. Teams innovate by combining the knowledge profile of each mem-

ber. A team’s knowledge field is then defined by all possible combinations of its

members. This corresponds to the set of research fields available to the team.

Through a simplex, this approach naturally incorporates a spatial concept by em-

bedding a notion of distance. I can then measure the development stage of each

research field available to the team by counting the amount of prior work in each

area of the knowledge space. I show in this paper that the quantity of prior work

a team builds on indeed explains which novel ideas become breakthroughs.

A premature death, defined as the death of an active collaborator, serves as a

random shock to a team’s local knowledge field. The use of premature deaths

as a source of exogeneity is well established (Azoulay, Fons-Rosen, and Graff

Zivin, 2019; Azoulay, Graff Zivin, and Wang, 2010). The death of a collaborator

changes the set of research fields available to the team by removing potential

combinations. I apply a continuous treatment model to show that a team’s inno-

vation output is determined by the prior work in this new set of research fields.

I start by showing that the premature death of a team member leads to changes

in the knowledge content of a team’s innovation, as revealed by the language in

the patent text.

The impact of a death on a team’s research depends on which team member

is lost and their contribution to the team’s local knowledge field. The aver-

age treatment is the mean decrease in the quantity of prior work in a team’s

knowledge field after a premature death. I predict how this change determines

a team’s ability to achieve a breakthrough. Following the death of a team mem-

ber, the average treatment increases the likelihood of producing a breakthrough
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by 21.27% relative to the baseline.3 However, this result hides significant het-

erogeneity. When I split the sample over four quartiles of the quantity of prior

work in a team’s knowledge field, prior to the premature death, I find important

heterogeneity in the treatment effect. For teams building on advanced areas,

reducing the quantity of prior work by the average treatment increases their

chances of a breakthrough by 49.7%. However, for those already working in

early-stage research fields, the same change reduces their chances of a break-

through by 61.4% on average.

The results presented here can be understood through the lens of an endogenous

growth paradigm. Prior work exerts opposing effects on breakthroughs. On the

one hand, prior work lowers the cost of innovating by providing a solid founda-

tion. This aligns with the idea that moving up the quality ladder of development

reduces implementation costs (Grossman and Helpman, 1991). However, when

the goal is to create a new research field, prior work becomes an obstacle. It not

only prevents teams from being the first to develop an idea but also establishes

paradigms that shape future work. This relates to the literature on the burden

of knowledge, and how the expanding scientific frontier is driving the rise in

teamwork (Jones, 2009; Agrawal, Goldfarb, and Teodoridis, 2016). As the fron-

tier of knowledge expands, inventors must invest more effort to develop on that

frontier. At an aggregate level, as the knowledge space fills up, breakthrough

ideas become increasingly difficult to find (Bloom et al., 2020).

These findings provide guidance for policymakers. Research funding should be

distributed across fields, as concentrating it in one area may obstruct break-

throughs. Diversifying funding across new and advanced fields will help teams

combine ideas in novel ways and foster breakthroughs. In addition they pro-

mote the use of cross-field collaboration. For teams working on advanced fields,

by searching for new team members in up-and-coming fields they can find the

novelty they need to spark a new and successful field.

On a technical level, this paper makes a contribution to the use of NLP models

in economics. Patents have been a valuable proxy of innovation for decades,

and this paper forms part of a growing literature making use of the depth of

knowledge contained in their texts. Through a hierarchical Bayesian model,

I infer who contributed which section of a patent text. Over each inventor’s

3This number is calculated using the predicted values from the regression model. The average
number of patents lost from the death of an inventor is 174.22, the baseline probability of a
breakthrough is 0.44, given the coefficient 0.0022.
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entire patenting history, the model learns their individual knowledge profile. If

an inventor has a long history of producing AI patents and appears on a patent

for a self-driving car with an inventor with a background in engineering, the

model can distinguish between their contributions. It identifies who provided

the knowledge on automation and who contributed to the engine structure. This

highlights the key contribution of this method beyond patent technology classes.

Patent classification systems provide an accurate description of the knowledge

contained within a patent, however they do not provide enough data or variation

by which to back out an individual inventor’s contribution.

As a novel method, I validate this space along various dimensions by compar-

ing the model to existing data. The model develops a measure of breakthrough

patents as those that experience the largest growth in the number of patents

within their research field, following their publication. Patents that I identify as

breakthroughs introduce 8.67% more new words and 47.6% more new combina-

tions of two existing words, which are subsequently reused by future patents.4

This evidence reflects the paper’s central premise: breakthrough innovations

arise from the recombination of existing ideas.

Related Literature The first broad literature that this paper contributes to is

on the importance of teams within science and technology. It is now taken as

standard that teams are the principal producers of innovation (Wuchty, Jones,

and Uzzi, 2007). A range of reduced form papers have looked to describe team

composition and its role in explaining innovation outcomes (Uzzi et al., 2013;

Xu, Wu, and Evans, 2013; Wu, Wang, and Evans, 2019). I present here a uni-

fying framework for teamwork that replicates a selection of these results in one

model.

There is a growing literature using individual wage data to explain productiv-

ity differentials and complementaries between team members’ knowledge and

skills (Boerma, Tsyvinski, and Zimin, 2021; Freund, 2022; Herkenhoff et al.,

2024). Closest to this paper, Pearce (2022) uses technology classifications and

citations to study changes to the team knowledge production function over time.

However, this literature has largely been limited to studying innovation value.

This is due to a lack of models and data capable of disentangling individual con-

4Using the data kindly provided online by Arts, Hou, and Gomez, 2021. They provide a
dataset which identifies new words, and new n-grams in patents and which of these are later
re-used. This allows them to capture both novelty and impact.
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tributions to knowledge components. This chapter makes use of the model of

team work developed in Chapter 1 which overcomes these limitations by utilis-

ing patent texts.

This paper joins a growing and important literature that looks to describe the

innovation landscape, and how it develops over time using topic models. I ex-

tend the concept of building a map of innovation, developed in Fleming and

Sorenson (2004), to the inventor, team and patent level. I do so by making use

of high-dimensional patent text data. Carvalho, Draca, and Kuhlen (2021) study

how firms and inventors either explore for new technologies or exploit existing

ones, using a model of Latent Dirichlet Allocation to describe a firm or inventors

position in the knowledge space. In a similar vein, Teodoridis, Lu, and Furman

(2022) develop a Hierarchical Dirichlet Process at the patent level to map the

knowledge space over time. Both papers can aggregate from the patent level to

the inventor or firm unit, however they do not model within team dynamics. In

contrast, I model collaboration directly through an LDA to disentangle inventor

contributions and model the key producers of innovation, the teams themselves.

This paper contributes to this literature by allowing for a more accurate repre-

sentation of team production, by removing the assumption that inventors con-

tribute uniformly within a team. This allows me to better characterise the role of

each inventor. Therefore locating the team within the knowledge space to better

characterise the development stage of the research fields on which the team is

building.

Finally, I contribute to the literature on use of natural language processing mod-

els to capture breakthrough science and innovations. Arts, Hou, and Gomez

(2021) and Arts, Melluso, and Veugelers (2025) developed the literature be-

yond using citation histories. They do so by identifying the new words created

by patents and papers in order to measure novelty. They then capture which of

these are re-used by future innovations to measure impact. Kelly et al. (2021)

develop a method of identifying breakthroughs by comparing the similarity of

patent texts to patents which came before and after. The concept of break-

through in this paper builds directly on their foundation. The key contribution

of this paper is to extend this to the team level to connect the novelty and impact

of their innovations to the development stages of their research fields. This pa-

per employs a two-stage approach to back out the required latent variables from

text. There is a recent literature on inference concerns when using two-stage

methods (Bandiera et al., 2020; Battaglia et al., 2024). However, as discussed
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in the original paper, patent texts are highly dimensional and these concerns are

reduced in this context.

Paper Outline The rest of the paper is structured as follows: Section 2 defines

the theoretical framework; Section 3 outlines the process of inferring the knowl-

edge space from text; Section 4 describes the empirical reduced-form strategy;

Section 5 provides descriptive statistics and validation tests; Section 6 presents

the main results; and Section 7 concludes.

2.2 A Framework for Team Innovation

Define K as a set of K knowledge classes.5 Each class represents a specialised

area of understanding. Inventors innovate by combining their knowledge on

these classes. I model the innovation and writing of a patent as a single, uni-

fied process. There is a fixed vocabulary of words which inventors can use, de-

noted by V . Inventors use different words when describing different knowledge

classes. This is captured by the probability distribution βk for topic k across the

vocabulary. βkv captures the probability of using word v ∈ V when discussing

class k.

A 3-dimensional example is given by

K = {Computing, Transport, Medicine}.

The words hospital, doctor and syringe are more likely to be used when describ-

ing a medical innovation than one about transport. One patent though may

combine multiple classes. For instance, a drone to deliver prescriptions will

likely use words correlated with both the medical and transport classes.

Denote ∆(K) as the knowledge space which is defined as the (K −1) probability

simplex over the set K. θ is a point in the simplex, such that it represents a

combination of knowledge classes. Let I be the set of all inventors. Each inventor

is characterised by their knowledge profile θi. Formally, this is drawn from the

5No two knowledge classes are more similar to each other. This is a simplification that can
be addressed with more complex models that allow for correlation between knowledge classes.
Consult Blei and Lafferty, 2005 for further details.
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knowledge space ∆(K) according to a Dirichlet distribution

θi ∼ Dir∆(K)(α),

where α ∈ RK is the non-symmetric Dirichlet prior such that αk ̸= αj > 0.

The support for a Dirichlet distribution is the set of K-dimensional vectors x

where each xk ∈ [0, 1] and
∑K

k=1 xk = 1. The value of the Dirichlet distribution

is that each element in the support of a Dirichlet distribution can be treated as a

K-dimensional discrete probability distribution.6

If the average αk is low then the mass of the Dirichlet distribution lies in the

corners of ∆(K). This means that inventors are more likely to hold knowledge

on a few classes as opposed to being spread over many. In other words, inven-

tors are more likely to be specialists than generalists as the average αk tends to

zero.7 I allow for a non-symmetric Bayesian prior, so that on aggregate, certain

knowledge classes will be more common.

A team τ ⊆ I is a set of m inventors who produce patent p together. When a

team τ collaborates, they first choose the share of the workload to be performed

by each team member. These shares are not constrained to be uniform across

team members and some may contribute more than others.8 I model this as a

random draw where the team chooses a vector ωp such that
∑

i∈τ ωip = 1 and

ωip ≥ 0. Each ωp is drawn uniformly at random. This can be modelled as a draw

from another Dirichlet. This time with a uniform prior α = 1. Drawn from the

set of all possible workload divisions for m team members, denoted as ∆m−1

ωp ∼ Dir∆m−1(1).

The team then produces a patent according to the following stochastic process.9

The team first draws the number of words in the patent Np ∼ G(·).10 Then for

6In fact the Dirichlet is the conjugate prior for the multinomial distribution, a feature that is
utilised in defining the estimation method.

7This matches the literature by modelling inventors as more likely to be specialists than gen-
eralists.

8Inventors are often modelled as agents with a high level of autonomy over project choice and
team participation (Akcigit et al., 2018) and allowing for these weights to be chosen optimally
is an important next step.

9This process is outlined in greater detail in Chapter 1.
10This distribution G is irrelevant for the model. An appropriate approximation can be learnt

from the observed set of patent lengths. Potentially this could be interesting over time since
patents have become significantly longer throughout the period studied.
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each word nip = 1, . . . , Np the team draws an inventor i ∈ τ ∼ ωp and from

that inventor’s knowledge distribution draws a class k ∈ K ∼ θi. Given the

corresponding knowledge class to word distribution, the inventor draws a word

vip ∈ V ∼ βk. Each word in the patent is paired with a knowledge class, which

produces a patent knowledge class distribution. Since the number of words in

a patent is large, in expectation we can define the expected patent knowledge

distribution. I denote the expected patent distribution as θe
p to simplify notation

throughout the paper:

θe
p ≡ E[θp|τ, ωp] =

∑
i∈τ

ωipθi. (2.1)

Therefore, synonymously to inventors, a patent can either be on a very specific

topic, or a combination of many. Importantly, inventors, teams and patents

now belong to one consistent space. This enables the counting of how much

innovation exists in each local knowledge field.

The knowledge contained in the patent is a function of the inventors who pro-

duced it. However, given the stochastic process, the final patent distribution will

not equal its expectation: θp ̸= θe
p. Though it will likely be very close, since the

probability that a given team τ produces a patent distribution θp is decreasing in

d(θe
p, θp) = ||θe

p − θp||. (2.2)

The team first assigns roles within the team, which given the knowledge profile

of each team member defines the expected outcome of their collaboration. The

stochastic process by which the team generates the innovation is consistent with

the idea of them pursuing a method of trial and error, in which each inventor

tries many ideas and the probability of success is equal to their contribution

weight.

Given the previous example of K = 3, the knowledge space is a 2-dimensional

equilateral triangle and can be represented as in Figure 2.1. Each of the corners

represent perfectly specialised profiles. An inventor or patent may split their

knowledge over two of the classes, and hold no knowledge on the third, as in

point 4. Point 5 represents the centroid of the simplex, and is a perfect generalist,

sharing their knowledge equally over all classes.



39

1

4

23

5

Computing

TransportMedicine

[1, 0, 0]

[0, 1, 0][0, 0, 1]

[1/2, 1/2, 0]

[1/3, 1/3, 1/3]

THE KNOWLEDGE SPACE

FIGURE 2.1

Notes: Example of a 2 dimensional knowledge space over 3 knowledge classes. Each point 1-5
represents either an inventor or patent knowledge profile, since both are characterised in the same
space. In the full model I use K = 50 classes. This example is informative as can be plotted in 2-D,
and while the number of classes is small, there number of combinations remains infinite.

If inventors 1 and 2 were to collaborate and contribute equally such that ω11 =
ω21 = 1/2, then in expectation they will produce θe

p at point 4 in Figure 2.1. Then

given the random innovation process, all patents along the line between points

1 and 2 are feasible outcomes, however decreasingly likely as the distance from

point 4 increases.

Within this space I define a local knowledge field for both teams and patents. I

define a local research field for each patent as a closed ball of radius r centred

at point θ given by11

B(θ, r) = {θ′ ∈ ∆(K) | ∥θ′ − θ∥ ≤ r}. (2.3)

This field is fixed over time, however the number of other realised patents be-

longing to the local research field can vary over time.

I define S̃(τ) as the team span: the set of all linear combinations of the team
11The choice of r is important here in the sense that r can determine which patents are clas-

sified as breakthroughs. I find no empirical difference in the regression results from changing r.
It is also linked to the choice of dimension K. If you increase K, then if you want to keep the
dimension of what is a breakthrough constant, r should be adjusted downwards.
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members’ knowledge distributions. Given the assumption that the weights ωp

are drawn from a uniform distribution, the team is equally likely to draw any

patent in this set as their expected output, such that θe
p ∈ S̃(τ). Formally I define

the team span as the convex hull across team member distributions:

S̃(τ) =
{∑

i∈τ

ωipθi :
∑
i∈τ

ωip = 1, ωip ≥ 0
}

. (2.4)

To define the local knowledge field for a team consider the Minkowski sum of

S̃(τ) and B(θ, r). The resulting set is analogous to the local knowledge field at

the patent level. In fact the local knowledge field for a team of one is defined

identically. This sum expands the team span into the full K-dimensions of the

knowledge space. The team knowledge field is in fact the full set of patent

research fields in which they could patent in expectation.

S(τ) = S̃(τ) ⊕ B(θ, r) = {x + y | x ∈ S̃(τ), y ∈ B(x, r)}. (2.5)

Continuing with the example outlined previously, Figure 2.2 demonstrates how

inventors, teams patents and research fields lie in one consistent space. Panel

(A) shows an example of a patent’s local research field. The plot is fixed at the

year patent p (shown in black) was published and there were five examples of

prior work in the local research field. Panel (B) shows an example team of three

members, the interior shaded area represents their span S̃(τ). Each inventor lies

in one of the vertices of the interior shaded triangle. The outer perimeter defines

their local knowledge field S(τ).

2.2.1 Characterising Patent and Team Fields

This method backs out a latent representation of both a patent’s research field,

and a team’s knowledge field: the set of all patent research fields on which they

work in expectation. Once learnt from data, the econometrician can apply any

function they desire to these objects in order to describe them and explain their

role in innovation.

Define the set Pt as the set of all patents published in the global knowledge space

up to and including period t. Define the following count for the number of these

patents which belong to the local research field of patent p at θp.12

12A detailed explanation of how I count these objects empirically is provided in Appendix B.4.
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FIGURE 2.2
A LOCAL KNOWLEDGE SPACE

A) PATENTS B) TEAMS

Notes: The example patents and inventors are generated from a Dirichlet distribution with α =
[2, 1.5, 1], which leads to the distribution across the knowledge space being weighted towards the
bottom-left corner. The left panel shows the research field for a target patent, shaded in black. The
right panel shows the knowledge field for a team of three inventors.

npt =
∑
q∈Pt

1
(
θq ∈ B(θp; r)

)
(2.6)

1 denotes an indicator function which is equal to one when the condition in

parentheses is met. I propose the following breakthrough measure at the patent

level, which is an adjusted percentage change to allow for zero patents either

before, after or both.13

breakthrought(p)s =
(

post-countps

1 + prior-countpt + post-countps

)
(2.7)

For a patent produced in t, prior-countp aggregates each nps for s ≤ t and post-

count for all patents produced in s > t. Holding prior-countp constant, the

breakthrough score of a given patent p is increasing in the number of patents

which came afterwards. It increases non-linearly, with decreasing returns, such

that early entrants contribute more than late comers. Figure B.1 gives an ex-

In short, I first slice the data by the maximum distance within the team field. I then check for
the remaining patents which belong to the team field by checking the distance from each patent
θq and the exterior of the team field.

13In section 2.5, I compare the patents identified as breakthroughs by equation 2.7 to the
literature to demonstrate the precision of this method.
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ample that also demonstrates that the curve of the breakthrough measure with

respect to post-countp flattens as the prior-countp increases.

I classify breakthrough patents as those that land in the top quartile of residuals

from a regression of breakthrought(p)s on a set of application year dummies. I

use these residualised values for the following reason. The measure presented in

equation 2.7 is the raw breakthrough measure, however as made clear in Hall,

Trajtenberg, and Jaffe (2001), when working with patent outcomes it is impor-

tant to control for the fact that they are right-coded in time. Patents produced

recently have not had enough time to be revealed as breakthroughs, since the

patents that build on them have not yet arrived.

Patents produced in areas with few pre-existing works are novel, but only those

which post-publication see a significant increase in the number of patents be-

longing to their local knowledge field are breakthroughs. This is similar in con-

cept to the breakthrough measure proposed by Kelly et al. (2021), however uses

a spatial dimension that is easier to track and visualise over time. One key con-

tribution of this paper is to incorporate the teams who produce these patents.

Figure 2.3 provides two examples of patents, one classified as a breakthrough

and the other not. Both patents were applied for in 1994, however in different

locations in the knowledge space. Following their publication the two research

fields developed along very different paths over time. The Y-axis plots the total

number of patents within each patent’s local research field. Patent US5612948
titled High bandwidth communication network scores very highly. After their

publication, their area of the knowledge space grew into a vibrant research area.

Whereas the patent US5597812 titled Phosphoramidothioate and process of use
to combat pests developed on an area showing slow growth, and on which only

one future patent develops.14

At the team level you can define the synonymous count. The team knowledge

field represents the set of patent research fields in which the team could patent

in expectation. The sum in equation 2.6 essentially counts the quantity of unique

prior work which exists in each of these knowledge fields.15

14On further examination, this type of pesticide was widely used in the past to control various
pests. However, due to their high toxicity and potential environmental risks, their usage has
significantly declined.

15The measure counts the unique count in that it does not double count for overlapping fields.
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FIGURE 2.3
EVOLUTION OF LOCAL KNOWLEDGE FIELDS

Year

To
ta

lP
at

en
ts

Notes: Two cases of low and high breakthrough patents, using the estimated knowledge space. This is
the raw count, and does not remove year fixed effects. The vertical red line identifies the publication
year of both patents. The Y-axis records the total number of patents in each target patent’s research
field.

nτt =
∑
q∈Pt

1
(
θq ∈ S(τ ; r)

)
(2.8)

I approximate the volume of a team local knowledge field using the following

equation16

Volume
(
S(τ)

)
= vτ =

√
m × (µ · Dmax + (1 − µ) · Dmean)) (2.9)

Where m denotes team size and µ ∈ [0, 1].17 Here Dmax is the maximum distance

between any two team member distributions, and Dmean is the average across all

pairwise combinations of team members. This is not a function of r since that is

constant across teams.
16Measuring the volume in high dimensional space is challenging, and there are alternative

ways to do this. For example, using a set of uniformly distributed points and sampling via
MCMC.

17In the final model I set µ equal to 0.7, to emphasise the total breadth within the team span.
However, I have run the model for many alternative levels and the results don’t change.
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2.2.2 Testable Predictions

Using this framework I derive a set of testable hypotheses. In appendix section

B.3, I present a more rigorous derivation of these hypotheses which arise directly

from the innovation production process.

As a research field develops, it moves up the ladder of development, and this

represents an increase in the quality of existing knowledge. The cost of pro-

ducing follow-on innovations is then decreased as inventors build endogenously

on the work that came before them (Grossman and Helpman, 1991). However,

faced with an increasing knowledge stock, inventors suffer from the “burden of

knowledge”. As the innovation frontier expands, this represents an increased

cost to inventors of reaching and developing on this frontier (Jones, 2009). As

a team’s local knowledge field populates with patents, it becomes harder to pro-

duce a truly innovative idea (Bloom et al., 2020). The compound definition of a

breakthrough as both novel and impactful leads me to the following hypothesis

at the patent research field level.

Hypothesis 1. There is an inverted-U shaped relationship between the quantity
of prior work in a patent’s research field and the likelihood of the patent being a
breakthrough.

This implies that as the number of existing patents within a research field in-

creases, the probability that a new patent is a breakthrough first increases due

to knowledge accumulation, then decreases after a certain point due to satura-

tion.

In that case, how can a team produce a new breakthrough idea? For a team

composed of inventors covering a well-established research area, finding a novel

idea is challenging. Increasing the novelty of their work might require removing

a member contributing knowledge from the most developed fields. This hypoth-

esis may seem contradictory with the well established idea of increasing the

number of potential combinations between inventors. The idea is that the set of

combinations which the team can create is determined by the knowledge profile

of each team member. If one team member comes from a well established field,

their presence in the team may drag the team closer towards this established

fields. By removing certain members you may reduce the set of combinations,

however in doing so free the team from more established paradigms and enable

them to be more novel. On the other hand, for a team in an under-explored area,

this same adjustment would be harmful. It would strip away the limited knowl-
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edge they possess, setting them further back on the ladder of development.

I propose to test this with an additional hypothesis at the team level. Impor-

tantly, when teams remove (or add) a member they also change the size of the

team’s field, in doing so they change the quantity of potential combinations. The

effect of building on a few patents dispersed across a vast set of possible com-

binations is likely different from building on the same number within a smaller,

more concentrated field. The following hypothesis includes this feature by using

variation in the density of prior work within a team’s field.

Hypothesis 2. The impact of reducing the density of patents in a team’s knowledge
field on the probability of their next patent being a breakthrough depends on the
development stage of their initial field:

• If the team spans an advanced research area, moving to areas with a lower
density of prior work increases their breakthrough probability.

• If the team spans an early-stage research area, moving to areas with a lower
density of prior work decreases their breakthrough probability.

The rationale for why is as follows. Prior work enhances the impact of an inno-

vation; thus, when a team incorporates more related work, the quality of their

innovations improves. However, for a team to produce a truly innovative idea,

the existence of prior work in the same field is a barrier. Locally to the patent,

this is intuitive since it is now not the first to market. At the team level however

this result is more subtle. By reducing the density of prior work within their

local knowledge field, the team will draw ideas from less populated areas of the

knowledge space. The idea being that by reducing the presence of prior work,

the team is freed from established paradigms, and are capable of producing a

breakthrough idea.

2.3 Inferring the Knowledge Space

I first outline the data and sample over which the model is approximated. I then

introduce the Bayesian model of Natural Language Processing used to infer the

knowledge space. This allows me to count the quantity of prior work within a

team’s local knowledge field as to test both hypotheses.
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2.3.1 Data and Sample

I build the knowledge space from US patent data from patentsview, the online

data base for the United States Patent and Trademark Office (USPTO). I restrict

the sample to teams who applied for their first patent after 1990, and their last

prior to 2011. I build the sample around three types of teams, which I combine

into a panel of team, patent observations.

The first team type are those teams which are treated by the premature death

of a co-inventor. The premature death of an inventor is determined using the

dataset provided by Kaltenberg, Jaffe, and Lachman (2021). I define a prema-

ture death using the following logic. I take one unique death date per inventor18,

and classify premature as an inventor who dies within three years of patenting

with the team. This defines a treated inventor, and treated team. I then search

for teams which return to patent, within five years, for two cases: they return

minus the deceased inventor, or having replaced that inventor with one other.

Teams which return with two or more new inventors are dropped from the sam-

ple. Given the delay in producing a patent, returning in less than five years is

relatively fast to turn around a new patent. I claim that the death was a quasi-

natural experiment in changing team composition, I discuss this strategy in more

detail in section 2.4.2.

I add to this sample two additional types of teams which act as controls. The first

are pure controls: a team which never adds or removes a member. This group of

teams never appear again either without one or more members, or having added

one or more new ones. The second are those that first patent with m inventors,

then that after that team publishes their final patent the same inventors return,

with one additional member, again within five years. The first set of baseline

controls provide a baseline comparison for whether teams change their output

dynamically. The second provide an endogenous team composition change that

allows me to study adding new members as a robustness check. In total I find

353 teams treated by a premature death who return without the deceased inven-

tor, 2200 treated teams that replace that inventor with one other. Then to find

the controls I draw from a random sample of 300,000 teams according to the

criteria above. I find 6400 baseline control teams and 980 teams which add one
18This data set was produce by scraping four well known US public record databases, for many

inventors they scraped multiple potential birth and death dates. They score each one according
to their belief that it is an accurate measure. I take the maximum observation with a maximum
score. For more details see the original paper.
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new member. However, since I am using a conditional logit model, I estimate

the treatment effect on teams which switch outcomes at least once. In other

words they produce least one breakthrough. The final sample includes the fol-

lowing split: 72 teams which don’t replace the prematurely deceased inventor,

510 which do replace them and 1709 baseline control teams.

I extract the full patenting history of each member of every team. I train the

LDA on this sample of 408,774 patents written by 270,065 inventors. This sam-

ple contains patents and inventors for which I don’t track their entire history,

however they help provide a precise measure of knowledge classes for the tar-

get sample. To measure on what fields do patents build I populate this space

with a random draw from the universe of USPTO patents. I extract over 2.2 mil-

lion USPTO patents, approximately one third of the universe of USPTO patents

grants over the period studied.19 I populate the knowledge space with this ran-

dom sample by treating each patent as if it were a new author, who patented

one solo paper. Then taking the trained model and learnt knowledge classes, I

fit each patent into the estimated knowledge space.

I combine additional data for the robustness check, and additional sections

demonstrating the knowledge space. Firstly whether they are a breakthrough

or achieve a certain direction. Kelly et al. (2021) classify the universe of USPTO

patents from 1976-2014 as whether they are a breakthrough, or not. I mea-

sure three innovation directions exogenously. They are three binary indicators

for whether a given patent achieves that purpose, or not. The first is whether

that patent is a labour saving technology (Mann and Püttmann, 2023). Sec-

ondly does that patent mitigate climate change which is measured as whether

that patent is awarded the YO2 patent class (PatentsView, 2024 and finally does

that patent target improving cancer diagnosis or treatment (Cancer Moonshot:

USPTO, 2024).

2.3.2 Latent Dirichlet Allocation

Patent texts are increasingly used to describe the knowledge content of innova-

tions, and the innovation literature has begun to borrow and develop models

from the computer science literature in order to answer new questions on sci-

ence and technology. Patent number US9939179 begins their detailed descrip-

19This is a rough calculation. To determine the denominator in this calculation I use the fact
that there were 6,901,791 patent’s granted between 1976 and 2020
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tion with the following:

However, one of ordinary skill in the art will recognize that the inven-
tion is not necessarily limited to refrigeration systems. Embodiments of
the invention may also find use in other systems where multiple com-
pressors are used to supply a flow of compressed gas.

This quote demonstrates that the patent texts are informative on the knowledge

content beyond a simple title or CPC classification. The text describes features

of the innovation that can be applied to other fields. In order to extract this

information into a empirically feasible dimension I use a model of Latent Dirich-

let Allocation (LDA). LDA models were first developed by Blei, Ng, and Jordan,

2003 and have become a popular method of NLP. Consider this a brief and intu-

itive overview of how an LDA infers a set of parameters which approximate the

knowledge space. For a full description please refer back to Chapter 1 on “Mod-

elling Collaboration Through Patent Texts” for a more complete description.

The model is built upon the paradigm of observing the set of patent texts, and

proposing a hierarchical Bayesian model. This allows the researcher to infer

a set of latent parameters which govern how that set of texts was produced.

The model identifies many parameters jointly, most importantly: inventor and

patent knowledge class distributions and each inventors’ contribution weight to

each patent.

Prior to estimating, I preprocess the text in order to improve the model infer-

ence, by stemming and removing stopwords Sarica and Luo (2020). The words

contained in a patent describe its design and use. The LDA model reduces the

dimension from over 250,000 words in the raw patent texts to infer a distribu-

tion for each knowledge class across the set of unique words. The logic here is

that certain knowledge fields use specific words, jargon, more than others when

describing objects or problems from their field. For example, someone describ-

ing a medical patent is more likely to use the words blood, cells and syringe than

someone talking about vehicles, who is more likely to use car, wheel and door.

The model uses the knowledge classes as a dimension reduction technique since

a distribution for all inventors across all words is harder to manage both con-

ceptually and computationally. The words presented are stemmed as part of the

text cleaning process, e.g. the word imag represents image, images and imaging.

The model does not attach labels to the knowledge classes, though they can be

approximated using GPT technologies which analyse the word weights.
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I build on the Gensim python package (Mortensen, 2017) which trains the un-

supervised machine learning model by implementing a method of Variational

Bayes. The objective is to infer from patenting histories which team member

was most likely to have contributed each word and with which knowledge class.

In doing so, infer the inventor knowledge distributions and their contribution

shares to patents. An inventor with a long history of producing transport patents

will be more likely to have contributed the words vehicle, destination and route.

If a given patent includes many words highly correlated with the transport class,

the model will give a larger contribution share to that inventor.

Table 2.1 provides the hyper-parameters which govern the estimation process.

TABLE 2.1

LDA PARAMETERS

K η Iterations Passes γ

50 1/K 350 100 0.001

Notes: K is the number of knowledge classes. η the Bayesian Dirichlet prior on the knowledge
class to word distribution. Iterations sets the number of cycles used to update the knowledge class
distributions, passes are full the number of times the model goes over the entire dataset, and the
gamma threshold sets the stopping point when the difference between topic updates is sufficiently
small. The model has been run various times changing these parameters, and the results remain
similar. Both η and γ are set to the Gensim default values. For more details consult the ATM package
documentation online.

A key parameter of choice is the number of knowledge classes. I choose here

K = 50, which is close to the optimal number of topics chosen by Teodoridis,

Lu, and Furman (2022). They back out an optimal number of 79 classes.20 η

is the prior for the knowledge class to word distribution and is assumed to be

symmetric. I allow the model to back out the Bayesian prior α, which I assume

is asymmetrical.

The perplexity measure is the standard measure used within the topic modelling

literature to evaluate the quality of topics estimated. The perplexity score mea-

sures how well the model predicts the words in the documents based on the

learned topic distributions. In other words, how well the model captures the

underlying structure of a set of documents. A lower perplexity score indicates

that the model has a better ability to generalise to unseen data, and convergence

20As discussed in Chapter 1, since an inventor’s knowledge profile and contribution share are
both continuous, bounded variables, in theory, the choice of K is not a key determinant of the
later empirical analysis.
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indicates that the LDA has effectively learned the topic structure of the patents.

Figure B.4 plots the estimated Bayesian prior over the knowledge classes and

the 5 words with the largest weight within the distribution for that class. We see

variation across classes, which allows for some classes to be over-represented,

which will reflect aggregate innovation direction across the time period.

2.4 Empirical Strategy

I present a set of regression models to test both hypotheses derived in section

2.2. To tackle the research question on how teams build on prior work I first

start at the patent level. I test the relationship between the quantity of prior

work on which a patent develops and the probability that patent produces a

breakthrough.

2.4.1 Hypothesis 1: Patent Level

Here the dependent variable varies at the patent level, where each patent maps

into one team τ and application year t. The regression is run as as a standard

logit model to predict whether patent p from team τ in year t is a breakthrough,

or not. The full specification is given by

Pr
(
Yτt(p) = 1 | X ′

τt(p)ψ
)

=
exp

(
X ′

τt(p)ψ
)

1 + exp
(
X ′

τt(p)ψ
) (2.10)

where

X ′
τt(p)ψ = β0 + δt + β1npt + β1n

2
pt + β2dp + β3mτ (2.11)

The main parameters of interest are β1 and β2. β1 > 0 and β2 < 0 are consistent

with an inverted-U shape. The model controls for the randomness in innovation

by including the distance between the realised patent distribution and the ex-

pected value in dp = d(θe
p, θp) as defined in equation 2.2. I include the team size

as a control with mτ . I include year fixed effects for multiple reasons. They con-

trol for the fact that breakthroughs are right-coded in time: patents published

recently have not yet had chance to be realised as breakthroughs.
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2.4.2 Identification Strategy for Team Outcomes

The headline result is how team innovation outcomes change after moving into

a new area of the knowledge space and therefore building on a different set

of prior work. I utilise two types of changes to identify the effect of shifting

the location of a team. Both follow the premature death of a team member. I

define premature as having died within three years of patenting. The number

three is chosen as in the USPTO raw data, teams on average patent every three

years. Therefore if an inventor dies within three, it is reasonable to assume

that on average this would change their next patent outcome. This definition is

therefore based around them being active, not their age or health status, and is

in line with the literature Azoulay, Fons-Rosen, and Graff Zivin, 2019. Denote

the initial team, prior to the premature death as τ1. This team must return to

patent within 5 years denoted as τ2. This is to define a cap on the number of

years in which they must return. The identifier τ is now a unique id for each

pair (τ1, τ2). Either τ2 consists of the original team minus the deceased inventor

(τ2 = τ1 \ {i}), or they replace i with one other inventor j (τ2 = (τ1 \ {i}) ∪ {j}).

Therefore I only allow for small changes to team membership.

I define the measure Dτt = nτ1t − nτ2t to measure the change in the quantity

of prior work on which the team is building, following their shift in the knowl-

edge space.21 The identifying assumption here is that the death is an unexpected

event, where the impact on the team’s knowledge field is captured by Dτt. No-

tice that the treatment is time dependent. If a team member prematurely dies

in period t then Dτt measures the contemporaneous change in the quantity of

prior on which the team builds. However for all future periods this variable

captures the knowledge foregone by the untimely death. The idea being that if

the inventor had not passed away, the team could have continued to patent in

those research fields. I control in the regression for the first team’s count nτ1t,

such that β1 captures the effect of removing existing patents from the team span,

conditional on the prior quantity.

2.4.3 Hypothesis 2: Team Level

This model is run on a team patent panel. Each patent is a new period s, such

that the team τ is repeated over their 1st, 2nd, 3rd patents and so on. I then
21To ensure the logit model converges, I winsorise the top 1% of both the total and direction

counts, nτt and nτt(z) respectively. This caps the maximum value at the 99% value, to reduce
the effect of outliers.



52

predict the probability that Yτs, a team’s nth patent, is a breakthrough.

Pr
(
Yτs = 1 | X ′

τsψ
)

=
exp

(
X ′

τsψ
)

1 + exp
(
X ′

τsψ
) (2.12)

The full set of independent variables is given by,

X ′
τsψ = ατ + µs + δt + β1nτ1s + β2Dτs + β3vτ + Z ′

pδ (2.13)

Z ′
p includes a set of controls for each patent, which vary at either the team or

firm level. I control for the distance between the expected patent distribution

and realised outcome, as described for equation 2.11. I then introduce a set

of controls that help me claim conditional independence of the treatment. The

death of a co-inventor and their replacement (or not) will change other features

of team composition which may determine patent outcomes. To control for a

set these (although not exhaustive) I control for the following. The gender ratio

of team members, the average experience level22, the square of average experi-

ence, the race diversity within the team23. In addition, I control for the rolling

three-year average number of inventors employed at the institution to which the

patent is awarded. This is a relevant control since large firms and universities

may have different outcomes, for example due to capital resources, but they also

have easier access to replacement inventors in case of a premature death.

Hypothesis 2 requires that the density of patents changes within the team local

knowledge field. Therefore I introduce a control for the volume denoted vτ , as

defined in equation 2.9. nτ1s controls for the quantity of prior work within the

team field of the initial team, prior to the inventors premature death. β2 then

captures the treatment effect of removing patents from the team’s knowledge

field. In other words, the effect of moving them into a less explored area of the

knowledge space.

To test the compound hypothesis, I split the sample of teams into quartiles of

prior work nτ1s. I then run the same regression as specified in equation 2.12

for each quartile separately. For those teams initially building on a lot of prior

work (nτ1s high), β2 > 0 is consistent with the gain from them moving into
22Experience is measured by the number of patents each inventor has collaborated on prior to

the patent in question
23Race diversity is measured as the Shannon index H = −

∑
pi log pi, where pi is the propor-

tion of inventors belonging to each race.
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under-explored areas and drawing more novel ideas. Conversely, for those teams

initially building on a little prior work (nτ1s low), β2 < 0 is consistent with them

losing out by having fewer prior examples to incorporate, reducing the impact

of their work.

TABLE 2.2

DESCRIPTIVE STATISTICS

LDA sample

Patents Obs Mean Min Max

Team size 408774 3.423 1 76

% Breakthrough 408774 0.260 0 1

Specialisation 408774 0.455 0.150 0.975

Concentration 408774 0.047 0 0.928

Inventors Obs Mean Min Max

Teams 270,065 3.078 1 767

Patents 270,065 5.181 1 4549

Specialisation 270,065 0.533 0.028 1

Contribution weight 270,065 0.263 0⋆ 1

Treatment sample 1990-2010

No Replace Replace Control

Treatment Status 60 447 1514

Obs Mean Min Max

Team size 9,498 2.597 1 20

Team patents 9,498 7.239 2 51

% Breakthrough 9,498 0.45 0 1

Total Count 9,498 196.856 0 3321

Volume 9,498 0.683 0 4.69

Density 7,336 323.937 0 35327.19

Notes: Volume is defined by the square root of team size, multiplied by the weighted average of
the maximum and mean distance between team member knowledge profiles. Total count is defined
as the number of patents within a team’s or patent’s knowledge field. Density is defined as total
count divided by the volume. ⋆ since this is approximately zero in the data. The treatment sample
split is conditional on them being part of the final conditional logit sample- they have at least one
breakthrough patent and non-missing values for the controls.
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2.5 Describing the Knowledge Space

In this section I present a set of new descriptive statistics which are feasible in

the knowledge space and provide important insights into team innovation. I also

use this as a chance to validate the space by comparing the results to data taken

from the literature. Table 2.2 shows two sets of descriptive statistics. The first

panel describes the sample used to train the LDA model. The second panel is

a sub-sample of the first, and describes the teams and patents used in the main

reduced-form regression model.

We see that the team size is on average one person fewer in the treatment sam-

ple. Even though many teams replace their inventor, some do not, and this in

part reflects that fact. In addition the percentage of breakthroughs increases,

which reflects that the conditional logit model is identified only for the switch-

ers, so teams that produce at least one breakthrough.

2.5.1 Aggregate Statistics

This paper examines how the maturity of a research field determines innovation

outcomes for teams working in that area. While the knowledge profile and team

span is constant over time, innovation arrives dynamically to the knowledge

space. Therefore the research area on which a team works develops over time.

According to Bloom et al. (2020), innovative ideas are getting harder to find.

This can in part be explained by an increasingly populated knowledge space.

Figure 2.4 plots the average density of a team’s local knowledge field across the

sample, for teams which patent for the first time in each year. The density of

prior work within a team’s local knowledge field is defined as nτt/vτ .

As the innovation frontier expands, the number of patents within the knowledge

space increases. This does not however mean that the number of patents within

a team’s local knowledge fields increases mechanically.24 Teams may endoge-

nously respond and locate themselves in less populated areas. I show that for

teams producing their first patent, the density of prior work within their field

has increased, on average, over the sample period.

24In order for the result to not be mechanical, it does however assume that there is variation
in the distribution of prior work across the knowledge space. Or that there is sufficient space
for teams to locate themselves on top of a given quantity of prior work. Given that the space is
continuous, I argue that this assumption is reasonable.
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FIGURE 2.4
AVERAGE KNOWLEDGE FIELD DENSITY

Notes: Density is defined at the team level, as the number of patents within their local knowledge
field normalised by their volume. Volume is defined by the square root of team size, multiplied by
the weighted average of the maximum and mean distance between team member knowledge profiles,
as given in equation 2.9. I then find the average density for each year, of team’s which patented for
the first time in that year. The size of each marker is weighted by the total number of patents in the
knowledge space in each year.

This result can be examined further by looking at each part of the volume equa-

tion given in equation 2.9 and the each part of the density ratio. The number

of patents within new team’s local fields is increasing over time, while the vol-

ume of team fields is relatively constant. This is an interesting result, given that

team size is increasing. For the volume to remain constant then, teams must be

combining inventors who are closer together, such that the maximum and mean

distance between members is decreasing. I show that this is in fact the case and

the comparison across team statistics and the breakdown of the volume measure

can be seen in Figure B.6.

2.5.2 Breakthrough Patents

This paper presents a novel empirical concept for breakthrough research fields.

Table 2.3 provides a set of validation statistics to demonstrate the empirical

power of the framework.

This paper develops on the work in Kelly et al. (2021) and using their data I find

the correlation between their binary breakthrough classification and the one pro-

duced in this paper. I find a positive correlation of 0.234. A positive correlation
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TABLE 2.3
VALIDATION OF BREAKTHROUGH PATENTS

Kelly et al. Correlation between breakthrough classifications 0.234⋆⋆⋆

(2021) Corr. between pre-countp and breakthrough score −0.121⋆⋆⋆

Corr. between post-countp and breakthrough score 0.226⋆⋆⋆

Arts et al. %∆ new re-used words in breakthrough patents 8.67⋆⋆⋆

(2021) %∆ new re-used bi-grams in breakthrough patents 47.6⋆⋆⋆

%∆ new re-used tri-grams in breakthrough patents 44.1⋆⋆⋆

Citations %∆ forward citations for + ∆1% in post countp 2.07%⋆⋆⋆

%∆ backward citations for + ∆1% in prior countp 1.09%⋆⋆⋆

∆% forward citations for breakthrough patents 16.2%⋆⋆⋆

Notes: Validation statistics using UPSTO citation data and existing patent novelty literature. The
average number of new words, bi-grams and tri-grams used is 1.53, 5.85 and 8.08 respectively. The
first panel displays the pairwise correlation coefficient. The second and third panels present log-log
regression coefficients from a model which controls for application year and cluster dummies.

is expected, however the correlation is weakly positive. The correlation between

the Arts, Hou, and Gomez (2021) and Kelly et al. (2021) is 0.28 for backward

similarity and 0.29 for forward similarity. Therefore it is in a similar ball park

for these two established measures, however further study is required to explain

the differences in detail.

In addition, using the Arts, Hou, and Gomez (2021) data I first show that

patents which I classify as breakthrough patents contribute 8.67% more new

words which then go on to be re-used by future patents. Therefore these patents

are relatively more novel, but they also have an impact by directing future re-

search. They also introduce significantly more new combinations of existing

words, 47.6% new word pairs, and 44.1% new-three word tuples. This result

speaks to the central premise on how innovation occurs, through recombining

existing knowledge.

Finally, I find that for each additional 1% of patents to enter the local knowledge

field of a patent after its publication, the target patent receives 2.07% more

citations. This elastic response points to the existence of knowledge spillovers

between local patent sub-fields. This logic also holds for backwards citations

where for each additional 1% of patents already present in a local knowledge

field when a patent is produced, the target patent makes 1.09% more backward

citations.

Having validated the breakthrough measure I replicate the first result from the
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FIGURE 2.5
BREAKTHROUGH INNOVATIONS AND TEAM SIZE

Notes: The Y-axis plots the percentage of patents classified as breakthroughs, produced by teams of
each discrete team size from 1-8. The breakthrough classification is based on equation 2.7, which
defines it as the post-count (patents produced in the field after the given patent) normalized by the
sum of the post-count and prior count (patents in the field before the given patent). Point size is
weighted by the frequency of team sizes, since they are discrete bins and not equally sized.

literature in this unifying framework for teams. Wu, Wang, and Evans (2019)

show that small teams disrupt science, while large teams develop it.25 Figure

2.5 plots the probability of producing a breakthrough by team size. I plot up

to a team size of 8 as this corresponds to 99% of the data. The graph confirms

that teams outperform working alone, as all team sizes above 1 outperform solo

patents. Teams of 3 work best, and team size is negatively correlated with break-

throughs beyond that.

2.5.3 Contribution Weights

Table B.5 provides the results from a validation exercise on the contribution

share inferred for each team member. The idea behind the validation test is the

following. The patenting history for inventors for whom I back out a relatively

large contribution share within the team, should be a stronger predictor of other

patent characteristics. Using a random forest prediction model, I show that

the technology class history for the lead inventor, compared to the second, is

25This paper uses a measure of innovation disruption. Disruption is measured by examining
the citation patterns of future papers that reference a given paper. Specifically, they calculate a
“disruption score” that reflects the extent to which a paper makes prior work obsolete or shifts
the research direction.
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a significantly stronger predictor of the technology class awarded to the target

patent. This validation exercise is the same as that employed in Chapter 1, in

section 1.5.

Having validated this measure I replicate a second well known result from the

literature on team composition and breakthrough innovations. Xu, Wu, and

Evans (2013) show that hierarchical teams produce fewer breakthroughs than

teams in which members contribute more equally. Chapter 1 deals with this

question in detail, and I have replicated this result again to show that this trend

holds for this sample.26 Figure 2.6 shows that teams which share contributions

equally tend to produce more breakthroughs.

FIGURE 2.6
BREAKTHROUGH INNOVATIONS AND CONCENTRATION

Notes: Concentration is measured by taking the vector of contribution weights and finding the
euclidean distance from a vector of length m (team size) in which all inventor contribute 1/m. The
Y-axis plots the average breakthrough value for 10 equally sized bins of the concentration measure.
The breakthrough classification is based on Equation 2.7, which defines it as the post-count (patents
produced in the field after the given patent) normalized by the sum of the post-count and prior count
(patents in the field before the given patent).

2.6 Main Results

I first present a set of results that demonstrate how team innovations change

in response to them pivoting to new research fields. This first sub-section can
26I demonstrate this result by taking the vector of contribution weights ωp and finding the

euclidean distance from the vector of length m in where all inventor contribute 1/m. This
measure is increasing in the concentration of the inventor contributions, and is minimised at 0
when all team members contribute equally. Consult Chapter 1 for more details
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be skipped for those readers interested in the main breakthrough results. I then

present the main results on how teams produce breakthrough innovations to test

the hypotheses presented in section 2.2.

2.6.1 Knowledge Content of Team Innovations

In this section, I examine how the knowledge content of team innovations shifts

as teams move into new research fields. I introduce three binary classifiers for

the knowledge content of each innovation, which effectively segment the high-

dimensional knowledge space into binary categories. This partitioning allows

me to fit these classifiers into a regression model to show how team composition

influences innovation outcomes. As team members are added or removed, the

team’s potential knowledge combinations change, and therefore the research

fields available to them. This section illustrates how the knowledge content of

their patents also depends on the history of prior work in each research field.

Each patent is classified by zp where zp = 1 if patent p achieves direction z. For

this paper I take three exogenous classifications of whether each patent in the

knowledge space achieves that purpose, or not. The directions are the following.

Does the patent save labour? Does the patent improve cancer treatment? Does

the patent mitigate the negative effects of climate change? These classifications

are taken as exogenous (PatentsView, 2024; Mann and Püttmann, 2023; Cancer

Moonshot: USPTO, 2024). Further details are presented in the data section

2.3.1. I combine the three directions in order to show how team innovations

respond to past work, without focusing on any specific technology or field.

I examine how variation in the words used in a patent reflect the technological

direction of that patent. For example, by comparing the most frequent knowl-

edge classes across patents that mitigate climate change, target cancer treatment

or produce automation technologies, we can see how each purposes is reflected

in the patent vocabulary. Figure B.5 shows the average weight for all knowledge

classes split over three patent types. In Figure 2.7, I present three of the 50

estimated knowledge classes, and the average weight for patents of each type.

Clearly patents which target cancer treatment use can be distinguished as us-

ing words such as cell, antibody, gene, while automation patents use computer
and information. This figure supports the empirical concept of the knowledge

space:the patent text is informative of the knowledge content of an innovation.
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FIGURE 2.7
WORDCLOUDS AND KNOWLEDGE CLASS DISTRIBUTIONS BY PATENT TYPE

Notes: The bar chart shows the mean weight on a select three of the fifty knowledge classes, averaged
across patents of each type. These types are not mutually exclusive. The word cloud is plotted using
the estimated knowledge class to word distributions. The word size reflects the probability of using
that word when describing that knowledge class.

I first show that prior knowledge shapes future innovations. Take the patent level

count of prior work defined in equation 2.6 and include an additional condition

to the indicator function: that zp = 1. This will count the quantity of prior

work in that field which achieves direction z. In Figure 2.8, I show that the

probability a patent targets direction z is increasing in the quantity of prior work

in that research field which also targets z. This is demonstrated more rigorously

in Table B.1 where each additional patent increases the probability a patent

targets direction z for between 2 to 4 percentage points.27

Importantly, Figure 2.8 shows no non-linear effect. This demonstrates two im-

portant features of endogenous growth. Prior work reduces the cost of future

innovations, but also leads to path dependence. Path dependence refers to how

the direction and nature of future innovation is determined by past work. Where

early stage advances establish a path that is difficult to change. Aghion et al.

(2016) show how changing the direction of a research field, for example to go

green, is a challenge since the relative cost of producing either green or dirty

27In this table, and the later treatment model I stack the three directions into one regression
model and include a period × direction fixed effect. This leads to an tripling of the sample size,
and the effect is now the average across each direction. This achieves the goal of presenting
technologically neutral results.
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FIGURE 2.8
PATENT DIRECTION

Notes: This figure plots the probability that a patent achieves a given direction z by the log count
of the number of prior patents existing in the local knowledge field of that patent, which also target
z. The three directions are 1) mitigate climate change (PatentsView, 2024), 2) improve cancer
treatment (Cancer Moonshot: USPTO, 2024) and 3) automate production (Mann and Püttmann,
2023). All three are stacked into one model.

patents is a function of what came before. This can be seen in Figure 2.8 as

each successive patent targeting a given direction increases the chances of fu-

ture work doing so further.

At the team level, this linear effect leads to straightforward outcomes. Here

I use the same treatment as defined in section 2.4, however again adding the

new condition that the patent belongs to the team’s field, and targets direction

z. Therefore the treatment now captures how many prior patents, targeting

direction z, that the team loses following the premature death of a colleague.

Again using the stacked regression model, I find that the probability a team’s

next patent targets a given direction z decreases by around 1 percentage point,

for each prior-patent targeting the same direction removed. Naturally, follow-

ing the premature death of an inventor, teams that lose access to the required

knowledge to produce a patent of a certain type, see a change in the knowledge

content of their innovations.

These results demonstrate that the death of a team member changes the inno-

vation output of the team. Conditional on them returning to patent, they are

therefore pivoted into new research fields.



62

TABLE 2.4
TEAM TREATMENT ESTIMATES: DIRECTION

Dependent variable: Pr(Direction)

1. 2. 3. 4.

Dτt | Direction -0.0064*** -0.0150*** -0.0075*** -0.0083***
(-9.45) (-4.57) (-3.71) (-3.85)

Prior workτ1t | Direction 0.0087*** 0.0526*** 0.0255*** 0.0255***
(21.90) (12.78) (13.56) (13.58)

Volume τ -0.5480*
(-2.08)

N 91419 62487 62487 62487

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period × Direction FE ✓ ✓ ✓

Year × Direction FE ✓ ✓

Notes: The first column uses a standard logit model. Columns 2-4 are conditional logit models
with team and patent order fixed effect models and standard errors are clustered at this level.
The identifier τ is unique for each pair (τ1, τ2). The dependent variable is a stacked indicator
for whether a patent achieves the given direction. The three directions are 1) mitigate climate
change (PatentsView, 2024), 2) improve cancer treatment (Cancer Moonshot: USPTO, 2024) and
3) automate production (Mann and Püttmann, 2023). Controls include d(θe

p, θp), team gender
diversity, average team experience and its squared term, race diversity and the rolling three year
average number of inventors employed at the patent assignee.

2.6.2 Breakthrough Innovations

I present the main results to test the hypotheses laid out in section 2.2 using

the empirical strategy detailed in section 2.4.28 I first show supporting evidence

for Hypothesis 1. Figure 2.9 shows that the probability a patent becomes a

breakthrough is an inverted-U shape in the quantity of prior work on which

it builds. Recall the definition of a breakthrough patent using equation 2.7.

Prior-count appears in the denominator, we would posit that the derivative be

negative. However, we see that for low levels of prior work, this function is

increasing. This is supporting evidence that prior work increases the impact of

an innovation, and in fact post-count is determined in some part by what came

before. However, the function later inflects as prior work becomes a barrier to

28I use the breakthrough measure defined endogenously by the knowledge space in equation
2.7. To remove concerns that this may be driven by some mechanical feature of the model I
replicate all results using the Kelly et al. (2021) data in appendix section B.5.
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novelty. As prior work accumulates, teams find it harder to be novel and this

effect wins out, thus turning the slope back to the negative coefficient expected

from the breakthrough definition.

FIGURE 2.9
PATENT BREAKTHROUGH

Notes: This figure plots a binned scatter plot and fitted regression line. The log count of the number
of pre-existing patents in a patent’s research field is split into 10 equally sized bins and the Y-axis
plots the probability of a breakthrough within each bin. The breakthrough classification is based
on equation 2.7, which defines it as the post-count (patents produced in the field after the given
patent) normalized by the sum of the post-count and prior count (patents in the field before the
given patent).

I test Hypothesis 2 at the team level. I first present the set of results averaging

over all teams. All variables are defined as in section 2.4. All regression tables

show a set of regression models that increase in rigour in each additional col-

umn. I interpret all results taken from the final column. Table 2.5 shows that on

average, the novelty component of a breakthrough wins out, and teams benefit

from moving to less explored research areas. This frees them from established

paradigms, as they produce more breakthrough ideas.

To put these coefficients into tangible numbers, consider the following compar-

ison. Each inventor contributes differently to the team. The justification for a

continuous treatment model is that it matters who is lost, and which knowl-

edge they contributed to the team. The average treatment measures the typical

impact on a team’s local field when a team member is lost. By estimating the

average number of patents typically lost after such an event, I can predict how

this change influences a team’s ability to innovate.
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TABLE 2.5
TREATMENT TEAM REGRESSION ESTIMATES

PANEL A: BREAKTHROUGH

Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.

Dτt 0.0005** 0.0050*** 0.0036** 0.0024*
(3.25) (3.35) (3.16) (2.00)

Prior workτ1t -0.0008*** -0.0211*** -0.0122*** -0.0123***
(-11.77) (-6.14) (-5.18) (-5.03)

Volumeτ -2.3665***
(-4.18)

N 30473 9498 9498 9498

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓

Notes: The first column uses a standard logit model. Columns 2-4 are conditional logit models
with team and patent order fixed effect models and standard errors are clustered at this level. The
identifier τ is unique for each pair (τ1, τ2). The dependent variable is an indicator for whether the
patent is a breakthrough. The breakthrough classification is based on equation 2.7, which defines it
as the post-count (patents produced in the field after the given patent) normalized by the sum of the
post-count and prior count (patents in the field before the given patent). Controls include d(θe

p, θp),
team gender diversity, average team experience and its squared term, race diversity and the rolling
three year average number of inventors employed at the patent assignee.

For the sample of teams which return to patent without replacing the deceased

inventor, the average number of patents lost from a team’s local knowledge is

174. This change results in a 9.97 percentage point increase in the probability of

producing a breakthrough, this represents a 22.21% increase on the baseline.29

Although, for those that replaced the inventor, the average treatment was to

only lose 43 patents. This leads to only a 5.47% increase on the baseline, given

that on average teams close some of the gap.

29The change in probability is calculated using the baseline probability of 0.449. The coeffi-
cient of 0.0023 and an average treatment of 174 yield a change in log-odds of 0.4002. Applying
this to the baseline and converting this back to probability gives 0.545, indicating a change of
approximately 9.97 percentage points, which is a 22.21% increase relative to the baseline.
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2.6.3 Heterogeneous Effects

Given the inverted-U shape in Figure 2.9, I show how this translates into a het-

erogeneous treatment effect. Figure 2.10 plots the same regression results, how-

ever split over four samples. I split the sample into quartiles of prior work in

the initial team’s knowledge field and run the model for each sub-sample. We

see that the inverted-U shape translates directly into recommendations at the

team level. For teams building on advanced areas, reducing the quantity of prior

work by the average treatment of 174 patents increases their chances of a break-

through by 41.79%. However, for those already working in early-stage research

fields, the same change reduces their chances of a breakthrough by 60.83%.

Importantly, the teams in early-stage areas which replace their inventor see a

significantly smaller decrease in their ability to produce breakthroughs. If the

number of patents lost is reduced to the average by replacing the inventor, these

results show a much smaller 7.98% decrease in the likelihood of a breakthrough.

This demonstrates the importance of the availability of knowledge within inven-

tor networks.30

For teams in advanced areas, removing a team member who contributes the

established knowledge increases their chances of producing a breakthrough.

For them, increasing the novelty of their patents is key, and therefore moving

into less-explored research fields improves their ability to be novel and produce

breakthroughs. However, for a team in the first quartile, those that are already

building on relatively little prior work, the same change is detrimental. If they

remove a member who contributes the little knowledge on which they are build-

ing, their chances of producing a breakthrough reduce further. They move too

far down the ladder of development and their innovations lose impact.

2.6.4 Novel Patents

To demonstrate the role of novelty, I again implement the data provided by Arts,

Hou, and Gomez, 2021. They count the number of new words, bi-grams and

tri-grams created by a patent. Where a bi-gram is the novel combination of two

existing words, for example the first patent to introduce the term artificial intelli-
30This result suggests a valuable follow-on research project which studies frictions in the mar-

ket for collaborators. If a team suffers the premature death of a collaborator who provided a
certain type of required knowledge, perhaps there is a deficit in the supply of this knowledge,
and they cannot be easily replaced. This variation in post-death team outcomes may be driven
by their ability to find replacement inventors.
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FIGURE 2.10
TREATMENT COEFFICIENT BY PRIOR-COUNT QUARTILE

Notes: This figure plots the heterogeneous treatment effect for the continuous treatment variable
outlined in equation 2.13. The x-axis plots the coefficient on the treatment for each of the four
quartiles of the quantity of prior work in a team’s knowledge field, prior to the premature death
of a collaborator. The dependent variable is an indicator for whether the patent is a breakthrough.
The breakthrough classification is based on equation 2.7, which defines it as the post-count (patents
produced in the field after the given patent) normalized by the sum of the post-count and prior count
(patents in the field before the given patent). Each model is a conditional logit models with team
and patent order fixed effect models and standard errors are clustered at this level. Controls include
d(θe

p, θp), team gender diversity, average team experience and its squared term, race diversity and
the rolling three year average number of inventors employed at the patent assignee.

gence to the USPTO vocabulary. I replace the outcome variable in the regression

specification of equation 2.12 with the count of each new vocabulary type, and

therefore run a fixed effect OLS regression model, instead of a logit. I again plot

the coefficient on the treatment variable Dτt for each of the outcome variables,

by each of the four quartiles of nτt.

As you can see in figure 2.11, for teams building on advanced areas (Q4), re-

ducing the quantity of prior work they are building on leads them to be more

novel. They build on less explored areas of the knowledge space, introduce more

new vocabulary and create more breakthroughs. Interestingly however, teams

building on low levels of prior-work (Q1-Q2), for which I estimate a negative

treatment effect in figure 2.10, see no significant change in novelty. Given that

breakthroughs require increasing both novelty and impact, holding novelty con-

stant, this implies a decrease in impact. I argue that this is supporting evidence
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FIGURE 2.11
TREATMENT COEFFICIENT BY PRIOR-COUNT QUARTILE: NEW VOCABULARY

Notes: This figure plots the heterogeneous treatment effect for the continuous treatment variable
outlined in equation 2.13. The x-axis plots the coefficient on the treatment for each of the four
quartiles of the quantity of prior work in a team’s knowledge field, prior to the premature death of
a collaborator. The dependent variable is the count of new vocabulary for new words, bi-grams and
tri-grams taken from Arts, Hou, and Gomez, 2021. Each model is a fixed effect OLS model with
team and patent order fixed effect models and standard errors are clustered at this level. Controls
include d(θe

p, θp), team gender diversity, average team experience and its squared term, race diversity
and the rolling three year average number of inventors employed at the patent assignee.

for these teams in fact being on the upward sloping region of the inverted-U

shape.

2.6.5 Robustness and Mechanisms

I examine the robustness of these results through two extensions. First, in Table

B.9 I replace the breakthrough measure used in this paper with the comparable

measure from Kelly et al. (2021). They also use text analysis to define patent

similarity, where they define a breakthrough score comparing the similarity of a

patent to the stock of knowledge that came before it and after it. I show that

the same trend holds when using their measure, which reduces concerns that I

may be capturing a mechanical effect from defining breakthroughs and the team

span in one space.

On an alternative note, the innovation literature emphasises how combinatorial

possibilities drive breakthrough innovations (Weitzman, 1998; Fleming, 2001;
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Fleming and Sorenson, 2004; Singh and Fleming, 2010). Therefore one may

worry that the positive coefficient given in Table 2.5 could be driven by the

sample of teams that replace the inventor. If those teams bring in new knowledge

and perspectives, thus increasing their combinatorial possibilities, this literature

would expect their breakthrough chances to increase.

The team span represents the set of potential combinations of inventor knowl-

edge profiles. If on replacing the deceased inventor the team expands the team

span by increasing vτ , this increases the recombination potential of the team.31

Importantly, both hypotheses 1 and 2 are defined using the density of prior in-

novations in team’s knowledge field.32 Consult B.3 for further detail on these

two hypotheses. Therefore this concern is in part dealt with by controlling for

the volume of the team span in the empirical specification.33 The coefficient on

the treatment is estimated conditional on the mass of recombinations available

to the team.

To examine this effect further I first run the empirical model on the sub-sample

of teams which do not replace the deceased inventor, so that their team span

decreases in size and they lose recombination possibilities.34 These results are

reported in Table B.6. On this sample the positive coefficient on the treatment

Dτ remains, though it does lose power, and is now insignificant at the 5% level

when controlling for team span volume. This is in part due to the much smaller

sample size, as there are only 60 no replace teams compared to 447 replace
teams.

I therefore use the larger sample of teams which do replace the deceased in-

ventor to further test the mechanism at play. I examine whether the positive

coefficient can be explained through teams bringing in new knowledge and ex-

panding their set of recombinant possibilities, for which an increase in the vol-

31Formally, the team span contains an infinite set of points both before and after replacing a
member. The increase is not in the cardinal number of possible combinations, but in the breadth
of the space spanned by the team’s knowledge.

32Defined as the count of prior innovations within their knowledge field, normalised by the
volume of their span vτ .

33I also run an additional robustness check in Table B.10 in which I show the reverse case to
the treatment defined here. I run the same regression, on the same controls, but with a sample of
teams that add an inventor, instead of removing one. I show that for both the breakthrough and
direction model, the results flip their sign. To facilitate comparison of the coefficients I define
Dτt = nτ2−1 − nτ1−1. Again here the variance is large, and the coefficients are not precisely
estimated. However this is not due simply to a smaller sample, and warrants further study.

34To be precise, the volume decreases weakly since the deceased inventor knowledge profile
have been an interior point of the team’s knowledge field.
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ume of their team span serves as a proxy. For this sample I run an additional

interaction model, in which I introduce the interaction between the treatment

Dτ and the team span volume vτ . These results are reported in Table B.8.

First of all, for all specifications and treatment samples estimated, the coefficient

on volume is negative and significant. For the within-team model, increasing

the number of combinatorial possibilities does not increase the probability of

breakthrough for a team. Second the coefficient on the treatment of reducing the

number of previous innovations within a team’s knowledge field remains positive

and significant. In addition the interaction between the treatment and a team’s

volume is negative. This can be seen most clearly in Figure B.7. The treatment

effect—capturing the team’s move into a more novel, less explored area of the

knowledge space—declines convexly over the volume of the team span. The

shape approximates an inverse relationship. This provides strong supporting

evidence for Hypotheses 1 and 2 and underscores the central mechanism: the

density of prior work shapes the value of exploring new areas.

2.7 Conclusion

In this paper I ask how the development stage of a research field determines

a team’s ability to produce breakthrough innovations. A deeper understanding

of the determinants of breakthroughs is key to modelling how the innovation

frontier moves forward over time. Traditionally, the literature on knowledge

production has focused on value. This paper presents a contribution to the in-

novation literature by constructing a unifying framework for teamwork capable

of capturing the creation of new and successful research fields.

I model collaboration directly through the lens of a Bayesian model of Natural

Language Processing, utilising the novel model of collaboration through text in-

troduced in Chapter 1. I build a map of inventors, teams and patents in which

to study how teams innovate. I refer to this as the knowledge space. As the first

to integrate inventor teams and patents into one consistent space, the paper re-

conceptualises how knowledge is produced by recombining existing knowledge

and standing on the shoulders of giants. The paper contributes a greater un-

derstanding of the key latent variables behind knowledge production and allows

me to tackle a set of important hypotheses on which systematic evidence was

missing.
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The framework developed in this paper is required to back out a latent rep-

resentation of a team’s local knowledge field. The combination of the high-

dimensionality of patent text data, and the computational Bayesian model al-

lows me model teamwork in a tractable approach. I use premature inventor

deaths to identify the effect of pivoting to more or less advanced research fields

on a team’s ability to produce breakthrough innovations. I find a non-linear

relationship between prior work and breakthroughs. I find that teams produce

more breakthroughs when building on enough prior work to incorporate valu-

able prior knowledge, but not so much that it stifles novelty.

The framework presented here marks the beginning of a rich future research

agenda. The knowledge space provides a rich environment in which to study

teams, but can be integrated with economic models to explain the broader in-

novation landscape. For example, modelling public R&D financing or firm in-

novation choices. Another key avenue for future work is to study the role of

learning in this context and develop a dynamic version of the model. I hope

that others are encouraged to utilise this framework to continue deepening our

understanding of how we produce science and technology.



Chapter 3

From Shares to Machines: How
Common Ownership Drives
Automation

Abstract
Does increasing common ownership influence firms’ automation strate-

gies? We develop and empirically test a theory indicating that institu-

tional investors’ common ownership drives firms employing workers in the

same local labor markets to boost automation-related innovation. First,

we present a model integrating task-based production and common own-

ership, demonstrating that greater ownership overlap drives firms to inter-

nalize the impact of their automation decisions on the wage bills of their

local market competitors, thereby fostering more automation and reduc-

ing employment. Second, we empirically validate the model’s predictions.

By analyzing patent texts, the geographic distribution of firms’ labor forces

at the establishment level, and exogenous increases in common owner-

ship due to institutional investor mergers, we isolate the effects of rising

common ownership within and across labor markets. Our findings reveal

that firms experiencing a positive shock to common ownership with labor

market rivals exhibit increased automation, coupled with a decrease in em-

ployment. Conversely, similar ownership shocks do not lead to heightened

automation innovation if firms do not share local labor markets.

This chapter was co-authored with Dennis C. Hutschenreiter, Felix Noth, Stefano

Manfredonia and Tommaso Santini. I gratefully acknowledge the support of the Spanish

Agencia Estatal de Investigación (MCIN/ AEI /10.13039/501100011033) through grant

PID2020-114251GB-I00.
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3.1 Introduction

Does institutional investors’ common ownership affect the direction of techno-

logical progress, innovation, and automation strategies of their portfolio com-

panies? In this paper, we show that common ownership, i.e., the overlap of the

shareholder base of public corporations, leads portfolio firms operating in the

same local labor markets to increase their innovation with the intent of automat-

ing their production, with important implications for employment outcomes.

Common ownership of publicly traded firms and the automation of tasks previ-

ously performed by workers are both rising phenomena in developed economies.

Backus, Conlon, and Sinkinson, 2021 build a measure of common ownership

and document that it has tripled among the firms in the S&P 500 between 1980

and 2017. Over the same period, the 10 largest institutional investors have

quadrupled their ownership of U.S. stocks and, by the end of 2016, they man-

aged 26.5% of total equity assets (Ben-David et al., 2016). Economic theory sug-

gests that common ownership of firms competing in the same product market

can reduce competition, pushing such markets toward monopolistic outcomes,

with consequences for consumer welfare.1

On the other hand, growing concerns have emerged regarding the impact of au-

tomation technologies on employment, welfare, and inequality. These concerns

have been fueled by recent technological advancements, predictions of future

developments, and the increasing adoption of automation technologies across

various sectors (Frey and Osborne, 2017; Arntz, Gregory, and Zierahn, 2016).

Numerous studies have explained the stagnation of median real wages and the

decline in wages for less-educated workers from a macroeconomic perspective,

attributing these trends to the rise of automation (Acemoglu and Restrepo, 2018;

Moll, Rachel, and Restrepo, 2022; Santini, 2024). Additionally, studies focusing

on local labor markets have identified negative effects of automation—proxied

by robot adoption—on employment and wages (Acemoglu and Restrepo, 2020;

Dauth et al., 2019). However, when using firm-level data, the evidence about

the effect of robot adoption on employment and wages is mixed. Some stud-

ies find a positive association (Koch, Manuylov, and Smolka, 2021; Deng et al.,

1See, for example, Macho-Stadler and Verdier, 1991, Baker, 2015, Posner, Scott Morgan,
and Weyl, 2016, Backus, Conlon, and Sinkinson, 2021, Anton et al., 2018. Similarly, Azar,
Raina, and Schmalz, 2022 and Azar, Schmalz, and Tecu, 2018 present evidence that common
ownership might lead to anti-competitive behavior, higher prices, and lower output in the airline
and banking industries.
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2024; Aghion, Van Reenen, and Zingales, 2013), while others find a negative

effect (Bonfiglioli et al., 2024; Bessen et al., 2023).

Our paper aims to contribute to these two alternative strands of the literature

and provide a better understanding of the incentives of firms to automate pro-

duction. More specifically, we demonstrate the consequences of increasing com-

mon ownership of public corporations on automation innovation and employ-

ment outcomes through a labor market perspective.

In a task-based model of automation, we show that a firm experiencing an in-

crease in their common ownership with rivals in local labor markets will increase

the share of automated tasks. This is the case since firms with labor market

power internalize the effect of their automation efforts on the wage bill of their

commonly-owned rivals incentivizing them to reduce the labor demand.

We empirically test the model’s prediction about the effect of common own-

ership within local labor markets on automation. To address potential endo-

geneity coming from automation-oriented investment strategies of institutional

investors, we use mergers between institutional investors as quasi-natural exper-

iments to exploit exogenous changes in common ownership. As it has been ar-

gued in previous literature (Lewellen and Lowry, 2021; He and Huang, 2017a),

mergers increase common ownership and are unlikely to be motivated by poli-

cies or the performance of individual portfolio firms.

Since firms experience increases in common ownership due to mergers of insti-

tutional investors often several times throughout our sample, we apply the state-

of-the-art difference-in-differences (DID) methods developed by De Chaisemartin

and d’Haultfoeuille, 2024. Additionally, we developed a continuous treatment

framework for common ownership since mergers of institutional investors affect

firms heterogeneously. Moreover, in this setup, establishment-level information

on the distribution of a firms labor force allows us to disentangle the causal ef-

fects of common ownership on our outcome variables, separately for scenarios

with and without labor-market rivalry between portfolio firms. Therefore, this

provides compelling evidence that our proposed mechanism is indeed in effect:

common ownership increases automation if and only if firms interact in local

labor markets.

To measure automation, we apply the classification of patents into automation

and non-automation patents proposed by Mann and Püttmann, 2021. They iden-

tify automation patents from the textual content of each patent document. They
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train a naïve Bayes classifier on patent texts, and classify the universe of USPTO

utility patents from 1976-2014 as automation patents, or not. This is yet another

example of the power of patent texts in describing the direction of innovation.

As discussed by the authors, this approach outperforms those suggested in ear-

lier studies that depend on indirect indicators like the proportion of routine tasks

in job descriptions (Autor, Levy, and Murnane, 2003; Goos and Manning, 2007;

Autor and Dorn, 2013), or on limited measures of automation such as expendi-

ture on computer capital (Beaudry, Doms, and Lewis, 2010; Michaels, Natraj,

and Van Reenen, 2014; Akerman, Gaarder, and Mogstad, 2015), or investment

in robotics (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020). Fur-

thermore, applying the Mann and Püttmann, 2021 classification, Danzer, Feuer-

baum, and Gaessler, 2024 show that positive shocks to labor supply due to im-

migration lead firms to reduce automation innovation. At the same time, the

effect on non-automation innovation is nil.2 This underlines that patents classi-

fied as automation innovation capture firms’ incentives to invest in labor-saving

technologies.

We find that firms that experience an increase in common ownership with other

firms operating in the same local labor market (i.e., in at least one shared

commuting zone) increase patent output related to automation technologies.

Simultaneously, we document a decrease in employment for these firms. In

contrast, the effect of common ownership of firms operating in distinct labor

markets on firms’ automation innovation is not statistically significant. Hence,

our empirical results suggest, that common ownership by institutional investors

among labor-market competitors steers the direction of technological progress

into more automation-related innovation, consistent with our theoretical model.

Our paper sheds light on the relationship between corporate governance, labor-

market competition, and automation.

A battery of tests is conducted to ensure the robustness of our results. First, we

use alternative measures of the automation content of firms’ innovation output

by weighting patents by their truncation-adjusted citation counts (Hall, Jaffe,

and Trajtenberg, 2001; Atanassov, 2013). Using these innovation measures,

we corroborate our result that common ownership between labor market rivals

increases innovation output related to automation, while non-automation inno-

vation output is not affected. Second, we show that our results are robust to

2See also Terry et al., 2024 who find a positive impact of immigration on innovation in
general.



75

sample selection pooling our two treatment setups: mergers of institutional in-

vestors that increase common ownership within and across local labor markets.

Third, Lewellen and Lowry, 2021 suggests that the Global Financial Crises could

drive the effects attributed to common ownership, as at the same time many

firms have been affected by mergers of their institutional owners. Therefore,

we corroborate our results using only data up to 2006. Finally, we use a tradi-

tional binary treatment variable in our difference-in-differences setting. We find

the same qualitative result in all these tests: common ownership between labor

market rivals boosts firms’ automation-related innovation output.

Related Literature Our paper contributes to different strands of the litera-

ture in economics and finance. First, it contributes to the debate on the impact

of common ownership on the firm’s objective function and resulting behavior.

The effect of increasing common ownership on product market competition and

consumer welfare, as well as its implications for antitrust policy, has been inves-

tigated by academics in recent years (Baker, 2015; Posner, Scott Morgan, and

Weyl, 2016; Azar, Raina, and Schmalz, Backus, Conlon, and Sinkinson, 2021).

Concerning innovation, López and Vives (2019) show that common ownership

may increase R&D investments if it leads firms to internalize the positive ex-

ternalities of technology spillovers on product market rivals, and Anton et al.

(2018) present evidence that common ownership on the firm-pair level might

have either positive or negative effects on innovation depending on the relative

degrees of technology spillovers and product market rivalry between the firms

(Bloom, Schankerman, and Van Reenen, 2013). Finally, Hutschenreiter (2023)

shows that common ownership leads to higher technology diffusion across port-

folio firms. We contribute to this literature by investigating how common owner-

ship affects another dimension of firms’ innovation strategy, namely the automa-

tion content of their innovation output. We further document a labor-market

channel and a firm-level reduction in employment growth due to common own-

ership.

Another pertinent line of research closely related to our paper lies in the intersec-

tion of common ownership, labor market dynamics, and automation. Azar and

Vives (2019, 2021) study the effects of common ownership on income shares of

production factors in a general equilibrium model, but do not consider automa-

tion. Azar, Qiu, and Sojourner (2022) study the effect of common ownership

concentration on local labor-market outcomes and Azar et al. (2023) examine

the relationship between monopsony power and automation adoption. We con-
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tribute to this literature by presenting firm-level evidence on the relationship

between common ownership and the automation-related outcome of innovation

strategies. Furthermore, our unique estimation strategy allows us to identify the

mechanism behind this relationship: labor-market rivalry is a necessary condi-

tion for common ownership to spur investment in automation innovation. That

is, we can disentangle the effect of common ownership on our outcome variables

for firms operating within and across local labor markets. Furthermore, using

the setup of institutional mergers as proposed by Lewellen and Lowry (2021) al-

lows us to present causal estimates applying state-of-the-art dynamic difference-

in-difference methodology (De Chaisemartin and d’Haultfoeuille, 2024).

Finally, our paper is related to research on the impact of automation on wages

and employment. Initiated by the seminal research of Acemoglu and Restrepo

(2020) for the U.S. and followed by Dauth et al. (2019) for Germany,3 both

studies find negative effects of robot adoption on employment and wages us-

ing a local labor market approach. Afterward, the literature transitioned to

utilizing firm-level data. This later development presents the challenge of es-

tablishing causality by identifying credible exogenous variations. Studies by

Bonfiglioli et al. (2024), Bessen et al. (2023), and Aghion et al. (2020) have

addressed this issue. The first two papers report negative employment effects,

while the third finds a positive effect, arguably due to the different automation

proxy used—specifically, investment in industrial equipment—which is likely

more complementary to labor.

Finally, several studies examine the firm-level outcomes following the adoption

of robots. Deng et al. (2024) for Germany, Koch, Manuylov, and Smolka (2021)

for Spain, and Acemoglu, Lelarge, and Restrepo (2020) for France all find that

employment increases in firms after the adoption of industrial robots. We con-

tribute to the literature by identifying an additional mechanism that leads firms

to increase their automation effort. That is, we show that a part of the surge

in firms’ investments in automation technologies is the result of common own-

ership among local labor-market rivals. Common ownership leads firms to in-

ternalize the negative externality of employing workers on the rivals’ wage bill.

Thus, common ownership in local labor markets increases the incentives to in-

vest in innovation that allows the firms to save labor through the automation

3In the German context, Dauth et al. (2019) find that robot adoption decreases employment
in the manufacturing sector while increasing it in the service sector, keeping aggregate employ-
ment unaffected. This mechanism has been formalized by Hutschenreiter, Santini, and Vella
(2022).
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of tasks. Hence, automation that is driven by common ownership instead of

other reasons such as firm growth or improved productivity could lead to a more

negative relationship between automation and labor-market outcomes. These

include wages, employment, and the labor share of income which could exac-

erbate the problem of “excessive automation" (Acemoglu, Manera, and Restrepo,

2020).

Paper Outline The rest of the paper is organized as follows. Section 2 outlines

the theory and proves a set of theoretical propositions. Section 3 presents the

data, identification strategy and empirical results. Section 4 concludes.

3.2 Theory

In this section, we present a simple model that we employ to derive testable

empirical hypotheses. Mathematical derivations are relegated to the appendix

section C.1.

3.2.1 Theoretical Model

Consider an economy with J firms. We call one of these, firm f , the focal firm,

and analyze its automation strategy. The firms operate their production pro-

cesses in a set of local labor markets C, which we interpret as the collection of

commuting zones.4 Thus, a firm j executes its production in a set Cj ⊂ C. We

say that a firm j has local labor-market (LLM) overlap with the focal firm f if

both employ production plants in some local labor market at the same time, i.e.,

there exists some location c ∈ Cf ∩ Cj.

Given the geographic distribution of firm f ’s production sites, we can partition

the set of the remaining J − 1 firms in the economy into two subsets. Namely,

the set Rf , such that a firm j ∈ Rf has LLM overlap with firm f , and the set Nf ,

such that j′ ∈ Nf implies that Cf ∩ Cj′ = ∅. Moreover, we define Rc
f ≡ {j|j ∈

Rf , c ∈ Cj}, the set of all firms j ̸= f that operate a plant in a location c ∈ Cf in

which firm f is also present.

We assume that firm f has some degree of labor market power in the local labor

markets c ∈ Cf in which it is present. To model this most simply, we assume that

the focal firm f has full knowledge of the labor supply structure and takes into

4To match our empirical analysis, we consider the geographic distribution of firms’ production
plants as exogenous.
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account that ∂wc
j/∂Lc

f = ρc
jf > 0 for all j ∈ Rf ∪ {f}, c ∈ Cf ∩ Cj, where Lc

f is

firm f ’s labor demand in c and wc
j the wage firm j has to pay in order to employ

a given amount of labor in the same location. For instance, if firm f increases

its labor demand in some of its plants it increases the outside option of workers

in the locations in which these plants operate. Thus, we call the firms in Rf firm

f ’s labor-market rivals.

We abstract from wage spillover effects between LLMs, i.e., ∂wc′
j′/∂Lc

j = 0, for

all j, j′ = 1, 2, . . . J and all c, c′ ∈ C, c ̸= c′. In particular, this implies that firm

f cannot affect the wages that other firms pay in locations c′ /∈ Cf , in which it

does not operate, i.e., ∂wc′
j /∂Lc

f = 0, for all c ∈ Cf , j ∈ Nf . Hence, there is no

labor-market rivalry between firms in Nf and f .

For simplicity, we abstract from product market competition and all firms are

price takers in the capital market.5 We can think about the firms j = 1, 2, . . . , J

as multi-product firms producing different goods Y c
j in each establishment and

selling them to a global market at a given price pc
j, such that they do not have

price-setting power in their respective product markets. They take the rental

rate r of capital K as given.

There exists a collection of institutional investors who may own shares in the

firms. Drawing on the literature, which suggests that good corporate governance

induces management to maximize a weighted average of investors’ cash flows

from their portfolio, we posit that firm f ’s objective function, under common

ownership, internalizes the impacts of its strategic decisions on the profits of

other portfolio firms. As shown by López and Vives, 2019, we can thus write

firm f ’s objective function as

ϕf = πf +
∑
j ̸=f

λfjπj (3.1)

where πj is the profit function of firm j and λfj ≥ 0 is the profit weight firm f

puts on firm j’s profits. The parameter λfj is a function of the cashflow rights of

firm f ’s investors to the profits of firms f and j. In particular, λfj increases in

the degree of ownership overlap of the two firms. Thus, an increase in common

ownership between the two firms is modeled as an increase in λfj in our analysis.

5For a model with product market competition, see Hutschenreiter and Santini, 2021, in
which the effect of common ownership on automation depends on the ratio of factor supply
elasticity. In the case in which capital supply is more elastic than labor supply, common owner-
ship leads to an increase in automation.
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At each location c ∈ Cf , focal firm f has access to a technology that by perform-

ing a continuum of distinct tasks xc ∈ Xc = [0, 1] produces output Y c
f . The final

output of firm f in location c is given by the production function

Y c
f = exp

(∫
Xc

ln [yf (xc)] dxc
)ν

(3.2)

where yf (x) is the quantity of the task (indexed by xc) employed in produc-

tion. Each amount of task xc ∈ Xc performed in a location c ∈ Cf is produced

according to the following intermediary production function,

yf (xc) = γc
m(xc)mf (xc) + γc

ℓ(xc)ℓf (xc), (3.3)

in which quantities of machines mf (xc) and labor ℓf (xc) are perfect substitutes,

and γc
m(x) and γc

ℓ(x) are the productivity schedules of capital and labor over the

task measure. Without loss of generality, we assume that at each production site

of firm f in the locations, c ∈ Cf , the productivity schedules are continuously

differentiable over each set Xc and this set is ordered in such a way that the

comparative advantage of producing a task with labor strictly increases in xc,

i.e., d/dxc(γc
ℓ(xc)/γc

m(xc)) > 0 for all xc ∈ Xc.

Then, firm f chooses its inputs, such that each set Xc of tasks is divided into

two regions: the tasks produced with capital and the tasks performed by labor,

as shown in Figure 3.1.

The threshold that separates the two sets is Ic
f ∈ Xc. Then, Ic

f ∈ [0, 1] is the

degree of automation of the plant in location c. Thus, firm f ’s average degree of

automation is given by

If ≡ 1
|Cf |

∑
Cf

Ic
f (3.4)

FIGURE 3.1

CAPITAL AND LABOR ALLOCATION OVER TASKS

0

Capital

Ic
f

Labor

1

Allocation of capital and labor to tasks over Xc in firm f ’s plant in location c.
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To maximize its objective function firm f solves the following program.

Pf



maxΩf

∑
Cf (pc

fY c
f − rKc

f − wc
fLc

f ) +∑
j ̸=f λfj

{∑
Cj(pc

jY
c

j − rKc
j − wc

jL
c
j)
}
,

subject to

Y c
f = exp (

∫
Xc ln [yf (xc)] dxc)ν

yf (xc) = γc
m(xc)mf (xc) + γc

ℓ(xc)ℓf (xc)

Kc
f =

∫
Xc mf (xc)dxc

Lc
f =

∫
Xc ℓf (xc)dxc,

where Ωf = {Y c
f , Kc

f , Lc
f , yf (xc), mf (xc), ℓf (xc)} and we define Lf ≡ ∑

Cf Lc
f as

its total labor input. Moreover, Kf ≡ ∑
Cf Kc

f is the amount of capital it employs.

We are interested in the relationship between the degree of common ownership,

λfj, with some other firm j in the economy and the optimal level of automation

If . We state our first result in the following proposition:

Proposition 1. If common ownership, i.e., the profit weight λfj, of firm f with
respect to some labor-market rival firm j ∈ Rf increases, then the optimal level of
automation If of firm f increases.

Proof. See the theoretical appendix C.1.

Intuitively, as common ownership with a labor-market rival increases, the extent

to which firm f internalizes the profit of this firm also increases. The only way

in which firm f can affect the profit of firm j ∈ Rf in our model is by decreasing

its wage bill and, to achieve this it decreases the level of labor input in locations

c ∈ Cf ∩ Cj. That is firm f trades off the cost of reducing its labor demand

with the benefit of decreasing firm j’s wage bill, which it now internalizes to

a higher degree. This implies a reduction in labor input by firm f in these

plants. To mitigate the cost of this reduction, it chooses a higher degree of

automation Ic
f in plants c ∈ Cf ∩ Cj. In other words, an increase in common

ownership increases the internalized marginal factor cost of labor for firm f , i.e.,

(∂wc
f/∂Lc

f )Lc
f + wc

f + λfj(∂wc
j/∂Lc

f )Lc
j in locations c ∈ Cf ∩ Cj, that accounts

for the cost of a marginal increase in labor demand by firm f on firm j’s profits.

Therefore, in each affected location the incentives to substitute labor with capital

increase, increasing the set of tasks [0, Ic
f ] produced with capital by shifting Ic

f
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to a higher indexed task xc ∈ Xc. The degree of automation Ic
f of the plants

in c ∈ Cf ∩ Cj increases, leading to a higher degree of automation If of firm

f . Hence, if the firm experiences a positive shock to common ownership with

one of its labor-market rivals and it is producing at the ex-ante optimal level of

automation, we expect that this shock causes the firm to increase its effort to

automate additional tasks.

We have seen that common ownership in our model causes an increase in the

optimal degree of automation if and only if a firm can affect the wage bill of the

other firm through its labor demand. The next result follows immediately.

Corollary 1. Common Ownership between firm f and a firm j′ ∈ Nf does not
affect firm f ’s optimal degree of automation If .

Proof. The result immediately follows from the fact that firm f cannot influence

the wage bill of firm j′. Thus, the profits of firm j′ do not depend on firm f ’s

strategic choices.

In the next subsection, we discuss the results derived from the model to develop

testable hypotheses.

3.2.2 Hypothesis Development

In this section, we translate the theoretical results into testable empirical hy-

potheses. Drawing on Proposition 1, we have seen that a necessary condition

for common ownership to alter firms’ strategies regarding automation is that

firms have some degree of market power in the labor market. In particular, our

mechanism requires that the focal firm, whose automation choice we observe,

can influence the wage bill of the other portfolio firms with which it shares com-

mon owners. Therefore, in our empirical analysis, we will distinguish between

firms that interact in local labor markets and those that operate in distinct la-

bor markets. To this end, we define labor market rivals using their concurrent

employment in the same commuting zones. In particular, we say that firms are

local labor market competitors if they both have positive employment in estab-

lishments that are located in at least one shared commuting zone at the same

time. Furthermore, we use a classification of patents into automation and non-

automation patents based on patent texts to measure the automation content
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of firms’ innovation output. Then, we focus on a positive shock to the common

ownership of a focal firm with respect to labor market rivals. Given the result in

proposition 1, we test the following hypothesis:

Hypothesis 3. An increase in common ownership with local labor market rivals
causes the focal firm to increase the automation content of its innovation output.

From our model, we expect to observe an increase in automation if the overlap

in ownership between firms in the same local labor markets increases. Thus,

after such a shock to common ownership occurs, a firm has to adapt its degree

of automation by innovating. Furthermore, as Corollary 1 states, we expect the

effect of common ownership to be absent, if we consider the overlap in own-

ership of the focal firm with those firms in the investors’ portfolios unaffected

by the focal firm’s labor demand decisions. Thus, we expect that an increase in

common ownership among firms that do not operate in the same labor markets

does not increase the automation content of firms’ innovation output. Hence,

we test the following hypothesis:

Hypothesis 4. An increase in common ownership with firms employing labor in
different commuting zones does not cause the focal firm to focus more on automa-
tion innovation.

3.3 Empirical Analysis

We bring both of these hypotheses to the data to test the implications derived

from the model. In this section, we discuss the data sources, the variables that

we utilize, and our identification strategy. Finally, we report the empirical find-

ings.

3.3.1 Data Sources

We build a novel data set that combines seven different data sources: (i) We start

by retrieving firms’ financial information from COMPUSTAT; (ii) we merge this

information with the number of outstanding shares and stock prices from CRSP;

(iii) Thomson Reuters form 13F file provides firms’ institutional shareholder in-

formation, i.e., the institutional investors and the number of outstanding shares

owned by each of them; (iv) We gather data on the geographic distribution of
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firms’ labor force from the establishment-level NETS database for each county

and map them to US commuting zones that we define as local labor markets; (v)

We use patent information from the USPTO and the DISCERN database (Arora,

Belenzon, and Sheer, 2021) that provides us with a match of patents to pub-

lic corporations; and (vi) We obtain M&A data from Lewellen and Lowry, 2021

for mergers between institutional investors. Finally, (vii) we use the Mann and

Püttmann’s (2021) classification of the universe of USPTO patents as either au-

tomation or non-automation patents. We now explicitly define the variables

used in our empirical analysis.

3.3.2 Variables

Common Ownership

To measure common ownership, we follow the recent literature and use the

Cindex (Lewellen and Lowry, 2021). This measure of common ownership is

symmetric (undirected). Common ownership of firm j at time t is defined in the

following way:

Cindexjt = 1
K

K∑
k=1

∑
i

βijβik, (3.5)

where j denotes the focal firm, i indicates investors owning it, and k = 1, 2, . . . , K

indexes the relevant set of firms. Furthermore, βij, βik are the fractions of out-

standing shares of firms j and k, respectively, that investor i owns as of the

calendar year-end. Because we want to study the effect of changes in common

ownership of a focal firm with its local labor market (LLM) rivals, we construct

our main measure of common ownership CindexLLMjt, such that it only takes

into account these KLLMj
firms that have labor-market overlap with firm j, that

is they operate in at least one commuting zone in which the focal firm j is

present. Moreover, we also compute CindexALLjt, for which the relevant set of

firms is KALL, i.e., all firms.

Automation Patents

For our empirical analysis, we need a dynamic measure of automation at the firm

level. To this end we use the data provided by Mann and Püttmann, 2021. This

paper defines automation as a “device that carries out a process independently”.
Using this definition they train a classification model on patent texts to classify

all USPTO patents, awarded between 1976 and 2014, as either automation or
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not.6 Table 3.1 gives examples taken from the original paper of both innovation

types.

In summary, the authors train a naïve Bayes classifier. They define two classes,

automation and non-automation. They first manually classify 560 patents into

both classes and define, through the mutual information criterion, a set of words

informative about each class. Words that identify that a patent is an automation

device are automat, output, execut, inform, input and detect.7 The algorithm then

uses the occurrence of these words to calculate a probability that the patent

belongs to each class and, by taking the maximum, they classify each patent.

The authors present the standard validation tests. In the training sample, the al-

gorithm and manual coding agree 80% of the time, and the probability of a false

positive (type-1) and a false negative (type-2) are 21 and 17 percent, respec-

tively. For the out-of-sample testing, performance declines slightly. However, the

corresponding statistics for true positives, false positives, and false negatives are

77%, 23%, and 22%.

TABLE 3.1

AUTOMATION PATENT EXAMPLES

Patent title Patent number Automation?

“Automatic taco machine” 5531156 Yes

“Automated email activity management” 7412483 Yes

“Hair dye applicator” 6357449 Yes

“Bicycle frame with device cavity” 7878521 No

“Process for making pyridine-thione salts” 4323683 No

“Golf ball” 4173345 No

This table shows examples of patents’ classification into automation or non-
automation patents. Source: Mann and Püttmann, 2021.

Using a broad definition of innovation and the machine learning method allows

us to measure innovation for a large sample of firms, across industries and time.

While errors in the classification process introduce noise, as long as there is no

6The paper restricts the sample to utility patents and therefore does not classify design
patents, however, as these do not “carry out” a process their comparison would introduce noise
in our analysis.

7These words are stemmed first, to capture variations of the same word, for example, au-
tomation, automate, and automatic all stem from the word automat.
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systematic bias in the occurrence of type-1 and type-2 errors, we believe the

measure provides a valuable source of information on firm automation strate-

gies.

Given this patent-level classification, we construct different measures of inno-

vation output on the firm-year level that allow us to evaluate changes in the

automation strategy of firms. The first and main measure gauges the automa-

tion content of firms’ innovation output, i.e.,

AutoRatio = ln
[

1 + Number of automation Patents
1 + Number of non-automation Patents

]
(3.6)

AutoRatio measures the extent to which a firm focuses on innovation for au-

tomation vs. inventions unrelated to automation. Thus, it allows us to observe

changes in the automation strategies of firms on the intensive margin.

The second measure, AutoDummy, is an indicator variable that takes the value

one if a firm in a given year applies for a patent that was eventually granted and

is classified as an automation patent according to Mann and Püttmann, 2021,

and zero otherwise. We use this measure to assess changes in the propensity of

firms to invest in automation technologies.

We also use patent counts to assess the effect of common ownership on automa-

tion and non-automation innovation separately to study whether changes in Au-
toRatio result from increases (decreases) in the number of automation (non-

automation) patents, respectively. lnAuto and lnNonAuto are the natural log-

arithms of (one plus) the number of automation and non-automation patents,

respectively.

Employment Growth

Since our model predicts that common ownership increases automation through

a labor market channel, we also test whether common ownership leads firms to

change their hiring behavior. We measure the growth rate of firm-level employ-

ment, that is,

EmpGrowtht = Employeest − Employeest−1

Employeest−1
, (3.7)

where Employeest is the number of employees (in thousands) of a firm in year

t. Moreover, we compute the indicator variable EmpIncrease that takes the value
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one if a firm experiences positive employment growth, and is zero otherwise.

Treatment Variables

Following the recent literature on common ownership and the estimation of

its causal effects (Lewellen and Lowry, 2021), we use exogenous changes in

common ownership due to the mergers of institutional investors. We use the

information on 53 institutional mergers from 1990 to 2010 and, in particular,

their announcement dates and the merging parties’ ownership in the universe

of publicly traded companies in the quarter before the announcement date to

define a set of continuous and discrete treatment variables.8

Treated by merger—First, we define a set of firm-years in our panel that is treated

by a merger of institutional investors similar to He and Huang, 2017b and

Lewellen and Lowry, 2021. We call this set T. The firms in T are treated in

the sense that the merger is likely to increase their shareholder overlap with

other firms. For this reason, we require that (i) for a firm (say firm 1, or the

focal firm) to be treated by a merger, one of the merging investors (say investor

A) holds at least 1% of outstanding shares of this firm before the merger (i.e.,

as of the quarter preceding the quarter of the merger announcement date). (ii)

There must be at least one other firm (say firm 2) such that the other merging

investor (say, B) owns 1% (again as of the quarter before the merger announce-

ment) of this second firm. Furthermore, (iii) for this pair (firm 1, firm 2), neither

of the two investors (A or B) can hold more than 1% in both firms in the quar-

ter before the merger announcement, such that the merger is likely to lead to

a new common shareholder (the merged institution) that holds at least 1% in

both companies but did not do so before the merger. The firms satisfying these

three criteria are likely to experience an increase in common ownership with

some other firm in the economy due to the merger.9

8We checked the robustness of our results in a sample of firms from 1990 to 2006, excluding
the last seven mergers in the sample provided by Lewellen and Lowry, 2021, because of concerns
that these mergers and firm outcomes may be contaminated by the financial crisis. However, all
our results stay qualitatively the same.

9At the same time, these firms are not likely to experience changes in their shareholder com-
position and concentration, since only one of the merging parties (A) holds more than 1% of
outstanding shares, while we require the other investor (B) to hold less than 1% or none of the
shares. This is crucial since Guo et al., 2024 have shown that mergers of institutional investors
that both hold significant shares in one firm increase block holder ownership, which results in
changes to firms’ innovation strategy and outcomes. Because of the careful construction of our
treatment sample and since we also distinguish the effect of treatment by mergers for firms
within and across commuting zones, finding differential results, we can confidently conclude
that changes in ownership concentration do not drive our results.
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Treatment within Commuting Zones—Second, we define a subset TLLM ⊂ T of

firm-years identified as treated by a merger above to construct our main treat-

ment variable. We are interested in exploiting exogenous changes to common

ownership between firms that operate in the same local labor markets. To do

so, we modify criterion (ii) above such that we require the existence of a firm

2 that operates in at least one commuting zone in which also focal firm 1 oper-

ates, i.e., they have local labor market (LLM) overlap. Thus, firms treated in this

sense likely experience positive changes to their common ownership with a local

labor market peer. Hence, we expect that their CindexLLM, as defined above,

increases.

For those firms that satisfy these three criteria, with LLM overlap, our first dis-

crete treatment variable, TreatLLM takes the value one in the year of the quarter

that immediately precedes the merger announcement and is zero otherwise.

Since firms may be treated to a different extent depending on the size of the

holdings of the merging parties, we also construct a continuous treatment vari-

able. This variable corresponds to the implied change in the Cindex of the focal

firm to the other. To this end, we can compute the firm-pair level Cindex12 =∑
i βi1βi2 for a firm-pair (the focal firm 1 and its LLM rival, firm 2) at the time

of the quarter preceding the merger announcement. We also can compute the

counterfactual

CindexmergedAB
12 = (βA1 + βB1)(βA2 + βB2) +

∑
i/∈{A,B}

βi1βi2, (3.8)

in which we treat the two investors as having already merged, using the same

pre-announcement quarter ownership shares. The difference between the coun-

terfactual and the actual Cindex is then given by

∆mergedAB
12 ≡ CindexmergedAB

12 − Cindex12 = βA1βB2 + βB1βA2, (3.9)

that is the expected change of the firm-pair level Cindex due to the merger af-

fecting the investors A and B in firms 1 and 2, and the βik are the corresponding

holdings of the investors i ∈ {A, B} in firm k = 1, 2 as of the quarter before

the merger announcement. The firm-level continuous treatment variable, Con-
tTreatLLM, sums these implied changes for the focal firm over all affected LLM

rivals and takes a positive value whenever TreatLLM takes the value one, and is

zero otherwise. Thus, ContTreatLLM can be interpreted as the treatment dose.
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Treatment across Commuting Zones—Finally, we define the subset of firm-years

TnotLLM ⊂ T that was treated by a merger however that do not observe an

exogenous increase in their CindexLLM with any LLM competitors. Therefore,

this subset of firm-years is the complement of the firm-years that experience

changes in common ownership with firms within the commuting zones and thus

partitions the set T, i.e., TnotLLM = T \ TLLM .

The discrete (TreatnotLLM) and continuous (ContTreatnotLLM) treatment vari-

ables are then defined analogously for this subset of firms treated by mergers

as their respective counterparts in the previous paragraph. In the main corpus

of our paper, we use the continuous treatment variables. However, using the

discrete treatment setup we obtain qualitatively consistent results.

Control Variables

Institutional ownership has been shown to influence innovation due to monitor-

ing of managers (Aghion, Van Reenen, and Zingales, 2013, Aghion, Van Reenen,

and Zingales, 2013; Guo et al., 2024, Guo et al., 2024). Since common own-

ership and firms’ institutional ownership are related but different phenomena,

we control for InstOwn, the percentage ownership of all institutional (13F) in-

vestors of a firm as of the calendar year-end, to disentangle both effects. We also

control for FirmSize, which is the natural logarithm of total assets; R&DtoAssets,
which corresponds to R&D expenses scaled by total assets; FirmAge, or natural

logarithm of the number of years the firm has existed, according to Compustat;

PPEtoAssets is firms’ property, plant.

3.3.3 Sample and Descriptive Statistics

We combine the information from the different data sources into a firm-level

panel. We start with an unbalanced sample of 8,813 unique Compustat firm

identifiers and 75,402 observations. We use this large sample of firms, their

pairwise ownership information, and the locations of their establishments to

construct our treatment and common ownership variables. Thus, we use a com-

prehensive sample to include all potential LLM rivals and other portfolio firms

operating in distinct labor markets to measure their common ownership with

the focal firms.

Since our main outcome variables are constructed using patent information, we

restrict the set of focal firms in the panel to estimate the effects of an increase in
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TABLE 3.2
DESCRIPTIVE STATISTICS

Variable 25th Perc. Median Mean 75th Perc. Std. Dev. N. of obs.

Ownership:
CindexLLM 0.001 0.002 0.003 0.004 0.003 21214

CindexALL 0.001 0.001 0.002 0.003 0.002 21214

InstOwn 0.159 0.408 0.432 0.686 0.298 21214

Firm Characteristics:

R&DtoAssets 0.026 0.080 0.146 0.166 0.279 21214

TotalAssets (in $1M) 35.125 127.434 2074.582 621.884 10426.730 21214

FirmSize 3.559 4.848 5.089 6.433 2.123 21214

FirmAge (in years) 7.000 12.000 16.526 21.000 13.352 21214

PPEtoAssets 0.066 0.139 0.181 0.251 0.152 21214

Employees (in 1K) 0.139 0.489 5.946 2.590 22.427 21012

EmpGrowth -0.056 0.040 0.137 0.181 1.191 19856

EmpIncrease 0.000 1.000 0.600 1.000 0.490 19856

Patent output:

NumPatents 0.000 1.000 22.688 7.000 113.372 21214

NumAutoPatents 0.000 0.000 13.517 3.000 87.675 21214

AutoRatio -0.693 0.000 0.039 0.693 1.264 21214

AutoDummy 0.000 0.000 0.437 1.000 0.496 21214

lnAuto 0.000 0.000 0.861 1.386 1.327 21214

lnNonAuto 0.000 0.000 0.822 1.386 1.264 21214

This Table presents descriptive statistics for our sample of patenting firms from 1990
to 2012.

common ownership to those for which we observe a positive number of patents

in at least one year during our sample period in the patent data provided by

Arora, Belenzon, and Sheer, 2021. The final result of our sample selection pro-

cess yields an unbalanced panel of 2,006 firms, comprising 21,214 firm-year

observations.

Table 3.2 reports summary statistics for the entire sample. The average Cin-
dexLLM is larger than the average CindexALL, with values of 0.003 and 0.002,

respectively. This shows that the average firm has a slightly higher overlap of

institutional shareholders with the average firm that operates in the same com-

muting zones than with the average firm operating in a disjunct set of local labor

markets. Paired and unpaired t-tests reveal that the difference is significant at
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1%, showing that common ownership of firms with labor-market overlap seems

to be relevant when compared with ownership overlap in general. Institutional

investors hold 43% of outstanding shares of the average firm in our sample,

similar to what was found in other studies for our sample period.10

Moreover, the average firm in our sample invests 14.6% of total assets into re-

search and development (R&D) activities.11 Firms’ total assets are around $2B

and they are more than 16 years old, on average. The mean number of em-

ployees is approximately 6 thousand. Firms’ ratio of tangible to total assets

(PPEtoAssets) is 18.1%.

On average, firms produce around 23 patents per year of which 14 are classified

as automation patents by Mann and Püttmann, 2021. However, this number

hides heterogeneity across firms, and the average firm’s probability to produce

at least one automation patent in a year is 43.7%.

For reasons described in the following section, in our baseline estimation, we

exclude observations of firms that are treated at least once during our sample

period by the treatment ContTreatnotLLM, when estimating the effect of Cont-
TreatLLM. The final set T of firm-years that we define as treated by a merger (as

described in Section 3.3.2) consists of 1,130 firm-year observations. Of these

firm-years 836 are in the set TLLM, in which the firm was affected by a merger

of institutional investors that likely increases their common ownership with local

labor market rivals. For a firm-year to be in the set TnotLLM, we require that a

firm in a particular year is affected by a merger, but that this event is not likely to

increase common ownership with natural rivals in the labor market. We identify

294 firm-years in this set.

Next, we compare the average treatment doses among the two sets of treated

firm-years. That is, we compare the mean dose of treatment within each treat-

ment sample of the two subsets of firms affected by mergers with each other. For

our baseline samples, the average of the 836 firms treated by mergers that likely

increase common ownership with labor-market rivals is 0.022.12

10For example, Guo, Pérez-Castrillo, and Toldrà-Simats, 2019 report an ownership share of
44% belonging to institutional investors in the same years for a different sample of firms.

11It is well known that some firms do not report R&D expenditures in compustat. We do not
replace them with zeros since this could potentially introduce errors.

12To help the understanding of this number, we can provide the following example that corre-
sponds to an average treatment dose of 0.022. Assume that the focal firm has a 5% blockholder
(say, investor A) that merges with another institutional investor (say, B). In the symmetric case,
this other investor would hold 5% in 8.8 other firms in which A is not invested, but these firms
are active in a subset of commuting zones in which the focal firm operates.
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TABLE 3.3
AVERAGE CONTINUOUS TREATMENT DOSE

Set of firms: TLLM TnotLLM Diff.
(1) (2) (3) (4) (5) (6) (1) - (4)

Variable Mean Std. Dev. N. of obs. Mean Std. Dev. N. of obs.

Continuous Treatment 0.022 0.064 836 0.025 0.021 294 -0.003

This Table compares the average treatment dose within each treatment across the
two treatment samples, TLLM and TnotLLM. The difference between the two
means is has a t-score of -1.08.

The average treatment dose of the 294 firms affected by an institutional merger

is larger at 0.025.13 The average dose of treatment regarding firms outside the

collection of commuting zones they operate in for firms in TnotLLM is higher

compared to their counterparts in TLLM to their labor-market rivals. However,

the difference of 0.003 between the means between is not statistically significant

(t-score: −1.08). In all our DID estimations, we report point estimates represent-

ing the economic effects of a treatment dose for the average event firm in the

respective sample to facilitate interpretation and comparison.

3.3.4 Identification Strategy

We now describe in detail our identification strategy. We start by testing Hy-

pothesis 1 through a set of two-way fixed effect regressions. These regressions,

although potentially biased and suffering from endogeneity, allow us to see if we

observe a general association in our panel between common ownership within

local labor markets (Cindex) and the automation strategy of firms (AutoRatio)

on the firm level. To this end, we estimate the model in equation (3.10).

AutoRatioj(t+τ) = β0 + β1CindexLLMjt + γXjt + αj + δst + ϵjt (3.10)

AutoRatioj(t+τ) is the τ th lead of our main measure of the automation content of

innovation as defined in Section 3.3.2. Although common owners holding shares

in firms within the same local labor market may affect the investment strategy of

firms contemporaneously, we expect these changes to translate into different in-

novation outcomes in the future, because of time lags between starting research

13This average treatment dose corresponds in a similar example to the merger of a 5% block-
holder of the focal firm that holds 5% in 10 firms without labor-market overlap to the focal
firm.
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projects and the resulting patent application in case of success. Therefore, we

consider τ = 1, 2, 3, . . . , 6 in the OLS panel regression. CindexLLMjt is the com-

mon ownership measure at the firm-year level defined in section 3.3.2. Further,

we include X, the control variables discussed previously, and a set of firm and

industry (s) × year (t) fixed effects to control for common shocks, e.g. industry

spillovers from automation-relevant technologies or industry-specific trends in

the technological feasibility frontier.

As mentioned, estimating two-way fixed effect (TWFE) models in the presence of

dynamic effects may lead to biased estimates. Sun and Abraham, 2020 show that

in cases such as ours, where firms are treated at different times, estimating lead

or lagged models can produce biased effects, affecting model conclusions but

also the researcher’s ability to trust pre-trend analysis. They show that dynamic

effects in TWFE models can be expressed as the linear combination of cohort-

specific effects across time. For example, we cannot disentangle the contem-

poraneous effect of an increase in common ownership from long-term changes

to the strategic direction of the firm. We therefore employ the state-of-the-art

event study DID model developed in De Chaisemartin and d’Haultfoeuille, 2024

which allows us to estimate dynamic effects, under a set of more reasonable

assumptions.

To derive exogenous variation in the Cindex we use mergers between institu-

tional investors as in He and Huang, 2017b and Lewellen and Lowry, 2021,

applying the set of continuous treatment variables defined in Section 3.3.2. As

we discussed there, if institutional investors merge, they combine their portfo-

lios, and firm-level common ownership likely increases for their portfolio firms,

as we subsequently show in the data.

This identification strategy requires that financial institutions’ mergers are not

driven by the specific characteristics of the firms in which these institutions in-

vest. There are several reasons why this is plausible. As He and Huang, 2017b

show, about 60% of these mergers result from consolidations in the banking sec-

tor, caused by fundamental changes in the regulation of financial institutions.

This led to a wave of mergers of these institutions and their asset management

arms. Given the scope of the regulations and the size of the financial institutions

involved, it is unlikely that the reasons behind the mergers are due to their port-

folio companies. Second, Jayaraman, Khorana, and Nelling, 2002 suggest that

the mergers of pure asset management institutions, i.e., the remaining 40% of

the mergers, are due to strategic reasons such as exploiting economies of scale
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and gaining market share. Thus, these mergers are also unrelated to portfo-

lio firm characteristics such as innovativeness or the geographic distribution of

individual firms’ plants.

Having established the validity of our shock to common ownership, we describe

the procedure we use to test our empirical hypotheses. Regarding Hypothsis 3,

we are interested in changes of common ownership of a firm with respect to local

labor market (LLM) rivals. Therefore, we use the continuous treatment variable

ContTreatLLM, which accounts for the firms’ exogenous change in common own-

ership with LLM rivals implied by the merger. We use this treatment variable in

the estimation method presented by De Chaisemartin and d’Haultfoeuille, 2024,

which is flexible to the usage of continuous treatments and our setup, in which

firms may be treated several times during our sample period. As our main out-

come of interest is the automation strategy of firms, we use the two automation

measures, AutoRatio and AutoDummy, as the dependent variables in this exper-

iment. Thus, we estimate the dynamic effects of treatment to LLM common

ownership on the automation strategy of firms, using the universe of not(-yet)

treated firms as controls. In this model, we also employ the firm characteristics

described in Section 3.3.2 as control variables.

Next, regarding Hypothesis 4 in which we want to see the effects of common

ownership of a focal firm concerning others, which are not natural labor market

rivals of the focal firm, we apply our continuous treatment variable ContTreat-
notLLM, analogously. Thus, we test if a firm that experiences a positive shock to

common ownership, however only with regard to firms with which it does not

compete for workers, increases the automation content of its innovation output

in the same way, as we expect for those within local labor markets.

As mentioned, the DID method we apply accounts for the fact that firms are

treated several times. However, it does not account for firms being treated by

other events. Because we expect that the two treatments (increases in common

ownership with regard to labor market rivals and non-rivals) are different, we

exclude firms that have ever been treated by one of these treatments, when

estimating the effect of the other. For instance, when estimating the effect of

ContTreatLLM, we exclude all companies from the sample for which there is any

firm year in which ContTreatnotLLM takes a positive value, and vice versa. For

robustness, we have also estimated the effects in pooled samples. All our main

results are robust to the choices regarding sample selection.
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One potential criticism of our identification method comes from the critique

raised in Lewellen and Lowry, 2021 that these mergers are bunched over time.

There are for instance a large number of mergers around the financial crisis. If

other, automation-relevant events occurred at the same time, e.g., firms increase

automation to alleviate competitive pressure during the financial crisis, then our

coefficients may be biased. To combat this issue we have also run the model on

data up to 2006, before the onset of the crisis. All our results stay qualitatively

consistent with our baseline analysis, therefore reducing this concern. We report

the results in the appendix (Section C.3.2).

Another critique we address concerns the use of continuous treatment measures,

instead of binary treatment variables. The key assumption we have to make

is that the ownership shares as of the quarter before the announcement date

of merging investors are exogenous. To address the concern that this might

introduce some sort of endogeneity, we have estimated our model also using

the discrete treatment variables (TreatLLM and TreatnotLLM) and report results

(Section C.3.3 in the appendix) that are consistent with our estimations using

continuous treatments.

Finally, we also have computed alternative measures of automation innovation

based on citation counts of patents. The results reported in Section C.3.1 in the

appendix are also consistent with our baseline strategy.

3.3.5 Empirical Results

In this section, we present the results of our empirical analysis.

Common Ownership of Labor Market Rivals and Automation Innovation

OLS Results—We first estimate model (3.10) on the full sample of firm-year ob-

servations. The results are shown in Table C.1 in the Appendix (Section C.2). As

the results indicate, firms show a higher share of innovation output related to

automation (relative to other innovations) one to five years into the future after

an increase to common ownership with LLM rivals. Also, the signs of the coeffi-

cients of the control variables are sensible. Larger firms are more likely to invest

in automation, probably due to economies of scale; while older firms produce

relatively less automation innovation. However, as mentioned before, these re-

sults could be biased or driven by unobservable heterogeneity. Therefore, we

now turn to the dynamic Difference-in-Difference model using the exogenous
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FIGURE 3.2
DYNAMIC EFFECTS: COMMON OWNERSHIP

Figure 3.2: The dynamic effect of being treated by an institutional merger that
likely increases common ownership with LLM rivals (ContTreatLLM) on the raw
firm-level common ownership regarding LLM rivals (CindexLLM).

changes in common ownership.

Relevance of Treatment—To test Hypothesis 3 using the DID model, we first show

that mergers between institutional investors lead to an increase in the aver-

age common ownership with LLM rivals, using the continuous treatment Cont-
TreatLLM and the CindexLLM as the dependent variable. Lewellen and Lowry,

2021 show that institutional mergers lead to an increase of common ownership

on the firm-pair level. One concern may be that after merging, the merging

institutional investors or other institutions adjust their portfolios such that the

effect on common ownership could be negligible, or disappear quickly. Also, it is

crucial in our setup that an increase in common ownership with an LLM rival on

the firm-pair level is not compensated by other changes in common ownership

with other LLM rivals, since our outcome variables are defined on the firm level.

Figure 3.2 indeed shows a jump in the average CindexLLM following treatment in

year 0. The merger event leads to an increase of around 0.03 percentage points

in firm level common ownership per year. This effect is persistent during the six

years following treatment.14 The pre-treatment period effects are not significant

and the p-value of joint nullity of the placebos is 0.583, which indicates that the

parallel-trends assumption is satisfied. Therefore, we can conclude that treated

firms experience a common ownership increase with other firms in the same

14As defined in Section 3.3.2, the dependent variable is the average ownership overlap of the
focal firm with all its labor market rivals.
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FIGURE 3.3
DYNAMIC EFFECTS: AUTOMATION MEASURE

(a) Using the continuous measure AutoRatio

(b) Using the binary measure AutoDummy

Figure 3.3: This Figure shows the dynamic effects of within-LLM increases to com-
mon ownership (ContTreatLLM) on the automation strategy of firms.

local labor markets.

Automation Strategy—We now turn to our main outcome variables to test Hy-

pothesis 3. The principal model uses AutoRatio as the dependent variable to test

whether the firm changes its innovation strategy to become more automation-

focused, controlling for a potential change in total innovation. We also use the

automation indicator variable, AutoDummy to test if the exogenous changes to

common ownership affect firms’ propensity to invest in automation.

Figure 3.3 shows that an increase in common ownership with local labor market

rivals due to a merger leads to a significant increase in the automation content of

innovation for the treated firms in TLLM over the six years following treatment.
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This increase is also economically significant, as it corresponds to a change of

46.6% for the average treated firm, over the six year period. In the discrete treat-

ment setup, the resulting change in the ratio of automation to non-automation

patents reported in the Appendix (Section C.3.3) is 49.6%. On a yearly basis, we

see that the automation content of innovation increases significantly by around

10% year on year.

The propensity of firms to produce automation patents significantly increases for

each of the first three years after the average merger event (between 4.8 and 8.3

percentage points), as indicated in Panel (b) of Figure 3.3. After that, the effect

remains positive but becomes insignificant. Over the entire 6 year period we see

an 18.1% increase in the probability of patenting an automation innovation over

the unconditional mean. Again for both the continuous and dummy automation

outcome measure the parallel trends conditions are satisfied.

Next, we use individual patent count variables, lnAuto and lnNonAuto to exam-

ine separately which type of patenting drives the effect estimated. The indicator

variable AutoDummy suggests that more firms are likely to patent for automa-

tion innovations upon treatment. However, we want to confirm whether, on the

intensive margin, the automation content of innovation increases due to more

automation patents and not because of a decrease in non-automation patents.

The results are shown in Figure 3.4. Treated firms experience a surge in au-

tomation patent output. The ATT is highly significant and indicates an increase

of 35.3%. In years two to four, the significant increase in the number of automa-

tion patents is between 7.9% and 9.7%. On the contrary, the ATT as well as

the yearly effects on non-automation patents are not statistically different from

zero. The ATT for non-automation patenting is in fact negative, pointing to a

potential strategy shift of firms from non-automation to automation. The pre-

trend results for the automation patents however show a potential anticipatory

effect, where there is a pre-event increase in automation patenting, this requires

further examination.

The results shown in this section are robust to using the discrete treatment, as

well as using patent citations to compute the automation strategy measures.

Furthermore, we have also estimated the effects for our sample until 2006. The

results are qualitatively similar. The robustness checks can be found in Section

C.3 of the Appendix.

Overall, our results suggest that increases in common ownership between firms
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FIGURE 3.4
DYNAMIC EFFECTS: AUTOMATION VERSUS NON-AUTOMATION

(a) Effect on automation patents

(b) Effect on non-automation patents

Figure 3.4: This Figure shows the dynamic effects of within-LLM increases to com-
mon ownership (ContTreatLLM) on the automation and non-automation patents.

that compete for workers increase their automation-related innovation output.

In the next section, we will use our alternative treatment to study the effect of

common ownership on automation when labor market rivalry is absent.

Common Ownership and Automation Innovation in the Absence of Labor

Market Rivalry

We now study how increases in common ownership affect firms’ automation

strategy in the absence of labor market rivalry. That is, we focus on the change

in automation innovation of focal firms that experience an increase in common

ownership with other firms outside the commuting zones in which the focal firms

operate. Thus, we are testing Hypothesis 4.
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FIGURE 3.5
DYNAMIC EFFECTS: NO LLM OVERLAP

(a) Using the continuous measure AutoRatio

(b) Using the binary measure AutoDummy

Figure 3.5: This Figure shows the dynamic effects of across-LLM increases to com-
mon ownership (ContTreatnotLLM) on the automation strategy of firms.

The results are shown in Figure 3.5. The ATTs for both, the continuous Au-
toRatio and the binary AutoDummy are insignificant from zero. Furthermore, all

of the yearly effects are not statistically different from zero. Also, in terms of

magnitude, while they are positive, the effects are much smaller than for those

firms experiencing increases in common ownership with LLM rivals. The results

therefore corroborate Hypothesis 4.

The Employment Effects of Common Ownership under Labor Market Ri-

valry

We have shown that increases in firms’ common ownership within local la-

bor markets affect firms’ automation strategy. Increases in within-LLM com-
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FIGURE 3.6
DYNAMIC EFFECTS: EMPLOYMENT

(a) Using the continuous measure EmpGrowth

(b) Using the binary measure EmpIncrease

Figure 3.6: This Figure shows the dynamic effects of within-LLM increases to com-
mon ownership (ContTreatLLM) on firms’ growth in terms of employment.

mon ownership raise the automation content of firms’ innovation output. We

now turn to the outcomes in terms of employment. Using our treatment Cont-
TreatLLM, we now estimate the effect of common ownership within labor mar-

kets on firms’ hiring decisions, applying EmpGrowth and EmpIncrease as the out-

come variables. The results are shown in Figure 3.6.

In the six years after the treatment event firms’ employment growth rates and

their likelihood of having positive employment growth both decrease signifi-

cantly. On a yearly basis, their growth rates decrease up to 10.7 percentage

points. Their probability of experiencing positive growth rates in employment

decreases by 4.4 to 9.4 percentage points. The pre-trends are weaker and nosier

than the main results and therefore these results need further examination.
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3.4 Conclusion

We develop and test a theory of the impact of common ownership on firms’ au-

tomation strategies. We show, both theoretically and empirically, that increases

in common ownership of firms with local labor market rivals lead to increases

in the number of automation patents and the overall automation content of the

firms’ innovation output. We measure automation using the texts for patents

produced at each firm.

Thus, we provide evidence that institutional common ownership influences firms’

innovation strategy and the direction of technological change, steering portfolio

firms to focus more on automation in their innovation process. Moreover, we do

not find evidence that exogenous changes in common ownership of a focal firm

with those companies that operate in distinct labor markets cause an increase in

automation. This result is consistent with the mechanism we developed in our

model. That is, institutional common ownership increases firms’ incentives to

automate to reduce labor market competition among portfolio firms. Consistent

with this mechanism, we observe that increases in firms’ common ownership

with labor market competitors reduce firms’ future employment growth.

The implications of these results are critical for policymakers concerned with

the effects of technological change, especially the advancement of automation

technologies, on social welfare and inequality.15 Our research demonstrates that

the substantial rise in common ownership, observed in both the US and Europe,

further incentivizes firms to develop and implement technologies aimed at sub-

stituting human labor.

15See Acemoglu and Restrepo, 2018, Moll, Rachel, and Restrepo, 2022, Santini, 2024.
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A. Chapter 1 Appendix

A.1 Inferring the Knowledge Space: Intuition

Figure A.1 provides an intuitive example of how the Author-Topic model learns

the knowledge classes, inventor knowledge profiles and can describe the knowl-

edge content of a patent and an inventor’s contribution share. The knowledge

classes (βk) and inventor knowledge distributions (θi) are latent variables. The

idea being that for each word, in every patent, the model attaches a knowl-

edge class × inventor pair, thus revealing the latent variables over many patent

documents.

Over many patents, if the words vehicle, engine, and torque appear together,

they start to form the transport class. The same goes for the words hospital,
doctor and drug. In the example given, the word automatic was contributed

by Liu using the computing class, the word engine however was contributed

by Swales using the transport class. If an inventor appears on patents using

words from one of these knowledge classes, their weight on that knowledge class

increases. This is the basic functionality of the author-topic model as written in

the Gensim package. However, more information can be extracted. Naturally, as

each word is matched with an inventor × knowledge class pair, you can describe

the knowledge content of the patent as a mixture of knowledge classes. Most

important for this chapter, the number of words reveals the contribution of each

inventor.

As written here, this inference method matches the Gibbs Sampling algorithm.

In this paper I employ a Variational Bayes method. The Gibbs Sampling algo-

rithm would allow you to make the same calculations as in this example, and

sum words across inventors, knowledge classes within a patent. The Variational

Bayes instead uses an approximation to this method, which over large patent

data is more efficient. The Gibbs sampler converges on the true solution, while

the variational Bayes inference method converges on an approximation to the

true solution.
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FIGURE A.1

INTUITIVE LDA EXAMPLE

Notes: An intuitive example of how LDA works. The example used is a paraphrased version of
USPTO patent number US6752741 which expires 2022-05-31. The knowledge class and inventor
parameters are learnt by iterating over patent texts and allocating inventors and topics to words.
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A.2 Additional Tables and Figures

TABLE A.1

DESCRIPTIVE STATISTICS

Mean Std. Dev. Min Max

Patent Level

Citations 16.238 45.038 0.000 1896.000

Market Value (m) 3.699 19.526 0.000 1341.500

Pr(Breakthrough) 0.130 0.336 0.000 1.000

New vocabulary reused 15.909 89.962 0.000 6878.000

New vocabulary 3.663 17.341 0.000 1028.000

Year 2002.918 5.761 1991.000 2021.000

Observations 29332

Inventor Level

No. Patents 5.266 7.802 1.000 399.000

No. Teams 1.783 2.262 1.000 104.000

Female 0.080 0.271 0.000 1.000

Observations 34613

Team Level

Team Size 6.171 3.106 2.000 51.000

No. Patents 3.702 11.535 0.000 153.000

Concentration 15.661 9.421 0.035 112.328

Observations 10000

Notes: The table reports the mean, standard deviation, minimum, and maximum values. Observa-
tions represent the number of patents, inventors, or teams in each category. This is the sample used
in the main analysis, not to train the LDA. The descriptive statistics for the full sample of 1.2 million
patents is given in the appendix.
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FIGURE A.2

HISTOGRAM OF INVENTOR EXPERIENCE

Notes: A histogram of inventor total years experience. Each inventor is included once, where the
total number of years experience corresponds to the number of individual years in which they appear
on a patent. This is taken over the full sample of USPTO data from 1976 to 2024.

A.3 Gender Results

I demonstrate how individual characteristics explain the contribution share of an

inventor to a team project. I define a gender diverse team as one that contains at

least one man and one women. I define a female dummy which is equal to one

if the inventor is a woman. I then introduce a team size dummy δm and control

for a year fixed effect through δt.

I measure experience as the cumulative count of the number of patents that

inventor has produced, prior to patent p. I split this variable into 4 equally sized

bins to track the experience of inventor i on patent p (expi(p)). These refer to

low, medium-low, medium-high and high experience levels. I build a second

count for the mean number of patents the inventor’s collaborators in team τ

have produced, prior to the patent p. I denote the team τ minus inventor i by τ̃ .

I split this same variable into the same four bins (expτ̃(p)). This tracks whether

inventor i collaborated with junior or senior co-inventors.
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ωip = β0 + βf femalei +
4∑

e=1
βe · 1(expi(p) = e) + δm + δc + δt + ϵip (A.1)

FIGURE A.3

CONTRIBUTION SHARE OVER GENDER

Notes: This figure presents estimated coefficients on the female dummy from regressions of inventor
contribution share on gender, controlling for year, team size, technology class, inventor experience,
and patent impact. Separate regressions are estimated for teams of sizes 2 to 9, conditional on
gender diversity (i.e., teams with both male and female inventors). Confidence intervals at 95%
level are shown.

For this subset of teams, I find that women contribute more on smaller teams.

The coefficient is only significant for teams of two and four. However, this dif-

ference disappears entirely for larger teams.

ωip = β0 + βf femalei +
4∑

e=1
βe · 1(expi(p) = e) +

4∑
o=1

βo · 1(expτ̃(p) = o)

+
4∑

e=1

4∑
o=1

δeo · 1(expi(p) = e) × 1(expτ̃(p) = o) + δm + δc + δt + ϵip

(A.2)

This effect however is driven by the relative experience of each inventor to the

team. Figure A.4 shows the results for when I introduce the same interaction
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effect in the main body to equation A.1. I find that the contribution gap is much

smaller, and now statistically insignificant from zero. This means that the fact

that women contribute more than men on gender diverse teams can be explained

by the fact that they tend to be relatively more junior colleagues. Therefore the

conclusions presented hold given their relative inexperience, not a feature of

their gender.

FIGURE A.4

CONTRIBUTION SHARE OVER GENDER | TEAM EXPERIENCE

Notes: This figure presents estimated coefficients on the female dummy from regressions of inventor
contribution share on gender, controlling for year, team size, technology class, inventor experience,
and patent impact. This regression model introduces an interaction between the inventor’s experi-
ence level and that of their co-inventors. Separate regressions are estimated for teams of sizes 2 to
9, conditional on gender diversity (i.e., teams with both male and female inventors). Confidence
intervals at 95% level are shown.
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B. Chapter 2 Appendix

B.1 Additional Tables and Figures

FIGURE B.1

RAW BREAKTHROUGH MEASURE
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Notes: Function for the raw breakthrough measure at the patent level plot over a generated range
of post-count values. This measure is bounded between 0 and 1, but importantly captures a concept
of percentage change even when the pre-count is equal to zero.

FIGURE B.2

LDA MODEL CONVERGENCE

Notes: Two convergence plots. One showing the log likelihood per word bound, and the second the
model perplexity. Each statistic is calculated after every 25 iterations over the data.
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FIGURE B.3

VISUALISING THE 50-DIMENSIONAL PATENT RESEARCH FIELDS

U.S. PATENT 6752741: PRE PUBLICATION

U.S. PATENT 6752741: IN 2019

Notes: Pre & Post Publication for US6752741 titled “ ISA Engine Start Stop Strategy”. This figure
visualizes the t-SNE embeddings of patent topic distributions for the selected target patent. The
50-dimensional patent embedding θp is reduced to two dimensions using t-SNE, a dimensionality re-
duction technique optimized for capturing relative similarities between points in lower-dimensional
space. In each panel, the red marker highlights the target patent, while other blue markers represent
additional patents. The top panel shows only patents published prior to or in the same year as the
target patent, while the bottom panel includes the full sample. The dashed black circle, centred on
the target patent plots an example research field for a given radius r.
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FIGURE B.4

INFERRED BAYESIAN PRIOR α

Notes: Learnt α Dirichlet prior from the Gensim package option auto. The Y-axis presents the 5
words with the largest weight within the knowledge class to word distribution for that class. The
height of the bar represents the weight on that class in the Bayesian prior.
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FIGURE B.5

AGGREGATE TOPIC DISTRIBUTION BY PATENT TYPE

Notes: Plots the average knowledge class distribution by patent type. The data on Green, Automation
and Cancer patents provided by PatentsView (2024), Mann and Püttmann (2023), and Cancer
Moonshot: USPTO (2024). Again the top 5 words per class shown on the Y-axis.
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FIGURE B.6

TEAM STATISTICS

A) TEAM FIELD VOLUME B) PATENTS IN A TEAM’S FIELD

C) TEAM SIZE D) TEAM BREADTH

Notes: Four binned scatter plots produced with binscatter. Each plot is taken for the average
within one year, across all teams who first patented in that year. The total number of patents is
defined in equation 2.8. Volume is defined in equation 2.9 as the square root of team size multi-
plied by the weighted average of the maximum euclidean distance between team member knowledge
points, and the mean distance. I refer to this weighted average as the team breadth. The bottom
two panels represent both parts of the multiplicative volume measure defined.
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TABLE B.1

PATENT REGRESSION ESTIMATES: DIRECTION

Dependent variable: Pr(Direction)

Prior work | Directionpt 0.0290*** 0.0281*** 0.0281*** 0.0438***

(41.51) (44.80) (44.88) (47.19)

Prior work | Directionpt Sq. -0.0001***

(-24.85)

N 1218385 1218385 1218366 1218366

Controls ✓ ✓ ✓ ✓

Direction FE ✓ ✓ ✓ ✓

Year × Direction FE ✓ ✓ ✓

Team size ✓ ✓

Notes: Each column corresponds to a logistic regression of the probability a patent is one of three
types (z), where all three types are stacked into one regression model. The dependent variable is
composed of three binary indicators for whether that patent achieves each of the three directions:
mitigates climate change, reduces cancer risk or automates production. All standard errors are
clustered at the knowledge cluster × year level. Controls include d(θe

p, θp).

TABLE B.2

PATENT REGRESSION ESTIMATES: BREAKTHROUGH

Dependent variable: Pr(Breakthrough)

Prior workpt -0.0019*** -0.0014** -0.0014** 0.0008

(-3.76) (-2.88) (-2.89) (1.60)

Prior workpt Sq. -0.0000**

(-2.97)

N 408772 408772 408753 408753

Controls ✓ ✓ ✓ ✓

Year FE ✓ ✓ ✓

Team size ✓ ✓

Notes: Each column corresponds to a logistic regression of the probability a patent is either a break-
through. The dependent variable is the probability that patent is in the top 75% of the breakthrough
score. The breakthrough classification is based on equation 2.7, which defines it as the post-count
(patents produced in the field after the given patent) normalized by the sum of the post-count and
prior count (patents in the field before the given patent). All standard errors are clustered at the
knowledge cluster × year level. Controls include d(θe

p, θp).
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TABLE B.3

TEAM TREATMENT ESTIMATES: HETEROGENEOUS

Dependent variable: Pr(Breakthrough)

Low Medium High

Dτt -0.0051* -0.0023 0.0040*

(-2.15) (-1.20) (2.27)

Prior workτ1t -0.1972*** -0.0586*** -0.0088***

(-4.67) (-4.78) (-3.59)

Volumeτ -1.9697* -4.6353*** -1.1707

(-2.41) (-4.89) (-1.22)

N 3011 2770 2425

Controls ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓ ✓

Notes: All regressions are team and patent order fixed effect models and standard errors are clustered
at this level. The identifier τ is unique for each team pair (τ1, τ2). The dependent variable for panel
I) is an indicator for whether the patent is a breakthrough. The breakthrough classification is based
on equation 2.7, which defines it as the post-count (patents produced in the field after the given
patent) normalized by the sum of the post-count and prior count (patents in the field before the
given patent). Controls include d(θe

p, θp), team gender diversity, average team experience and its
squared term, race diversity and the rolling three year average number of inventors employed at the
patent assignee.

Table B.3 shows the coefficient for the regression model, split over each of the

three terciles of the prior patent count in a team’s knowledge field. The first

row coefficients are shown in Figure 2.10. The second row coefficients on Prior

workτ1t require further explanation. This figure is a within-team model, since

all regressions include a team fixed effect. I argue that this model demonstrates

that teams in the lowest tercile are in fact on the upward sloping region of the

inverted-U shape shown in Figure 2.9. This may seem at odds with the fact that

the coefficient on Prior workτ1t is negative for all three sub-samples. First of all,

due to the non-linear nature of the logit model, the size of these three coeffi-

cients should not be compared across models. Since as average Prior workτ1t

increases across each sample, this drives the coefficient towards zero. Second,
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when the model is run across each sub-sample on a logit model using between

team variation, then the coefficient on Prior workτ1t for the lowest tercile is pos-

itive, and for the largest tercile is negative. This is inline with the inverted-U

hypothesis. However this does suggest that there are important differences for

between versus within team changes that deserve further exploration.

TABLE B.4

TEAM TREATMENT ESTIMATES: NOVEL PATENTS

Low Medium High

1. 2. 3.

Words 0.00001 -0.00004 0.00008**

(0.25) (-0.38) (3.11)

Bi-Grams 0.00002 -0.00007 0.00015***

(0.17) (-0.36) (3.35)

Tri-Grams 0.00005 -0.00040 0.00016**

(0.30) (-1.66) (2.99)

N 9813 10041 10588

Controls ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓ ✓

Notes: All regressions are team and patent order fixed effect models and standard errors are clustered
at this level. The identifier τ is unique for each team pair (τ1, τ2). The dependent variable for
each of the three models is taken from Arts, Hou, and Gomez, 2021 and counts the number of
new n-grams introduced by each patent. Controls include d(θe

p, θp), team gender diversity, average
team experience and its squared term, race diversity and the rolling three year average number of
inventors employed at the patent assignee.
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B.2 Contribution Weights Validation

This chapter utilises the new method of inferring the contribution of each team

member to the knowledge contained in a patent developed in chapter 1. To

demonstrate the power of this method, I validate the inventor contribution

weights using a prediction model. I propose that if the weights capture informa-

tion on the true contribution share of each inventor, then the patenting history

of inventors who contribute significantly more should be a stronger determinant

of the technology classification awarded to a patent. This is an application of

the validation method introduced in Chapter 1.

TABLE B.5
VALIDATION OF THE CONTRIBUTION WEIGHTS

%∆ ≥ p90 %∆ ≥ p75 %∆ ≤ p25 %∆ ≤ p10
T-Test Mean SE Mean SE Mean SE Mean SE

Lead 57.126 0.019 56.806 0.015 50.244 0.045 50.030 0.031
Second 42.874 0.019 43.194 0.015 49.755 0.045 49.970 0.031

Difference 14.251 0.027 13.612 0.021 0.488 0.064 0.059 0.043

Notes: T-test to determine differences across lead and second inventor feature importance. Small
and large gaps are defined by the percentiles on the percentage difference %∆ between the lead and
second inventor. After each of the 50 runs of a random forest I calculate the total feature importance
for the lead and second inventor patent histories. The features are the top five most common CPC
classes used by the lead, and the second inventor. The target variable is the CPC class awarded to
the patent. The final T-test is calculated over N=50.

I propose that if the gap between the contribution shares of the two inventors is

large, then the lead inventor’s patenting history will be a significantly stronger

predictor of the CPC class awarded to a patent. While if that difference is small

(both inventors contributed similarly to the patent), then I predict there to be

no significant difference. This corresponds to the total feature importance for

the lead inventor’s patenting history being significantly larger than that of the

second inventor. The table shows that for teams in which the difference between

the first and second leader’s contributions is large (top 90%) then the lead in-

ventor’s history provides on average 14.251% more information when predicting

the focal patent’s technology class. Whereas for teams in which the difference is

small (bottom 10%), this difference disappears.
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B.3 Hypothesis Development

When a team τ draws contribution shares ωp to define their expected patent

knowledge distribution θe
p within local knowledge field B(θe

p, r). A local knowl-

edge field and time define a breakthrough score (bp) and innovation direction

(zp) tuple

(bp, zp) | θe
p, t.

The breakthrough score measures the scientific impact of that innovation. Did

it spark a new and successful research field? The direction of an innovation

measures the target use of the patent. Does that innovation achieve a certain

goal, for example to mitigate climate change, reduce cancer risks or automate

production?

The idea being that the impact of an idea is time dependent. The most straight-

forward example is that there is a significant gain in being the first to invent

a new object. If you are working on an artificial intelligence innovations, the

same idea has a different value today than it would have had fifty years ago,

when many AI models were first theorised. In terms of being a breakthrough,

there are now plenty of AI patents which have come before. But the direc-

tion—the ability of this combination to meet a specific objective—depends on

whether similar innovations have previously achieved that goal. If past efforts

with similar knowledge combinations have achieved certain outcomes, similar

innovations may continue along that path, shaping the future of innovation in

that area. Timing plays a critical role, as the same combination might be more

or less effective depending on the state of knowledge and technological demand

at the time. To complete the prior example, inventors have a wealth of prior

AI knowledge to use when automating production today when compared to the

past.

Both bp and zp are modelled as latent variables, such that for both yp ∈ {bp, zp}

yp(θe
p, t) =

1 if fy(θe
p, t) > 0

0 otherwise
(B.1)

Allowing for an abuse of notation, fy is a general function that maps a team’s

location in knowledge space to the real line. This function can be mapped into

the probability that a given patent achieves that outcome. I will now link this
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set-up to both hypotheses outlined in section 2.2. A similar argument can be

easily derived for whether a patent targets a given direction, as discussed in

section 2.6.1.

Hypothesis 1 proposes that there exists an inverted-U shape relationship be-

tween the probability a patent is a breakthrough and the quantity of prior work

on which it builds. Formally this is given by

∂fb

∂npt

> 0 and
∂2fb

∂n2
pt

< 0.

This can be tested directly in the data through a logit model that captures the

latent variable structure. Given the definition of a team span in equation 2.4,

we can define the expected value for each outcome as the following.

E[yp|τ, t] = 1
vol(S(τ))

∫
S(τ)

yp(θe
p, t) dθe

p (B.2)

In other words, what proportion of all the teams potential ideas achieve outcome

y? Each potential project can be given a probability of being a breakthrough or

not, through the latent variable model outlined. Therefore since all projects are

drawn with a uniform probability, I can test the expected team patent outcome

again using a logit model. Thanks to the uniform distribution assumption, the

expected value defined in equation B.2 relies on the volume of a team span.

Therefore when testing hypothesis 2 I use a change in the density of patents

within a team’s field to distinguish each case.
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B.4 Counting Objects in Knowledge Space

To build count of the number of patents p′ within the local knowledge field of a

target patent p, it is straightforward to find all patents such that ρ(θp, θp′) ≤ r.

A patent p belongs to team span S(τ) if there exist a set of weakly positive

weights that sum to 1 across the team member distributions to form a convex

combination equal to the distribution for that patent.

To solve whether a patent p belongs to the local knowledge field of a team of

nτ members, I first find the closest point θ̃ ∈ S(τ) to that patent by finding the

solution to the following problem.

min
ω∈Rn

τ

∥∥∥∥∥θp −
∑
i∈τ

ωiθi

∥∥∥∥∥∑
i∈τ

ωi = 1 and ωi ≥ 0

The objective is too choose the set of weights, such that they form a convex

combination of each team members knowledge distribution, to minimise the

distance between that point and the target patent distribution. If the distance

between these two points is zero then this patent belongs to the convex hull of

the team. If this distance is below the defined radius r, which remains constant

across patents and teams, then this patent belongs to that teams local knowledge

field.

I need to solve this problem for all patents in the sample, for each team. This is a

huge number of problems to solve, in order to reduce the computational burden

I take the following mathematical short cut. I first calculate the centroid of the

team span S(τ) as

c = 1
nτ

∑
i∈τ

θi

Calculate the maximum distance from the centroid to any point within the team

vector using

dmax = max ∥θ − c∥

using the euclidean norm. For each patent θp calculate the distance between that

patent distribution and the centroid d = ∥θp − c∥.

Notice that any point which is further form the centroid than the maximum

distance within the team span plus the radius r cannot form part of the local
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knowledge field. Therefore only solve the problem specified for those patents

which

di ≤ dmax + r

Since this calculation is computationally far less demanding and faster than solv-

ing the problem, but ultimately gives the same solution.
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B.5 Robustness Tests

TABLE B.6
BREAKTHROUGH RESULTS: NO REPLACE SAMPLE

Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.

Dτt -0.0005 0.0043*** 0.0031* 0.0015
(-0.70) (3.42) (2.53) (1.25)

Prior workτ1t -0.0007*** -0.0271*** -0.0166*** -0.0165***
(-9.95) (-5.29) (-4.44) (-4.40)

Volumeτ -1.5727
(-1.55)

N 25014 7758 7758 7758

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓

Notes: The first column presents a standard logit model. Columns 2-4 are conditional logit models
with team and patent order fixed effect models and standard errors are clustered at this level. The
identifier τ is unique for each team pair (τ1, τ2). The dependent variable is an indicator for whether
the patent is a breakthrough using the Kelly et al., 2021 data. Controls include d(θe

p, θp), team
gender diversity, average team experience and its squared term, race diversity and the rolling three
year average number of inventors employed at the patent assignee. The sample is a subset of the full
sample, including all control teams, and teams treated by the death of a team member who did not
replace the deceased team member.
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TABLE B.7
BREAKTHROUGH RESULTS: REPLACE SAMPLE

Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.

Dτt 0.0006*** 0.0053*** 0.0038** 0.0027*
(3.72) (3.47) (3.13) (2.31)

Prior workτ1t -0.0008*** -0.0208*** -0.0120*** -0.0125***
(-11.36) (-6.03) (-5.16) (-4.96)

Volumeτ -2.8226***
(-4.12)

N 29655 9325 9325 9325

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓

Notes: The first column presents a standard logit model. Columns 2-4 are conditional logit models
with team and patent order fixed effect models and standard errors are clustered at this level. The
identifier τ is unique for each team pair (τ1, τ2). The dependent variable is an indicator for whether
the patent is a breakthrough using the Kelly et al., 2021 data. Controls include d(θe

p, θp), team
gender diversity, average team experience and its squared term, race diversity and the rolling three
year average number of inventors employed at the patent assignee. The sample is a subset of the
full sample, including all control teams, and teams treated by the death of a team member who did
replace the deceased team member.

FIGURE B.7

TREATMENT EFFECT ACROSS TEAM SPAN VOLUME

Notes: This figure plots the marginal effect of the treatment variable on the probability a team’s
patent is a breakthrough. The coefficients are taken from the regression outlined in B.8.



123

TABLE B.8
BREAKTHROUGH RESULTS: INTERACTION MODEL

Dependent variable: Pr(Breakthrough)

Dτt 0.0047**
(3.06)

Volumeτ -2.7874***
(-3.97)

Dτ ′ × Volumeτ -0.0028**
(-3.03)

Prior workτ1t -0.0131***
(-4.86)

N 9325

Controls ✓

Team FE ✓

Period FE ✓

Year FE ✓

Notes: The model used is a conditional logit with team and patent order fixed effects, where standard
errors are clustered at this level. The identifier τ is unique for each team pair (τ1, τ2). The dependent
variable is an indicator for whether the patent is a breakthrough using the Kelly et al., 2021 data.
Controls include d(θe

p, θp), team gender diversity, average team experience and its squared term, race
diversity and the rolling three year average number of inventors employed at the patent assignee.
The sample is a subset of the full sample, including all control teams, and teams treated by the death
of a team member who did replace the deceased team member.

This paper designs the treatment model around the premature death of inven-

tors. This provides exogenous variation in team composition, and therefore the

team’s position in knowledge space. To demonstrate the robustness of the re-

sults in the paper I include a set of teams which add a new inventor. This gives a

weakly larger knowledge field for the team, and potentially allows them to build

on more or different types of prior work.

I confirm the robustness of these results by finding that teams which add a new

member, and increase the number of patents targeting a specific direction see a

significant increase in the probability they patent in that direction. The reverse

holds for the breakthrough patents, though the results are weaker.
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TABLE B.9
TEAM TREATMENT ESTIMATES: KELLY ET AL., 2021

Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.

Dτt 0.0009*** 0.0041*** 0.0032** 0.0027*
(3.39) (4.07) (2.89) (2.38)

Prior workτ1t -0.0015*** -0.0114*** -0.0076*** -0.0075***
(-10.68) (-6.91) (-5.98) (-5.91)

Volumeτ -0.6563
(-1.04)

N 25812 5863 5863 5863

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓

Notes: The first column presents a standard logit model. Columns 2-4 are conditional logit models
with team and patent order fixed effect models and standard errors are clustered at this level. The
identifier τ is unique for each team pair (τ1, τ2). The dependent variable is an indicator for whether
the patent is a breakthrough using the Kelly et al., 2021 data. Controls include d(θe

p, θp), team
gender diversity, average team experience and its squared term, race diversity and the rolling three
year average number of inventors employed at the patent assignee.
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TABLE B.10
TEAM TREATMENT ESTIMATES: ADDING AN INVENTOR

I: BREAKTHROUGH

Dependent variable: Pr(Breakthrough)

1. 2. 3. 4.

Dτt -0.0029** -0.0048 -0.0008 -0.0027
(-2.71) (-1.46) (-0.74) (-1.11)

Prior workτ1t -0.0008*** -0.0264*** -0.0178*** -0.0175***
(-10.18) (-5.36) (-4.60) (-4.55)

Volumeτ 0.9827
(1.53)

N 29349 9560 9560 9560

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period FE ✓ ✓ ✓

Year FE ✓ ✓

II: DIRECTION

Dependent variable: Pr(Direction)

1. 2. 3. 4.

Dτt | Direction 0.0130*** 0.0093*** 0.0016 0.0023
(6.56) (3.79) (0.81) (1.06)

Prior workτ1t | Direction 0.0088*** 0.0614*** 0.0294*** 0.0293***
(18.87) (11.16) (12.07) (12.07)

Volumeτ -0.2062
(-1.05)

N 88047 61755 61755 61755

Controls ✓ ✓ ✓ ✓

Team FE ✓ ✓ ✓

Period × Direction FE ✓ ✓ ✓

Year × Direction FE ✓ ✓

Notes: The first column presents a standard logit model. Columns 2-4 are conditional logit models
with team and patent order fixed effect models and standard errors are clustered at this level. The
identifier τ is unique for each team pair (τ1, τ2). The dependent variable for panel I) is an indicator
for whether the patent is a breakthrough. The breakthrough classification is based on equation 2.7,
which defines it as the post-count (patents produced in the field after the given patent) normalized
by the sum of the post-count and prior count (patents in the field before the given patent). The
dependent variable for panel II) is a stacked indicator for whether a patent achieves the given
direction: mitigates climate change, reduces cancer risk or automates production. Controls include
d(θe

p, θp), team gender diversity, average team experience and its squared term, race diversity and
the rolling three year average number of inventors employed at the patent assignee.
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C. Chapter 3 Appendix

C.1 Theory

Proof. To prove proposition 1, we proceed in two steps. First, we prove the

proposition for a much simpler setting with with two firms and one local labor

market in which they overlap. Second, we show how the result in step one is

easily established in the general model.

Consider the maximization problem of firm j, which has a degree of Common

Ownership with firm −j with which also shares a local labor market,

max pjYj − rKj − w(L)Lj + λ (p−jY−j − rK−j − w (Lj + L−j) L−j)

subject to

Yj = exp
(∫ 1

0
ln [yj(x)] dx

)ν

yj(x) = γm(x)mj(x) + γl(x)lj(x)

Kj =
∫ I

0
mj(x)dx

Lj =
∫ 1

I
lj(x)dx

(C.1)

Given the assumption regarding the comparative advantage structure, the FOCs

of the problem are,

[m(x)] =⇒ m(x) = Y

r
ν

[ℓ(x)] =⇒ ℓ(x) = Y

W
ν

[I] =⇒ γℓ (Ij)
γm (Ij)

= W

r

(C.2)

with W being equal to the marginal cost of labor, e.g.,

W = w(L) + w′(L)(Lj + λL−j). (C.3)

Rearranging the FOCs, we obtain that the solution to the problem of the firms is

the solution to the two-equation two-unknowns problem. The system of equa-
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tions is,1

Lj = (1 − Ij)
(

W

ν

) Ij ν−1
1−ν

[
G
(

ν

r

)Ij
] ν

1−ν

W = w(L) + w′(L)(Lj + λL−j).
(C.4)

and the unknowns are Lj and W . Recall that both Ij and G are also functions

of W . We need to prove that as Common Ownership, λ, increases, employment

decreases, and automation increases. We will focus on proving that employment

decreases and the marginal cost of labor W increases. Indeed, an increase in W

is necessarily linked with an increase in automation Ij—see the FOC in C.2. To

proceed with the analytical proof, we need to specify the functional forms of the

productivity schedules. These are,

γm(x) = eαmx (C.5)

γℓ(x) = eαℓx (C.6)

with, crucially, αℓ > αm. This implies that the expression for Ij is,

I = 1
αℓ − αm

log
(

W

r

)
(C.7)

To characterize the solution of the system in C.4, we first prove that the func-

tion represented by the first equation, Lj = gd(W ) is decreasing, that is, as the

marginal cost of labor goes up, the labor demand decreases. To begin, take logs,

log(L) = log(1 − I) + Iν

1 − ν
(log(W ) − log(ν) + log(ν

r
))−

1
1 − ν

log(W ) + 1
1 − ν

log(ν) + ν

1 − ν
log(G)

(C.8)

take the derivative with respect to W

∂

∂W
log(L) = ∂I

∂W

[
ν

1 − ν
log(W

r
) − 1

1 − I

]
+ Iν − 1

(1 − ν)W + ν

1 − ν

1
G

∂G

∂W
(C.9)

now substitute the derivative of G

∂G

∂W
= −G log

(
W

r

)
∂I

∂W
(C.10)

1Recall that

G = exp
(∫ I

0
log[γm(x)]dx +

∫ 1

I

log[γℓ(x)]dx

)
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and obtain,
∂

∂W
log(L) = ∂I

∂W

[
ν

1 − ν
log(W

r
) − 1

1 − I

]
+ Iν − 1

(1 − ν)W − ν

1 − ν
log(W

r
) ∂I

∂W

(C.11)

by rearranging we obtain,

∂

∂W
log(L) = − ∂I

∂W

1
1 − I

+ Iν − 1
(1 − ν)W (C.12)

Which is always negative because 0 < I < 1 and 0 < ν < 1. As the function

Lj = gd(W ) is decreasing, the inverse W = g−1
d (Lj) exists and is also decreasing.

As the second equation of the system C.4 is increasing, we can plot the two

functions and derive the properties of the solution. In Figure C.1 we plot two

scenarios. One in which the level of Common Ownership is λ1 and a second one

with higher Common Ownership, λ2 > λ1. The change in CO does not affect the

labor demand curve. As CO shifts the labor supply curve upwards, and because

of the proven properties of the labor demand curve, the optimal employment of

firm j decreases, and the marginal cost of labor goes up. As can be easily seen

by looking at equation (C.7), an increase in Wj implies an increase in Ij.

It is straightforward to generalize this result to the model with a generic number

of firms and local labor markets. In the general model, an increase in a pairwise

degree of Common Ownership λfj increases the level of automation in the local

labor market Ic
f which consequently, increases the automation average across

local labor markets,

If ≡ 1
|Cf |

∑
Cf

Ic
f . (C.13)

We can provide a visual proof for proposition 1 through the following figure.

This provides a more intuitive grasp on the proof discussed. This figure plots the

labor demand curve and the curve of the marginal factor cost of labor for two

different values of common ownership, λ2 > λ1. It shows that as common own-

ership goes up employment decreases and the marginal cost of labor increases.



129

TABLE C.1

A VISUAL PROOF FOR PROPOSITION 1

Lj

Wj

LAB. DEMAND

Wj = w(L) + w′(L)(Lj + λ2L−j).

Wj = w(L) + w′(L)(Lj + λ1L−j).

MARGINAL COST OF LABOR

2

1

L1
jL2

j

W 1
j

W 2
j

Notes: This figure plots the labor demand curve and the curve of the marginal factor cost of labor
for two different values of common ownership where λ2 > λ1.
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C.2 OLS Estimation

TABLE C.1

OLS REGRESSION RESULTS

(1) (2) (3) (4) (5) (6)

Yt+1 Yt+2 Yt+3 Yt+4 Yt+5 Yt+6

C Index 9.851 12.610* 16.750** 17.741** 14.898 8.571

(6.513) (7.029) (7.637) (8.613) (9.496) (10.532)

InstOwn 0.026 -0.026 -0.007 0.061 0.045 -0.041

(0.073) (0.074) (0.076) (0.077) (0.082) (0.085)

R&D 0.049 0.043* 0.013 0.001 -0.019 0.025

(0.038) (0.023) (0.025) (0.021) (0.035) (0.030)

Firm Size 0.064*** 0.052*** 0.040** 0.027 0.018 0.029

(0.021) (0.020) (0.019) (0.018) (0.020) (0.020)

Firm Age -0.108** -0.082* -0.108** -0.088* -0.123** -0.160***

(0.043) (0.044) (0.045) (0.046) (0.048) (0.048)

PPE / Assets -0.123 -0.052 0.027 -0.032 0.050 0.043

(0.105) (0.111) (0.114) (0.118) (0.120) (0.126)

Constant -0.033 -0.024 0.083 0.091 0.233 0.320**

(0.151) (0.145) (0.143) (0.142) (0.149) (0.151)

Observations 19725 18163 16562 14989 13477 12033

R2
adj 0.742 0.749 0.758 0.769 0.775 0.785

Notes: This Table presents OLS estimates of firms’ automation strategy on common ownership with
LLM rivals. Standard errors in parenthesis are clustered at the firm level. Significance levels are
indicated as follows: * p<0.1, ** p<0.05, *** p<0.01.
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C.3 Robustness

C.3.1 Using Citation-Weighted Patents

In studies concerning innovation, it is standard to control for the quality of

patents by using citation counts. We also have estimated our models concerning

innovation outcomes on the intensive margin using citation-weighted patents,

applying the “time-technology class fixed effect” method (Hall, Jaffe, and Tra-

jtenberg, 2001; Atanassov, 2013), to address truncation problems.

With these adjusted patent citations, we compute our continuous innovation

outcome variables. That is,

AutoRatioCites = ln
[

1 + citation-weighted automation Patents
1 + citation-weighted non-automation Patents

]
,

as well as lnAutoCites and lnNonAutoCites, which are the natural logarithm of

(one plus) the citation-weighted number of Patents for automation and non-

automation, respectively. The results are shown in Figure C.2.
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TABLE C.2

DYNAMIC EFFECT: COMMON OWNERSHIP WITH WEIGHTED PATENT COUNTS

(a) Using AutoRatioCites as dependent variable.

(b) Using lnAutoCites as dependent variable.

(c) Using lnNonAutoCites as dependent variable.

Notes: This Figure shows the dynamic effects of within-LLM increases to common ownership (Cont-
TreatLLM) on the automation strategy of firms based on citation-weighted patent counts.

C.3.2 Using Data Pre-Financial Crisis

In this section, we address the concern that our results may be driven by ab-

normalities during the financial crisis. We present the same analysis as in the
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main text of our paper, but using only data up to 2006. That means, we also ex-

clude the last seven mergers in the sample of institutional mergers identified by

Lewellen and Lowry, 2021, including the merger between BlackRock and Bar-

clays Global Investors, which was used for identification in previous studies.2

The results are shown in Figure C.3.

TABLE C.3

DYNAMIC EFFECTS: AUTOMATION UNTIL 2006

(a) Using the continuous measure AutoRatio

(b) Using the binary measure AutoDummy

Notes: This Figure shows the dynamic effects of within-LLM increases to common ownership (Con-
tTreatLLM) on the automation strategy of firms using data until 2006, i.e., before the onset of the
financial crisis.

C.3.3 Binary Treatment Setup

We present the results of the DID analysis employing a binary treatment variable

TreatLLM as defined in Section 3.3.2. The results are shown in Figure C.4.
2See, e.g., Azar, Schmalz, and Tecu, 2018.
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TABLE C.4

DYNAMIC EFFECTS: AUTOMATION WITH DISCRETE TREATMENT

(a) Using the continuous measure AutoRatio

(b) Using the binary measure AutoDummy

Notes: This Figure shows the dynamic effects of within-LLM increases to common ownership using a
binary treatment variable (TreatLLM) on the automation strategy of firms.
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C.4 Database Construction

Matching establishment level information with Compustat. The 2020 ver-

sion of the National Establishments Time Series (NETS) provides the legal busi-

ness names of establishments. We employ the legal business names of these

establishments for cross-referencing with the Compustat database in our empir-

ical analysis.

We utilize fuzzy matching, employing a similarity threshold of 90%, to align

company names between the two databases. Subsequently, we conduct manual

verification to ensure the precision of these matches. With this methodology, we

successfully merge 353,818 establishments. It results in a dataset of 4,231,721

establishment-year observations for the spanning period 1990-2020, each con-

taining no missing information on employee count and geographical location.
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