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Chapter 1

Introduction

1.1 Background

While the remaining planetary carbon budget for 1.5°C or 2°C is rapidly running out,
implemented climate policy solutions are still too incomplete or weak to deliver a transi-
tion to a low-carbon economy. A challenge for policy aimed at addressing climate change
is the complex adaptive nature of the economy (Arthur, 1994; Balint et al., 2017; Arthur,
2021). The complexity emerges from the interaction of many actors with diverse priori-
ties and characteristics. Moreover, agents’ abilities to adopt low-carbon alternatives are
heterogeneous, due to differing needs, circumstances and economic inequality. Therefore,
tailored incentives may be required to avoid current lock-in of high-carbon consumption
habits and technology. On the other hand, the economy’s adaptive nature arises from the
fact that interactions among actors are not externally imposed. Instead, these exchanges,
such as social imitation among consumers or firms responding to changing preferences,
evolve endogenously within the system. These two characteristics combined result in the
dynamic behaviour of agents that are highly non-linear and out of equilibrium. Policy-
makers attempting to guide such an economy to achieve climate goals must be aware of
these properties when considering policy tools.

Meeting climate goals requires radical changes in the consumption behaviour of in-
dividuals (Wynes and Nicholas, 2017). This necessitates an understanding of how the
diffusion of low-carbon behaviour will occur. This thesis aims to study climate policies
using models that capture key elements of the complex adaptive economy, such as the
role of social interactions in consumption choices. Low-carbon behaviours do not change
in isolation. Instead, they are subject to social influence through imitation or adherence
to social norms. When simulating the role of social influence, opinion dynamics models
offer valuable insights into how populations may converge toward consensus or fragment
into polarized groups (Deffuant et al., 2002), as well as how transitions between these
states unfold (Helfmann et al., 2021; Castellano et al., 2000).

Models of pro-environmental behavioural diffusion, such as energy conservation or
recycling, offer insights into the key drivers and obstacles influencing the adoption of
low-carbon lifestyles (Ajzen, 1991; Niamir, Kiesewetter, et al., 2020). Shifts often involve
interconnected choices across different behaviours, such as following a vegetarian diet,
purchasing an electric vehicle, or avoiding air travel. Therefore, a multi-dimensional
perspective is essential due to behavioural spillovers, where adopting one low-carbon
action can influence the likelihood of adopting others such as not owning and car and
following a vegan diet (Lacasse, 2016; Andersson and Néssén, 2022).



Definitions of culture are almost as diverse as the cultural variation they attempt
to describe. For instance, Durham (1991) defines culture as a “system of symbolically
encoded conceptual phenomena that are socially and historically transmitted within and
between populations”. A common thread in many definitions is the emphasis on so-
cial learning, defined as knowledge acquisition through the involvement of others, such
as imitation (Mesoudi, 2016). Cultural evolution theory describes cultural change as a
Darwinian evolutionary process, based on the variation, fitness and inheritance of di-
verse cultural traits (Boyd and Richerson, 1988). Approaches grounded in this theory
can provide an understanding of how a cultural trait spreads in a population, leading
to behavioural change (Buenstorf and Cordes, 2008; Davis et al., 2018; Kaaronen and
Strelkovskii, 2020). Alternatively, non-evolutionary models like the one by Epstein and
Axtell (1996) represent culture as a fixed-length binary ’cultural tag’ that encodes mul-
tiple traits. This approach captures a multi-dimensional view of culture, where agents
carry several attributes shaped by social interaction. Such modelling frameworks of cul-
tural change can identify pathways to avoid current lock-in towards high-carbon norms
and shallow behavioural shifts that would limit decarbonisation (Davis et al., 2018).

Given the need for behavioural change at a systemic level, policy instruments that
align the incentives of both individuals and firms with climate goals play a critical role in
enabling a low-carbon transition. One of the most prominent examples is carbon pricing,
either through a carbon tax (as in Sweden and the UK) or a cap-and-trade system (as the
EU-ETS). Such a policy aims to internalise part of the external costs of carbon emissions
by pricing them. Polluters then face a cost trade-off: pay the carbon price or invest in
decarbonising their production.

For deep decarbonisation, the design of carbon pricing needs to account for consump-
tion choices being affected not only by pricing but also by social influence (Wang et al.,
2021), as the policy’s goal is to reduce emissions through behavioural change. This influ-
ence can be modelled via endogenous preferences. One way to frame this effect is through
the concept of a “social multiplier” (Glaeser et al., 2003; Konc et al., 2021), in which
individuals misinterpret carbon price-induced changes in others’ consumption as shifts
in underlying preferences. The effect results in greater decarbonisation for the same car-
bon price when social interactions are considered. Current studies modelling endogenous
preferences in the context of climate policy have focused on single consumption decisions
(Konc et al., 2021; Mattauch et al., 2022). However, stringent carbon pricing may trigger
changes across a larger number of consumption choices as households adjust from high
to low-carbon alternatives across areas such as transport or food. Understanding these
systemic shifts requires a broader cultural perspective (Schumacher, 2015; Bezin, 2019)
on how social influence operates simultaneously across interconnected consumption be-
haviours. This lens can inspire a parallel concept to the “social multiplier” framed as
a “cultural multiplier”, which captures how social learning across multiple consumption
categories may amplify lifestyle changes via longer-term shifts in norms and environmen-
tal identity.

The transport sector is a clear example of how individual behaviour, technological
lock-in, and policy interact within a complex adaptive system. Shaped by historical
mobility patterns and car-centric infrastructure development, the sector demonstrates
how difficult it is to shift entrenched habits without coordinated interventions. As a
result, decarbonisation remains limited, with road transport alone accounted for 70% of
global transport emissions in 2019 (Jaramillo et al., 2022, p 1052). EVs play a critical role
in addressing this challenge, yet their diffusion depends on the co-evolution of consumer



behaviour and firm innovation. For example, “first-movers” are eager to adopt this new
alternative to the internal combustion engine while more conservative “laggards” stifle
the social contagion (Rogers, 2003). This may hamper investment by firms (Windrum
et al., 2009) required for a complete decarbonisation of light transport. Another reason
for a slow transition is that policymakers must balance the need to decarbonise with
multiple other social or political objectives, such as reducing inequity or achieving a
balanced budget. For example, adoption subsidies tend to benefit well-off households
while negatively affecting the public budget(Herrmann and Savin, 2017; Nunez-Jimenez
et al., 2022). Therefore, policy mixes that leverage social dynamics while balancing equity,
cost-effectiveness, and environmental outcomes are crucial in catalysing a transition to
low-carbon mobility.

1.2 Research methods and objectives

This thesis uses agent-based modelling (ABM) as its primary method. ABMs are partic-
ularly well suited to capture the adaptive complexity of the economy, given that it allows
for heterogeneity and bounded rationality of agents, social influence over networks, and
dynamics of behaviour, markets and technologies (Savin et al., 2023). For example it has
been used to address a wide range of topics, such as misinformation spread (Di Francesco
and Torren-Peraire, 2024), pro-environmental behavioural change (Niamir, Filatova, et
al., 2018; Kaaronen and Strelkovskii, 2020), energy policy (Rai and Robinson, 2015; Cas-
tro et al., 2020), electric vehicle (EV) adoption (Eppstein et al., 2011; Silvia and Krause,
2016) and macro-ABMs that aim to give a detailed representation of the economy as a
whole (Lamperti et al., 2018; Safarzynska and Bergh, 2022). ABMs follow a bottom-
up approach where the behaviour of each agent (individuals, firms, institutions etc) are
simulated separately. Agents are boundedly rational, may have heterogeneous character-
istics and follow behavioural rules that determine how they relate to with one another
and respond to their environment. Through these exchanges, ABMs reproduce complex
behaviour from local microeconomic interactions.

The philosophy behind the ABM approach may be summarised in two key quotes. The
first from Read, 1914 that ”it is better to be vaguely right than exactly wrong” emphasises
that while non-ABM closed form models may be more elegant to work with, this often
comes at the cost of making simplifications in the name of mathematical tractability.
The second ”If you didn’t grow it, you didn’t explain it” (Epstein, 1998) centres the
role of generating complexity behaviour endogenously to make sure that one understands
the precise causal implications of interactions among many agents. This is especially
pertinent when considering the complexity of social and technological processes that part
of a transition to a low-carbon economy.

ABMs use different network structures to emphasise particular social interactions. For
example, the Watts-Strogatz graph has a small-world property combining high clustering
with short mean path length, which can describe real-world social exchanges between
individuals who are each other’s physical neighbours. Alternatively, graphs with high
heterogeneity in the number of connections between individuals, such as the Barabasi-
Albert scale free graph, can well represent communication on social media, where a small
clique has much larger influence.

This thesis uses ABMs to address the following research questions:

e How does pro-environmental diffusion of behaviour interact with cultural evolution



on a path to a low-carbon economy? To answer this, I explore the longer-term
impact of cultural change and the mechanisms behind behavioural decarbonisation.

e How does cultural change moderate the effectiveness of carbon taxes. In pursuit of
this goal, I analyse the magnitude of the cultural multiplier compared to the social
multiplier and what socioeconomic characteristics affect this magnitude, such as
network structure and substitutability of goods.

e What policy combinations that meet EV adoption targets can best balance the
trade-offs between costs, emissions, and consumer utility? To address this, I first
examine the policy stringency required for individual instruments to achieve a 95%
electric vehicle fleet in California by 2035 and then expand this analysis to policy
mixes.

1.3 Thesis Outline

The remainder of the thesis contains three studies to address the research questions.
Taken together, these chapters explore climate policy through the lens of the economy as
a complex adaptive system, emphasizing how individual behaviours, cultural dynamics,
and technological evolution influence one another in shaping decarbonisation outcomes.

Chapter 2 develops an ABM to study how behavioural decarbonisation interacts with
longer-term cultural change. Culture is defined here as socially transmitted information
that shapes individual preferences and behaviours over time. Within the model, individu-
als make multiple lifestyle choices, such as not flying, avoiding car ownership, or adopting
a vegan diet, which evolve through imperfect social learning in a network. To capture
cultural change, the model focuses on environmental identity. This identity is represented
as an average of attitudes toward relevant lifestyle choices and is treated as independent
of behavioural outcomes. This allows for contradictions between what individuals believe
and how they act. Furthermore, the strength of social influence between individuals is
determined by the similarity in their environmental identity, leading to dependencies be-
tween behaviours and spillovers in pro-environmental attitudes. Lastly, green influencers
are introduced as a minority of individuals who broadcast a strong pro-environmental
attitude. This scenario explores how cultural dynamics can support a green transition
beyond what would emerge through social diffusion alone.

To achieve emission reduction goals, the design of climate policy must account for
consumption choices being influenced not only by pricing but also by social interaction.
This involves extending the notion of “social multiplier” of climate policy to the context
of multiple consumer needs while allowing for behavioural spillovers between these, giving
rise to a “cultural multiplier”. Chapter 3 builds on the ABM introduced in Chapter 2,
to assess how carbon pricing affects cultural change and, consequently, decarbonisation.
In the model individuals make consumption choices between low- and high-carbon goods
across multiple categories. These individuals have heterogeneous and dynamic preferences
for low-carbon goods, which evolve through repeated and weighted social exchanges. To
test different mediums of social influence three graphs are used in the model. Overall,
the model assesses how this cultural multiplier contributes to the effectiveness of carbon
taxation.

In Chapter 4, a third study extends the adaptive complexity perspective to techno-
logical innovation, maintaining a focus on the role of social imitation in networks as in



Chapters 2 and 3. To this end, the chapter develops a novel ABM of adoption of electric
vehicles to examine the interaction of consumer behaviour, firm innovation, and policy
incentives. This is applied to the case of California for the period 2001 to 2023. This
chapter builds on ABMs of EV diffusion by bringing together literature strands that focus
on the role of opinion dynamics (McCoy and Lyons, 2014; Silvia and Krause, 2016) and
endogenous innovation(Windrum et al., 2009; Greene et al., 2014; Fan and Li, 2025). In
the model, heterogeneous vehicle users, influenced by the purchasing behaviour of their
peers, choose between new and used cars based on discrete choice theory. At the same
time, manufacturers develop new vintages of EVs and conventional cars and adjust prices
accordingly. Vehicle innovation occurs by exploring a multi-dimensional NK-landscape
(Kauffman, 1993), thus accounting for the path-dependent nature of innovation. Specif-
ically, firms improve their cars over four characteristics: production cost, fuel efficiency,
battery or fuel tank size, and overall quality measure. Different policy combinations are
examined to achieve deployment targets while balancing economic costs, emissions and
consumer utility. These include carbon pricing, new and used car purchase rebates, pro-
duction subsidies and electricity price subsidies. The analysis compares individual and
combined policy instruments to see in what way the best results can be achieved.

A final chapter summarises the results, draws general conclusions, and offers sugges-
tions for further research.
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Chapter 2

An agent-based model of cultural
[ ] [ ] *
change for a low-carbon transition

2.1 Introduction

The behavioural choices that compose an individual’s lifestyle can greatly affect their car-
bon footprint (Wynes and Nicholas, 2017). Therefore, changes in individual consumption
form an important part of reducing global greenhouse gas emissions. Theoretical mod-
els of behavioural change can provide insight into what barriers and drivers exist to the
adoption of low-carbon lifestyles (Niamir, Kiesewetter, et al., 2020). A crucial element
in the study of a transition towards low-carbon lifestyles is how quickly behaviours in a
population, and even culture itself, will change. A good understanding of the relation
between culture and behaviours can help to avoid potential lock-in towards brown alter-
natives (Buenstorf and Cordes, 2008; Burton and Farstad, 2020). Especially of interest
is building an awareness of what cultural barriers may appear due to said interaction
(Carattini et al., 2018).

Models of opinion dynamics can give insight into associated processes of polarization
versus consensus formation (Deffuant, Amblard, et al., 2002), and transitions between
these regimes (Helfmann et al., 2021; Castellano, Marsili, et al., 2000). The descriptive
power of these models can be further enhanced through the inclusion of frameworks such
as cultural evolution. This is particularly true for the role of repeated social learning
amongst direct, oblique and peer connections in a social network and of biased trans-
mission of behaviours. The first and second cases represent the influence of overlapping
generations, whilst the second and third reflect the impact of non-direct-blood relations,
such as with wider members of a community.

The application of cultural evolution to the issue of transition studies is a nascent
area of research (Davis et al., 2018; Kaaronen and Strelkovskii, 2020; Buenstorf and
Cordes, 2008). It lacks detail on the spread of multiple traits simultaneously over the
same population. A multi-dimensional perspective is important due to the breadth of
lifestyle changes required for deep decarbonisation. For example, Andersson and Néassén
(2022) give empirical evidence for positive spillovers between intra-personal behaviours
such as choosing to not fly, not owning a car, following a vegan diet, and not owning
a semi-detached house. However not all environmentally related behaviours are equally

*This chapter was published as: Torren-Peraire, D., Savin, 1., and van den Bergh, J. (2024). An
agent-based model of cultural change for a low-carbon transition. Journal of Artificial Societies and
Social Simulation, 27(1):13.
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subject to social influence. Furthermore, this multi-dimensional approach centres the
role of inter-behaviour spillovers in adoption dynamics, where the uptake of one green
behaviour may lead to a self-perception of a greater green identity (Lacasse, 2016), with
a stronger environmental identity making pro-environmental behaviour more probable
(Van der Werff et al., 2014).

Our primary research question is: how does pro-environmental diffusion of behaviour
interact with longer-term cultural evolution on a path to a low-carbon economy? We ad-
dress this through answering three sub-questions: Firstly, how do culture and behavioural
diffusion interact? Secondly, what is the longer-term impact of cultural change? Thirdly,
what are the mechanisms behind behavioural decarbonisation? To study social interac-
tions, which include bounded rationality of individuals, the use of agent-based models
(ABM) is appropriate (Railsback and Grimm, 2019; Castro et al., 2020; Savin et al.,
2022). Agents have internal properties as well as rules of interaction. These models re-
produce complex behaviour from local microeconomic interactions (Epstein and Axtell,
1996), which allows for the simulation of a wide variety of phenomena (Kaaronen and
Strelkovskii, 2020; Waring et al., 2015; Rai and Robinson, 2015; Kraan et al., 2019) in-
cluding the diffusion of cultural traits in a population (Axelrod, 1997). Thus, ABMs lend
themselves well to the study of cultural and behavioural change as these processes occur
through the progressive accumulation of social interactions.

2.2 Cultural change and identity

Definitions of culture are almost as wide-ranging as the heterogeneity found in the culture
itself. To produce an informative model of lifestyle change we require an instrumental
and easily interpretable definition of culture. A core element of many definitions is
social spreading, with Durham (1991) describing culture as a “system of symbolically
encoded conceptual phenomena that are socially and historically transmitted within and
between populations”. Similarly, evolutionary (Boyd and Richerson, 1988; Henrich and
McElreath, 2003; Mesoudi, 2016), economic (Bezin, 2019; Bisin and Verdier, 2001) or
physics-based models (Axelrod, 1997; Epstein and Axtell, 1996; Kuperman, 2006) rep-
resent culture as an abstract property or trait of an individual which can spread in a
population. Whilst this definition may lack consideration of factors such as geographic
location (Gupta and Ferguson, 1992) and how the micro-process of cultural transmission
occurs (Kashima, 2008), it narrows the scope of what interactions, information or objects
may be considered as culture.

Culture can provide the framework within which “strategies to respond to problems
are devised and implemented” (Adger et al., 2013). This response component is espe-
cially of interest when considering solutions to the climate crisis. Information bubble
filters (Geschke et al., 2019) or false consensus biases (Drews et al., 2022) can affect to
whom, and what, individuals pay attention. This can slow down social tipping processes
if there is a disconnect between the understood and real consequences of current pro-
environmental behaviours (Wynes and Nicholas, 2017). Due to these biases, there may
be heterogeneity in the quantity of information and length of exposure individuals require
to change course concerning their environmental identity. This resistance to respond to
new stimuli can be conceived of as cultural inertia. These preferences may change much
more slowly over time thereby limiting the effectiveness of climate policy (Davis et al.,
2018), achieving only shallow decarbonisation.
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To study the impact of culture on an individual’s behaviour we require a model of
how their culture changes over time. Cultural evolution is a Darwinian process explaining
how long-term population-level changes in culture occur (Boyd and Richerson, 1988). It
is constructed from three components: variation, fitness and inheritance. Cultural traits
such as words and ideas exhibit variation (principle of variation). These in turn have
differing rates of reproduction or transmission depending on the environment (principle
of fitness). Finally, the traits present in a population provide a pool from which new
generations can learn. As a result of social learning, there is a correlation between
historical cultural traits and those of the next generation (principle of inheritance). Social
learning refers to knowledge acquisition through the involvement of others, e.g. imitation
(Mesoudi, 2016).

Existing computational models of cultural evolution can describe the spread of a single
cultural trait (Boyd and Richerson, 1988; Henrich, 2001; Kaaronen and Strelkovskii,
2020), where an agent’s cultural parameter may change through individual and social
learning, as well as through interactions with cultural niche infrastructure. Alternatively,
the non-cultural-evolutionary model of Epstein and Axtell (1996) represents a “cultural
chromosome” in the form of a set-length binary string called a cultural tag. This multi-
dimensional tag represents a set of cultural attributes that an agent possesses. Here
agents belong to one of two cultural groups depending on the majority of either 1s or
Os in the cultural tag. It is important to note that there is no consideration of where
in the string these digits lie, only the quantity of each value matters. Thus two agents
may belong to the same cultural group with a very distinct set of cultural attributes.
Furthermore, Axelrod (1997) assigns culture as “the set of individual attributes that are
subject to social influence”. Here, agents are limited with whom they can interact based
on a vector of cultural features, each feature having a set of possible discrete values.

To produce a more specific and verifiable model of cultural change we further nar-
row our focus to studying the change of identities relevant to environmental behaviours.
The background of an individual’s environmental identity can affect the decisions made
regarding whether to engage or not, in certain behaviours (Van der Werff et al., 2013).
Identities are independent of the behavioural outcomes of an individual’s decision-making
process. Instead, they are self-defining, such that two agents may behave very differently
but may identify themselves with the same group if they hold the same attitude towards
said behaviours (Smaldino, 2019).

When considering several related behaviours, we take the approximation that identity
is an outgrowth of culture (Grimson, 2010). This reduces the scope of what is necessary
to consider when modelling the dynamics of culture and limits the generality of our model
as it only applies in conditions of proximity between behaviours when one might expect
a person to be acting under the same identity. Additionally, this approximation facili-
tates the comparison and use of empirical data regarding environmental identities and
attitudes, such as in Nigbur et al. (2010). In contrast, validation and parameterisation
of a purely cultural model would require more abstract data which would be harder to
measure given the broader scope of the subject. Identities are not fixed and may change
due to different contexts and evolution over time (Fielding and Hornsey, 2016). Addition-
ally, individuals cannot express their full identities in social interactions as these are too
rich; only certain subsets are represented, depending on the social context and interaction
setting (Smaldino, 2019). We do not attempt to model how changing environments and
decisions can cause particular identities to dominate in a behavioural decision process.
Instead, we fix the context by only considering environmentally related behaviours, such
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as deciding to reduce home energy use or whether to install domestic solar panels. This
highlights the influence of several behaviours on an individual’s environmental identity.

2.3 Model components

2.3.1 General structure of the model

To address our research questions, we produce an ABM of changes in individuals’ lifestyles
by considering their evolving behavioural choices. The model structure is shown in Figure
2.1. Individuals have a set of environmental behavioural traits that spread through a fixed
Watts—Strogatz graph via social interactions with their ego-network. These exchanges are
mediated by transmission biases informing from whom an individual learns and how much
attention is paid. The influence of individuals on each other is a function of their similarity
in environmental identity, where we represent environmental identity computationally by
aggregating past agent attitudes towards multiple environmentally related behaviours.
To perform a behaviour, agents must both have a sufficiently positive attitude towards
a behaviour and overcome a corresponding threshold. This threshold structure, where
the desire to perform a behaviour does not equal its enactment, allows for a lack of
coherence between attitudes and actual emissions. This leads to a disconnect between
what people believe and what they do, such that the social network as whole desires
greener behaviours but only a minority performs them. Subsequently, we outline the
justification and assumptions underlying model components.

Individual
Threshold \\\
Attitude Beha\{loural Emissions N Total emissions
action flow flow

A

Environmental
identity

)

Y

) ] ) \ 4 .
. . Who to learn
Social learning from

Figure 2.1: Model structure composed of behavioural components (yellow), opinion dy-
namics (blue), environmental identity (purple) and environmental output (green). Ar-
rows indicate the direction of influence between components and stacked boxes represent
multiple individuals (grey) and a behavioural vector (yellow and green).

To evaluate the impact of individual decisions on overall emissions we require a mea-
sure of whether individuals act on their intentions and opinions towards “greener” be-
havioural alternatives. This process is represented in the yellow containers in Figure
2.1. An intention or favourable attitude towards a behavioural option is not sufficient;
one must also have the means or control to do so according to the Theory of Planned
Behaviour (TPB) (Ajzen, 1991). This theory may be used to study motivations behind
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pro-environmental social behaviours, such as in Nigbur et al. (2010) which empirically
investigates participation in recycling programmes. Alternatively, Niamir, Filatova, et
al. (2018) use the TPB within an empirically based ABM, where agents must overcome
several barriers along the road to undertaking one of three possible pro-environmental
behaviours.

Taking inspiration from the TPB, we model the extent to or frequency with which a
behaviour is performed as a balance between a socially influenced behavioural attitude
against a static threshold. Each behaviour is represented as a one-dimensional continuous
parameter between extremes of a zero-emissions green choice and maximally emissive
brown reference. Individuals n = {1, ..., N}, each have multiple environmentally relevant
behaviours m = {1,..., M} that evolve over discrete generic time ¢. These behaviours
represent abstract environmentally related actions such as the decision to install solar
energy panels, whether to choose a brown or green energy provider, cycling to work
but only if weather conditions are suitable or flying less but not entirely stopping. For
each behaviour m, the continuous value By, ,, € [—1,1] is an index that represents
the extent to which or frequency with which a behaviour is performed. Modelling this
way is a compromise between representing the detail of context-dependent behavioural
decisions and maintaining an abstract generality of the behaviours chosen. Put explicitly,
the behavioural value By ,, ., is determined by two continuous variables: the individual’s
attitude A, € [0,1] towards the behaviour and the threshold or barrier of entry for
performing a behaviour 7, ,, € [0,1]. A value of A, ,, = 1is the “greenest” attitude and
Aiym = 0 the “brownest” or most indifferent to environmental impacts, and similarly
T,,m = 11is the highest barrier of entry and 7, ,,, = 0 the lowest. Therefore the behavioural
value By, », is given by

By ym = Atnm — Toms (2.1)

where initial values 7, ,, and A, ., are generated separately using a Beta distribution,
see Figure 2.A.1 in the Appendix. This was chosen due to the ease with which uniform,
asymmetric and polarised distributions may be generated. The form of the Beta distri-
bution is given by two parameters a and b. The expectation value is dictated by the
ratio a/(a + b), whilst the degree of polarisation is inversely proportional to the magni-
tude of @ and b. We use a4,bs and ar, br to describe the initial attitude and threshold
distributions. Thus the larger the ratio of a4/(as + ba) the “greener” initial attitudes.
Conversely, the larger the ratio of ar/(ar + br) the higher the threshold or barrier of
entry for performing a behaviour. A value of —1 < B, ,,, < 0 represents the browner
behavioural choice, whilst a value 0 < B, ,,,, < 1is a “greener” behaviour. To decrease
model complexity, thresholds to performing behaviours, 7, ,,, are heterogeneous between
agents but static.

The total emissions E; produced by the population of size NV is given by the summation
over each of the multiple behaviours performed by each individual,

N M
B=Y 3 L T 22)

n=1 m=1

where the form of the summand in Equation 2.2 ensures that a single perfectly green
behavioural choice, By, = 1, results in zero emissions for that m' behaviour of the n
individual. On the other hand, its brown counter part, By, ,, = —1, results in a single
unit of emissions.
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2.3.2 A dynamic model of culture using environmental identity

We represent three key aspects of identity. Firstly the slower, longer-term change pro-
cess of environmental identity driven by a faster behavioural diffusion process, secondly,
the central role of socially transmitted information and finally the cyclic, self-defining,
nature of identity. Concerning this third point, agent identity is defined not through the
behaviours an agent performs but instead through their opinion or attitude towards said
behaviours. This self-defining process is highlighted in the lower loop of Figure 2.1. Here,
we create bidirectional causal relations between agent attitudes and identity (Schaller and
Muthukrishna, 2021) such that identity “becomes what the constituting agents make it to
be” (Fath and Sarvary, 2005). However, these attitudes towards environmentally related
behaviours are themselves determined through social information exchanges, so that we
conform to the definition previously laid out. Furthermore, the longer-term change pro-
cess is captured through a weighted average of previous behavioural attitudes. How far
this moving average reaches back in time is determined by a cultural inertia parameter,
with a greater value meaning agents are influenced by past opinions for a longer time
(Kone, Drews, et al., 2022). The weighting is given by a hyperbolic discounting factor
(Loewenstein and Prelec, 1992; Laibson, 1997; Yi et al., 2006), such that current iden-
tities are influenced by recent history with diminishing importance the further back in
time is considered.
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Figure 2.2: Discount array D; as a function of time for different discount parameters ¢.

We adapt the cultural chromosome proposed by Epstein and Axtell (1996) considering
multiple continuous attitudes towards related environmental behaviours that determine a
single identity variable. We distinguish ourselves from single-parameter diffusion models
by adding internal dynamics to our identity parameter through this mean behavioural
attitude. Therefore identity is represented as an aggregate of all behavioural attitudes
of an individual over time with a discount factor putting greater value on more recent
behavioural attitudes. In particular we define the environmental identity I, of agent n
at time ¢ as

] > 5 A, (2.3)

b [
258
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where the mean behavioural attitude A over M behaviours is given by

1 M
At,n = M mz:l Atm,my (24)

where a low attitude value contributes to an identity of indifference towards the en-
vironment. Additionally, p is a cultural inertia parameter representing the duration of
the past considered, s is a dummy variable for the discrete-time step in the present or
past evaluated, A, the average attitude over one time step for M behaviours, § € [0, 1]
is a discount parameter that produces a hyperbolic discounting effect. In the discount
array D, = [1,4%,62,..., 7], each subsequent time step contributes a smaller amount to
the weighted average. In Figure 2.2, the extent to which individuals are resistant to
changing their identities is determined by the discounting array, ;. The cultural inertia
parameter p = 100. Note that the smaller the value of the discount parameter 9, the
more aggressively the influence of past attitudes is discounted.

2.3.3 Information diffusion through imperfect imitation

Interactions within a social network play a greater role in changing attitudes towards
more socially susceptible behaviours that contribute to conspicuous consumption. For
example, the domestic installation of solar panels has been shown to increase the likeli-
hood of adoption by others in neighbourhoods (Rai and Robinson, 2015; Bollinger and
Gillingham, 2012; Baranzini et al., 2017; Carattini et al., 2018). On the other hand, be-
haviours that are less socially susceptible, such as reductions in domestic energy use, may
be harder to influence through social interactions alone. However, even these behaviours
may be nudged in a “greener” direction through the introduction of descriptive and in-
junctive social norms (Schultz et al., 2007; Davis et al., 2018). The attitude of individuals
towards M behaviours, which each differ in social susceptibility ¢,,, varies according to
their past attitudes and the social influence of their ego-network. This means individuals
form an attitude towards a given behaviour through a cumulative process of repeated
social interactions. The evolution of individuals’ attitudes is given by

At—l—l,n,m - [1 - ¢m]At,n,m + [¢m]5t,n,m7 (25)

where the attitude to behaviour m is modulated by ¢,,, a measure of conspicuous con-
sumption, and S; ,, n, is the social influence component due to an agent "s K, ego-network
members. In the extreme of ¢,, = 0 an agent’s attitude stops evolving. This repre-
sents a behaviour performed in isolation of social pressures. Conversely, if ¢,, = 1 agent
attitudes’ towards that behaviour are entirely determined through social interactions.

In forming opinions the influence of our ego-network is paramount as often one cannot
rely on one’s judgement solely. Opinion dynamics models aim to explain how the attitude
of an individual within a group may evolve through social interactions where opinions
are exchanged. In constructing an equation for social dynamics of behavioural attitudes,
we consider literature from non-Bayesian opinion dynamics models using finite social
networks. For a detailed literature review of social influence and opinion dynamics models
see Mason et al. (2007), Castellano, Fortunato, et al. (2009), Acemoglu and Ozdaglar
(2011) and Grabisch and Rusinowska (2020).

Now we formally elaborate on the blue components in Figure 2.1 to model the influence
of social learning on individuals’ attitudes towards environmentally relevant behaviours.
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A key distinction between models is whether they use continuous or binary opinion pa-
rameters. Moreover, the issue of whether a single opinion or a high-dimensional vector of
opinions is considered may also be used to draw lines of division. For example, Schelling
(1969) and Granovetter (1978) are pre-eminent cases of binary single opinion models
that, whilst consisting of simple inter-agent rules of interaction, describe complex social
phenomena. On the other hand, DeGroot (1974) uses a continuous opinion for each agent
which is updated in discrete time steps using a mean of all other agents.

We implement a multi-dimensional continuous model inspired by DeGroot (1974) to
represent social learning in our model, with a weighted mean to aggregate the impact
of each agent’s ego-network. To model the imperfection of social transmission we add a
Gaussian error ¢ = G(0,02). A separate transmission error is applied to each of the M
behaviours after an individual has aggregated the attitudes of their ego-network. Thus,
the social learning component is given by

Ky
St,n,m - E at,n,kAt,k,m

k=1

+ 5t,n,m7 (26)

where K, is the total number of agents in the n*” agent’s ego-network. This is weighted
by a, , which represents how much focal agent n values the opinion of agent £ in their
ego-network. Finally, A;,, is the positive attitude of agent & towards behaviour m.
Our social learning error is pseudo-Gaussian, since we clip the value of Sy, ., such that
Stnm € [0,1], this ensures that A;,,,, € [0, 1].

2.3.4 Homophily and asymmetric weightings in a social network

In the model, social interactions occur between individuals within a Watts—Strogatz graph
with a small-world property and a mean number of connections K per individual (Watts
and Strogatz, 1998). This choice of graph is due to their pervasive nature in real-world
physical social networks. Watts—Strogatz graphs begin by placing /N individuals in a ring
and then attaching K links between an individual and those other individuals closest to
them. In this state the network has an extremely high degree of homophily and clustering
as ego-networks overlap significantly. Subsequently, using a probabilistic re-wiring p, of
connections between two adjacent nodes to a third long-distance one we can introduce
long-distance or weak ties (Granovetter, 1973). This greatly reduces the average shortest
path length while only marginally reducing the clustering of the network, achieving the
small-world property.

We generate attribute homophily in the network by placing individuals next to those
with initial environmental identities that are most similar (Kapeller et al., 2019). The
attribute homophily parameter A measures to what degree an individual’s position in the
network is a function of their identity. In the case of perfect attribute homophily, indi-
viduals are surrounded by ego-networks that are like-minded in terms of environmental
identity. However, for heterogeneous initial identity values and Watts—Strogatz network,
this forms a circle with an approximately constant gradient in identity, accounting for
stochastic variations from the generating Beta distribution. This is shown in the third
column of the second row of Figure 2.6. The degree of attribute homophily may then be
varied discretely using a Fisher-Yates shuffle algorithm (Fisher and Yates, 1953), where
random pairs of individuals swap places in the network. For our implementation, an
attribute homophily parameter h = 1 means no pair swaps occur, whilst A~ = 0 results in
N random swaps.
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Boyd and Richerson (1988) model the notion that people’s choices of whom to learn
new traits from are not random. A confirmation bias is content-dependent where more
attention is paid to information that reinforces current opinions (Lord et al., 1979; Nick-
erson, 1998). Furthermore, individuals that identify with a particular group tend to
assimilate their norms. In a parallel fashion, they distance themselves from out-group
individuals (Fielding and Hornsey, 2016). This forms a key component of the model
by Axelrod (1997), where individuals interact more with those who are similar to them.
This causes them to share more similarities and hence leads to further interactions. In the
bounded confidence (Hegselmann, Krause, et al., 2002) or relative agreement (Deffuant,
Amblard, et al., 2002) models, proximity in opinion or distance may be used to repre-
sent this phenomenon. Likewise, Konc and Savin (2019) use an opinion distance which
is framed as a confirmation bias. Furthermore, in Deffuant, Neau, et al. (2000), agents
may only interact if their vectors of opinions are sufficiently alike. They highlight the
parallels with genetic transmission processes in that “reproduction only occurs if genome
distance is smaller than a given threshold”. Limitations in contact between groups can
allow for minority opinions or ideologies to persist amongst an overwhelming majority
(Bergh et al., 2019).

We replicate the stylised fact of interactions leading to further interactions found in
Axelrod (1997) by basing the strength of agent opinion exchange on the similarity of
their environmental identity. Following Konc and Savin (2019), we use a combination of
an exponential form and confirmation bias to vary how much agents may interact with
those of distinct identities. Greater values of confirmation bias mean that an agent pays
attention to a rapidly shrinking sub-network within the ego-network. Partly inspired by
Brock and Hommes (1998) use of discrete choice models, our social network weighting
matrix oy, is given by the softmax function

e_eut,n_lt%k‘

At n k. = K, s (27)
Z e—O0llt,n—1I¢ |
J#n

F where we consider the identity distance of K, agents within an ego-network and 6
is a measure of confirmation bias. Thus, if I, and I grow further apart over time, the
influence they exert on each other also decreases®. To ensure that the total weighting in an
agent’s ego-network is one we normalise the values against the total weighting calculated.
Note that the social network links are static. Therefore even if there exist agents who
are similar in identity, they will not be able to form new links. However, they may
still influence each other through a shared ego-network. We choose this static network to
ensure that the small-world properties used in the initial network are conserved. Therefore
we also do not include the re-wiring probability as part of our sensitivity analysis.

!The form of Equation 3.11 takes inspiration from a Boltzmann distribution e #F/Z (McQuarrie,
2000), whereby the probability distribution of a statistical system occupying a state is proportional to
the energy F, of that state, and is normalised by the partition function Z. In our model, the energy
of a state is given by |I,, — Ix|. Moreover, thermodynamic § is inversely proportional to temperature.
With increasing temperature, particles have greater kinetic energy, hence can move around more and
“interact” with other particles. From this perspective, the confirmation bias # can be seen as analogous to
the inverse of temperature, such that increasing confirmation bias represents a system where individuals
are “colder” to those different from them and pay less attention to their opinion. Whilst low values
of confirmation bias correlate to an open society where individuals interact uniformly with their ego-
network.

20



The external influence of an agent in an ego-network can change an individual’s at-
titude towards a certain environmentally related behaviour. This in turn leads to a
changing environmental identity which strengthens this social relation, leading to fur-
ther behavioural change. The intermediary role played by identity can produce new
behavioural dynamics compared to a reference case in which behavioural attitudes evolve
through independent social interactions. The greater the degree to which a behaviour
is socially influenced, determined by ¢,,, the more it is susceptible to outside shocks,
driving behavioural change.

2.3.5 Baseline experimental set-up

When exploring model dynamics we typically study the case of N = 200 individuals for
7 = 3000 time steps. Note that we envision a single period being between one week and a
day, however, for a theoretical model like this, is not strictly necessary. A Watts—Strogatz
network is used with a mean node degree K = 20 giving a typical network density ~ 0.1
(the ratio of actual to potential inter-agent links). The parameters required to run the
model, and the test case ranges explored in the sensitivity analysis, are summarised in
Table 2.1 with variables shown in Table 2.2.

It is important to note that given the softmax function form of Equation 3.11 for
inter-agent weighting there is always some influence from an individual’s dis-similar ego-
network. This means that given sufficient time (and low social learning error or perfect
imitation) the population will reach a single consensus identity. However, the immediacy
with which a transition to low-carbon lifestyles must occur does not allow for such an
extended time frame. Therefore for all experimental runs, we fix the number of simulated
timesteps at 7 = 3000, as we are specifically interested in the identity dynamics of the
model in short periods and the path dependency of consensus formation in the network.
Furthermore, the rate at which behavioural change occurs is dictated by the conspicu-
ous consumption parameter ¢,,, with lower values leading to slower change. We assign
different ¢,, values in the range [0.01,0.05] to each of the M behaviours, this represents
the varying social susceptibility of environmentally relevant behaviours. Therefore we
exclude both the number of time steps and the conspicuous consumption parameter ¢,
from the sensitivity analysis.
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Table 2.1: List of model parameters including ranges explored or tested in sensitivity
analysis and other experiments.

Parameter Symbol Definition Range | Comments
Name
Number of N Total number of individ- | [100,1000]
individuals uals in the social network
Number of M Behaviours modelled per | [1,30]
behaviours agent
Mean node K Mean number of mem- | [5,99] | This must be less than
degree bers of ego-network the total possible num-
ber of connections given
by N — 1.
Cultural p Number of timesteps | [1,3000] | A lower bound of 1
inertia over which past attitude means that only the
states influence current present is considered and
identity state an upper bound of 3000
is chosen as this must be
<.
Social Oc Standard deviation of | [0,1] In proportion to the
learning Gaussian learning error scale of the attitudes and
error representing the degree thresholds of [0, 1].
standard of perfect imitation
deviation
Discount ] Decrease in  relative [0,1] A value of 0 means only
factor importance between two present attitudes affect
adjacent moments in identity, whilst 1 means
time all past timesteps consid-
ered equally.
Attribute h Degree of identity homo- [0,1] h = 1 no pair swaps oc-
homophily geneity in the initial so- cur, h = 0 results in N
cial network random swaps.
Confirmation 0 How much agents only | [0,200] | Set the lower bound
bias listen to members of as 0 as negative val-
their ego-network with ues mean that individu-
similar identities als seek out identities op-
posite to their own.
Initial ap,ba,ap, by a and b are the two in- [0.05, | Ranges allow for distri-
attitude and puts for the Beta distri- 8] butions representing po-
threshold bution to generate initial larisation and consensus
Beta (a,b) distribution of agent at- in initial attitudes and
titudes and thresholds thresholds.
Total time T Discrete simulation cal- 3000 Not included in sensitiv-
steps culations ity analysis.
Conspicuous Om Behaviour specific so- | 0.01 - | Not included in sensitiv-
consumption cial susceptibility, deter- 0.05 ity analysis to keep sim-
factor mines simulation speed ulation speed constant.
Probability Dr Likelihood that connec- 0.1 Not included in sensitiv-
of re-wiring tion between agents are ity analysis to conserve
swapped to form long- small-world property.
distance or weak tie
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Table 2.2: List of model variables

Variable Name ‘ Symbol ‘ Definition
Attitude At nm | How much an agent wants to perform behaviour m
Threshold Thm How high the barrier of entry is to performing be-
haviour m
Behavioural value By ym | To what extent or with what frequency behaviour m

is performed

Total emissions flow E; Sum of emissions flow due to N individuals each with
M behaviours

Identity It nm | Degree to which an agent associates themselves with
a pro-environmental identity

Social learning component | Sy, ,» | The influence of agent n’s ego-network on their atti-
tude towards behaviour m

Social network weighting a¢pnk | Matrix of inter-agent opinion importance
Node degree K, Number of members of an individuals ego network.
On average this is K but may vary due to network
re-wiring

2.4 Results

We first give an overview of the model outcomes through a study of the typical identity
dynamics towards three metastable states. Due to the model’s complexity, exploring the
entire parameter space is not feasible. Instead, we collate different kinds of phenomena
produced by the model and explain them. In pursuit of this, we consider the processes
of bifurcation, polarisation and consensus formation (Deffuant, Amblard, et al., 2002).
Therefore, we also take a more detailed look at what model dynamics are induced by
specific parameters. Additionally, we consider the effect of green influencers that act
as fountains of green attitudes in the model, focusing on which components dictate the
degree of behavioural decarbonisation. Finally, this is complemented by a sensitivity
analysis to identify which parameters have the most impact on key outcome variables
such as the variance in final identities of individuals, total emissions and relative change
in emissions between the start and finish of an experiment.

2.4.1 Environmental identity dynamics

The identity dynamics produced by the model may be divided into three states as a
function of the variance of final identities in the population. Examples of these different
dynamics are shown in Figure 2.3, where each case is a time series of the identity dy-
namics of N = 200 individuals. The experiments differ through variations of the Beta a4
and b, parameters for individuals’ initial behavioural attitudes and confirmation bias 6.
Case A (aq = 2.0, by = 2.0, 8 = 10) represents the simplest model outcome, where ap-
proximatively normally distributed attribute values produced by large Beta distribution
parameters, a4,bq > 1, lead to rapid consensus formation around a single population
environmental identity. Decreasing Beta parameter values produce greater polarisation
in initial conditions, in combination with large values of confirmation bias # > 10, this
leads to the formation of splinter identity subgroups within the population. These can
form a two-identity state metastable state as can be seen in case B (a4 = 0.3, ba = 0.3,
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0 = 18). The greater the distance between these two-identity subgroups the slower the
process of reconciliation occurs, and the greater the time frame required for consensus for-
mation. Finally for sufficiently low values a4,b4 < 0.1 and large 6, see case C (a4 = 0.05,
ba = 0.05, 6 = 40), the population remains splintered in multiple information or “identity
bubbles” of individuals who only interact with a small group. A more detailed breakdown
of the relation between a4, b, and the total emissions may be found in the Appendix Fig-
ure 2.A.2, where lines of constant expectation value of the Beta distribution a4 /(a4 +0b4)
are proportional to a constant level of emissions.

To further explore the effect of confirmation bias on identity dynamics we look at the
bifurcation process of clusters of behavioural attitudes at the end of experiments. We use
a Gaussian kernel density estimator to group individuals, measuring the location of these
for increasing confirmation bias #. The transitions between the three cases identified in
Figure 2.3, are modulated by 6, as shown in the left of Figure 2.4. In the sub-figure we
consider the effect of increasing confirmation bias on the location of final attitude clusters
of the first, m = 1, of a total of three behaviours, M = 3. The location of these attitude
clusters is determined using a Gaussian kernel density estimator with a bandwidth of
0.01. All experiments use the same initial seed to account for stochastic effects. For the
same degree of polarisation in initial attitudes, larger values of 6 produce greater identity
fragmentation. Sufficiently high values of 8 lead to splintering, in the style of case C'.

A C
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0.8 1
2 0.6 IS 5 g
~ = ~
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E 0.4 1 }; o E 1 E
0.2 1
0.0 . . . : . . . . - - :
0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Time Time Time

Figure 2.3: Time series of individual’s environmental identity, for a population of N =
200, where the greater I;,, the “greener” a person’s identity. Increasing (A to C) initial
attitude polarisation and confirmation bias creates strands of “identity bubbles” and slower

consensus formation.

A key cornerstone of the model is the role of cultural identity in the diffusion of
pro-environmental behaviours. To investigate this effect we perform the same bifurca-
tion analysis in the case of behavioural independence, see right Figure 2.4. For these
experiments, the social network weighting ay,, is now determined by the behavioural
attitude distance, |A¢pm — At km|, Dot the identity as in Equation 3.11. This results in
one weighting matrix for each M behaviours, o, k. In this scenario, the fragmentation
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in attitudes occurs at much lower values of confirmation bias. Moreover, for these low
confirmation bias values, identity allows for the formation of larger, more behaviourally
heterogeneous, groups relative to the behavioural independence case. Therefore identity
stimulates the convergence of opinions by allowing individuals of more diverse behavioural
backgrounds to relate themselves better to their peers and imitate their behaviour.

10 Inter-behavioural dependance Behavioural independance
T 0.8 1
g
2]
D 0.6
(2]
=
3}
[}
B o4
©
g
i 0.2 4
0.0 1= ; : . ; . . . " v v "
0 20 40 60 80 100 0 20 40 60 80 100
Confirmation bias, ¢ Confirmation bias, 0

Figure 2.4: Bifurcation diagram showing the effect of increasing confirmation bias on the
location of final attitude clusters of the first, m = 1, of a total of three behaviours, M = 3,
for behavioural inter-dependence (environmental identity) and independence cases. En-
vironmental identity stimulates the convergence of attitudes, relative to the behavioural

independence case.

2.4.2 Impact of model components

To study how the frequency with which individuals update their identity can impact
identity dynamics, we consider three cases. The first case, static uniform weighting, rep-
resents a society in which individuals value the opinion of all their ego-network members
in the Watts-Strogatz network equally such that o, ; = 1/K,, and are unable to change
their weighting over time. This is equivalent to having no confirmation bias, # = 0. In
the second case, static culturally determined weighting, individuals calculate their social
network weighting once based on their initial identities, according to Equation 3.11. Sim-
ilarly to the first case, this is fixed for subsequent time periods of the experiment. In
the third case, dynamic cultural weighting, we update o, ; every time step, representing
frequent social interactions. The columns in Figure 2.5 correspond to these three scenar-
ios sequentially, whilst the top row gives the identity time series and the bottom row the
step social network weighting matrix at the final time step. Each experiment is run for
N = 50 individuals so that the heterogeneity in the social network weighting matrix is

more visible.
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Figure 2.5: Individuals * identity time series and final weighting matrices for three scenar-
10s of differing identity updating frequency. Environmental identity consensus formation
occurs slower when individuals can update social interaction weightings frequently as they
can form “identity bubbles”.

For the first and second cases, individuals reach a population identity consensus faster
due to cross networks connections that “infect” each other with opposing views. In both
cases individuals cannot update their social network weighting, meaning that new socially
acquired information (which may conflict with their current attitudes) cannot be ignored.
This demonstrates the strength of weak ties in breaking homophily effects. However, the
pace of consensus formation in the second case is much slower as individuals pay less
attention to weak ties, thus slowing the behavioural diffusion process. This is reflected
in the o, values for the second column and row of Figure 2.5 where agents have very
specific individuals to whom they pay attention. For frequent updating of o, agents
can form “identity bubbles” which leads to the grouping of agents into strands that block
out information resulting in a fractured identity spectrum by the end of the simulation.
Interestingly, the social network weighting matrix at the final time step for this third
case is similar to that of the first, uniform, weighting case. This suggests that these
“identity bubbles” are within themselves uniformly distributed, with individuals paying
equal attention to their peers but excluding those from the out-group, see Figure 2.A.3 in
the Appendix. It is this stark distinction between in- and out-group individual weightings
that sustains the identity strands and prevents global-, whilst enforcing local-, consensus
formation.

Decreasing initial identity similarity between ego-network members leads to faster
consensus formation as agents are exposed to those with distinct views, see Figure 2.6.
Three experiments are run for identical initial conditions, crucially including graph struc-
ture, varying solely on the attribute homophily parameter h which dictates how mixed
ego-networks are in the initial social network. A population size of N = 100 is used to
highlight the differences in the initial identity network layout. Furthermore, the network
structure is also the same, thus it is purely through reduced homophily that a societal
identity consensus is reached faster, and not a greater presence of weak ties. This effect
is stronger for greater initial values of attitude polarisation with a,b4 < 0.5, as the ini-
tial identity distance between the “greener” and “browner” identity groupings is greater.
Therefore by facilitating the mobility of individuals and exchange between people with
distinct environmental views, to break up social network homophily, policy-makers can
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further foster consensus formation in pro-environmental behavioural choices.
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Figure 2.6: Decreasing initial identity homophily results in faster consensus formation
in the network. Smaller values of attribute homophily h result in a more mized ego-
network, whilst h = 1 means individuals are placed next to those who have the most
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stmilar identities to them.

Greater values of the discount factor § mean that there is a focus on recent events,
thus changes in the model can occur faster as there is less influence from past behavioural
attitudes. Variation in the cultural inertia parameter p was found to have little effect
on the model culture. This lack of impact is because additional time steps included in
the discount array, through greater values of p, have an exponentially decreasing effect.
Hence the cumulative sum of their influence can be negligible. Moreover, due to the
autoregressive nature of Equation 2.5 current values of attitudes are strongly correlated
with previous time steps. Therefore, larger values of p introduce relatively little extra
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variance into the past attitudes vector averaged in Equation 2.3.

2.4.3 Attitude change through green influencers

Up to now, we have explored identity dynamics under a purely diffusive regime. In the
following let us consider how the model behaves when we introduce green influencers.
These are modelled as a minority of individuals who actively promote green lifestyles
(Chwialkowska, 2019). We represent green influencers as having one behaviour, out of
three (m = 1, M = 3), which is not susceptible to social influence with a perfectly green
attitude A;,1 = 1, but behave as non-influencers individuals otherwise. Their inclusion
increases the population by 10%, from 200 to 220. To account for the larger population
size we proportionally increase the average number of mean ego-network members, from

K =20 to 22, to maintain a constant network density.
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Figure 2.7: Total emissions of non-influencers individuals (top panel) in societal scenarios
with and without both green influencers and inter-behavioural dependency (environmental
identity), for different societal confirmation biases (columns). The bottom panel shows
the relative percentage change in emissions between scenarios with and without green
influencers, for cases with (black) and without (red) inter-behavioural dependency.

To assess the impact of these green influencers on final total emissions, and to exclude
the drop in emissions due to simply introducing “greener” behavioural attitudes, we only
measure behavioural emissions from non-influencers individuals. In the top panel of Fig-
ure 2.7, we consider four scenarios, varying whether or not to include green influencers and
whether to include environmental identity (black) or not (red), through inter-behavioural
dependence. The changes in inter-behavioural dependence are performed similarly to the
experiments in Figure 2.4. Along the horizontal axis, we vary the mean initial attitudes
of the population from “greener” to “browner”. In the case of including green influencers,
this represents an increasing distance between the average attitude of non-influencers and
that of perfectly green influencers. These scenarios are then run for low (§ = 5) and high
(0 = 20) confirmation bias shown in the left and right columns. Moreover, in the bottom
panel of Figure 2.7, we measure the relative change in emissions between experiments with
and without green influencers, comparing the impact of including environmental identity
(inter-behavioural dependence, black) or excluding it (behavioural independence, red).
Note that we measure the intra-stochastic value emissions change. In both the top and
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bottom panels of Figure 2.7, the shaded area gives the maximum and minimum values of
the measured attribute for 10 different initial stochastic values.

Beginning with the top panel of Figure 2.7, we can see that total emissions of non-
influencers are primarily determined by their initial attitude preferences, as identified in
the Appendix Figure 2.A.2. The bottom panel of Figure 2.7 indicates that the emissions
reduction achieved by the introduction of green influencers is a function of the mean atti-
tude distance, confirmation bias and behavioural interdependency. Moreover, this panel
demonstrates the difficulty in achieving deep behavioural decarbonisation. The degree of
emissions reduction decreases sharply as the attitude distance between green individuals
and the rest of the population approaches zero. Therefore, deep decarbonisation was not
achieved through the presence of green influencers alone due to the heterogeneous static
behavioural thresholds of individuals.

The greater the distance between green influencers and the mean initial attitude of
non-influencers individuals the larger the potential for behavioural emissions reduction.
Furthermore, larger initial attitude distances lead to lower inter-agent weightings of green
influencers, as defined in Equation 3.11. The combination of these two countervailing
forces, greater decarbonisation potential but the lower weighting of green influencers
in social interactions, at larger attitude distances between green influencers and non-
influencers individuals, leads to a U-shaped curve in emissions reduction. In the case of
inter-behavioural dependency, the peak of the curve occurs at an attitude distance of 0.4
and 0.15 for the low and high confirmation bias cases respectively.

In contrast, when there is behavioural independence, green influencers are too distant
in the attitude space to have significant inter-agent weights with non-influencers individ-
uals. In the case of behavioural inter-dependence, non-influencers are willing to listen to
green influencers due to similarities in the non-green behaviours (m = 2, 3). Green influ-
encers can exploit this similarity in the environmental identity aggregate to spread their
message. Additionally, under lower confirmation biases individuals are willing to listen to
ego-network members with greater identity or attitude distance. With both behavioural
inter-dependence and low confirmation biases this results in green influencers inducing
decarbonisation over a broader range of attitude distances, as shown in the bottom panel
of Figure 2.7. Moreover, because of this wide-ranging influence, the degree of decarboni-
sation is also stronger, as individuals feel the “pull” of green influencers further away in
the attitude space. This results in a greater total number of impactful social interactions
between them over the simulation period.

The limited behavioural decarbonisation achieved by the minority of green influencers
(at best 5 — 12% emissions reduction) indicates the limit to what voluntary actions can
achieve. This highlights the need for climate policies, such as carbon pricing or industry
standards, which would reduce thresholds or barriers of entry to performing “greener”
behaviours. Therefore, further research is required into the impact of said policies on be-
havioural emissions. Specifically, in the case of market-based instruments with incomplete
emissions coverage, such as the EU-ETS (Foramitti et al., 2021), which may heteroge-
neously affect multiple green behaviours. Especially of interest is how policies targeting
behavioural thresholds might synergise with those spreading “greener” attitudes, either
through green influencers or information provision policies.

The peak of emission reduction at low distance in environmental attitudes indicates
the need for an individual-specific tailored approach when providing green information.
This would avoid alienating individuals who might not react to information provision
policies if they are too green. Instead, the messaging would adjust for an initially brown
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but increasingly green society, thereby taking advantage of the emissions reduction peak.
Jointly, this means that with greater behavioural inter-dependence and lower confirmation
bias, an information provision policy would be targeting, and impacting, a greater part
of society.

2.4.4 Sensitivity analysis

Sensitivity analysis reveals how much variation in specific inputs can affect output varia-
tion (Hamis et al., 2021), ensuring that results and conclusions drawn are contextualised
(Ligmann-Zielinska et al., 2014). For this analysis, we use the Sobol (Sobol, 2001) and
Saltelli (Saltelli, 2002) methods, implemented using the SALib python library (Herman
and Usher, 2017), run over 76800 experiments. The key indicators we use are final total
emissions /N M, the variance in final identities of individuals 0% and the change in total
emissions between the start and end of each experiment, AE/NM. We normalise the
total emissions F over agent number and behaviours to account for the scale effect on
results of having a larger population that is more active. To account for the impact of
stochasticity in the model (caused by initial attitude distribution, attribute homophily,
re-wiring probability and imperfect social learning) we average output variables over mul-
tiple runs with different initial stochastic seeds.

Confirmation bias, 6 9 - FE/NM i —e— - o + - AE/NM
Attribute homophily, & » —
Discount factor, ¢ ¢ » e
Initial threshold Beta, b7 1 B — » 1+
Initial threshold Beta, ar 1 —— » 1
Initial attitude Beta, b4 1 —— »
Initial attitude Beta, a4 1 R — > 4L
Social learning error, o. { ——— E —_———
Cultural inertia, p £l k]
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Number of behaviours, M 9 E = 1 —
Number of individuals, N ¢ » ] e e
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First order Sobol index

Figure 2.8: Sobol sensitivity analysis of model parameters, showing first order index for
three key outputs: Final normalised total emissions, E/NM, the variance in final iden-
tities of the population o2 and final normalised changes in emissions, AE/NM.

Figure 2.8 shows the results of this sensitivity analysis, where a greater first Sobol
index value represents the greater relative importance of one parameter over others.
The most influential parameters in determining the final model emissions are the initial
distribution of behavioural attitudes a4, bp and thresholds parameters ar, by. This result
is due to the linearity of Equations 2.1 and 2.2 in determining behavioural emission,
and because our diffusive mechanism of social learning only allows for imitation and
not innovation to more green (or brown) behaviours. The exact value of the final total
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emissions is strongly correlated with the initial identity distribution given in the Appendix
Figure 2.A.2.

The variance of final identities is dominated by the number of behaviours M, the
social learning error € and the confirmation bias 6. The fractional contribution of each
behaviour to an individual’s identity decreases with an increasing number of behaviours
M. This means that for large M values, extreme attitudes have little effect on the
identity of an individual. Hence, individuals can be similar in identity even if they differ
substantially in a few specific behavioural attitudes, as their extremist attitudes are
counter-balanced by their more moderate views in Equation 2.4. Alternatively put, for a
fixed total time a larger number of behaviours M leads to faster consensus formation in
identity, as individuals are influenced by attitudes from a wider range of people, since they
cannot find close matches, so it is harder to form “identity bubbles”. In the case of social
learning error, this simply increases the fundamental uncertainty each individual holds
regarding their attitudes, which on the aggregate identity level leads to greater variability
per individual, and by extension also at a population level. Greater confirmation bias 6
also acts to slow the diffusion of opinions in the network as individuals tend to listen to
those who are very close to them in identity space.

The change in total emissions over the simulation period is driven by the social learning
error, as this is the only means through which new information may be introduced into
the population. Consequently, through Equation 2.6, the greater N and M the more
of this misinformation is introduced per time step. The role of social learning error
in determining emissions changes indicates room for policy intervention in the form of
information provision through advertising or education, which is left for further research.

We run a similar sensitivity analysis for the case of including green influencers with
a range tested of [1,100] with 1920 experiments shown in the Appendix Figure 2.A.4.
We find that a similar set of parameters dominate the first order index of total emissions
E/NM and identity variance o7 as in Figure 2.8. However, in the case of emissions change
AFE/NM there is a lower sensitivity to the social learning error € and greater importance
of the number of behaviours M. With more behaviours, an individual’s environmental
identity becomes less connected to a single perfectly pro-environmental norm promoted by
green influencers, making normal individuals more receptive to their pro-environmental
attitude message. Note that in this sensitivity analysis both the density of the network
and the initial preferences vary unlike in Figure 2.7.

2.5 Limitations and outlook

The representation of behaviours as a continuous parameter allows for a scale of emis-
sions corresponding to the degree to which a pro-environmental behaviour is performed.
However, behaviours such as investing in domestic solar energy are binary choices that
occur once. Furthermore, the ability to perform one environmentally related behaviour
can be dependent on the past completion of another. For example, the choice to cycle
to work requires that an individual already owns a bike. Thus, future empirically-based
applications of the general model may want to modify the definition of the behavioural
value B, according to the nature of that behavioural choice.

Our model of environmental identity, as a time-weighted average, allows for the substi-
tutability of behaviours. Consider the case of two individuals, each with two behaviours.
The first has behavioural attitude values A;; ., = [0.5,0.5], and the second A; 2, = [0, 1].
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Given the current formulation of Equation 2.3, these two would have the same environ-
mental identity. The fact that two individuals, one of whom is entirely apathetic towards
environmentally related behaviors while the other is a green and brown extremist, can be
grouped under the same identity raises the need for further model refinement. To address
this issue, one potential solution is to employ k-nearest neighbor classification based on
behavioral attitude vectors, grouping individuals and assigning a representative environ-
mental identity value to each group. Alternatively, a mechanism of internal dissonance
(Dalege et al., 2018) could avoid the repeated interaction of individuals with conflicting
attitudes.

An aspect of model dynamics that falls outside of the scope of this study is the role of
what type of information is socially learnt. In the case of the first, we chose the diffusion
of environmentally related attitudes A, ,, instead of the behavioural action B,,, ,,. The
imitation of a behavioural action instead of attitude would result in which descriptive
norms are the dominant mediator in social interactions.

In this study, we consider solely networks with a small-world property. The dynamic
nature of the social network weighting between individuals then leads to the formation
of 7identity bubbles”. Further study could investigate how different degree distributions
in the social network can affect the propensity for these ”identity bubbles” to occur. In
addition, the impact on total emissions of the placement of ”green influencers” within
networks with high asymmetry in node degree, such as scale-free, could be an interesting
research avenue.

We envision the model being used in conjunction with climate policies such as carbon
pricing, industry standards or information provision. These would build on our study of
green influencers, to produce dynamic behavioural thresholds and drive attitudes in the
population towards a green consensus. Our model could inform how said policies leverage
network effects or are inhibited by the “identity bubbles” previously highlighted. For
example, the study of green influencers could be extended to include the decaying effect
of information provision policies (Allcott and Rogers, 2014).

Additionally, moral licensing effects could be included, whereby one green behavioural
choice can cause negative spillovers in subsequent environmentally related decisions. This
is especially of interest given the role of inter-behavioural effects on network attitude
consensus highlighted in the model. The emissions of individuals due to behavioural
choices do not directly contribute to model dynamics, see Figure 2.1. Therefore the
underlying mechanics of behavioural interdependency due to culture with imperfect social
learning could be generalised to study other systems such as healthy lifestyles.

Future work might analyse case studies for a particular country, period or group.
Especially of interest would be studies involving larger behavioural changes, such as the
mass adoption of cycling in Copenhagen in a similar fashion to Kaaronen and Strelkovskii
(2020), but with a wider focus on how the adoption of these low-carbon behaviours
affected other environmentally related behaviours (Andersson and Néssén, 2022). This
approach would provide empirical validation for our theoretical mode, complement the
robustness of our conclusions derived from our large-scale sensitivity analysis of model
parameters.

The introduction of exogenous dynamic thresholds might better represent the degree
to which certain behavioural choices are cyclic, such as reduced domestic energy savings
in winter or the increased inconvenience of cycling in harsh weather. Considering longer
time scales, further research could introduce a missing link between behavioural emis-
sions, environmental conditions and agent choices. This would make external conditions
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endogenous to agents’ choices and thus create a cycle of choices between actions and
changes in the environment. This might lead to innovation towards “greener” behaviours
and thus the emergence of pro-environmental culture in the model. This could lead to
integration with the nascent literature on ABM approaches to Integrated Assessment
Models (IAMs) (Lamperti et al., 2018; Safarzyriska and Bergh, 2022), motivated by a
need to provide greater detail in representations of agent heterogeneity (De Cian et al.,
2020) in the context of demand-side emissions reduction.

2.6 Conclusions

In this article, we have developed and analysed an agent-based model of cultural dynam-
ics. It describes how the diffusion of attitudes towards environmentally related behaviours
can interact with longer-term cultural change. To this end, the model incorporates a
cultural evolutionary framework, where culture is defined as socially transmitted infor-
mation. This is represented in the model as an environmental identity which consists
of slow long-term change driven by a faster behavioural diffusion process, where we ag-
gregate multiple behavioural attitudes of an individual over time with a discount factor.
Individuals interact in a small-world Watts—Strogatz network through imperfect imita-
tion of behavioural attitudes. The impact of culture is to mediate the strength of social
interactions according to environmental identity similarity, inducing behavioural interde-
pendence.

As our primary research question, we wanted to answer how pro-environmental diffu-
sion of behaviour interacts with longer-term cultural evolution on a path to a low-carbon
economy. How do culture and behavioural diffusion interact? What is the longer-term
impact of cultural change? What are the mechanisms behind behavioural decarbonisa-
tion? Firstly, considering the interaction of culture and behavioural diffusion, we found
that the presence of culture, as an environmental identity, helps stimulate consensus
formation in behavioural attitudes in large groups, relative to the case of behavioural
independence. This inter-behavioural dependence facilitates interactions between indi-
viduals who may differ in specific attitudes but hold similar identities in the aggregate of
multiple behaviours. Secondly, the longer-term component of culture plays a small role
in the model dynamics due to the autoregressive nature of how attitudes change over
time. This meant that values of environmental identity in the more distant past were
very similar to those in the near past, resulting in little impact of extending the period
over which current environmental identity is evaluated. Thirdly, we find the extent of
behavioural decarbonisation of individuals in the social network to be strongly depen-
dent on the initial distribution of preferences in behavioural attitudes and thresholds.
Imperfect social learning drives the change in total emissions between the start and end
of experiments as it acts as the sole source of new information in the model. Our re-
sults indicate that the speed of consensus formation in environmental identity is strongly
influenced by exposure to information from individuals with contrasting opinions. This
may be derived from sources such as inter-behavioural spillovers, confirmation biases in
social interactions or breaking of homophily effects.

We drive individuals’ attitudes towards greener outcomes through the addition of in-
fluencers who in one behaviour act as broadcasters of a perfectly green attitude. The
inclusion of culture led to greater decarbonisation, compared to the behavioural inde-
pendence case. In this scenario, green influencers overcame large distances in attitude
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between them and non-influencers, by leveraging similarities in the attitude aggregate to
spread their message to a wider audience. The impact of green influencers was found to be
greatest when the initial attitude distance between non-influencers and green influencers
was small enough to allow the them to remain relevant in social interactions, but great
enough for there to still be large behavioural decarbonisation potential through solely
attitude change. This indicates the need for individual-specific information provision
policies to avoid alienating those who might be inert to pro-environmental information if
it is too green. Moreover, the failure of this green influencer minority in achieving deep
decarbonisation, through solely voluntary action, indicates the need for further modelling
to assess the impact of culture on carbon pricing or industry standards policies that would
reduce barriers to performing “greener” behaviours.

Model Documentation

The model is implemented in Python 3.9, and is available through the CoMSES Computa-
tional Model Library as “An agent-based model of cultural change for a low-carbon transi-
tion”: https://www.comses.net/codebases/88c233af-a3dd-4ba0-bb01-a3f5990e5££0/
releases/1.1.0/.

References

Acemoglu, Daron and Asuman Ozdaglar (2011). “Opinion dynamics and learning in social
networks”. In: Dynamic Games and Applications 1.1, pp. 3-49.

Adger, W Neil, Jon Barnett, Katrina Brown, Nadine Marshall, and Karen O’brien (2013).
“Cultural dimensions of climate change impacts and adaptation”. In: Nature climate
change 3.2, pp. 112-117.

Ajzen, Icek (1991). “The theory of planned behavior”. In: Organizational behavior and
human decision processes 50.2, pp. 179-211.

Allcott, Hunt and Todd Rogers (2014). “The short-run and long-run effects of behav-
ioral interventions: Experimental evidence from energy conservation”. In: American
Economic Review 104.10, pp. 3003-37.

Andersson, David and Jonas Néassén (2022). “Measuring the direct and indirect effects
of low-carbon lifestyles using consumption data”. In: Journal of Cleaner Production,
p- 135739.

Axelrod, Robert (1997). “The dissemination of culture: A model with local convergence
and global polarization”. In: Journal of conflict resolution 41.2, pp. 203-226.

Baranzini, Andrea, Stefano Carattini, and Martin Peclat (July 2017). What drives social
contagion in the adoption of solar photovoltaic technology. GRI Working Papers 270.
Grantham Research Institute on Climate Change and the Environment.

Bergh, Jeroen CJM van den, Ivan Savin, and Stefan Drews (2019). “Evolution of opinions
in the growth-vs-environment debate: Extended replicator dynamics”. In: Futures 109,
pp. 84-100.

Bezin, Emeline (2019). “The economics of green consumption, cultural transmission and
sustainable technological change”. In: Journal of Economic Theory 181, pp. 497-546.

Bisin, Alberto and Thierry Verdier (2001). “The economics of cultural transmission and
the dynamics of preferences”. In: Journal of Economic theory 97.2, pp. 298-319.

34


https://www.comses.net/codebases/88c233af-a3dd-4ba0-bb01-a3f5990e5ff0/releases/1.1.0/
https://www.comses.net/codebases/88c233af-a3dd-4ba0-bb01-a3f5990e5ff0/releases/1.1.0/

Bollinger, Bryan and Kenneth Gillingham (2012). “Peer effects in the diffusion of solar
photovoltaic panels”. In: Marketing Science 31.6, pp. 900-912.

Boyd, Robert and Peter J Richerson (1988). Culture and the evolutionary process. Uni-
versity of Chicago press.

Brock, William A and Cars H Hommes (1998). “Heterogeneous beliefs and routes to chaos
in a simple asset pricing model”. In: Journal of Economic dynamics and Control 22.8-
9, pp. 1235-1274.

Buenstorf, Guido and Christian Cordes (2008). “Can sustainable consumption be learned?
A model of cultural evolution”. In: Ecological Economics 67.4, pp. 646-657.

Burton, Rob JF and Maja Farstad (2020). “Cultural lock-in and mitigating greenhouse
gas emissions: The case of dairy/beef farmers in Norway”. In: Sociologia Ruralis 60.1,
pp. 20-39.

Carattini, Stefano, Martin Péclat, and Andrea Baranzini (2018). Social interactions and
the adoption of solar PV: evidence from cultural borders. Grantham Research Institute
on Climate Change and the Environment.

Castellano, Claudio, Santo Fortunato, and Vittorio Loreto (2009). “Statistical physics of
social dynamics”. In: Reviews of modern physics 81.2, p. 591.

Castellano, Claudio, Matteo Marsili, and Alessandro Vespignani (2000). “Nonequilibrium
phase transition in a model for social influence”. In: Physical Review Letters 85.16,
p. 3536.

Castro, Juana, Stefan Drews, Filippos Exadaktylos, Joél Foramitti, Franziska Klein, Théo
Konc, Ivan Savin, and Jeroen van den Bergh (2020). “A review of agent-based mod-
eling of climate-energy policy”. In: Wiley Interdisciplinary Reviews: Climate Change
11.4, e647.

Chwialkowska, Agnieszka (2019). “How sustainability influencers drive green lifestyle
adoption on social media: the process of green lifestyle adoption explained through the
lenses of the minority influence model and social learning theory”. In: Management
of Sustainable Development 11.1, pp. 33-42.

Dalege, Jonas, Denny Borsboom, Frenk van Harreveld, and Han L.J van der Maas (2018).
“The attitudinal entropy (AE) framework as a general theory of individual attitudes”.
In: Psychological Inquiry 29.4, pp. 175-193.

Davis, Taylor, Erin P Hennes, and Leigh Raymond (2018). “Cultural evolution of nor-
mative motivations for sustainable behaviour”. In: Nature Sustainability 1.5, pp. 218—
224.

De Cian, Enrica, Shouro Dasgupta, Andries F Hof, Mariésse AE van Sluisveld, Jonathan
Kohler, Benjamin Pfluger, and Detlef P van Vuuren (2020). “Actors, decision-making,
and institutions in quantitative system modelling”. In: Technological Forecasting and
Social Change 151, p. 119480.

Deffuant, Guillaume, Frédéric Amblard, Gérard Weisbuch, and Thierry Faure (2002).
“How can extremism prevail? A study based on the relative agreement interaction
model”. In: Journal of artificial societies and social simulation 5.4.

Deffuant, Guillaume, David Neau, Frederic Amblard, and Gérard Weisbuch (2000). “Mix-
ing beliefs among interacting agents”. In: Advances in Complex Systems 3.01n04,
pp. 87-98.

DeGroot, Morris H (1974). “Reaching a consensus”. In: Journal of the American Statis-
tical Association 69.345, pp. 118-121.

Drews, Stefan, Ivan Savin, and Jeroen van den Bergh (2022). “Biased perceptions of other
people’s attitudes to carbon taxation”. In: Energy Policy 167, p. 113051.

35



Durham, William H (1991). Coevolution: Genes, culture, and human diversity. Stanford
University Press.

Epstein, Joshua M and Robert Axtell (1996). Growing artificial societies: social science
from the bottom up. Brookings Institution Press.

Féth, Géabor and Miklos Sarvary (2005). “A renormalization group theory of cultural
evolution”. In: Physica A: Statistical Mechanics and its Applications 348, pp. 611—
629.

Fielding, Kelly S and Matthew J Hornsey (2016). “A social identity analysis of climate
change and environmental attitudes and behaviors: Insights and opportunities”. In:
Frontiers in psychology 7, p. 121.

Fisher, Ronald Aylmer and Frank Yates (1953). Statistical tables for biological, agricul-
tural and medical research. Hafner Publishing Company.

Foramitti, Joél, Ivan Savin, and Jeroen van den Bergh (2021). “Regulation at the source?
Comparing upstream and downstream climate policies”. In: Technological Forecasting
and Social Change 172, p. 121060.

Geschke, Daniel, Jan Lorenz, and Peter Holtz (2019). “The triple-filter bubble: Using
agent-based modelling to test a meta-theoretical framework for the emergence of filter
bubbles and echo chambers”. In: British Journal of Social Psychology 58.1, pp. 129—
149.

Grabisch, Michel and Agnieszka Rusinowska (2020). “A survey on nonstrategic models
of opinion dynamics”. In: Games 11.4, p. 65.

Granovetter, Mark (1978). “Threshold models of collective behavior”. In: American jour-
nal of sociology 83.6, pp. 1420-1443.

Granovetter, Mark S (1973). “The strength of weak ties”. In: American journal of soci-
ology 78.6, pp. 1360-1380.

Grimson, Alejandro (2010). “Culture and identity: two different notions”. In: Social Iden-
tities 16.1, pp. 61-77.

Gupta, Akhil and James Ferguson (1992). “Beyond” culture”: Space, identity, and the
politics of difference”. In: Cultural anthropology 7.1, pp. 6-23.

Hamis, Sara, Stanislav Stratiev, and Gibin G Powathil (2021). “Uncertainty and sensitiv-
ity analyses methods for agent-based mathematical models: An introductory review”.
In: The Physics of Cancer: Research Advances, pp. 1-37.

Hegselmann, Rainer, Ulrich Krause, et al. (2002). “Opinion dynamics and bounded con-
fidence models, analysis, and simulation”. In: Journal of artificial societies and social
simulation 5.3.

Helfmann, Luzie, Jobst Heitzig, Péter Koltai, Jiirgen Kurths, and Christof Schiitte (2021).
“Statistical analysis of tipping pathways in agent-based models”. In: The Furopean
Physical Journal Special Topics 230.16, pp. 3249-3271.

Henrich, Joseph (2001). “Cultural transmission and the diffusion of innovations: Adop-
tion dynamics indicate that biased cultural transmission is the predominate force in
behavioral change”. In: American Anthropologist 103.4, pp. 992-1013.

Henrich, Joseph and Richard McElreath (2003). “The evolution of cultural evolution”.
In: Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews
12.3, pp. 123-135.

Herman, Jon and Will Usher (Jan. 2017). “SALib: An open-source Python library for
Sensitivity Analysis”. In: The Journal of Open Source Software 2.9.

36



Kaaronen, Roope Oskari and Nikita Strelkovskii (2020). “Cultural evolution of sustain-
able behaviors: Pro-environmental tipping points in an agent-based model”. In: One
FEarth 2.1, pp. 85-97.

Kapeller, Marie Lisa, Georg Jager, and Manfred Fiillsack (2019). “Homophily in net-
worked agent-based models: a method to generate homophilic attribute distributions
to improve upon random distribution approaches”. In: Computational Social Networks
6.1, pp. 1-18.

Kashima, Yoshihisa (2008). “A social psychology of cultural dynamics: Examining how
cultures are formed, maintained, and transformed”. In: Social and Personality Psy-
chology Compass 2.1, pp. 107-120.

Konc, Théo, Stefan Drews, Ivan Savin, and Jeroen van den Bergh (2022). “Co-dynamics
of climate policy stringency and public support”. In: Global Environmental Change
74, p. 102528.

Konc, Théo and Ivan Savin (2019). “Social reinforcement with weighted interactions”.
In: Physical Review E 100.2, p. 022305.

Kraan, Oscar, Steven Dalderop, Gert Jan Kramer, and Igor Nikolic (2019). “Jumping to
a better world: An agent-based exploration of criticality in low-carbon energy transi-
tions”. In: Energy Research € Social Science 47, pp. 156-165.

Kuperman, Marcelo N (2006). “Cultural propagation on social networks”. In: Physical
Review E 73.4, p. 046139.

Lacasse, Katherine (2016). “Don’t be satisfied, identify! Strengthening positive spillover
by connecting pro-environmental behaviors to an “environmentalist” label”. In: Jour-
nal of Environmental Psychology 48, pp. 149-158.

Laibson, David (1997). “Golden eggs and hyperbolic discounting”. In: The Quarterly
Journal of Economics 112.2, pp. 443-478.

Lamperti, Francesco, Giovanni Dosi, Mauro Napoletano, Andrea Roventini, and Alessan-
dro Sapio (2018). “Faraway, so close: Coupled climate and economic dynamics in an
agent-based integrated assessment model”. In: Ecological Economics 150, pp. 315-339.

Ligmann-Zielinska, Arika, Daniel B Kramer, Kendra Spence Cheruvelil, and Patricia A
Soranno (2014). “Using uncertainty and sensitivity analyses in socioecological agent-
based models to improve their analytical performance and policy relevance”. In: PloS
one 9.10, e109779.

Loewenstein, George and Drazen Prelec (1992). “Anomalies in intertemporal choice: Evi-
dence and an interpretation”. In: The Quarterly Journal of Economics 107.2, pp. 573—
597.

Lord, Charles G, Lee Ross, and Mark R Lepper (1979). “Biased assimilation and attitude
polarization: The effects of prior theories on subsequently considered evidence.” In:
Journal of personality and social psychology 37.11, p. 2098.

Mason, Winter A, Frederica R Conrey, and Eliot R Smith (2007). “Situating social influ-
ence processes: Dynamic, multidirectional flows of influence within social networks”.
In: Personality and social psychology review 11.3, pp. 279-300.

McQuarrie, Donald A (2000). Statistical mechanics. Sterling Publishing Company.

Mesoudi, Alex (2016). “Cultural evolution: a review of theory, findings and controversies”.
In: Evolutionary biology 43.4, pp. 481-497.

Niamir, Leila, Tatiana Filatova, Alexey Voinov, and Hans Bressers (2018). “Transition to
low-carbon economy: Assessing cumulative impacts of individual behavioral changes”.
In: Energy policy 118, pp. 325-345.

37



Niamir, Leila, Gregor Kiesewetter, Fabian Wagner, Wolfgang Schopp, Tatiana Filatova,
Alexey Voinov, and Hans Bressers (2020). “Assessing the macroeconomic impacts
of individual behavioral changes on carbon emissions”. In: Climatic change 158.2,
pp. 141-160.

Nickerson, Raymond S (1998). “Confirmation bias: A ubiquitous phenomenon in many
guises”. In: Review of general psychology 2.2, pp. 175-220.

Nigbur, Dennis, Evanthia Lyons, and David Uzzell (2010). “Attitudes, norms, identity
and environmental behaviour: Using an expanded theory of planned behaviour to
predict participation in a kerbside recycling programme”. In: British journal of social
psychology 49.2, pp. 259-284.

Rai, Varun and Scott A Robinson (2015). “Agent-based modeling of energy technology
adoption: Empirical integration of social, behavioral, economic, and environmental
factors”. In: Environmental Modelling € Software 70, pp. 163-177.

Railsback, Steven F and Volker Grimm (2019). Agent-based and individual-based model-
mg: a practical introduction. Princeton university press.

Safarzyniska, Karolina and Jeroen van den Bergh (2022). “ABM-IAM: optimal climate
policy under bounded rationality and multiple inequalities”. In: Environmental Re-
search Letters 17.9, p. 094022.

Saltelli, Andrea (2002). “Making best use of model evaluations to compute sensitivity
indices”. In: Computer physics communications 145.2, pp. 280-297.

Savin, Ivan, Felix Creutzig, Tatiana Filatova, Joél Foramitti, Théo Konc, Leila Niamir,
Karolina Safarzynska, and Jeroen van den Bergh (2022). “Agent-based modeling to
integrate elements from different disciplines for ambitious climate policy”. In: Wiley
Interdisciplinary Reviews: Climate Change, e811.

Schaller, Mark and Michael Muthukrishna (2021). “Modeling cultural change: Computa-
tional models of interpersonal influence dynamics can yield new insights about how
cultures change, which cultures change more rapidly than others, and why.” In: Amer-
1can Psychologist 76.6, p. 1027.

Schelling, Thomas C (1969). “Models of segregation”. In: The American economic review
59.2, pp. 488-493.

Schultz, P Wesley, Jessica M Nolan, Robert B Cialdini, Noah J Goldstein, and Vladas
Griskevicius (2007). “The constructive, destructive, and reconstructive power of social
norms”. In: Psychological science 18.5, pp. 429-434.

Smaldino, Paul E (2019). “Social identity and cooperation in cultural evolution”. In:
Behavioural processes 161, pp. 108-116.

Sobol, Ilya M (2001). “Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates”. In: Mathematics and computers in simulation 55.1-3,
pp. 271-280.

Van der Werff, Ellen, Linda Steg, and Kees Keizer (2013). “It is a moral issue: The
relationship between environmental self-identity, obligation-based intrinsic motivation
and pro-environmental behaviour”. In: Global environmental change 23.5, pp. 1258—
1265.

Van der Werff, Ellen, Linda Steg, and Kees Keizer (2014). “I am what I am, by looking
past the present: the influence of biospheric values and past behavior on environmental
self-identity”. In: Environment and behavior 46.5, pp. 626—657.

Waring, Timothy M, Michelle Kline Ann, Jeremy S Brooks, Sandra H Goff, John Gowdy,
Marco A Janssen, Paul E Smaldino, and Jennifer Jacquet (2015). “A multilevel evo-
lutionary framework for sustainability analysis”. In: Ecology and Society 20.2.

38



Watts, Duncan J and Steven H Strogatz (1998). “Collective dynamics of ‘small-world networks”.
In: Nature 393.6684, pp. 440-442.

Wynes, Seth and Kimberly A Nicholas (2017). “The climate mitigation gap: education
and government recommendations miss the most effective individual actions”. In:
Environmental Research Letters 12.7, p. 074024.

Yi, Richard, Kirstin M Gatchalian, and Warren K Bickel (2006). “Discounting of past
outcomes.” In: Fxperimental and clinical psychopharmacology 14.3, p. 311.

39



Appendix

2.A Additional figures
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Figure 2.A.1: The beta distribution used to generate initial values for individuals’ attitudes
and thresholds for a variety of input a and b values. Only if a and b are equal in value will
the distribution be symmetric. The ratio of a and b dictates the distribution mean E(X) =
a/(a+b), whilst smaller values of a and b lead to greater initial identity polarisation.
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Figure 2.A.2:  The initial distribution of individuals’ attitudes correlates strongly with the
total societal emissions per agent and behaviour. The contour borders are approrimately
linear representing lines of a constant expectation value of the Beta distribution a/(as+
ba). This contour plot is produced from 20480 experiments including 4096 combinations
of parameters as and by.
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Figure 2.A.3: Within “identity bubbles” there is uniform weighting amongst agents. The
left figure shows an identity time series and the formation of “identity bubbles”, corre-
sponding to the different colours. The right-hand sub-figure shows the mean social network
weighting o, i between members within an “identity bubble” as a solid line. The dashed
lines are 1/N¢, where N¢ is the number of members within the cluster. The mean cluster
weighting in each group tends to 1/N¢ when clusters are well separated, as can be seen
in the middle of the simulation run. This run corresponds to the dynamic weighting in
Figure 2.5.
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Figure 2.A.4: Sobol sensitivity analysis of model parameters with the inclusion of green
influencers where we test a range of [1,100] agents for a total of 1920 experiments.
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Chapter 3

The cultural multiplier of climate
. X
policy

3.1 Introduction

To achieve the deep decarbonisation required to meet emissions targets, consumption
changes are needed across the board, i.e. applying to all goods, services and hence pro-
duction sectors. This may involve a shift in lifestyles (Girod et al., 2014). As part of
this, there can be positive and negative spillovers (Truelove et al., 2014; Lanzini and
Thegersen, 2014) between distinct consumption categories, such as travel by plane and
following a vegan diet (Andersson and Néssén, 2022). To better understand the mecha-
nism and implications, we develop a model that connects a multiple consumption category
module to a social network module and assess how a carbon tax induces decarbonisation.
To study large-scale shifts in consumption behaviours due to repeated and cumulative
social interactions, we conduct our analysis through the lens of cultural change (Davis
et al., 2018; Kaaronen and Strelkovskii, 2020; Sovacool and Griffiths, 2020). Building on
computational models of cultural change (Epstein and Axtell, 1996; Axelrod, 1997; Ku-
perman, 2006; Torren-Peraire et al., 2024), we study how long-term preference dynamics
may affect decarbonisation.

This paper contributes to the limited literature on carbon taxation with endogenous
preference changes. The model proposed in Mattauch et al. (2022) studies the impact of
carbon pricing which directly affects preferences for clean goods. This is described as a
crowding-in (greater consumption of clean good) or -out (greater consumption of dirty
good) effect of carbon pricing. Konc, Savin, and Bergh (2021) study the role of direct and
indirect effects of carbon taxation, through price and social influence mechanisms. Their
focus centres on the impact of the social interactions on climate policy effectiveness, de-
fined as a “social multiplier” (Glaeser et al., 2003; Konc, Savin, and Bergh, 2021). In this
article, we extend this concept to the case of social learning across multiple consumption
categories (e.g. transport, food, tourism), labelling this a “cultural multiplier”, to assess
how social influence affects lifestyle changes. In contrast to previous economics literature
on the interaction of culture and the environment (Schumacher, 2015; Bezin, 2019), we
choose not to take a generation-based modelling approach due to the limited timeframe
over which decarbonisation must occur, e.g. EU net-zero by 2050 target. However, in a
similar fashion to Schumacher (2015) we model how the emergence of pro-environmental

*This chapter has been submitted and is under revision.

43



culture can stimulate greater decarbonisation in a positive feedback loop.

Low-carbon consumption choices are influenced by a multitude of factors, not just
pricing (Wang et al., 2021). Social influences such as injunctive and descriptive norms
(Davis et al., 2018), the framing of a carbon tax (Hartmann et al., 2023) or similarities
in low- and high-carbon alternatives, can play significant roles. For example, individuals
may perceive low-carbon goods such as electric vehicles (EV) to be less substitutable
because of different technological characteristics, seen in phenomena such as range anxiety
(Pevec et al., 2020). As a consequence, urban communities can have higher rates of EV
adoption than rural ones (Westin et al., 2018).

A key component in determining the dynamics of socially informed preferences is the
structure of the network within which social interactions occur. Individuals with high so-
cioeconomic status (Nielsen et al., 2021), who occupy central positions in social networks,
can generate social tipping points for decarbonisation. However, if their preferences are
not consistently aligned with decarbonisation goals they may inhibit a rapid transition
to low-carbon alternatives through their sustained high-carbon consumption (Mattioli
et al., 2023).

Our central research question is: How does cultural change moderates the effective-
ness of carbon taxes. In pursuit of this goal, we explore the following sub-questions: Is
the cultural multiplier similar in size to the social multiplier? And what are the socioe-
conomic characteristics affecting the magnitude of the cultural multiplier? Regarding
the latter, we will consider substitutability between low- and high-carbon goods, social
network structure, proximity of like-minded individuals in a social network, and diversity
of lifestyles.

The remainder of the paper is organised as follows. In Section 3.2 we formulate
the model of market processes, social network interactions, cultural change, and climate
policy. In Section 3.3 we analyse the strength of the cultural multiplier, compare it to
the social multiplier, and explore which socioeconomic factors shape its size. Section 3.4
concludes.

3.2 The model

3.2.1 Conceptual approach

We construct a model of individuals’ consumption behaviour subject to a carbon tax. To
capture the interaction of endogenous preference driven by social interactions and climate
policy we use an Agent-Based Model (ABM). Individuals act as utility-maximising agents
with heterogeneous preferences for low-carbon goods that evolve through social imitation.

Figure 1 provides a schematic overview of the model. The yellow boxes represent the
consumption choice of individuals and are constructed from the utility function subject
to a budget constraint. The stacked yellow boxes indicate that consumption occurs in
multiple sectors, such as energy, transport or food. The blue boxes represent the social
imitation module of the model which produces dynamic preferences for low-carbon con-
sumption. This imitation occurs via weighted interaction in a social network (Konc and
Savin, 2019). These interactions are mediated in strength by the similarity of individuals
in their environmental identity. The grey stacked box indicates the multiple individuals
that compose the social network. Individuals’ consumption choices produce emissions
each time step which contribute to network-wide cumulative emissions, shown in the red
boxes. Lastly, the green boxes are the climate policy module, capturing the role of carbon
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taxation in guiding the social network towards low-carbon consumption. Specifically, a
tax applied to consumption across all the different categories influences high-carbon good
prices and produces revenues which are redistributed as a lump sum.

Cumulative
emissions
Individual X

: ' =\

Carbon dividend [--> Expenditure —» Consumption Emissions
quantities flows

f — | ]

Carbon price in i
market Low-carbon —> Envilcrjc;r;rtri};ntal
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| _ ) ) 4

- N s B
. . Who to learn
Social learning from
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Figure 3.2.1: Model structure. Blue boxes capture the social interactions; yellow the
preference dynamics and consumption choices; green the climate policy; and red the carbon
emissions. Arrows indicate the direction of influence. Grey stacked boxes indicate multiple
individuals whilst coloured stacked boxes show multiple consumption categories.

3.2.2 Market module

The model employs a constant elasticity of substitution (CES) utility function where
individuals have preferences for low-carbon and high-carbon alternatives. Highly substi-
tutable goods such as energy, where the source has little impact on utility, have strongly
non-linear responses to price changes or a given preference between alternatives. How-
ever, to answer the main research question of how carbon taxation is affected by cul-
tural change requires representing consumption habits across multiple human needs, i.e.
lifestyle (Foramitti et al., 2024). To capture this, we extend the CES function to multiple
consumption categories which results in a nested CES utility function (NCES). Individ-
uals’ make choices of consumption quantities between low- L and high-carbon H goods
across multiple consumption categories m. In the model at each discrete time step t,
individuals, denoted by index i, maximize their utility based on their preference for low-
carbon goods, Ay, subject to a budget constraint imposed by individuals’ expenditure
B,

max U(Ll,...,LM,Hl,...,HM,al,...,(lM,Al,...,AM,O'l,.‘.,U,I/) (31)
Ly,....Lng Hy,eo , Hiy

The utility is given by a NCES function with two levels (Sato, 1967)

M o1 o1 o(v—1) ﬁ
o—21 a—= (c—1)v
Ui = (Z G <At,z',mLt,%’,m + (1 - At,i,m)Ht,Zm> ) > (3.2)

m=1

At the top level, we represent different consumption categories, while on the bottom
level (within each category) there are low- and high-carbon goods alternatives (Konc,
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Savin, and Bergh, 2021; Mattauch et al., 2022), L;;,, and H;;, and substitutability
between each of the two alternatives 0. Between categories, there is a further preference
parameter for consumption a,, where 2%21 a., = 1 and substitutability across categories
v. To reduce model complexity, for each individual ¢ we assume the preference parameter
between categories a,,, e.g. the preference for transport over energy consumption, is
fixed and there is equal weighting of consumption categories Z%ﬂ a,, = 1. Utility
maximisation is subject to a budget constraint

M
B=>" LyimPrim+ HyimPrim- (3.3)
m=1

From the Lagrangian first-order conditions for the system we derive demand relationships
for the low- and high-carbon alternatives for all consumption categories as functions of
preferences, prices and degrees of substitution (see 3.A). The demands for high- and
low-carbon goods are given by

BXtim
o = Xt 3.4
t77 Zt7z ( )
Lt,i,m — t’Z—Xt” (3'5)
tyi

Here €2 ; , is the ratio between low- and high-carbon good quantities, x;; ., captures the
relative weighting of consumption between different categories, and Z, ; is a normalisation

term. They are defined as:

L 7, P, mA i,m 7

bign = I = ( S ) (3.6)
Ht,i,m PL,t,m(]- - At,i,m)

v

v—o

mAtim =1 o—1)
T (At,mﬁm“ +1- At,i,m) o (3.7)
PL,mQEi7m
M
Zt,i = Z Xt,i,p(Qt,i,pPL,t,p + PH,t,p) (38)
p=1

3.2.3 Social imitation module

This module is closely adapted from the one proposed in Torren-Peraire et al. (2024),
which in turn is derived from DeGroot (1974). Individual preferences for low-carbon con-
sumption evolve due to social imitation of neighbours’ consumption behaviour. A social
network is introduced to represent the context within which this process occurs. The
network is composed of N individuals i, each with ego networks N;, which interact with
each other each time-step t. Future preferences are a weighted average of current prefer-
ences A;;, and an external social imitation influence of others’ low-carbon consumption
behaviour Cf ; -

N;
Apstim = (1= 6n) Apim + Sm > i Chjim, (3.9)
j=1

How sensitive an individual’s preferences are to social influence is mediated by the
social susceptibility parameter ¢ € [0,1]. The parameter aij captures how much in-

dividual ¢ values the opinion of neighbouring individual j. The initial preferences for
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low-carbon consumption across multiple consumption categories Ay, ,, are generated us-
ing a Beta distribution. We set the similarity between an individual’s initial preferences
for low-carbon consumption across different categories using an initial coherence param-
eter, ¢ € [0, 1], where the case of ¢ = 0 represents an individual whose preferences do not
align with each other. Following Kone, Savin, and Bergh (2021), individuals copy the
proportion of neighbours consumption that is low-carbon:

Ly ;
Chigy = ——2 3.10
b, Lt,j,m + Ht,j,m ( )

For our model of the cultural multiplier, we assume that the preferences of individuals for
low-carbon goods are not observable, instead, these must be inferred through observing
actual consumption. The social multiplier of climate policy may be characterised as a
misinterpretation of consumption change (from increased price) as a preference change.
The result of this misinterpretation is that for a given carbon emission target a lower
carbon tax is required. Alternatively, the actual decarbonisation effect exceeds the one
predicted by fixed preference models of Pigouvian taxes, as the policy induces preference
change (Koessler, Engel, et al., 2021). Given the importance of imitation, in 3.B we
study how greater substitutability between goods leads to a more non-linear relationship
between preferences and consumption shares.

In the model, the consumption behaviours of neighbours in the social network are not
taken into consideration equally leading to a lack of global preference convergence (Dan-
dekar et al., 2013). Instead, individuals strive for greater homophily through weighted
social imitation. To model this we follow Axelrod (1997), where past interactions be-
tween pairs of individuals leads to stronger future interactions. The strength of these
interactions, Oftc,% , are dictated by the similarity in environmental identity I;; (the mean
of low-carbon preferences).

The social network weighting matrix «
softmax function (Konc and Savin, 2019)

CM

14 introduced in Equation 3.9 is given by the

_9|It,'_1t,'|
cm € LY
t7i’j -

(3.11)

N; ’
> e Oe,i— 1t ;1
J#i

Based on the Euclidean identity distance of N; neighbours, with 6 a measure of confir-
mation bias. The greater this bias, the less open individuals are to imitating the behaviour
of neighbours with a different environmental identity. A simplified version of the identity
model developed in Torren-Peraire et al. (2024) is used here. It defines the environmen-
tal identity of an individual as the average of their preferences for different categories
of low-carbon goods. This model provides an indirect mechanism for spillovers, through
which a greater pro-environmental identity can make green behaviours more likely (Van
der Werff et al., 2014).

[ %A (3.12)
te — Mm:1 t,,m- .

A shift towards pro-environmental identities not only requires a change in one category
of consumption, such as the growing popularity of a vegan diet, but coordination across
multiple consumption categories in a low-carbon direction. This results in preference
change producing a slower, longer-term cultural change. In order to compare the strength
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of the social and cultural multipliers, a second weighting matrix af%’m,

individuals consider the Euclidean distance between preferences instead of identities,

is defined where

SM 6_0|At,i,m_14t,j,m|
G m = : (3.13)
> e 1AL m—At jml

J#

This characterises the social multiplier case, where individuals evaluate their similari-
ties with neighbours separately for each of their m consumption categories. In sum-
mary, Equation 3.13 replaces Equation 3.11 in defining the social weighting term used
in Equation 3.9. This can result in individuals paying varying amounts of attention to a
neighbour’s consumption behaviour depending on the consumption category.

To highlight the role of environmental identity as a mechanism for behavioural spillovers
in consumption, consider two individuals: Alice and Bob. Each evaluates how much at-
tention is paid to the others’ consumption behaviour across three consumption categories:
food, transport, and energy. Alice is a strict vegan and thus has a strong low-carbon pref-
erence for the consumption category food (A; = 1) but is relatively indifferent towards
low-carbon consumption of other categories (e.g., Ay = 0.5, A3 = 0.5). Bob, on the other
hand, is slightly indifferent towards the carbon intensity of all consumption categories
(e.g., A1, AyAs = .0.45). Let us first consider the case of the social multiplier, where
individuals consider the weighting of social influence separately for each consumption
category based on similarity in preferences. Bob may pay attention to Alice s behaviour
in transport and energy consumption. However, in the case of food consumption, Bob
sees Alice as an outlier or radical, choosing to ignore her behaviour. In the case of the
cultural multiplier, things work differently. Here Bob considers the similarity in identity
between themselves and Alice, considering their proximity in preferences across multiple
consumption categories (see Equation 3.12). Relative to the social multiplier case in the
cultural multiplier, Bob pays less attention to Alice in transport and energy categories,
but crucially does not ignore their behaviour in the food category. Over repeated social
interactions, Alice influences Bob towards a more low-carbon preference in food which
would have been ignored under the social multiplier scenario. In this fashion, selective
imitation based on environmental identity at the individual level acts as a mechanism for
generating cohesion in consumption across the entire social network.

Social influence between individuals is facilitated in the model via a social network.
The specification of the network can be adapted to capture the relevant context in terms
of consumption category (e.g., more or less conspicuous) and medium of social inter-
action (e.g., face-to-face, word of mouth, online, or geographical). We consider three
different network structures, each with heterogeneous degree distribution: Small-world
(SW (Watts and Strogatz, 1998)), Stochastic Block Model (SBM (Holland et al., 1983))
and scale-free (SF' (Albert and Barabasi, 2002)) - see Figure 3.2.2.

The SW model represents physical (offline) social networks. The small-world property
is generated through high clustering of nodes with short path lengths due to a few long-
range weak ties across the network. The SBM allows for the representation of clustered
groups of nodes that have higher connection density within blocks than between them. In
the model, we consider how the dichotomous relationship between two blocks can affect
decarbonisation across the entire network. This network structure facilitates the study of
consumption decarbonisation in loosely linked communities, such as rural versus urban
settings. For the SF network, the use of a growing network with preferential attachment
generates a degree distribution that follows a power law. This results in a handful of
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nodes having a high number of connections whilst most have few, such as in online
social networks. This network structure may be used to study the role of individuals
with high socioeconomic status (Nielsen et al., 2021). Specifically of interest is how a
central hegemony of low- or high-carbon consumption in the highest degree nodes may
tip the rest of the system due to their far-reaching social influence. Lastly, we introduce a
measure of homophily A € [0, 1], which indicates the distribution of initial environmental
identities among neighbours. For h = 0, individuals are randomly positioned within the
network, while for A = 1 individuals connected have the smallest possible distance in
environmental identities.

Small-World Stochastic Block Model Scale-Free

X

PR ANS
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;‘,‘
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Figure 3.2.2: Illustrative example of different social network structures tested.

3.2.4 Climate policy module

Without loss of generality, we assume that high-carbon goods and services have emissions
of one and the low-carbon good have zero emissions. The consumption of high-carbon
goods by individuals produces emissions which contribute to a global cumulative quantity

E according to
tmaz N M

E = Z Z Z Hyim.- (3.14)
t=0 i=1 m=1

where there are t,,,, time steps in each experiment. A carbon tax, 7, is introduced
resulting in a higher price for high-carbon goods

Pym =Ppam+T (3.15)

The price of low-carbon goods and base price of high-carbon goods are Py, ., Pp gm = 1.
The revenues of the carbon tax are recycled to consumers using a lump-sum carbon
dividend. The analysis for a carbon tax can also be applied to a more general carbon
price. However, to better integrate our model with current literature on endogenous
preferences we choose to label the climate policy intervention as a carbon tax (Konc,
Savin, and Bergh, 2021; Mattauch et al., 2022).

3.3 Results

3.3.1 Overview of experimental runs

Each experimental run consists of 3000 individuals interacting over 360 time steps. This
can be considered to represent 30 years with each time step being a month. Unless stated
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otherwise in the following results each sub-figure is composed of 30,000 experimental
runs. Individual initial preferences are drawn from a Beta distribution symmetrical about
indifference towards the carbon content of goods (4,, = 0.5). Appendix Figure 3.C.1
gives an illustrative example of a typical model run showing the environmental identity
trajectories for zero and low-carbon tax of 7 = 0.15. The parameters used in models
are shown in Table 3.3.1 and a summary of variables in Table 3.3.2. Note that Network
parameters such as number of edges to attach from new nodes in the SF and SW, or
the intra- and inter-block densities are configure to ensure that across the three networks

tested the density of connection is 0.1.
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Table 3.3.1: Model Parameters

Parameter Name Symbol | Description Default Range
Value Tested
Initial preference a,b Beta distribution parameters used to gen- 2 [0.1, §]
Beta erate initial preferences
Low- and o Elasticity of substitution between low- 4 1.1, §]
high-carbon carbon and high-carbon goods
substitutability
Between category v Elasticity of substitution across consump- 2 [1.1, 8]
substitutability tion categories
Social susceptibility 10) Influence of social imitation on preference | 0.02 [0,1]
for low-carbon consumption
Confirmation bias 0 Confirmation bias towards individuals 5 [0, 50]
with similar environmental identities
Carbon tax T Tax imposed on high-carbon goods [0,1] [0, 5]
Consumption M Number of categories of goods 2 [1, 50]
categories
Total individuals N Total number of individuals in the model | 3000 | [500,3000]
Homophily state h Degree of initial similarity between neigh- 0 [0, 1]
bours in terms of environmental identity
Coherence state c Similarity individual’s low-carbon prefer- 0.9 [0, 1]
ences across consumption categories.
Maximum time tmas Total time-steps in experimental runs 360
steps
Price of low-carbon Pr Price of low-carbon goods in category m 1
goods
Base price of Pp om Base price of high-carbon goods in cate- 1
high-carbon good gory m
SF density Density of connections between individu- 0.1
als
SBM block number Number of blocks in stochastic block 2
model
SBM intra-block Density of connection between individuals | 0.02
density within block
SBM inter-block Density of connection between individuals | 0.005
density between blocks
SW density Density of connections between individu- 0.1
als
SW probability Probability of rewiring to produce long 0.1
rewire distance ties
Stochastic Seed Variations of initials seed for preferences, 100
Repetitions network structure, homophily and coher-

ence
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Table 3.3.2: Model Variables

Variable Name Symbol | Description
Low-carbon consumption Liim Quantity of low-carbon goods consumed by individ-
ual ¢ in category m at time ¢
High-carbon consumption Hiim Quantity of high-carbon goods consumed by individ-
ual 7 in category m at time ¢
Price of high-carbon goods Prm Price of high-carbon goods in category m, sum of
base price and carbon tax
Preference for low-carbon goods Atim Preference for low-carbon goods by individual ¢ in
category m at time ¢
Environmental identity I Average low-carbon preference of individual ¢ across
all categories at time ¢
Social influence weighting Ot 45 Weight assigned by individual ¢ to the consumption
behaviour of neighbour j
Ratio of low to high carbon goods Qiim Ratio between low-carbon and high-carbon consump-
tion by individual
Consumption weighting factor Xt,i,m Weighting of consumption across categories
Normalisation term Zti Normalisation term used in demand functions
Expenditure B Budget available for consumption, 1/N
Preference for categories Qm, Preference for consumption categories, 1/M

3.3.2 Evaluating the cultural multiplier

To assess the impact of cultural change on the effectiveness of climate policy we measure
cumulative carbon emissions £ under three conditions:

1. Fixed preferences — no social influence of preferences and consumption decisions.

2. Social multiplier - dynamic preferences due to social imitation through preference
similarity for each consumption category separately, as captured by Equation 3.13

3. Cultural multiplier - dynamic preferences due to social imitation through identity
similarity, as captured by Equation 3.11

In the model, social influence occurs through the imitation of consumption behaviours
which depend on both preferences and the carbon tax level. To test whether the cultural
multiplier is a function of the strength of the carbon tax we consider a range of values
7 = [0,1]. Figure 3.3.1 shows the cumulative emissions for the three different cases in
a small-world network. For each carbon tax value and network structure, we ran 100
experiments with different stochastic seeds for the initial preference distribution, network
structure, distribution of individuals in the network and coherence in preferences. In
the figure the solid line shows the mean and shaded region showing the 95% confidence
interval over stochastic seed runs.

In the case of the cultural multiplier (green) we see a large and instant decrease in cu-
mulative emissions with the introduction of a carbon tax, relative to the fixed preferences
scenario. The imitation of consumption choices results in additional decarbonisation
across multiple consumption categories. When comparing the social (orange) and cul-
tural multiplier cases (green) we find that the latter has much lower emissions for small
carbon taxes (approximately 7 < 0.5). This greater strength of the cultural multiplier
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over the social multiplier can be explained by the consensus-forming effect of environ-
mental identity. When evaluating individuals across multiple preferences collectively it
becomes harder for outliers in the preference space to isolate themselves into communities
with a high degree of preference homophily. This results in individuals imitating a wider
range of consumption behaviours, and reach faster consensus formation, translating into
greater emissions reduction of carbon taxation.

Small-World

150 4

125 A

100 4

75

50 A

25 A

Cumulative carbon emissions, E

0.0 0.2 0.4 0.6 0.8 1.0
Carbon tax, T

—— Fixed preferences —— Cultural multiplier
Social multiplier

Figure 3.3.1: Cumulative emissions for the case of fixed preferences (blue), cultural mul-
tiplier (green) and social multiplier (orange) using a small-world network. The shaded
region indicated 95% confidence interval for 100 stochastic runs. The Stochastic Block
Model and scale-free graphs are shown in Appendix Figure 3.C.2.

To compare the findings with previous work by Kone, Savin, and Bergh (2021) we
study the tax reduction M,,,, induced by the social and carbon tax multipliers, defined
as .

Mgz =1 — — (3.16)

Tf

where 7; is the carbon tax required in the fixed preferences case to match the emissions
reduction caused by a carbon tax 7 in the social and cultural multiplier cases. Using data
from Figure 3.3.2 on cumulative emissions we can map the required 7 value onto a 7, value
i.e. for a given emissions target what is the carbon tax required in the fixed preferences,
social and cultural multiplier cases. However, given that cumulative emissions are much
lower with the social and cultural multipliers than in the fixed preferences case, additional
simulations are needed to determine the carbon tax required for the fixed preferences case
to match the emissions of the other two across all carbon tax levels. With this aim, we
first calculate what the maximum and minimum cumulative emission produced by the
social and cultural multiplier cases are for carbon tax values 75, = [0, 1]. Secondly, we use
these extreme emission values as targets and calculate what the required carbon tax 7y
would be to achieve this in the fixed preferences case.

Figure 3.3.2 shows that the cultural multiplier has a greater tax reduction effect than
the social multiplier. Additionally, due to the repeated nature of the interactions in the
model, the mean magnitude of the emissions reduction (M;,, > 0.5) of both multipliers
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is much stronger than that identified in Konc, Savin, and Bergh (2021) (M, = 0.38).
With each time step, a growing share of an individual’s current preferences are shaped
cumulatively by the behaviour of their neighbours, potentially away from their initial
preferences. For high-carbon taxes, 7 > 0.5 the difference between the social and cultural
multiplier cases almost vanishes. At these values, the strength of the carbon tax signal
overwhelms any nuances in how the preference change due to social influence occurs. Even
the most stubborn of individuals with strong high-carbon preferences choose to pursue
low-carbon consumption in all categories, with social imitation accelerating this change
in lifestyles. In other words, if high-carbon goods are sufficiently expensive relative to the
low-carbon alternative, then the specifics of who individuals choose to imitate no longer
matter; the network tips collectively towards low-carbon consumption. In the case of very
small carbon taxes 7 < 0.05, there is a much greater variance in the tax reduction M;,,
due to the strong path dependency of the model. Small differences in social interactions
can lead to radically different preference outcomes and, consequently, emissions due to
the polarizing effect of consumption imitation. As opposed, the presence of a greater
carbon tax steers the system towards a narrower set of equilibrium states.

Small-World
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Carbon tax reduction, M,y
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Social multiplier =~ —— Cultural multiplier

Figure 3.3.2: Carbon tax reduction for social multiplier (orange) and cultural multiplier
(green). A small-world network is used; results for alternative networks are shown in
Appendiz Figure 3.C.3. The shaded region indicated 95% confidence interval for 100
stochastic seed runs.

3.3.3 Impact of key parameters on the cultural multiplier

Impact of substitutability between low- and high-carbon goods on the cultural
multiplier

To better understand how sensitive the cultural multiplier is to different socio-economic
conditions, we vary the latter and assess how this influences the carbon tax’s effective-
ness. Improvements in low-carbon technologies such as plant-based alternatives, better
EV charging facilities or investment in public transport may increase the substitutability
between low- and high-carbon goods. Therefore, different levels of low- and high-carbon
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good substitutability ¢ can represent degrees of low-carbon technological progress or in-
frastructure availability. We now consider the strength of the cultural multiplier under
these varying scenarios. In Figure 3.3.3 we plot cumulative emissions for the cultural mul-
tiplier case (preference spillovers) for different substitutability o in the SW network (see
Appendix Figure 3.C.4 for SBM and SF networks). For high-carbon tax rates, the greater
the substitutability, the greater the decarbonisation. This occurs because individuals re-
ceive a much lower penalty in the utility function for concentrating their consumption in
one good, allowing them to better exploit the price asymmetry between low- and high-
carbon alternatives. However, this same concentration of consumption results in polarised
consumption proportions Cy; ,,. Individuals then imitate these consumption proportions,
gradually leading to polarisation in low-carbon preferences. This can inhibit the spread
of low-carbon consumption as individuals who have high-carbon preferences are able to
express this preference in their consumption. Consequently, high-carbon groups of in-
dividuals isolate themselves by avoiding interactions with “greener” neighbours. This
effect hinders decarbonisation at low-carbon tax levels, reversing the emissions pattern
across substitutability scenarios. In contrast to these dynamics in the extreme case of
o = 1.01, the emissions curves detach from that of larger substitutability values. Here,
individuals are unable to fully express their preferences in their consumption, and thus,
social imitation becomes less representative of true beliefs, resulting in a lower carbon
tax effectiveness.
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Figure 3.3.3: Impact of substitutability between low- and high-carbon alternatives on cu-
mulative emissions

To further study the relationship between the social and cultural multiplier we com-
pare the two for different levels of substitutability o, see Figure Figure 3.3.4. Note that
in this figure we only consider the small-world network case. For very low substitutability
o = 1.01, the social and cultural multiplier converge. As previously identified in Figure
3.3.3, this low substitutability causes a breakdown in effective social learning through
imitation. This results in less opportunity for behavioural spillovers to be leveraged,
hence the small differences in emissions between the social and cultural multiplier. On
the other hand, increasing substitutability enhances the cultural multiplier, whereas the
effect of the social multiplier shows a comparatively smaller gain. This effect is especially
pertinent at low tax values where the gap between the two multipliers is largest. The
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emissions curve for the social multiplier (orange) shifts towards the fixed preferences case
(blue) for increasing substitutability (across sub-figures). As highlighted in Figure 3.3.3,
a greater o parameter facilitates the concentration of consumption into either a low or
high-carbon good. This polarisation enables the formation of social bubbles in which
individuals who prefer high-carbon goods only communicate with like-minded individu-
als. These effects make preference change more challenging in the social multiplier case,
as individuals become less responsive to the consumption habits of others outside their
social bubble. Therefore, the absence of a behavioural spillover mechanism in the social
multiplier case results in a lock-in of high-carbon consumption for individuals with a
preference for high-carbon goods (A < 0.5). Consequently, in the social multiplier case
at large substitutabilities, a larger part of consumption changes occur primarily due to
carbon tax increases across experiments. However, a much higher substitutability does
not significantly increase the gap between the social and cultural multiplier. This can be
seen in comparing Figure 3.3.1, 0 = 4, with the 0 = 10 experiments in Figure 3.3.3.
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Figure 3.3.4: Differences between social and cultural multiplier at different substitutabili-
ties between low- and high-carbon goods.

Global sensitivity analysis

To study how the relative importance of model parameters and bolster the robustness
of our previous results we conduct Sobol sensitivity analysis (Sobol, 2001). This is im-
plemented with the SALib python library (Herman and Usher, 2017) for the cases of a
SW, SBM and SF networks. Parameter ranges tested and fixed parameters are shown
Table 3.3.1. For each of the 11 variables, we take 128 values with a mean of 20 stochastic
variations for a total of 184,320 experiments. The total order sensitivity of final cumula-
tive emissions is shown in Figure 3.3.5, with the first order index depicted in Appendix
Figure 3.C.5. Cumulative emissions are primarily determined by the initial preferences
Beta a parameter. A greater value relative to the Beta b parameter results in an initial
preference distribution which results in more low-carbon consumption. The carbon tax
also strongly contributes to the cumulative emissions variance as these induce low-carbon
consumption through price inequalities. Additionally, in the Total Sobol index, we see
that the low-carbon substitutability is significant. This is due to greater non-linearity in
consumption choices with greater substitutability as described in 3.B. Lastly, in Figure
3.3.5, we do not see variation across the different network structures in the importance
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of parameters.
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Figure 3.3.5: Total Sobol sensitivity analysis for 128 parameter values for a total of
184,320 experiments

Homophily, network structure and lifestyle diversity

When comparing the social and cultural multiplier cumulative emissions curves over a
range of carbon taxes for the SW, SBM and SF networks, we see little variation in results
(shown in Figure 3.3.1 and Appendix Figure 3.C.2). This can be explained by the fact
that, in these experimental runs, we assume no homophily in the initial environmental
identity of individuals within the network. However, ideological polarisation surrounding
climate change is growing (Falkenberg et al., 2022). Therefore, a key avenue for study is
how this polarisation of preferences within social networks, and the structure of networks
themselves, can inhibit decarbonisation of consumption (Flie and Vogt, 2024). In our
model we represent this polarisation by considering initial homophily in environmental
identity: The extent to which individuals are surrounded by like-minded neighbours.
Across the SW, SBM and SF networks we find that greater homophily in initial prefer-
ences between neighbours leads to a higher effective carbon tax rate to meet the same
emissions reduction - see 3.C.1 for an in-depth study.

Given the importance of behavioural spillover shown in the cultural versus social mul-
tiplier, we now consider how a richer representation of lifestyles can affect decarbonisation
by increasing the complexity of consumption decisions. In Appendix Figure 3.C.6, we,
therefore, vary the number of consumption categories modelled, M, for three different
carbon tax values. For the cultural multiplier, at low carbon tax values, the addition
of more consumption categories leads to lower emissions, relative to the social multiplier
case. The greater M, the lower the impact of extreme preferences on the formation of
environmental identity /. This results in greater consensus formation and thus a faster
collective shift to low-carbon lifestyles. However, at high carbon tax values, as in Fig-
ure 3.3.1, there is no distinction between the cultural and social multiplier due to the
constraining force of the price signal on consumption choices.
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3.4 Conclusions

This study highlights the joint effect of carbon taxes and cultural change in fostering
low-carbon consumption. Our model builds on previous literature on carbon taxes with
endogenous preference change but focuses on a longer-term cultural change. We extend
the concept of a social multiplier of environmental policy (increased emissions reduction
from a carbon tax due to social imitation (Konc, Savin, and Bergh, 2021) to the case of
repeated social imitation in multiple consumption categories and define this as the cul-
tural multiplier. In our novel agent-based model, individuals make consumption choices
between low- and high-carbon goods across multiple categories. These individuals have
heterogeneous and dynamic preferences for low-carbon goods, which evolve through re-
peated and weighted social interactions. The model assesses how cultural change may
enhance or hinder the impact of carbon taxes. Additionally, we identify which socio-
economic characteristics influence the magnitude of the cultural multiplier.

Our results show that incorporating change in endogenous preferences through the
cultural multiplier significantly enhances the effectiveness of carbon taxes relative to a
fixed preference counter case. Additionally, the cultural multiplier is found to be stronger
than the social multiplier, particularly when the carbon tax rate is low. This is due to
the consensus-forming effect of the cultural multiplier, resulting in greater difficulty in
individuals sustaining fringe consumption behaviours. However, this effect vanishes for
stronger carbon tax rates where nuances between different social imitation schemes are
dominated by the magnitude of the price signal.

Additionally, we show that with increasing substitutability of low- and high-carbon
goods, the cultural multiplier strengthens, whilst the social multiplier weakens. In the
absence of behavioural spillovers across different consumption categories, high substi-
tutability amplifies polarization in consumption, reinforcing entrenched high-carbon pref-
erences. Therefore, individuals with high-carbon preferences become less responsive to
social influence due to their like-minded social bubble. Our findings suggest that greater
similarity in environmental identity among peers connected via social networks increases
the effective carbon tax rate required to reach emission reduction targets. Additionally,
a richer or more diverse representation of lifestyles, achieved by increasing the number of
consumption categories, enhances the strength of the cultural multiplier at low carbon
tax levels. Our global sensitivity analysis confirms the robustness of our results over large
parameter ranges.

In future research, the model could be extended to include rebound between consump-
tion categories due to context-dependent preferences. This might include the possibility
of low-carbon consumption in one consumption category leading to increased emissions
in other areas due to moral licensing effects (Gholamzadehmir et al., 2019). Moreover,
one could extend the model with a utility function possessing non-homothetic preferences
to capture the heterogeneous behaviour of agents in different expenditure deciles. This
would capture the ease with which more wealthy individuals can switch to low-carbon
alternatives (Oswald, Owen, et al., 2020; Oswald, Millward-Hopkins, et al., 2023).

By fostering stronger pro-environmental identities, policymakers can leverage the cul-
tural multiplier to reduce an effective carbon tax rate, contributing to greater policy
support. This may be achieved through the introduction of complementary policies to a
carbon tax. This may take the form of extending current visions of low-carbon lifestyles
to be more systemic or rich in detail, including consumption in a high number of cat-
egories. For example information provision policies such as eco-labelling may correct
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misinformation on the true carbon impact of less socially salient consumption categories.
Alternatively, increasing the substitutability of low- and high-carbon alternatives both
through technological improvements (e.g. widespread charging infrastructure and higher
battery capacity to alleviate EV range anxiety (Pevec et al., 2020)) and nudge techniques
to increase the social acceptability of low-carbon alternatives (e.g. plant-based meat
substitutes (Edenbrandt and Lagerkvist, 2021; Coucke et al., 2022)). Additionally, poli-
cymakers should be mindful of network structures in which social imitation occurs when
evaluating the expected effect of carbon taxation, as high similarity in pro-environmental
identities amongst communities can act as roadblocks to decarbonization.

Code availability statement

The model code and documentation is available at:
https://www.comses.net/codebases/b00adla3-dcba-4610-83df-e869650f2714/releases/1.0.0/
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Appendix

3.A Analytical results for the NCES utility function

In the M-dimensional case we have low and high-carbon goods for each consumption cate-
gory, L,, and H,,, with an associated preference between the two A,,, and substitutability
between goods 0. Between categories there is a further preference for consumption a,,
where 2%21 a,, = 1 and substitutability across categories v.

max U(Ll,...,LM,Hl,...,HM,CLl,...,CLM,Al,...,AM,O'l,...,O',V) (317)

the utility function to maximise is given by,

U= (i amU;"1> ) , (3.18)

m=1

where the psuedo-utility U, is given by

1
Unn (L, Hiy Ay 0) = (AL 4+ (1 — Ay)HY) ¥ (3.19)
to simplify notation of the substitutabilities between low- and high-carbon goods for
each category o, and the between categories v, we use use ) = "T_l and w = ”7_1 This is

subject to the budget constraint,

M
B=Y " LuPrm+ HnPumn (3.20)

m=1

To derive the demand functions for the utility function we require the Lagrangian for the
system, given by

M % M
& = (Z amU;;> -\ (Z LonPpo + Hy Prim — B) : (3.21)

m=1 m=1

This produces general first-order conditions of low and high-carbon goods

13
0.% I S; 1
0z _ i U B et % Py =0 (3.23)
oH, ™ mzl“m " ™ OH,, Hom = ‘
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In order to find L,, in terms of H,, we use the first order conditions with respect to the
low and high-carbon good of the same category (same top level CES nest), re-arranging

for A\ and equating the two
1 oU, 1 09U,

= 3.24
Py, 0L, Py, O0H, ( )
ouU,

OUm P .
<ggm) = (3.25)

(%) ~ Prm

We now produce the derivative of the psuedo-utilities U,, with respect to H,, and L,,
1_
g% — (ALl + (1= Ay HE) Y A, L (3.26)
1_

g% — (A LY+ (1= Ap) (Hy — h)?) 7 (1= Ay HE (3.27)

Note that Equations 3.26 and 3.27 do not contain any between category terms. Sub-
stituting in the partial differentials or U, with respect to H,, and L,, into our equated
first order conditions in Equation 3.25 we produce a relationship between the quantity of
low-carbon L,,, and high-carbon good H,,

(1= Ap)HE ™ (ALY 4+ (1= A HE) T Py,

15 5 (3.28)
A L (ALl (1= A H) Lm
H%_l PH,mAm
T T Pl AL (3.29)
Lm o PH,mAm 1’/};_11
H, (PLm(l — Am)) ’ (3.30)

in terms of substituabilities between low- and high-carbon goods, using the property

0= 1, the general ratio between the low and high-carbon good for the m!" category is
defined as I . "
0, = " = Bim . 3.31
= (i) @31

Next, we compare low-carbon goods from different categories to derive the ratio between

high-carbon goods for two different categories (H, and H,). Re-arranging the first-order

conditions of two low-carbon goods and equating them, where p, ¢ are dummy variables
for the m’th category,

1 ou 1 9U

Py,0L, Pp,0L,

11 M 11
¢ ou, 1 ¢ ou,
mU% get—2 — _—_ WUY Uyt =4 3.33

(3.32)

m=1

1 aU 1 U,
a,U? ™! agUy 1 =2 3.34
PLp P 9L, PLq oL, (3.34)

Substituting our expression of the partial differential from Equation 3.26 and the psuedo-
utility U, from Equation 3.19,

A LYr + (1 — A)HYP) v —F = AgLYs + (1 — Ag)HY) 7 4
PLpap( +( p) p) aLp Pan‘J( +( q) q ) an
(3.35)
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1 w1 a1
——a, (ALY + (1 — A, HYP) 7 (A, L2 + (1 — A, HYP) 7 ! ALyt

P,
1 w-1 | _
PLq aq (AgLYs + (1 — A HY?) %o (A LYs 4 (1= A )HY) %~ A Lya™!
' o (3.36)
B ALy (ALY + (1 - Ay HYr) et
L,p
) - . VT (3.37)
PanqA LY (AGLYr + (1 — Ag)HY) 7a "
1 _ w _q 1 B w 1
P—apApL;fp (ALY 4 (1= A HYP) e = P—anqL}fq P(AGLY A+ (1 — Ag)HY) v
L,p L.
(3.38)

Substituting in the general ratio of low to high-carbon goods within a branch, L,, =
Hyp s

1 _ _ e 1 _ _ o
7PL papApQZ}p 1H;f)p ! (ApQZ}PH;)/’T’ + (1 — Ap)H;}bp) e = PiL qanng}q 1Hg}‘1 L (AQQZJ‘?HZ"J + (1 - Aq)H;bq) va
(3.39)
1 1 rre— @ 1 1 e w
Py papApQ}f"’ VT (A +1 - Ap) T = Tqanng}q VH T (A +1 - Ag) e
(3.40)
Now gathering high-carbon consumption terms,
g
et ag AT (AN 1 - 4,) P,
Hﬁ)fl = 5 P —  (341)
q La a, A, Q0! (A,,Q;fp +1- Ap) v
1
B L o1
H, anqQZIpq ' (Aquzbq +1- Aq) . P,
H - £
q PL#J CLpApQgP 1 <APQT$F +1— Ap) ¥p
(3.42)
In terms of category substitutabilities the ratio between the high carbon quantities from
different categories is given by, where we substitute in ¢ = 2= and w = ”;1,
v
H PO ap A, (Apﬂpp +1-4,)7
ﬁ = : v—ogq op—1 (343)
q 01(17_1 u(o'q—l) P Q op
agAq | A7 +1— A, L,p>°p

To simplify notation of the quantities we introduce an interaction term y,,

A\ =
Xm:(am "‘) (A Qi +1- A, )( ) (3.44)
PLJ’N/Q;Y-L

such that the quantity of dummy category p may be expressed in terms of the quantity
of dummy category ¢

H, = (&) H, (3.45)

Xq
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Lastly to derive demand functions for the low- and high-carbon goods in terms of pref-
erences, prices and substitutabilities we consider the budget constraint and use previous
definition of low to high-carbon goods from Equation 3.31

M
B=> L,P,,+H,Py, (3.46)

p=1

M-

(H,Q%Pr, + H,Pp ) (3.47)
1

3
I

H,(% P, + Pry) (3.48)

M-

1

]
Il

Note that again p is a dummy variable representing any category. Now substituting in
the interaction term Yy, between different categories defined in Equation 3.44 we express
the high-carbon quantity of a given dummy category ¢ in terms of the preferences, prices
and substitutabilities,

ﬁﬂq) (P, + Prr,) (3.49)

e
I
—
=
»Q

W
]
NE
N

(H,(Q,Prp+ Pryp) (3.50)

T
I

I Il
ISENINE
Mz 2

Xp(QpPL,p -+ PHJ,) (351)
Xq p=1
B
Hy=—— (3.52)
szl Xp (S Prp + Prp)
Thus the quantity of the m!* good is given by,
Bxm
H, = -2~ 3.53
p (353
By xm
L, =——F"— 3.54
” (354)
where to simplify notation Z is defined as,
M
Z = Xm(QmPrm + Prm) (3.55)
m=1

this serves as a normalization term across categories.

3.B Imitation of consumption
The existence of a social multiplier relies on two key features regarding the model of social

imitation; firstly, that the preferences of individuals for low-carbon goods are not observ-
able and secondly that the utility function is not common knowledge. It is important
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to note that in the case that either of these assumptions does not hold the social multi-
plier effect vanishes, as the carbon tax no longer has a channel through which to affect
preferences. However, if we assume that some portion of social information is, in fact, a
direct observation of preferences then we still find a non-linearity in decarbonisation if
that signal is not entirely preference-based information.

To understand how the quantities of low- and high-carbon goods consumed affect
the social imitation process, we require an understanding of how changes in preferences
result in changes to low-carbon consumption ratio Ct,i,m as a function of prices and
substitutability.

Lt ,m
Ciim= —""— 3.56
b Lt,j,m + Ht i,m ( )
Ht ) mQt im
= - = 3.57
Ht,i,mQt,i,m + Ht,i,m ( )
Qt i,m
= bW 3.58
Qt,i,m + 1 ( )
Now substituting in the ratio of low to high-carbon consumption €2 ; ,,
( PH,mAt,i,m )U
m —A i,m
Crim = o 2et) (3.59)

_ P
p, ="t (3.60)
PH,m
We substitute in the price ratio to obtain a simplified low-carbon consumption proportion
( At,i,m )J
Pm 1-A i,m
Chim = ), (3.61)
” At iym 1
(Pm(l_At,i,m)) +
A?i m
= (3.62)

B Agi7m + (pm(l - At,i,m))a

The smaller the value of the price ratio P, the smaller the value of the low-carbon
preference A, ;,, required to induce a complete switch to low-carbon good consumption
in that category. Figure 3.B.1 shows the dependence of Cy; ., on Ay ; ,,,. Small differences
in preferences for goods can lead to large changes in consumption proportions due to the
nonlinear impact of substitutability between the goods and price differences.
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Figure 3.B.1: The proportion of total consumption assigned to low-carbon good within a
category Cyim as a function of the preference for that low-carbon good Ay, and price

ratio between low- and high-carbon goods P,,.

Additionally, under the conditions ¢ — 1 and prices between low- and high-carbon

goods equal P,, = 1 then
Ot,i,m = At,i,m (363)

Therefore, under these conditions the preferences dynamics collapses to those studied
in Torren-Peraire et al. (2024). On the other hand, when goods are perfect substitutes
o — oo then C}; ,, tends to a step function in terms of A ;,,, where the location of the

step in preference space is given by
P, -1
_ (3.64)

3.C Additional simulation results
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Figure 3.C.1: Environmental identity time-series at two carbon tazes for the small-world

network.
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Figure 3.C.2: Cumulative emissions for the case of fixed preferences (blue), cultural mul-
tiplier (green) and social multiplier (orange) using a Stochastic Block Model and scale
free network. Shaded region indicated 95% confidence interval.
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Figure 3.C.3: Carbon taxr reduction relative to fized preferences for cultural multiplier
(green) and social multiplier (orange) using a Stochastic Block Model and scale free net-
work. Shaded region indicated 95% confidence interval for 100 stochastic runs.
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Figure 3.C.4: Varying substitutability between the low- and high-carbon good alternatives.
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Figure 3.C.5: First order Sobol sensitivity analysis for 128 parameter values for a total
of 184,320 experiments
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Figure 3.C.6: Cumulative emissions for increasing number of consumption categories at
different carbon tax values, for a total of 2150 runs.
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3.C.1 Network structure and homophily in initial environmen-
tal identity

To investigate the role of initial homophily (similarity in environmental identity) in shap-
ing decarbonisation dynamics, we use the SW network and SBM. Specifically, we examine
whether initial homophily creates barriers or promotes social tipping points towards the
adoption of low-carbon alternatives. On the other hand, for the SF network, the large
asymmetries in a number of social connections mean that similarities in the initial en-
vironmental identity of central agents are of key interest. We label this concentration
of similar environmental identities in high-degree nodes as a low- or high-carbon hege-
mony. Note that this section builds on the social learning module whereby individuals
socially imitate in a weighted fashion based on similarity in identity (cultural multiplier).
Therefore, we consider both how initial and dynamic homophily in environmental identity
change the effectiveness of a carbon tax simultaneously.

The results in Figure 3.C.7 show that the introduction of homophily reduces the
strength of the cultural multiplier both in the SW and SBM networks. Greater initial
homophily in environmental identity sustains high-carbon consumption practices (relative
to the no or low homophily counter-case) of individuals as they closely imitate each other.
For the SBM, greater homophily means that low values of the carbon tax are unable to
induce a mass change in consumption behaviours. However, when a critical carbon tax
rate is reached, the system tips towards low-carbon consumption.

This tipping behaviour is a result of the block structure of the network, which allows
for a mixed distribution of preferences both between and within block communities. One
community can exhibit high-carbon consumption while the other adopts low-carbon be-
haviours, or each community can have a mix of both high- and low-carbon consumption.
Due to this effect, the cultural multiplier is negative for low tax values as greater decar-
bonisation would be achieved with fixed preferences (dashed black line). In contrast, for
the SW network, we see a more gradual decline in emissions due to a more homogenous
distribution of the node degree in the network, meaning no single individual or small
community can tip the system towards low-carbon consumption. This is also seen in
the lower magnitude of price elasticities for the SW network in Appendix Figure 3.C.9,
relative to the SBM.

In some social contexts, such as online social networks, peer influence can be highly
asymmetric. To capture this, we introduce the concept of hegemony, where a high-carbon
hegemony reflects a concentration of high-carbon environmental identities amongst the
most connected individuals. Figure 3.C.8 shows how, in the case of low-carbon hege-
mony, even without a carbon tax, emissions are significantly reduced relative to the no-
homophily case. This occurs because centrally placed individuals exert strong influence
over many neighbours with preferences for high-carbon consumption while selectively
imitating those with similar environmental identities, thereby minimising exposure to
opposing behaviours. Under high-carbon hegemony, the cultural multiplier is negative
for low-carbon tax values, impeding decarbonisation efforts, but may become positive
for a sufficiently strong carbon tax signal. In the case of high-carbon hegemony, the
social network shifts towards low-carbon consumption from the periphery to the highly
connected center. Due to this the SF network has a greater price elasticity than the SW
network but lower than the SBM, see Appendix Figure 3.C.9.
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Figure 3.C.7: Emissions reduction due to carbon tazxation for different degrees of initial
homophily in environmental identity, for a total of 18,000 experiments. The dashed line
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Chapter 4

Driving in the wrong direction? A

co-evolutionary model of EV
. . . X
adoption and innovation

4.1 Introduction

In 2019, 10% of global greenhouse gas emissions were attributed to road transport, which
represented 70% of all carbon emissions related to transport. Therefore, the environ-
mental sustainability of future generations requires large scale reductions in the carbon
footprint of road transport. The large-scale adoption of electric vehicles (EVs), to re-
place internal combustion engine vehicles (ICEVSs), is an indispensable condition for the
transition to sustainable mobility in car-dependent urbanizations (Jaramillo et al., 2022,
p 1078). This requires policy incentives to be cost-effective, environmentally sustainable
and accepted by the public. However, the co-evolving socioeconomic interactions between
consumer adoption of new products and producer investments in innovations make dif-
ficult for policy makers to anticipate the outcomes of the policies before implementing
them. This is relevant not only for designing policies that are effective in promoting
electric vehicle adoption, but also to avoid unintended negative consequences on other
variables (Herrmann and Savin, 2017; Nunez-Jimenez et al., 2022).

Agent-based simulation models (ABMs) are an appealing method to address public
policy issues due to their bottom-up structure that accounts for agent heterogeneity
and the complex interplay of individual behaviour. These models have offered useful
policy design laboratories for stimulating the diffusion of EVs (Domarchi and Cherchi,
2023; Mehdizadeh et al., 2022), often calibrated for the data of the United States (Brown,
2013; Noori and Tatari, 2016; Adepetu et al., 2016; Sun et al., 2019; Spangher et al., 2019;
Ledna et al., 2022). In the context of mobility transitions, the study of social networks
and opinion formation dynamics has increased in popularity (McCoy and Lyons, 2014;
Silvia and Krause, 2016; Li et al., 2019; Feng et al., 2019; He et al., 2020; Ning et al., 2020;
Lee and Brown, 2021; Zhang et al., 2022). The literature of ABMs for EV diffusion also
provides studies addressing the role of directed innovation in promoting more sustainable
modes of transportation (Windrum et al., 2009; Greene et al., 2014; Sun et al., 2019; Fan
and Li, 2025).

*The chapter was co-authored with Miquel Bassart-i-Lore. I coded the model, whilst Miquel led the
manuscript writing. Model design, analysis and editing was conducted jointly.
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Despite the growing literature, the interaction between social dynamics and innovation
decisions remains underexplored. Specifically, the interplay between consumer adoption
and firm innovation presents important considerations for policy analysis due to their
co-evolving nature. Firms direct their innovation efforts to electric vehicles based on the
size of its customer base. In turn, people are willing to adopt EVs if their attributes and
price can compete with ICEVs. Without policy intervention, this interaction slows down
the deployment of new products. However, policies motivating the early adoption and
investment of EVs can trigger a virtuous circle that accelerates the transition. In order
to be sustainable, such transition requires minimising policy costs, welfare losses, and
greenhouse gas rebound effects. Therefore, our paper addresses the following research
question: What policy combinations that meet adoption targets can best balance the
trade-offs between costs, consumer utility, and emissions?

This paper provides a framework to support policy design accounting for the co-
evolution of adoption and innovation. We introduce an ABM combining a multinomial
logit model for consumer choices (Dstli et al., 2017), a social imitation model for the
diffusion of electric vehicles (Rogers, 2003), and an N K model for the directed innovation
efforts of manufacturers (Windrum et al., 2009). These elements allow capturing the
interaction between social imitation among heterogeneous car users and profit-oriented
investment choices. Furthermore, we include a stylized representation of the market for
used cars given its paramount importance in the US car market.

To calibrate the model, we set parameters to replicate the conditions of the state of
California from 2001 to 2023, due to its rich data availability on mobility. Furthermore,
California is an example of a car-dependent territory committed to a reduction in carbon
emissions as part of its Zero-Emission Vehicle (ZEV) requirement, adopted by the Cali-
fornia Air Resources Board. This mandate is complemented by Federal and State rebates
supporting the adoption of EVs.

The model is used to test policy scenarios for the period 2024-2035. Particularly, we
test a carbon price, a rebate for new and used EVs, an electricity subsidy and an EV
production subsidy. Policies are evaluated in their ability to reach a target adoption rate
and compared on their impact on total net policy costs, cumulative carbon emissions,
and consumer utility. In this way, we study the induced trade-offs associated with each
policy instrument. Moreover by combining the instruments in pairs we study how their
performance can be improved. Finally, we show the stability of the EV transition by
simulating for the period 2036-2050 after removing policy intervention.

The remainder of the paper is organized as follows. In Section 4.2 we formulate the
automotive sector model of endogenous innovation and social imitation in the context of
climate policy. Section 4.3 provides the details of our calibration strategy to externally
validate the model outputs with respect to Californian data. In Section 4.4, we analyze
the results of the model. Finally, Section 4.5 concludes and outlines future research
avenues.

4.2 The model

4.2.1 Overview

The present model studies policies for the diffusion of EVs in the context where innovation
and social imitation are co-evolving processes. The model features a market for new
and used cars that are characterized by a car type (ICEV or EV), production cost, fuel
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efficiency, battery or fuel tank size, and an abstract quality measure. The model is divided
into four submodules: the discrete choice consumption submodule, the social imitation
submodule, the innovation submodule and the used car market submodule. Figure 4.2.1
provides an overview of the interactions between each submodule. The model is in discrete
time, where each time step represents a month. For model equations, see Appendix 4.A.

For the representation of the users’ choice of car, we use a discrete choice logit model
(McFadden, 1974), as in previous studies addressing the adoption of EVs (Eggers and
Eggers, 2011; Shafiei et al., 2012; Ostli et al., 2017). Heterogeneous car users meet their
mobility needs either keeping their current car, purchasing a new or a used car. The
evaluation of a car is based on its attributes and consumer preferences. We add to this
literature by modelling car users that are forward-looking in estimating the lifecycle costs
and emissions when evaluating a car.

We use the diffusion of innovations theory by Rogers (Rogers, 2003) to conceptualize
the willingness to consider EVs. Users become willing to consider buying an EV after a
sufficient number of related peers are using it. The number of neighbours threshold varies
amongst car users, with its value corresponding to a spectrum between ”innovators” and
"laggards”.

Car manufacturers select the car designs to put on sale based on their profit expecta-
tions throughout the lifecycle of the technology, evaluated at the prices consistent with
profit maximization. New ICEV or EV vintages are discovered as a result of innovation.
Following similar studies (Windrum et al., 2009), we employ the NK model (Kauffman,
1993) to represent the distribution of possible technologies. In this setting, the avail-
able car designs depend on previous R& D choices, leading to specialization patterns and
emergent heterogeneity.

For the representation of the market for used cars, we propose a stylized model where
used car dealers are consolidated into a single entity. The price of used cars follows the
price of their respective most similar new car and applies a price discount proportional
to the car age. Whenever a consumer buys a car, the replaced car is sold to the used car
dealer at its market price with a discount. Used car dealers discard cars whose market
price falls below its scraping value.

4.2.2 Car users

Car users drive a fixed and heterogeneous distance each month. Stochastically, users are
sequentially activated to replace their car for one of new or used cars available on the
market. Following a social imitation model where car users are placed in a small-world
network, the willingness to consider an EV is updated at the end of the period. The
model assumes one car for each driver, as the US car-to-driver ratio has remained stable
at 1.15 from 2012 to 2023 (Bureau of Transportation Statistics).

Car choice

Car users compare the lifecycle utility of their own car with that of the available used and
new cars the user is willing to consider. The utility of a car is given by the willingness to
pay for its quality and range, each of them with diminishing returns, minus its lifecycle
costs and emissions (Jaramillo et al., 2022, p.4). The lifecycle costs are given by the sum
of the purchase price, net of the sale of the user’s current car, and the discounted sum of
the expected cost per kilometre. The lifecycle emissions are given by the manufacturing
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Figure 4.2.1: Model structure

emissions if the car is new and the discounted sum of the expected emissions per kilometre.
When estimating future costs and emissions related to driving, car users factor in the
depreciation of fuel efficiency taking place at the end of each time-step at a fixed rate.
Given the uncertainty in gasoline and electricity markets, car users assume the future
prices and emissions of gasoline and electricity to be the same as in the present period.

Given a utility for each of the alternative car choices (including their own) car users
select one using a logit model (McFadden, 1974) where the probability of selecting a car
is proportional to its assigned utility.

Social imitation

To represent the influence of peers on the choice of car type, we build on the threshold
models of EV adoption outlined in Eppstein et al., 2011; McCoy and Lyons, 2014; Wang
et al., 2023. We consider a social network in which car users change their car purchasing
behaviour based on the proportion of EV owned by their neighbours. This threshold is
heterogeneous amongst car users, with a low threshold representing ”innovators” who are
willing to adopt new technologies, whilst a high threshold corresponds to "laggards” who
will only consider moving away from the established technology once it is very common
in their network neighbourhood.

The result of the threshold model is that car users may not adopt EVs even if those
have high utility. This structure captures the gap between behaviour and attitudes
or beliefs in which car users may have sufficient desire (high utility) to pursue pro-
environmental behaviours but do not do so due to other limiting factors (Kollmuss and
Agyeman, 2002), such as the lack of an established social norm. Thus, it is possible for
car users to have a high willingness to pay for lower emissions and high emissions due to
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driving an ICEV. On the other hand, with policy intervention, social imitation dynamics
can amplify the policy effect by increasing the visibility of EVs (Konc et al., 2021).

Social interaction is structured using a small world network (Watts and Strogatz,
1998) to replicate word-of-mouth social interactions in highly clustered social circles where
neighbours are also likely to become friends. This network is formed by first arranging
car users in a ring, with each person connected to a homogenous number of nearest
neighbours, a fixed number of connections each to their nearest neighbours. Then the
symmetry of the network is broken up by introducing long-range weak ties across the
network through probabilistic re-wiring of connections.

4.2.3 Car supply

Manufacturers sell multiple car designs that are produced on demand. Stochastically,
they update the car types on sale and their respective prices in line with profit maximiza-
tion. For simplicity, we assume car manufacturers face constant production costs and
no capacity or financial constraints. With these assumptions, we ignore some relevant
aspects for the transition, such as carbon lock-in (Unruh, 2000; Unruh, 2002) or lack
of financial appetite from venture capitalists (Mazzucato, 2013; Mazzucato and Semie-
niuk, 2017). We choose this strong assumption based on the fact that the car industry is
formed by firms that are integrated in global supply chains and financial markets, while
our model is restricted to the local market.

Following the Segmentation, Targeting and Positioning framework (Kotler, 1989),
manufacturers supply car designs targeting a specific consumer segment. A consumer
segment is defined as a relatively homogeneous group of customers with particular needs
and preferences (Lynn, 2012). In this model, segments are formed on the basis of EV
acceptance, willingness to pay for quality and willingness to pay for emissions reduction.
These are relevant determinants of car choice after controlling for socio-demographic
attributes (Axsen and Kurani, 2013; Keyes and Crawford-Brown, 2018; Jang and Choi,
2021).

Technology choice and pricing

Manufacturers evaluate the expected profit at each consumer segment of each car type
using known technologies. The expected profit is given by the marginal profit, the segment
population, and the expected market share within the segment. This expected in-segment
market share depends on the attributes of the car and the state of competition in that
segment (over the last 12 months). Crucially, it is also consistent with the discrete choice
consumption model, where the price is defined to maximize expected profits.

The choice of car types being supplied is resolved heuristically. Manufacturers include
in their supply line the most profitable car targeted at a specific segment. Once the
segment is satisfied, the selected price is locked. The remaining segments are satisfied by
sequentially selecting the most profitable car, where the expected profits of unselected
cars targeted at their most profitable remaining segment are compared to that of the
selected cars with the profit-maximizing price for the selected segments. As a result, a
car may be produced to satisfy multiple segments at a single price if it outperforms other
designs.

By assuming that all manufacturers target all segments, we abstract from the brand-
reputation considerations. This simplification allows us to focus on the interaction be-
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tween innovation and adoption, especially in the context of transition policies in the car
industry. However, to encourage specialization into specific segments, we limit the num-
ber of cars that may be produced by a single manufacturer to below the total number of
segments and limit the number of technologies a manufacturer can retain in its memory.

Innovation

Stochastically, car manufacturers innovate and learn technology to produce a new car type
with unique characteristics. We use NK models to conceptualize innovation (Levinthal,
1997; Rivkin, 2000; Baumann and Siggelkow, 2013), see Appendix 4.E. In this frame-
work, technologies are distributed on a map where local movements lead to incremental
improvements in product attributes. NK models allow the representation of complex
technological landscapes with multiple local solutions, accounting for the path-dependent
nature of innovation. This assumption allows the capture of heterogeneous abilities to
adopt technologies, or absorptive capacity (Cohen and Levinthal, 1990), which are gained
with path-dependent experience (Nelson and Winter, 1977).

Manufacturers are engaged in a stochastic parallel search in the landscapes for ICEVs
and EVs. We limit innovation to the development of one single car, thus making the
choice to develop ICEVs or EVs exclusive. This choice is made based on the profit
expectation of using the candidate car, whose attributes are known to the manufacturer,
priced at its most profitable segment. Mirroring consumer car choice, firms use a logit
model to choose which innovative design to pursue, with an intensity of choice parameter
A that determines the balance of exploration and exploitation (Puranam et al., 2015).

As in previous studies (Jain and Kogut, 2014), manufacturers discard previously
searched solutions when forming the set of candidate technologies to explore. This set
contains all the unexplored neighbouring technologies with respect to the past search
location on each landscape. We include the past search location, allowing the possibility
of not searching if there are no attractive alternatives. Once a new design has been re-
searched and the memory capacity is exceeded, the oldest car design not in production is
forgotten. The limited memory capacity is a cognitive limitation whereby the searching
agent economizes cognitive power by forgetting unused solutions.

Used cars

The market for used cars represents the bulk of car purchases in the US!, providing an
affordable alternative to low-income users. This model chooses a parsimonious approach
for the representation of the market for used cars. Used car dealers are consolidated into
a single entity that sets the purchase and sale prices of used cars.

The sale price of a used car is a fraction of the price of its most similar car on the
market for new cars. The fraction is inversely proportional to the used car age, where the
price depreciation rate of EVs is larger than that of ICEVs (Schloter, 2022). The used car
purchase price is a fraction of its sale price, given by a fixed target mark-up that serves
as a proxy for the degree of monopsony in the market for used cars. Sale and purchase
prices have an exogenous lower bound representing the car scrap value. Cars with prices
lower than their scrap value are removed from circulation. To reduce computational cost,
we impose a maximum capacity on the second-hand market after which the cars with the
lowest value are removed.

IStatista
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4.3 Calibration and validation

We calibrate the model to the data for the state of California 2001 to 2023, where each
model time step represents a month. For summary of values used see Appendix 4.B and
for more details on data sources and justification see Appendix 4.C. All monetary units
are expressed in 2020 US dollars. The price and emissions per kilowatt hour of gasoline
and electricity during the validation period reflect real world monthly data, while the
distribution of monthly distance driven is taken from survey data. In the case of distance
travelled, we assume no rebound due to a change in car type (Zhang et al., 2025). We
extrapolate secondary data from previous studies to calibrate the willingness to pay for
range increases and emissions reductions, the boundaries of the car attributes in the
NK landscape (except for quality), the car scrap value, the discount rate, and the price
depreciation rate of used cars.

For other non-observable parameters, we follow past history-friendly models (Malerba
et al., 2008; Herrmann and Savin, 2017) in avoiding excessive calibration. Instead, we
fix the least sensitive parameters to some value at a reasonable order of magnitude and
perform the respective sensitivity analyses afterwards. This applies to the parameter
governing technological complexity, the research intensity of choice, the mark-up applied
in the used car market, and the diminishing returns to utility with respect to quality. To
capture the nuances between EV and ICE car production, we assume the battery size is
correlated to unit production costs by a coefficient of .5, such that increases in EV range
may come at a greater cost.

The remaining parameters are indirectly calibrated to replicate the trend of EV up-
take and percentage of EV sales in California (see California Energy Commission data).
Additionally, our indirect calibration keeps output variables such as prices, market con-
centration or average car age within the observed ranges described in Table 4.3.1. In
Figure 4.H.1, we show a representative distribution of the willingness-to-pay parameters,
distances and innovativeness values.

Table 4.3.1: Target variable ranges

Variable Range Source

Price for new cars 25th %: $32,359.41, 75th %:$57,784.66 (Grieco et al.,
2024, Figure

1)
Herfindahl-Hirshman index (.11-.18) (Grieco et al.,
2024, Figure

I1)
Average car age between (10-12) years Bureau of

Transporta-

tion Statistics

Based on the conducted Sobol sensitivity analysis, see Appendix 4.D, the key parame-
ters affecting our target variables are the distributions of the willingness to pay for quality
and of the imitation threshold, the consumer intensity of choice, and the fuel efficiency
depreciation rate. Since the willingness to pay for the quality parameter mostly affects
the price level, we determine its median value analytically in such a way that the optimal
price of an ICEV with average features targeted at a consumer with average willingness
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to pay equals the observed average price. Then, we distribute this value according to the
Californian income distribution, assigning a higher willingness to pay to richer agents.

For the users’ intensity of choice and the depreciation rate of car efficiency, we perform
a grid search to match the stylized facts of car price range and age, iteratively narrowing
the search space until matching the trends for EV uptake while keeping the other target
variables within their observed ranges. Lastly, a beta distribution is used to define the
heterogeneous values of car users’ EV consideration thresholds. Given the high computa-
tion cost of the ABM, simulation-based Bayesian inference (Papamakarios and Murray,
2016; Cranmer et al., 2020; Dyer et al., 2024) is used to calibrate the beta distribution
values to match EV uptake during the validation period.

We simulate a population of 3,000 car users and 16 car manufacturers (Grieco et al.,
2024). The model simulates a burn-in period of 15 years (180 time-steps) before the
validation period. The model is initialized with car manufacturers being placed at one
Hamming distance from the worst technology when evaluated at the median segment,
and car users owning a random car among those manufacturers can produce. During the
burn-in period, manufacturers improve and sell ICEVs, while EV search and production
is not permitted until the validation period.

In order to account for existing EV support policies, we feature a simplified version
of the federal and state rebate assigned to EVs (California Air Resources Board, 1990a;
California Air Resources Board, 1990c; California Air Resources Board, 1990b) from
2010-23, discounting a flat amount of $10,000 to new EVs and $1,000 to used EVs. In
addition, the implemented carbon taxes are already included in the imported prices for
gasoline and electricity. However, for the sake of simplicity, we do not model the existing
fuel efficiency standards or the EV sale mandates stipulated in the ZEV Californian plan.

Figure 4.3.1 shows the model projections for the validation on EV uptake and per-
centage of EV sales (top left), prices of new and used EVs and ICEVs (top right), market
concentration (bottom right), and average car age (bottom left). The simulated values
are the average over 64 Monte Carlo simulations. These plots validate our indirect cali-
bration exercise, given that the projections of EV uptake and sales closely match the real
data and that prices, market concentration, and average car age are mostly within the
ranges described in Table 4.3.1.

4.4 Policy experiments

4.4.1 Experimental setup

The objective of this research is to analyze policy programs aimed at achieving full
electrification of cars by 2035. In this study, we focus exclusively on taxes and subsidies.
While other policy instruments, such as regulations, standards, information provision, or
research collaboration programs, are relevant and necessary (Fagerberg, 2018), we limit
our analysis to policies where the budgetary impact can be easily quantified.

In this framework, car manufacturers and users immediately incorporate the policy
into their behaviour when making choices. However, we disregard the role of expectations
regarding policy stringency (Helm et al., 2003; Aghion, 2019). Policies are treated as
exogenous, ignoring the current state of the model, co-evolution of innovation, consumer
preferences, and the feasible policy space (Rubin et al., 2015; Wesseling et al., 2015).
We assume that the simplified federal and state-level rebate policies from the calibration
period continue in place.
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Figure 4.3.1: Simulation of key model outputs from 2001 to 2023. EV uptake and EV
sales, in percent (top left); Retail prices for new and used ICEVs and EVs, in dollars
(top right); Herfindahl-Hirschman Indez, in percent (bottom left); and, average car age,
in months (bottom right).

We consider the interventions listed below:

e Carbon price: The gasoline and electricity cost per kilowatt hour increases by $7
for each kilogram of CO2. This policy aims to increase the attractiveness of EVs
relative to ICEVs based on their lower emissions per kilometre while increasing the
public budget.

e Subsidy on EV charging electricity: The electricity cost per kilowatt hour is
subsidized by 75%. This policy aims to increase the absolute and relative attrac-
tiveness of EVs by decreasing the cost per kilometre. The subsidy only applies to
EV charging stations.

e Rebate for new EVs: The purchase price of new EVs decreases by $73, with
a zero-lower bound. This policy aims to increase EV adoption by reducing its
sale cost while increasing producers’ profits who incorporate the subsidy into their
price-setting function.

e Rebate for used EVs: The purchase price of used EVs decreases by $74, with a
zero-lower bound. This policy aims to increase EV sales among car users with high
environmental concern and low mobility needs and reduce total CO2 emissions by
minimising the production of new cars.

e Production subsidy: The production cost for manufacturing EVs decreases by
$75, with a zero lower bound. Like adoption subsidy for new cars, this policy is
expected to increase EV adoption and producers’ profits. However, this policy is
expected to induce a lower reduction on prices due to rent seeking.
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During the simulated future period, the prices for electricity and gasoline before pol-
icy implementation are fixed to the last observed data point. In accordance with the
Californian ZEV Plan, we assume a linear decarbonization of the electricity grid, such
that by the end of the policy period, emissions per kilowatt-hour of electricity are reduced
by 90% by 2035. The rebate on new and used cars implemented during the validation
period is removed in order to capture the fact that car sellers enjoy the rebate up to a
certain limit of sales.

The policy experiments are evaluated for the period 2024-2035 (144 time steps), ac-
cording to the ZEV mandate timeline. First, we individually simulate each policy in-
strument using grid search to vary the policy stringency. The grid search simulates 100
policy values for each instrument, ranging from 0 to the maximum values shown in Table
4.4.1. The maximum values were chosen to represent an extreme value in order to test
the limits of each individual policy.

Table 4.4.1: Maximum policy intensity evaluated in the single-instrument scenario.

Instrument Maximum intensity
Carbon price 15008/T'C O,
Subsidy on electricity 100%
Adoption subsidy for new cars $50, 000
Adoption subsidy for used cars $50, 000
Manufacturing cost subsidy $50, 000

Having evaluated the effect of the policy stringency on multiple measures, we calculate
the intensity of the policy required to achieve a target 95% EV uptake on average across
simulations, allowing for a 1% discrepancy. We employ a Bayesian optimization model
(Head et al., 2021) using a Gaussian process to build a surrogate model that predicts how
EV uptake responds to the intensity of the policy. The uncertainty about expected EV
uptake decreases with the number of simulation runs, where the selected policy intensity
value is chosen by maximizing the expected improvement acquisition function. In doing
so, exploration and exploitation are balanced by prioritizing large uncertainty and better
fit simultaneously.

The values obtained are used as boundaries to find policy mixes that achieve the target
uptake. For each pair of policies, the intensity of one instrument is fixed at 10 equally
distributed partitions of the optimal intensity. Using the same Bayseian optimization
method, we evaluated the intensity of the policy required by the pairing policy to achieve
the target uptake. This analysis excludes pairs that do not include policies that can
trigger a transition when implemented in isolation.

Finally, we show the transition path of each policy pair. The intensity chosen for each
combination is set to minimize the maximum intensity of the two, relative to its maximal
value detailed in Table 4.4.1. This approach is followed by the consideration that large
policy instrument intensities can be politically unfeasible or cause limit dynamics in the
real world that our model cannot address. Furthermore, some combination of policies can
produce positive synergistic effects (Bergh et al., 2021) that we aim to explore. In order
to test the stability of the transition, we remove the policy instruments after December
2035 and continue the simulation until December 2050.
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4.4.2 Policy results

Individual policies

Figure 4.4.1 shows the effect of each individual policy on EV uptake, net policy cost,
cumulative utility, and profits.
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Figure 4.4.1: Key model outputs for single policies.

At low values of the carbon price, the EV adoption proportion increases rapidly with a
lower marginal increase from approximately $300/TCO2, achieving a complete transition
at around $1500/TCO2. This high value indicates the magnitude of the behavioral change
required for a rapid EV transition. Government revenue increases with the carbon price,
but with diminishing returns as a result of higher EV uptake. The manufacturing of new
EVs necessary to reach higher uptake responds positively to the stringency of the carbon
price, yet with diminishing returns. The production of new EVs increases manufacturers’
profits and manufacturing carbon emissions, both cumulative over the period 2025-2035.
The increase in manufacturing emissions compensates for the reductions in gasoline use,
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leading to higher total cumulative emissions. Furthermore, users’ utility, cumulative over
the 2025-2035 period, decreases linearly with respect to the value of the carbon price.
This is due to the strong negative effects of higher gasoline prices on non-EV-adopters.
As a result, despite being the most effective instrument, the carbon price faces severe
political feasibility risks reported earlier in the literature (Savin et al., 2024).

The electricity subsidy does not achieve 95% EV uptake for any value. However, EV
uptake increases linearly with the electricity subsidy, achieving an uptake of 60% with
free electricity. The budgetary impact of the policy is less than other policies due to the
high fuel efficiency of EVs and the smaller policy impact on uptake. Given that the policy
is insufficient to trigger a substantial production of new EVs, cumulative CO2 emissions
decrease with the size of the subsidy. In this case, the larger manufacturing emissions do
not offset the CO2 savings from lower gasoline use. Furthermore, both cumulative utility
and profits linearly increase with the subsidy, the former being more reactive than the
latter.

In the case of both the carbon price and the electricity subsidy, the policies affect
all car users at all time steps, increasing the impact on utility relative to at-sale policies
such as rebates or production subsidies. However, this is counteracted by the high annual
discount rate used of 5% (Busse et al., 2013; Greene, 2010), which limits the utility gains
EVs have in their long-term behaviour caused by their high efficiency and lower operating
costs.

The rebate for new cars increases EV uptake linearly before reaching 95% EV adop-
tion. However, high rebate values causes users to purchase new EVs more often as their
price is highly subsidized by the government. As a result, the total cumulative policy cost,
the manufacturing emissions, and manufacturers’ profits increase more than linearly with
respect to the rebate size. In contrast, consumer utility increases linearly and reaches a
maximum at the point where the rebate covers the full price of new EVs. These outcomes
challenge the feasibility and usefulness of the policy.

In the case of the rebate for used cars, the lack of a pre-existing sizeable stock of
used EVs makes the policy highly ineffective, having a negligible impact on any of the
outcomes.

The production subsidy has similar effects than the rebate for new cars, since both
policies directly affect the price of new EVs. However, its effects are milder as manufac-
turers are more able to capture rent. Due to higher retail prices, EV uptake does not
reach 95% for any production subsidy value. However, the policy-induced uptake at high
subsidy values exceeds 90%. The subsidies on manufacturing costs lead to lower turnover
of EVs compared to the adoption subsidy for new cars, resulting in lower policy-induced
increases in cumulative policy costs, CO2 emissions, users’ utility, and manufacturers’
profits.

We calculate the required policy stringency to achieve the uptake target of 95% on
average in different stochastic seed simulations. Table 4.4.2 shows the key outputs from
the policy intensities compared to the business-as-usual (BAU) scenario.

Our model demonstrates that a 95% EV uptake by 2035 is possible with a carbon
price of 910$/TC' O, or with a rebate for new EVs of $36875.57. The suggested value for
the carbon price is high relative to some estimates of the social cost of carbon (SCC) but
not unheard of (Moore et al., 2024; Bilal and Kénzig, 2024). Likewise, that of the rebate
for new cars is substantially larger than the currently implemented rebates worldwide,
usually ranging between US$2500 to US$20,000 Hardman et al., 2017.

Beyond the difficulty of undergoing a highly stringent intervention, each of the poli-

84



Table 4.4.2: Outcomes of single policies at minimum intensity achieving a 95% EV fleet

BAU Carbon Price EV Rebate (new)

EV Adoption Proportion, (o) 0.171 (0.209)  0.954 (0.072) 0.950 (0.046)
Intensity - 910 $/TCO, $36875.57
Cumulative Net Cost, bn USD 0.000 -0.049 0.510
Cumulative Emissions, MTCQO2 120.95 133.53 264.76
Cumulative Emissions (Driving), MTCO2 99.94 58.87 49.78
Cumulative Emissions (Production), MTCO2 21.01 74.66 214.98
Cumulative Profit, bn USD 0.025 0.066 0.124
Cumulative Utility (2030), bn USD 3.688 2.410 4.015
Cumulative Utility (2035), bn USD 7.291 6.008 8.197

cies face political feasibility challenges. Mainly, the carbon price induces lower cumulative
consumer utility with respect to the BAU scenario, both in the short and in the medium-
run, while the rebate for new EVs leads to large policy costs. Furthermore, both policies
result in a net increase in cumulative emissions due to the transitional large-scale deploy-
ment of EVs. This effect is almost double with the EV rebate. However, the fact that
the driving emissions in both cases are lower than in the BAU scenario indicates that the
rebound effect is transitional.

As a consequence of the trade-offs highlighted in the outcomes for the single policies
studied, we now consider how policy mixes of two instruments may fare better in negating
their individual weaknesses. Additionally, we consider whether synergies between policies
may help reducing their stringencies to more politically palpable levels.

Policy pairs

This section discusses the implications of combining policy instruments. To this end,
we compare the cumulative emissions resulting from each policy combination with their
respective cumulative utility and net policy cost in the scatter plots shown in Figure
4.4.2.

The first key observation is that no policy scenario achieves lower cumulative emissions
than the BAU scenario by 2035. This is due to the necessary large-scale production of
EVs required to reach 95% uptake, which offsets the emissions reduction from lower
gasoline use. In the case of pairs including rebates for new EVs, except when combined
with a carbon price, these larger emissions are exacerbated due to an overproduction of
cars.

The second key observation is that no policy achieves higher utility than in the BAU
scenario and a net surplus. However, there are policy combinations that improve con-
sumer utility with respect to the BAU scenario at moderately low policy costs. This is
mainly the case for combinations with a small carbon price or for the combination of
electricity and production subsidies.

A third observation is that policy combinations achieve substantial reductions in the
policy intensity of both instruments, thereby improving the political acceptability of the
transition. This is particularly true with policy pairs involving a carbon price, a rebate
for new EVs, or a production subsidy.

Figure 4.4.2 also shows how instruments interact with one another in minimising the
implied trade-offs exposed in Table 4.4.2. Adding an electricity subsidy to the carbon
price can substantially mitigates utility losses, despite not improving on the BAU sce-
nario. Furthermore, by reducing the intensity of the carbon price, this combination also
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mitigates the policy-induced increase in manufacturing emissions, achieving the lowest
cumulative emissions of all policy pairs. This is because the carbon price initially spurs
a first production wave of more efficient ICEVs, and after a second production wave of
EVs, once social diffusion dynamics take place with EVs becoming more widely consid-
ered. With the introduction of an electricity subsidy, the first wave of efficient ICEVs
is minimized due to the lower intensity of the carbon price. Additionally, the positive
incentive on EV use driven by the electricity subsidy aids in its early diffusion, thereby
avoiding an intermediate wave of new efficient ICEVs. It is also worth noting that these
improvements in consumer utility and CO2 emissions do not cause a net policy cost. The
budgetary impact of the electricity subsidy is relatively small due to the high efficiency
of EVs.

Combining a carbon price with a rebate for used EVs has similar, yet weaker effects.
Supporting the market for used cars leads to reductions in total emissions, relative to
solely the carbon price, as it decreases the turnover of new EVs. Furthermore, it leads
to higher consumer utility for the users who buy these cars, who are often car users with
lower income. With a low intensity of the rebate for used EVs, the cumulative emissions
and the net policy cost are minimized due to the lack of rebound effects. However,
when compared to the combination with the electricity subsidy, the impact of the rebate
for used EVs is worse across the three evaluated dimensions. This is due to both the
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constraint stock of used EVs and the one-time utility boost at the purchase decision,
whereas the electricity subsidy affects all EV users at all time steps.

The combination of a carbon price and the production subsidy achieves a substantial
reduction in the intensity of both instruments. At a relatively low policy cost and rebound
effect, adding a production subsidy can fully mitigate or offset the decline in utility caused
by the carbon price. This is due to the reduction in the price of EVs and in the carbon
price intensity. However, unlike in the case of the pairs commented earlier, adding a
production subsidy to the carbon price leads to an increase in emissions due to the
higher production of EVs.

A carbon price and new EV rebate leads to substantial decreases in both policy
intensities, mitigates or overcomes utility losses, and causes moderately low policy costs
and rebound effects. Compared to the combination with the production subsidy, the
induced rebound effect and the net policy cost are smaller. This is counter-intuitive
because the rebate for new EVs leads to a stronger price reduction than the production
subsidy. However, because the effect of the policy on prices is stronger, it allows for a
lower intensity of both policies. Therefore, the over-production of efficient ICEVs and
new EVs is mitigated.

While the described policy pair examples show how instruments can mitigate the
undesired outcomes of the transition by exploiting complementarities, the case of the
production subsidy combined with the new EV rebate demonstrates that this is not always
the case. When combined, both the cumulative emissions and policy costs substantially
increase without improving consumer utility compared to the case where only the new
EV rebate is being used. This is because the price for EVs reaches a zero-lower bound,
and additional subsidies only boost manufacturers’ profits.

The pair of electricity subsidy and rebate for new EVs minimizes the policy-induced
rebound effect and the policy cost, while marginally increasing utility. This effect is
stronger as the subsidy for electricity increases. The reason for this absolute improvement
is that the incentives provided by the electricity subsidy help reducing the intensity of
the rebate for new EVs required to meet the adoption targets. As a result, the over-
production of new EVs is avoided, resulting in less manufacturing emissions and rebates
paid.

As in the case of electricity subsidies, adding a rebate for used cars to the new car
rebate decreases costs and emissions while keeping utility equal to solely the new car
rebate. More specifically, the rebate for new and used EVs is only effective when the
rebate for used cars is small. The rebate for used EVs must be sufficiently large to make
some users prefer used EVs over new ones. However, when its intensity is too high, it
supports the rebound effect by increasing the overall car turnover.

By allowing for policy pairs, the combination of electricity and production cost sub-
sidies can meet the target uptake despite of not doing so when implemented in isolation.
This combination achieves the highest cumulative consumer utility with cumulative emis-
sion and policy cost levels akin to those obtained with carbon prices combined with new
EV rebates or production subsidies. The performance of this combination is improved
in all three dimensions when the intensity of the electricity subsidy is stronger than that
of the production subsidy. This is because a lower intensity of the production subsidy
mitigates the over-production of EVs, thereby leading to lower manufacturing emissions
and subsidies paid. Additionally, subsidizing electricity has a greater impact on utility
due to the assumed lack of rent-seeking behaviour by energy providers.

Finally, for each of the 8 policy pairs that achieve the EV adoption target, we identify
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the transition path corresponding to the intensity combination that minimizes the maxi-
mum relative intensity of the two instruments. Specifically, this combination ensures that
the highest relative intensity (as a proportion of its maximum value) between the two
instruments is minimized. In Figure 4.4.3 we show the time series of each selected policy
for the EV share (top left), the new and used car prices (top right), the flow and cumu-
lative emissions (second row), consumer utility (third row), the average car age (bottom
left), and the cumulative net policy cost (bottom right).
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Figure 4.4.3: Policy mix trajectories to 2050 with confidence interval obtained over 64
Monte Carlo simulations.

We remove the policy instruments in 2035 and run the projection until 2050 in order
to verify that the policy-induced transition remains stable. The top left panel shows that
regardless of the policy used, EVs remain the preferred option after public intervention
stops. Furthermore, the panel shows a slow adoptions of EVs under the BAU scenario,
where by 2050 the uptake slightly exceeds 40% and the proportion of total sales are 60%.
This motivates the need for present-day policy interventions.

The average retail price of EVs converges to a stable value once the policies are
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removed. One can observe in the top right panel that the long-run average price of new
and used EVs is lower than the BAU scenario for all transition policies. This is caused
by two factors. First, the accelerated transition enables more research in EVs, leading to
superior technologies. Second, because the entire population uses EVs, firms offer cheaper
designs to satisfy low-income customers, whereas in the BAU scenario, EVs are targeted
at high-spending segments. Interestingly, in the case where the production subsidy and
the rebate for new EVs are implemented, the EV price is higher than in the other policy
pairs after the incentives are removed. This indicates that under this policy, innovation
seeking cost reductions is not promoted, because the price that car users pay post-rebate
is nearly zero, they do not lead to higher profits.

In the long term, all emission flows converge to below the BAU due to the high EV
uptake, see second row to the left of Figure 4.4.3. Additionally, we observe that all policies
except the combination of production subsidies and the rebate for new EVs achieve lower
cumulative emissions than the BAU before 2044. The differences in cumulative emissions
are mainly caused by the manufacturing emissions induced during the policy time. After
removing the incentives, the flow of emissions is similar in all cases due to the fact that
the assumed 90% electricity grid decarbonization reduces the relevance of fuel efficiency
in terms of emissions. We observe that the flow of emissions decays at a slower pace when
the policy combination includes a production subsidy. This is due to the fact that price
adjustment is slower as price adaptation is sluggish. Therefore, the price adjustment
after removing the policy takes longer to converge with the other policies, as one can
observe in the top right panel of Figure 4.4.3. This effect is proportional to the size of
the production subsidy.

During the early policy period, the flow of utility of policy pairs including a carbon
price is much lower than that of either the BAU or subsidy policies. Even in the best-case
scenario, the yearly utility does not catch up to the BAU until 2031, which may result in
a period of sustained political pressure to roll back the carbon price due to its perceived
economic burden. Notably, all three combinations of policies that include an electricity
subsidy produce a high yearly utility. After 2035, consumer utility gradually declines
due to the increasing age of the car fleet. However, after removing the incentives the
converging utility flow is larger than in the BAU scenario due to the higher adoption of
EVs. Crucially, in the long run the cumulative utility resulting from an EV transition is
higher than the BAU scenario in all cases except for the combination of the carbon price
and the rebate for used EVs.

In all policy scenarios that achieve the EV uptake target, the car age drops substan-
tially with respect to the BAU scenario due to the renewal of the car fleet. However,
after removing the policies, the average car age exceeds that of the BAU in all cases.
This lower replacement rate is due to fact that EVs have much higher efficiencies than
their ICEVs counterparts. Thus, car users have little reason to buy new cars when used
cars are of a high calibre. In addition to indicating higher satisfaction for EVs, the fact
that EVs are kept for longer contributes to sustainability by lowering the manufacturing
emissions.

On the one hand the only policy package that achieves a net surplus is the combination
of a carbon price with an electricity subsidy. On the other hand, the rebate to new
EVs with a production subsidy leads to an undesirable four-fold increase in policy costs.
Intermediate costs are found in all other combinations, with pairs including carbon price
having lower costs. Notably, in the case of the carbon price and used-car rebate costs are
encountered towards the end of the transition as the stockpile of used EVs finally begins
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to accumulate, facilitating EV purchases for lower-income car users through the rebate.

From our simulation experiments, we derive several key results. First, policy combina-
tions can improve the political feasibility of the EV transition by reducing the intensities of
policies and minimising their induced negative impacts. Counter-intuitively, the addition
of supplementary policies to a carbon price can lower the induced emission rebound effect
from social locking whilst mitigating medium-run utility losses at a relatively low cost.
In the case of the rebate for new cars, some combinations reduce emissions, with respect
to the single policy, and policy costs without substantially affecting utility. Furthermore,
the pairing of production and electricity subsidies appears as a suitable alternative de-
spite of the fact that neither of the instruments can achieve a 95% EV transition when
applied in isolation.

A second takeaway we obtain from our results is that, before 2035, all transition poli-
cies entail drawbacks. The required large-scale deployment of EVs causes an increase in
manufacturing emissions that exceeds the savings in gasoline use. Furthermore, all poli-
cies lead to either losses in cumulative utility or net policy costs. Therefore, policy makers
must allocate a budget to the EV transition or face political pushback on implemented
policies.

As a third point, in the long run and after removing the incentives, successful tran-
sitions remain stable, and the flows of each variable converge. In the aftermath, the
transition to EVs leads to a scenario where EVs are cheaper and are kept for longer,
consumers are more satisfied, and mobility is less polluting.

4.5 Conclusions

In the pursuit of light transportation decarbonization, this paper proposes an agent-based
model (ABM) to examine the complex interplay between consumer adoption, firm inno-
vation, and policy incentives in the transition to electric vehicles (EVs). We build upon
previous literature studying EV transitions by analysing policy outcomes in an ABM
integrating discrete choice models, social influence dynamics, a used car market, endoge-
nous pricing and directed innovation through an NK framework. By integrating these
submodules, we replicate the complex dynamics between car users and manufacturers
that are key in the diffusion of innovations. The model is calibrated on the time frame
of 2001-2023 in California, with a policy road map considered until 2035. Our study
addresses the following research question: what policy combinations, that meet adoption
targets can best balance the trade-offs between costs, emissions, and consumer utility?

To answer this question, we simulate a battery of policy instruments to fuel EV adop-
tion, including a carbon price, an electricity and production subsidy, and a rebate for
new and used EVs. When implementing single-policy packages, only the carbon price
and the rebate for new EVs achieve the 95% target uptake. However, each policy faces
severe feasibility challenges due to the high policy intensities required. Moreover, both
lead to cumulative emissions greater than the business-as-usual scenario (BAU). In the
initial phases of the mobility transition, the scaling of EV production leads to a surge in
manufacturing-related emissions, temporarily offsetting reductions from decreased gaso-
line use. Therefore, we identify the following policy trade-offs: the carbon price generates
a surplus but causes a collapse in consumer utility, whilst the rebate for new EVs leads
to large policy costs and maximizes the induced emissions rebound.

In order to mitigate these downsides, we explore policy combinations involving two
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instruments. By introducing pairs of policies, the intensity and negative outcomes of the
carbon price or the new EV rebate can be minimized. Furthermore, the combination of
production and electricity subsidies becomes an alternative to meet the uptake target
despite their ineffectiveness when implemented in isolation. These results highlight the
importance of exploiting instrument complementarity when formulating policy packages
in order to reduce rebound effects and short to medium-term trade-offs. Furthermore,
we find that not all policy pairs produce positive synergies. In the case of a rebate for
new cars and production subsidies, the results are simply greater policy costs and larger
emissions with no increase in consumer utility.

In order to test the stability of the EV transition, we simulate the projections until
2050 after removing the incentives in 2035. Once the transition is consolidated, the
system converges to a lower flow of emissions and higher utility regardless of the policies
implemented to achieve the desired uptake. Ultimately, the widespread diffusion of EVs
leads to lower car costs, longer lifespans, increased consumer satisfaction, and reduced
pollution from mobility.

Looking ahead, the limitations in the model provide key areas for future research.
Firstly, the study of policy combinations in this paper is not exhaustive. Further positive
synergies can be found by studying policy mixes including more than two instruments.
In addition, other policies may be included in the analysis by improving upon limitations
in the model where simplifications have been made.

The expectation formation of users and manufacturers is a fundamental area of fu-
ture research. Incorporating more sophisticated forecasting techniques and factoring in
expected regulation can crucially modify investment and purchase decisions. By doing
so, other policies such as standards and regulations or joint research ventures could be
assessed within this framework.

Another limitation of our model is the lack of financial and physical constraints.
Financial markets are a crucial institution for the large-scale adoption in EVs as they
determine the ability of manufacturers to invest in R&D and the required capital for
EV production. Physical constraints also play an important role as they limit the speed
of EV deployment due to the necessary build-up of productive infrastructure and car
stocks. Future research should incorporate capital costs of switching production and
a supply model with an explicit representation of production planning and inventory
management.

Future research could also incorporate the implications that EV production has on
material dependence by endongeneizing the cost and emissions associated to the inputs
required for EV production. This would allow studying the implications of innovation on
material use efficiency as well as the inclusion of a carbon-border adjustment mechanism
to price in imported production emissions.

Given that the results of our simulations indicate that emission reductions, relative
to the BAU scenario, are only achieved in the long-run, we endorse the study and imple-
mentation of alternative policies to minimize car dependence, in both use and ownership.
This includes the promotion and improvement of public transport infrastructure, urban
re-design aimed at reducing mobility needs, or car sharing schemes to lower car owner-
ship. Moreover, future research should address the price responsiveness car users have in
their driving choices. The simultaneous study of urban design to reduce car dependence
and price responsiveness in mileage is a promising research avenue as the distance driven
becomes more elastic when car mobility needs are minimized.

The absence of sophisticated expectation formation, financial constraints, and supply
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chain dynamics means that our analysis does not fully capture real world barriers to
rapid EV deployment. Crucially, our findings reinforce that a singular focus on replacing
internal combustion engine vehicles with electric vehicles is insufficient to achieve deep
decarbonization of transport due to persistent production emissions. Policies must also
target the root of the problem: an over-reliance on private car ownership and use.

As a final note, policy makers must apply more stringent policies in order to achieve
a quick transition to EVs with cleaner mobility. We strongly encourage exploiting pos-
itive synergies between policy instruments to improve the political acceptability of the
policy and minimizing rebound effects. However, our study demonstrates that a fast and
ambitious reduction in carbon emissions requires tackling the root of the problem: an
over-reliance on private car ownership and use.

Code availability statement

The model code and documentation are available at:
www.github.com/danielTorren/endogenous_innovation_and preference_change
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Appendix

4.A Model equations

4.A.1 Car users

The set I collects all car users, each of them being indexed by 1.

Car choice

With probability € (0, 1), car users are activated to consider replacing their car. Given
that cars in the second hand market can only be bought once, consumers are activated
sequentially in a random order to make car choices and the stock of used cars is updated
accordingly.

The alternatives a user considers include the users’ own car, all new and used ICEVs
on sale, and all new and used EVs if the user considers them. Equation 4.1 defines the
set of cars a user considers as alternatives (A;;):

J{veVitvg =iV, =0tuY; if z, =1
i {veVii(u=iVu,=0)Az,=0U{yeY,:2,, =0} if z,,,=0

(4.1)
Where the set V; defines the stock of active cars and the pointer v, ; returns the car users’
ID, or 0 if the car is in the market for used cars. The set Y; contains all new car designs
on sale. A crucial difference is that, given that this model assumes production takes place
on demand, each new car designs on sale is represented by a vector of attributes and a
sale price, but does not represent an actual car. Only when a new car is bought the car
of a given design y € Y, is produced and included onto the set of active cars V; with a
unique ID v. The binary statements z,; or 2, respectively indicate that the car v or the
design y corresponds to an EV, while the binary statement z;, indicates that the user ¢
considers EVs. Note that, with probability 1 — 7, the set of considered alternatives only

includes the users’ own car.
Equation 4.3 describes the utility a user derives from a car alternative:

Ua,i,t = Bz Zl,t + V(Ba,twa,t(l - 50L,15)La’t)C - "YiLCEa,i,t - LCCa,i,t (42)
_ {_Pa,t + Pit = YiBa + BiQS + V(Bagwas(1 = 8)Per)¢ — DAFDE 0ot thicos) g 4y, 2

wa,t(r_éa,t_'f'lsa,t)

ﬁngt + v(Bgway(1 — 5a,t)L“’t)< _ Di(1+”')(1—6a,t)(ca,t+7i€a,t) if Vg =i

wa,t('f’_(sa,t_"'(sa,t)

(4.3)

The parameter [3; represents the idiosyncratic willingness to pay, in dollars, a user assigns to
the car quality (Qq:) with diminishing returns scaled by o > 0. Similarly, the parameter v
denotes the dollar willingness to pay for car range with diminishing returns scaled by ¢ > 0.
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The range of a car is expressed as the product of its fuel tank (ICEV) or battery size (EV),
denoted by B,; and expressed in KWh, and its fuel efficiency, denoted by w,: and expressed
in kilometres per KWh. We assume a car’s fuel efficiency suffers from depreciation at a fixed
monthly rate d,¢, which is specific to the car type (ICEV or EV). In calculating the present
fuel efficiency of a car, we express the car age in months with the variable L, ;.

The parameter ; represents the idiosyncratic willingness to pay, in dollars per kilogram of
CO2, for carbon emissions reductions. In the utility derivation, this multiplies the expected
lifecycle emissions of a car, expressed by LC'E, ;. These can be decomposed by the type-specific
manufacturing emissions (E, ), which are only considered if the evaluated car is new, and the
expected lifecycle emissions from fuel or gasoline use. These depend on the user’s idiosyncratic
monthly distance driven, expressed in kilometres per month and denoted by D;, on the car’s
fuel efficiency, and on the emissions per kilowatt hour of gasoline (ICEV) or electricity (EV),
denoted by e, ¢, whose expected values into the future equal its most recent value. Emissions
resulting from future driving behaviour are discounted in the utility derivation by a monthly
discount rate r > 0, see Appendix 4.F for derivation.

Similarly, consumers consider the lifecycle costs of a car, which are denoted by LCCy ;. The
variable P, ; denotes the purchase price of the evaluated car, taking a value of zero if the car
is owned by the user. If the user is evaluating a car other than its own, it deducts from the
purchase the price at which it can sell its own car, denoted by 13” The user also calculates
the discounted cost form gasoline or electricity use, which has the same form as the discounted
driving emissions and uses the naive expectations of the cost per kilowatt hour of gasoline or
energy, expressed by cg ;.

The pointer 1; ; returns the car chosen by a user from its considered set of alternatives. The
probability an alternative is chosen its proportional to its associated derived utility relative to
the other alternatives, as described in Equation 4.4:

exp(kUy i t)
A;
> as0exp(kUqit)

Where k > 0 indicates the intensity of choice. A value of k = inf indicates users are utility
maximising, whilst on the other extreme, for k = 0, they choose cars randomly with equal
probability.

Pr(vis=d € Aiy) =

i Vg i (4.4)

Social imitation

After all car ownership choices have been made, users re-evaluate their willingness to consider
an EV. This is governed by the idiosyncratic imitation threshold x; € (0,1), expressed as a
minimum share of adopter neighbours required for the user to consider adopting. The population
subset H; C I collects user i’s neighbours. This set is obtained from a Watts-Strogatz network
with the small-world property to replicate word-of-mouth social interactions in highly clustered
social circles where individual neighbours are also likely to be connected. We denote with
VZIt{ C V; the subset of active cars that belong to car users in ¢’s network, as defined in Equation
4.5.

Vlg ={veV,:v,; € H;} (4.5)

Equation 4.6 uses this set to determine whether an individual considers buying EVs, as a
function of the share of EV users in i’s network:

o Vil iz, =1}

74, > .

vy = LT AT 2 X (4.6)
0 otherwise
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4.A.2 Car supply

The set J collects all firms, each of them being indexed by j.

Market segmentation

Amid consumer heterogeneity in a multi-attribute market, firms segment the market into groups
of representative consumers to effectively choose the features of their products and the optimal
prices. They do so by building a representative consumer profile for each segment. Each segment
s € S is characterized by preference parameters (s, s, Vs) and the binary statement indicating
that the segment considers buying EVs (zs). The preference parameters correspond to the
R-tile value of the population, where the parameters R?, RY and RY indicate the number of
partitions in the parameter space. The population subset I;; C I includes the users whose
preferences correspond to those defined in segment s.

Technology choice and pricing

The set of technologies to produce car designs known to a manufacturer is denoted by Mj,
which is a subset of all existing technology M defined by the NK landscapes for ICEVs and EVs
(M = MCF U MFEV), see Appendix 4.E.1 for more details. Each technology m is represented
by a vector of car attributes and its corresponding coordinates in the NK landscape.

The estimated profit in segment s using a technology m at some price P is denoted by 11, s ;
and defined in Equation 4.7:

(P - Cm,t)‘Is,t‘eXp(ﬁUm,s,t)
exp(kUm,s,t) + Wiy

(P, st = (4.7)

Where U, s is the lifetime utility the car representative consumer with preferences 3, s,
the unit production costs are denoted by C,,; > 0 and W, indicates the expected state of
competition in sector s. This indicator equals the moving average over the last 12 months
of the sum of lifetime utilities in the new car market adjusted by the intensity of choice, as
described in Equation 4.8:

Wst:

)

12 (4.8)

218 Yomeviey om0 €P(Ums) /12 if 24 =0
213 2 mey; XP(KUmst) /12 if x5 =1

Notice that for segments that serve clients who do not consider EVs, only ICE cars are included
in this metric.

For each segment and each known technology, firms define an optimal price (P, ;) that
satisfies expected profit maximization, as defined in Equation 4.9, see Appendix 4.G for deriva-

tion:
W<exp (KU, s (P =Cpmy)) — 1) /Ws,t>

KR

syt = Ot + — + (4.9)

Thus, the optimal profit function may be broken down into 3 components: the production cost,
a bounded rationality aspect which tends to 0 as car users become perfectly rational (k — 00)
and a market advantage component which increases with the superior of a car technology over
the state of the past market competition in that segment.

Firms update their supply line and prices with probability 6 € (0, 1), accounting for frictions
in production, price rigidities, or delays in obtaining information on the segment population.
When making supply decisions, firms use at most one technology per segment, a simplification
justified by strategic considerations to avoid intra-firm competition. Choosing the product
mix and the target segments that determine prices is a complex problem that firms resolve
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heuristically. Firms rank potential cars within each segment using a car-segment-specific optimal
price. They then iteratively select the most profitable car-segment combination, fixing its price
across all relevant segments before moving to the next best option. As a result, a car may
be produced for multiple segments at a single price if it outperforms other choices. Formally,
define a S x |M;;| matrix containing the expected segment profit for each known technology
(Mj; C M). Car variants are sequentially added into Yj; and accordingly priced using the
algorithm below:

1. Activate algorithm with probability 8, else end.

2. Denote with m/ and s’ the column m and the row s corresponding to the cell with the
highest expected profit.

3. Include an element y in Y} ; with the features of technology m € M ; and the price P}, .
4. Delete the row s'.

5. For the elements in column m’, lock the price at P ,, and update the expected profit
values accordingly (ILs s +(Ps/m/t))-

6. Repeat steps 2 to 5 until |Y;;| = Y or until the matrix is empty.

Where Y™ > 0 is a cap on the number of car variants a manufacturer can simultaneously
offer. This cap suggests that manufacturers are constraint in their degree of diversification due
to strategic considerations such as brand-reputation.

Innovation

With probability ¢ € (0, 1), manufacturers seek innovations to expand the set of known technolo-
gies, reflecting that innovation attempts may not be successful in becoming a novel technology
(Nelson and Winter, 1977; Dosi et al., 2010). When innovating, manufacturers build a list of
candidate technologies to develop (M. ﬁtD ). The list of candidate technologies is formed by the
unexplored technologies at a local distance (1 Hamming distance from the NK coordinates) with
respect to the last explored technology in the ICEV (m]I(tJE € M'CF) and the EV (mftv € MEV)
landscapes. Additionaly, the set of candidate technologies includes the current search locations
on each landscape to allow firms to not research if the alternative candidate technologies render

insufficient profit. Equation 4.10 formally defines the list of candidate technologies:

N
Mj{%tD = {m S MEV \ ijt—l : Z ’d)n,m’ - ¢n,m| = 1}
n=0
ICE al (410)
U {m eM \Mj:t—l : Z |¢n,m” - d’n,m‘ = 1}
n=0

U {m/, m//}

Where ¢, ,,, defines the coordinates of a technology m on each of the n dimensions of the N K
landscape.

The probability of selecting a technology from the list of candidate technologies is propor-
tional to its relative expected profit. The variable 117, ; returns the expected profit assigned to a
technology m optimally priced in its most profitable segment. Denoting the selected researched

technology with mftD , Equation 4.11 defines its selection probability probability, conditional on
probability ¢:
exp(AIT*, . .)
RD RD »Jht
Pr(mjy =m' € Mj;”) = MED = . (4.11)
meo exp()\Hm7j7t)
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Where the parameter A > 0 indicates the research intensity of choice. The lower the A, the less
likely a firm is to get stuck in a local solution, but also the less likely a firm selects the best
solution. This method has been widely used in the literature as a way to balance exploration
and exploitation, which is a common issue in complex search problems (Puranam et al., 2015).
Following this step, the search locations in each landscape are updated to the newest car
technology researched,
Eg/ _ mftD if mftD e MEV
I mfxl if mftD ¢ MFV

108 _ {mftD it mfiP € M1CF

Jit ICE RD ICE
m;ys if m;y ¢ M

(4.12)

m

Finally, the searched technology is added to the set of known technologies. If the firm exceeds
its memory capacity (M™ > 0), the oldest technology to be searched not in production is
forgotten. Firm’s limited memory capacity is a cognitive limitation whereby the searching
agent economizes cognitive power by forgetting unused solutions. This limitation has been
widely studied in heuristic search algorithms inspired in animal behaviour (Tang et al., 2012).
We define a timer 7}, ;; in Equation 4.13 for this purpose:

4.13
0 if m:mftD\/yEYj,t (419

T jt(m € Mjy) = {

Hence, the set of known technologies is expressed as in Equation 4.14:

My if mftD € M1
My = q Mjp1 U {mBEPY\ {argmax,enr T} i [Mjea| = M* (4.14)
My U{mfiPY if [Mjea| < M*

Used cars

The market for used cars represents the bulk of car purchases in the US?, providing an affordable
alternative to low-income users.

This model chooses a parsimonious approach for the representation of the market for used cars.
Used car dealers are consolidated into a single entity that prices cars based on the market
price of the most similar car in the market for new cars, thus implicitly accounting for market
segmentation.

When considering buying a car v € V; : v,; # 0, the second-hand dealer targets a markup
w > 0. Despite the simplification that used car dealers are consolidated into a single entity,
the parameter u serves as a proxy for degree of monopsony in the market. Thus, under perfect
competition (4 = 0), the used car dealer buys a car at a price equal to its estimated selling
price, denoted by E(P;+), whereas a perfect monopsony (p = 0o) buys cars at their scrapping
value, which we assume to be a fixed constant F > 0. If the estimated sale price of a car is
lower than its scrapping value (F), the buying price becomes the scrapping value. Equation
4.15 defines the price the second hand merchant offers for a car v:

F o E(P;+)
P,; = MAX (F oy u)) (4.15)

For the calculation of the expected market price, the used car dealer uses as a reference the
price of the car in the new market with the most similar features. The reference price is denoted
by ng . and defined as in Equation 4.17:

Pl =Py, (4.16)

2Statista
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y' = argmin Dot — Wyit-1 + vt — Qyi-1 + Byt — Byt
Y MAX (wyi—1 0y € Yi1) | [MAX(Qyi—1:y € Yie1) | |MAX(By—1:y € Yi_1)
(4.17)

Where car features are normalized to ensure both dimensions are in the same order of magni-
tude. The expected market price of a car owned by an individual i is a fraction of its reference
price. This fraction is given by its monthly type-specific price depreciation (&,¢) (Schloter,
2022), as Equation 4.18.

E(Pys) (v # 0) = PL(1— €,0) " (4.18)

The quality and price depreciation monthly rates feature different values because price adjust-
ments do not map one-to-one the quality decay. Given our parsimonious representation of the
second-hand market, we parametrize with p and £ the off-model dynamics.

Likewise, Equation 4.19 defines the actual sale price of a used car:

Py (o = 0) = PL(1 = &) (4.19)
The used car dealer scraps all cars whose sale price is lower than the scrapping value. Therefore,

the set of active cars V; increases with the purchases of new cars and decreases with the scrapping
of old cars, as defined in Equation 4.203:

1
Vi =Vig [J{wis € Vi3 \{v € Vi1 : Py < Fupy = 0} (4.20)
=1

4.B Model parameters and variables

Table 4.B.1: Parameters

Symbol Name Description Value Units Source
n Car pur- Probability that a 8.3 Percent -
chase con- car user considers
sideration purchasing a car.
probability
r Discount Monthly  discount 0.165 Percent (Greene,
rate rate used to de- 2010; Busse
rive the consumer et al., 2013)
surplus.
Q@ Quality Factor  controlling 0.5 - -
diminishing the diminishing re-
returns turns to scale for the
factor contribution of car

quality to the total
willingness to pay.

3To reduce computational cost we impose a maximum capacity of V1 the second hand market,
nonetheless the market size remains an order of magnitude larger than the number of second hand cars
sold per time step ensuring ample selection choices, and we scrap all cars that have not been sold after
T+ periods
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Table 4.B.1: Parameters

Symbol Name Description Value Units Source

¢ Range di- Factor  controlling 0.296 - (Ferguson
minishing the diminishing re- et al., 2018)
returns turns to scale for the
factor contribution of car

range to the total
willingness to pay.

I} Willingness  Monetary value an Median USD/Quality  Indirect cali-
to pay for individual assigns to 208,278 bration
quality car quality.

v Willingness ~ Monetary value an 1173.65 USD/km (Ferguson
to pay for individual assigns to et al., 2018)
range car range.

0% Willingness ~ Monetary value an Median USD/kgCO2  (Hulshof and
to pay for individual assigns to 0.066 Mulder, 2020)
emissions CO2 emission reduc-
reduction tions.

D; Distance User-specific Mean km /month California En-
driven monthly distance 1119.84 ergy Commis-

driven. sion

X EV Im- Threshold represent- Beta- Percent Indirectly cal-
itation ing an individual’s distribution ibrated
threshold peer influence in con-  (1.1968, 2.6805)

sidering EVs.

K Consumer Parameter indicat- 2.25e-4 - Indirectly cal-
intensity of ing the intensity of ibrated
choice choice in the logit

model.

L Innovation Probability that a 8.3 Percent -
probability =~ manufacturing firm

attempts to inno-
vate.

0 Production  Probability that a 8.3 Percent -
change firm updates its sup-
probability  ply line and prices.

A Research Parameter indicat- 1le-3 -
intensity of ing the intensity
choice of choice in the

innovation model.

M+ Technology = The maximum num- 30 Technologies -
memory ber of known tech-
capacity nologies a firm can

remember.
Y+ Car variant The maximum num- 10 Technologies -

limit

ber of car types a
firm can produce.
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Table 4.B.1: Parameters

Symbol Name Description Value Units Source

T+ Used  car Maximum number of 36 Months -
time limit months before a car

gets scrapped.

VT Used car Maximum number 300 Cars -
stock limit used cars in the used

car market.

I Used car Target markup ap- 100 Percent -
dealer plied by used -car
markup dealers when pricing

used cars.

F Car scrap- Scrapping value of a  669.80 USD JunkCarsUS
ping value car.

19 Price depre- Monthly type- ICEV: Percent (Schloter,
ciation specific depreciation 1.16, EV: 2022)

rate for the price of 0.87
used cars.

) Fuel ef- Monthly deprecia- 0.175 Percent Indirect cali-
ficiency tion rate for the car bration
depreciation fuel efficiency.

N Number Number of dimen- 15 Number of -
of dimen- sions (components) components
sions in NK in the NK land-
landscape scape  representing

technologies.

K Epistasis Epistasis in the NK 3 Number of -

landscape, represent- components
ing the degree of

interdependency be-

tween components of

the technology.

E Manufacturing Type-specific manu- ICEV: 10 Tonnes of (Jaramillo
emissions facturing emissions. EV: 14 CcO2 et al., 2022,

p. 1076)

(C~, C*)ManufacturingMaximum and min- (5,7) Thousand (Grieco et al.,
costs imum manufacturing USD 2024)

costs in the NK land-
scape.
(Q~,Q7")Car quality Maximum and min- (0,1) Abstract -

imum quality in the
NK landscape.

quality mea-
sure

p(C,Q) Correlation
cost-quality

Correlation co-
efficient between
manufacturing costs
and car quality in
the NK landscape.

Correlation
coefficient
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Table 4.B.1: Parameters

Symbol Name Description Value Units Source
(w,wT)Fuel  effi- Maximum and min- ICEV: km/KWh (Jaramillo et
ciency imum  type-specific (0.79,3.09) al., 2022, Ap-
fuel efficiency in the EV: pendix 10.2)
NK landscape. (2.73,9.73)
p(C,w) Correlation  Correlation co- (0) Correlation -
cost- efficient between coeflicient
efficiency manufacturing costs
and fuel efficiency in
the NK landscape.
(B~,B")Fuel tank / Maximum and min- ICEV: KWh (Schmuch
Battery size imum  fuel tank (469.4) et al., 2018)
(ICEV) or battery EV:
size (EV) in the NK (0,150)
landscape.
p(C,B) Correlation  Correlation co- ICEV: 0, Correlation -
cost-quality  efficient between EV: .5 coefficient
manufacturing costs
and fuel tank or
battery size in the
NK landscape.
Cm Manufacturing Unit production Technology-USD NK model
costs costs of technology specific
m at time t.

Qm Quality Catch-all quality Technology-Abstract NK model
measure of car using specific quality mea-
technology m. sure

By, Battery/fuel = Size of the battery or  Technology-kWh NK model

tank size fuel tank of car using specific
technology m.
W Fuel effi- Fuel or energy effi- Technology-km/kWh NK model
ciency ciency of car using specific
technology m.

Co,t Fuel cost Cost per kilowatt Time- USD/KWh ICEV: EIA
hour of gasoline or variant EV: EIA
electricity

ot Fuel emis- CO2 emissions per ICEV: kegCO2/KWh ICEV:

sions kilowatt hour of 0.331 (Jaramillo
gasoline or electric- EV: et al., 2022,
ity Time- Table  10.8)
variant EV: EMBER

J Number of Number of firms in 16 Number  of (Grieco et al.,

firms the simulation. firms 2024)
1 Number of Number of car users 3000 Number of car  (Grieco et al.,
car users in the simulation. users 2024)
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Table 4.B.1: Parameters

Symbol Name Description Value Units Source
RP Number Number of partitions 8 - -
of quality- used to create mar-
based ket segments based
segments on the distribution of
Bi-
R Number of Number of partitions 2 - -
environment- used to create mar-
based seg- ket segments based
ments on the distribution of
Vi
RY Number of Number of partitions 1 - -
range-based used to create mar-
segments ket segments based
on the distribution of
V.
PWS Network Density connections 0.05 - -
density between car users in
Watts-Strogatz net-
work
PWS Re-wiring Probability of re- 0.1 - -
probability  wiring close range
links to long range
links in  Watts-
Strogatz network
Table 4.B.2: Variables
Symbol Name Description Units
Y; Set of new cars on sale  Set of new cars on sale by all firms at time ¢ -

Y+ Firm-specific set of Set of new cars on sale by firm j at time ¢ -
new cars on sale
Vi Set of active cars Set of all active cars owned by users or in the -
used car market at time ¢
Ay Set of considered al- Set of car alternatives considered by individual -
ternatives 1 at time t.
2t Car type Binary statement specifying if a car v is an elec- Binary
tric vehicle. state-
ment
Uyt Car Owner ID Identifier of the owner of car v at time ¢ (0 if in  User ID
the second-hand market).
Ua,it Consumer utility Consumer surplus for car alternative a for indi- USD
vidual ¢ at time t.
) Fuel efficiency depre- Fuel or energy efficiency monthly depreciation Percent
ciation rate rate.
Lgy Car age Age of car a at time t. Months
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Table 4.B.2: Variables

Symbol Name Description Units
LCE,;; Lifecycle emissions Lifecycle emissions of car a for individual ¢ at kgCO2
time t.
LCC,;; Lifecycle cost Lifecycle cost of car a for individual ¢ at time £.  USD
Po: Purchase cost Purchase cost of new or used car a at time t. USD
Py User car sale price Sale price of user i’s car on the second-hand USD
market at time ¢
Vit Chosen car ID of individual i’s chosen car at time t. Car ID
H; Individual ¢’s network  Set of car users representing ’s network neigh- -
bourhood.
Vftl Network neighbours Subset of active car that belong to car users in -
cars 1’s network
Tit EV consideration Binary variable indicating whether individual ¢ Binary
considers buying EVs at time ¢. state-
ment
M;, Set of known tech- Set of technologies known to firm j at time ¢ -
nologies
II(P)y, s Estimated segment- Estimated profit a firm expects to make in seg- USD
specific profit ment s using technology m at price P at time
t.
Wi t Expected  segment- Expected aggregate consumer surplus in sector USD
specific  state  of s at time ¢
competition
am,t  Optimal price Optimal price of a technology m in segment s USD
at time ¢
M ﬁD Set of candidate tech- Set containing all the unexplored neighbouring -
nologies to explore technologies with respect to the past search lo-
cations on each landscape of firm j at time of
firm .
mftD Searched technology Searched technology by firm j at time t. -
mft Searched location in Searched location in EV landscape by firm j at -
EV landscape time t
mf(t’E Searched location in Searched location in ICE landscape by firm j at -
ICE landscape time t
d):n Technology  coordi- Coordinates of technology m in the NK land- -
nates scape.
T jt Memory timer Number of periods at time ¢ since the last time Months
a technology m has been explored or used by
firm 7.
ng ‘ Reference price Reference price in the market for new cars to be USD
used as a benchmark when pricing used car v at
time ¢
Iy Consumer  segment Set with users belonging to market segment s at -
set time t.
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4.C Parameter calibration

This section describes the method chosen to set each of the parameters in the model. Due to
the availability of incomplete data, only some of the parameters directly match the real-world
data. In order to minimize parameter calibration, we set most of the unobservable parameters
at values that are found in previous studies or that lie in a reasonable order of magnitude. For
these parameters, we implement the respective sensitivity analyses to fully understand their
relevance in the model dynamics. Lastly, the distribution of vehicle users’ innovativeness (what
proportion of their social network owns an electric vehicle (EV) before they consider purchasing
one) is indirectly calibrated using a neural network to match EV uptake in California during
2010 to 2023.

4.C.1 Vehicle choice parameters

Quality scaling exponent («): The parameter « serves to create a non-linear relationship
between quality and willingness to pay, specifically imposing decreasing returns. Due to a lack
of data availability, we set this parameter at 0.5 and then perform a subsequent sensitivity
analysis.

Willingness to pay for quality (5;): The parameter 3; indicates the subjective willingness
to pay an individual ¢ assigns to a given scaled quality value. Given that quality is measured in
abstract units, this value is non-observable. However, after determining the other parameters
relevant to vehicle choice, the order of magnitude of this parameter is key to determining the
price level. For this reason, we indirectly calibrate this parameter to make the optimal price
for a car with average features targeted at the most represented segment equal the mean price
reported in the literature (Grieco et al., 2024), in 2020 prices (P, s = $39,290).

For this estimation, we assume that the average car is an internal combustion engine vehicle
(ICEV), and has average production costs, fuel efficiency, and quality. Furthermore, we assume
that the cost and emissions per fuel are the last reported values.

From the optimal price derivation, see section 4.G, we know that:

exp(kU (Prn,s, Bs)) = Ws(k(Prm,s — Cm) — 1) (4.21)
Taking the log, we get:
KU (Prn,s; Bs) = In (W (k(Pr,s — Cin) — 1)) (4.22)
Multiplying by 1/x:
U(Bn,s, Bs) = In (Ws(k(Prn,s — Cm) — 1)) (1/k) (4.23)

Knowing that from the perspective of the price setter:

(1 + T)(l - 5m)(cm + 'Ysem)
Wi (1 — 0 — 70m)

U(Pm,Sa Bs) = _Pm,s - ’YsEm + ﬁsQ?n + V(Bmwm)C - D (424)

Re-arranging, S is defined as below:

/35 - 6210‘ (111 (Ws(ﬁ(Pm,s - Cm) - 1)) (1/"<‘7)+Pm,s+78Em_V(Bmw'm)<+D

(I+7)(1—dpn)(em + fysem)>
Wi (1 — O, — 76m)
(4.25)
Thus, we obtain the willingness to pay for quality of the median consumer. Following this
step, we use the income distribution data from the U.S. Bureau of Labor Statistics to assign the
values of 3; to the rest of the individuals in such a way that the same proportion is maintained.
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Willingness to pay for emission reduction (7;): This parameter indicates how much a
consumer is willing to pay to reduce one kilogram of C'O4 per kilometre. We know from Hulshof
and Mulder (2020) that on average consumers are willing to pay $WTP = $46646.65434 (in
2020 dollars) to reduce 1 gram of COy per kilometre. The average consumer is indifferent
between two cars where the price of the first is the $WWT P more expensive but saves 1 gram of
CO; per kilometre. This is shown in the equality below, where we assume v; = ¥ and D; = D

Ua,i,t(%‘ =7, D, = D, €at = 6) =4+$SWTP + Ua,i,t(% =9, D, = D, €qt = € -+ wv) (4.26)

(4.27)
Then, we can isolate the willingness to pay, and ~; as follows:
YD(1 +7)(1 — 6,)
WTP = 4.28
5 (r—06q —1d4) (4.28)
5= $W{TP(7’ — 0q — 704) (4.20)

D1+ 7r)(1—0dq)
The willingness to pay for emission reduction v is normally distributed across the population
with standard deviation o = 39160.31118 (Hulshof and Mulder, 2020). We assume the distri-
bution of this value is uncorrelated with the other preference parameters, such as willingness to
pay for quality or range.

Range scaling exponent (¢): The parameter ( serves to create a non-linear relationship
between range and willingness to pay, specifically imposing decreasing returns. Ferguson et al.
(2018) report that people’s willingness to pay per kilometre range is lower for gasoline cars.
Potentially, this fact is attributed to the diminishing returns to scale with respect to range
(Hoen and Koetse, 2014). Having the range for both cars (700 km ICE, 250 km EV) and the
respective WTP /km ($10.09 ICE, $20.83 EV)*, we proceed to calculate the value of ¢ that
solves the system of equations below:

$10.09 x 700 = 700¢ (4.30)
$20.83 x 250 = v250° (4.31)
(4.32)

Which gives the following solution:

‘= In ($10.09 x 700) — In ($20.83 x 250)
N In (700) — In (250)

(4.33)

¢ = 0.296 (4.34)

Willingness to pay for range capacity (v): This parameter indicates how much a
consumer is willing to pay for an extra kilometre in car range. Having calibrated ¢ to match
the points in previous empirical studies (Ferguson et al., 2018), we solve for v in the system

below:
$10.09 x 700 = 1/700°-2960778787 (4.35)
$20.83 x 250 = 1252960778787 (4.36)
(4.37)

Isolating v:

v = $10.09 x 700/700°-2960778787 — ¢1 (015.54 (4.38)
v = $20.83 x 250,/2500-2960778787 — §1 015.54 (4.39)
(4.40)

4The survey reports heterogeneity by customer type. We take the weighted average of each WTP to
reflect a single representative consumer type
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Since this study uses 2015 data, we translate it to 2020 prices using the California CPI State
of California Department of Finance, giving us a value of $1,173.65.

Distance travelled (D;): This parameter scales a consumer’s willingness to pay for savings
in fuel costs and fuel emissions. We assign the parameter values to the different drivers in our
model based on surveys using self-reported data about their yearly mileage from the California
Energy Commission. We simplify in the following fashion: First, we assume that distance is
equally distributed over the year. Second, we only take the distribution of distances travelled
for new cars, even though they slightly decrease as cars get older. Third, given that the survey
data is distributed in ranges, we assign the mid-point to each consumer belonging to a bin.
Fourth, given that the last range includes people who drive more than 25,000 miles per year,
we assume that the range midpoint is 1.5 times that value. Finally, we assume the distribution
of monthly mileage is uncorrelated to other preference characteristics.

Discount rate (r): This parameter influences the relevance of making savings in the future
from considering cars with greater efficiency, or EVs when the price and emissions of electricity
are lower than those of gasoline. We use a value of 5% yearly discount rate, which gives a
monthly value of 0.16515813%. This rate is common in other emprical and modelling literature
related to car purchases (Woody et al., 2024; Busse et al., 2013; Greene, 2010), with is value
corresponding to near average values of car loan APRs.

Consumer intensity of choice (x): This parameter determines the degree of rationality
in consumer choice, ultimately affecting the speed of EV uptake when EVs become superior to
ICE cars. Furthermore, it affects prices as firms optimally levy higher mark-ups when consumers
feature bounded rationality. Given that the logit choice model weights the absolute consumer
surplus, the value of k alone is not informative about the degree of rationality consumers feature.
It is set through a grid search that balances prices, market concentration and firm markups to
match those found in Grieco et al. (2024).

4.C.2 Social network parameters

Network density and re-wiring: To represent the medium over which vehicle users interact
a Stogatz-Watts small-world network (Watts and Strogatz, 1998) is employed. In this network,
neighbours are highly clustered triads whereby two neighbours of an individual are likely to be
neighbours. The network is generated by first forming a ring of vehicle users each connected to
their nearest neighbours, such that node degree is homogenous, then with a given probability
pws one end of link between vehicle users is moved to another random user. This re-wiring
produced the small world property whereby the network has a short path length due to a few
cross-network connections. To test different network sizes, a network density is set py g, instead
of setting a fixed number of connections per vehicle user. Thus the mean number of connections
per vehicle user is given by Ngw = (I — 1)pws. The network density is a key in determining
how sparse connections are, making it more likely to have clusters of non-adopters whenever
density is low. Due to a lack of data availability, we fix this parameter at pys = 0.05 and
perform a subsequent sensitivity analysis.

Degree of innovativeness (x : ay, y): This parameter determines the threshold of EV
adopters in someone’s network before the individual considers buying an EV. It is crucial to
determine the speed of EV uptake once EVs begin to outperform ICEVs. We represent the dis-
tribution of x values using a beta distribution. Due to its relevance and lack of data availability,
the two parameters that characterise the innovativeness distribution «,, 8, using simulation-
based inference (Papamakarios and Murray, 2016; Cranmer et al., 2020; Dyer et al., 2024) to
match EV uptake during the validation period. Specifically, we use the neural poster estima-
tion method from the sbi python package (Tejero-Cantero et al., 2020). In this method, the
outputs of the ABM are used to train a mixture density network that estimates a posterior for
the values of a,,3,. Each simulation run for a given parameter setup, generates the output
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vector of yearly EV uptake, in October, during the validation period, these are compared to
the real-world uptake data. After an initial round of simulation the posterior estimation gener-
ated by the mixture density network can generate new prior values of a,, 3, narrowing down
the range to be explored in the next round. Thereby generating more accurate predictions in a
computationally efficient manner. Once training rounds are completed, the posterior is sampled
to indicate what values «,, 3, give the best fit, 4 H.2. The best suggested values are tested,
with a priority given to those that better match more recent EV adoption data.

4.C.3 Exogenous car parameters

Gasoline and electricity cost per kilowatt hour (c,;): These exogenous variables are type-
specific and influence the relative attractiveness of EVs, both in relative terms and in absolute
terms, given that EVs have higher fuel efficiency. For ICE cars, we take the monthly cost per
gallon in California reported by the EIA EIA and use the kWh equivalent per gasoline gallon
AFDC. For EVs, we use the monthly price of residential electricity per kWh in California EIA.
For months with incomplete data, we assume the value equals that of the closest month with
reported values. Figure 4.H.3 shows the evolution of both variables.

Gasoline and electricity emissions per kilowatt hour (e, ;): These exogenous variables
are type-specific and influence the relative attractiveness of EVs, both in relative terms and in
absolute terms, given that EVs have higher fuel efficiency. For ICE cars, we take the assumed
value in the 2022 IPCC Mitigation report (Jaramillo et al., 2022, Table 10.8) and transform
it to kg of COy per kWh. For EVs, we use the monthly data for average emissions intensity
in the Californian electricity grid EMBER. For months with incomplete data, we assume the
value equals that of the closest month with reported values. Figure 4.H.4 shows the evolution
of both variables.

ICE car and EV manufacturing emissions (E,;): These parameters influence the
willingness to pay for new cars of environmentally-concerned consumers. We use the production
emissions estimated by the IPCC 2022 mitigation report (Jaramillo et al., 2022, p. 1076), where
the manufacturing emissions of EVs are estimated at 14 tonnes of C'O2 and those of ICE cars
are estimated at 10 tonnes of COs.

ICE car and EV fuel efficiency depreciation rate (§): These parameters influence the
speed at which consumers change their car and diminish the long-term advantages of cars with
higher fuel efficiency. Under the constraint that ¢ < {1, we know the value is upper bounded
at 0.246%. Given that, we fix the monthly depreciation rate for both car types at 0.1% and
perform a subsequent sensitivity analysis. This value is set so that the average age of vehicles
matches that of our stylized facts (10-12 years old), see Bureau of Transportation Statistics.

Scrap value (F'): The scrap value increases the speed at which consumers change their car
as it increases the minimum price paid by the second-hand merchant, and therefore decreases
the net cost from buying a new or second-hand car. We assume a scrap value of $669.80, which
is the reported value in a specialised source JunkCarsUS.

Price depreciation rate for second-hand cars (§,+): The price depreciation rate for
second-hand EVs and ICE cars has an ambiguous effect. On the one hand, it increases the
probability that a second-hand car is bought as it reduces its selling price. On the other hand,
it reduces the number of periods before it gets disposed. Its effect on the overall sale of used
cars depends on its interaction with the fuel efficiency depreciation rate and the scrap value. We
set these parameters based on previous studies (Schloter, 2022), we set a monthly depreciation
rate of .87% for ICE cars and one of 1.16% for EVs.

Used car dealer mark-up (u): This parameter affects the speed at which price-sensitive
vehicle users change their car, given that larger values of i decrease the revenues from selling
a user’s own car. Lacking reliable information on the actual target mark-up for used cars,
which is heterogeneous across used car dealers, we fix this parameter at 100% and perform the
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subsequent sensitivity analysis afterwards.

4.C.4 NK landscape parameters

Number of components (N): The number of components affect the performance distribution
across technologies. Given that the performance of an attribute equals the average of N draws
from a uniform distribution, the distribution of performances over the 2V existing technologies
approaches the normal distribution as N grows larger. For this reason, we fix N = 15 as a
number sufficiently large to ensure that property. We assume the NK landscapes for ICE cars
and EVs are equally large.

Landscape complexity (K): The degree of complexity increases the number of local
solutions in the search process, hence decreasing the probability a local-searching agent finds
a global solution. As K approaches N — 1, the search process becomes closer to a random
draw from a normal distribution. Since the purpose of incorporating NK landscapes into this
model is to integrate the role of structured search in determining path-dependent industrial
transformation in the context of multiple attributes, we select an intermediate level of complexity
that ensures the existence of ”local traps” while maintaining past search relevance. We fix K = 3
and perform the subsequent sensitivity analysis afterwards. We assume the NK landscapes for
ICE cars and EVs are equally complex.

Attribute performance correlations (p): This vector of parameters determines how
correlated are the performance of the difference attributes, potentially creating trade-offs when
choosing research paths. To account for the main cost driver in EV manufacturing, we set a
positive correlation between manufacturing costs and battery size of 0.5. We assume that the
correlation of production costs with quality and fuel efficiency are zero. In doing so, despite
of setting the boundaries of each attribute as the currently existing best technology, the model
allows for radical innovations by enabling technologies that render the existence of high-quality
and efficiency cars at a low cost.

Quality upper and lower bounds in the NK landscape (Q,Q%): Quality is a catch-
all variable for all other relevant features that determine the price of a car, such as comfort, style,
horsepower, or other appliances (Ostli et al., 2017; Grieco et al., 2024). Since this combined
measure cannot be observed in real-world data, we create an abstract score that scales in the
range (0,1). Furthermore, we assume that these boundaries are identical in the ICE and EV
landscapes, as the main differences, such as battery autonomy, fuel tank and fuel efficiency, are
already included in our analysis.

Production costs upper and lower bounds in the NK landscape (C~,C"): In
setting production boundaries, we represent possible values across a very broad timeline: during
the burn-in period, calibration period, policy period and long-term trends. Therefore, we cannot
find adequate data sources as our NK landscape does not allow for radical innovation that
changes these boundaries. Instead, we take reference order of magnitude values for production
costs, sales price, and car markups from literature (Konig et al., 2021; Woody et al., 2024;
Grieco et al., 2024) and then perform grid search until the vehicle prices match those found in
our stylized facts during our calibration period.

Fuel tank and battery capacity bounds in the NK landscape (B, B*"): We as-
sume that fuel tank size has reached technological maturity and all cars have the same value.
Therefore, we fixed it at 469.4 kWh, after converting the fuel tank size of the four most sold
cars in California in 2020, seeCalifornia Auto Outlook, and their associated fuel efficiency, then
converting gallons of gasoline to kWh. The battery capacity for EVs is heterogeneous and can
benefit from innovation. Based on (Schmuch et al., 2018), we set the maximum value for battery
capacity and apply the adjustment described in section 4.E.2 to obtain the values for the NK
landscape boundaries. Fixing the lower bound at 0, we reach an upper bound of 150 kWh.

Fuel efficiency bounds in the NK landscape (w™,w™): We take the values from the
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IPCC 2022 Mitigation report (Jaramillo et al., 2022, Appendix 10.2) and use the adjustments
described in section 4.E.2 to obtain the values for the NK landscape boundaries. The observed
fuel efficiency values for gasoline vehicles range from 1.25 to 2.62 km/KWh 5, leading to lower
and upper bounds in the NK landscape of .791 and 3.087. For EVs, the IPCC reports values
efficiency ranges of 4.132 to 8.333, leading to lower and upper bounds in the NK landscape of
2.731 and 9.734.

4.C.5 Car manufacturer parameters

Segment partitions (R): The number of segment partitions on each segment influences the
degree of heterogeneity in products in the market and emphasises the path-dependent nature
of firm specialisation. Together with the parameters that influence the path-dependence of
search (K, ), this vector of parameters ultimately affects market concentration. We fix the
number of partitions at 8 in the S (quality/luxury) space, 2 in the 7 (environment) space,
and 1 in the v (range) space. For robustness, we perform the subsequent sensitivity analyses.
The high segmentation in quality space allows for more diversity in car models, reflecting low
concentration in real-world markets.

Research intensity of choice (A): This parameter balances exploitation and exploration
during the search process. For high values of landscape complexity (K), a low value of (1)),
relative to the order of magnitude of expected profits, helps firms escaping local solutions. We
set this value at 1e — 5 and perform the subsequent sensitivity analyses.

Firm memory size (M™1): As in the research intensity of choice (\), there is a trade-off
in setting the firm memory size. A large memory size contributes to research exploitation by
avoiding the repetition of research efforts. However, if an agent has all neighbouring technologies
in memory it remains permanently stuck until one of them is forgotten. We set the memory size
at the exact amount to make possible, yet highly unlikely, a permanent stuck position M+ = 30,
given that each of the two landscapes has 15 neighbouring points in every position.

4.C.6 Event-based probabilities

The probability that a vehicle users considers changing its car (1), a car manufacturer consider
changing its supply line and prices (#), and the probability a car manufacturer succeeds at
innovating (¢) are set in such way that, on average, these events occur once per year (1/12).

4.D Sensitivity analysis

Figure 4.H.6 shows the sensitivity of key model parameters in the simulated EV uptake. We
test the sensitivity of the quality scaling component (panel A), the discount rate (panel B), the
used car dealer mark-up (panel C), the consumer intensity of choice (panel D), the parameters
governing the chi distribution of the imitation threshold (panels E and F), the research intensity
of choice (panel G), the fuel efficiency depreciation rate (panel H), and the technology complexity
in the EV and ICEV landscapes (panels I and J).

The quality scaling component negatively impacts EV adoption as it increases the relevance
of attributes that are superior among existing ICEVs due to research advantage developed
during the burn-in period. The discount rate negatively impacts EV adoption as it diminishes
the utility contribution of the long-run benefits of adopting an EV. These benefits are the
monetary and emissions savings derived from better fuel efficiency. The mark-up in the market

5We converted the units of the IPCC report using a factor of 0.278 KWh per MJ
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for used cars has a small positive effect on EV adoption as it makes the long-term aspects of
car evaluation relatively more important than its short-term counterparts.

The consumer intensity of choice has a positive effect on EV adoption as consumers become
more likely to adopt EVs when they become a superior alternative to ICE cars. EV uptake in-
creases when the distribution of the imitation threshold is left-skewed, favouring social diffusion.
A left-skewed distribution corresponds to high values of b, and low values of a,,.

In the case of the research intensity of choice, we find that EV uptake increases when research
choices become more random. This is caused by the fact that the policy incentives favouring
EV penetration become more relevant than the initial advantage that ICEVs gain over EVs
during the burn-in period via research. Additionally, when the pool of potential EV users is
small a more stochastic approach to research leads to more EV designs chosen, despite of lower
expected profit. The fuel efficiency depreciation rate negatively affects EV uptake because fuel
efficiency is the main advantage that EVs have over ICEVs.

The EV landscape complexity has a negligible effect on EV uptake, due to a small numbers
of EV sold during the calibration period. Conversely, the ICE landscape complexity has a
mixed but significant effect on the EV uptake. On the one hand, with high complexity the
likelihood of finding good innovations decreases due to a higher number of local solutions. This
makes innovation in the EV landscape more effective. On the other hand, EV uptake increases
when the complexity in the ICEV landscape is low as it reduces the variety of technologies
that are developed. Lastly, when stochastic seeds are varied to give a confidence interval we
assume that the inputs to the model are fixed, thus we only test changes in the dynamics of the
model. However, by varying the complexity of the landscape, we change the inputs. This means
that differences between complexity runs may also be due to different seeds in the landscape
generation.

To complement these local sensitivity analyzes, we additionally perform a Sobol sensitivity
analysis (Sobol, 2001), using the SALib Python library (Herman and Usher, 2017), see Figure
4.H.7 and Figure 4.H.8.

The simplest outputs to explain are those of EV adoption proportion, market concentration,
utility and mean car age. These have one or two key parameters and high first-order Sobol
values, indicating limited interaction between parameters.

In the case of EV adoption, it is dominated by the a, that forms one-half of defining
the beta distribution of innovativeness thresholds in the model. Specifically, a larger value of
a, results in a greater threshold and, thus, more social lock-in to prevent EV adoption. We
also note the small role that the discount rate r has in EV adoption due to greater values of
this parameter, which makes the long-term benefits of EVs less attractive and thus lowers EV
adoption likelihood.

The beta distribution parameter a, also dominates the market concentration. HHI remains
relatively stable with no EV transition due to the long burn-in period; however, if an EV
transition occurs, HHI increases rapidly, resulting in greater variance over different a, that
determines EV adoption rates.

In the case of utility, the quality diminishing returns factor, «, generates more utility for
the same car if it has a higher value. However, of greater influence is the consumer intensity of
choice, k, the greater its value, the more individuals maximise utility, but additionally, the lower
firm profits mean a corresponding drop in vehicle prices.

In the case of the mean car age, the key parameter is the car efficiency decay ¢; the greater its
value, the faster the vehicle fleet has to be replaced, thereby lowering the car age. Additionally,
if an EV transition occurs, then vehicle users purchase cars ahead of schedule, due to the
efficiency and lower running costs of EVs, thereby lowering the car age of the fleet, hence the
importance of a,.

In the case of cumulative emissions and firm profit, we see a divergence between the impor-
tance of parameters between the Sobol first and total order indices. Both outputs are correlated
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in part because the sale of a vehicle results in large production emissions and firm profits.

In the case of cumulative emissions parameters, determining EV adoption plays a key role,
but additionally, those such as the used car deal markup are also of importance. In the case
of this markup, the greater the value, the lower the trade-in value of used cars is, thus the
lower the incentives for individuals to change their cars, resulting in less frequent purchasing of
vehicles (either new or used). This change in purchase frequency may have an indirect effect
on the production emissions as those purchasing used cars may do so more often, whilst the
purchase frequency of new cars remains fixed (due to lower relative price sensitivity). This
would also account for the lack of influence of p on the mean car age, and the effect of p. In the
case of the Epistasis parameter for ICEVs, Kjop, greater landscape complexity may result in
lower production emissions as consumers do not see significant technological advances between
vehicle purchasing opportunities.

In the case of firm profits, the consumer intensity of choice k is a key parameter due to
greater values driving down prices. Second, greater values of the fuel efficiency decay rate §
result in more frequent purchasing behaviour of new cars as the utility of used hand cars decay
more quickly.

4.E. The technology landscape

4.E.1 How NK landscapes work

The development of car types is the result of combining different inputs such as frame com-
ponents, engines, transmission components, batteries, interior and exterior components. From
each component, the car producer has a variety of types, shapes or materials to choose from.
The choice of which input type to use for the manufacturing of a car has direct and indirect
effects on the overall attributes of the final good, provided that the components of a vehicle
often complement each other.

We employ NK models (Kauffman, 1993; Levinthal, 1997) to capture the complexity in-
herent in product design choices. An N K landscape maps all possible input combinations to a
fitness outcome. In a stylized and deterministic manner, the modeller can adjust the extent to
which the fitness of a specific input combination can be inferred from a sufficiently large record
of alternative fitness combinations. This is achieved by modifying the interdependence among
inputs, represented by the parameter K. This parameter defines the number of inputs whose
states influence the performance contribution of a given input. In other words, K serves as a
proxy for the underlying complexity of the problem represented in the N K model.

In our model, the fitness values in the VK landscape represent features of the vehicle that
ultimately determine the manufacturer’s profits for a given input combination. These features
include production costs, vehicle quality, and fuel efficiency. As in prior applications of NK
models (Adner et al., 2014; Csaszar and Levinthal, 2016), we represent fitness as a vector of
attributes. This approach is justified by evidence (Horne et al., 2005; Ostli et al., 2017) that
consumers consider multiple factors when selecting a vehicle.

An NK landscape is a discrete hypercube where each vertex represents a combination
of inputs in specific states. Let N be the set of components. Each component, indexed by
n €0,..., N — 1, assumes a discrete state ¢, from ® € Z possible states. As is standard in NK
models, we reduce the number of states to a binary choice. Each unique combination of input
states (d_;nm) corresponds to a specific variant m € M. The index m is derived by converting
the binary string of input states to a decimal representation.

The NK model assigns a vector of feature values to each combination of input states. In
its generalized form, these feature values are denoted as 0y,,. Each component of this vector
corresponds to a normalized fitness value oy, € (0,1) for a specific attribute f. Following
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(Adner et al., 2014), we generate correlated distributions of feature values, with the parameter
ps € [—1,1] controlling the correlation of each feature f relative to a baseline feature f = 0.
The fitness distribution for f = 0 is defined first with pg = 1 by construction.

For each component n, we define a subset IV, C N that includes component n and K addi-
tional components. This subset determines the inputs whose state combinations influence the
performance contribution of n across all features. Interdependent components are typically se-
lected sequentially, but alternative structures, such as randomized or clustered interdependence,
can be adopted depending on the application.

We construct a "performance matrix” with |N| columns and 25+! rows. Each cell in this
matrix is assigned an independent random draw from a distribution D € (0,1). This value
represents the normalized performance contribution of a component n to the baseline feature
f =0, conditional on the specific input state combination in Nn.

To generate fitness contributions for other features (f # 0), we assign each feature a subset
Ny C N of |p¢|N|| components. For components in this subset, the fitness contribution for
the characteristic f matches that for f = 0 if py > 0 and is equal to 1 — 0y m if py < 0.
For components not in Ny, the contribution is independently drawn from . The performance
matrix thus contains a vector of fitness contributions for each input combination across all
features.

To compute the total fitness vector for a technology m € M, we average the performance con-
tributions of its components for each feature. This is achieved using the row in the performance
matrix corresponding to the binary to decimal transformation of the input state combinations
in N,. Finally, the absolute performance values for each feature f € F are normalized by
Min-Max scaling, as shown in Equation 4.41:

N.
_ B G e
Ofm =0y + <0}L — of) W Zon,f,m (4.41)
n=0

Where Yf_ and YfJr are the lower and upper bounds of feature f.

4.E.2 NK landscape properties

The NK landscape generates a range of values rather than a specific value in itself. We can
set the upper and lower bounds of each attribute’s performance contributions. However, given
that the actual performance is the average of N iid draws, the actual performance is not likely
to be the input parameter. Figure 4.H.5 shows some properties of NK landscapes for N = 15
(a large N is required to generate normally distributed values). We find that the normalized
performance values are in the range (.2,.8) with mean and median of 0.5.

We want to find the boundaries (F~, F'T) in the N K landscape that give us @, Q*, knowing

that:
Q =F +02(F"—-F")

4.42

QT =F +08(F"—F") ( )
Subtracting both sides we get:

QT —Q =06(F"—F) (4.43)
Then we can isolate:

Ft—F =(Q"-Q7)/0.6 (4.44)
Substituting in both equations we get:

T=F +1/3QY-Q
Q /3Q" - @) )

QT =F +4/3(Q" - Q")
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Isolating F'~ we get:

F = (4/3)Q" - (1/3)Q* (4.46)
Substituting F'~ we can isolate F'* as:
FT=Q%(4/3) - Q (1/3) (4.47)
As a general expression, where 7, 7~ are the respective percentages we are targeting:
F= Qf”i — QT
Tt =T
_ _ (4.48)
pr_Q-T)-Q (-
nt — 7~

4.F Lifecycle evaluation derivation

For an infinite geometric series Y ;% Yz!, where |z| < 1, the sum is % With no loss of

generality, we ignore the case where the user is evaluating its own car. We make the following
notation simplifications:

C=FE.;V Pyt — Py (4.49)
Z=CaqtV €y (4.50)
> z
LCCu;: =C+ D; 4.51
ot Zt: Wat(1+ 7)1 = 8a4)t (451)
Diz & 1 t
=C+— 4.52
o> (armiam) 452
D;
=C+— et (4.53)
(147r)(1—=0ba,t)
Diz
Wa,t
=0t a1 (4.54)
(147)(1—0a,t)
D,z
Wa,t
=0t i1 (4.55)
(1+r)(1—0a,t)
Diz
Wa,t
= C + 1+7'_6a,t_7’(5a,t—1 (456)
(1+7)(1—0a,t)
(I1+7)(1 = da4)D;iz
=C d 4.57
* wa,t(r - 5a,t - T(Sa,t) ( )
(4.58)
This converges if \m] < 1, for which we require r > %5.
4.G Optimal price derivation
The price for a car m is set to maximise expected profit in a given segment s:
P - Cm Is Um S P
B0 (P)) = —— 0= Cmlatlexp (Umoa () (4.59)

exp (kUp, s ¢(P)) + Znyi;lo exp (kUp,5¢(P))
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The optimal price satisfies profit maximization:
P;L&t = argmax plE (II,,, 5 +(P)) (4.60)

The price setter assumes the distance travelled equals the average distance of the entire popula-
tion (D = ZZI D;/|I|) and disregards the price at which consumers can sell their car (P, = 0).
In what follows we use the simplifying notation below:
(1 + T)<1 — 5 )(Cat + Vi€a, t)
Wt (1 — 6,1, 70a,t)
Yio1 (4.61)

Wi = Z exp(kUnm,s.t)

m=0

Om,s,t = _’YiEa,t + 51‘@3} + V(Ba,twa,t(l - 5a,t)La’t)< - Dz

Substituting in the profit equation, we get:
(P = Cin ) st exp (5(Om,s.t — P))

II(P)mst = 4.62
(P)ms.t exp (K(Om,st — P)) + Wi, (462)
(P — Cmt)|lstlh
= L 4.63
h + Ws,t ( )
where h = exp (K(Op st — P)),
Oh
RACR 4.64
5P kh (4.64)
Take partial differential with respect to P and set to 0, solve for Py, .
oIl h K'WS th
R Is — (P — C’m IS [ b — 4.65
5p = el — (P Ol it (1.65)
h kW th
0=|Ist|———— (P ot — Cont)st| ——— 4.66
’ 1t‘ h + Ws,t ( m,s,t 7t)‘ 7t’ (h + Ws,t)Q ( )
HWS t
0=1—(Py ot —Cmt)——— 4.67
( m,s,t 7t>h’+WS7t ( )
h = WSt(( m,s,t Cm,t)’k': - 1) (468)
exp (K(Om,st — P;l,s,t)) = WS,t((P:m,s,t —Cpp)k —1) (4.69)
introduce z = (P — Cp, ¢ )k — 1 where,
1
Phsr=Cma+ 2 i (4.70)
exp (K(Om,st — Prst)) = 2Wasy (4.71)
z+1
exp(—k(Cpt + )+ KOmst) = 2Wsy (4.72)
exp( z—1— HCmt + :‘iOm s t) 5 t (473)
Om S
zexp(z) = XP(K(Om.st = Cmt) = 1) (4.74)
Ws,t

using the Lambert function W,

. W (eXP(H(Omij}t_Cm,t)_l)>
Ps*mt_Cmvt—’_E_’— =

(4.75)

K

Wa,t(r_‘sa,t_“sa,t)

1+7)(1—64 Ca.t+Vi€a
exp (f‘i<_’YiEa,t"l‘Bingt‘f'l/(Ba,twa,t(1_5a,t)La’t)C_Di( )( t)(ca ttvica,t) —Cm,t)—l)
W

Wit

= Um,t + -+
K
(4.76)
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Thus the optimal profit function may be broken down into 3 components: the production
cost, a bounded rationality aspect which tends to 0 as individuals become perfectly rational
and a market advantage component which increases with car utility relative to the rest of the
competition.

4.H Additional figures
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Figure 4.H.1: Histogram of willingness to pay for quality (top left), willingness to pay
for emissions reduction (top right), EV imitation threshold (bottom left), distance driven
(bottom right).
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Figure 4.H.6: EV uptake proportion for local variation of key parameters.
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Chapter 5

Conclusions

Addressing the climate crisis through a move towards low-carbon lifestyles requires not
only personal changes but a systemic policy approach that induces collective transforma-
tion in behaviours. As this thesis has argued, achieving such a shift involves recognising
the economy as a complex adaptive system, where behavioural change is shaped not
only by short-term social influence but also by slower, longer-term cultural dynamics.
To study these processes, this thesis applied agent-based modelling (ABM) to examine
how individuals’ pro-environmental attitudes, consumption habits, and firm innovation
co-evolve under the influence of cultural dynamics and climate policies.

Chapter 2 examined how low-carbon consumption choices interact with cultural change,
focusing on the evolution of individuals’ pro-environmental attitudes and their influence
on behavioural choices, such as whether to follow a vegetarian diet or cycle to work.
These attitudes evolved due to information exchange via imperfect social learning in a
social network of peers. The key model mechanism was that the intensity of these in-
teractions was determined by the similarity over multiple pro-environmental attitudes,
expressed collectively as an environmental identity. This led to inter-behavioural depen-
dency and spillovers in green attitudes. Results showed that the initial distribution of
agent attitudes towards behaviours and asymmetries in social learning were the main
drivers of model dynamics, helping to generate awareness of what roadblocks may ap-
pear to widespread decarbonisation. Finally, the model incorporated green influencers,
a minority of individuals who broadcast strong pro-environmental attitudes. This facil-
itated the study of how cultural dynamics can accelerate a green transition beyond the
effects of social diffusion. In this scenario, including behavioural spillovers leads to greater
emissions reductions than when behavioural choices are treated independently. Despite
this, the inclusion of green influencers failed to produce deep behavioural decarbonisation
through solely voluntary action. This indicated that information provision policies alone
are insufficient and must be complemented by policies that reduce barriers to adopting
pro-environmental behaviour.

A key takeaway from Chapter 2 is the limited decarbonisation potential of relying
solely on voluntary behavioural change through information diffusion. These results
highlight the importance of tailoring interventions to individuals’ environmental identi-
ties to avoid disengaging those who might rebuke pro-environmental information if it is
too green. Additionally, the findings suggest that information provision policies must
be embedded within a supportive policy environment that lowers structural barriers to
low-carbon choices, such as carbon pricing or industry standards. Without this, social in-
fluence alone is unlikely to generate the scale of behavioural change needed for meaningful
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emissions reduction.

Chapter 3 was an extension of Chapter 2, keeping the same core model but using a
nested constant elasticity of substitution utility function to determine the quantities of
low- or high-carbon goods consumed. This adjustment made it possible to study how cul-
tural change affects consumption when climate policies like carbon taxes are introduced.
The notion of a “social multiplier” of environmental policy was extended to the context of
multiple consumer needs while allowing for behavioural spillovers between these, giving
rise to a “cultural multiplier”. Results showed that the cultural multiplier stimulates
greater reduction in emissions compared to the case with fixed preferences. Additionally,
it was found that the cultural multiplier greatly increases the effectiveness of a relatively
small carbon price. This effect may improve the acceptability of carbon pricing by reduc-
ing the level of stringency required to achieve the same decarbonisation target. At high
carbon tax levels, the distinction between social and cultural multiplier effects became less
pronounced. The strong price signal, amplified through social imitation, was sufficient to
drive behavioural change regardless of the presence or absence of behavioural spillovers.
As a result, even individuals with low pro-environmental preferences adopted low-carbon
consumption. Moreover, by varying socio-economic conditions, such as substitutability
between low- and high-carbon goods, social network structure, proximity of like-minded
individuals and the diversity of consumption lifestyles, the model provides insights into
how cultural change can be leveraged to induce maximum effectiveness of climate policy.

The findings of Chapter 3 highlight the importance of complementing carbon taxes
with additional policy instruments that foster stronger pro-environmental identities to
increase decarbonisation potential. This may take the form of expanding current vi-
sions of what individuals consider to be key consumption behaviours for a low-carbon
lifestyle. For example, information provision policies such as eco-labelling may correct
misinformation on the true carbon impact of less socially salient consumption categories.
Furthermore, increasing the substitutability between low- and high-carbon goods, either
via technological improvements or behavioural nudges to increase the appeal of low-
carbon alternatives, can also enhance the cultural multiplier. Lastly, high similarity in
pro- or anti-environmental identities within communities can hinder decarbonization ef-
forts. This makes it important for policymakers to consider the network structures that
influence social imitation when evaluating the potential impact of carbon taxation.

Chapter 4 extended the adaptive complexity perspective to the co-evolution of techno-
logical innovation by firms and consumer behaviour. As in Chapters 2 and 3 it maintained
a focus on the role of social learning in individual decision-making. The chapter devel-
oped a novel ABM of the diffusion of electric vehicles (EVs) in California calibrated on
the period 2001-2023. In the model, heterogeneous individuals influenced by their social
peers’ purchase cars, both new and used, while manufacturers develop new car models
through the exploration of an NK landscape. Different policy combinations were con-
sidered when striving to achieve ambitious EV deployment targets and simultaneously
balancing economic costs, emissions and consumer utility. Simulations compared indi-
vidual and combined policy instruments, including carbon pricing, new and used car
purchase rebates, production subsidies and electricity price subsidies. Results indicate
that only carbon pricing and new vehicle purchase rebates as single policy instruments
can achieve a target of 95% electric vehicle adoption by 2035. Each policy has key trade-
offs: carbon pricing substantially reduces consumer welfare, while new purchase rebates
create heavy fiscal burdens. Policy combinations prove to be more effective by reducing
the stringency of the required interventions and minimising the induced rebound effect
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and trade-offs. Notably, policies that are ineffective in isolation, such as production and
electricity subsidies, become viable when implemented in a policy mix. Extended sim-
ulations till 2050 demonstrated that successful transitions to an EV fleet stabilise after
policy withdrawal. Yet this rapid transition comes with a trade-off that the cumulative
emissions in the business-as-usual scenario are lower than those of a mobility transition
until the 2040s due to high production emissions for new EVs.

Chapter 4 demonstrates that for a rapid transition to an EV fleet highly stringent
policies are required. Only by harnessing synergies between policy instruments can neg-
ative trade-offs in cost and welfare be minimized. Additionally, the findings highlight
that an accelerating EV adoption alone is insufficient for producing sustainable mobility,
due to persistent production-related emissions and the structural dependence on private
car use. This calls for a broader policy agenda that targets the root of the problem by
reducing car dependence altogether. This might be achieved through improved public
transport, urban redesign, and alternative mobility models such as car sharing.

Taken together, the three chapters underscore the limits of isolated policy instruments
in achieving widespread decarbonisation. By recognising the economy as a complex adap-
tive system, this thesis argues for a more holistic approach to climate policy. Therefore,
the analysis of climate policy must also move beyond static models. Instead, future mod-
els should account for the co-evolution of consumer and firm behaviour by embedding
processes of social learning, cultural dynamics and technological innovation.

Overall, the findings of this PhD thesis contribute new ABMs and policy insights to the
literature, emphasizing the importance of complementing top-down approaches to climate
policy analysis with bottom-up perspectives. This is due to the richer representation of
heterogeneity and the complexity of social interactions that bottom-up approaches can
provide. Whilst the ABMs described improve on certain aspects of top-down models,
they are still susceptible to several key flaws common to both approaches. First, there
is a tendency to centre those dynamics which may be easily quantified or represented in
equation form. For example, Chapter 4 omits non-market-based policies such as such as
car sharing or remote working which despite their potential to reduce mobility demand,
are challenging to incorporate within the ABM framework. Second, in the pursuit of
greater model realism, there can be an explosion in complexity. This easily leads to
opacity in insights resulting in the ABM becoming a black box. Additionally, high model
complexity results in a reduced ability to perform global sensitivity analysis due to high
computational cost. Third, complex models can be difficult to validate when they have
a very large number of parameters, which are hard to calibrate from the literature. This
highlights the need to strike a balance between realism and model opacity. Models should
be complex enough to capture key dynamics, avoiding self-evident conclusions, but not
too complex that their results become uninterpretable.

The model in Chapter 2 adopts several simplifications to manage complexity, which
future research could address to improve behavioural realism. For instance, many pro-
environmental behaviours (such as purchasing an EV, installing solar panels, or cycling
to work) are discrete, independent, and often path-dependent. While the model’s current
continuous representation offers a useful starting point, future models could incorporate
more detailed structures to reflect these behavioural characteristics better.

As a future extension to the model in Chapter 3, the inclusion of rebound effects would
better capture the complexity of real-world consumption dynamics. Additionally, using
a utility function with non-homothetic preferences would allow for a representation of
the differing capabilities of households across income deciles to shift towards low-carbon
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options. This extension would give valuable insight into how economic inequality interacts
with cultural dynamics in shaping behavioural change.

The next step in future research for Chapter 4 would be integrating forward-looking
behaviour through expectation formation in vehicle users and firms. This would enable
the assessment of command and control policy instruments such as emissions standards or
zero-emission vehicle mandates, as well as allow for gradual increases in policy intensities.
Additionally, incorporating supply-side frictions such as capital constraints and new car
inventories would also enhance the realism of the transition path, particularly in reflecting
bottlenecks that may emerge in scaling up EV manufacturing. Lastly, future work should
incorporate alternative modes of mobility such as cycling, public transport or car sharing
to model the move away from car reliance.
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