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Abstract

Since the early 2000s, ground- and space-based cosmological surveys have pro-
duced increasingly detailed 3D maps of galaxies to study the energy content and
expansion history of the Universe. Clustering measurements of galaxies in the late-
time Universe reveal signatures ofBaryon Acoustic Oscillations (BAO)—fluctuations
in matter caused by sound waves propagating through the pre-recombination
plasma. The maximum distance travelled by these waves at recombination defines
the sound horizon (𝑟𝑑), which manifests as a peak in the galaxy correlation func-
tion. By measuring this scale across redshifts, surveys such as the Dark Energy
Spectroscopic Instrument (DESI) constrain the expansion history and probe the
nature of dark energy (DESI Collaboration et al., 2025c).

Around the same time, the Lyman-𝛼 (Ly𝛼) forest emerged as a tracer of the
matter density field. These are a series of absorption lines in the spectra of quasars
1, formed when light from these objects at the Ly𝛼 wavelength (∼ 1216 Å), is
absorbed by neutral hydrogen in the Intergalactic Medium (IGM). Because quasars
are relatively bright objects, the Ly𝛼 forest can be measured at relatively high
redshift (𝑧 ∼ 2− 4), making BAO measurements from it extremely complementary
to the lower redshift galaxy measurements. In chapter 5, I present the first
clustering measurements in the Ly𝛼 forest from early DESI data, comparing them
to earlier measurements from the Extended Baryon Oscillation Spectroscopic
Survey (eBOSS) - the previous benchmark. We also discuss any changes to
analysis and data processing techniques that have improved upon eBOSS.

Beyond BAO, cosmological information resides in the full shape of the galaxy
and Ly𝛼 correlation functions. These analyses can utilise Redshift-Space Distor-
tions (RSD) — the warping of clustering in redshift space due to peculiar motions
of tracers — or the Alcock-Paczyński (AP) effect, which measures anisotropies in
clustering. The former can also be used to measure cosmic growth, as peculiar

1These are also visible in galaxies, but have primarily been observed up until now in quasars.
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motions are a direct consequence of it. While full-shape measurements enhance
our cosmological constraining power, they are also more sensitive to systematics.
In chapter 6, I present work that addresses the effect of one such systematic -
quasar redshift errors. Using synthetic datasets from the DESI survey, we create
and apply a new model of this effect to our full-shape measurements, which we
show to de-bias a key set of parameters used for cosmological inference.

After the DESI survey has finished, it will be succeeded by DESI-II. This will
build on the DESI survey, by observing a larger number of galaxies and quasars,
to even greater depth (in a partially overlapping footprint). This includes a high-
redshift survey up to 𝑧 ∼ 4, which will increase the target density of quasars from
60 to 100 deg−2 (with respect to DESI), and observe two new tracer types: Lyman
break galaxies (LBGs) and Lyman-𝛼 emitters (LAE). Both of these galaxy types will
be observed to high density, ∼ 1000 deg−2, and LBGs additionally contain visible
Ly𝛼 forests which can be used for cosmology. In chapter 7, I detail a set of DESI-II
forecasts, which emulate the conditions and target selection of the survey. We
forecast a full set of BAO measurements from LBGs, LAEs and quasars, including
cross-correlations between the tracers and their forests. Our cross-correlation of
LBGs/LAEs with quasars Ly𝛼 forests for example, will take advantage of the high
signal-to-noise of the latter, and the high target density of former.
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The cosmological background

Cosmology is the study of the Universe: its origins, its expansion history and its
evolution. Modern cosmology is built upon the principle that matter is homoge-
neously and isotropically distributed at large enough scales. The theory of General
Relativity (GR; Einstein, 1915), developed by Einstein in the early 20th century,
is a framework used to describe the behaviour of matter and radiation at large
distances, linking the underlying geometry of the Universe to the energy densities
of its constituent parts.

In this chapter, we will introduce the tools necessary to understand the cos-
mological background. These include the metric, which gives invariant distances
between two points in a curved spacetime, and Einstein’s field equations, which
connect spacetime with the energy and momentum contained within it. We will
then go on to derive a set of equations governing an expanding Universe, under
a perfect fluid assumption. Finally, we will discuss distance measurements in
an expanding Universe, as well as the concept of redshift. The formation of the
complex structure that we observe today, caused by quantum perturbations in the
early Universe, will be explored in the chapter following this one.

1.1 Spacetime

The theory of GR is founded upon several key postulates. The first is the Weak
Equivalence Principle (WEP), the statement that particles accelerate at the same
rate under the influence of a gravitational field, or that inertial and gravitational
mass are the same. This was first experimentally observed by Galileo, and was later
incorporated into Newton’s theory of gravitation. Expanding upon this, Einstein
noted that the laws of physics are the same whether observed in a reference frame
in a constant gravitational field, or an accelerating reference frame. This expansion
of WEP (known as the Einstein Equivalence Principle, or EEP) is consistent with
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CHAPTER 1. THE COSMOLOGICAL BACKGROUND

Special Relativity, and implies both local Lorentz invariance and local positional
invariance. Noting then that the effect of gravity can be eliminated by switching
to a free falling frame, Einstein had a famous realisation: that gravity was not a
force acting within spacetime, but rather a consequence of spacetime itself.

To encapsulate this idea mathematically, we introduce the metric. The metric
is a tensor that relates coordinate distance to proper distance, for any spacetime.
The metric also encodes the effect of gravity, and allows one to derive the motion
of particles as a consequence of spatial curvature. The invariant interval 𝑑𝑠2 is
defined using the metric, as:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (1.1)

Here 𝑔𝜇𝜈 is the metric tensor, and 𝑑𝑥 is an infinitesimal interval for 𝜇, 𝜈 =

{0, 1, 2, 3}, where 0 is the time-like coordinate and 1 to 3 are spatial coordinates
1. For any coordinate system in any spacetime, the metric 𝑔 preserves 𝑑𝑠2. For
example, Special Relativity is described by the Minkowski metric:

𝜂𝜇𝜈 =

©­­­­­«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1,

ª®®®®®¬
(1.2)

where we are using the "mostly positive" convention, with a negative time com-
ponent and positive spatial components. We can then write the invariant interval
as:

𝑑𝑠2 = −𝑐𝑑𝑡2 +
∑
𝑖

𝑑𝑥2
𝑖 (1.3)

If 𝑑𝑠2 < 0, the interval is said to be time-like, where two events are separated
by more time than space, implying it is possible to find a frame where the two
events occur in the same place. If 𝑑𝑠2 > 0, the interval is space-like, and cannot
be traversed by an object moving at 𝑣 ≤ 𝑐, where 𝑐 is the speed of light. It also
represents the interval between two events that occur at the same time, but cannot
be causally connected. Finally, 𝑑𝑠2 = 0 is a "light-like" interval, that can only be
travelled by massless particles travelling at 𝑐.

1Note that we are using Einstein summation convention to implicitly sum over repeated indices.
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1.1. SPACETIME

1.1.1 Geodesics and Christoffel symbols

In Newtonian physics, a particle travels in a straight line unless acted upon by
external forces, like gravity. In curved spaces, a straight line is generalised to the
geodesic, the shortest path between two points. In GR, spacetime curvature is a
result of gravity, so the geodesic is the shortest path between two points for any
particle in the absence of forces other than gravity.

Mathematically, we want to generalise 𝑑2𝑥/𝑑𝑡2 = 0 in Newtonian physics, to
other more complex spacetimes and coordinate systems. To begin, we transform
between coordinate systems 𝑥 and 𝑥′, by writing:

𝑑𝑥 𝑖

𝑑𝑡
=

𝛿𝑥 𝑖

𝛿𝑥′ 𝑗

𝑑𝑥
′ 𝑗

𝑑𝑡
. (1.4)

Taking the time derivative of both sides of this equation results in the geodesic
equation:

𝑑2𝑥 𝑖

𝑑𝜆2 + Γ𝑖
𝑗𝑘

𝑑𝑥 𝑗

𝑑𝜆
𝑑𝑥𝑘

𝑑𝜆
= 0, (1.5)

where we have replaced time with 𝜆, representing any choice of evolution. We
have also introduced the Christoffel symbol, which can be written in terms of the
metric as2:

Γ𝑖
𝑗𝑘
=
𝑔 𝑖𝑙

2

[
𝜕𝑔𝑗𝑙

𝜕𝑥𝑘
+ 𝜕𝑔𝑘𝑙

𝜕𝑥 𝑗
−

𝜕𝑔𝑗𝑘

𝜕𝑥 𝑙

]
. (1.6)

Using only equations 1.5 and 1.6, we could calculate how a massless or massive
particle moves in a flat expanding Universe described by the FLRW metric.

1.1.2 Einstein’s field equations

The geometry of the Universe is connected to the energy-momentum tensor (section
1.3) through Einstein’s field equations:

𝑅𝜇𝜈 − 1
2 𝑔

𝜇𝜈𝑅 +Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 , (1.7)

The terms on the left hand side are completely defined in terms of the metric,
where 𝑅𝜇𝜈 is the Ricci tensor and 𝑅 is the Ricci scalar, a contraction of the Ricci
tensor and the metric (𝑅 = 𝑔𝜇𝜈𝑅

𝜇𝜈). The Ricci tensor itself is defined purely by the
metric and its derivates:

𝑅𝜇𝜈 = Γ𝛼𝜇𝜈,𝛼 − Γ𝛼𝜇𝛼,𝜈 + Γ𝛼𝛽𝛼Γ
𝛽
𝜇𝜈 − Γ𝛼𝛽𝜈Γ

𝛽
𝜇𝛼 , (1.8)

2This can also be written in terms of coordinates, but it’s usually less convenient.
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CHAPTER 1. THE COSMOLOGICAL BACKGROUND

recalling the definition of the Christoffel symbol (equation 1.6), and Γ𝛼𝜇𝜈,𝛼 =

𝜕Γ𝛼𝜇𝜈/𝛿𝑥𝛼. Note that the cosmological constant (Λ) term can also be included on
the right-hand side, where it is effectively the energy-momentum tensor of the
vacuum, with form:

𝑇
𝜇𝜈
(vac) = − Λ

8𝜋𝐺 𝑔
𝜇𝜈 . (1.9)

1.2 An expanding Universe

In 1927, Georges Lemaître found a linear relationship between the distance of other
galaxies, and their recessional velocity. This experimentally supported the notion
of an expanding Universe, which had been a solution derived from Einstein’s
field equations by Alexander Friedmann in 1922 (see section 1.4). In 1929, Edwin
Hubble confirmed the measurements of Lemaître, cementing what is now known
as the Hubble-Lemaître law:

𝑣 = 𝐻0𝑥. (1.10)

The constant of proportionality between recession velocity 𝑣 and distance 𝑥 is
known as Hubble’s constant. Note that this equation is only strictly true for small
recession velocities (i.e. nearby galaxies), since the expansion rate of the Universe
evolves with time.

The relative size of the Universe at any time 𝑡 is described by the scale factor
𝑎(𝑡), which relates the proper (physical) distance of an object 𝑥 to its coordinate,
or comoving distance 𝜒:

𝑥 = 𝑎(𝑡) 𝜒(𝑡) . (1.11)

The Hubble parameter 𝐻(𝑡), which is a measure of the expansion rate of the
Universe, is defined by the scale factor:

𝐻(𝑡) = 1
𝑎

𝑑𝑎

𝑑𝑡
. (1.12)

Note that Hubble’s constant 𝐻0 in equation 1.10 is the Hubble parameter at the
present (𝐻(𝑡0)).

It will also be important to define a new metric which accounts for the expansion
of the Universe. In the simplest case, where the Universe is Euclidean (flat), this is
the Friedmann–Lemaître-Robertson–Walker (FLRW) metric:

4



1.2. AN EXPANDING UNIVERSE

𝑔𝜇𝜈 =

©­­­­­«
−1 0 0 0
0 𝑎2(𝑡) 0 0
0 0 𝑎2(𝑡) 0
0 0 0 𝑎2(𝑡)

ª®®®®®¬
. (1.13)

Note that the only difference between this and the Minkowski metric (equation
1.2) is that we now multiply the spatial components 𝑔𝑖 𝑗 by 𝑎2(𝑡). We will explore
how the metric changes when we introduce perturbations and curvature, in
chapter 2.

1.2.1 Redshift

Light that is emitted from distant galaxies will be subject to the expansion of the
Universe, as it travels towards us. This causes the wavelength of the light to stretch,
in a phenomenon known as cosmological redshift. We define redshift in terms of
wavelength as:

𝑧 =
𝜆observed − 𝜆emitted

𝜆emitted
(1.14)

One can also write a direct relation between redshift and the expansion of the
Universe from the FLRW metric:

1 + 𝑧 = 1
𝑎(𝑡) . (1.15)

1.2.2 Comoving distance

Measuring distances in cosmology is complicated by the expansion of the Universe,
and the curvature of spacetime. Accounting for the expansion of the Universe, the
comoving (or coordinate) distance travelled by light from time 𝑡 to now is:

𝜒(𝑡) =
∫ 𝑡

𝑡0

1
𝑎(𝑡′)𝑑𝑡

′. (1.16)

Here we have written the small distance element 𝑑𝑥 as 𝑑𝑡/𝑎(𝑡) (setting 𝑐 = 1). It is
normal to write this relation in terms of redshift, using the relations of equations
1.12 and 1.15. Doing this gives us:

𝜒(𝑧) =
∫ 𝑧

0

𝑑𝑧′

𝐻(𝑧′) . (1.17)
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CHAPTER 1. THE COSMOLOGICAL BACKGROUND

These expressions can likewise be used to calculate the comoving separation
between any two objects. Distances to an object can also be measured through the
angle 𝜃 subtended by that object in the sky, given by:

𝑑A =
𝑠

𝜃
, (1.18)

where 𝑠 is the physical size of the object. This is known as the angular diameter
distance. In an expanding Universe, the comoving size of the object is equivalent
to 𝑠/𝑎(𝑡), and the comoving distance to the object (from equation 1.16) is 𝜒(𝑡).
This means that the angular size of the object evolves as 𝑠/𝑎(𝑡)𝜒(𝑡), which we can
substitute into equation 1.18 to derive an expression for 𝑑A in terms of redshift:

𝑑A(𝑧) =
𝜒(𝑧)
1 + 𝑧 . (1.19)

The angular diameter distance increases with time, until a turnover point (at
𝑎 ∼ 0.5, 𝑧 ∼ 1), where it starts to decrease. Remembering equation 1.18, this
means that after the turnover point, objects start to appear larger with time, rather
than smaller as one would naïvely expect. This occurs because the Universe,
and therefore the physical separation between the observer and the object, were
smaller in the past.

Equation 1.19 is only valid for a Universe of zero curvature. The general
expression in the presence of curvature is:

𝑑A(𝑧) = 𝑎(𝑧)𝑑M(𝑧), (1.20)

where 𝑑M is the transverse comoving distance given by:

𝑑M(𝑧) = 1
𝐻0

√
|Ωk|


sinh(

√
Ωk𝐻0𝜒(𝑧)), Ωk > 0

sin(
√
−Ωk𝐻0𝜒(𝑧)), Ωk < 0,

(1.21)

where Ωk is the curvature critical density parameter - the contribution to the
energy content of the Universe from intrinsic curvature. In the following sections,
we will go into detail about how the expansion of the Universe is related to its
energy contents.

1.3 Constituents of the cosmos

At large scales, we can approximate the Universe as a perfect fluid since it is
statistically uniform and isotropic. In sucha fluid, there are no internalmechanisms
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1.3. CONSTITUENTS OF THE COSMOS

(like conduction or viscosity) that cause net transfer of momentum or energy. We
can represent this with the energy-momentum tensor given by:

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 , (1.22)

where 𝜌 is energy density, 𝑝 is pressure and 𝑢𝜇 is the four-velocity. In the rest
frame this is 𝑢𝜇 = (1, 0, 0, 0), which leaves us with energy-momentum:

𝑇𝜇𝜈 =

©­­­­­«
𝜌 0 0 0
0 𝑃 0 0
0 0 𝑃 0
0 0 0 𝑃

ª®®®®®¬
. (1.23)

In GR, local energy and momentum conservation are no longer described
by the continuity (𝛿𝜌/𝛿𝑡 = 0) or Euler equations (𝛿𝑝/𝛿𝑥 = 0), since these are
coordinate dependent. Instead, we express it with the covariant derivative:

∇𝜇𝑇
𝜇𝜈 =

𝛿𝑇𝜇𝜈

𝛿𝑥𝜇
+ Γ

𝜇
𝛼𝜇𝑇

𝛼𝜈 + Γ𝜈𝛼𝜇𝑇
𝜇𝛼 = 0. (1.24)

Using the FLRW metric, we find that the only non-zero part of this equation is the
energy conservation part, for 𝜈 = 0:

¤𝜌 + 3 ¤𝑎
𝑎
(𝜌 + 𝑝) = 0. (1.25)

From this we can derive a general expression for the evolution of the density of
any constituent of the Universe:

𝜌x(𝑎) ∝ 𝑎−3(1+𝑤x), (1.26)

where𝑤x is the equation of state parameter for constituent x, defined as𝑤x = 𝑝x/𝜌x.
In figure 1.1 we show the evolution of 𝜌 for matter, radiation and dark energy. Note
that equation 1.26 is only valid for a time-independent 𝑤, which is not necessarily
true in general.

To measure the relative contributions of each constituent to the total energy
content of the Universe, it is useful to define the density parameter:

Ωx(𝑎) =
𝜌x(𝑎)
𝜌c(𝑎)

. (1.27)

where 𝜌c is the critical density, or the energy density that gives a Euclidean
Universe. We will see why this is the case in section 1.4, and for now simply define
it as:
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CHAPTER 1. THE COSMOLOGICAL BACKGROUND

Figure 1.1: The evolution of density (𝜌) for matter (dark + baryonic), radiation
(relativistic neutrinos + photons) and dark energy, relative to the total density
today (𝜌0). The dashed black vertical lines indicate the rough positions of the
transfer from radiation to matter domination (left) and matter to dark energy
domination (right).

𝜌c(𝑎) =
3𝐻(𝑎)2

8𝜋𝐺 , (1.28)

where 𝐺 is the Newtonian gravitational constant.
In the standard model of cosmology, known asΛ𝐶𝐷𝑀, we distinguish between

the following constituents to the energy density of the Universe:

• Non-relativistic matter: Denoted by Ω𝑚 , this is the combination of baryonic
matter (Ωb) and cold dark matter (Ωc). The latter was first introduced to
explain the peculiar motions of galaxy clusters and stars within galaxies (i.e.
galaxy rotation curve measurements) (Zwicky, 1933). These motions could
only be explained by the presence of an additional, unobservable (hence
"dark"), gravitationally-interacting substance. Furthermore, dark matter
is also needed to explain the level of structure observed in the Universe
today, where current measurements suggest it is much more abundant than
baryonic matter (Ωc ∼ 5Ωb). The observed amount of structure is also the
reason dark matter is "cold"; "hot" dark matter particles (e.g. neutrinos) are
too energetic to form bound objects like galaxies from an initially smooth
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1.4. FRIEDMANN’S EQUATIONS

Universe. Finally, non-relativistic matter is pressureless, so𝑤 = 0 and energy
density evolves with 𝑎−3.

• Relativistic particles: Denoted by Ωr, it is composed of photons and rela-
tivistic neutrinos, with 𝑝 = 𝜌/3, 𝑤 = 1/3. The energy density of radiation
decays with time as 𝑎−4, with an extra 𝑎 term coming from the fact that the
wavelength of these particles is stretched with the expansion of the Universe.
In current times, the radiation density (Ωr) is a negligible fraction of the total
energy density, mostly consisting of free streaming photons that make up
the cosmic microwave background (CMB)3.

• Dark energy: The final, and most dominant energy contribution today, is
dark energy represented by ΩΛ. The discovery of the accelerating expansion
of the Universe from observations of distant supernovae (Riess et al., 1998;
Perlmutter et al., 1999) cemented the need for a new form of energy, with
strong negative pressure. At its simplest form, this is the cosmological
constant (Λ), originally introducedby Einstein to his fieldequations (equation
1.7) to give a static Universe solution 4. In this form, dark energy is effectively
the energy of the vacuum, with a negative equation of state (𝑤 = −1).
According to current measurements, dark energy dominates the energy
density in the Universe today.

1.4 Friedmann’s equations

Einstein’s field equations (equation 1.7) can be used, for a given metric and energy-
momentum tensor, to derive a set of equations that govern cosmic expansion. This
was done by Alexander Friedmann in 1922, assuming both Universal isotropy and
homogeneity as defined by the FLRW metric, and the perfect fluid approximation
given in section 1.3.

Let us first start by writing the FLRW in spherical coordinates, including a
factor to allow for Universal curvature 𝑘:

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑𝜙2 + 𝑟2 sin2 𝜙𝑑𝜃2
)
. (1.29)

Then, computing all of the necessary components of equation 1.7, for 𝑇𝜇𝜈 defined
by equation 1.23, we arrive at the first Friedmann equation:

3It is possible that the mass of one neutrino species is very close to 0, such that it would also
be relativistic today.

4There is recent evidence that the dark energy is not a constant field, but is time-evolving DESI
Collaboration et al., 2025c.

9



CHAPTER 1. THE COSMOLOGICAL BACKGROUND

¤𝑎2(𝑡)
𝑎2(𝑡) =

8𝜋𝐺𝜌
3 − 𝑘

𝑎2(𝑡) +
Λ

3 . (1.30)

Now, recalling our definitions of the Hubble parameter (equation 1.12) and the
density parameters (equation 1.27), we can re-write this as:

𝐻2(𝑧)
𝐻2

0
= Ωm(1 + 𝑧)3 +Ωr(1 + 𝑧)4 +Ωk(1 + 𝑧)2 +ΩΛ, (1.31)

where we have changed variables from 𝑎 to 𝑧. We define Ωk = −𝑘(1 + 𝑧)2/𝐻2(𝑧),
which is related to the sum of all other components by Ωk = 1 − Ωtot. We can
infer Ωk from measurements of expansion history, or through measurements on
𝐻(𝑧). If Ωk = 0, we say the Universe is flat. If Ωk > 0 or Ωk < 0, we say the
Universe is open or closed respectively. One can see in section 1.2.2, that our
distance measurements are connected to redshift via the Hubble factor 𝐻(𝑧). This
means that we can, given measurements of e.g. supernova redshifts and distances,
derive values of the Hubble constant and energy densities. It is not unusual to
simplify equation 1.31 at late-times, by assuming Ωr = Ωk = 0.

1.5 A brief history of the early Universe

In the moments after the Big Bang (up to ∼ 10−6 s), extremely high temperatures
prevented the formation of hadrons, and the Universe is a dense quark-gluon
plasma. As expansion continues, temperatures cool enough (∼ 0.1 GeV) to form
protons and neutrons5. Just before the temperature of the Universe reached
1 MeV, neutrinos decoupled from the rest of the plasma, as the rate of weak force
interactions dropped below the expansion rate of the Universe. During this time,
most of the plasma is in equilibrium through electromagnetic/weak interactions,
and the mean free path of photons is roughly the size of an atom. In this period
the Universe is radiation dominated, and the scale factor evolves as 𝑎(𝑡) ∝ 𝑡1/2.

The Universe continues to expand, and at T∼0.5 MeV, almost all of the electron-
positron pairs are annihilated, dumping energy into the photon bath. This left
behind a small number of excess electrons - enough to make Universe charge
neutral. The weak interactions that govern proton-to-neutron conversion also
freeze-out, resulting in protons being 6× more abundant than neutrons. At
∼ 0.1 MeV, a process called Big Bang Nucleosynthesis (BBN) begins. This is marked

5At this stage anti-quarks also combine to form anti-hadrons, which are mostly annihilated,
leaving a net amount of matter. If there there was a no matter excess, the baryons that we observe
in the Universe today would not exist.

10



1.5. A BRIEF HISTORY OF THE EARLY UNIVERSE

by the formation of deuterium (2H), which started to occur when most photons
dropped below the energy required to split it apart. This was immediately followed
by the formation of heavier elements through nuclear reactions, predominantly
Helium (4He), but also trace amounts of Lithium and isotopes like 3He and 3H.

After this period of light element production, the Universe remained ionised
for a long time. At 𝑧 ∼ 3400, or roughly 50 000 years after the Big Bang, the energy
density of matter becomes greater than the energy density of radiation. This
happens because, as we’ve shown, the density of radiation decreases faster (∝ 𝑎−4,
compared to 𝑎−3). After this point, the scale factor evolves with time like 𝑎(𝑡) ∝ 𝑡2/3.
At 𝑧 ∼ 1100, or roughly 380 000 years after the Big Bang, the mean temperature of
the Universe drops below the ionisation energy of Hydrogen (T∼ 0.25 eV) 6, and
neutral atoms begin to form. When this occurs, photons no longer scatter from
free electrons (via Compton scattering), and begin to free stream. This marks the
formation of what we observe today as the Cosmic Microwave Background (CMB),
a snapshot of the early Universe. We will see in the next chapter, that although the
CMB is an almost perfect blackbody at 2.7 K, there are small anisotropies caused
by density fluctuations which are the seeds of structure in today’s Universe.

6This also happens for Helium but in two stages, one of which begins earlier, at T∼1 eV.
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2

The Growth of Structure

In this chapter we will discuss inhomogeneities in the early Universe, and describe
how these grew over time to produce the stucture we observe today. In the last
chapter we worked with the approximation that the Universe was completely
smooth and uniform. Here we will show how quantum fluctuations produced
anisotropies at small scales, visible in the CMB and the clustering of galaxies.

2.1 Inflation

Structure is a result of small perturbations to the metric and the constituents parts
(dark matter, baryons, radiation, dark energy1) of the Universe. Understanding
how these perturbations evolve, requires solving a set of Boltzmann and Einstein
equations for each constituent, and this in turn requires a set of initial conditions.

These initial conditions are closely tied to a fundamental issue in cosmology:
the horizon problem. Observations of the CMB (Smoot et al., 1992) reveal that
the Universe is extraordinarily uniform on large angular scales. Yet, under the
standard Big Bang model, regions of the CMB that are widely separated could
not have been in causal contact at the time of recombination. That is, they were
separated by more than the comoving distance that light could have travelled since
the Big Bang. This comoving distance, known as the comoving horizon, can be
defined as:

𝜂(𝑎) =
∫ 𝑡

0

𝑑𝑡′

𝑎(𝑡′) =
∫ 𝑎

0
𝑑 ln 𝑎′ 1

𝑎′𝐻(𝑎′) , (2.1)

where 1/𝑎′𝐻(𝑎′) is the comoving Hubble radius - the distance light can travel
over one 𝑒-fold of expansion. In the standard radiation- and matter-dominated

1The nature and in fact, existence or not, of these perturbations depends on the type of dark
energy considered - a cosmological constant for example does not perturb.
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Universe, the comoving horizon at recombination 𝜂∗ is ∼280 ℎ−1Mpc (integrating
equation 2.1 from 𝑡 = 0 to 𝑡∗). Further, the comoving separation of two points in
the CMB sky (for small angles) is 𝜒(𝜃) ≈ 𝜃 (𝜂0 − 𝜂∗), where 𝜂0 ∼ 14200 ℎ−1Mpc is
the comoving horizon today. From this, we derive that points separated by more
than ∼1.2◦ could not have been in causal contact in the standard picture.

A solution to this, is that the comoving Hubble radius, (𝑎𝐻)−1, shrank in the
early Universe. This behaviour could be realised during a phase of exponential
expansion, known as inflation (Guth, 1981). In that epoch, quantum fluctuations
that begin well inside the horizon are stretched to scales far beyond causal contact
and effectively “freeze out". After inflation ends and the horizon grows again,
these super-horizon modes re-enter, seeding the large-scale structure we see today.
Inflation also solves other discrepancies in cosmology, like the flatness problem.

The simplest and most widely studied mechanism for inflation involves a scalar
field, the inflaton 𝜙, minimally coupled to gravity. Its energy density and pressure
in a homogeneous FLRW background are given by

𝜌𝜙 =
1
2
¤𝜙2 +𝑉(𝜙), 𝑝𝜙 =

1
2
¤𝜙2 −𝑉(𝜙), (2.2)

yielding an equation of state:

𝑤 =
𝑝

𝜌
=

1
2
¤𝜙2 −𝑉(𝜙)

1
2
¤𝜙2 +𝑉(𝜙)

. (2.3)

Inflation occurs when the potential energy (𝑉(𝜙)) dominates over the kinetic
term ( ¤𝜙2), driving 𝑤 ≈ −1 and accelerating the expansion. This slow-roll regime
requires that 𝑉(𝜙) be sufficiently flat, so the field evolves slowly toward the
minimum of its potential. Note that 𝑤 here is not related to dark energy, despite
taking the same value during inflation.

2.2 Evolution of perturbations

Our goal is to understand primarily how small perturbations in the early Universe
evolve over time, focusing particularly on the distribution of matter. In this
section, we will mostly work in Fourier space, and define fluctuations in terms of
wavenumber 𝑘. Fluctuations in Fourier space (𝛿̃(𝑘)) and configuration space (𝛿(𝑟))
are related by the Fourier transform:

𝛿̃(k) =
∫

𝛿(r)𝑒−𝑖kr𝑑3r , (2.4)

and inverse Fourier transform:
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𝛿(r) = 1
(2𝜋)3

∫
𝛿̃(k)𝑒 𝑖kr𝑑3k (2.5)

where r is the separation vector between two points, and the prefactor 1/(2𝜋)3 is
included in the inverse transform by convention. Among other things, 𝑘-space is
convenient when describing linear evolution because modes evolve independently.

Building on the work of the previous chapter, we now introduce perturbations
to the metric using the conformal Newtonian gauge:

𝑑𝑠2 = −(1 + 2Φ(𝑡 , x))𝑑𝑡2 + 𝑎2(𝑡)(1 + 2Ψ(𝑡 , x))𝛿𝑖 𝑗𝑑𝑥 𝑖𝑑𝑥 𝑗 (2.6)

where Φ is the Newtonian gravitational potential, and Ψ is a spatial curvature
perturbation.

The next step is to relate these metric perturbations to the perturbed Boltzmann
equations describing the equation of state of matter. This can be done through
Einstein’s field equations (equation 1.7). This gives us an expression relating the
potential Φ to dark matter and radiation densities:

𝑘2Φ(k, 𝑎) + 3 𝑎
′

𝑎

(
Φ(k, 𝑎)′ + 𝑎′

𝑎
Φ(k, 𝑎)

)
= 4𝜋𝐺𝑎2[𝜌c𝛿c + 4𝜌rΘr,0]. (2.7)

where 𝛿c = 𝛿𝜌c/𝜌c is the dark matter overdensity, and Θr,0 is the radiation tem-
perature perturbation monopole. We have also changed to taking derivates with
conformal time 𝑑𝜂 = 𝑑𝑡/𝑎(𝑡) (indicated by 𝑎′ rather than ¤𝑎). This equation is de-
rived from the time-time component of Einstein’s equation for scalar perturbations,
with some simplifications. Namely, we neglect baryon perturbations using the
tight-coupling approximation in Fourier space, and merge the neutrino/photon
contributions. We have also setΨ = −Φ, which is true when photon (and neutrino)
quadrupole moments are negligible, and there is no anisotropic stress component
of 𝑇𝜇𝜈.

To find solutions to equation 2.7, we make use of inflationary initial conditions,
and consider both sub- and super-horizon modes, and how these evolve with time.
It will also be useful in general to characterise perturbations as small fluctuations
in curvature, or the gauge-invariant quantityℛ = Ψ+ 𝐻

¤𝜌 𝛿𝜌. Outside of the horizon,
ℛ is conserved and potentials do not evolve significantly.

There are two important events that affect the evolution of perturbations, one
is the matter-radiation equality, and the other is horizon crossing. For a given
𝑘-mode, these two events will have a different impact. For the large-scale (initially
super-horizon; 𝑘 ≪ 𝑎𝐻) modes which are relevant to large-scale structure studies
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CHAPTER 2. THE GROWTH OF STRUCTURE

today, the potential falls moving through matter-radiation equality (denoted by
𝑎eq) as:

Φ(k) =


3
5ℛ(k), matter domination
2
5ℛ(k), radiation domination.

(2.8)

Modes which enter the horizon during radiation domination (before 𝑘eq ∼
0.01 Mpc−1), have oscillating and decaying potentials equivalent to (a solution to
equation 2.7):

Φ(k) ∝ ℛ(k)cos(𝑘𝜂/
√

3)
(𝜂𝑘)2 , (2.9)

for a plane wave perturbation. Physically, these are sound waves where radiation
pressure counteracts gravity. In these potentials, matter overdensities can be found
to grow as the logarithm of the scale factor, 𝛿 ∝ ln 𝑎.

In the matter dominated era, we can ignore radiation terms in equation 2.7,
giving us the solution Φ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 2. In this regime, sub-horizon overdensities
evolve according to the Meszaros equation Meszaros, 1974:

𝑑2𝛿c
𝑑𝑦2 + 2 + 3𝑦

2𝑦(𝑦 + 1)
𝑑𝛿c
𝑑𝑦

− 3
2𝑦(𝑦 + 1)𝛿c = 0, (2.10)

where 𝑦 = 𝑎/𝑎eq. The general solution to this equation contains a growing and
decaying mode, which scale with 𝑎 and 𝑎− 3

2 respectively.

2.2.1 Transfer function and growth factor

In general, as long as the initial perturbations ℛ are adiabatic, we can write the
matter density fluctuation 𝛿m(𝑘, 𝑎) at late times as:

𝛿m(k, 𝑎) = 2
5

𝑘2

Ωm𝐻
2
0
ℛ(k)𝑇(𝑘)𝐷(𝑎). (2.11)

where 𝑇(𝑘) is the transfer function, describing how different 𝑘 modes are affected
by processes like horizon crossing and matter-radiation equality crossing, and
𝐷(𝑎) is the growth factor, describing 𝑘-independent evolution with time. The
transfer function is defined in terms of the Newtonian potential (Φ) as:

𝑇(𝑘) = Φ(k, 𝑎late)
Φ(k, 𝑎 = 0) , (2.12)

2After matter domination, as dark energy begins to dominate (𝑎 > 0.1), Φ begins to decay with
time, and growth begins to cease.
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Figure 2.1: (Solid lines) the linear matter power spectrum (𝑃L) at various redshifts,
where the red shaded region represents the approximate 𝑘-range of the BAO
signature. (Dashed lines) the matter power spectrum including non-linearities.

where 𝑎late is the scale factor far into matter domination. This expression is
normalised such that the transfer function describes how the potential at 𝑘 is
suppressed relative to the largest modes.

In the matter dominated era, as a consequence of the fact that all modes grow
at the same rate, the transfer function effectively becomes constant (hence we write
𝑇(𝑘) instead of 𝑇(𝑘, 𝑎)). Then, the growth factor is the relevant function describing
the potential evolution, defined as:

𝐷(𝑎) = 𝑎
Φ(k, 𝑎)

Φ(k, 𝑎late)
, 𝑎 > 𝑎late (2.13)

where this convention is set such that at late times, overdensities grow as 𝛿m ∝ 𝐷(𝑎)
(𝐷(𝑎) ∝ 𝑎 in matter domination).

2.2.2 Linear matter power spectrum

The 2-point correlation function of linear-order density fluctuations in Fourier
space is equivalent to: ⟨𝛿̃(k)𝛿̃(k′)⟩ = (2𝜋)3𝛿D(k + k′)𝑃L(k), where 𝑃L(k) is the
linear matter power spectrum. In figure 2.1 we show 𝑃𝐿(k) for several different
redshifts, including deviations from linear fluctuations at high-𝑘 (dashed lines).
This is a key measurement in modern cosmology, and we can relate it to the power
spectrum of inflationary perturbations (𝑃ℛ(k)) using the functions defined above:

17



CHAPTER 2. THE GROWTH OF STRUCTURE

𝑃L(𝑘, 𝑎) = 𝑇(𝑘)2𝐷(𝑎)2𝑃ℛ(𝑘). (2.14)

𝑃ℛ(𝑘) is the primordial power spectrum of the initial Gaussian perturbations ℛ(𝑘).
It is parametrised as:

𝑃ℛ(𝑘) = 𝐴s

(
𝑘

𝑘∗

)𝑛s−1
, (2.15)

where 𝐴s is the amplitude of the power spectrum, 𝑛s is the spectral index and 𝑘∗
is the pivot scale at which 𝐴s is evaluated.

2.3 Baryon Acoustic Oscillations

In the period just before recombination, a dense hot soup of protons and electrons
were tightly coupled to photons (via Compton scattering). As a result, the mean
free path (𝜆mfp) of these photons was negligible compared to the cosmic horizon.
We can describe this epoch using the Boltzmann equations for photon and electron-
baryon fluids, in the limit where 𝜆mfp ≪ 1/𝐻.

To begin with we write a second order equation describing small perturbations
Ψ and Φ (equation 2.6) in the coupled photon-baryon-electron soup, using the
fluid approximation where only the monopole moment of the photon temperature
perturbations is relevant:

Θ0(𝑘, 𝑎)′′+
𝑎′𝑅

𝑎(1 + 𝑅)Θ0(𝑘, 𝑎)′+k2𝑐2
sΘ0(𝑘, 𝑎) = −Φ(k, 𝑎)′′− 𝑎′𝑅

𝑎(1 + 𝑅)Φ(k, 𝑎)
′− 𝑘

2

3 Ψ(k, 𝑎).
(2.16)

Here 𝑅 = 3𝜌b/4𝜌𝛾
3, where 𝜌𝛾 is the photon energy density, and 𝑐s is the speed of

sound in the fluid, equivalent to:

𝑐s(𝑎) =
√

1
3(1 + 𝑅(𝑎)) . (2.17)

Equation 2.16 above is a driven, damped harmonic oscillator for the photon
temperature monopole Θ0, and describes acoustic oscillations in the photon-
baryon-electron fluid. Oscillations continue to propagate in this fluid until the
Universe has expanded enough such that electrons and protons combine (at the
time of recombination; 𝜂∗), and photons which were tightly coupled by Compton
scattering, began to free stream. Modes with different wavenumbers 𝑘 oscillate at

3Note that 𝑅, and by extension 𝑐𝑠 , is a function of time, since the relative energy densities of
baryons and photons changes with the expansion of the Universe.
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different rates, and their phases at the time of recombination become imprinted as
peaks and troughs in the power spectra of both the CMB and matter distribution.

The characteristic Baryon Acoustic Oscillation (BAO) feature corresponds to
the maximum distance that a sound wave could have propagated in the early
universe before recombination — known as the sound horizon. The comoving
distance of the sound horizon is given by:

𝑟d =

∫ 𝜂∗

0

𝑐𝑠(𝜂)
𝑑𝜂

=

∫ ∞

𝑧∗

𝑐𝑠(𝑧)𝑑𝑧
𝐻(𝑧) , (2.18)

where 𝑧∗ corresponds to the redshift of recombination. This sound horizon also sets
the physical scale of the BAO feature observed in the galaxy correlation function
today. Studies of CMB anisotropies can be used to constraint the parameters that
set the size of the sound horizon, which they predict to be 𝑟d ≈ 147 Mpc.
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3

Measuring large-scale
structure

The expansion history, structure, and energy contents of the Universe can be
measured through many different tracers. Observations of the CMB (Dicke et
al., 1965; Penzias and Wilson, 1965; Smoot et al., 1992) provide a snapshot of
the Universe at the time of recombination, encoding information about its early
fluctuations. The angular position and height of the acoustic peaks in the CMB
power spectrum are especially sensitive to parameters like the total matter density,
the baryon-to-photon ratio, and spacial curvature.

Complementary to this, galaxy clustering measurements at lower redshifts have
revealed how those early fluctuations evolved into the large-scale structure we see
today (Zehavi et al., 2002). In particular, the imprint of BAO in the distribution of
galaxies provides a standard ruler at multiple cosmic epochs. By comparing the
observed angular and redshift separations of the BAO feature to the theoretically
inferred sound horizon, one can map the expansion rate of the Universe and
constrain dark energy (Cole et al., 2005; Eisenstein et al., 2005).

3.1 Clustering and redshift-space distortions

At large enough scales, galaxies and other structure (such as the Ly𝛼 forest)
are biased-tracers of the underlying dark matter field. This means the tracer
overdensity (𝛿𝑖) and dark matter overdensity (𝛿𝑚) are related by:

𝛿i(k) = 𝑏𝑖 𝛿m(k) , (3.1)

where 𝑏𝑖 is the tracer bias. The power spectrum of fluctuations 𝛿i can further be
related to the linear matter power spectrum (section 2.2.2) via the relation:
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𝑃ij(k, 𝑧) = 𝑏2
𝑖 (𝑧)(1 + 𝛽𝑖(𝑧)𝜇2(k))2𝑃L(𝑘, 𝑧) , (3.2)

The factor (1 + 𝛽𝑖𝜇2) accounts for large-scale Redshift-Space Distortions (RSD)
(Kaiser, 1987), and 𝜇 = 𝑘∥/𝑘 is the cosine of the angle between k and the line-of-
sight 𝑘∥.

Redshift-space distortions are anisotropies in the clustering of objects in
redshift-space due to peculiar motion, where the observed redshift of any ob-
ject is given by:

1 + 𝑧obs = (1 + 𝑧cosmo)
(
1 −

𝑢∥
𝑐

)−1
, (3.3)

for cosmological redshift 𝑧cosmo and peculiar velocity 𝑢∥. RSD are classified in two
distinct types:

• Linear RSD (Kaiser): These distortions are caused by large-scale infall of
material into overdense regions of space. As a result the density field in
redshift-space is compressed along the line-of-sight, which manifests as
stronger clustering. This is a linear-order effect, modelled by the Kaiser
formula (Kaiser, 1987): 𝑃𝑠 = 𝑏2(1 + 𝛽𝜇2)2𝑃, where 𝑃𝑠 is the redshift-space
matter power spectrum (for a single tracer).

• Fingers of God (FoGs): These distortions are caused by random virial motions
of objects at small-scales which stretch the density field along the line-of-
sight, and consequently weaken clustering. Unlike the case above, this is a
non-linear effect, and is normally treated phenomenologically.

The RSD parameter, 𝛽, is defined for point-tracers in linear theory as: 𝛽𝑖 = 𝑓 / 𝑏𝑖 ,
where 𝑓 is logarithmic growth-rate, related to the growth rate 𝐷(𝑎) (section 2.2.1)
via:

𝑓 =
𝑑 ln𝐷(𝑎)
𝑑 ln 𝑎 . (3.4)

This is also empirically related to the matter density via 𝑓 ∼ Ωm(𝑎)0.55, a relation
whichholds true even in the presence ofe.g. dynamicaldarkenergy. The parameter
𝜎8 (sometimes defined in the derived parameter 𝑆8 = 𝜎8(Ωm/0.3)0.5) quantifies the
root-mean-square (RMS) amplitude of linear matter density fluctuations on scales
of 8 ℎ−1 Mpc. It is computed by smoothing the linear matter power spectrum
𝑃𝑚(𝑘, 𝑧) with a spherical top-hat window function of radius 𝑅 = 8 ℎ−1 Mpc:

𝜎2
8(𝑧) =

∫ ∞

0

𝑑𝑘

𝑘

𝑘3𝑃𝑚(𝑘, 𝑧)
2𝜋2 |𝑊(𝑘𝑅)|2 (3.5)
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where 𝑊(𝑘𝑅) is the Fourier transform of the top-hat window function. We can
constrain the combination 𝑓 𝜎8 in linear theory from RSD measurements in e.g.
galaxy clustering (Percival and White, 2009).

3.1.1 Measuring BAO

Baryon acoustic oscillations (BAO; see section 2.3) are a key feature in the large-
scale clustering of matter. By measuring the BAO feature in the clustering of
matter in the late Universe, such as in galaxy surveys or in the Ly𝛼 forest, one
can compare the observed scale with its known value from the early Universe
(from CMB measurements). This provides powerful constraints on the expansion
history and geometry of the Universe.

The true physical sizes of the BAO peak in angular and velocity separations
are related to the comoving size of the peak by:

Δ𝜃BAO(𝑧) =
𝑟d

𝑑m(𝑧) , Δ𝑣BAO(𝑧) ≈
𝑟d𝐻(𝑧)
1 + 𝑧 , (3.6)

where 𝑑m is the comoving transverse distance (equation 1.21). From these mea-
surements one can place constraints on dark energy and cosmic expansion rate,
as was first done in Eisenstein et al., 2005. More recently, the Dark Energy Spectro-
scopic Instrument (DESI) survey has provided the best measurements of BAO from
galaxies (DESI Collaboration et al., 2025c) and the Ly𝛼 forest (DESI Collaboration
et al., 2025b). These have been combined to put precise constraints on cosmic
expansion history, and currently favour an evolving dark energy equation-of-state
(DESI Collaboration et al., 2025c).

We observe BAO as a peak in the 2-point (pt) correlation function, defined as:

𝜉(r) = ⟨𝛿(x)𝛿(x + r)⟩. (3.7)

This is also related to the power spectrum of fluctuations:

𝜉ℓ (𝑟, 𝑧) =
𝑖ℓ

2𝜋2

∫ ∞

0
𝑑𝑘 𝑘2 𝑗ℓ (𝑘𝑟)𝑃ℓ (𝑘, 𝑧) , (3.8)

where 𝑗𝑙 are the spherical Bessel functions, and:

𝜉(𝑟, 𝜇, 𝑧) =
∑
ℓ even

𝐿ℓ (𝜇)𝜉ℓ (𝑟, 𝑧) . (3.9)

Finally, 𝐿ℓ are the Legendre polynomials, and𝑃ℓ are the powerspectrum multipoles
given by:
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Figure 3.1: Flux in the Lyman-𝛼 forest of a quasar at 𝑧 = 2.5, as a function of
observed wavelength 𝜆. Overlaid in blue is the mean expected flux, accounting
for the average absorption level at each wavelength. Note that the ratio of flux
and mean expected flux is 1+ 𝛿F. The Ly𝛼 emission line is also highlighted (green
dashed vertical) at 𝜆 = 𝜆𝛼 (1 + 𝑧𝑞).

𝑃ℓ (𝑘, 𝑧) =
2ℓ + 1

2

∫ +1

−1
𝐿ℓ (𝜇)𝑃ℓ (𝑘, 𝑧, 𝜇) 𝑑𝜇 . (3.10)

3.2 The Lyman-𝛼 forest

The Lyman-𝛼 (Ly𝛼) forest (Lynds, 1971) is a series of absorption features in spectra
of distant galaxies and quasars, produced when the light from these intersects
neutral hydrogen (HI) gas in the Intergalactic Medium (IGM). Absorption occurs
at the rest-frame wavelength of the Ly𝛼 transition, 𝜆𝛼 ≈ 1216 Å, but appears
across a wide range in the observer frame. This is because spectra are redshifted
by cosmological expansion as they travel towards us, so that photons which were
initially at 𝜆 < 𝜆𝛼 increase in wavelength, until they are readily absorbed by HI
gas at 𝜆𝛼.

The IGM is made up of sparse, smooth gas that traces the underlying dark
matter distribution, making it a tracer of large-structure. The analogue of the
matter overdensity field in the forest is the flux transmission field, defined as:

𝛿F(𝜆) =
𝐹(𝜆)
𝐹(𝜆)

− 1 (3.11)

=
𝑓 (𝜆)

𝐹(𝜆)𝐶(𝜆)
− 1 , (3.12)
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where 𝐹(𝜆) is the transmitted fraction of flux at wavelength 𝜆 in the observer
frame, equivalent to 𝐹 = 𝑒−𝜏HI by definition, where 𝜏HI is the opacity of the IGM.
𝐹 is the mean transmitted flux fraction at observed wavelength 𝜆 (or redshift
𝑧). In the second line we substitute 𝐹(𝜆) = 𝑓 (𝜆)/𝐶(𝜆), where 𝑓 is flux and 𝐶

is the unabsorbed quasar continuum. Often in real analyses, 𝐶(𝜆) and 𝐹(𝜆) are
combined into the mean expected flux 𝑓 (𝜆) = 𝐹(𝜆)𝐶(𝜆). In figure 3.1 we show the
observed Ly𝛼 forest flux (grey) in a quasar at 𝑧 ∼ 2.5, overlaid (blue line) with the
mean expected flux at each wavelength.

3.2.1 Optical depth

The general expression for the IGM optical depth along a line-of-sight, in terms of
mean neutral hydrogen density 𝑛HI and cross-section 𝜎HI, is:

𝜏𝛼 =

∫
LOS

𝑛HI(𝑥)𝜎𝛼(𝜈) 𝑑𝑥, (3.13)

Assuming neutral hydrogen is uniformly distributed in the IGM, we can substitute
an expression for cross-section and replace the proper path length (𝑑𝑥) integral
with redshift 𝑑𝑥 = 𝑐 𝑑𝑧 /(1 + 𝑧)𝐻(𝑧), which gives us the Gunn-Peterson optical
depth (Gunn and Peterson, 1965):

𝜏GP(𝑧) =
𝜋𝑒2 𝑓12𝜆𝛼

𝑚𝑒 𝑐𝐻(𝑧) 𝑛HI(𝑧). (3.14)

Here𝑚𝑒 and 𝑒 are the electron mass and charge respectively, and 𝑓12 is the oscillator
strength of Ly𝛼 line. 𝑓12 and consequently the Ly𝛼 cross-section (𝜎𝛼 ∝ 𝑓12) are
relatively large, meaning absorption is strong even if only a small fraction of
the IGM is neutral hydrogen. The optical depth is also be related to the neutral
hydrogen fraction 𝑋HI via the expression (Barkana and Loeb, 2001):

𝜏GP(𝑧) ∝
𝑋HI(Ωbℎ

2)(1 + 𝑧)3/2

Ω
1/2
m

. (3.15)

Before reionisation, when 𝜏GP ≫ 1, the IGM was completely opaque to Ly𝛼
photons, causing complete absorption blue-wards of the Ly𝛼 line - the Gunn-
Peterson trough. After reionisation, where 𝜏GP ≪ 1 (but still non-zero), there is
still enough residual neutral hydrogen to produce narrow Ly𝛼 absorption lines.
Observations of Gunn-Peterson absorption have in fact suggested that the end of
cosmic reionisation was around 𝑧 ∼ 6 (Fan et al., 2006).

The Ly𝛼 optical depth can be directly linked to density fluctuations in the
underlying dark matter field:

25



CHAPTER 3. MEASURING LARGE-SCALE STRUCTURE

𝜏𝛼 = 𝐴(1 + 𝛿𝑚)𝛼 , (3.16)

where 𝐴 is a constant dependent on redshift and the state of the IGM, and 𝛼 ∼ 1.6
(Weinberg and et al., 1999). This is the Fluctuating Gunn-Peterson Approximation
(FGPA), a fast semi-analytical method to modelling the Ly𝛼 forest, which has been
proven to work well with high-resolution N-body simulations (Sorini et al., 2016).
In later sections, when studying the impact of systematics on cosmology measured
from Ly𝛼 correlation functions, we make use of synthetic datasets that use the
FGPA approximation.

3.2.2 Cosmology with Ly𝛼 absorption

Like galaxies, the flux transmission field of the Ly𝛼 also linearly traces underlying
dark matter at large enough scales, but with an additional term:

𝛿F(k) = 𝑏𝛼𝛿m(k) + 𝑏𝜂𝜂(k) . (3.17)

Here, 𝑏𝛼 and 𝑏𝜂 are the density bias and velocity divergent bias of the Ly𝛼 forest
respectively, where 𝜂(k) = 𝑓 𝜇2𝛿𝑚(k) is the radial peculiar velocity gradient. This
additional term changes the Ly𝛼 RSD parameter, 𝛽𝛼: 𝛽𝛼 = 𝑏𝜂 𝑓 /𝑏𝛼. It is important
to highlight that for the Ly𝛼 forest, the combination 𝑓 𝜎8 is degenerate with the
velocity divergence bias 𝑏𝜂, and cannot be measured except in combination with
galaxies or quasars, since for those 𝛽 = 𝑓 /𝑏.

The 3-dimensional Ly𝛼 power spectrum is similarly written (McDonald, 2003):

𝑃F(k, 𝑧) = 𝑏𝛼(𝑧)2(1 + 𝛽𝛼(𝑧)𝜇2)2𝐷NL(k, 𝑧)𝑃L(𝑘, 𝑧) , (3.18)

where now we have included a factor 𝐷NL, that models non-linear deviations
from 𝑃L at smaller scales. These additional complexities are due to the gas
pressure, thermal effects and peculiar velocities within the IGM where absorption
is produced. This function can be described by the empirical model of Arinyo-i-
Prats et al., 2015:

𝐷NL(𝑘) = exp

[
(𝑞1Δ

2(𝑘) + 𝑞2Δ
4(𝑘))

(
1 −

(
𝑘

𝑘𝑣

) 𝑎𝑣
𝜇𝑏𝑣

)
−

(
𝑘

𝑘𝑝

)2
]
, (3.19)

where Δ(𝑘) = (2𝜋2)−1𝑘3𝑃L(𝑘) is the dimensionless linear matter power spectrum.
The parameters 𝑞x account for non-linear growth, while parameters with subscript
𝑣 account for thermal effects and velocities, and 𝑘𝑝 accounts for gas pressure.
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4

The Dark Energy Spectroscopic
Instrument

The Dark Energy Spectroscopic Instrument (DESI) is a next-generation galaxy red-
shift survey designed to map the 3D structure of the universe with unprecedented
precision. Its primary goal is to investigate the nature of dark energy, which DESI
will achieve by observing the redshifts of more than 40 million galaxies and 3
million quasars (Schlafly et al., 2023), over 14000 deg2 of sky.

Measuring the BAO feature (see section 3.1.1) is a key objective of DESI. By
doing so at multiple redshifts between 𝑧 ∼ 0.1 − 3.5, DESI can put constraints on
the expansion history of the universe. These then allow us to constrain models
of dark energy, testing whether cosmic acceleration is driven by a cosmological
constant, a dynamical dark energy field, or modifications to general relativity. In
parallel, DESI will exploit RSD to measure the growth of cosmic structure (see
section 3.1), offering a powerful means to test the validity of general relativity on
cosmological scales.

4.1 Instrument and survey design

DESI is mounted on the 4-metre Mayall telescope at Kitt Peak (DESI Collaboration
et al., 2022), and has 5000 robotically controlled spectroscopic fibres in its focal
plane (Poppett et al., 2024). The focal plane is split into 10 "petals", each of
which contains 500 fibres that are fed to an independent spectrograph which
covers the wavelength range 3600 to 9800 Å. Each spectrograph consists of a blue
(3600-5550Å), red (5550-6560Å) and near infrared (NIR; 6560-9800Å) arm, with
resolutions varying from R = 2000-5000. 10 Guide, Focus and Alignment (GFA)
cameras are also positioned on the periphery of each focal plane, to allow for
accurate tracking and calibration of the instrument during observing runs. These
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Figure 4.1: Observed galaxies and quasars from the first year of DESI data, known
as data release 1 (DR1). Bright galaxy survey (BGS) targets are observed in "bright"
time, where only the brightest (and closest) galaxies can be seen. Luminous red
galaxies (LRG) are categorised by their red colour, and emission line galaxies
(ELGs) have prominent spectral lines from active star formation. Quasars (QSO)
are extremely bright, and thus make up the most distant observed sample. Note
that the Ly𝛼 forest is not visible here, and that the galaxies in this image have
varying declinations, which has been compressed for visualisation.
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factors, combined with the 3 degree diameter, allow DESI to quickly collect high
quality spectra.

The DESI pipeline (Guy et al., 2023) processes raw 2D CCD images from the
ten spectrographs into calibrated 1D spectra. Raw CCD frames are converted to
1D spectra through a sequence of calibration steps, and sky emission lines are
subtracted using designated “sky fibres” (fibres on empty sky). In parallel, flux
calibration is performed using standard stars to convert measured counts into
flux-calibrated spectra.

DESI uses the template fitting algorithm Redrock (Bailey et al., 2025) to classify
and assign redshifts to each calibrated spectrum. Redrock contains a library of
PCA-based templates for galaxies, stars and quasars, derived from Sloan Digital
Sky Survey (SDSS) spectra. In practice, Redrock is very successful in correctly
classifying and estimating redshifts for all target types, but to improve these
things for quasars, two additional algorithms are used. The first is QuasarNET, a
neural-network classifier specially trained on quasar spectra to recover broad-line
redshifts missed by Redrock. Secondly, an afterburner is run on galaxy targets to
identify the broad MgII emission line which is characteristic in quasars, helping
to recover a number of mis-labelled objects.

Spectroscopic targets in the DESI survey are selected using imaging data
from the DESI Legacy Imaging Surveys (Dey et al., 2019), a combination of
three wide-area surveys: the Dark Energy Camera Legacy Survey (DECaLS), the
Beĳing-Arizona Sky Survey (BASS), and the Mayall z-band Legacy Survey (MzLS).
These surveys provide deep, uniform imaging in the optical 𝑔, 𝑟 and 𝑧 bands,
which are complemented by mid-infrared photometry from the WISE𝑊1 and𝑊2
bands. Photometric selection algorithms are used to identify different cosmological
tracers, including emission line galaxies (ELGs), luminous red galaxies (LRGs),
and quasars, each optimised for different redshift ranges and scientific goals.

Once targets are selected, they are assigned to DESI’s robotically controlled fibre
positioning system. For each observation pass, individual fibres are automatically
placed on their assigned targets with a precision of ∼10 microns, ensuring optimal
light capture into the spectrographs. This high-precision fibre placement is critical
for achieving DESI’s goals in redshift measurement accuracy and spectroscopic
completeness across the full focal plane.
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4.2 DESI Ly𝛼

The Ly𝛼 forest is observed in DESI quasars with redshifts ≳ 2 (due to the finite
spectrograph range), where each DESI Ly𝛼 quasar will receive a total of 4000 𝑠
effective exposure time. For details on the effective exposure time calculator, see
Tie et al., 2020. The signal-to-noise and resolution of DESI Ly𝛼 forests is sufficient
to perform precise percent-level BAO measurements, as well as the extraction of
small-scale clustering information through the one-dimensional Ly𝛼 forest power
spectrum.

The first data release of DESI, known as the early data release (EDR) was
compiled from measurements made during the survey validation (SV) phase 1,
and contained 68 750 Ly𝛼 quasars (60 deg−2). The Ly𝛼 flux-transmission fields
computed from each of these quasars is estimated and presented in Ramírez-Pérez
et al., 2024, and the first clustering analysis of this data was done in Gordon et al.,
2023, which is presented in chapter 5.

Following this, the 1st year of DESI observations was released, known as data
release 1 (DR1) (DESI Collaboration et al., 2025a), shown in figure 4.1 (all tracers
except the Ly𝛼 forest). This represented a significant increase in the number of
Ly𝛼 quasars (to ∼420 000), giving the first BAO measurement (Adame et al., 2025b)
and the first cosmological analysis in combination with other tracers (Adame et al.,
2025c). Importantly, DR1 also allowed for the first Ly𝛼 full-shape analysis—an
approach that goes beyond BAO to exploit the full information content of the Ly𝛼
correlation functions (Cuceu et al., 2025a), including redshift-space distortions
and broadband shape. Chapter 6 details a study of the impact of redshift errors
on this full-shape analysis (Gordon et al., 2025).

1This was an early campaign conducted before the start of the main survey from December
2020 till April 2021, aiming to verify and refine all components of the survey pipeline
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Clustering measurements from
the Ly𝛼 forest in the DESI Early

Data Release

5.1 Introduction

The Lyman-𝛼 (Ly𝛼) forest is a dense series of absorption lines found in the spectra
of distant quasars, that we use to study the large-scale structure of the universe.
These absorption features arise as a result of diffuse neutral hydrogen in the IGM
(Lynds, 1971), which readily absorbs light at the Ly𝛼 wavelength 𝜆𝛼 = 1215.67Å,
and can be used as a biased tracer of the underlying matter density (Weinberg,
2003). Due to the low rest-frame wavelength of the Ly𝛼 transition, its absorption
is only detected by optical spectrographs for quasars with redshift 𝑧 ≥ 2. The
Lyman−𝛼 forest allows us to measure the expansion of the Universe at redshifts
larger than those accessible by spectroscopic galaxy surveys (𝑧 <1.5; Alam et al.,
2021).

The environment that gives rise to the Ly𝛼 forest has been well studied using
hydro-dynamical simulations (Cen et al., 1994; Miralda-Escudé et al., 1996), where
a combination of photo-ionisation heating and adiabatic cooling leads to a tight
relation between temperature and gas density 𝑇 ∝ (𝜌/𝜌)𝛾−1 (Hui and Gnedin,
1997). The transmitted flux fraction is related to the optical depth of the Ly𝛼 forest
by 𝐹 = 𝑒−𝜏. At sufficiently large scales (> 10 ℎ−1Mpc), the power spectrum of
transmitted flux 𝛿F = 𝐹/𝐹 − 1, is found to trace linearly the power spectrum of
𝛿(x) = 𝜌(x)/𝜌− 1 (Slosar et al., 2011). However, due to non-linear growth, thermal
broadening, and Jeans smoothing, this relation becomes more complex and non-
linear at smaller scales (McDonald, 2003; Arinyo-i-Prats et al., 2015; Givans et al.,
2022).

31
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The first studies of clustering in the Lyman−𝛼 forest looked at one-dimensional
(1D) correlations along the line-of-sight towards a handful of quasars (Croft et al.,
1998; McDonald et al., 2000). These 1D measurements were later repeated using
larger data sets from the Sloan Digital Sky Survey (SDSS) McDonald et al., 2006,
from the Baryon Oscillation Spectroscopic Survey (BOSS) (Palanque-Delabrouille
et al., 2013), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS)
(Chabanier et al., 2019).

This paper, on the other hand, focuses on three-dimensional (3D) correlations
in the Lyman−𝛼 forest. Using early data from the BOSS survey, Slosar et al., 2011
presented the first measurement of 3D correlations in the Lyman−𝛼 forest. These
correlations were also computed from larger datasets to measure the scale of
Baryon Acoustic Oscillations (BAO) around 𝑧 = 2.3, in BOSS and eBOSS (Busca, N.
G. et al., 2013; Kirkby et al., 2013; Slosar et al., 2013; Delubac et al., 2015; Bautista et
al., 2017; de Sainte Agathe et al., 2019; Bourboux et al., 2020). The cross-correlation
of quasars and the Lyman−𝛼 forest was also measured in BOSS (Font-Ribera
et al., 2013), and used to improve the BAO measurements from the Ly𝛼 datasets
(Font-Ribera et al., 2014b; du Mas des Bourboux et al., 2017; Blomqvist, Michael
et al., 2019; Bourboux et al., 2020). The final eBOSS analysis (Bourboux et al.,
2020), using data from SDSS DR16, included 210 005 Ly𝛼 forest from quasars at
𝑧 >2.1 that were used in the autocorrelation, and 341 468 at 𝑧 >1.77 that were
also used in the cross-correlation. More recently, the full shape of the 3D Ly𝛼
correlation has been used to measure the Alcock-Paczynski effect in eBOSS data
(Cuceu et al., 2022a), which combined with Ly𝛼 BAO gives the best measurement
of the expansion rate of the Universe above 𝑧 = 1.

We use early data from the Dark Energy Spectroscopic Instrument (DESI) (Levi
et al., 2013; DESI Collaboration et al., 2016a) to measure the autocorrelation of the
Lyman−𝛼 forest and its cross-correlation with quasars, and compare our results
with those from the eBOSS collaboration (Bourboux et al., 2020). We also show in
section 5.5 that we detect the BAO peak to high-confidence in our dataset. Given
the early stage and relatively low statistical power of our data, we choose not to
present measurements of the BAO scale parameters. Throughout the latter half
of the paper, we make use of the best fit ΛCDM cosmological parameters from
Planck 2018 (Planck Collaboration et al., 2020)1, where Ωm = 0.3153, to compute
correlations in terms of co-moving separation. This allows us to combine a wide
range of redshifts into a single measurement while preserving the BAO feature.

The structure of the paper follows roughly the steps required to perform the
1See table 2 of Planck Collaboration et al., 2020, where we use TT,TE,EE+lowE+lensing results.
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end-to-end analysis. We start by describing the DESI instrument and the early
data release, and outline how we measure the Ly𝛼 transmission catalogue from
high-redshift quasar spectra in section 5.2. We then compute the auto- and cross-
correlation and covariance matrices in section 5.3. In section 5.4, we discuss
the physical model of Lyman−𝛼 forest correlations and contaminants, and in
section 5.5 we present the results of fitting this model to our data and discuss the
consistency of these results with the final eBOSS analysis (Bourboux et al., 2020).
Finally, we summarise our results in section 5.6.

The Lyman−𝛼 forest dataset used here is described in detail in Ramírez-Pérez et
al., 2024. Our analysis is also accompanied by a paper analysis on early DESI mock
datasets (Herrera-Alcantar et al., 2025b), which utilises the same 13-parameter
model to describe the auto- and cross-correlation. We further highlight two papers
where systematic effects, including quasar redshift errors (Bault et al., 2025) and
instrumental effects (Guy et al., 2025), are studied on the same early DESI data
set.

5.2 Data

DESI is a multi-object spectrograph installed at the Mayall 4-meter telescope at
Kitt Peak National Observatory (DESI Collaboration et al., 2022). DESI is equipped
with 5000 robotically controlled fibres across 10 independent spectrographs, that
have an approximately 3-degree field of view in each pointing (DESI Collaboration
et al., 2016b; Silber et al., 2023; Miller et al., 2024). Each measured spectrum covers
an observed wavelength range between 3600 and 9800Å with a pixel width of 0.8Å,
which is split between 3 independent spectrograph arms ranging between 3600 –
5930, 5600 – 7720, and 7470 – 9800Å respectively (DESI Collaboration et al., 2022).

In May 2021, DESI started a 5-year campaign which will observe 3 million
quasar (Chaussidon et al., 2023) and 36 million galaxy targets (Hahn et al., 2023;
Raichoor et al., 2023; Zhou et al., 2023), over an area of 14 000 deg2. These targets
are selected from the DESI Legacy Imaging Survey (Zou et al., 2017; Dey et al.,
2019; Schlegel et al. 2023, 2023). These observations are made thanks to extensive
supporting software packages: one to select targets for spectroscopic observation
(Myers et al., 2023), one to assign fibres to targets (Poppett et al., 2024), one to
optimise survey operations (Schlafly et al., 2023), an exposure-time calculator
(Kirkby et al. 2023, 2023), and a spectroscopic pipeline to reduce the data and
calibrate the spectra (Guy et al., 2023).

We analyse data from the Early Data Release (EDR) of DESI (DESI Collaboration

33



CHAPTER 5. CLUSTERING MEASUREMENTS FROM THE LY𝛼 FOREST IN
THE DESI EARLY DATA RELEASE

et al., 2023a), which is publicly available2 and contains 68 750 quasars. EDR
contains data from a pre-survey designed to optimise target selection algorithms
(Chaussidon et al., 2023; DESI Collaboration et al., 2023b), refine the observational
procedure, and generally evaluate the quality of spectra and the redshift accuracy
(Alexander et al., 2022; Brodzeller et al., 2023). To increase the statistical power
of the measurements, we use data from the Early Data Release plus the first two
months of main survey (EDR+M2), containing 249 941 quasars.

The sample footprint is shown in figure 5.1, where we highlight the each survey
phase and the eBOSS Data Release 16 (DR16) survey footprint (Bourboux et al.,
2020). Even though we analyse all sources from EDR+M2 together, the typical
signal-to-noise (SNR) of M2 and EDR spectra varies. Targets observed in M2
are limited to one observing pass3, which will increase to 4 by the end of DESI
observations. Quasars identified as Ly𝛼 quasars (𝑧 >2) receive more passes in
general than other targets to reach the required SNR per pixel across the Ly𝛼
forest. On the other hand, roughly half of EDR spectra present 4 passes and half
1.3 (Chaussidon et al., 2023).

5.2.1 Quasar spectra

The DESI pipeline uses a robust spectroscopic reduction pipeline (Guy et al., 2023),
in combination with a template-fitting algorithm Redrock (RR; Bailey et al., 2025)
to give object classifications and estimate their redshifts. Templates used by RR are
formed by a linear combination of bases resulting from the principal component
analysis (PCA) decomposition of Sloan Digital Sky Survey spectra (Bailey et al.,
2025) (see Brodzeller et al., 2023 for comparison when using a new set of quasar
templates).

To quantify the ability of the pipeline to classify quasars we use two terms,
purity and completeness. Purity is the percentage of classified quasars that are
true quasars, which is >99% in our pipeline. Completeness is the percentage
of true quasars identified as quasars, which we find to be ∼86%. To increase
this, we run two algorithms on the RR output. The first attempts to identify the
MgII broad emission line – a feature only found in quasars – in the spectra of
sources classified as galaxies (Chaussidon et al., 2023), and is especially effective
at 0.5< 𝑧 <1.5. The other is QuasarNet (QN; Busca and Balland, 2018; Farr et al.,
2020a), a convolutional neural network trained using a large number of visually

2https://data.desi.lbl.gov/public/edr/
3Equivalent to nominal 1000s of effective exposure time, which is exposure time accounting

for observing conditions and fibre effects.
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Figure 5.1: Footprint of quasar targets in DESI Early Data Release (purple), the
first two months of main survey (red), and eBOSS DR16 (blue) (Bourboux et al.,
2020). The EDR and M2 surveys cover an area of 250.1 deg2 and 1290.9 deg2.

inspected BOSS spectra, to identify faint quasars missed by both RR and the first
afterburner, and is more useful at 𝑧 ≳ 2. These algorithms increase the spectral
completeness from ∼86 to ∼94% (Alexander et al., 2022), and only cause a ∼1-2%
drop in spectral purity at 𝑧 < 1 (Chaussidon et al., 2023).
Redrock is very reliable in estimating the redshifts of high-quality spectra

(Alexander et al., 2022). The number of catastrophic redshifts, where the difference
between visually-inspected and RR redshifts is Δ𝑧 > 0.01, is only ∼1.5%. For
sources presenting a disagreement between RR and QN redshifts, the pipeline
computes the final redshift by re-running RR using the QN redshift as prior and
only quasar templates. This reduces the fraction of catastrophic redshifts from 1.5
to 1% (Alexander et al., 2022).

We obtain an overall density of 210 quasars deg−2 (60 for 𝑧 >2.1) (Chaussidon et
al., 2023), whichsurpasses the DESI requirements of 170 quasars deg−2 (50 at 𝑧 >2.1;
DESI Collaboration et al., 2016a). Throughout this work, we will only analyse
spectroscopically identified quasars that were also selected as quasar targets (i.e.
we ignore the small fraction of quasars found in other target classes; Myers et al.,
2023), to keep the purity of the catalogue as high as possible. These have a density
of around 54 deg−2 at 𝑧 >2.1. In figure 5.2 we show the redshift distributions of
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Figure 5.2: Redshift distribution of high-redshift quasars in DESI EDR+M2 and
eBOSS DR16 (Bourboux et al., 2020), with 147 899 and 341 468 in each sample
respectively. Only quasars between 𝑧 = 1.77 and 𝑧 = 3.75 feature in our analysis.

our EDR+M2 Ly𝛼 quasars and include for comparison the catalogue used in the
Ly𝛼 analysis of eBOSS DR16 (Bourboux et al., 2020, hereby dMdB20).

Figure 5.3 shows one such quasar with 𝑧 = 2.44. Purple labels indicate broad,
distinctive emission lines often observed in high-redshift quasars, including the
MgII line. We also highlight the Ly𝛼 forest in blue, which exhibits a high density
of absorption lines. Due to the rest-frame wavelength range of the Lyman−𝛼 forest
and the observed redshift distribution of quasars, most of our data falls within
the blue arm of the spectrographs.

5.2.2 Pixel masking

The Ly𝛼 catalogue used to obtain the results in this paper is described in Ramírez-
Pérez et al., 2024. We present here a summary of how we mask contaminants in the
data, and refer the reader to Ramírez-Pérez et al., 2024 for a detailed description
of the process.

In this section and while computing the flux transmission field, we use Ly𝛼
pixels of width 0.8Å in the observed frame - the resolution provided by the spec-
troscopic pipeline (Guy et al., 2023). When computing the correlation functions
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Figure 5.3: An example of a DESI EDR spectra at 𝑧 = 2.44. Black dashed lines
indicate the central wavelength of the strongest quasar emission lines, including
the Ly𝛼 used in our analysis. The shaded blue region shows the Ly𝛼 forest between
the Ly𝛼 and Ly𝛽 lines, the latter only partially observed in this specific example.
Also of note is the MgII line, used in the pipeline to re-classify galaxies as quasars
and the region between the CIV and CIII] lines, used for the re-calibration step
described in section 5.2.3.

(section 5.3) and the metal matrices (section 5.4.3.4), we combine these into 2.4Å
analysis pixels to reduce the computation time, without affecting the measured
correlations.

The two primary contaminants of our Ly𝛼 forests are Broad Absorption Line
(BAL) and Damped Lyman-𝛼 Absorption (DLA). BALs are broad spectral troughs
that arise from high-velocity gas outflows from quasars. They often fall into the
Ly𝛼 forest region and are difficult to model. These have been identified in the
past using convolutional neural networks (Guo and Martini, 2019), and a similar
approach has been used in DESI (Filbert et al., 2024). Identified BALs are then
masked in the affected spectra depending on the width of the trough, following
the procedure described in Ennesser et al., 2022. Masking avoids discarding
whole Ly𝛼 forests where there are often valuable pixels, as was done in previous
Lyman−𝛼 forest BAO studies, like dMdB20.

DLAs are large absorption systems with column densities of neutral hydrogen
𝑁HI > 1020.3 cm−2. Like the Lyman−𝛼 forest, DLAs are a tracer of the underlying
matter distribution but present a higher bias than the Ly𝛼 forest (Font-Ribera et al.,
2012; Pérez-Ràfols et al., 2018, 2023). Their wide absorption profiles, however,
increase the noise in the clustering measurements. Following dMdB20, we mask the
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regions where more than 20% of flux is absorbed DLAs and correct their damping
wings in the unmasked regions using a Voigt profile. We use a DLA catalogue
created using two different techniques, a convolutional neural network (CNN)
and a Gaussian process (GP) finder, used in previous Ly𝛼 analyses (Parks et al.,
2018; Ho et al., 2021) and re-developed for DESI (Wang et al., 2022; J Zou. et al.,
2025). We decide to mask only those DLAs that are detected by both algorithms
with a confidence higher than 50%, resulting in 7% (or ∼8500) of the forests in our
analysis containing at least one DLA.

To further remove noise from our data, we perform two additional steps. The
first is to mask areas affected by sharp spectral features, like the bright [OI] 5577.3
sky line and the calcium H and calcium K lines from the interstellar medium.
We mask the wavelength ranges between [5570.5,5586.7]Å, [3967.3,3971.0]Å and
[3933.0,3935.8]Å respectively to avoid these (Ramírez-Pérez et al., 2024). Other
features caused by systematic flux calibration errors are corrected using the CIII]
spectral region (between CIV and CIII] in figure 5.3), see Ramírez-Pérez et al., 2024
for more details.

5.2.3 The flux transmission field

Here we describe the measurement of the overdensity field used in our correlation
functions. We only discuss the most important steps; for a complete description of
these processes and the DESI EDR Ly𝛼 catalogue, see Ramírez-Pérez et al., 2024.

Fluctuations around the mean transmitted flux fraction, known as the flux
transmission field, (𝛿q(𝜆)) are computed as a function of observed wavelength:

𝛿q(𝜆) =
𝑓q(𝜆)

𝐹(𝑧)𝐶q(𝜆)
− 1 , (5.1)

where 𝑓q(𝜆) is the observed flux of quasar q, 𝐹(𝑧) is the mean transmission of
the IGM at redshift z (𝑧(𝜆) = 𝜆/𝜆𝛼 − 1) and 𝐶q(𝜆) is the unabsorbed quasar
continuum. The product of the two terms in the denominator is equivalent to the
mean expected flux for quasar q at observed wavelength 𝜆.

We compute the transmission field of each forest following the methodology
of Ramírez-Pérez et al., 2024, where the denominator of equation 5.1 is approxi-
mated for each forest as the product of a global rest-frame quantity 𝐶(𝜆rf) - the
weighted stack of 𝑓 for all quasars - and a polynomial in log𝜆 to account for quasar
continuum diversity. For each individual line-of-sight, the polynomial term has
two parameters 𝑎𝑞 and 𝑏𝑞 , controlling the quasar continuum amplitude and shape
respectively.
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The flux variance (𝜎2
𝑞) in each pixel, later used to calculate the pixel weights

(equation 5.3), is the sum of two terms:

𝜎2
q =

[
𝐹𝐶q(𝜆)

]2
𝜎2

LSS(𝜆) + 𝜂(𝜆) 𝜎2
pip,q(𝜆) , (5.2)

where 𝜎2
LSS(𝜆) is the contribution from cosmic variance, and 𝜎2

pip,q(𝜆) is the pipeline
noise contribution, normalised with the expected flux. The function 𝜂 further
corrects for any inaccuracies in the pipeline estimation. In the dMdB20 analysis,
𝜂(𝜆) ranged from 1.05 and 1.2 between 3600 and 5500 Å respectively. Over the
same range in observed wavelength of the EDR+M2 dataset, this correction ranges
from 1 to 1.01 (Ramírez-Pérez et al., 2024), demonstrating that the DESI pipeline
gives a better noise estimate.

We use the publicly available code Picca4 to compute our flux transmission
field, computing all of the relevant terms described above. While our computation
of the flux transmission field largely mirrors that of dMdB20, there are some key
changes introduced by Ramírez-Pérez et al., 2024 which help to increase the
relative SNR of our correlation functions. We will describe these in the following
section.

5.2.3.1 The Ly𝛼 catalogue

In the observed wavelength regime we restrict our forests between 𝜆min = 3600
Å and 𝜆max = 5772Å. The lower limit is motivated by the limit of the DESI
spectrograph, which for our Ly𝛼 catalogue translates to only including quasars
above z∼2. We set the upper limit to maximise the signal-to-noise of our correlation
functions. In the rest-frame, our wavelength range is also reduced from the full
extent of the Ly𝛼 forest to between 𝜆rf,min =1040Å and𝜆rf,max =1205Å, to avoid the
wings of the Ly𝛼 and Ly𝛽 emission lines, which can vary from quasar to quasar and
thus add error to the continuum fitting. Compared to dMdB20, we have a higher
upper wavelength limit in both the observed and rest-frame cases. In Ramírez-
Pérez et al., 2024, they found that 𝜆rf,max =1205Å was the limit corresponding to
the lowest possible variance in the Ly𝛼 correlation function monopole, achieving
a balance between the number of Ly𝛼 forest pixels and avoiding the wings of the
Ly𝛼 emission line.

The limits above result in 109 900 Ly𝛼 forests, with a maximum Ly𝛼 absorption
pixel redshift of 𝑧 = 3.75. In practice we also place an upper limit on the quasar
redshift of 𝑧 = 3.75 to be consistent with our mock catalogues (Herrera-Alcantar et
al., 2025b), but this is done when computing the correlation functions and removes

4https://github.com/igmhub/picca/
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only a negligible number of forests. For the Ly𝛼-quasar cross-correlation, we use
a tracer catalogue of quasars with a minimum redshift of 𝑧 > 1.77, containing
147 899 quasars. This limit corresponds to a maximum possible separation of
300 ℎ−1Mpc in the cross-correlation. In practice, we only measure correlations up
to 200 ℎ−1Mpc but scales up to 300 ℎ−1Mpc are needed to accurately estimate the
distortion (section 5.4.4). We place final restrictions on our sample by rejecting
forests with fewer than 50 valid Lyman−𝛼 forest pixels, and forests with a failed
continuum fit (Ramírez-Pérez et al., 2024). The resulting dataset contains 88 509
Ly𝛼 forests.

5.3 Measuring the correlation functions

In this section we present the measurement of the correlation functions. We first
describe the weights entering in the estimator of the correlation function in section
5.3.1, and discuss a small correction applied to the forest to model the distortion
introduced by the continuum fitting (section 5.3.2). We then proceed to measure
the autocorrelation of the Lyman−𝛼 forest (section 5.3.3) and its cross-correlation
with quasars (section 5.3.4), as well as the uncertainty in these measurements
(section 5.3.5).

5.3.1 Ly𝛼 weights

Because of varying quasar brightness and exposure time, the signal-to-noise in our
Ly𝛼 forest is quite diverse. Therefore we weight the Ly𝛼 pixels when measuring
correlations. These weights are used to compute the autocorrelation in equation
5.9 and the cross-correlation in equation 5.10. An optimal analysis would weight
all pairs of pixels according to their inverse covariance matrix (Slosar et al., 2013;
Font-Ribera et al., 2018). However, this makes the analysis significantly more
complex, so we follow previous analyses of eBOSS data (dMdB20) and weight
pixels individually.

Instead of directly using the inverse of the pixel variance (equation 5.2), we use
the modified Ly𝛼 weights introduced in Ramírez-Pérez et al., 2024:

𝑤i =
[(1 + 𝑧𝑖)/(1 + 𝑧fid)]𝛾𝛼−1

𝜎2
LSS(𝜆)𝜎2

mod + 𝜂(𝜆)𝜎2
pip,q/

[
𝐹𝐶𝑞(𝜆)

]2 , (5.3)

where 𝑧fid=2.25 (although this factor cancels in equation 5.9). The extra parameter
𝜎2

mod was introduced in Ramírez-Pérez et al., 2024 to modulate the relative im-
portance of instrumental noise and intrinsic Ly𝛼 fluctuations in the weights. The
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value of 𝜎2
mod = 7.5 was found to be optimal for this dataset (Ramírez-Pérez et al.,

2024), and it reduces the uncertainties on the auto- and cross-correlation by 20%
and 10% respectively.

Finally, the numerator of equation 5.3 takes into account the redshift evolution
of the Ly𝛼 bias (𝛾𝛼) and of the growth factor, and up-weights higher redshift
pixels to favour absorption with higher signal. Following dMdB20, we use a value
of 𝛾𝛼 = 2.9, motivated by the observation that the amplitude of the Ly𝛼 power
spectrum with redshift evolves as (1+𝑧)3.8 (McDonald et al., 2006) . This correction
ranges from ≃ 0.85 to 2.3 between 𝑧 = 2 and 4.

5.3.2 Continuum distortion

A notable side effect of fitting (𝑎q, 𝑏q) using data from entire forests is that the
measured 𝛿𝑞(𝜆) will be distorted. In other words, our measured 𝛿(𝜆𝑖) in pixel 𝑖
will be a linear combination of all true underlying 𝛿(𝜆 𝑗), such that 𝛿′

𝑖
= 𝜂𝑖 𝑗𝛿 𝑗 . The

solution to this, described in detail in Bautista et al., 2017; du Mas des Bourboux
et al., 2017; Adame et al., 2025b, is to apply a linear projection operator to our
measured 𝛿′ that explicitly removes the mean and slope of each quasar forest from
the field:

𝛿̂i =
∑

i
𝜂ij𝛿j , (5.4)

where the projection matrix 𝜂𝑖 𝑗 is given by

𝜂
q
ij = 𝛿𝐾ij −

𝑤j∑
k
𝑤k

−
𝑤j𝜅i𝜅j∑
k
𝑤k𝜅2

k
𝜅k = log𝜆k − log𝜆q . (5.5)

𝛿𝐾ij is the Kronecker delta and weights 𝑤 are given in equation 5.3. The reason
for doing this is that the projected field 𝛿̃ will have the same distortion as our
projected true field. Thus, we measure the correlations of our projected field 𝛿̃

and, as we will show in section 5.4.4, project the model correlation function in the
same way.

The transformation in equation 5.4 means that the average 𝛿q at wavelength
𝜆 is biased towards 0. Following dMdB20, we subtract 𝛿(𝜆) when calculating the
cross-correlation (section 5.3.4) such that:

𝛿̃q(𝜆) = 𝛿̂q(𝜆) − 𝛿(𝜆) . (5.6)

This correction guarantees that the cross-correlation (section 5.3.4) tends to 0 at
large separations regardless of the quasar redshift distribution.
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5.3.3 Autocorrelation

To measure the correlation functions, redshift and angular (Δ𝑧,Δ𝜃) separations
are first transformed to co-moving separations along (𝑟∥) and perpendicular (𝑟⊥)
to the line of sight.

We calculate (𝑟∥, 𝑟⊥) as:

𝑟∥ = [𝑑c(𝑧i) − 𝑑c(𝑧j)]cos
(
Δ𝜃
2

)
, (5.7)

and
𝑟⊥ = [𝑑m(𝑧i) + 𝑑m(𝑧j)]sin

(
Δ𝜃
2

)
, (5.8)

where (i,j) represent pixel-pixel or pixel-quasar pairs and Δ𝜃 the angle between
them. The redshift of a pixel i is calculated assuming Ly𝛼 absorption, such
that 𝑧i = 𝜆/𝜆𝛼 − 1, where 𝜆𝛼 = 1215.67Å. The co-moving distance is given by
𝑑c = 𝑐/100

∫ 𝑧

0
𝑑𝑧′
𝐸(𝑧′) in units of ℎ−1Mpc, where 𝐸(𝑧) =

√
Ωm(1 + 𝑧)3 +ΩΛ. 𝑑𝑚 is the

transverse co-moving distance (also known as angular co-moving distance). In
the case of a flat Universe (Ωk=0), which we assume here, 𝑑m = 𝑑c.

For the autocorrelation measurement we use a weighted covariance estimator
following previous analyses (Slosar et al., 2011; Bourboux et al., 2020):

𝜉A =

∑
i,j∈A 𝑤i𝑤j𝛿i𝛿j∑

i,j∈A 𝑤i𝑤j
, (5.9)

where A is a bin in (𝑟∥, 𝑟⊥) space with width 4 ℎ−1Mpc and the weights 𝑤i are
described in section 5.3.1. We sum over all pixels (i,j) across different lines of
sight, but do not include pixels in the same line of sight because of continuum
fitting errors that affect the entire forest, leading to spurious correlations which
bias our measurement. In each bin A, our model correlation 𝜉mod is evaluated at
the weighted (by the number of pixel pairs) mean separation (𝑟∥, 𝑟⊥) of the Ly𝛼
pixels (equation 5.3) in our data.

We measure the autocorrelation from [0, 200] ℎ−1Mpc using 50 bins of 4 ℎ−1Mpc
along and perpendicular to the line of sight, giving us 2500 bins in total. The given
limits on separation mean that the Ly𝛼 autocorrelation has 3.75 × 1011 pixel pairs.
In figure 5.4 we present our Ly𝛼 autocorrelation measurement as a function of
(𝜇, 𝑟) where 𝜇 = 𝑟∥/𝑟 and 𝑟2 = 𝑟2

∥+ 𝑟
2
⊥, for EDR+M2 and eBOSS DR16. We show the

autocorrelation in 4 wedges, computed by averaging the 2D correlation in different
selections of 𝜇, ranging from closest (𝜇 ∈ [0.95, 1]) to furthest (𝜇 ∈ [0, 0.5]) from
the line of sight. In general, our DESI EDR+M2 measurement is consistent with
dMdB20, and across all bins (𝑟∥, 𝑟⊥), the uncertainties are only ∼1.9 times larger.
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Figure 5.4: The DESI EDR+M2 (blue points) and eBOSS DR16 (Bourboux et al.,
2020) (shaded green) Ly𝛼 autocorrelation compressed into weighted averages of
𝜇=𝑟∥/𝑟, where 𝑟 =

√
𝑟2
∥ + 𝑟

2
⊥. We also include the best-fitting model to EDR+M2

described in section 5.4 (blue dashed). We have multiplied the correlation by 𝑟2 to
visualise the BAO peak, which is visible in both data sets. From these plots, we can
see the consistency between our measurements and those in eBOSS DR16 - a vali-
dation of the quality of DESI data at an early survey stage. Note that the presence of
three other bumps in the line of sight plot (bottom right) at 20, 60 and 111 ℎ−1Mpc
is due to correlations between the Ly𝛼 and SiIII(1207), SiII(1190)/SiII(1193) and
SiII(1260) lines respectively. We model these contributions to the correlation in
section 5.4.3.4.

It should be noted that there is overlap between the two datasets, since DESI is
re-observing quasars observed in dMdB20. We present a constraint on the BAO
peak amplitude from our best-fit model in section 5.5. For 𝜇 ∈ [0.95.1], we can
also see peaks caused by other atomic transitions from elements like Si, referred
to as metal absorption or contamination in the rest of the paper. For example,
we see the SiIII(1207) peak at 𝑟 ∼ 20 ℎ−1Mpc and the SiII(1190)/SiII(1193) peak at
𝑟 ∼ 60 ℎ−1Mpc. At 𝑟 ∼ 100 ℎ−1Mpc we observe the BAO peak, which appears more
prominently in the 𝜇 ∈ [0.95, 1] plot, due to its overlap with the SiII(1260)xLy𝛼
peak at 111 ℎ−1Mpc. In section 5.4.3.4, we discuss the origin of the metal peaks
and how we model them.
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5.3.4 Cross-correlation

As with the autocorrelation, we define an estimator for the cross-correlation (Font-
Ribera et al., 2012; Bourboux et al., 2020):

𝜉A =

∑
i,j∈A 𝑤i𝑤j𝛿i∑

i,j∈A 𝑤i𝑤j
, (5.10)

for a pixel of Ly𝛼 absorption i and quasar j. In this case, the weights𝑤j are corrected
for the quasar bias evolution and are given by:

𝑤j =

( 1 + 𝑧j

1 + 𝑧fid

)𝛾q−1
, (5.11)

where 𝛾q = 1.44±0.08 (du Mas des Bourboux et al., 2019). The (1 + 𝑧fid) term,
with 𝑧fid=2.25, cancels again in equation 5.10. The sum in equation 5.10 applies
over all quasar-pixel pairs except pixels from their background quasar. Again, the
correlation is binned in terms of line of sight and transverse separation (𝑟∥, 𝑟⊥), with
𝑟⊥ ∈ [0, 200] ℎ−1Mpc but now 𝑟∥ ∈ [−200, 200], ℎ−1Mpc. The cross-correlation is
not symmetric under permutation of the two tracers, primarily because peaks from
metal contamination appear at either 𝑟∥ >0 or 𝑟∥ <0, and because of systematic
redshift errors (equation 5.22) and because the bias of each tracer evolves differently
with redshift. Therefore we choose to define -ve separations for the case when
the quasar is behind the Ly𝛼 pixel (𝑧q > 𝑧𝛼) and likewise +ve separations when
the quasar is between the observer and the Ly𝛼 pixel (𝑧𝛼 > 𝑧q). This asymmetry
allows us to study systematics like quasar redshift errors (Bault et al., 2025). The
given range of separation in both directions and the 4 ℎ−1Mpc bin width now
result in N = 100×50 = 5000 bins.

In figure 5.5 we again show the cross-correlation as a function of 𝑟 and 𝜇,
this time averaging over 𝜇 ∈ [−1, 1], since the cross-correlation has -ve values
of 𝑟∥. Here, the correlation is reversed with respect to the matter correlation
function. This behaviour arises from the fact that the bias of the Ly𝛼 forest is
negative. By convention we trace the flux-transmission field, which is higher in
more under-dense regions - and the quasar bias is positive, giving a negative
product. The uncertainties in our DESI EDR+M2 cross-correlation measurement
across all (𝑟∥, 𝑟⊥) bins are ∼1.7 times larger than in eBOSS DR16. In the following
sections, we discuss the covariance of the measurements of both the auto- and
cross-correlations.

44



5.3. MEASURING THE CORRELATION FUNCTIONS

Figure 5.5: The 3D EDR+M2 (blue points) and eBOSS DR16 (Bourboux et al., 2020)
(green shaded regions) Ly𝛼-quasar cross-correlation, and the baseline fit (blue
dashed) to EDR+M2 described in section 5.4. Because we have negative values of 𝑟∥
(when 𝑧q > 𝑧𝐿𝑦𝛼), we have negative values of 𝜇 = 𝑟∥/𝑟 and therefore average over
𝜇 ∈ [−1, 1]. The cross-correlation is expectedly noisier than the autocorrelation,
but still we see a good level of consistency between eBOSS and DESI at this early
stage.

5.3.5 Covariance matrix

We estimate the covariances of the auto- and cross-correlations using a sub-
sampling method, following Delubac et al., 2015. In this method, we define
our sub-samples in 440 HEALPix (Gorski et al., 2005) pixels using Healpy (Zonca
et al., 2019), equivalent to an nside=16, each of resolution 3.7 deg or solid angle
3.7×3.7 = 13.4 deg2. We then calculate the weighted covariance CAB between
samples as:

𝐶AB =
1

𝑊A𝑊B

∑
i,j∈A

∑
k,l∈𝐵

𝑊 s
A𝑊

s
B
[
𝜉̂s

A𝜉̂
s
B − 𝜉̂A𝜉̂B

]
, (5.12)

where 𝜉̂s
A is the measured correlation and𝑊 s

A is the summed weight in sub-sample
s, and𝑊A =

∑
s𝑊

s
A. We assign each Ly𝛼 pixel pair, or quasar-Ly𝛼 pair, to a given

HEALPix pixel based on the object with the highest right ascension. Our effective
redshift, 𝑧eff =2.376, is calculated by taking the average redshift of each bin of
the correlation function weighted by the number of pixel pairs. The area of one
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HEALPix pixel at this redshift is ∼255×255 (ℎ−1Mpc)2. The sub-sampling method
of estimating covariance has also been validated in studies with mock catalogues
in dMdB20.

Our auto- and cross-covariance matrices have N = 2500×2500 = 6.25 million
and N = 5000×5000 = 25 million entries, with the diagonal entries dominating.

The normalised covariance, or correlation matrix, is defined as:

𝐶𝑜𝑟𝑟AB =
𝐶AB√

𝑉𝑎𝑟A𝑉𝑎𝑟B
, (5.13)

where 𝑉𝑎𝑟A=𝐶AA is the variance. The off-diagonal elements of equation 5.12 are
noisy, and we need to smooth them to make our covariance matrices invertible.
Following dMdB20, we model the off-diagonal elements of the correlation matrices
as a function of line of sight and transverse separation, such that 𝐶𝑜𝑟𝑟AB =

𝐶𝑜𝑟𝑟(Δ𝑟∥,Δ𝑟⊥) = 𝐶𝑜𝑟𝑟(|𝑟A
∥ − 𝑟B

∥ |,|𝑟
A
⊥ − 𝑟B

⊥|). In figure 7 of dMdB20 we see that the
correlation matrix in this model decreases rapidly with (Δ𝑟∥,Δ𝑟⊥).

5.4 Correlation function models

In this section, we discuss the theoretical model forourcorrelation functions, which
includes the effect of all the major contaminants. For the most part, our model
follows that in dMdB20, except the instrumental systematic effects model, which
we adapt to account for the differences between the DESI and eBOSS instruments.
The final fit, which we describe in section 5.5, consists of 13 free parameters shown
in table 5.1.

5.4.1 Power spectra

For our correlation model, we start with an isotropic linear power-spectrum tem-
plate, decomposed into a peak and a smooth component. We then add the
Ly𝛼/quasar Kaiser terms, some non-linear corrections, and contaminants, and
convert the resulting anisotropic power spectrum into a correlation function. Fi-
nally, we multiply by the distortion matrix and recombine the peak and smooth
components to obtain the final correlation model.

The auto- and cross-correlation functions are derived from the tracer biased
power-spectrum, given by:

𝑃ij(𝑘, 𝜇𝑘 , 𝑧) = 𝑏i(𝑧)𝑏j(𝑧)(1+𝛽𝑖𝜇
2
k)(1+𝛽j𝜇

2
k)𝑃QL(𝑘, 𝜇k, 𝑧)𝐹NL,ij(𝑘, 𝜇k)𝐺(𝑘, 𝜇k) , (5.14)

where the vector (𝑘, 𝜇𝑘) is defined such that 𝑘2 = 𝑘2
∥ + 𝑘2

⊥ and 𝜇𝑘 = 𝑘∥/𝑘, G is
a term that accounts for binning on an (𝑟∥, 𝑟⊥) grid (equation 5.18) and 𝑃QL is a
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quasi linear power spectrum that is multiplied by a non-linear correction term
𝐹NL,ij(𝑘, 𝜇𝑘) (section 5.4.2). The parameters 𝑏𝑖 and 𝛽𝑖 are the linear bias and RSD
of tracer i.

To fit a unique function across each (𝑟∥, 𝑟⊥) bin where the effective redshift
varies from that of the full dataset (𝑧eff = 2.376), we need to evolve the Ly𝛼 and
quasar biases using:

𝑏𝛼(𝑧) = 𝑏𝛼(𝑧eff)
(

1 + 𝑧
1 + 𝑧eff

)𝛾𝛼
, (5.15)

𝑏q(𝑧) = 𝑏q(𝑧eff)
(

1 + 𝑧
1 + 𝑧eff

)𝛾q

, (5.16)

where 𝛾𝛼 =2.9 (McDonald et al., 2006) and 𝛾q =1.44 (du Mas des Bourboux et al.,
2019).

For the autocorrelation (i=j) the only tracer is Ly𝛼 absorption and for the cross
(i≠j) the tracers are Ly𝛼 absorption and quasars. Following past BAO analyses
(dMdB20), we take the linear matter power spectrum from Planck 20185 (Planck
Collaboration et al., 2020) and separate it into a smooth component and peak
component with non-linear broadening corrections:

𝑃QL(k, 𝑧) = 𝑃peak(𝑘, 𝑧)exp

[
−
𝑘2
∥Σ

2
∥ + 𝑘

2
⊥Σ

2
⊥

2

]
+ 𝑃smooth(𝑘, 𝑧) , (5.17)

where𝑃peak contains BAO and𝑃smooth does not. We make this decomposition using
the side band technique from Kirkby et al., 2013 such that 𝑃peak = 𝑃lin − 𝑃smooth,
and allows us to isolate the model for the BAO peak from the rest of the correlation
and fit its position and amplitude. For the non-linear broadening correction of
the BAO peak, we use Σ∥ = 6.36 ℎ−1Mpc and Σ⊥ = 3.24 ℎ−1Mpc as in dMdB20
(Eisenstein et al., 2007; Bourboux et al., 2020), assuming that our small difference
in effective redshift has negligible effect.

The last term in equation 5.14, 𝐺, corrects for the fact that we bin correlations
in a grid in (𝑟∥, 𝑟⊥) and is the product of the Fourier transform of two top-hat
functions:

𝐺(𝑘∥, 𝑘⊥) = sinc
(
𝑘∥Δ𝐴∥

2

)
sinc

(
𝑘⊥Δ𝐴⊥

2

)
, (5.18)

where Δ𝐴∥ = 4 ℎ−1Mpc and Δ𝐴⊥ = 4 ℎ−1Mpc are the bin widths in the line-of-
sight and transverse directions respectively. To compute equation 5.18, we make
the approximation that our correlation is distributed homogeneously within each
bin. In reality, it scales with 𝑟⊥ in the transverse direction, but Bautista et al., 2017
have shown that the approximation made here produces an accurate correlation
function.

5derived using CAMB https://github.com/cmbant/CAMB
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5.4.2 Non-linear corrections

We multiply the quasi-linear power spectrum 𝑃QL,ij(𝑘, 𝜇𝑘) of equation 5.14 by a
non-linear correction 𝐹NL,ij(𝑘, 𝜇𝑘). In the autocorrelation, the dominant effects
encompassed by this correction are non-linear structure growth, peculiar motion,
and broadening due to the thermal motion of particles, modelled in Arinyo-i-Prats
et al., 2015.

Statistical redshift errors and galaxy peculiar velocities of quasars smear the
cross-correlation along the line of sight 𝑟∥, which following Percival and White,
2009 we model as Lorentzian damping:

𝐹cross
NL (𝑘∥) =

1√
1 + (𝑘∥𝜎v)2

, (5.19)

where 𝜎v is one of the free parameters in our model, given in table 5.1. Statistical
errors also affect the autocorrelation by adding random shifts to quasar spectral
templates that in turn introduce systematic error in the mean continuum estimate
𝐹(𝑧)𝐶𝑞(𝜆). The impact of statistical redshift errors on BAO measurements from
both the auto- and cross-correlation is described in the next chapter.

5.4.3 Modelling contaminants

Both the auto- and cross-correlation functions receive small contributions from
other effects, which for the autocorrelation we model as:

𝜉auto = 𝜉Ly𝛼×Ly𝛼 +
∑

m
𝜉Ly𝛼×m +

∑
mi ,mj

𝜉mi×mj + 𝜉inst , (5.20)

where 𝜉𝐿𝑦𝛼×𝐿𝑦𝛼 is transformed from 𝑃Ly𝛼(𝑘, 𝜇𝑘) (equation 5.14) via a Fast Hankel
transform. The Ly𝛼 bias parameter is also modelled to account for contamina-
tion by High Column Density Systems (HCD). 𝜉𝐿𝑦𝛼×𝑚 is the cross-correlation
between 𝐿𝑦𝛼 absorption and metal absorption and 𝜉𝑚𝑖×𝑚𝑗 is the metal-metal au-
tocorrelation discussed in section 5.4.3.4. Finally, 𝜉inst is the contribution from
DESI instrumental systematics, including sky subtraction residuals and spectro-
photometric calibrations, described in full in Guy et al., 2025 and modelled in
section 5.4.3.2. Likewise, for the cross-correlation, we write:

𝜉cross = 𝜉Ly𝛼×q +
∑

m
𝜉q×m + 𝜉TP , (5.21)

where 𝜉Ly𝛼×q is transformed from Fourier space in the same way as the autocorre-
lation, 𝜉q×m is the quasar-metal line cross-correlation and 𝜉TP is the contribution
from the effect of quasar radiation given in section 5.4.3.1.
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Finally we introduce another free parameter to our model to account for any
systematic shift in line-of-sight separation between quasars and Ly𝛼 absorption:

Δr∥,q = 𝑟∥,True − 𝑟∥,Measured . (5.22)

This effect arises due to systematic quasar redshift errors and thus produces an
asymmetry over positive and negative r∥ which can be studied using the cross-
correlation of quasars and Ly𝛼 absorption, as is done in Bault et al., 2025.

5.4.3.1 Quasar radiation effects

At small scales, quasar radiation can strongly affect its surrounding gas or a
nearby Ly𝛼 forest. This radiation dominates over the UV background (du Mas
des Bourboux et al., 2017), so the ionisation fraction, and therefore the number
of passing Ly𝛼 photons, increases. This is modelled following Font-Ribera et al.,
2013; Bourboux et al., 2020, assuming isotropic quasar emission:

𝜉TP = 𝜉TP
0

(
1 ℎ−1Mpc

𝑟

)2

exp
(
−𝑟
𝜆UV

)
, (5.23)

where we fit for the scale parameter 𝜉TP
0 , and 𝜆UV is the UV photon mean free path

set to 300 ℎ−1Mpc following Rudie et al., 2013.

5.4.3.2 Instrumental systematics

The focal plane of DESI is divided in 10 "petals", with 500 fibres each that are fed
to one of the 10 spectrographs. The calibration of DESI spectra (sky subtraction
using sky fibres and flux calibration using standard stars) are performed separately
for each of the 10 petals (Guy et al., 2023). This introduces a possible source of
systematic correlations for pairs of spectra obtained with the same spectrograph.
The impact of correlated sky residuals and flux calibration errors in the Ly𝛼 cor-
relations in DESI is described in detail in Guy et al., 2025. Poisson fluctuations
at the observed wavelength of the sky lines within each spectrograph, and flux
calibration residuals, produce an excess correlation at 𝑟∥ = 0. We model the contri-
butions of both of these, which contribute roughly equally, in the autocorrelation
with an empirical functional form:

𝜉inst =


Ainst

( 𝑟⊥
80 − 1

)2
𝑟⊥ < 80 ℎ−1Mpc, 𝑟∥ = 0

0 𝑟⊥ > 80 ℎ−1Mpc
(5.24)

where Ainst is fit and given in section 5.5. The limit of 80 ℎ−1Mpc roughly cor-
responds to the angular size of a DESI petal on the sky at the effective redshift
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Figure 5.6: The Ly𝛼-quasar cross-correlation as a function of 𝑟∥, for
𝑟⊥∈[0, 12] ℎ−1Mpc. On the right, we over-plot our baseline model (red solid)
reported in table 5.1 and a model with no metal line component (blue dashed). On
the left, we show two additional lines to highlight the effect of settingΔ𝑟∥,q to 0 and
ignoring quasar radiation effects (green dashed). We can see the asymmetry of
the cross-correlation through metals and systematic redshift errors (parametrised
by Δ𝑟∥,q) in the data here.

of our data. Note that we do not see this effect in the cross-correlation since it
requires two correlating subtracted sky lines in two Ly𝛼 forests. In dMdB20 the sky
subtraction residuals were modelled with a Gaussian with two free parameters
instead of one. The differences in the DESI and eBOSS instruments - such as eBOSS
having only two spectrographs with 500 fibres each - lead to a difference in the
shape and amplitude of the instrumental effects model. In section 5.5, we compare
the amplitude of both models at 𝑟∥ = 𝑟⊥ = 0.

5.4.3.3 Absorption by high column density systems

The Ly𝛼 forest contains absorption from neutral hydrogen in the diffuse IGM
and systems of neutral hydrogen with significantly higher column density6. In
section 5.2.2, we defined DLAs as having column density 𝑁𝐻𝐼 > 1020.3cm−2 and
discussed how we identify and account for these using pixel masks and a Voigt
profile to model the wings. Assuming we identify and treat all of the DLAs, the
noise in our correlation measurements should be significantly reduced. We still
expect to be contaminated by some objects of column density 𝑁𝐻𝐼 <1020.3cm−2
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(sometimes referred to as sub-DLAs) which have a similar absorption profile, but
lesser effect on our data. Ideally, we would also mask HCDs below the DLA
limit, but these are difficult to identify with our current pipeline and resolution.
Following Font-Ribera et al., 2012; Rogers et al., 2018 we model the contamination
from these systems as a modification of the large-scale bias parameters:

𝑏𝛼 = 𝑏𝛼 + 𝑏HCD𝐹HCD(𝑘∥) , (5.25)

𝑏𝛼𝛽̃𝛼 = 𝑏𝛼𝛽𝛼 + 𝑏𝐻𝐶𝐷𝛽HCD𝐹HCD(𝑘∥) , (5.26)

where 𝑏HCD and 𝛽HCD are the bias and RSD parameter of the HCD systems and
𝐹HCD(𝑘∥) is a factor depending on the distribution of HCDs, modelled following
dMdB20 as:

𝐹HCD(𝑘∥) = exp(−𝐿HCD𝑘∥) . (5.27)

Here 𝐿HCD is the typical HCD length scale, and is set to 10 ℎ−1Mpc following
dMdB20 because of its degeneracies with other parameters in the fit. Note that it
was verified in Cuceu et al., 2020, 2022b that varying 𝐿HCD between ∼7-13 ℎ−1Mpc
does not significantly affect BAO measurements.

5.4.3.4 Absorption by metal lines

As stated earlier and shown in equations 5.20 and 5.21, our measured correlations
are not only the result of Ly𝛼 absorption in the IGM or HCDs but also heavier
elements in the IGM due to galactic gas outflows (Yang et al., 2022). Therefore, we
introduce a cross power spectrum Pmn(k, 𝑧) for each pair of absorbers (m,n) and
their configuration-space counterparts 𝜉m×n.

Because we measure our flux-transmission field and correlations assuming all
absorption in the Ly𝛼 is due to the Ly𝛼 transition, we assign to each absorption
pixel a redshift 𝑧 = 𝜆/𝜆𝛼 − 1. However, because of the metal lines from heavier
elements, an excess correlation appears at the separation between the true and
assigned redshifts 𝑧metal and 𝑧𝛼:

𝑟∥ = 𝑑metal − 𝑑Ly𝛼 = 𝑐

∫ 𝑧metal

𝑧𝛼

𝑑𝑧′

𝐻(𝑧) ≈
𝑐(1 + 𝑧)
𝐻(𝑧)

𝜆metal − 𝜆𝛼

𝜆
, (5.28)

where 𝜆 and 𝑧 are the mean values of the Ly𝛼 and metal absorption. The excess
correlation is more clearly observed for vanishing physical separations between
two absorbers, when 𝑟⊥ ∼ 0. We represent the correlation shift for each pair of

6High column density systems is a term used in past eBOSS publications to refer to neutral
hydrogen with column density 𝑁𝐻𝐼 > 1017.2cm−2, of which DLAs are the highest column density
subset and the most impactful contaminants on our data.
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absorbers (m,n) using the metal matrix formalism of Blomqvist et al., 2018. In this
method, the shifted correlation function 𝜉m×n

1 for each absorber pair (m,n) is given
in terms of the un-shifted correlation function 𝜉m×n

0 as:

𝜉m×n
1 (A) =

∑
B
𝑀AB, 𝜉

m×n
0 (𝑟∥(B), 𝑟⊥(B)), (5.29)

where (m,n)∈B is the pixel separation using the rest wavelength of each absorber
m and n, (m,n)∈A refers to the pixel separation assuming both pixels have rest
wavelength 𝜆Ly𝛼, and:

𝑀AB =

∑
(m,n)∈A,(m,n)∈B 𝑤m𝑤n∑

(m,n)∈A 𝑤m𝑤n
. (5.30)

For the cross-correlation, index 𝑚 is a quasar with redshift 𝑧q used to calculate the
projected separation. To compute 𝑀AB in a reasonable time, we only use 1% of
pixel pairs. We have verified that this does not affect the measured metal biases.

Different rest-frame wavelengths peaks at different line of sight separations.
Given the range of separations that we measure, we model 4 dominant metal lines
- SiII(1190), SiII(1193), SiIII(1207), and SiII(1260) (Bautista et al., 2017). Each metal
line has it’s own bias and RSD parameters (𝑏metal, 𝛽metal) and corresponding power
spectrum Pmn as mentioned above. We cannot determine these two parameters
separately since the correlations 𝜉m×n

1 only have a significant impact at small 𝑟⊥,
and therefore we set 𝛽m =0.5 following Bautista et al., 2017. The values of 𝑏m

for each metal line are constrained in the fits discussed in section 5.5. The CIV
metal bias has also been typically fit in previous Ly𝛼 forest correlation studies
(Blomqvist et al., 2018; Gontcho A Gontcho et al., 2018), but we decide not to
model it in this study because it was weakly detected and had a negligible effect
on the dMdB20 analysis, and we report the same for EDR+M2 data.

5.4.4 Modelling the continuum distortion

Due to distortions created in the quasar continuum fitting process, we apply two
corrections to our measured delta fields in section 5.2.3. Doing this, each measured
delta 𝛿̃q(𝜆) becomes a linear combination of all other pixels in the same forest,
distorting the correlation functions measured from these deltas. To correct for the
distortion we relate the measured (𝜉̂) and true (𝜉t) correlations following Bautista
et al., 2017; du Mas des Bourboux et al., 2017; Bourboux et al., 2020 with:

𝜉̂A =

∑
A′
𝐷AA′𝜉t

A′ , (5.31)
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where

𝐷AA′,auto =

∑
(i,j)∈A

𝑤i𝑤j

( ∑
(i′,j′∈A′)

𝜂ii′𝜂jj′

)
∑

(i,j)∈A
𝑤i𝑤j

, (5.32)

for the autocorrelation, where 𝜂 is the projection matrix given in equation 5.5. We
also have

𝐷AA′,cross =

∑
(i,k)∈A

𝑤i
∑

(j,k)∈A′
𝜂ij∑

(i,k)∈A
𝑤i

, (5.33)

for the cross-correlation, where i, j are pixels in the same forest and k is a quasar.
Like the metal matrices, we compute the distortion matrices with only 1% of total
pixel pairs to reduce computing hours. In our analysis, we model the effect of
distortion out to a separation of 300 ℎ−1Mpc, since distortions at this scale are
known to affect the correlation function at scales relevant to our analysis. The two
expressions above equate to multiplying our physical model of the correlation by
the distortion matrix before any comparison with data. The effects of distortion
have also been validated in previous studies using mocks (Bautista et al., 2017).

5.5 Fits to the data

We now present the best-fitting solution of the model introduced in section 5.4 to
the Ly𝛼 autocorrelation and Ly𝛼 quasar cross-correlation described in section 5.3.
For this study, we have established a baseline model with 13 free parameters based
on Kaiser models for biased tracers with additional contaminants, described in
detail in section 5.4.

In the anisotropic correlation model of equation 5.14, it is evident that the cross-
correlation we measure is only sensitive to the product of the Ly𝛼 and quasar
biases. As a result, we present only the auto and auto+cross combined fits. In the
latter, we break the bias degeneracy to measure the quasar bias bq distinctly. Then,
using the fact that for point tracers 𝛽q= 𝑓 /𝑏q, where 𝑓 = 0.97 (Planck Collaboration
et al., 2020) is the growth-rate for our fiducial cosmology at 𝑧 = 2.376, we infer
a value of 𝛽q. The other advantage of combining both correlations is improving
constraints on key parameters. For example, our constraints on ABAO improve by
1.6x going from autocorrelation fit alone to the combined fit.

In table 5.1, mean values and 68% credible regions of the posterior distributions
foreach free parameter in the auto andcombinedauto+cross correlations are given7.

7computed using the plotting tool Getdist (Lewis, 2019)
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To perform each fit, we use the Python package Vega8, which employs the nested
sampler Polychord (Handley et al., 2015) to sample each parameter. We find that
the auto-only results are very consistent with the auto+cross combined. In each
column we put a dash symbol in entries where parameters are only relevant to
the combined correlation and not to the autocorrelation alone.

The second part of table 5.1 gives the characteristics of each fit, including the
number of bins in each measurement, the number of free parameters, the minimum
𝜒2 value, and the probability (p-value). Note that to obtain the latter two values,
we use a minimiser instead of the nested sampler used to obtain parameter means
and confidence regions. The minimiser makes use of the Python package Iminuit9

We perform the fit for 𝑟 ∈ [10, 180] ℎ−1Mpc due to the increasing complexity of
modelling the correlation function at small scales (non-linearities). The 4 ℎ−1Mpc
bin width of the correlation functions translates to 1590 and 4770 bins for the auto
and combined fits.

To measure the full correlation function we re-combine the peak and smooth
parts of the correlation (outlined in section 5.4.1):

𝜉(𝑟∥, 𝑟⊥, 𝛼∥, 𝛼⊥) = 𝜉smooth(𝑟∥, 𝑟⊥) + ABAO𝜉peak(𝛼∥𝑟∥, 𝛼⊥𝑟⊥) , (5.34)

where 𝛼∥ and 𝛼⊥ are the BAO parameters (see dMdB20 for recent constraints on
these). Here ABAO is the amplitude of BAO, which we detect at 3.8𝜎 confidence
(table 5.1). We fix both 𝛼∥ and 𝛼⊥ to 1, or the fiducial cosmology, and focus on
preparing for a robust measurement with DESI year 1 data.

The best-fitting model is shown on four autocorrelation wedges in figure 5.4
and the same four cross-correlation wedges in figure 5.5. In figure 5.7, we also
show the autocorrelation along the line of sight, averaged over 0 < 𝑟⊥ < 12 ℎ−1Mpc
and overlaid with the baseline model from the minimiser fit. We also include
a fit that does not model the effect of metal contamination, and a fit that does
not model metal contamination or BAO. We multiply by 𝑟 to see that the bumps
caused by the metal lines SiIII(1207) and SiII(1190)/SiII(1193) at 𝑟 ∼ 20 ℎ−1Mpc
and 𝑟 ∼ 60 ℎ−1Mpc respectively are well-fit by our model, and poorly-fit by the
no metal model. The SiII(1260) line gives a produces a peak at 𝑟 ∼ 111 ℎ−1Mpc,
which along the line of sight dominates over the BAO peak with which it overlaps.

5.5.1 Fit probability

The combined fit presented in table 5.1 has a 𝜒2 probability of 0.03. Because this
is a relatively low value, we discuss several caveats here.

8https://github.com/andreicuceu/vega
9https://github.com/scikit-hep/iminuit
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Figure 5.7: The best fitting solution (red solid) of our model to the DESI EDR+M2
Ly𝛼 autocorrelation (black points) function along the line of sight, where we
average over 0< 𝑟⊥ < 12 ℎ−1Mpc. We also include a fit which does not model metal
contamination (blue dashed) and a fit which does not model metal contamination
or BAO (green dotted). We multiply the y-axis by r for visualisation. The bumps
in correlation caused by SiIII(1207) and SiII(1190)/SiII(1193) at 𝑟∥ ∼ 20 ℎ−1Mpc
and 𝑟∥ ∼ 60 ℎ−1Mpc are visible. The most prominent peak is driven by SiII(1260)
at 𝑟∥ ∼ 111 ℎ−1Mpc, rather than the overlapping BAO peak at 𝑟∥ = 100 ℎ−1Mpc.
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Parameter Auto Combined
b𝛼 -0.129±0.010 -0.134±0.009
𝛽𝛼 1.49+0.14

−0.19 1.41+0.12
−0.15

bHCD -0.045±0.009 -0.039±0.009
103b𝜂,SiII(1190) -3.3±1.0 -2.2±0.8
103b𝜂,SiII(1193) -1.7+1.1

−0.8 -0.9+0.8
−0.3

103b𝜂,SiII(1260) -2.9±1.1 -2.6±0.9
103b𝜂,SiIII(1207) -3.9±1.0 -3.4±0.9
bq - 3.41±0.16
Δr∥,q (ℎ−1Mpc) - -2.21±0.18
𝜎v (ℎ−1Mpc) - 5.2±0.5
𝜉TP

0 - 0.68±0.18
104Ainst 2.6+0.4

−0.8 2.4+0.3
−0.5

ABAO 1.04±0.45 1.21±0.32
Nbin 1590 4770
Nparams 9 13
𝜒2

min 1711 4945
probability 0.01 0.03

Table 5.1: Table of early DESI fits on the autocorrelation and the combined
auto+cross correlations. We do not perform a cross-correlation-only fit due to
degeneracies between parameters. In the first part we show the mean and 68%
credible region for each free parameter in our model computed from the posterior
distributions from the nested sampler. We evaluate each parameter at the effective
redshift of our data 𝑧eff =2.376, where redshift is relevant. Where a parameter does
not feature in the autocorrelation fit, we use the "-" symbol. In the second part, we
give the characteristics of the fit, including the number of bins, free parameters,
and the 𝜒2

min probability as estimated with a minimiser.

In figure 5.8, the residuals are spread evenly across (𝑟∥,𝑟⊥). There are some
groups of bins with higher residuals closer to the line-of-sight (𝑟⊥ = 0 ℎ−1Mpc)
where continuum distortions are strongest, andat largerseparations 𝑟 ∼ 150 ℎ−1Mpc,
but these are likely due to the high degree of correlation between data points which
we ignore in this plot (we use the diagonal of the covariance matrix here).

If we change the lower limit on our fit of both correlations to 𝑟 = 20 ℎ−1Mpc
rather than 10 ℎ−1Mpc, our fit probability increases to 0.08 from 0.03. It’s possible
that our constraints on the baseline model are slightly biased when fitting down
to 10 ℎ−1Mpc, but we will leave this mock catalogues studies in DESI year 1.
Recent results using Ly𝛼 mocks on AbacusSummit (Hadzhiyska et al., 2023) also
suggest that the Kaiser model that we employ here does not adequately model
non-linear effects in the Ly𝛼 quasar cross-correlation for 𝑟 < 30ℎ−1Mpc. If we
set this as a lower limit on the cross-correlation while keeping 10 ℎ−1Mpc for

56



5.5. FITS TO THE DATA

the autocorrelation (Hadzhiyska et al., 2023 find the Kaiser model is a good
approximation in this case), we increase our probability to 0.05, without biasing
our measurements.

Changing the upper limit to 𝑟 = 150 ℎ−1Mpc also increases the fit probability
slightly to 0.05, and has a negligible effect on measured parameter values. For all
of these tests, the most important thing for future analyses will be the effect on
the BAO scale parameters, which we do not measure here. Therefore, we keep the
baseline analysis between r∈ [10, 180] ℎ−1Mpc as in dMdB20.

In section 5.2 we outlined how we compute the Ly𝛼 flux transmission catalogue
using the full resolution of the DESI spectrograph (0.8Å). Using the optimal
weighting of equation 5.3, by setting 𝜎2

mod=7.5, we reach the same precision on the
correlation function as using 2.4Å pixels with 𝜎2

mod=3. However, when computing
the fits from the latter weighting, we find a 𝜒2 probability of p=0.13 for the
combined fit. Despite this higher fit probability, we prefer to use the full resolution
of the DESI spectrograph in this analysis and leave this effect for study in the
DESI year 1 analysis. Reducing the maximum rest-frame wavelength of the Ly𝛼
forest to 1205 to 1200Å (chosen to minimise correlation function uncertainties;
Ramírez-Pérez et al., 2024) increases the fit probability to p=0.18, but we refrain
from making this change until there is a further study on mock data sets with
greater statistical power. Several sources of contamination like DLAs, metals, and
other effects such as quasar radiation are modelled in the same way as in dMdB20
and require an in-depth study for DESI.

5.5.2 Comparison with eBOSS DR16

To compare with dMdB20, we fit their measured correlation functions with the
settings described in this paper. Except for the instrumental systematics effect,
every other part of the model is the same. In figure 5.9 we present the marginalized
2D posterior of 𝛽𝛼 and 𝑏𝛼. Note that the effective redshift of the eBOSS combined
correlation is z=2.334, and thus we use the Ly𝛼 bias-redshift relation in equation
5.15 to shift our bias measurement to that effective redshift.

We summarise the differences in the mean value, 68% confidence intervals,
and the consistency between 𝑏𝛼, 𝛽𝛼 and a selection of parameters between DESI
EDR+M2 and the eBOSS DR16 fits in table 5.2. In the case of 𝑏q, we also shift the
DESI EDR+M2 measurement to the effective redshift of the DR16 data set, this

9The Ly𝛼 working group key paper on DESI year 1 data will be centred around measuring
(𝛼∥,𝛼⊥), but studies of the Alcock-Paczyński (AP) effect using both the smooth and peak part of
the Ly𝛼 forest correlations will happen.
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Figure 5.8: Residuals of our fit to the DESI EDR+M2 autocorrelation, defined as
the difference between data and model correlation divided by the uncertainties of
each data point (square root of the diagonal of the covariance matrix). The area
between the black dashed lines indicates the BAO region between 80-120 ℎ−1Mpc.
We see that overall there are no strong areas of discrepancy.
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Figure 5.9: 68% and 95% credible regions on bias and redshift-space distortions
from the auto- and cross-correlation of the Ly𝛼 forest for DESI EDR+M2 data at
the effective redshift of eBOSS DR16 (green) and eBOSS DR16 data. We performed
fits on both datasets with the same model (presented in section 5.4). To evolve the
value of the DESI EDR+M2 bias with redshift we use the relation 𝑏Ly𝛼 ∝ (1+ 𝑧)𝛾−1

(McDonald et al., 2006) where 𝛾 =2.9 (Bourboux et al., 2020).

time using the relation 𝑏q(z) ∝ (1 + z)𝛾 where 𝛾 ∼ 1.44 (du Mas des Bourboux
et al., 2019). For the other two parameters in table 5.2, we are only interested in the
mean value and the relative values of the uncertainties between surveys. The 𝜎v

constraint tells us that the DESI pipeline more precisely estimates quasar redshifts
than was done by eBOSS DR16.

The final tracers that we constrain in our model are HCDs and metals. We
measure the bias of HCDs to be 𝑏HCD =-0.039±0.009 and 𝑏HCD =-0.053±0.0043
in early DESI and eBOSS (data) respectively. A smaller value of 𝑏HCD indicates
weaker contamination by DLAs in our data, from which we conclude that the
DESI pipeline (J Zou. et al., 2025) masks a higher proportion of DLAs, than the
dMdB20 pipeline. The metals are all detected with high confidence, each with a
non-zero bias to a minimum of 2.25𝜎 except SiII(1193), and are in good agreement
with dMdB20. The effect of metal correlations is visible in figure 5.7.

The systematic error in the quasar redshift estimations is parameterised byΔr∥,q,
which is measured through an asymmetry in the cross-correlation as described
in the previous section. We report a value of Δr∥,q = −2.21 ± 0.19 ℎ−1Mpc, a
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Parameter DESI EDR+M2 eBOSS DR16 𝜎DESI/𝜎eBOSS Δ𝜎

bLy𝛼 (z=zeff,DR16) -0.131±0.009 -0.117±0.004 2.25 1.39
𝛽Ly𝛼 1.41+0.12

−0.15 1.71±0.09 1.5 1.88
bq (z=zeff,DR16) 3.36±0.16 3.70±0.10 1.6 1.8
𝜎v [ℎ−1Mpc] 5.2±0.5 6.77±0.29 1.72 -
ABAO 1.21±0.32 1.16±0.16 2 -

Table 5.2: Table highlighting the main sampled posteriors of the auto+cross
correlations for DESI EDR+M2 and eBOSS DR16 data, their relative uncertain-
ties (68% credible region), and their consistency with each other, defined as
Δ𝜎=|𝜇eBOSS − 𝜇DESI|/

√
𝜎2

eBOSS + 𝜎2
DESI, where 𝜇 is the mean parameter value. We

use the same model (outlined in section 5.4) for the fits in both cases, except for in-
strumental systematics contribution that is slightly different because of variations
in the eBOSS and DESI instruments (Guy et al., 2025).

clear detection of systematic redshift errors. This offset could be related to an
inconsistency in the treatment of the mean flux transmission 𝐹(𝑧) in the quasar
templates used by Redrock at 𝑧 ≳2. In order to avoid this type of bias, dMdB20
used a redshift estimator which did not use wavelengths around the Ly𝛼 emission
line or lower. They measured a value of Δr∥,q = 0.10 ± 0.11 ℎ−1Mpc, consistent
with zero. The impact of redshift errors in DESI quasars is studied in more detail
in Bault et al., 2025, and mitigation strategies are currently being considered in
DESI.

At 𝑟⊥ = 𝑟∥ = 0 ℎ−1Mpc, the spurious correlation produced by instrumental
effects is Ainst = 2.4+0.3

−0.5 × 104. In dMdB20, they used a Gaussian instrumental effects
model, in which the spurious correlation at 𝑟⊥ = 𝑟∥ = 0 ℎ−1Mpc is Asky/𝜎sky

√
2𝜋 =

1 × 104. We expect to see discrepancies in amplitudes here, given how distinct
the two instruments are (section 5.4). To summarise the differences between early
DESI and eBOSS DR16 data discussed above, we include a 13-parameter corner
plot for both data sets in Appendix A, figure 5.10.

5.6 Conclusion

We present the first study of the Ly𝛼 autocorrelation and its cross-correlation
with quasars from Dark Energy Spectroscopic Instrument (DESI) data. Our data
sample, EDR+M2, consists of 318 691 quasar target spectra from the DESI survey
validation (DESI Collaboration et al., 2023b) phase and the first two months of the
DESI main survey, resulting in 88 509 Ly𝛼 forests with redshift 𝑧 >2.
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We use the catalogue of Ly𝛼 fluctuations from Ramírez-Pérez et al., 2024, which
made several adaptations to previous analysis pipelines (Bourboux et al., 2020),
leading to a 20% and 10% improvement in the auto- and cross-correlations. Our
2-point correlation functions are estimated following the eBOSS DR16 analysis
(Bourboux et al., 2020), with which we report high consistency and an average of
1.7× larger uncertainties across all bins in co-moving separation (𝑟∥,𝑟⊥). We do a
combined auto+cross correlation fit with our 13 free parameter model, based on
linear perturbation theory, and make constraints on key parameters like the Ly𝛼
forest bias, quasar bias, and the amplitude of the BAO peak. We detect Baryon
Acoustic Oscillations to 3.8𝜎 confidence, showing the constraining power of DESI
data at an early survey stage. The model used is again similar to that in Bourboux
et al., 2020, except the instrumental systematics model (Guy et al., 2025) that is
modified to account for the differences between both instruments.

At this stage of the DESI survey, we have highlighted the quality of our data
and validated existing analysis methods of 3D correlations using the Ly𝛼 forest.
With relatively low statistical power, we do not report constraints on the scale
parameters of BAO and instead leave that to the DESI year 1 analysis. This future
work will require an in-depth study of systematics and contaminants like DLAs
and metals before performing a proper cosmological analysis of BAO.

5.7 Appendix: complete fit results

Here we show the triangle plot of the full posterior distribution - made using the
Polychord nested sampler (Handley et al., 2015) and the plotting tool Getdist
(Lewis, 2019) - of all 13 parameters in our model of the combined auto+cross
correlations, for both the DESI EDR+M2 and eBOSS DR16 data set. We measure
both 𝑏𝛼 and 𝑏q at the effective redshift of eBOSS DR16 by using the redshift
evolution of each parameter on the EDR+M2 result. For the Ly𝛼 and quasars this
is 𝑏 ∝ (1 + 𝑧)𝛾, where 𝛾𝛼 = 2.9 (McDonald et al., 2006; Bourboux et al., 2020) and
𝛾quasar = 1.44 (du Mas des Bourboux et al., 2019).

We can see several parameters in the model which are correlated. The bias and
RSD parameters of the Ly𝛼 forest are strongly correlated with each other and with
the bias factor of HCDs. The correlations that we show between the quasar bias
and the bias of HCDs, and the quasar radiation strength are why we do not fit the
cross-correlation independently of the autocorrelation, as mentioned in section
5.5.

Finally, there is an apparent correlation between the instrumental systematic
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Figure 5.10: Baseline 13 free parameter fit on DESI EDR and eBOSS DR16
auto+cross correlations. We model the instrumental systematics effects of eBOSS
with a slightly different model with two parameters (as opposed to just Asky

DESI for
DESI), which we have not included here. For bLy𝛼 and 𝑏q we present posteriors for
both surveys at the effective redshift of the eBOSS DR16 data set.
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effects parameter Ainst and the BAO peak amplitude ABAO. This is somewhat
unexpected because the instrumental systematics model should only contribute
at small scales (𝑟∥ =0,𝑟⊥ < 40 ℎ−1Mpc) and needs to be studied further for future
analyses of DESI data.

For each parameter, we see the EDR+M2 result is generally within 1-2𝜎 of the
DR16 results, except Δ𝑟∥,q, which has a much larger absolute value for our data
set. As mentioned in section 5.5, this is likely because of systematic redshift errors
that arise from poorly performing quasar templates. Improvements in the quasar
templates used for redshift estimation will be made (Brodzeller et al., 2023) for
DESI year 1 to reduce this effect, but for now, it is a well-constrained nuisance
parameter in our model. Finally, we see that for EDR+M2, the posterior of SiII(1193)
is not Gaussian (it is hitting the upper prior bound of 0) because of difficulties
constraining the parameter from our data. From the DR16 fits, we can also see
that this is one of the weaker detected metals (although it is still non-zero with
3𝜎 confidence). Thus we expect that, with lower statistical power, it is difficult to
detect. DESI year 1 data will present an exciting opportunity to make the most
precise constraints on the presence of metals in the Ly𝛼 forest, including lines that
are not included in our model here but were in the past (e.g. CIV(eff)).
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6

Modelling the impact of quasar
redshift errors on full-shape

analyses of correlations in the
Ly𝛼 forest.

6.1 Introduction

One of the major objectives in modern cosmology is to understand the nature of
dark energy. The discovery of the accelerating expansion of the universe from
measurements of distant supernovae (Riess et al., 1998; Perlmutter et al., 1999)
introduced the need for some form of dark energy, in the simplest case a cosmolog-
ical constant. Studies of anisotropies in the Cosmic Microwave Background (CMB)
with experiments like Planck (Planck Collaboration et al., 2020) have at the same
time provided percent-level constraints on other key cosmological parameters.
Another more recent probe of cosmic expansion history is the measurement of
Baryon Acoustic Oscillations (BAO), first in galaxy clustering (Cole et al., 2005;
Eisenstein et al., 2005) and later with the Lyman-𝛼 (Ly𝛼) forest (Busca, N. G. et al.,
2013; Bautista et al., 2017; Bourboux et al., 2020). In each case the observable is a
feature imprinted in the clustering measurements at comoving separation ∼100
ℎ−1Mpc. This feature was created at the epoch of recombination, where sound
waves that were propagating through the dense photon-baryon plasma ceased to
travel because of proton-electron recombination. The overdense regions at wave
peaks gave rise to the preferential clustering scale we observe as BAO today. This
scale can be measured in the CMB (Planck Collaboration et al., 2020), and as such
can be used as a standard ruler to measure the expansion of the universe (Adame
et al., 2025c).

65



CHAPTER 6. MODELLING THE IMPACT OF QUASAR REDSHIFT ERRORS
ON FULL-SHAPE ANALYSES OF CORRELATIONS IN THE LY𝛼 FOREST.

The Dark Energy Spectroscopic Instrument (DESI) (Levi et al., 2013; DESI
Collaboration et al., 2016a,b, 2022; Guy et al., 2023; Miller et al., 2024; Poppett
et al., 2024) survey will measure the spectra and redshifts of more than 40 million
galaxies (Hahn et al., 2023; Raichoor et al., 2023; Schlafly et al., 2023; Zhou et al.,
2023) and 3 million quasars (Chaussidon et al., 2023) over the course of a 5-year
survey, covering 14 000 deg2 of the sky. Precise measurements of large-scale
structure have already been made in galaxy and quasar clustering for the first year
of observations of DESI (DESI Collaboration et al., 2024a; Adame et al., 2025a),
comprising spectra of targets between redshifts 0.1 < 𝑧 < 2.1, and the Ly𝛼 forest at
𝑧 > 2.1 (Adame et al., 2025b). The Ly𝛼 forest is a series of absorption lines present
in the spectra measured from very distant quasars. They are created when light
from these quasars intercepts neutral hydrogen in the IGM, and as such, are an
effective tracer of large-scale structure. A BAO measurement from the Ly𝛼 forest,
made using a combination of the autocorrelation of the Ly𝛼 flux-transmission field
and its cross-correlation with quasars (Font-Ribera et al., 2013, 2014b), has a higher
effective redshift than DESI galaxies (2.33 (Adame et al., 2025b)). This allows us
to probe an earlier stage of the Universe than the DESI galaxy sample, which
additionally helps to break degeneracies in cosmological constraints (Adame et al.,
2025c).

It is possible to drastically improve the cosmological constraining power of
the Ly𝛼 forest (and galaxy) clustering by including information from the Alcock-
Paczynski (AP) effect (Cuceu et al., 2021, 2023a). It was projected in Cuceu et al.,
2021 that including AP information from both the BAO peak and the smooth
component of the Ly𝛼 clustering measurement will give 2.5% and 1% constraints
on Ωm and 𝐻0𝑟d, from the full DESI survey. This represents a factor of ∼2
improvement over BAO-only analyses. Additionally, a sub-10% level measurement
of 𝑓 𝜎8 (at 𝑧 ∼ 2.33) should be possible when combining AP + BAO measurements
from the full set of Ly𝛼 correlation functions with redshift-space distortion (RSD)
constraints derived from the quasar autocorrelation function.

It was demonstrated in Adame et al., 2025b that the analysis method used to
measure BAO is quite robust to various systematic effects, in large part due to the
decomposition of the peak and smooth components of the correlation function
(Kirkby et al., 2013). However, since we are interested in constraining both the
peak and smooth components of the AP effect, we expect to be more sensitive to
contaminants than the BAO-only measurement. The main contaminants usually
considered are continuum fitting distortion (Slosar et al., 2011), high column
density (HCD) systems (Font-Ribera and Miralda-Escudé, 2012; Rogers et al., 2018;
Pérez-Ràfols et al., 2023), broad absorption line (BAL) features (Ennesser et al.,
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2022), metal absorption (Font-Ribera and Miralda-Escudé, 2012; Pieri et al., 2014)
and redshift errors in quasars arising from both astrophysical peculiar velocities
and measurements Font-Ribera et al., 2013. Both HCDs and BALs are identified
using neural-network–based finder algorithms (Guo and Martini, 2019; Wang
et al., 2022) and masked to reduce their impact on the correlation functions. The
former is also modelled to account forbias introduced by lower-density, undetected
systems. Metals are modelled successfully by treating each absorber as a biased
tracer of structure, where the biases are marginalised during the BAO fits.

Random velocities of galaxies or quasars distort clustering measurements along
the line of sight, producing anisotropies relative to the transverse direction — an
effect known as Fingers of God (FoGs). This effect will be present in the cross-
correlation of Ly𝛼 forests with quasars (Font-Ribera et al., 2013), which we will
marginalise over using a version of the model from Percival and White, 2009 (see
section 6.2). In the Ly𝛼 autocorrelation, since the redshifts of Ly𝛼 absorbers are
set by intergalactic hydrogen and not by quasar motion, we do not need to model
this effect.

Errors in redshift measurement produce both the FoG effect and a second,
distinct effect on our correlation functions. When computing the Ly𝛼 transmission
field 𝛿, we use a weighted mean continuum of all forests (equations ??, 6.1). As
first described in Youles et al., 2022, this mean continuum is smoothed by quasar
redshift errors, causing spurious features in our correlation functions. They also
presented a model for this contamination in the cross-correlation function, and
showed that it had a small impact on the accuracy of their BAO constraints. This
was also confirmed as a source of systematic bias in DESI DR1 (Cuceu et al.,
2025b) and in DESI DR2 (Casas et al., 2025). In this paper we extend this work by
modelling the same contamination in the Ly𝛼 autocorrelation, and introducing
free parameters that we marginalise over in our full-shape analysis.

To measure redshifts of DESI quasar spectra, a package called Redrock is
used (Bailey et al., 2025). It is a template-fitting algorithm that uses Principal
Component Analysis (PCA)-based quasar templates to determine the best-fit
redshift in a chi-squared (𝜒2) minimisation. We expect a degree of systematic
error in these estimations due to spectral variation and limited performance of
templates, which was found to be ∼ 340 km/s (Alexander et al., 2023) for DESI
survey validation. These variations are caused by Doppler shift of quasar emission
lines due to the physical processes happening in the line-emitting region (Shen
et al., 2016). The typical level of shift away from the systemic quasar redshift
depends on the line, but highly ionised, broad emission lines tend to exhibit the
largest shifts. Recent work on new templates have significantly reduced this error
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for DESI Data Release 1 (DR1; DESI Collaboration et al., 2025a), showing it to be
∼50% smaller than survey validation (Brodzeller et al., 2023; Bault et al., 2025). This
was partly done by incorporating precise measurements of the Mg II line, which
has relatively low bias with respect to the systemic redshift of the quasar. Broad
emission lines within the Ly𝛼 forest, listed in table 6.1 (Harris et al., 2016), can
also be Doppler-shifted, potentially contributing to errors in the mean continuum
estimation (see section 6.2.2).

This paper is organised as follows. In section 6.2, we describe the mock
datasets used to develop and test our model, the method for generating the flux
transmission field from quasar spectra, and the procedures for computing and
modelling our correlation functions. In section 6.3, we show measurements of the
Ly𝛼 auto- and Ly𝛼 –quasar cross-correlations from different mock datasets, both
with and without redshift errors. Section 6.4 presents the redshift error model for
both the auto- and cross-correlation functions, and section 6.5 shows results from
AP and isotropic BAO fits on our mock datasets. In section 6.6, we discuss the
application of our model to real data and how the contamination can be mitigated
using data cuts. Finally, section 6.7 summarises our findings.

6.2 Method

In this section we present the mock datasets we use (section 6.2.1), and the analysis
techniques employed to derive measurements of BAO and AP parameters from
synthetic quasar spectra. The latter part begins with the flux transmission field
measurement in section 6.2.2, followed by a description of how our correlation
functions are constructed in section 6.2.3. Finally, we describe the model of the
correlation functions and how we constrain BAO and AP parameters in sections
6.2.4 and 6.2.5.

6.2.1 Data sets

To test our model, we use synthetic data sets developed to validate the Ly𝛼 BAO
analysis in Adame et al., 2025b, described in detail in Cuceu et al., 2025b; Herrera-
Alcantar et al., 2025b. These are based on the CoLoRe1 (Ramírez-Pérez et al.,
2022) suite, which generates log-normal density fields with quasars distributed
according to a specific biasing model. Lines-of-sight (also called skewers) are
drawn from quasar positions in this field, with modified small-scale power, and

1https://github.com/damonge/CoLoRe
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Line Wavelength [Å] Equivalent Width [Å] 𝜎 [Å]
SiIV 1064/1074 2.9/0.7 7.7/3.5
NII 1083 1.32 5.3
PV 1118/1128 0.76/0.46 5.3/4.1

CIII* 1175 2.49 7.7

Table 6.1: The emission lines within the Ly𝛼 forest included in our synthetic spectra
(Harris et al., 2016). We show from left to right, their rest-frame wavelength (in
Angstroms), the mean equivalent widths and mean FWHM.

converted to transmitted flux fraction using LyaCoLore2 (Farr et al., 2020b). The
clustering of these noiseless skewers is designed to be realistic at scales relevant
for BAO systematics studies (∼100 ℎ−1Mpc). LyaCoLore also stores skewers of
metal absorption and can include high column-density (HCD) systems, both of
which are major contaminants in standard Ly𝛼 BAO analyses.

To generate realistic quasar spectra from the flux transmission skewers, we
use a final package called desisim3 (Herrera-Alcantar et al., 2025b). This takes
the transmission skewers of LyaCoLore as an input, multiplies them by a quasar
continuum template, and adds noise to mimic the observing conditions and the
instrumental model of DESI. Continuum templates are generated using SIMQSO4

(McGreeret al., 2021), whichcombines a broken power law witha series ofGaussian
emission lines. The slopes of the power law are sampled from a Gaussian, with
mean and dispersion tuned to better reflect the continuum shape and variability
of quasars in the eBOSS DR16 dataset (Bourboux et al., 2020). The Ly𝛼 forest
emission lines are simulated from the composite model of BOSS spectra (Harris
et al., 2016), with line diversity is drawn from the distribution of equivalent widths
(EWs). In table 6.1, we show the properties of these emission lines.

To emulate the effect of redshift errors in our mock datasets, we add Gaussian-
distributed velocities 𝑑𝑣 with zero mean and a dispersion of 400 km/s to each
quasar redshift (1 + 𝑧𝑞 = (1 + 𝑧0

𝑞)(1 + 𝑑𝑣/𝑐)). The reason for doing this rather than
using the error from a redshift-fitting algorithm is that the latter has been shown
to perform better on simulated spectra than real data (Farr et al., 2020a). In Youles
et al., 2022, they differentiate between the Fingers of God (FoG) effect and redshift
errors that affect the mean continuum. In this paper we focus on the latter.

We use two synthetic datasets: one has redshift errors added only to the tracer
quasar catalogue, emulating the effect of FoGs. In the other we add redshift
errors immediately after quasar spectra are generated, which will additionally

2https://github.com/igmhub/LyaCoLoRe
3https://github.com/desihub/desisim
4https://github.com/imcgreer/simqso
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give rise to mean continuum errors (see section 6.4). Note that in our measured
correlation functions, the latter set will exhibit the combined effect of FoGs and
mean continuum errors. This means that later in section 6.3 when we compare the
differences between the two sets, we will observe only the contamination caused
by continuum errors.

Each set consists of a stack of 100 mocks designed to emulate the survey
conditions of DESI DR1 (DESI Collaboration et al., 2025a), including target density,
footprint and signal-to-noise ratio. We will refer to these as DR1 mocks going
forward. They also include all of the major contaminants affecting the analysis
on data: HCDs, metal absorption and broad absorption lines (BALs). Using this
synthetic dataset, we can validate our model and test correlations between various
parameters in a controlled environment.

6.2.2 Continuum fitting

The flux transmission field (𝛿𝐹(𝜆)) used to perform our clustering analysis is
defined in equation 5.1, and is discretised into "pixels" at the dispersion of the
DESI spectrograph, Δ𝜆 =0.8 Å. Since we can’t measure the unabsorbed continuum
𝐶𝑞(𝜆) directly, we re-characterise its product with the mean transmission 𝐹(𝑧):

𝐹(𝜆)𝐶𝑞(𝜆) = 𝐶(𝜆rf)
(
𝑎𝑞 + 𝑏𝑞

log𝜆 − log𝜆min

log𝜆max − log𝜆min

)
. (6.1)

The term 𝐶(𝜆rf), referred to as the "mean continuum", is the weighted mean of
all forests in our analysis. This is multiplied by a first degree polynomial in log𝜆

for each quasar 𝑞 in our sample, to account for continuum variability. The free
parameters 𝑎𝑞 and 𝑏𝑞 are estimated by "continuum fitting", a process that involves
maximising the log-likelihood:

2 ln 𝐿 = −
∑
𝑞

( 𝑓 (𝜆) − 𝐹(𝑧)𝐶𝑞(𝜆)(𝜆, 𝑎𝑞 , 𝑏𝑞)
𝜎2
𝑞(𝜆)

−
∑
𝑞

𝜎2
𝑞(𝜆), (6.2)

where 𝜎2
q(𝜆) is the flux variance, a combination of pipeline noise and large-scale

structure. The mean continuum 𝐶(𝜆rf) is also computed during this maximisation.
For further details on exactly how this is done, see Ramírez-Pérez et al., 2024.

Fitting each 𝛿𝑞 using the data from the entire forest 𝑞, means the measured
transmission at 𝜆𝑖 will be linear combination of all other pixels in the forest.
Explicitly, 𝛿𝐹,𝑖 = 𝜂𝑖 𝑗𝛿𝐹,𝑗 . With the same methodology as section 5.3.2, we apply a
projection matrix (equation 5.5) to 𝛿𝐹, such that the resulting field 𝛿̃𝐹 will have the
same distortion as our projected correlation model (section 5.4.4).
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6.2.3 Correlation functions

We measure our correlations in configuration space as a function of transverse and
line-of-sight separation (𝑟⊥, 𝑟∥). To convert from redshift and angular separation
to 𝑟∥ and 𝑟⊥ we use equations 5.7 and 5.8 respectively. A fiducial cosmology is
required to compute both distances in terms of redshift, so we use the same Planck
2018 (hereby P18; Planck Collaboration et al., 2020) cosmology as Gordon et al.,
2023; Adame et al., 2025b. The correlation within each bin (𝑟⊥, 𝑟∥) ∈ 𝐴 is then
determined by a the weighted average given in equation 5.9, and each Ly𝛼 pixel
or quasar has weight given by equation 5.3.

Note that our weights evolve with redshift proportional to (1 + 𝑧)𝜅−1, where
𝜅 = 2.9 for Ly𝛼 pixels, and 𝜅 = 1.44 for quasars. For the cross-correlation, index 𝑗
in equation 5.9 represents a quasar, which we treat as points that effectively have
𝛿 𝑗 = 1. This is equivalent to computing the weighted mean of 𝛿𝐹 at set distances
from a quasar. In both cases we choose a bin size of 4 ℎ−1Mpc following Gordon
et al., 2023; Adame et al., 2025b. In the autocorrelation we measure between 0 and
200 ℎ−1Mpc in both directions, giving a total of 2500 bins. The cross-correlation
however is not symmetric along the line-of-sight under permutation of pixels and
quasars. Therefore, we define 𝑟∥ between -200 and 200 ℎ−1Mpc, where negative
separations correspond to a quasar being behind the Ly𝛼 pixel with respect to the
observer and vice-versa for positive separations. This gives us 5000 bins in total
for the cross-correlation.

The covariance of our measurement, explained in section 5.3.5, is estimated by
splitting our dataset into sub-samples 𝑠 and computing equation 5.12. In our case,
each Ly𝛼 forest or quasar is uniquely set in one HEALpix sample 𝑠. The covariance
is then smoothed by averaging all off-diagonal elements of the correlation matrix
(𝐶𝐴𝐵/

√
(𝐶𝐴𝐴𝐶𝐵𝐵)) with the same Δ𝑟⊥ = 𝑟𝐴⊥ − 𝑟𝐵⊥ andΔ𝑟∥ = 𝑟𝐴∥ − 𝑟𝐵∥ . Furthermore, as

introduced in Adame et al., 2025b, we now include the cross-covariance between
the Ly𝛼 autocorrelation and Ly𝛼-quasar cross-correlation functions in our analysis.

In Adame et al., 2025b and Cuceu et al., 2025a they use two additional correla-
tion functions that measure the autocorrelation of Ly𝛼 absorption in a bluer region
of the quasar ("region B", between 920-1020 Å DESI Collaboration et al., 2025b)
and its cross-correlation with quasars. For simplicity, and because the relative
contribution to cosmological constraining power is small (∼ 10%), we choose not
to include them in our analysis.
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6.2.4 BAO and full-shape information

In this section we outline the model used to extract cosmological information and
capture behaviour of contaminants in our analysis. The full-shape analysis that
we outline here was first described for the Ly𝛼 forest in Cuceu et al., 2021, and
performed on eBOSS data in Cuceu et al., 2023a. We follow the method of Kirkby
et al., 2013 and employ a template power spectrum, based on P18 cosmology, that
we allow to vary from the measured cosmology by re-scaling our co-ordinate grid:

𝑟′∥ = 𝑞∥𝑟∥, 𝑟′⊥ = 𝑞⊥𝑟⊥. (6.3)

We wish to distinguish between isotropic re-scaling 𝛼 of the correlation function
and anisotropic re-scaling 𝜙 (AP effect), therefore we define:

𝛼(𝑧) = √
𝑞∥𝑞⊥ and 𝜙(z) =

q⊥
q∥

(6.4)

The first step in standard Ly𝛼 BAO analyses is to take the linear isotropic input
power spectrum from P18, 𝑃L(𝑘), and decompose it into peak (𝑃peak

L (𝑘)) and smooth
(𝑃sm

L (𝑘)) components following Kirkby et al., 2013. This is possible because the BAO
is a distinct feature in the full correlation function, which also makes the standard
peak-only analysis more robust to systematics affecting the smooth component. In
the full-shape analysis we keep this peak-smooth decomposition, but introduce
scaling parameters 𝛼 and 𝜙 for each component:

𝜉(𝑟⊥, 𝑟∥) = 𝜉p(𝑟⊥, 𝑟∥, 𝛼p, 𝜙p) + 𝜉s(𝑟⊥, 𝑟∥, 𝛼s, 𝜙s), (6.5)

where "s" and "p" refer to the smooth and peak components respectively. The peak
component is defined in terms of distances and the sound horizon scale 𝑟d as:

𝛼p =

√√
𝑑m(𝑧)𝑑ℎ(𝑧)/𝑟2

d

[𝑑m(𝑧)𝑑ℎ(𝑧)/𝑟2
d]fid

(6.6)

where 𝑑ℎ is the Hubble distance and "fid" is the fiducial P18 cosmology. From
this one can constrain the combination of 𝐻0𝑟d and Ωm, where 𝐻0 is the Hubble
constant. Both AP components are equivalent to 𝜙 = 𝑑m(𝑧)𝐻(𝑧)/[𝑑m(𝑧)𝐻(𝑧)]fid.
From this we can directly measureΩm, and therefore break the degeneracy between
Ωm and 𝐻0𝑟d. A more detailed description of this is given in Cuceu et al., 2021.

In Cuceu et al., 2023b, it was shown that including the smooth component AP
parameter 𝜙s doubled the precision of constraints on Ωm. Note that in Cuceu
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et al., 2023b and in this work, we treat 𝛼s as a nuisance parameter since it is
not clear how to extract cosmological information from it, and it’s more strongly
correlated with the Ly𝛼 bias. Finally, while the information gain of including the
smooth-component is substantial, it is also more susceptible to contaminants, thus
motivating us to create the model presented in this paper.

6.2.5 Correlation model

To compute our Ly𝛼 and Ly𝛼-quasar correlation function models we begin with
the corresponding power spectra, which are derived from linear perturbation
theory, with a Kaiser (Kaiser, 1987) model of RSD. Our power spectra are the same
as those given by equation 5.14, with an additional term Gaussian smoothing term
𝐹sm that accounts for our log-normal simulations having limited grid size (∼2.4
ℎ−1Mpc):

𝑃𝛼(𝑘, 𝜇k, 𝑧) = 𝑏2
𝛼(1 + 𝛽𝛼𝜇

2
k)

2𝐹sm𝑃L(𝑘, 𝑧), (6.7)

𝑃X(𝑘, 𝜇k, 𝑧) = 𝑏𝛼𝑏q(1 + 𝛽𝛼𝜇
2
k)(1 + 𝛽𝑞𝜇

2
k)𝐹sm𝐹NL,q𝑃L(𝑘, 𝑧) . (6.8)

𝑏𝑖 are the cosmological biases and 𝛽𝑖 are the RSD parameters for tracer 𝑖 (quasar
or Ly𝛼 pixel), and 𝜇k is the cosine of the k vector with respect to the line-of-sight
direction. Our correlation models are then computed by taking the Fast Hankel
Transform of the above equations. All of this is done with the package Vega5,
which we also use to fit cosmological parameters, given in section 6.5.

Note that the cross-correlation term 𝐹NL,q accounts for quasar peculiar veloci-
ties, and is given in equation 5.19. These produce a smoothing effect at large k∥, and
are a distinct effect from the redshift error continuum smoothing we model in this
paper. We also account for any systematic quasar redshift errors by introducing a
free parameter to our cross-correlation model: Δ𝑟∥ = 𝑟∥,true − 𝑟∥,measured.

In the contaminated mock dataset we introduce metal absorption and HCD
contamination. For HCDs, we mask systems with column density > 2 × 1020cm−2,
following the analysis of Adame et al., 2025b. The remaining HCDs, which in real
data are too small to detect for masking, are biased tracers of large-scale structure.
In this case we treat the Ly𝛼 bias and RSD parameters as effective combinations
of signal from Ly𝛼 forest and HCDs, given in equations 5.25 and 5.26. 𝐿HCD in
these equations is the typical length-scale of the unmasked HCDs, which along
with the HCD bias and RSD parameters, we marginalise over.

5https://github.com/andreicuceu/vega
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Figure 6.1: The effect of continuum redshift errors on the Ly𝛼-quasar cross-
correlation (left) and the Ly𝛼-Ly𝛼 autocorrelation (right) computed from our
mock datasets. Each dataset is the stack of 100 DESI DR1 mocks. We take the
weighted average over the first 4 bins in transverse separation 𝑟⊥ ([0,16] ℎ−1Mpc)
where the effect of redshift errors is strongest, and plot as function of line-of-sight
separation 𝑟∥. We only include negative 𝑟∥ for the cross-correlation, since as shown
in figure 6.2 there is no impact at 𝑟∥ > 0 ℎ−1Mpc. Note that at ∼ ±60 ℎ−1Mpc we
see bumps in the correlations due to SiII(1190/1193) lines.

In our analysis, we assume all of the absorption within the Ly𝛼 forest is due
to the Ly𝛼 transition. However, in some cases we are mistaking Ly𝛼 absorption
with absorption from different metals. This leads to a contamination which we
correct for using the same process outlined in Adame et al., 2025b. In our fits, we
marginalise over a set of bias parameters for 4 metal lines: SiIII(1207), SiII(1190),
SiII(1193), and SiII(1260) (section 6.5).

As mentioned in section 6.2.2, distortions introduced to 𝛿 during continuum
fitting lead us to use a "projected" field 𝛿̃ (equation 5.4). This is designed such
that the projected distorted field has the same distortion as the projected true field.
We write the distorted model (𝐴) in terms of the undistorted model (𝐵) using
a "distortion matrix": 𝜉𝐴 =

∑
𝐴𝐵 𝐷𝐴𝐵𝜉𝐵. 𝐷 is given for the autocorrelation and

cross-correlation in equations 5.32 and 5.33 respectively.

6.3 Impact of redshift errors

In this section we will show the impact of continuum redshift errors on the
measured correlation functions of our mock datasets. Then, in section 6.4, we will
discuss the origin of this contamination and propose a model for it.

We use the two synthetic datasets described in section 6.2.1, both of which
are stacks of 100 DESI DR1 mocks. The "uncontaminated" set has redshift errors
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added to the tracer quasar catalogue, emulating FoGs. The "contaminated" set has
errors added to the spectra, emulating pipeline redshift errors. Using this method
we isolate the effect of redshift errors which enter during the continuum fitting
process (section 6.2.2). We refer to this contamination as continuum redshift errors,
to differentiate it from the effect of FoGs.

We then compute the Ly𝛼 autocorrelation and its cross-correlation with quasars
using the method outlined in the previous section. For each of the two sets, we
compute the weighted mean and covariance of the 100 correlation functions. We
use these two stacks to model and fit the effect of continuum redshift errors in our
correlation functions in the following sections. The auto- and cross-correlation
functions from the uncontaminated and contaminated sets are shown in figure 6.1.
These are plotted as a function of the line-of-sight separation, averaged over the
first 4 bins in transverse separation ([0,16] ℎ−1Mpc) where the effect is strongest.
We can also clearly see a peak at∼ 100 ℎ−1Mpc, a combination of BAO and SiII(1260)
contamination, and other peaks caused by metal contamination (section 6.2.5).

The contamination of continuum redshift errors (the difference between the two
datasets) in the auto- and cross-correlations is shown in figure 6.2. As discussed in
Youles et al., 2022, there is a strong dependence of redshift error distortion in the
cross-correlation on the small-scale quasar autocorrelation, which is significantly
weaker for positive 𝑟∥ where host quasars of Ly𝛼 pixels are much further from the
correlating quasars. Therefore, as we see in figure 6.2, the distortion from redshift
errors is only visible fornegative 𝑟∥. This dependence on the quasarautocorrelation
is also the reason the contamination becomes negligible at transverse separations
𝑟⊥ ≳20 ℎ−1Mpc. The behaviour is similar in the Ly𝛼 autocorrelation, except the
dependence is now on the small-scale Ly𝛼-quasar cross-correlation. In section 6.4,
this dependence can be seen explicitly in our model. The distortions in figure 6.2
are also localised around specific values of 𝑟∥. In section 6.4.1 we show how this
pattern arises due to smoothing of the mean continuum.

We can see that the continuum redshift errors will contaminate our full-shape
measurement, but also that part of the contamination overlaps with the fiducial
BAO position (∼100 ℎ−1Mpc). In section 6.5, we show the effect of this contamina-
tion on the set of cosmological parameters measured from the BAO peak (𝛼p, 𝜙p)
and the broadband component (𝜙s, 𝑓 𝜎8) of our correlation functions.
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Figure 6.2: (Top) difference in the Ly𝛼 autocorrelation measured from contami-
nated (with continuum redshift errors) and uncontaminated datasets, as a function
of (𝑟⊥, 𝑟∥). (Bottom) difference in the Ly𝛼-quasar cross-correlation from contami-
nated and uncontaminated datasets.
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Figure 6.3: (Top) the mean continuum distortion function 𝛾 = 𝐶̂/𝐶 − 1 as a
function of rest-frame wavelength. 𝐶̂(𝜆rf , 𝜎v) is the mean continuum with redshift
errors 𝜎v, as shown in the plot above. Roman numerals mark the location of
prevalent features in 𝛾, which contaminate our correlation functions. We include
the approximate comoving distance between a quasar at 𝑧 = 2.3 and pixels in its
forest, along the top axis. (Bottom) the Ly𝛼 forest mean continuum (equation 6.1)
of our mock datasets with 0 kms−1, 400 kms−1 and 1000 kms−1 of redshift errors
added. The later is for visualisation while 400 kms−1 is used in the actual analysis.

6.4 Modelling the contamination

In this section we will outline our model for continuum redshift error contamina-
tion. We start describing the effect of redshift errors on the mean continuum and
flux-transmission field (following Youles et al., 2022), and carry this through to
a full model of the contamination in the autocorrelation. We also highlight the
cross-correlation redshift error model of Youles et al., 2022.

In Youles et al., 2022, redshift errors were identified to smooth the mean
continuum (equation 6.1) that is fit during the transmission field estimation. They
subsequently defined a term 𝛾(𝜆rf):
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Figure 6.4: The difference in the Ly𝛼 autocorrelation function between contami-
nated (with continuum redshift errors) and uncontaminated datasets (grey), over-
laid with direct measurements of ⟨𝛿𝛾⟩ (red dashed) and ⟨𝛾𝛾⟩ (blue dotted). We
plot only the first 𝑟⊥ bin where the contamination is strongest.

Figure 6.5: The evolution of continuum redshift error contamination with the
maximum rest-frame wavelength of the Ly𝛼 forest. The 1205Ålimit (red) is the
limit used in the analysis of this paper. We include Roman numerals to indicate
the features in 𝛾 (figure 6.3) which correspond to spurious correlations in this
figure.
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𝛾(𝜆rf) = 𝐶̂(𝜆rf)
𝐶(𝜆rf)

− 1, (6.9)

where 𝐶̂ is the mean continuum estimate with redshift errors and 𝐶 is the true
mean continuum. The Ly𝛼 forest region of our mock continua consists of a power
law smooth component, superimposed with many Gaussian emission lines. If
quasar redshift errors are randomly distributed, the mean continuum will be
smoothed around emission lines as shown in figure 6.3. In appendix 6.9, we write
an expanded version of 𝛾(𝜆rf), accounting for the fact that the wavelength grid 𝜆rf

for each forest is shifted from the true grid, due to errors in 𝑧q.
In the top panel of figure 6.3, we show a measurement of 𝛾(𝜆rf) formed using

mean continua from our mock datasets with redshift errors of 400 kms−1 and
0 kms−1. Combining equation 6.9 with our definition of the flux transmission field
(equation 5.1) we get:

𝛿̂(𝜆) = 1 + 𝛿(𝜆)
1 + 𝛾(𝜆rf) − 1. (6.10)

Assuming we can ignore second-order terms we have:

𝛿̂(𝜆) ≈ 𝛿(𝜆) − 𝛾(𝜆rf). (6.11)

Thus the measured autocorrelation function can be written as:

⟨𝛿̂(𝜆)𝛿̂(𝜆)⟩ = ⟨𝛿(𝜆)𝛿(𝜆)⟩ − 2⟨𝛿(𝜆)𝛾(𝜆rf)⟩ + ⟨𝛾(𝜆rf)𝛾(𝜆rf)⟩. (6.12)

To determine the most dominant term in this equation, we directly compute ⟨𝛿𝛾⟩
and ⟨𝛾𝛾⟩ using 𝛿 from mock datasets with no added redshift errors, and the
measured gamma in figure 6.3. The result is shown in figure 6.4, where both
terms are plotted over the measured contamination in the autocorrelation. Clearly,
⟨𝛾𝛾⟩ is negligible. Therefore, we only model the contribution of the ⟨𝛿𝛾⟩ term.
Noticeably, the trough in the correlation difference at ∼ 25 ℎ−1Mpc is not captured
by either term. In the following section we discuss the behaviour of this feature.

6.4.1 Variation with wavelength

Spurious features in ⟨𝛿𝛾⟩ caused by redshift errors in the Ly𝛼 continuum appear at
specific separations. These separations (in comoving distance) are determined by
the difference in rest-frame wavelength between the Ly𝛼 line and strong features
in 𝛾(𝜆rf):
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𝑟feature ≈ 𝑐(1 + 𝑧)
𝐻(𝑧)

(𝜆feature − 𝜆𝛼)
𝜆𝛼 , (6.13)

where 𝑧 is the effective redshift of the dataset and𝐻 is the Hubble parameter. In the
top panel of figure 6.3, we highlight key features in Roman numerals: i at 1174 Å, ii
at 1187 Å, iii at 1205.7 Å and iv at 1211.6 Å, the latter two of which fall outside of the
fiducial rest-frame limits (1205 Å) of our clustering analysis. Using these values in
equation 6.13 with an effective redshift of 2.3 predicts spurious correlation features
at separations of 99 ℎ−1Mpc, 70 ℎ−1Mpc, 26 ℎ−1Mpc and 9 ℎ−1Mpc respectively. In
figure 6.5, we show the contamination in the Ly𝛼 autocorrelation as a function
of the upper rest-frame wavelength limit of the forest. We also include Roman
numerals here, indicating the aforementioned comoving separations, and see
clearly that they align with the strongest spurious correlation features.

Looking specifically at the rest-frame limit of our analysis, 1205 Å(red line in
figure 6.5), we see a trough at ∼ 25 ℎ−1Mpc. This roughly overlaps with the feature
iii (at 1205.7 Å) in figure 6.3, but is a trough where we expect a peak (peaks in 𝛾

produce peaks in 𝜉̂𝛼𝛼). Therefore we posit that this trough is instead caused by
feature iv in figure 6.3, at a rest-frame wavelength of 1211.6 Å. This is possible
because quasar redshift errors not only smooth the mean continuum, but also shift
the rest-frame wavelength grid with respect to the truth. For any forest in our
dataset, we apply the upper rest-frame wavelength limit by converting observed
wavelength𝜆 into rest-frame, where𝜆rf = 𝜆/(1+ 𝑧̂q) for a measured quasar redshift
𝑧̂q. If 𝑧̂q > 𝑧q, pixels which have 𝜆rf > 1205Å will fall into the accepted Ly𝛼 region.
Consequently, values of 𝛾(𝜆rf > 1205 Å) will contaminate our analysis.

In figure 6.6, we show (blue dashed line) the result of removing pixels (for
each forest in our correlation measurement) which are in reality above the Ly𝛼
rest-frame wavelength limit, but are accepted into the sample because of redshift
errors. In this case, the trough feature is no longer visible, and the contamination at
small-scales is now roughly consistent with 0. We have also verified that including
pixels that are in reality below 1205 Å, but are excluded due to redshift errors, has
no effect on the shape of the contamination.

In appendix 6.9, we make the shifting of the rest-frame wavelength grid where
we evaluate each 𝛿 explicit, by expanding 𝐶̂ about small redshift deviations. This
produces extra terms that contaminate the correlation functions, but to 1st order
they do not capture the trough at 25 ℎ−1Mpc in our fiducial analysis. We also try
to empirically model the trough feature (equation 6.33), which works well in a
direct fit (see figure 6.8), but biases our full-shape analysis.
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Figure 6.6: Contamination caused by redshift errors (grey), and the same contami-
nation after removing pixels with true rest-frame wavelength greater than 1205 Å
(blue dashed). After removing these pixels the trough feature at ∼ 25 ℎ−1Mpc
disappears, while the rest of the contamination is unaffected.

6.4.2 Autocorrelation model

To model the ⟨𝛿(𝜆)𝛾(𝜆rf)⟩ term in equation 6.12, we follow a similar approach
to that used in Youles et al., 2022 to model the ⟨𝛾(𝜆rf)⟩ term in the Ly𝛼-quasar
cross-correlation model.

We begin by considering a general expression for the expectation value of ⟨𝛿𝛾⟩:

⟨𝛿𝛾⟩𝐴 =

∫ ∞

−1
𝑑𝛿

∫ ∞

−1
𝑑𝛾𝑃(𝛿, 𝛾|r𝐴)𝛿𝛾 (6.14)

where 𝑃(𝛿, 𝛾) is the probability of having a particular 𝛿 and 𝛾, for separation
r𝐴 = {r∥𝐴 , r⊥𝐴} between two Ly𝛼 pixels. This can be equivalently expressed as:

⟨𝛿𝛾⟩𝐴 =

∫ ∞

−1
𝑑𝛿

∫ 𝜆rf,max

𝜆rf,min
𝑑𝜆rf𝑃(𝛿,𝜆rf)𝛿𝛾, (6.15)

since 𝛾 is uniquely defined by 𝜆rf, and the integration limits are given by the fact
that we only consider pixels within the defined Ly𝛼 forest rest-frame region. We
can write the quasar rest-frame wavelength of any pixel as:

𝜆rf = 𝜆𝛼(1 + 𝑧𝛼)/(1 + 𝑧Q), (6.16)
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where 𝜆𝛼 is the rest-frame wavelength of the Ly𝛼 transition, and 𝑧𝛼 is the redshift
of a Ly𝛼 pixel in the Ly𝛼 forest region of a quasar with redshift 𝑧Q. Therefore,
for a given 𝜆rf

𝑖
for forest 𝑖, we have a set of possible {𝑧Q

𝑖
, 𝑧𝛼

𝑖
}. Furthermore, for

separations 𝑟∥ ∈ 𝐴 and pixel redshift 𝑧𝛼
𝑖
, we have a unique 𝑧𝛼

𝑗
in forest 𝑗. Thus, we

re-write equation 6.15 as:

⟨𝛿𝛾⟩𝐴 =

∫ ∞

−1
𝑑𝛿 𝑗

∫ 𝑧Q,max

𝑧Q,min

∫ 𝑧𝛼,max

𝑧𝛼,min
𝑑𝑧

Q
𝑖
𝑑𝑧𝛼𝑗 𝑃(𝛿 𝑗 , 𝑧𝛼𝑗 , 𝑧

Q
𝑖
|𝑟𝐴∥ )𝛿 𝑗𝛾𝑖 . (6.17)

We can expand this further as:

⟨𝛿𝛾⟩𝐴 =

∫ ∞

−1
𝑑𝛿 𝑗

∫ 𝑧Q,max

𝑧Q,min

∫ 𝑧𝛼,max

𝑧𝛼,min
𝑑𝑧

Q
𝑖
𝑑𝑧𝛼𝑗 𝑃(𝛿 𝑗|𝑧𝛼𝑗 , 𝑧

Q
𝑖
)

× 𝑃(𝑧𝛼𝑗 |𝑧
Q
𝑖
)𝑃(𝑧Q

𝑖
)𝛿 𝑗𝛾𝑖 , (6.18)

where we have made the dependence on 𝑟𝐴∥ explicit. Expanding the first term in
this equation, we get:

𝑃(𝛿 𝑗|𝑧𝛼𝑗 , 𝑧
Q
𝑖
) =

𝑃(𝑧Q
𝑖
|𝛿 𝑗 , 𝑧𝛼𝑗 )𝑃(𝛿 𝑗|𝑧𝛼𝑗 )

𝑃(𝑧Q
𝑖
|𝑧𝛼
𝑗
)

(6.19)

=
𝑃(𝑧Q

𝑖
|𝛿 𝑗 , 𝑧𝛼𝑗 )𝑃(𝛿 𝑗|𝑧𝛼𝑗 )𝑃(𝑧𝛼𝑗 )

𝑃(𝑧𝛼
𝑗
|𝑧Q
𝑖
)𝑃(𝑧Q

𝑖
)

. (6.20)

Now we will make some approximations to evaluate the first two terms in the
numerator of this equation - note that the first term in the denominator cancels
with the second term in equation 6.18. We begin by writing 𝑃(𝛿 𝑗|𝑧𝛼𝑗 ) ≈ 𝑃(𝛿 𝑗).
This is equivalent to ignoring the redshift evolution of 𝛿, normally proportional
to (1 + 𝑧𝛼

𝑗
)𝜅, which we find does not change the shape of ⟨𝛿𝛾⟩𝐴.

Next, we express the first term in equation 6.19 as 𝑃(𝑧Q
𝑖
|𝛿 𝑗 , 𝑧𝛼𝑗 ) = 𝑃(𝑧Q

𝑖
)(1 +

𝛿 𝑗𝜉X(rX)), where rX is the separation between 𝑧𝛼
𝑗

and 𝑧
Q
𝑖

, and 𝜉X is the Ly𝛼-
quasar cross-correlation. Note that the dependence of 𝑃(𝑧Q

𝑖
|𝛿 𝑗 , 𝑧𝛼𝑗 ) on 𝑧𝛼

𝑗
is ac-

counted for by the redshift evolution of the cross-correlation. This is not an
analytically derived expression, but rather an ansatz that produces the expected
behaviour of 𝑃(𝑧Q

𝑖
|𝛿 𝑗 , 𝑧𝛼𝑗 ). The definition of 𝜉X here is somewhat analogous to

the definition of the quasar autocorrelation as a measure of excess probability,
𝜉Q = 𝑃(𝑧Q

𝑗
|𝑧Q
𝑖
)/𝑃(𝑧Q

𝑗
) − 1, but with a modulating 𝛿 term. Making the subsequent

substitutions into equation 6.18 gives:
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⟨𝛿𝛾⟩𝐴 =

∫ ∞

−1
𝑑𝛿 𝑗

∫ 𝑧Q,max

𝑧Q,min

∫ 𝑧𝛼,max

𝑧𝛼,min
𝑑𝑧

Q
𝑖
𝑑𝑧𝛼𝑗 𝑃(𝛿 𝑗)𝑃(𝑧𝛼𝑗 )𝑃(𝑧X

𝑖 )

× (1 + 𝛿 𝑗𝜉
X(rX))𝛿 𝑗𝛾𝑖 . (6.21)

Multiplying the terms in brackets results in two parts (with and without the cross-
correlation). The integration over 𝛿 is independent of the other two variables,
and since it has mean 0, the part with one 𝛿 𝑗 term vanishes. In the second term,∫ ∞
−1 𝑃(𝛿 𝑗)𝛿

2
𝑗
𝑑𝛿 𝑗 evaluates to ∼ 0.6. We introduce a free amplitude for this model

𝐴auto
cont , which will absorb this value, but here we call this factor 𝑎𝛿, and write our

final expression as:

⟨𝛿𝛾⟩𝐴 = 𝑎𝛿𝐴
auto
cont

∫ 𝑧Q,max

𝑧Q,min

∫ 𝑧𝛼,max

𝑧𝛼,min
𝑑𝑧

Q
𝑖
𝑑𝑧𝛼𝑗 𝑃(𝑧𝛼𝑗 )𝑃(𝑧

Q
𝑖
)𝜉X(rX)𝛾𝑖 . (6.22)

Qualitatively, we evaluate this model by iterating over correlation function bins
(𝑟⊥, 𝑟∥). For a bin 𝐴 (width 4 ℎ−1Mpc in our analysis), we have N bins of 𝑧Q

𝑖

covering the redshift range of the quasars in the dataset. This results in an array
of N×M pixel redshifts 𝑧𝛼

𝑖
(equation 6.16), using M bins of rest-frame wavelength

in the Ly𝛼 forest region (𝜆rf ∈ [1040, 1205]Å). With these values we can compute
𝑃(𝑧Q

𝑖
) from our normalised quasar redshift distribution, and the 𝛾𝑖 term for each

rest-frame wavelength in M. Then, given 𝑧𝛼
𝑖

and 𝑟∥ ∈ 𝐴, we can derive 𝑧𝛼
𝑗

and the
vector rX between 𝑧𝛼

𝑗
and 𝑧

Q
𝑖

. Finally, we compute the probability of 𝑧𝛼
𝑗

using a
normalised pixel redshift distribution, and evaluate the cross-correlation 𝜉(rX).

In figure 6.7, we present the model compared to the difference of correlation
functions with and without redshift errors. To compute this, we directly measure
𝛾(𝜆) from the mock datasets (via equation 6.9), and input it to equation 6.22. In
theory, one could also use a measurement of 𝛾 from mock datasets to fit our model
on data. However, this relies on knowing the amount of redshift error present
in the data, so we opt instead for building a simple model described in the next
section.

6.4.3 Modelling 𝛾

In real data we cannot directly measure 𝛾(𝜆rf), since we don’t know the true
continuum (without redshift errors). Therefore, we need to construct a model of
𝛾(𝜆rf).

Recalling equation 6.9, we see 𝛾 contains the ratio of the mean continuum in
the presence of redshift errors (𝐶̂), to the true mean continuum (𝐶). Therefore, to
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Figure 6.7: The contamination introduced by continuum redshift errors (blue
shaded) as a function of 𝑟∥, for the first (most contaminated) 𝑟⊥ bin. The black
dashed line is the contamination model (equation 6.22), estimated using a mea-
surement of 𝛾(𝜆rf).

construct a model of 𝛾, we need a template quasar continuum and a parameter
that controls the amount of redshift error to input. The continuum template is a
convolution of a set of emission lines and a smooth broadband component. For
the former we use the emission line properties of the composite model of BOSS
spectra DR9 (Harris et al., 2016). We then approximate the smooth component
as flat, motivated by the fact that the majority of the contamination we observe
comes from the smoothing of emission lines. To produce 𝐶̂ from our template 𝐶,
we need to emulate the same smoothing. We do this by broadening the emission
lines in our template 𝐶 (listed in table 6.1), via a parameter 𝜎cont representing the
amount of the velocity dispersion in kms−1 6. The width of each emission line is
then broadened according to:

𝜎̂line =

√
𝜎2

line +
(
𝜆line𝜎cont

𝑐

)2
, (6.23)

where 𝜎line is the intrinsic line width, 𝜆line is the rest-frame wavelength of the
line, and 𝑐 is the speed of light in kms−1. Note that since the emission lines are

6The velocity dispersion here is related to redshift errors.
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Figure 6.8: Direct fits to the contamination introduced by redshift errors, or
the difference in the contaminated and uncontaminated Ly𝛼 autocorrelation, for
the first 4 bins in 𝑟⊥. We plot our model with (+correction) and without (⟨𝛿𝛾⟩
model) the addition of small-scale correction described in appendix 6.9. Note
we use the 𝛾(𝜆rf) model described in section 6.4.3 to compute ⟨𝛿𝛾⟩, rather than a
measurement from mocks. In this plot we show the stack of 100 DESI DR1 mocks,
used throughout this analysis.

normalised Gaussians, the line amplitudes are ∝ 1/𝜎̂line. With the broadened
emission lines we can construct 𝐶̂(𝜆, 𝜎cont), and obtain 𝛾(𝜆). As mentioned earlier,
this is robust to the choice of smooth component but highly dependent on the
emission line model.

The result of fitting our model directly to the redshift error contamination
is shown in figure 6.8 (using a model for 𝛾). We show fits with the small-scale
correction of appendix 6.9 (green solid line) and without (red dashed line), which
we see are identical with the exception of the small-scale trough. In the full
analysis (section 6.5) we choose not to use the small-scale correction model, to
avoid biasing our results. We are still able to fit our model and recover the true
input 𝜎cont without it, but may fail to capture the full impact of the trough at
∼ 25 ℎ−1Mpc. We see that the contamination is well fit at all scales, and that it
drops off quickly with transverse separation.
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6.4.4 Cross-correlation model

In Youles et al., 2022 they introduced a model of continuum redshift errors for
the Ly𝛼-quasar cross-correlation. The contamination in this case is characterised
as: ⟨𝛿̂⟩ = ⟨𝛿⟩ − ⟨𝛾(𝜆rf)⟩, where ⟨𝛿̂⟩ = 𝜉̂X. The model of 𝛾(𝜆rf)⟩ is then constructed
using a similar method to the one in section 6.4.2, resulting in:

⟨𝛾⟩𝐴 = 𝐴cross
cont

∫ ∫
𝑑𝑧

Q
𝑖
𝑑𝑧

Q
𝑗
𝑃(𝑧Q

𝑖
)𝑃(𝑧Q

𝑗
)𝜉Q(rQ)𝛾𝑖 , (6.24)

where there is now dependence on the quasar autocorrelation 𝜉Q, rather than the
Ly𝛼-quasar cross-correlation. To include the Youles et al., 2022 model in our fits,
we use the same 𝛾 model as in the autocorrelation (section 6.4.3). For this we
have two free parameters, 𝜎cont and 𝐴cross

cont . Note that in the cross-correlation the
model of Youles et al., 2022 also fails to capture the behaviour of redshift errors at
∼ 25 ℎ−1Mpc, where instead of a trough we now see a peak (visible in figure 6.10).
However, because we limit our cross-correlation to scales above 40 ℎ−1Mpc (see
section 6.5), the impact of this peak is much smaller.

We ultimately combine both correlation functions in a joint fit, shown in section
6.5. This allows us to break degeneracies between certain nuisance parameters
and key parameters like 𝜙s, 𝛼s. As explained in Cuceu et al., 2021, we can also
measure the combination 𝑓 𝜎8 from the joint fit. We expect 𝛾 to be the same for
the auto- and cross-correlations, so we use only one parameter 𝜎cont for both. We
have verified that allowing each correlation function to have a different set of
parameters give perfectly consistent results.

6.5 Results

In this section we will explain our model fitting procedure, and show the impact
of redshift errors on the cosmological parameters of our full-shape analysis. In
particular, we discuss how large this contamination is with respect to the precision
of DESI DR1 and DR2. We will then present the full-shape fits including the
redshift errors model for the auto- (section 6.4.2) and cross-correlations (section
6.4.4). We show results of fits to these correlations individually, and together in a
joint fit which gives constraints on the combination 𝑓 𝜎8.

6.5.1 Parameter degeneracies

The RSD parameter of the Ly𝛼 forest is given by:
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𝛽𝛼 =
𝑏𝜂,𝛼(𝑧) 𝑓 (𝑧)
𝑏𝛼(𝑧)

, (6.25)

where 𝑏𝜂,𝛼 is the velocity divergence bias of the Ly𝛼 forest and 𝑓 is the logarithmic
growth-rate. In practice we must assume a linear matter power spectrum template
(Planck Collaboration et al., 2020), which has a fixed normalisation proportional
to 𝜎8(𝑧) - the amplitude of perturbations in 8ℎ−1Mpc spheres. In linear theory 𝑓

and 𝜎8 are fully degenerate (Percival and White, 2009), so we are sensitive to the
combinations 𝑏𝜂,𝛼 𝑓 𝜎8 and 𝑏𝛼𝜎8. Since 𝑏𝜂,𝛼 is unknown, we treat 𝛽𝛼 as a nuisance
parameter to marginalise over.

For the cross-correlation, we are sensitive to both the quasar and Ly𝛼 RSD and
bias parameters. Since for quasars 𝛽q = 𝑓 /𝑏q, we are sensitive to: 𝑏𝛼𝜎8, 𝑏𝜂,𝛼 𝑓 𝜎8,
𝑏q𝜎8 and 𝑓 𝜎8. 𝑓 𝜎8 is difficult to constrain from the cross-correlation alone, since
it’s dependent on several biases (𝑏𝜂,𝛼 , 𝑏𝛼 , 𝑏q). But we break these degeneracies by
combining both correlation functions in a joint fit, as the autocorrelation provides
precise measurements of 𝑏𝜂,𝛼 𝑓 𝜎8 and 𝑏𝛼𝜎8.

6.5.2 Fits

Following the full-shape analysis of DESI year-1 Ly𝛼 data (Cuceu et al., 2025a),
we restrict the autocorrelation to 𝑟 ∈ [25, 180] ℎ−1Mpc, and cross-correlation
to 𝑟 ∈ [40, 180] ℎ−1Mpc. This is a conservative minimum scale cut designed
to limit the impact of increasingly non-linear scales and systematics (including
redshift errors). We highlight at this point that there are some key differences
between the analysis we perform here, and that of Cuceu et al., 2025a. First of
all, as mentioned in section 6.2, Cuceu et al., 2025a use two additional correlation
functions measured from Ly𝛼 absorption in Lyman-𝛽 region (between 920-1020 Å).
These are the autocorrelation of Ly𝛼 absorption in the Lyman-𝛽 region, and its
cross-correlation with quasars. We omit these correlations from our analysis for
simplicity, since we would need to extend our continuum redshift errors model to
incorporate this new region. We also do not expect redshift errors in the Lyman-𝛽
region to have a large impact overall, since these correlation functions have low
statistical power relative to the two we analyse in this paper. Furthermore, in
this paper we measure the AP effect separately on the broadband (𝜙s) and peak
component (𝜙p) of the correlation function, as opposed to Cuceu et al., 2025a who
measure the AP effect across the full correlation function with one parameter (𝜙f).
We opt for the former to characterise the impact of redshift errors more precisely,
but it may result in a larger overall shift. Finally, we use a Gaussian prior on 𝐿HCD,
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compared to Cuceu et al., 2025a who use a wide uniform prior. We do this to
make fitting our new redshift error model parameters easier, but it may also lead
to slight differences in our results.

Since we are only interested in oursetof cosmologicalparameters {𝛼p, 𝜙p, 𝜙s, 𝑓 𝜎8}
and the parameters of the model introduced in this paper {𝜎cont, 𝐴

auto
cont , 𝐴

cross
cont }, we

treat all other parameters as nuisance. Note that we have not included 𝛼s in our
parameters of interest, since it is not simple to extract cosmological from it.

In the autocorrelation fits, we have 15 free parameters when using the redshift
errors model, and 13 without it. We fix 𝛽HCD and 𝐿HCD to values constrained
in the joint fit, and set 𝑓 𝜎8 to value of the fiducial cosmology. For our model
(equation 6.22), we also need the redshift distributions of Ly𝛼 pixels and quasars
in our dataset, our gamma model 𝛾(𝜆rf) and an input cross-correlation function
𝜉X. Ideally, one would use a model (i.e. one that we fit in this analysis), but
for simplicity and to reduce computing time we will use the measured cross-
correlation from our mock dataset (figure 6.1). This is a reasonable approximation
since the stack of mocks has very high signal-to-noise. For the DESI year-1 dataset,
as we discuss in section 6.6, the cross-correlation is noisy and therefore is a not a
good substitute for a model.

For the cross-correlation we have 16 free parameters with the redshift errors
model and 14 without. We additionally fit for systematic redshift errors (Δ𝑟∥), and
smoothing at large 𝑘∥ due to redshift errors and peculiar velocities (𝜎v). However,
we now fix 𝜎∥7 to the joint fit value since it is degenerate with 𝜎v. For this we
also provide a quasar redshift distribution, the continuum smoothing function
𝛾(𝜆rf) (see section 6.4.3) and the quasar autocorrelation 𝜉Q (section 6.4.4). Again
we make a simplification by using a measurement of the quasar autocorrelation
in-place of a model.

The joint fits have have 22 free parameters, combining the auto- and cross-
correlations. Our full list of priors for all free parameters in the joint fit is given
in table 6.4 in appendix 6.8. In most cases we use a wide uniform prior, except
for the HCD length-scale (𝐿HCD) and RSD parameter (𝛽HCD), which where assign
Gaussian priors based on previous studies (Pérez-Ràfols et al., 2018; Adame et al.,
2025b). Our joint fits in both cases have an effective redshift z ∼ 2.3. We compute
our full-shape model using the Vega8 library, which also contains a set of analysis
tools. For the auto- and cross-correlation fits, we use the Vega interface for Iminuit,
which performs a fast 𝜒2 minimisation. For the joint correlations we use the nested

7The line-of-sight smoothing due to limited simulation grid size.
8https://github.com/andreicuceu/vega
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sampler Polychord9 (Handley et al., 2015) to sample the posterior space of our
parameters. The latter is slower, but is able to capture any non-Gaussianity in our
posterior space, and gives better error estimates than a 𝜒2 minimisation.

In figure 6.9 we present the posteriors of𝜙, 𝛼, 𝜙s, 𝑓 𝜎8, from nested sampler runs
on the joint correlation function for both the uncontaminated and contaminated
datasets. For the latter we include two sets of contours, for runs including (red
dashed) and not including (blue solid) the redshift errors model presented in this
paper. We first note that the errors on these differences are very small, because
we are analysing the stack of 100 DESI year-1 mocks. Later, when looking at the
full set of results in table 6.2, we will compare our results to the precision of DESI
DR1 (Cuceu et al., 2025a). We also note that the uncontaminated contours are
slightly shifted from our fiducial cosmology (Planck Collaboration et al., 2020),
but we will not discuss this here since we are specifically concerned about the
impact of redshift errors (shift from green to blue). In appendix 6.8, we show the
full triangle plot of our joint correlation run, and discuss what effect our model
has on other nuisance parameters. We see that, in general, the shifts introduced
by continuum redshift errors are small compared to the precision of DESI DR1. In
this paper, we consider any shift greater than 𝜎DR1/3 to be significant, in-line with
the requirements of Adame et al., 2025b. It should be noted however, that the shift
we refer to here is only due to the impact of continuum redshift errors. In other
words, this shift is not equivalent to a bias with respect to the fiducial cosmology
(dashed crosshairs in figure 6.9).

From figure 6.9, we see 𝜙p is more affected than 𝛼p, but the shift is still
minor. The smooth AP parameter (𝜙s) is most biased by continuum redshift errors
because it depends on the broadband component of our correlation functions,
which is more affected by contaminants in general. The observed shift may also
be smaller because of the conservative minimum separations we choose for the
auto- (25 ℎ−1Mpc) and cross-correlations (40 ℎ−1Mpc). A small but insignificant
shift occurs in the 𝑓 𝜎8 posterior, which is also sensitive to the broadband of the
correlation functions.

After introducing our model (red dashed contours), we see an impact on each
of our posteriors. Firstly, we successfully recover the BAO peak parameters (𝛼p

and 𝜙p) from the uncontaminated case. This result shows that our model can
be used to correct for continuum redshift errors on BAO measurements, without
considering a small-scale correction (e.g. equation 6.33).

The shift introduced by continuum redshift errors on 𝜙s is reduced significantly
9https://github.com/PolyChord/PolyChordLite
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Figure 6.9: Full-shape posteriors from fits to a stack of 100 DESI DR1 mocks.
We compare fit results from an uncontaminated (without redshift errors) dataset
(green shaded), to fits on a contaminated dataset with (red dashed) and without
our model (blue solid). Our fiducial cosmology is also indicated with black dashed
crosshairs.
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upon introduction of our model, but still differs slightly from the uncontaminated
case. As discussed in section 6.4, our model does not capture the redshift error
contamination present at ∼ 25 ℎ−1Mpc, which is responsible for the remainder of
the shift. The 𝑓 𝜎8 constraint is shifted very marginally further from the uncon-
taminated case when using our model, towards the fiducial value (black dashed
crosshairs). Indeed, it seems that all of our posteriors are shifted marginally
towards the fiducial value, which suggests our new model is capturing some im-
perfections in the existing model. However, as we will show in appendix 6.8, our
model parameters are not correlated with the cosmological parameters of interest,
thus we are fitting for some other "nuisance" effect. The shift in f𝜎8 is still small
and consistent with the uncontaminated case to within 1-sigma.

In table 6.2 we show the differences in the cosmological parameters of our full-
shape model, between analyses on uncontaminated and contaminated mocks. The
columns under "+Model" give the same differences after adding our models of the
contamination (section 6.4) to the full-shape fits. We ignore nuisance parameters
constraints, except those of the model introduced in this paper, which we show
in table 6.3. As noted earlier, we are analysing the stack of 100 DESI DR1 mocks
with high signal-to-noise. For that reason, we include the projected precision of
the DESI year-1 full-shape analyses on data in the final column of the table (see
Cuceu et al., 2025a).

The shift on 𝛼p (isotropic BAO parameter, equation 6.6) is never more than
∼ 10% of the DR1 68% confidence level (0.1𝜎DR1). For 𝜙p (AP effect on the BAO
peak, section 6.2.4) and the growth-rate, we also see shifts of ∼ 0.1𝜎DR1 in the joint
fit. For each of the latter 3 parameters, the shifts introduced by redshift errors are
notably consistent with zero to ∼ 1𝜎. However, the shift on 𝜙s is 0.44(±0.13)𝜎DR1,
which is larger than the 𝜎DR1/3 criterion we set earlier. Due to large computing
time, errors on these shifts are estimated from the stack of mocks, rather than
the distribution of shifts across the 100 individual mocks. This approximation is
justified because the shift is systematic in nature, and we are using the same mock
realisations on both sides of the comparison, so the impact of noise is minimised.

While we have only included DESI DR1 projections, it is important to note
that the relative sizes of the shifts shown here will increase significantly for
the DESI DR2 and future datasets. The DR2 constraints for example should be
approximately ∼40% tighter than DR1, making the 𝜙s shift ∼ 0.7𝜎DR2. It is also
important to stress that this shift is not a bias with respect to the fiducial cosmology,
rather it characterises the impact of a single contaminant. It may be the case that
parametrising the AP effect over the full correlation function instead of the peak
and broadband components separately, as is done in Cuceu et al., 2025a, reduces
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the impact of redshift errors.
The next 3 columns (+ model) show the same differences as the first 3, but in-

cluding the continuum redshift errors model. For the peak component parameters
(𝛼p, 𝜙p), our model is very successful in removing the bias for all 3 fit cases. For
𝜙s, our model successfully reduces the bias in the joint case to 0.19(±0.13)𝜎DR1,
now consistent with zero to 1.5𝜎. Our model has almost no impact on 𝑓 𝜎8, but the
shift is small ∼ 0.1𝜎DR1 and consistent with zero to ∼1𝜎. The parameter values of
our model constrained in the analysis are shown in the section below.

As previously mentioned, we have a single set of parameters controlling the
shape of 𝛾: 𝜎cont, 𝐴auto

cont (autocorrelation amplitude) and 𝐴cross
cont (cross-correlation

amplitude), which have values given in table 6.3. In each case we are able to
recover the input redshift error (400 kms−1) to within a 1𝜎 confidence interval, and
have strong detections of the other 3 parameters. The cross-correlation amplitude
parameter is consistent between the cross and joint cases; however, this is not true
for the autocorrelation amplitude. The tension between the auto and joint cases
may reflect the incompleteness of the model at small-scales. For each of these
parameters we apply wide uniform priors, shown in table 6.4 with the rest of the
parameters in the joint fit.

The 𝜒2 probabilities of the analyses both with and without our model are
very low. This is expected, since we are fitting an extremely high signal-to-noise
dataset with a linear theory model (section 6.2.5) that is suboptimal. Furthermore,
it has been shown in Cuceu et al., 2025a that our model is suitable for at least the
level of precision of DESI DR1. We see a large improvement in 𝜒2 value when
using our model in the autocorrelation (Δ𝜒2 = 655, 1564 bins, 15 parameters), the
cross-correlation (Δ𝜒2 = 726, 3030 bins, 16 parameters) and the joint (Δ𝜒2 = 970,
4594 bins, 22 parameters) correlation runs.

6.6 Discussion

In the previous section, we showed and discussed the results of fits to synthetic
data sets with the model introduced in this paper. In section 6.6.1 we will discuss
the application of this model to real data, and highlight potential differences
with the synthetic datasets we use. We will also show in section 6.6.2, that the
effect of continuum redshift errors can be mitigated by removing pairs where the
quasar autocorrelation (for contamination in the Ly𝛼-quasar cross-correlation) or
the Ly𝛼-quasar cross-correlation (for contamination in the Ly𝛼 autocorrelation) is
large.
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Parameter Contaminated fit + Model 𝜎Y1
auto cross joint auto cross joint

103Δ𝛼p 0.1 ± 1.4 1 ± 1.2 0.8 ± 1.0 -0.2 ± 1.4 0.03 ± 1.2 -0.1 ± 0.9 11
103Δ𝜙p -8 ± 5 -4 ± 4 -4 ± 3 -5 ± 5 1 ± 4 -0.7 ± 3 38
103Δ𝜙s 4 ± 2.4 10 ± 4 -7 ± 2 3 ± 2.4 10 ± 3 -3 ± 2 16

102Δ 𝑓 𝜎8 - - 0.5 ± 0.5 - - 0.6 ± 0.5 6.2

Table 6.2: Differences in parameter constraints on fits to mocks with and without
redshift errors. We fit a stack of 100 DESI DR1 contaminated mocks, without
(Contaminated fit) and with (+ Model) our continuum redshift errors model, and
measure the shift with respect to the uncontaminated set. The last column shows
the projected errors (68% confidence interval) on the same parameters for the joint
constraints from DESI DR1 dataset. Note that the values presented here are shifts
introduced solely by continuum redshift errors, not the bias with respect to the
fiducial cosmology.

Parameter auto cross joint
𝜎cont[kms−1] 401 ± 19 406 ± 11 411 ± 18

𝐴auto
𝛾 -6.6 ± 0.4 - -8.9 ± 0.4

𝐴cross
𝛾 - -6.2 ± 0.3 -5.8 ± 0.2

Table 6.3: Constraints on free parameters of the model we introduce to capture
continuum redshift errors (section 6.4), from a fit to a stack of 100 DESI DR1
contaminated mocks. We show the constraints (section 6.4) for the auto-, cross- and
joint correlations separately. The input amount of redshift error was 𝜎 = 400 kms−1,
which we recover to within 1𝜎 in the each case.

6.6.1 Contamination on real data

In Youles et al., 2022, they found a strong dependence of ⟨𝛾⟩ on small-scale quasar
clustering. Likewise, we verify that ⟨𝛿𝛾⟩ has strong dependence on the small-
scale cross-correlation function. This is discussed further in section 6.6.2. We
also find that the quasar clustering in our lognormal mocks deviates more from
linear theory at small-scales than more realistic n-body simulations (see figure
6 of Youles et al., 2022), which is likely to increase the amount of contamination
relative to real data.

As mentioned in section 6.5.2, we use a measurement of the cross-correlation
in our ⟨𝛿𝛾⟩ model, and a measurement of the quasar autocorrelation in ⟨𝛾⟩. For
our mock datasets, where we have high signal-to-noise these measurements are
smooth, and are a better alternative to using a model of the respective correlation
functions. However, in e.g. DESI DR1, our correlations are relatively noisy and, in
the case of 𝜉̂𝑋 , and are themselves affected by redshift errors. It is also important
to note that because of our strong dependence on small-scale clustering, using a
linear model of 𝜉X in equation 6.22 (or 𝜉Q in equation 6.24) would likely be a bad
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approximation. For these reasons, we choose to leave a full analysis on data for
future work where we have a higher signal-to-noise data set, or a cross-correlation
(and quasar autocorrelation) model that is realistic at small-scales. At the level of
precision of DESI DR1, our model is also not yet necessary to perform an un-biased
analysis (i.e. Cuceu et al., 2025a).

Another contributing factor in our analysis realism is our synthetic spectra,
or specifically the quasar continua that we use. As we discussed in section 6.2,
we generate quasar spectral templates using convolutions of power law smooth
components, and emission lines (table 6.1) from the composite spectrum of BOSS
quasars (Harris et al., 2016; McGreer et al., 2021). We sample from a Gaussian
distribution of power law slopes, tuned to have mean and scatter that better
reflected the eBOSS DR16 dataset (Bourboux et al., 2020). Likewise, for the Ly𝛼
forest emission lines we sample from a Gaussian distribution of EWs, tuned on
BOSS DR9 data. The distribution of emission line EWs is particularly important
for our study, since the dominant contribution to the contamination is around the
positions of these. If, for example, the mean EW in our spectra was higher than
in e.g. DESI DR1, we would observe a higher level of contamination. Also, since
the scales of the spurious correlation features are directly related to the rest-frame
wavelength of the emission lines in our Ly𝛼 forests (see section 6.4.1), we are
sensitive to the relative strength of individual lines.

The way we introduce redshift errors into our spectra should also reflect the
magnitude and nature of redshift errors in real data. However, this is difficult to
emulate because there are several ways in which redshift errors are produced. We
add errors drawn from a Gaussian with dispersion 𝜎 = 400 kms−1 to each quasar
in our sample, representing errors which might occur in our redshift estimation
pipeline Redrock. However, as mentioned in section 6.1, it is also typical for
emission lines to shift away from the systemic redshift of the quasar. The level
of shift depends on the emission line, but is larger in general for broad, high-
ionisation lines like CIV, SiIV and CIII. Therefore, the level of error depends on
the set of lines being used to estimate the quasar redshift. There has been progress
made in this area recently, with work on improving spectral templates in DESI
(Brodzeller et al., 2023; Bault et al., 2025).

There is further complication due to the fact that the contaminating lines
within the Ly𝛼 forest are high-ionisation. If these are strongly correlated with the
high-ionisation lines used to estimate quasar redshift, then there would be little
impact on the mean continuum. The latter point requires further studies like the
one of Shen et al., 2016; Brodzeller et al., 2023; Bault et al., 2025, but is difficult
in practice because Ly𝛼 forest lines are less prominent, and visible at a higher
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redshift (𝑧 ≳ 2.1). One could improve the way we add redshift errors to mocks
using these studies to input typical relative line shifts into our spectra, and use a
redshift estimator (i.e. Redrock) to estimate our redshifts.

6.6.2 Mitigating contamination in real data

Youles et al., 2022 identified that the level of redshift error contamination in the
cross-correlation between Ly𝛼 and quasars, depends on the correlation between
the host quasar of the forest and the correlating quasar. This correlation is larger
for neighbouring pairs of quasars, and avoiding these configurations significantly
reduces the contamination. Here we extend this further by explicitly removing
Ly𝛼-quasar pairs where the forest host-quasar and correlating quasar are separated
by less than a given separation. The situation is similar for the Ly𝛼 autocorrelation,
except that, as we showed in section 6.4.2, the contamination is now dependent
on the Ly𝛼-quasar cross-correlation.

The result of removing contributions to our model from pairs where the host
quasar of a Ly𝛼 pixel and the correlating quasar are separated by less than 𝑟q, is
shown in figure 6.10 (bottom). We choose two cuts at 5 ℎ−1Mpc and 10 ℎ−1Mpc,
which removes only ∼ 0.1 − 0.3% of our total number of pairs, but ∼ 10% in the
first 5 transverse bins (up to 𝑟⊥ ∼ 20 ℎ−1Mpc). From figure 6.10, we see that by
10 ℎ−1Mpc, the contamination is effectively negligible.

In the top panel of figure 6.10 we show an analogous test with the contamination
in the Ly𝛼 autocorrelation. Here we remove pairs where the host quasar of one
forest is separated from the correlating pixel in the other forest by less than
𝑟X = 5, 10 ℎ−1Mpc. In this case, we see a similar same level of success in removing
the contamination. The fraction of correlating pairs that is removed in this test is
also sub-percent level overall, but ∼ 10% in the most line-of-sight bins.

These tests were undertaken in Casas et al., 2025; DESI Collaboration et al.,
2025b and shown to have very little impact on the precision of BAO constraints,
where the most line-of-sight bins are at much smaller separation than the BAO
feature. However, there was a significant impact on the Ly𝛼 bias, which may
suggest this approach is not suitable for full-shape analyses. We leave this to be
studied in future work, as a possible alternative to the model we present in this
paper.
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Figure 6.10: (Top) the contamination in the Ly𝛼 autocorrelation introduced by
redshift continuum errors and our model of it (black solid). Also plotted is the same
model evaluated only for separations 𝑟X greater than 5 ℎ−1Mpc (blue dashed) and
10 ℎ−1Mpc (green dotted), where 𝑟X is the separation between one pixel and the
host quasar of the other pixel. (Bottom) continuum redshift errors contamination
in the Ly𝛼-quasar cross-correlation, over-plotted with the model of the same
contamination. The model is evaluated with the same cuts as the autocorrelation,
but with 𝑟q now referring to the separation between a correlating quasar and the
host quasar of the correlating Ly𝛼 forest pixel. In both cases we have used the
small-scale correction of appendix 6.9.
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6.7 Summary

Random errors in our quasar redshift measurements smooth the mean continuum
used to estimate the Ly𝛼 flux transmission field. This smoothing gives rise to
spurious features across the length of the Ly𝛼 forest, which in-turn distort the
full-shape of the Ly𝛼 autocorrelation and its cross-correlation with quasars.

In this paper we presented a model of these spurious correlations for the
Ly𝛼 autocorrelation function, building upon work in Youles et al., 2022, where
they presented an equivalent model for the Ly𝛼-quasar cross-correlation. We
then created a model for the distortion as a function of rest-frame wavelength
(𝛾(𝜆rf , 𝜎cont)), and introduced three new parameters to our standard full-shape
model. These control the amount of smoothing introduced by redshift errors
(𝜎cont), and the amplitude of the effect in the auto- (𝐴auto

𝛾 ) and cross-correlation
functions (𝐴cross

𝛾 ).
We show using a high signal-to-noise synthetic dataset that continuum redshift

errors shift the measurements of the growth rate ( 𝑓 𝜎8), isotropic BAO parameter
(𝛼p), anisotropic BAO parameter (𝜙p) and anisotropic broadband parameter (𝜙s)
to varying degrees, with respect to a dataset which does not contain redshift errors.
At the level of precision of DESI DR1, this shift is relatively minor in the first 3
parameters (∼10%). However, we find that 𝜙s is shifted from the uncontaminated
dataset (without redshift errors) value by 0.44(±0.13)𝜎DR1, where 𝜎DR1 is projected
the 68% confidence region of the DESI DR1 constraint. Note that this relative
shift will increase as analyses on future datasets (e.g. DESI DR2) improve the
constraining power on these parameters. We demonstrated that our model reduces
the shift introduced to 𝜙s by ∼ 60%, and completely removes any shift on 𝛼p and
𝜙p. We also recover to within 1𝜎 the input dispersion of the Gaussian distribution
of redshift errors we add (400 kms−1), and strongly detect each of the amplitude
parameters of the model.

On real data, one should use models of the Ly𝛼-quasar cross-correlation and the
quasar autocorrelation as inputs for the redshift errors model in the autocorrelation
(⟨𝛿𝛾⟩) and the cross-correlation (⟨𝛾⟩) respectively. This is because measurements
of these functions are noisy compared to the high signal-to-noise stack of mocks
we used throughout this work. We also show that continuum redshift error
contamination could be mitigated in real data by removing pairs in the cross-
correlation where the quasar autocorrelation is strongest, and removing pairs in
the autocorrelation where the cross-correlation is strongest. In section 6.6.2, we
showed that removing pairs where 𝑟q, 𝑟X

10< 10 ℎ−1Mpc is enough to make ⟨𝛾⟩
10The separation between quasars in the quasar autocorrelation, and Ly𝛼 pixels and quasars in
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and ⟨𝛿𝛾⟩ negligible. This corresponds to ∼ 0.3% of total correlating pairs, but
∼ 10% of the most line-of-sight (up to 𝑟⊥ ∼ 20 ℎ−1Mpc) pairs, meaning this cut
may be suitable for removing the effect of redshift errors on BAO constraints, but
not for full-shape analyses.

6.8 Appendix: full model results

In section 6.5 we showed the posteriors of our set of cosmological parameters from
nested sampler runs, for three different cases: uncontaminated (no redshift con-
tinuum errors, baseline model), contaminated (baseline model) and contaminated
(baseline + redshift errors model). We showed that the model introduced in this
paper (see section 6.4) successfully removed the effect of continuum redshift errors
on the BAO peak parameters (𝜙p,𝛼p). It also removes the majority of the shift on
𝜙s, but has little impact on 𝑓 𝜎8.

In table 6.4, we show the priors on parameters in the joint fit. In the first section,
we show the cosmological parameters of interest, and in the second we show the
nuisance parameters of the baseline model. In the final section, we show the
parameters introduced in this paper to capture the effect of continuum redshift
errors. For most of the parameters, we choose conservative uniform priors, except
in the case of 𝛽HCD and 𝐿HCD, where we follow Adame et al., 2025b and place
more informative priors based on HCD studies to improve the performance of the
sampler. The priors placed on parameters in our model are physically motivated,
i.e. we can’t have negative velocity dispersions, or positive values for the amplitude
of the effect (see section 6.4). The value of 𝜎cont directly reflects the size of the
redshift errors in our dataset, meaning the upper bound of 2000 kms−1 would be
very extreme.

In figure 6.11, we show the triangle plot of posteriors for each parameter
in our sample runs. Looking first at the parameters introduced in this paper
(𝐴cross

cont , 𝐴
auto
cont , 𝜎cont), we see that they are mostly uncorrelated with all of the other

parameters. There is a correlation between 𝜎cont and the amplitude parameters
(𝐴cross

cont , 𝐴
auto
cont), due to the fact that broadening the (Gaussian) emission line profiles

in the Ly𝛼 forest also reduces their amplitude. We can also see that while our
model successfully reduces the bias on the key cosmological parameters, it often
fails to recover the value of other nuisance parameters in the uncontaminated
case, and in one case (𝑏SiII(1206)), is significantly more discrepant than the fit to
the contaminated dataset without our model. One of the main reasons for both
the cross-correlation respectively.
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Figure 6.11: Posteriors of all free parameters in our sampler runs on the joint
auto+cross correlation function, measured from a stack of 100 DESI DR1 mocks.
The uncontaminated (without continuum redshift errors) run is shown in green,
and the contaminated runs with and without the redshift errors model are shown
in dark red and blue respectively. We exclude the smoothing parameters 𝜎∥ and
𝜎⊥, since they marginalise the effect of grid size in our simulated data sets, and
are not relevant to real data.
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Parameter Prior
𝛼, 𝜙* 𝒰 [0.01,2]
𝑓 𝜎8 𝒰 [0,2]
𝑏𝛼 𝒰 [-2, 0]
𝛽𝛼 𝒰 [0, 5]
𝑏q 𝒰 [0, 10]
𝜎v 𝒰 [0, 15]
Δ𝑟∥ 𝒰 [-3, 3]
𝑏HCD 𝒰 [-0.2, 0]
𝛽HCD 𝒩 [0.5, 0.09]
𝐿HCD 𝒩 [5, 1]
𝑏SiII(1190) 𝒰 [-0.02, 0.02]
𝑏SiII(1193) 𝒰 [-0.02, 0.02]
𝑏SiIII(1207) 𝒰 [-0.02, 0.02]
𝑏SiII(1260) 𝒰 [-0.02, 0.02]

𝜎∥ 𝒰 [0, 10]
𝜎⊥ 𝒰 [0, 10]
𝜎cont 𝒰 [0, 2e3]
𝐴auto

cont 𝒰 [-50,0]
𝐴cross

cont 𝒰 [-50,0]

Table 6.4: Priors on free parameters used in the joint fits to our stack of 100 DESI
DR1 contaminated mocks. Recall that there are two 𝛼 and two 𝜙 parameters,
corresponding to the BAO peak and broadband of the correlation function.

of these issues is the large parameter space with, in some cases, high levels of
degeneracy. These differences in nuisance parameters result in the very marginal
over-fitting we see in figure 6.9, but really only serve to indicate that there are
some systematic signals that we do not account for with our previous baseline.

6.9 Appendix: mean continuum expansion

For a forest of a given quasar q, the delta field is evaluated at 𝜆 in the observed
frame. The mean continuum 𝐶 is a function of rest-frame, which we can write as
a function of 𝜆 and 𝑧q as:

1 + 𝛿(𝜆) = 𝑓 (𝜆)

𝐶̂( 𝜆
1+𝑧̂q

)(𝑎q + 𝑏qΛ)
, (6.26)

where Λ is a function of log𝜆 given in equation 6.1, and 𝐶̂ is the measured mean
continuum in the presence of redshift errors. We can see from this equation that
𝛿 will be contaminated by the smoothed 𝐶̂, but also that the conversion from 𝜆rf
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to 𝜆 will be incorrect, given we measure a quasar redshift that has some error,
𝑧̂q = 𝑧q + 𝜖. We can therefore expand the mean continuum about the true redshift
as:

𝐶̂(𝜆̂rf) = 𝐶̂(𝜆rf) + 𝜖
𝑑𝐶̂

𝑑𝑧q
+ 𝜖2

2
𝑑2𝐶̂

𝑑𝑧2
q
+ ... (6.27)

Now, we re-write the differential with redshift as:

𝑑𝐶̂

𝑑𝑧q
=
𝑑𝜆rf

𝑑𝑧q

𝑑𝐶̂

𝑑𝜆rf = − 𝜆rf

1 + 𝑧q

𝑑𝐶̂

𝑑𝜆rf . (6.28)

Substituting equations 6.27 and 6.28 into equation 6.9, we can derive a new
expression for our measured transmission field 𝛿̂q:

𝛿̂q = 𝛿q − 𝛾 + 𝛾z, (6.29)

where as usual we ignore 2nd order terms, and

𝛾z =
𝜆rf𝜖

𝐶(1 + 𝑧q)
𝑑𝐶̂

𝑑𝜆rf . (6.30)

Now, as we did in section 6.4, we propagate our expression for our measured delta
through to the cross- and autocorrelation functions:

⟨𝛿̂⟩ = ⟨𝛿⟩ − ⟨𝛾⟩ + ⟨𝛾z⟩ (6.31)

⟨𝛿̂𝛿̂⟩ = ⟨𝛿𝛿⟩ − 2⟨𝛿𝛾⟩ + 2⟨𝛿𝛾z⟩ − 2⟨𝛾𝛾z⟩ + ⟨𝛾𝛾⟩ + ⟨𝛾z𝛾z⟩. (6.32)

Modelling the additional terms analytically may prove to be difficult, but as we did
for figure 6.4, we can use mock datasets to measure each term in equation 6.31. In
figure 6.12, From this measurement, we see that only ⟨𝛿𝛾z⟩ is non-negligible, and
that this is roughly constant across 𝑟∥ for the usual range of 𝑟⊥(≲ 20 ℎ−1Mpc). An
explanation for the trough feature ∼ 25 ℎ−1Mpc is therefore still required, where
perhaps higher-order terms cannot be ignored.
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Figure 6.12: Contaminating terms in the Ly𝛼 autocorrelation, due to rest-frame
wavelength grids shifts in the presence of quasar redshift errors. 𝛾z is defined
in equation 6.30, and is the result of expanding the measured mean continuum
𝐶̂ about small redshift errors 𝜖. The contamination in the first transverse bin is
shown in grey, as a function of line-of-sight separation (𝑟∥).

6.9.1 Small-scale contamination model

Here, we try to model the 25 ℎ−1Mpc contaminating trough feature of our fiducial
analysis (see e.g. figure 6.4) empirically. We do this by adding an extra term to the
original 𝛾 function (equation 6.9):

𝛾(𝜆rf) = 𝛾0(𝜆rf , 𝜎cont) +
𝑎1

(𝜆rf − 𝜆rf
1 )2

, (6.33)

where the function is offset by 𝜆rf
1 = 1207.6 Å, and 𝛾0 is the function we model in

the previous section. This value was constrained in a direct fit to the difference
in the Ly𝛼 autocorrelation with and without continuum redshift errors, together
with 𝑎1, the redshift error parameter (𝜎cont, section 6.4.2) and a free amplitude.
Note this function diverges for 𝜆rf = 𝜆rf

1 = 1207.6 Å, but this is not an issue since
in our analysis we always have 𝜆rf < 𝜆rf

1 .
We show in figure 6.8 that in a direct fit to the redshift error contamination,

our additional correction captures the trough feature very well. However, when
performing a full-shape fit to our auto- and cross-correlations we find that 𝑎1 takes
much larger than expected values 11. This consequently biased our measurements

11Our expected value of 𝑎1 is computed in a direct fit to the contamination, where the only free
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of 𝜙s, so it was decided to proceed for now without the additional correction.

parameters are 𝜎cont, 𝐴cont and 𝑎1.
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7

Lyman-𝛼 BAO forecasts in
DESI-II

The DESI-II survey is a proposed successor to the DESI survey, due to start its
6-year observing programme in 2029. DESI operations will extend for three
years beyond the nominal DESI observing period (2021-2026), in a programme
called DESI-extension (DESI-ext; 2026-2029). In this work we will mostly make
comparisons between the nominal DESI survey and DESI-II.

DESI-II will provide a complementary dataset to DESI, by observing 5000 deg2

of sky for three new surveys: the high-redshift survey, high-density survey and
the dark matter survey. The latter two surveys focus on the Universe at 𝑧 ≲ 1 and
the local group respectively, allowing new tests of gravity and cosmic structure at
fine detail, as well as studies of the nature of dark matter halos and constraints on
dark matter physics. The high-redshift survey, which we will focus on here, is a
study of the Universe at 𝑧 ≳ 2 which will target more than three million Lyman-𝛼
emitters (LAEs) and Lyman break galaxies (LBGs). These new targets will provide
better BAO measurements than DESI quasars at even higher redshifts, giving us
sub-percent constraints on various dark energy models. They will also allow us
to study in even greater detail primordial non-Gaussianities and neutrino masses.
In addition to the new targets, DESI-II will also observe quasars to greater depth
than DESI, increasing the target density from 60 to ∼ 100 deg−2.

LBGs can be used both as tracers in clustering measurements, and as sources
of Ly𝛼 absorption from which we can perform clustering measurements. LAEs on
the other hand are only useable as tracers, because they have very faint and often
unobservable continua. In this work we create a Fisher forecast to calculate the
expected level precision on the transverse and parallel BAO scaling parameters,
𝛼⊥ and 𝛼∥1, attainable from these tracers and quasars.

1Equivalent to forecasting the precision on 𝐷𝑀/𝑟𝑑 and 𝐻(𝑧)𝑟𝑑 respectively.
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We forecast BAO from several measurements, including the auto-power spec-
trum of Ly𝛼 fluctuations from LBGs (hereby Ly𝛼(LBG)auto), the Ly𝛼(LBG)-LBG
cross-power spectrum (Ly𝛼(LBG)cross), the Ly𝛼(LBG)-LAE cross-power spectrum
(Ly𝛼(LBG)xLAE), and the LBG-LBG auto-power (LBGauto) and LAE-LAE auto-
power (LAEauto) spectra. We also include the cross-power spectrum of Ly𝛼 fluctua-
tions in quasar spectra with LBGs (Ly𝛼(QSO)xLBG) and LAEs (Ly𝛼(QSO)xLAE), to
take advantage of the higher forest SNR in quasars, and the significantly larger
target density of LBGs and LAEs. Note that the Ly𝛼 forests from quasars are from
the combined DESI + DESI-II projections.

We first begin by outlining the method by which we perform our forecast in
section 7.1, introducing the Fisher formalism, and the covariance matrices used to
estimate it. Then in section 7.2 we discuss the set of survey conditions and results
of our DESI-II forecast.

7.1 Fisher forecast

The Fisher information matrix 𝐹𝑖 𝑗 is defined in terms of the log-likelihood (ℒ) of
parameters 𝜃 as:

𝐹𝑖 𝑗 =

〈
𝜕2ℒ

𝜕𝜃𝑖𝜕𝜃𝑗

〉
. (7.1)

If our likelihood is Gaussian, we can also derive an expression for this in terms of
the covariance matrix (Tegmark, 1997):

𝐹𝑖 𝑗 =
1
2Tr

(
𝐶−1 𝜕𝐶

𝜕𝜃𝑖
𝐶−1 𝜕𝐶

𝜕𝜃𝑗

)
, (7.2)

where 𝐶𝑖 𝑗(𝜃) = ⟨𝛿𝑖𝛿 𝑗⟩, for a Gaussian distributed data vector 𝛿.
The Cramer-Rao limit (Rao, 1945) gives the lower bound on the variance of any

unbiased estimator 𝜃̂ of a parameter 𝜃. This limit can be equivalently expressed
in terms of the inverse of the Fisher matrix:

𝜎𝑖 ≥ (𝐹−1)𝑖𝑖 . (7.3)

Thus, using this relation we can determine the best possible constraints on a set
of cosmological parameters given any covariance matrix and its dependence on
said parameters. The question we will address in the following sections is how
we generate 𝐶(𝜃) for a simulated Lyman-𝛼 (Ly𝛼) survey.
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7.1.1 Ly𝛼 power

We begin this section by outlining our overall aims. To compute errors on BAO
(𝛼∥ and 𝛼⊥) we need to construct a Fisher matrix for a specific survey, which
in-turn requires a covariance matrix and its derivates with 𝛼∥ and 𝛼⊥. We could in
principle choose the data vectors of our covariance matrix to be Ly𝛼 fluctuations
(𝛿𝐹) in pixels of some width Δ𝜆 (e.g. 0.8 Å, the DESI spectrograph pixelisation),
but this would have enormous dimensions due to the large number of pixels in our
survey. Thus, we follow previous analyses (Seo and Eisenstein, 2003; McDonald
and Eisenstein, 2007; McQuinn and White, 2011). and use summary statistics,
in particular the power spectrum of fluctuations, as our data vector. This is
computationally much less expensive and contains effectively the same amount
of information.

Thus we begin here, by deriving an expression forourobservedpowerspectrum
𝑃𝑇(k), which will contain signal from Ly𝛼 fluctuations, as well as shot noise and
spectral noise. It is convenient to begin in configuration space, defining our
observed flux fluctuations, then computing the correlation of these and finally the
power spectrum 𝑃𝑇(k) through a Fourier transform. We start with a weighted flux
transmission field:

𝛿(x) = 𝑤(x⊥)
𝑤

(𝛿𝐹(x) + 𝛿𝑁 (x)) , (7.4)

where 𝛿𝐹(x) = 𝛿𝐹(𝑥∥, x⊥) is the flux-transmission field (equation 5.1), 𝛿𝑁 is spectral
noise, and 𝑤 is the mean weight. Our weights 𝑤(x⊥) will take into account quasar
brightness, which in-turn determines spectral noise, and we assume they are only
dependent on transverse separation. This is akin to assuming that our weights
are are completely correlated within forests - along the line-of-sight (LOS) - and
completely uncorrelated between forests, and that spectral noise is the same at
every point in the same forest. 𝑤(x⊥) is fully defined over our survey volume,
where any location not probed by a quasar LOS has zero weight.

Now, the covariance of the field in equation 7.4 is defined as:

⟨𝛿(x)𝛿(x′)⟩ =
〈
𝑤(x⊥)𝑤(x′⊥)

𝑤
2 (𝛿𝐹(x)𝛿𝐹(x′) + 𝛿𝐹(x)𝛿𝑁 (x′) + 𝛿𝐹(x′)𝛿𝑁 (x) + 𝛿𝑁 (x)𝛿𝑁 (x′))

〉
.

=

〈
𝑤(x⊥)𝑤(x′⊥)

𝑤
2 (𝛿𝐹(x)𝛿𝐹(x′) + 𝛿𝑁 (x)𝛿𝑁 (x′))

〉
(7.5)

where we have removed the cross-terms, which vanish since the flux transmission
field (𝛿𝐹) and noise field (𝛿𝑁 ) are independent. Taking first the part of equation
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7.5 which includes 𝛿𝐹, we have:

〈
𝑤(x⊥)𝑤(x′⊥)

𝑤
2 𝛿𝐹(x)𝛿𝐹(x′)

〉
= ⟨(1 + 𝛿𝑤(x⊥))(1 + 𝛿𝑤(x′⊥))𝛿𝐹(x)𝛿𝐹(x′)⟩

= 𝜉𝐹(r) + ⟨𝛿𝑤(x⊥)𝛿𝑤(x′⊥)⟩ 𝜉𝐹(r) ,
(7.6)

where 𝜉𝐹(r) = ⟨𝛿𝐹(x)𝛿𝐹(x′)⟩, and 𝜉𝐹(r) is the Ly𝛼 autocorrelation function for
points separated r. We have also introduced the weight overdensity, defined as
𝛿𝑤(𝑥) = 𝑤(x⊥)/𝑤 − 1, such that ⟨𝛿𝑤⟩ = 0. Note that expectation values involving
𝛿𝑤 and 𝛿𝐹 separate, since they are uncorrelated.

Our weights are a white noise field (uncorrelated) in the transverse direction
(x⊥) and constant (degenerate) along the LOS, which means

〈
𝛿𝑤(x⊥)𝛿𝑤(x′⊥)

〉
=

𝑃⊥
𝑤𝛿

𝐷(x⊥ − x′⊥), where 𝛿𝐷 is the Dirac delta function and 𝑃⊥
𝑤 is a constant power

spectrum in the 2D plane of the sky (x⊥). In general, a discrete Gaussian white
noise field in 2-dimensions has power per mode 𝑃 = 𝜎2𝑠2, where 𝑠 is the angle of
one side of a pixel in the limit where 𝑠 → 0, and 𝜎2 is the pixel variance 2. Then,
we can write:

𝑃⊥
𝑤 = 𝜎2

𝑤𝑠
2 =

(
⟨𝑤2⟩
𝑤

2 − 1
)
𝑠2. (7.7)

.
and equation 7.6 becomes:〈

𝑤(x⊥)𝑤(x′⊥)
𝑤

2 𝛿𝐹(x)𝛿𝐹(x′)
〉
= 𝜉𝐹(r) + 𝑃⊥

𝑤𝛿
𝐷(x⊥ − x′⊥)𝜉𝐹(r). (7.8)

The last term in this equation is known as the "aliasing" term, and it arises due
to the fact that Ly𝛼 fluctuations only sample our 3D volume along the LOS. The
second part of equation 7.5 is the weighted noise correlation, which we write as:

𝜉eff
𝑁 (x⊥, x′⊥) =

〈
𝑤(x⊥)𝑤(x′⊥)

𝑤
2 𝛿𝑁 (x⊥)𝛿𝑁 (x′⊥)

〉
, (7.9)

where now weights are dependent on noise, so the term in brackets does not
separate. We have also written the spectral noise purely in terms of transverse
location, since for simplicity we are assuming it is the same at each point along
the LOS 3. Both our weights and noise should be uncorrelated in the transverse
direction, leading to two scenarios:

2Since all 𝑘-modes in a white noise field are independent, the covariance is diagonal
3Note that as a noise field arising from instrumental effects, we are no longer assuming

statistical homogeneity
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𝜉eff
𝑁 (x⊥, x′⊥) =


0 , x⊥ ≠ x⊥〈
𝑤2(x⊥)
𝑤2 𝛿2(x⊥)

〉
, x⊥ = x⊥ .

(7.10)

Substituting the expressions from equations 7.8 and 7.9 into leaves us with:

⟨𝛿(x)𝛿(x′)⟩ = 𝜉𝐹(r) + 𝑃⊥
𝑤𝛿

𝐷(x⊥ − x′⊥)𝜉𝐹(r) + 𝜉eff
𝑁 (x⊥, x′⊥) 𝛿𝐷(x − x′) , (7.11)

where have multiplied the weighted noise by the Dirac delta, to ensure the condi-
tions of equation 7.10 are met. At this point, we can move into Fourier space by
taking the transforming the equation:

〈
𝛿̃(k)𝛿̃∗(k′)

〉
=

∫
𝑑x 𝑑x′ 𝑒−𝑖k·x+𝑖k′·x′ [ 𝜉𝐹(x − x′) + 𝑃⊥

𝑤 𝛿𝐷(x⊥ − x′⊥) 𝜉𝐹(x − x′)

+ 𝜉eff
𝑁 (x⊥, x′⊥) 𝛿𝐷(x⊥ − x′⊥)

]
.

(7.12)

Using the fact that 𝛿(k) =
∫
𝛿(x)𝑒−𝑖kx 𝑑x and

〈
𝛿̃(k)𝛿̃∗(k′)

〉
= (2𝜋)3𝛿𝐷(k−k′)𝑃(k),

we have:

〈
𝛿̃(k)𝛿̃∗(k′)

〉
= (2𝜋)3𝛿𝐷(k − k′)𝑃𝐹(k) +

𝑃⊥
𝑤

∫
𝑑x⊥𝑑x′⊥𝑒−𝑖k⊥x⊥𝑒 𝑖k

′
⊥x′⊥

∫
𝑑𝑥∥𝑑𝑥

′
∥𝑒

−𝑖𝑘∥𝑥∥ 𝑒 𝑖𝑘
′
∥𝑥

′
∥ 𝜉𝐹(x − x′)𝛿𝐷(x⊥ − x′⊥)

+
∫

𝑑x⊥𝑑x′⊥𝑒−𝑖k⊥x⊥𝑒 𝑖k
′
⊥x′⊥

∫
𝑑𝑥∥𝑑𝑥

′
∥𝑒

−𝑖𝑘∥𝑥∥ 𝑒 𝑖𝑘
′
∥𝑥

′
∥ 𝜉eff

𝑁 (x⊥, x′⊥)𝛿𝐷(x⊥ − x′⊥) ,

(7.13)

where 𝑃𝐹(k) is the 3-dimensional Ly𝛼 forest power spectrum (P3D). Since we are
interested in BAO (linear regime), we use a simple Kaiser model (Kaiser, 1987):

𝑃𝐹(k, 𝑧) = 𝑏2
𝐹(𝑧) (1 + 𝛽𝐹(𝑧)𝜇2(k))2𝑃𝐿(𝑘, 𝑧). (7.14)

The linear matter power spectrum we use is computed using Planck 2018
cosmological results (Planck Collaboration et al., 2020) for a flat ΛCDM model. In
the aliasing (second) term, applying the Dirac delta collapses the integral to:

(2𝜋)2𝛿𝐷(k⊥ − k′
⊥)𝑃⊥

𝑤

∫
𝑑𝑥∥𝑑𝑥

′
∥𝑒

−𝑖𝑘∥𝑥∥ 𝑒 𝑖𝑘
′
∥𝑥

′
∥ 𝜉𝐹(𝑥∥ − 𝑥′∥) . (7.15)

Evaluating the LOS integral, we arrive at:

(2𝜋)3𝛿𝐷(k⊥ − k′
⊥) 𝛿𝐷(𝑘∥ − 𝑘′∥)𝑃

⊥
𝑤 𝑃

1D
𝐹 (𝑘∥) = (2𝜋)3𝛿𝐷(k − k′)𝑃⊥

𝑤 𝑃
1D
𝐹 (𝑘∥) , (7.16)
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where 𝑃1D
𝐹

is the 1-dimensional Ly𝛼 forest power spectrum (P1D), for which we
employ the empirical model of Palanque-Delabrouille et al., 2013. This fits the
observed Ly𝛼 fluctuations down to relatively small scales (∼ 2 × 10−2 km−1s), but
it is also suitable for our scales of interest (∼ 10−4 km−1s):

𝑃1D
𝐹 (𝑘∥) =

𝜋𝐴𝐹
𝑘∥

(
1 + 𝑧
1 + 𝑧0

)𝐵𝐹 (
𝑘∥
𝑘0

)3+𝑛𝐹+𝛼𝐹 ln
𝑘∥
𝑘0
+𝛽𝐹 ln 1+𝑧

1+𝑧0
. (7.17)

𝐴𝐹 is the amplitude of the P1D (in kms−1) at redshift 𝑧0, and pivot mode 𝑘0, equal to
3 and 0.009 km−1s respectively. 𝑛𝐹 and 𝛼𝐹 are the slope and curvature parameters,
and 𝐵𝐹 and 𝛽𝐹 govern the redshift evolution of the P1D. Note that this function is
also corrected such that it becomes flat at low-𝑘∥.

Using the same methodology as before, the final integral in equation 7.13
becomes (2𝜋)3𝛿𝐷(k − k′)𝑃eff

𝑁
, with:

𝑃eff
𝑁 = 𝑠2Δ𝜆𝑝

⟨𝑤2𝜎2
𝑁
⟩

𝑤
2 , (7.18)

where noise variance 𝜎2
𝑁
(x⊥) = ⟨𝛿2

𝑁
(x⊥)⟩, and the prefactor 𝑠2Δ𝜆𝑝 converts the

dimensionless noise variance per pixel into 3D power units. We reiterate that 𝑠 is
only used to strictly define our equations, and that it will cancel out in our final
expressions.

Although we have not written it explicitly here, we will show in section 7.1.2
that both 𝑃⊥

𝑤 and 𝑃eff
𝑁

depend on k through their dependence on the weights (see
equation 7.27). Our final expression for the measured Ly𝛼 power, 𝑃𝑇 , is then:

〈
𝛿̃(k)𝛿̃∗(k′)

〉
= (2𝜋)3𝛿𝐷(k − k′)

(
𝑃𝐹(k) + 𝑃⊥

𝑤𝑃
1D
𝐹 (𝑘∥) + 𝑃eff

𝑁

)
(7.19)

= (2𝜋)3𝛿𝐷(k − k′)𝑃𝑇(k) . (7.20)

7.1.2 Evaluating 𝑃eff
𝑁

and 𝑃⊥
𝑤

To estimate our observed Ly𝛼 power (equation 7.19), the last thing we need to do
is evaluate the aliasing term (specifically 𝑃⊥

𝑤 ) and noise term (𝑃eff
𝑁

) in equation 7.19.
Starting with the former (equation 7.7), our mean weights are defined in terms of
quasar magnitude:

𝑤 =

∫ 𝑚max

−∞
𝑑𝑚 𝑝(𝑚)𝑤(𝑚) = 𝐿𝐹 𝑠

2
∫ 𝑚max

−∞
𝑑𝑚

𝑑𝑛𝑞

𝑑𝑚
𝑤(𝑚) (7.21)

where 𝑚 is apparent magnitude and 𝐿𝐹 = 𝑐 ln 𝜆rf,max

𝜆rf,min is forest length in kms−1,
defined in terms of the rest-frame (𝜆rf) forest region. 𝑑𝑛𝑞/𝑑𝑚 is the quasar density
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per magnitude, and the probability of a quasar (of magnitude 𝑚) forest probing
a small volume of space is 𝑝(𝑚) = 𝐿𝐹 𝑠

2 𝑑𝑛𝑞
𝑑𝑚 . From the definition of 𝑃⊥

𝑤 (equation
7.7), we also need an expression for ⟨𝑤2⟩:

⟨𝑤2⟩ = 𝐿𝐹 𝑠
2
∫ 𝑚max

−∞
𝑑𝑚

𝑑𝑛𝑞

𝑑𝑚
𝑤2(𝑚). (7.22)

Combining the two equations above, with our definition of 𝑃⊥
𝑤 , gives:

𝑃⊥
𝑤 =

∫ 𝑚max

−∞ 𝑑𝑚
𝑑𝑛𝑞
𝑑𝑚 𝑤2(𝑚)

𝐿𝐹

[∫ 𝑚max

−∞ 𝑑𝑚
𝑑𝑛𝑞
𝑑𝑚 𝑤(𝑚)

]2 , (7.23)

in the limit where 𝑠 → 0. Going forward, we will call the term in brackets in the
denominator 𝐼1, and the term in the numerator 𝐼2, such that:

𝑃⊥
𝑤 =

𝐼2

𝐿𝐹𝐼
2
1
. (7.24)

These integrals isolate all parts of the covariance which contain all information
related to the quasar (and therefore Ly𝛼 forest pixel) distribution.

Our expression for the effective noise power (𝑃eff
𝑁

; equation 7.18) can also be
evaluated by expressing the weights and variance as functions of magnitude:

𝑃eff
𝑁 =

𝑠2Δ𝜆

𝑤
2

∫ 𝑚max

−∞
𝑑𝑚 𝜎2

𝑁 (𝑚) 𝐿𝐹 𝑠2 𝑑𝑛𝑞

𝑑𝑚
𝑤2(𝑚) . (7.25)

Introducing a new term 𝐼3 =
∫
𝑑𝑚 𝜎2

𝑁
(𝑚) 𝑑𝑛𝑞𝑑𝑚 𝑤2(𝑚), and substituting for 𝐼1 (=

𝑤/𝑠2𝐿𝐹), we arrive at:

𝑃eff
𝑁 =

Δ𝜆𝑝 𝐼3

𝐿𝐹𝐼
2
1
. (7.26)

To evaluate equations 7.26 and 7.24, all that remains to define are the weights
𝑤(𝑚) and the spectral variance 𝜎2(𝑚). For the former, we assume the Feldman,
Kaiser and Peacock (FKP) form:

𝑤FKP(𝑚) = 𝑃𝑆

𝑃𝑆 + 𝑃𝑁 (𝑚) , (7.27)

where 𝑃𝑆 is the signal power at kw = (𝑘𝑤 , 𝜇𝑤). Our weights are not very sensitive
to the mode (k𝑤) we choose to evaluate the signal power at, so we simply and
choose the central mode of our covariance, 𝑘 = 0.07 ℎMpc−1, 𝜇 = 0.5. The aliasing
term is not formally noise, since it comes from projected LSS, and is correlated
with real signal. Thus, we do not include it in the noise term, as we find that
down-weighting lines-of-sight with larger aliasing increases our variance.
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The noise power at magnitude 𝑚, denoted 𝑃𝑁 (𝑚(x)), combines contributions
from Poisson and spectral noise. We write it as:

𝑃𝑁 (𝑚) =
𝜎2
𝑁
(𝑚)
𝑛eff

3D
, (7.28)

where

𝑛eff
3D =

𝑤

𝑠2Δ𝜆
(7.29)

is the effective 3D Ly𝛼 pixel density. This is also equivalent to (removing depen-
dence on 𝑠) 𝐿𝐹𝐼1/Δ𝜆. Note that 𝑃𝑁 (𝑚) is an approximation of the effective noise
𝑃eff
𝑁

. For galaxies (either LBGs or quasars), we can write the noise power in an
analogous way:

𝑃𝑁 (𝑚) =
𝜎2
𝑔(𝑚)
𝑛g

=
𝑛𝑔

𝑛𝑔(𝑚)
1
𝑛𝑔

=
1

𝑛𝑔(𝑚) , (7.30)

where 𝑛gal is the mean galaxy density at magnitude𝑚 (our magnitude dependence
is equivalent to position dependence). In this case 𝜎2

𝑔 is just Poisson (shot) noise.
There is mutual dependence between the weights, and the factors 𝐼1 and 𝐼2,

therefore we must compute them iteratively. We begin by assuming an initial form
for the weights based on the 1D power:

𝑤init(𝑚) =
𝑃1D(𝑘∥)

𝑃1D(𝑘∥) + 𝜎2
𝑁
(𝑚)

. (7.31)

It is important to note that the final converged weights are not very sensitive to the
choice of initial weights. Once we have 𝑤init, we compute 𝐼1, 𝐼2 and 𝑃𝑁 (𝑚), then
𝑤(𝑚) as defined in equation 7.27. We repeat this latter process around 3 times,
until the values 𝑤(𝑚) have converged.

In figure 7.1 we show the relative contribution to the total power of each term,
for DESI-II LBG (left) and quasar (right) forests (see section 7.2 for a description
of the samples). We plot each term as a function of 𝑘, for 𝜇 = 0 (solid lines) and
𝜇 = 1 (dashed lines). First of all, we see that the effective noise (purple) is a
much larger contribution to 𝑃𝑇 for LBG forests - a consequence of the fact that
the SNR/Å for LBGs is relatively low. For quasars on the other hand, the aliasing
term - which depends strongly on target density - is the dominant contribution.
For 𝜇 = 1, we see the aliasing term start to fall off towards high 𝑘 (𝑘∥), as the P1D
signal power decreases. We can gain an intuition from this plot, without running
a full forecast, that the best way to increase BAO precision from LBG forests is to
increase exposure time (and SNR).
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Figure 7.1: The three components contributing to the total observed Ly𝛼 power
spectrum (𝑃𝑇): the 3D power (𝑃3D, blue), aliasing (green), and effective noise
(purple), shown forLBG forests (left) andquasar forests (right). Each term is plotted
as a function of 𝑘, for 𝜇 = 0 (solid lines) and 𝜇 = 1 (dashed lines). The relatively
lower SNR per Å in LBG forests leads to a larger effective noise contribution, while
for quasars, the aliasing term dominates.

Now that we have a clear way to compute the observed Ly𝛼 power, we will
move on to estimating our covariance matrix, and getting projections on BAO
parameters from the resulting Fisher matrix.

7.1.3 Covariance estimation

The general covariance of our measured power spectra is equal to:

𝐶𝑖 𝑗𝑛𝑚 = ⟨Δ𝑃𝑖 𝑗Δ𝑃𝑛𝑚⟩ =
2𝜋2

𝑉𝑠 𝑘2 𝑑𝑘 𝑑𝜇
(𝑃𝑖𝑚𝑃𝑗𝑛 + 𝑃𝑖𝑛𝑃𝑗𝑚) , (7.32)

where Δ𝑃𝑖 𝑗 = 𝑃̂𝑖 𝑗 −𝑃𝑖 𝑗 is the band power error, and 𝑖 , 𝑗 , 𝑛, 𝑚 are tracers of structure
in the same survey volume𝑉𝑠 . The prefactor 2𝜋2/𝑉𝑠 𝑘2 𝑑𝑘 𝑑𝜇 is equivalent to 1/𝑁𝑘 ,
where 𝑁𝑘 is the number of independent 𝑘 modes. For the Ly𝛼 forest covariance
(𝑖 = 𝑗 = 𝑛 = 𝑚), and Gaussian fluctuations 𝛿𝑘 , equation 7.32 reduces to:

𝐶𝐹(k) =
2𝑃2

𝑇
(k)

𝑁𝑘
. (7.33)

The observed power for point tracers has no aliasing term (𝑃⊥
𝑤𝑃

1𝐷
𝐹

), or depen-
dence on spectral noise, and can be approximated by (Tegmark, 1997):

𝐶g(k) ≈ 2
𝑃2

g(k)
𝑉𝑘𝑉eff(k)

, (7.34)

where 𝑉𝑘 = 𝑁𝑘 /𝑉𝑠 is the volume element of a 𝑘-mode, 𝑃g is the galaxy/quasar
power spectrum and
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𝑉eff,g(k) = 𝑉𝑠
𝑃g(k)

𝑃g(k) + 𝑛−1
g
. (7.35)

𝑛g is the mean galaxy/quasar number density. 𝑉eff,g is the effective volume used to
measure power, where modes at which 𝑛g𝑃(k) < 1 contribute only a small amount.
Note that for a high-density sample of galaxies where 𝑛𝑃 ≫ 1, the covariance
becomes solely dependent on the survey 𝑉𝑠 .

The Ly𝛼 forest covariance can also be written in terms of effective volume, as
is done in McQuinn and White, 2011. This is defined as:

𝑉eff,F(k) = 𝑉𝑠
𝑃F(k)

𝑃F(k) + 𝑃1D
𝐹

/𝑛eff
2D
, (7.36)

where they introduce the effective pixel density in 2D (in the plane of the sky):

1
𝑛eff

2D
= 𝑃⊥

𝑤 +
𝑃eff
𝑁

𝑃1D
𝐹

. (7.37)

The cross-power between point tracers and the Ly𝛼 forest, which we also wish
to forecast, has variance given by (McQuinn and White, 2011):

𝜎2
g x Ly𝛼 = 𝑃2

g x Ly𝛼(k) + 𝑃𝑇(k)(𝑃g(k) + 𝑛−1
g ) , (7.38)

where 𝑃g x Ly𝛼(k) = ⟨𝛿̃𝐹(k)𝛿̃g(k)⟩ is the galaxy/quasar-Ly𝛼 cross-power spectrum.
The cross-power is a complimentary measurement to the Ly𝛼 auto-power, as it
can break degeneracies between cosmological parameters (see section 6.5.1), and
in some cases be more constraining. Specifically, 𝑃g x Ly𝛼 is more sensitive to 𝑃𝐿(𝑘)
when (McQuinn and White, 2011):

𝑛g 𝑏
2
g ≥

𝑛eff
2D 𝑏

2
Ly𝛼

𝑃1D(𝑘∥)
. (7.39)

The spectral noise in the Ly𝛼 forests of LBGs is smaller compared with quasars.
We have already shown the affect of this on our total power contributions (figure
7.1), and in section 7.2 where we discuss our DESI-II forecast, we will show how
this affects the relative BAO errors from the auto- and cross-power spectra.

7.1.4 Estimating BAO

Now that we have all of the necessary components to evaluate the Fisher matrix
(equation 7.2), we can turn towards calculating projected BAO errors. For a large
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enough number of independent modes (𝑉𝑛𝑉eff ≫ 1), we can simplify expressions
for the Fisher matrix for both the Ly𝛼 forest and point tracers:

𝐹
Ly𝛼
𝑖 𝑗

=
𝑉𝑠

4𝜋2

∫ kmax

kmin

∫ 1

0

𝑘2 𝑑𝑘 𝑑𝜇

𝑃2
𝑇
(k)

𝜕𝑃𝐹(k)
𝜕𝜃𝑖

𝜕𝑃𝐹(k)
𝜕𝜃𝑗

, (7.40)

and

𝐹
g
𝑖 𝑗
=

1
4𝜋2

∫ kmax

kmin

∫ 1

0

𝑉eff(k) 𝑘2 𝑑𝑘 𝑑𝜇

𝑃2
g(k)

𝜕𝑃LBG(k)
𝜕𝜃𝑖

𝜕𝑃LBG(k)
𝜕𝜃𝑗

. (7.41)

Note that since the density field is real-valued, −k and +k are degenerate, so we
integrate across 0 < 𝜇 < 1 rather than −1 < 𝜇 < 1.

Next, we want to estimate the Fisher matrix for parameters 𝑖 , 𝑗 = 𝛼∥, 𝛼⊥. The
power spectra derivates in the above equations can be computed as follows:

𝜕𝑃

𝜕𝛼∥
=

𝜕𝑃

𝜕 log 𝑘′
𝜕 log 𝑘′

𝜕𝛼∥
(7.42)

=
1
𝑘′

𝜕𝑃

𝜕 log 𝑘′
𝜕𝑘′

𝜕𝛼∥
(7.43)

=
1
𝑘′

𝜕𝑃

𝜕 log 𝑘′
𝜕
(√

𝛼2
∥ 𝜇

2 + 𝛼2
⊥ (1 − 𝜇2)

)
𝜕𝛼∥

(7.44)

=
𝜕𝑃

𝜕 log 𝑘′
𝜇2 , (7.45)

where 𝑘′∥ = 𝛼∥ 𝑘∥ is the observed LOS wave number, shifted from the fiducial
cosmology by 𝛼∥. Note that to arrive at the final step in this equation, we set
𝛼∥ = 𝛼⊥ = 1, which is fine since we are running a forecast. Following the same
steps as equation 7.42 for the transverse BAO parameter, we get:

𝜕𝑃

𝜕𝛼⊥
=

𝜕𝑃

𝜕 log 𝑘′
(1 − 𝜇2) . (7.46)

Before estimating the variances of 𝛼∥ and 𝛼⊥ we must separate the peak and
broadband components of the linear matter power spectrum, to avoid including
the broadband signal in the summation of equations 7.40 and 7.41. We do this by
fitting a high-degree polynomial, such that:

𝑃𝐿(k) = 𝑃sm
𝐿 (k) + 𝑃

peak
𝐿

(k) exp

(
−
𝑘2
⊥Σ

2
⊥

2 −
𝑘2
∥Σ

2
∥

2

)
, (7.47)

where 𝑃sm
𝐿

(k) is the broadband component of 𝑃𝐿, and 𝑃peak
𝐿

(k) is the linear BAO
component, which appear as a series of wiggles. The factor multiplying the

115



CHAPTER 7. LYMAN-𝛼 BAO FORECASTS IN DESI-II

peak component accounts for non-linear smoothing of the BAO feature, where
Σ2
⊥,Σ

2
∥ = 3.26, 6.42 ℎ−1Mpc (Eisenstein et al., 2007).

In the computation of 𝐹𝑖 𝑗 , we sum over discrete bins 𝑑𝑘 and 𝑑𝜇, of width
0.001 ℎMpc−1 and 0.1 respectively. We choose 𝑘min = 0.01 ℎMpc−1 in the sum-
mation of 𝐹𝑖 𝑗 , a much smaller value than previous Ly𝛼 forecasts. In McQuinn
and White, 2011 for example, they choose 𝑘min = 0.1 ℎMpc−1, motivated by the
fact that below this value, 𝑃𝐹 is distorted by the continuum fitting procedure
in data (see section 6.2.2)4. However, we assume that the continuum distortion
contribution to the 1D power can be removed, using techniques developed for
BAO analyses of 3D Ly𝛼 correlations (Bautista et al., 2017; du Mas des Bourboux
et al., 2017).

At higher 𝑘, we start to become affected by non-linear processes, and as such
choose a limiting scale of 𝑘max = 0.5 ℎMpc−1 following DESI Collaboration et al.,
2024b. Additionally, the exponential correction in equation 7.47 should provide
more realistic results. In contrary, for measurements that include the broadband
signal (e.g. 𝑓 𝜎8), scales above ∼ 0.1 ℎMpc−1 been shown to give unrealistic
forecasts (Foroozan et al., 2021).

7.2 DESI-II forecast results

In this section we will forecast the high-redshift DESI-II survey, using LBGs and
quasars as tracers and sources of Ly𝛼 forest fluctuations, and LAEs as tracers
only. A version of this forecast was also included in the results section of Herrera-
Alcantar et al., 2025a, which gave measurements of Ly𝛼 clustering in LBGs and
LAEs in DESI, and prospects for DESI-II.

Starting from 2029, DESI-II will observe 5000 deg2 of sky, to a greater depth than
its predecessor. LBGs and LAEs will be observable up to a limiting magnitude of
∼ 24.5 (Payerne et al., 2025). We will also benefit from extensive imaging from the
LSST survey (Ivezić et al., 2019), which overlaps with the entire DESI-II footprint.
These depths, along with many other instrumental upgrades, should be able to
provide ∼ 1000 LBG and ∼ 1000 LAE targets per deg2. Furthermore, DESI-II
will provide a complete quasar catalogue up to 𝑟 ∼ 23.5, leading to an improved
Ly𝛼 quasar density (with respect to DESI) of 100 deg−2 at 𝑧 > 2.15. This choice
of redshift limit comes from DESI science requirements for Ly𝛼 quasars (DESI
Collaboration et al., 2016a) - in reality the Ly𝛼 forest is observable in quasars with
𝑧 ≳ 2.

4McDonald et al., 2005 found that at this limit, the power contributed by continuum distortions
(in the LOS) is < 1% of 𝑃𝐹 .
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Figure 7.2: Luminosity function (number per deg−2) of quasar (solid) and LBG
(dashed) targets in DESI-II as a function of r band magnitude, for 4 different
redshifts. For LAEs we assume the same distribution function of LBGs.

To run our Fisher forecast (detailed in section 7.1), we require these expected
total target densities, magnitude limits, and distributions with magnitude and
redshift for LBGs, LAEs and quasars (we work in deg−2(km/s)−1). Note that the
distributions (𝑑𝑛𝑞/𝑑𝑚; see e.g. equation 7.21) are dependent on redshift, although
we did not explicitly write it. In figure 7.2, we show the input distributions for
quasars (solid lines) and LBGs (dashed lines). Because we have limited LAE data,
we approximate their distribution as following that of our LBGs.

The quasar distributions are taken from preliminary DESI target selection
(Yèche et al., 2020), which give a total integrated density of 𝑛𝑞 ∼ 204 deg−2, or
𝑛𝑞 ∼ 50 deg−2 at 𝑧 > 2.15. To achieve the desired DESI-II Ly𝛼 quasar density
(100 deg−2 at 𝑧 > 2.15), we re-normalise the distributions of figure 7.2, multiplying
𝑑𝑛𝑞/𝑑𝑚 by 𝑛DESI−II

𝑞 (𝑧 > 2.15)/𝑛DESI
𝑞 (𝑧 > 2.15) ≈ 2. Note that this simple re-scaling

is not entirely realistic since most of the newly selected targets would come from
increasing the survey limiting magnitude, where forests generally have lower SNR.
Ideally, one would use an accurate quasar luminosity function (LF) which extends
to magnitude 𝑟 ∼ 23.5, to avoid underestimating our parameter variance.

The LBG (which we use also for LAEs) distribution in figure 7.2 is taken
from DESI measurements in the COSMOS field (Ruhlmann-Kleider et al., 2024;
Herrera-Alcantar et al., 2025a; Payerne et al., 2025), and has a total selected target
density of 𝑛LBG = 453 deg−2 across all redshifts (practically all of these targets
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Figure 7.3: SNR per Angstrom in the Ly𝛼 forest of DESI quasars, as a function of 𝑟
band magnitude, for 𝑧𝑞 = 2.5. Note that the SNRs peak around 4200Å due to the
Ly𝛼 emission line.

are at 𝑧 > 2.15). To re-scale this to the expected DESI-II density (1000 deg−2), we
multiply 𝑑𝑛LBG/𝑑𝑚 by 𝑛DESI−II

LBG /𝑛DESI
LBG ≈ 2.

To estimate the weights and covariance (see equation 7.25) of our Ly𝛼 forest sur-
vey, we will also need a function 𝜎(𝑚, 𝑧,𝜆) which gives pixel variance as a function
of tracer (quasar or LBG) magnitude and redshift, and observed wavelength (𝜆).
For Ly𝛼 quasars, we obtain this by simulating observations with 4000𝑠 of effective
exposure time on the DESI spectrograph, at a series of magnitudes and redshifts
across the full observed wavelength grid of the instrument (3600-9800 Å). The
result is shown in figure 7.3 for a quasar at 𝑧 ∼ 2.5 and selection of magnitudes.
The wavelength range shown is that over which we observe almost all of our
Ly𝛼 absorption. When computing our survey weights and covariance, we simply
interpolate onto this function.

For LBGs, we do not have access to such simulations, so we approximate that
each forest in our analysis has the same SNR per Angstrom. We use COSMOS
field measurements (Herrera-Alcantar et al., 2025a) with a minimum of 2 hours
exposure time, shown in figure 7.4, and get a mean SNR of 0.35 Å−1. This will
primarily impact the effective noise 𝑃eff

𝑁
(equation 7.25), which depends on pixel

noise. However, since the distribution of LBGs is strongly peaked around 𝑟 ∼ 24,
this should not bias us significantly.
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Figure 7.4: Measurements of SNR per Angstrom in the Ly𝛼 forest vs 𝑟 band
magnitude of Lyman break galaxies (LBGs), from DESI (Herrera-Alcantar et al.,
2025a). These were performed in the COSMOS field, and contain a total of ∼ 5000
forests. These SNRs are obtained from observations with a minimum of 2 hours
exposure time.

7.2.1 Computing the Fisher matrix

Now that we have all of the necessary inputs, we compute the weights, noise
terms, covariance and Fisher matrices for each tracer in our forecast, for a given
survey set-up, using the package lyaforecast5 and following the methodology
of section 7.1.

Firstly, we run our forecast for a redshift range between 𝑧 ∈ [2, 3.5], in 15
individual bins of width 𝑑𝑧 = 0.1. These are chosen to sample the quasar/galaxy
distributions finely enough, such that our BAO errors converge. It also allows us
to include the evolution of the relevant power spectra. Then, for each bin 𝑑𝑧, we
define the observed wavelength limits of the bin for Ly𝛼 absorption:

𝜆min = 𝜆𝛼(1 + 𝑧min) , (7.48)

𝜆max = 𝜆𝛼(1 + 𝑧max). (7.49)

From these, we define the mean observed wavelength of the bin 𝜆𝑐 =
√
𝜆min𝜆max,

and the redshift of the quasar/LBG that centres the Ly𝛼 forest in our bin:

𝑧𝑜 =
𝜆𝑐

𝜆
𝑟 𝑓
𝑐

− 1 , (7.50)

where 𝜆
𝑟 𝑓
𝑐 =

√
𝜆
𝑟 𝑓

min𝜆
𝑟 𝑓
max ≈ 1119 Å is the mean of the Ly𝛼 forest rest-frame region.

Note that we are using only the primary Ly𝛼 forest region between 1040 Åand
5https://github.com/igmhub/lyaforecast
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Parameter Ly𝛼 Quasar LBG LAE
b -0.16 3.8 3.0 1.9
𝛽 1.45 0.26 0.33 0.52

Table 7.1: Bias parameter values for each tracer in our analysis, evaluated at 𝑧 = 2.5.

1205 Å, and excluding the Ly𝛽 region (see e.g. DESI Collaboration et al., 2025b)
for simplicity. Note that internally, lyaforecast works in kms−1, even though
often we refer to e.g. 𝑘 values in ℎMpc−1. The pixel width (Δ𝜆) corresponds to
the spacing of the DESI spectrograph, 0.8Å . Again, we use kms−1 for pixel widths
internally, which average ∼ 70 kms−1 (changes with redshift).

For each redshift bin 𝑑𝑧, we compute the weights and noise terms 𝑃eff
𝑁

and 𝑃⊥
𝑤

(at 𝑘 = 0.07 ℎMpc−1, 𝜇 = 0.5), by integrating over magnitude, with noise and tracer
distributions 𝜎𝑁 (𝜆𝑐 , 𝑧𝑜 , 𝑚) and 𝑑𝑛/𝑑𝑚(𝑧𝑜), given the forest length and pixelisation
above. In practice, we want noise per pixel, which is equal to

√
Δ𝜆 𝜎𝑁 (𝜆𝑐 , 𝑧𝑜 , 𝑚).

With the noise terms computed, we can get the required covariance matri-
ces, in discreet bins of 𝑘 an 𝜇. First, we compute the required 3D power spec-
tra: Ly𝛼(LBG)auto, Ly𝛼(LBG)cross, Ly𝛼(LBG)xLAE, Ly𝛼(QSO)xLBG, Ly𝛼(QSO)LAE,
LBGauto and LAEauto. For these we provide a set of bias/RSD parameters taken from
DESI DR2 (DESI Collaboration et al., 2025b) and Ruhlmann-Kleider et al., 2024,
summarised in table 7.1. We also evolve each bias according to equation 5.15.

The linear matter power spectrum is computed in each redshift bin using camb,
with Planck 18 cosmology Planck Collaboration et al., 2020. The P1D that features
in the Ly𝛼 forest covariance is estimated using the empirical model of Palanque-
Delabrouille et al., 2013 (equation 7.17). Finally, we perform a sum over 𝑘 and 𝜇

to estimate 𝐹𝑖 𝑗 for each tracer, and derive errors on 𝛼∥,𝑖 and 𝛼⊥,𝑖 in each redshift
bin 𝑖, using the method outlined in section 7.1.4. We combine our measurements
across redshift as:

𝜎𝛼x =
1√∑15
𝑖

1
𝜎2
𝛼x ,𝑖

, (7.51)

where 𝑥 =⊥, ∥.
In the left panel of figure 7.5 we compare the SNR per 𝑘 mode of Ly𝛼(LBG)auto

(blue dashed), to the SNR per mode of the quasar Ly𝛼 auto-power spectrum (red
solid). We see a turn-over point where measuring the Ly𝛼 forest auto-power from
LBGs becomes more constraining, at 𝑧 ∼ 2.5. Noticeably, this lags slightly behind
the same turn-over in the tracer SNR (right panel), due to the lower SNR per pixel
of LBG forests. The increased SNR for quasar Ly𝛼 forests in DESI-II will improve
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Figure 7.5: (Left) SNR per mode at (𝑘, 𝜇) = (0.14 ℎMpc−1, 0.6) in the Ly𝛼 forest
power spectrum of quasars (red solid) and LBGs (blue dashed). (Right) SNR per
mode of the quasar (red solid) and LBG (blue dashed) power spectrum. The large
difference on the right is due to the high density of LBG targets in DESI-II (1000
deg−2). In contrast, the lower pixel SNR in LBG forests makes the lines in the left
plot more similar.

BAO constraints at 𝑧eff ∼ 2.3, in combination with the rest of the forests in DESI
not included in the DESI-II footprint. Here, we choose to forecast the cross-power
Ly𝛼(QSO)xLBG, since it is novel, and will benefit from the high target density of
LBGs. Looking at the left panel of figure 7.5, the SNR per mode of the quasar
power spectrum (red solid) and LBG power spectrum (blue dashed) differ a lot
more than the Ly𝛼 forests. Here, the increased LBG target density plays a much
bigger role, where the spectral noise is not a factor.

Our BAO (percent-)error projections are shown as a function of redshift for
each of the forecasted power spectra, in figure 7.6. For each line, the constraints
are estimated in 14 redshift bins, of width 0.1, from 𝑧 = 2 − 3.5. The top left
panel shows the autocorrelation of Ly𝛼 forests from LBGs (blue) and quasars
(green). At 𝑧 ∼ 2.5 there is a turnover point where LBGs, which are observed
at higher redshifts, become more constraining. We also add the cosmic variance
floor for both DESI-II (black) and DESI (dark blue). This is the best possible Ly𝛼
autocorrelation measurement achievable from each survey, where both the shot
noise and spectral noise are completely negligible. DESI has a lower floor only
because of its greater survey area.

In the top right panel we compare the LBG and LAE autocorrelations, where
the only difference between these tracers is the bias/RSD values we assign them
(table 7.1). Note that here we do not include the quasar autocorrelation; because
of the relatively low target density, it is not a competitive measurement. The only
reason that the two sets of lines in the top left panel are comparable, is that the
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SNR of pixels in quasars relatively high.
In the bottom leftpanel, we include the cross-powermeasurements: Ly𝛼(LBG)cross,

Ly𝛼(LBG)xLAE, Ly𝛼(QSO)xLBG, Ly𝛼(QSO)LAE. We see (as in figure 7.5) that
Ly𝛼(LBG)cross becomes more constraining than Ly𝛼(QSO)xLBG at 𝑧 ∼ 2.5, and
its LAE counterpart slightly after. We note that the difference is small, given
that there are 10× more LBG forests, again reflecting the impact of the increased
spectral noise.

The combined Ly𝛼(LBG)auto and Ly𝛼(LBG)cross measurements (bottom right)
seem to provide similar constraints to the LBG auto (top right) across the line-
of-sight, outperforming it along the line-of-sight. To combine Ly𝛼(LBG)auto and
Ly𝛼(LBG)cross, we performed a simple inverse sum (Font-Ribera et al., 2014a),
equivalent to assuming no correlation between the two measurements. This is a
high-noise (𝑛𝑃 ≪ 1) approximation, which is not necessarily valid in our regime,
where 𝑛𝑃 ∼ 1. For this reason we choose not to show other combinations of
measurements. A better approach would be to compute the joint Fisher matrix,
where the covariance (calculated with equation 7.32) includes all of the relevant
cross-terms.

We would of course eventually like to combine all of our correlations together,
which would improve our BAO precision and allow us to make better full-shape
measurements by breaking parameter degeneracies. However, as shown in figure
7.6, there is a cosmic variance floorwhich limits measurements witheven negligible
noise. Thus, there is little benefit of combining tracers for BAO in this regime.
This can also be understood looking at effective volume (equations 7.35 and 7.36):
as 𝑛𝑃 ≫ 1, only increasing survey volume can reduce the covariance of our
measurement6. Note that even in the cosmic variance limited regime, combining
tracers is still beneficial for RSD and growth measurements (McDonald and Seljak,
2009).

In table 7.2, we summarise the forecast results, with the combined (across
redshift) precision on BAO for each of our tracers, and the effective redshifts
𝑧eff. We confirm that the combination of Ly𝛼(LBG)auto and Ly𝛼(LBG)cross provide
the best measurement of 𝛼∥ (0.70%) and 𝛼⊥ (0.57%), although the latter is only
marginally better than the LBG auto. For comparison, the DESI 5-year survey
forecasts (DESI Collaboration et al., 2024b) project high-redshift (𝑧 ∼ 2−3.5) errors
of 0.91% and 0.88% on 𝛼⊥ and 𝛼∥ respectively7. Thus, with only the combined
Ly𝛼 measurement, we can expect 𝜎DESI−II

𝛼⊥ ≈ 0.63 𝜎DESI
𝛼⊥ and 𝜎DESI−II

𝛼∥ ≈ 0.80 𝜎DESI
𝛼∥ .

We note that these values will be underestimated, due to the fact that we use
6This is often referred to as a volume-limited survey.
7From the joint Ly𝛼(QSO) autocorrelation and Ly𝛼(QSO)-QSO cross-correlation
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Figure 7.6: (Top left) projected percent error on line-of-sight (𝛼∥; solid line) and
transverse (𝛼⊥; dashed line) BAO parameters from the Ly𝛼(LBG)auto power spec-
trum, as a function of redshift. Also included here is the cosmic variance limit, or
measurement in absence of shot/spectral noise, for DESI and DESI-II. DESI has a
lower limit due only to its larger survey area. (Top right) the same projects for the
LBG power spectrum. (Bottom left) Ly𝛼(QSO)xLBG (red) and Ly𝛼(LBG)cross (blue).
(Bottom right) the combined Ly𝛼(LBG)cross and LBGauto projections.
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Measurement 100×𝜎𝛼⊥ 100×𝜎𝛼∥ 𝑧eff
Ly𝛼(LBG)auto 1.36 1.41 2.90
Ly𝛼(LBG)cross 0.99 1.39 2.79
Ly𝛼(LBG)auto+cross 0.57 0.70 2.82
Ly𝛼(LBG)xLAE 1.26 1.65 2.80
Ly𝛼(QSO)xLBG 1.17 1.55 2.61
Ly𝛼(QSO)xLAE 1.52 1.85 2.64
LBGauto 0.59 1.04 2.84
LAEauto 1.00 1.5 2.85

Table 7.2: Percent errors on BAO parameters 𝛼⊥ and 𝛼∥ for several measurements
in a DESI-II survey forecast.

the high-noise approximation to combine errors. To get a more accurate sense of
the improved precision on the multi-tracer BAO measurement, we would have to
do a joint Fisher matrix analysis, as mentioned above. One should also note that
the effective redshift of the high-redshift measurements in DESI is 𝑧eff ∼ 2.33 (DESI
Collaboration et al., 2025b), making the high effective redshifts of DESI-II very
complimentary in a cosmological analysis. Finally, despite being less constraining,
the Ly𝛼(QSO)xLBG measurement has an intermediate effective redshift between
DESI and DESI-II, which again is useful for measuring cosmic expansion. The
LAE correlations are also competitive, and help to break degeneracies in 𝑓 𝜎8 by
providing independent measurements of RSD.

In future work we would take several steps to improve and expand our forecast.
Firstly, we would look to incorporating proper simulations of spectral noise in
LBG spectra 𝜎𝑁 (𝑚, 𝑧,𝜆), rather than assuming a mean SNR per Angstrom from
measurements (figure 7.4). In the near future, we would also look to implementing
the ability to compute combined tracer Fisher matrices in lyaforecast, rather
than using low-noise approximations. To expand the capabilities of our forecast,
we would look to using the ForestFlow emulator (Chaves-Montero et al., 2025),
to combine small-scale information from the Ly𝛼 P1D with the Ly𝛼 P3D. The
forecast can also be expanded to include full-shape measurements (see Cuceu
et al., 2025a), which are sensitive to growth of structure. Finally, we can use the
forecast to measure cosmological parameters from a variety of different models,
e.g. 𝑤0𝑤𝑎 dark energy, either in combination with low-redshift galaxy forecasts,
or independently.
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Conclusion

For thousands of years the cosmos has been studied, and our understanding of
the Universe on the very largest scales has profoundly changed. In only the last
50 years, the era of precision cosmology was conceived, which allowed us for the
first time to place tight constraints on the constituent parts of the Universe and
its expansion history. With the introduction of DESI, precision cosmology has
moved into its next chapter. We are now able to explore the nature of dark energy,
determining whether or not it evolves, and validating a wide variety of physical
models which try to describe the mysterious substance.

The first part of my thesis (chapter 5) is centred firmly in this objective, where I
present the first cosmological analysis of Ly𝛼 forest data from DESI. This analysis
served as validation of the first DESI data (Early Data Release; EDR), from the
spectroscopic pipeline to the methods use to generate the Ly𝛼 flux transmission
field and the models we use to measure cosmology. The techniques employed in
this paper were established as a baseline for future DESI Ly𝛼 analyses (Adame
et al., 2025b; DESI Collaboration et al., 2025b), which were used to measure
the dark energy equation of state. We performed extensive validation of many
aspects of our analysis, such as the Ly𝛼 catalogue and new methods used to
construct it (section 5.2). We also explored the contaminant masking (DLAs,
BALs), instrumental systematics (section 5.4.3.2) and the baseline model that we
fit with our measured correlations (section 5.5). We showed that our correlations
and fits to DESI EDR data were fully consistent with those from the eBOSS DR16
(the previous benchmark), a non-trivial result for two very different instruments.

To extract as much cosmological information as possible from the Ly𝛼 forest,
we utilise the full shape of our measured Ly𝛼 correlation functions, from which
we can measure the Alcock-Paczynski (AP) effect - anisotropy in the line-of-sight
versus transverse directions - and growth information from RSD. Including
AP information from the broadband of the correlation function improves our
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measurements of Ω𝑚 and 𝐻0𝑟𝑑 by around 50% with respect to traditional BAO-
only analyses, but it is also more susceptible to contaminants. In chapter 6,
we study of the impact of continuum redshift errors on our full-shape analysis,
using synthetic DESI datasets. Up until now, this was not considered a major
contaminant in our analysis, but at the high precision of DESI, we show it to be a
potentially large source of bias. Thus, we model the distortion these errors cause in
our measured correlation functions, and implement several new free parameters
to our baseline full-shape fits. We show that our model successfully recovers
unbiased constraints on the broadband AP parameter, and the isotropic/AP BAO
parameters. With this work, we have paved the way for the first Ly𝛼 full-shape
analyses with DESI, and more precise analyses beyond that. Looking forward,
we wish to improve our model behaviour at smaller scales along the line-of-sight
(𝑟∥ ≲ 40 ℎ−1Mpc), where continuum redshift error contamination is less well
captured. This is not particularly impactful now, since our analysis is limited to
𝑟 > 25 ℎ−1Mpc where our linear model is still suitable. However, in the future
where models that successfully describe the non-linear parts of the Ly𝛼 correlation
function (e.g. using an EFT approach; Ivanov, 2024) are implemented, this will be
more important.

In the final part of the thesis (chapter 7), we present projections of potential BAO
measurements from the Ly𝛼 forest in DESI-II - the successor to DESI due to start
in 2029, which will observe 5000deg2 of sky to much greater depth. We run Fisher
forecasts that emulate the high-redshift survey of DESI-II, a programme which
will observe targets above 𝑧 ≳ 2, increasing the density of quasars (with respect
to DESI) from 60 to 100 deg−2. Furthermore, this programme will observe Lyman
break galaxies (LBGs) and Lyman-𝛼 emitters (LAEs) at densities of ∼1000 deg−2,
from 𝑧 ∼ 2 − 4. LBG spectra also contain Ly𝛼 forest absorption, albeit to a
lower SNR than quasars. Thus, in our analysis we forecast several measurements,
including the autocorrelation of Ly𝛼 forests from LBGs (Ly𝛼 (LBG)auto), the cross-
correlation of LBG forests and LBGs (Ly𝛼 (LBG)cross), and the LBG autocorrelation
(LBGauto). We also make use of the higher SNR quasar forests by taking their cross-
correlation with LBGs (Lya(QSO)xLBG). Using LAE as tracers, we add a further
three correlation functions of similar constraining power: Ly𝛼 (LBG)xLAE, Ly𝛼
(QSO)xLAE and LAEauto.

We show that the two best measurements of our BAO parameters 𝛼∥ and
𝛼𝑝𝑒𝑟𝑝 come from the combined Ly𝛼 (LBG)auto and Ly𝛼 (LBG)cross correlations
and the LBG autocorrelation, which give (𝜎𝛼∥ = 0.70%, 𝜎𝛼⊥ = 0.57%) and (𝜎𝛼∥ =

1.04%, 𝜎𝛼⊥ = 0.59%) respectively. The Lya(QSO)xLBG correlation is marginally
less constraining than its LBG counterpart, but it probes the Universe at a lower
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effective redshift. The LAE correlations provide slightly weaker constraints then
LBGs due to lower tracer bias, but are still competitive.

Comparing only the combined Ly𝛼 (LBG)auto and Ly𝛼 (LBG)cross from DESI-II
with the combined Ly𝛼 (QSO)auto+Ly𝛼 (QSO)cross from DESI gives us 𝜎DESI−II

𝛼∥ ≈
0.8 𝜎DESI

𝛼∥ and 𝜎DESI−II
𝛼⊥ ≈ 0.63 𝜎DESI

𝛼⊥ . When combining all of our measurements, we
expect DESI-II to provide significantly better high-redshift constraints than DESI.

These forecasts are an important first step to developing a science case for
DESI-II, where we show that BAO can be measured to better precision than DESI,
at a much higher effective redshift thanks to new LBG/LAE targeting. In the near
future, to understand how well DESI-II can constrain dark energy parameters,
we want to take all of our measured correlations, and combine them the Fisher
matrix from the high-density galaxy survey at lower redshift. From there we can
transform into a Fisher matrix with dependence on dark energy parameters, and
make error projections. We also plan to use a full Fisher matrix in the near future,
which takes into account cross-covariances between measurements, allowing us
to combine them accurately. A slightly more difficult but important extension of
our forecasts would be to include full-shape information, since these improve our
constraining power on the expansion rate by ∼ 50%. The inclusion of LBGs and
LAEs also gives us more tracers with which to measure RSD, helping to break
degeneracies between biases and 𝑓 𝜎8.

127





Bibliography

Einstein, A. (1915). “Die Feldgleichungen der Gravitation”. In: Sitzungsberichte
der K&ouml;niglich Preussischen Akademie der Wissenschaften, pp. 844–847 (cit. on
p. 1).

Zwicky, F. (1933). “Die Rotverschiebung von extragalaktischen Nebeln”. In:
Helvetica Physica Acta 6, pp. 110–127 (cit. on p. 8).

Rao, C. R. (1945). “Information and the Accuracy Attainable in the Estimation
of Statistical Parameters”. In: Bulletin of the Calcutta Mathematical Society 37,
pp. 81–91 (cit. on p. 106).

Dicke, R. H. et al. (1965). “Cosmic Black-Body Radiation.” In: ApJ 142, pp. 414–419.
doi: 10.1086/148306 (cit. on p. 21).

Gunn, J. E. and B. A. Peterson (1965). “On the Density of Neutral Hydrogen in
Intergalactic Space.” In: ApJ 142, pp. 1633–1636. doi: 10.1086/148444 (cit. on
p. 25).

Penzias, A. A. and R. W. Wilson (1965). “A Measurement of Excess Antenna
Temperature at 4080 Mc/s.” In: ApJ 142, pp. 419–421. doi: 10.1086/148307
(cit. on p. 21).

Lynds, R. (1971). “The Absorption-Line Spectrum of 4c 05.34”. In: Astrophys. J.
Let. 164, p. L73. doi: 10.1086/180695 (cit. on pp. 24, 31).

Meszaros, P. (1974). “The behaviour of point masses in an expanding cosmological
substratum.” In: Astron. Astrophys. 37.2, pp. 225–228 (cit. on p. 16).

Guth, A. H. (1981). “Inflationary universe: A possible solution to the horizon
and flatness problems”. In: Phys. Rev. D 23.2, pp. 347–356. doi: 10.1103
/PhysRevD.23.347 (cit. on p. 14).

Kaiser, N. (1987). “Clustering in real space and in redshift space”. In: Mon. Not.
Roy. Astron. Soc. 227, pp. 1–21. doi: 10.1093/mnras/227.1.1 (cit. on pp. 22,
73, 109).

129

https://doi.org/10.1086/148306
https://doi.org/10.1086/148444
https://doi.org/10.1086/148307
https://doi.org/10.1086/180695
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1093/mnras/227.1.1


BIBLIOGRAPHY

Smoot, G. F. et al. (1992). “Structure in the COBE Differential Microwave
Radiometer First-Year Maps”. In: Astrophys. J. Let. 396, p. L1. doi: 10.1086
/186504 (cit. on pp. 13, 21).

Cen, R. et al. (1994). “Gravitational Collapse of Small-Scale Structure as the
Origin of the Lyman-Alpha Forest”. In: Astrophys. J. Let. 437, p. L9. doi:
10.1086/187670. arXiv: astro-ph/9409017 [astro-ph] (cit. on p. 31).

Miralda-Escudé, J. et al. (1996). “The Ly alpha Forest from Gravitational Collapse
in the Cold Dark Matter + Lambda Model”. In: ApJ 471, p. 582. doi: 10.1086
/177992. arXiv: astro-ph/9511013 [astro-ph] (cit. on p. 31).

Hui, L. andN. Y. Gnedin (1997). “Equation of state of the photoionized intergalactic
medium”. In: Monthly Notices of the Royal Astronomical Society 292.1, pp. 27–
42. doi: 10.1093/mnras/292.1.27. url: https://doi.org/10.1093\%2
Fmnras\%2F292.1.27 (cit. on p. 31).

Tegmark, M. (1997). “Measuring Cosmological Parameters with Galaxy Surveys”.
In: Phys. Rev. Lett. 79.20, pp. 3806–3809. doi: 10.1103/PhysRevLett.79.3806.
arXiv: astro-ph/9706198 [astro-ph] (cit. on pp. 106, 113).

Croft, R. A. C. et al. (1998). “Recovery of the Power Spectrum of Mass Fluctuations
from Observations of the Ly𝛼 Forest”. In: ApJ 495.1, pp. 44–62. doi: 10.1086
/305289. arXiv: astro-ph/9708018 [astro-ph] (cit. on p. 32).

Riess, A. G. et al. (1998). “Observational Evidence from Supernovae for an
Accelerating Universe and a Cosmological Constant”. In: AJ 116.3, pp. 1009–
1038. doi: 10.1086/300499. arXiv: astro-ph/9805201 [astro-ph] (cit. on
pp. 9, 65).

Perlmutter, S. et al. (1999). “Measurements of Ω and Λ from 42 High-Redshift
Supernovae”. In: ApJ 517.2, pp. 565–586. doi: 10.1086/307221. arXiv:
astro-ph/9812133 [astro-ph] (cit. on pp. 9, 65).

Weinberg, D. and et al. (1999). “Cosmological tests with the Ly-𝛼 forest (invited
review)”. In: Evolution of Large Scale Structure : From Recombination to Garching.
Ed. by A. J. Banday, R. K. Sheth, and L. N. da Costa, p. 346. doi: 10.48550
/arXiv.astro-ph/9810142. arXiv: astro-ph/9810142 [astro-ph] (cit. on
p. 26).

McDonald, P. et al. (2000). “The Observed Probability Distribution Function,
Power Spectrum, and Correlation Function of the Transmitted Flux in the Ly𝛼
Forest”. In: The Astrophysical Journal 543, p. 1. doi: 10.1086/317079 (cit. on
p. 32).

Barkana, R. and A. Loeb (2001). “In the beginning: the first sources of light and
the reionization of the universe”. In: Phys. Rept. 349.2, pp. 125–238. doi:

130

https://doi.org/10.1086/186504
https://doi.org/10.1086/186504
https://doi.org/10.1086/187670
https://arxiv.org/abs/astro-ph/9409017
https://doi.org/10.1086/177992
https://doi.org/10.1086/177992
https://arxiv.org/abs/astro-ph/9511013
https://doi.org/10.1093/mnras/292.1.27
https://doi.org/10.1093\%2Fmnras\%2F292.1.27
https://doi.org/10.1093\%2Fmnras\%2F292.1.27
https://doi.org/10.1103/PhysRevLett.79.3806
https://arxiv.org/abs/astro-ph/9706198
https://doi.org/10.1086/305289
https://doi.org/10.1086/305289
https://arxiv.org/abs/astro-ph/9708018
https://doi.org/10.1086/300499
https://arxiv.org/abs/astro-ph/9805201
https://doi.org/10.1086/307221
https://arxiv.org/abs/astro-ph/9812133
https://doi.org/10.48550/arXiv.astro-ph/9810142
https://doi.org/10.48550/arXiv.astro-ph/9810142
https://arxiv.org/abs/astro-ph/9810142
https://doi.org/10.1086/317079


BIBLIOGRAPHY

10.1016/S0370-1573(01)00019-9. arXiv: astro-ph/0010468 [astro-ph]
(cit. on p. 25).

Zehavi, I. et al. (2002). “Galaxy Clustering in Early Sloan Digital Sky Survey
Redshift Data”. In: ApJ 571.1, pp. 172–190. doi: 10.1086/339893. arXiv:
astro-ph/0106476 [astro-ph] (cit. on p. 21).

McDonald, P. (2003). “Toward a Measurement of the Cosmological Geometry at z

~2: Predicting Ly𝛼 Forest Correlation in Three Dimensions and the Potential
of Future Data Sets”. In: ApJ 585.1, pp. 34–51. doi: 10.1086/345945. arXiv:
astro-ph/0108064 [astro-ph] (cit. on pp. 26, 31).

Seo, H.-J. and D. J. Eisenstein (2003). “Probing Dark Energy with Baryonic Acoustic
Oscillations from Future Large Galaxy Redshift Surveys”. In: ApJ 598.2, pp. 720–
740. doi: 10.1086/379122. arXiv: astro-ph/0307460 [astro-ph] (cit. on
p. 107).

Weinberg, D. H. (2003). “The Lyman-𝛼 Forest as a Cosmological Tool”. In:
AIP Conference Proceedings. AIP. doi: 10.1063/1.1581786. url: https:
//doi.org/10.1063\%2F1.1581786 (cit. on p. 31).

Cole, S. et al. (2005). “The 2dF Galaxy Redshift Survey: power-spectrum analysis
of the final data set and cosmological implications”. In: Mon. Not. Roy. Astron.
Soc. 362.2, pp. 505–534. doi: 10.1111/j.1365-2966.2005.09318.x. arXiv:
astro-ph/0501174 [astro-ph] (cit. on pp. 21, 65).

Eisenstein, D. J. et al. (2005). “Detection of the Baryon Acoustic Peak in the Large-
Scale Correlation Function of SDSS Luminous Red Galaxies”. In: ApJ 633.2,
pp. 560–574. doi: 10.1086/466512. arXiv: astro-ph/0501171 [astro-ph]
(cit. on pp. 21, 23, 65).

Gorski, K. M. et al. (2005). “HEALPix: A Framework for High-Resolution
Discretization and Fast Analysis of Data Distributed on the Sphere”. In: The
Astrophysical Journal 622.2, pp. 759–771. doi: 10.1086/427976. url: https:
//doi.org/10.1086\%2F427976 (cit. on p. 45).

McDonald, P. et al. (2005). “The Linear Theory Power Spectrum from the Ly𝛼
Forest in the Sloan Digital Sky Survey”. In: ApJ 635.2, pp. 761–783. doi:
10.1086/497563. arXiv: astro-ph/0407377 [astro-ph] (cit. on p. 116).

Fan, X., C. L. Carilli, and B. Keating (2006). “Observational Constraints on Cosmic
Reionization”. In: Annual Review of Astron and Astrophys 44.1, pp. 415–462. doi:
10.1146/annurev.astro.44.051905.092514. arXiv: astro-ph/0602375
[astro-ph] (cit. on p. 25).

McDonald, P. et al. (2006). “The Ly𝛼 Forest Power Spectrum from the Sloan Digital
Sky Survey”. In: The Astrophysical Journal Supplement Series 163.1, pp. 80–109.

131

https://doi.org/10.1016/S0370-1573(01)00019-9
https://arxiv.org/abs/astro-ph/0010468
https://doi.org/10.1086/339893
https://arxiv.org/abs/astro-ph/0106476
https://doi.org/10.1086/345945
https://arxiv.org/abs/astro-ph/0108064
https://doi.org/10.1086/379122
https://arxiv.org/abs/astro-ph/0307460
https://doi.org/10.1063/1.1581786
https://doi.org/10.1063\%2F1.1581786
https://doi.org/10.1063\%2F1.1581786
https://doi.org/10.1111/j.1365-2966.2005.09318.x
https://arxiv.org/abs/astro-ph/0501174
https://doi.org/10.1086/466512
https://arxiv.org/abs/astro-ph/0501171
https://doi.org/10.1086/427976
https://doi.org/10.1086\%2F427976
https://doi.org/10.1086\%2F427976
https://doi.org/10.1086/497563
https://arxiv.org/abs/astro-ph/0407377
https://doi.org/10.1146/annurev.astro.44.051905.092514
https://arxiv.org/abs/astro-ph/0602375
https://arxiv.org/abs/astro-ph/0602375


BIBLIOGRAPHY

doi: 10.1086/444361. url: https://doi.org/10.1086 (cit. on pp. ix, 32, 41,
47, 59, 61).

Eisenstein, D. J., H.-J. Seo, and M. White (2007). “On the Robustness of the Acoustic
Scale in the Low-Redshift Clustering of Matter”. In: The Astrophysical Journal
664.2, pp. 660–674. doi: 10.1086/518755. url: https://doi.org/10.1086
(cit. on p. 47).

Eisenstein, D. J., H.-J. Seo, and M. White (2007). “On the Robustness of the Acoustic
Scale in the Low-Redshift Clustering of Matter”. In: ApJ 664.2, pp. 660–674.
doi: 10.1086/518755. arXiv: astro-ph/0604361 [astro-ph] (cit. on p. 116).

McDonald, P. and D. J. Eisenstein (2007). “Dark energy and curvature from a
future baryonic acoustic oscillation survey using the Lyman-𝛼 forest”. In: Phys.
Rev. D 76.6, 063009, p. 063009. doi: 10.1103/PhysRevD.76.063009. arXiv:
astro-ph/0607122 [astro-ph] (cit. on p. 107).

McDonald, P. and U. Seljak (2009). “How to evade the sample variance limit on
measurements of redshift-space distortions”. In: JCAP 2009.10, 007, p. 007. doi:
10.1088/1475-7516/2009/10/007. arXiv: 0810.0323 [astro-ph] (cit. on
p. 122).

Percival, W. J. and M. White (2009). “Testing cosmological structure formation
using redshift-space distortions”. In: Monthly Notices of the Royal Astronomical
Society 393.1, pp. 297–308. doi: 10.1111/j.1365-2966.2008.14211.x. url:
https://doi.org/10.1111 (cit. on pp. 23, 48, 67, 87).

McQuinn, M. and M. White (2011). “On estimating Ly𝛼 forest correlations between
multiple sightlines”. In: Mon. Not. Roy. Astron. Soc. 415.3, pp. 2257–2269. doi:
10.1111/j.1365-2966.2011.18855.x. arXiv: 1102.1752 [astro-ph.CO]
(cit. on pp. 107, 114, 116).

Slosar, A. et al. (2011). “The Lyman-𝛼 forest in three dimensions: measurements
of large scale flux correlations from BOSS 1st-year data”. In: JCAP 2011.9,
001, p. 001. doi: 10.1088/1475-7516/2011/09/001. arXiv: 1104.5244
[astro-ph.CO] (cit. on pp. 31, 32, 42, 66).

Font-Ribera, A. and J. Miralda-Escudé (2012). “The effect of high column density
systems on the measurement of the Lyman-𝛼 forest correlation function”. In:
JCAP 2012.7, 028, p. 028. doi: 10.1088/1475-7516/2012/07/028. arXiv:
1205.2018 [astro-ph.CO] (cit. on pp. 66, 67).

Font-Ribera, A. et al. (2012). “The large-scale cross-correlation of Damped Lyman
alpha systems with the Lyman alpha forest: first measurements from BOSS”.
In: Journal of Cosmology and Astroparticle Physics 2012.11, pp. 059–059. doi:
10.1088/1475-7516/2012/11/059. url: https://doi.org/10.1088\%2F147
5-7516\%2F2012\%2F11\%2F059 (cit. on pp. 37, 44, 51).

132

https://doi.org/10.1086/444361
https://doi.org/10.1086
https://doi.org/10.1086/518755
https://doi.org/10.1086
https://doi.org/10.1086/518755
https://arxiv.org/abs/astro-ph/0604361
https://doi.org/10.1103/PhysRevD.76.063009
https://arxiv.org/abs/astro-ph/0607122
https://doi.org/10.1088/1475-7516/2009/10/007
https://arxiv.org/abs/0810.0323
https://doi.org/10.1111/j.1365-2966.2008.14211.x
https://doi.org/10.1111
https://doi.org/10.1111/j.1365-2966.2011.18855.x
https://arxiv.org/abs/1102.1752
https://doi.org/10.1088/1475-7516/2011/09/001
https://arxiv.org/abs/1104.5244
https://arxiv.org/abs/1104.5244
https://doi.org/10.1088/1475-7516/2012/07/028
https://arxiv.org/abs/1205.2018
https://doi.org/10.1088/1475-7516/2012/11/059
https://doi.org/10.1088\%2F1475-7516\%2F2012\%2F11\%2F059
https://doi.org/10.1088\%2F1475-7516\%2F2012\%2F11\%2F059


BIBLIOGRAPHY

Busca, N. G. et al. (2013). “Baryon acoustic oscillations in the Ly𝛼 forest of
BOSS quasars”. In: A&A 552, A96. doi: 10.1051/0004-6361/201220724. url:
https://doi.org/10.1051/0004-6361/201220724 (cit. on pp. 32, 65).

Font-Ribera, A. et al. (2013). “The large-scale quasar-Lyman 𝛼 forest cross-
correlation from BOSS”. In: JCAP 2013.5, 018, p. 018. doi: 10.1088/1475-751
6/2013/05/018. arXiv: 1303.1937 [astro-ph.CO] (cit. on pp. 32, 49, 66, 67).

Kirkby, D. et al. (2013). “Fitting methods for baryon acoustic oscillations in the
Lyman-𝛼 forest fluctuations in BOSS data release 9”. In: Journal of Cosmology
and Astroparticle Physics 2013.03, pp. 024–024. doi: 10.1088/1475-7516/2013
/03/024. url: https://doi.org/10.1088 (cit. on pp. 32, 47, 66, 72).

Levi, M. et al. (2013). “The DESI Experiment, a whitepaper for Snowmass
2013”. In: arXiv e-prints, arXiv:1308.0847, arXiv:1308.0847. arXiv: 1308.0847
[astro-ph.CO] (cit. on pp. 32, 66).

Palanque-Delabrouille, N. et al. (2013). “The one-dimensional Ly𝛼 forest power
spectrum from BOSS”. In: Astron. Astrophys. 559, A85, A85. doi: 10.1051/0
004-6361/201322130. arXiv: 1306.5896 [astro-ph.CO] (cit. on pp. 32, 110,
120).

Rudie, G. C. et al. (2013). “THE COLUMN DENSITY DISTRIBUTION AND CON-
TINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC
MEDIUM AT REDSHIFT ⟨z⟩ = 2.4”. In: The Astrophysical Journal 769.2, p. 146.
doi: 10.1088/0004-637x/769/2/146. url: https://doi.org/10.1088\%2F0
004-637x\%2F769\%2F2\%2F146 (cit. on p. 49).

Slosar, A. et al. (2013). “Measurement of baryon acoustic oscillations in the Lyman-
𝛼 forest fluctuations in BOSS data release 9”. In: JCAP 2013.4, 026, p. 026. doi:
10.1088/1475-7516/2013/04/026. arXiv: 1301.3459 [astro-ph.CO] (cit. on
pp. 32, 40).

Font-Ribera, A. et al. (2014a). “DESI and other Dark Energy experiments in
the era of neutrino mass measurements”. In: JCAP 2014.5, 023, p. 023. doi:
10.1088/1475-7516/2014/05/023. arXiv: 1308.4164 [astro-ph.CO] (cit. on
p. 122).

Font-Ribera, A. et al. (2014b). “Quasar-Lyman 𝛼 forest cross-correlation from
BOSS DR11: Baryon Acoustic Oscillations”. In: JCAP 2014.5, 027, p. 027. doi:
10.1088/1475-7516/2014/05/027. arXiv: 1311.1767 [astro-ph.CO] (cit. on
pp. 32, 66).

Pieri, M. M. et al. (2014). “Probing the circumgalactic medium at high-redshift
using composite BOSS spectra of strong Lyman 𝛼 forest absorbers”. In: Mon.
Not. Roy. Astron. Soc. 441.2, pp. 1718–1740. doi: 10.1093/mnras/stu577.
arXiv: 1309.6768 [astro-ph.CO] (cit. on p. 67).

133

https://doi.org/10.1051/0004-6361/201220724
https://doi.org/10.1051/0004-6361/201220724
https://doi.org/10.1088/1475-7516/2013/05/018
https://doi.org/10.1088/1475-7516/2013/05/018
https://arxiv.org/abs/1303.1937
https://doi.org/10.1088/1475-7516/2013/03/024
https://doi.org/10.1088/1475-7516/2013/03/024
https://doi.org/10.1088
https://arxiv.org/abs/1308.0847
https://arxiv.org/abs/1308.0847
https://doi.org/10.1051/0004-6361/201322130
https://doi.org/10.1051/0004-6361/201322130
https://arxiv.org/abs/1306.5896
https://doi.org/10.1088/0004-637x/769/2/146
https://doi.org/10.1088\%2F0004-637x\%2F769\%2F2\%2F146
https://doi.org/10.1088\%2F0004-637x\%2F769\%2F2\%2F146
https://doi.org/10.1088/1475-7516/2013/04/026
https://arxiv.org/abs/1301.3459
https://doi.org/10.1088/1475-7516/2014/05/023
https://arxiv.org/abs/1308.4164
https://doi.org/10.1088/1475-7516/2014/05/027
https://arxiv.org/abs/1311.1767
https://doi.org/10.1093/mnras/stu577
https://arxiv.org/abs/1309.6768


BIBLIOGRAPHY

Arinyo-i-Prats, A. et al. (2015). “The non-linear power spectrum of the Lyman
alpha forest”. In: JCAP 2015.12, pp. 017–017. doi: 10.1088/1475-7516/2015
/12/017. arXiv: 1506.04519 [astro-ph.CO] (cit. on pp. 26, 31, 48).

Delubac, T. et al. (2015). “Baryon acoustic oscillations in the Ly𝛼 forest of BOSS
DR11 quasars”. In: Astronomy & Astrophysics 574, A59. doi: 10.1051/0004-63
61/201423969. url: https://doi.org/10.1051 (cit. on pp. 32, 45).

Handley, W. J., M. P. Hobson, and A. N. Lasenby (2015). “Polychord: nested
sampling for cosmology”. In: Monthly Notices of the Royal Astronomical Society:
Letters 450.1, pp. L61–L65. doi: 10.1093/mnrasl/slv047. url: https://doi.
org/10.1093\%2Fmnrasl\%2Fslv047 (cit. on pp. 54, 61, 89).

DESI Collaboration et al. (2016a). “The DESI Experiment Part I: Science,Targeting,
and Survey Design”. In: arXiv e-prints, arXiv:1611.00036, arXiv:1611.00036.
doi: 10.48550/arXiv.1611.00036. arXiv: 1611.00036 [astro-ph.IM] (cit.
on pp. 32, 35, 66, 116).

DESI Collaboration et al. (2016b). “The DESI Experiment Part II: Instrument
Design”. In: arXiv e-prints, arXiv:1611.00037, arXiv:1611.00037. doi: 10.48550
/arXiv.1611.00037. arXiv: 1611.00037 [astro-ph.IM] (cit. on pp. 33, 66).

Harris, D. W. et al. (2016). “The Composite Spectrum of BOSS Quasars Selected
for Studies of the Ly𝛼 Forest”. In: AJ 151.6, 155, p. 155. doi: 10.3847/0004-6
256/151/6/155. arXiv: 1603.08626 [astro-ph.GA] (cit. on pp. xv, 68, 69, 84,
94).

Shen, Y. et al. (2016). “The Sloan Digital Sky Survey Reverberation Mapping
Project: Velocity Shifts of Quasar Emission Lines”. In: ApJ 831.1, 7, p. 7. doi:
10.3847/0004-637X/831/1/7. arXiv: 1602.03894 [astro-ph.GA] (cit. on
pp. 67, 94).

Sorini, D. et al. (2016). “Modeling the Ly𝛼 Forest in Collisionless Simulations”. In:
ApJ 827.2, 97, p. 97. doi: 10.3847/0004-637X/827/2/97. arXiv: 1602.08099
[astro-ph.CO] (cit. on p. 26).

Bautista, J. E. et al. (2017). “Measurement of baryon acoustic oscillation cor-
relations at z = 2.3 with SDSS DR12 Ly𝛼-Forests”. In: Astron. Astrophys.
603, A12, A12. doi: 10.1051/0004-6361/201730533. arXiv: 1702.00176
[astro-ph.CO] (cit. on pp. 32, 41, 47, 52, 53, 65, 116).

du Mas des Bourboux, H. et al. (2017). “Baryon acoustic oscillations from the
complete SDSS-III Ly𝛼-quasar cross-correlation function at z = 2.4”. In: Astron.
Astrophys. 608, A130, A130. doi: 10.1051/0004-6361/201731731. arXiv:
1708.02225 [astro-ph.CO] (cit. on pp. 32, 41, 49, 52, 116).

134

https://doi.org/10.1088/1475-7516/2015/12/017
https://doi.org/10.1088/1475-7516/2015/12/017
https://arxiv.org/abs/1506.04519
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1051/0004-6361/201423969
https://doi.org/10.1051
https://doi.org/10.1093/mnrasl/slv047
https://doi.org/10.1093\%2Fmnrasl\%2Fslv047
https://doi.org/10.1093\%2Fmnrasl\%2Fslv047
https://doi.org/10.48550/arXiv.1611.00036
https://arxiv.org/abs/1611.00036
https://doi.org/10.48550/arXiv.1611.00037
https://doi.org/10.48550/arXiv.1611.00037
https://arxiv.org/abs/1611.00037
https://doi.org/10.3847/0004-6256/151/6/155
https://doi.org/10.3847/0004-6256/151/6/155
https://arxiv.org/abs/1603.08626
https://doi.org/10.3847/0004-637X/831/1/7
https://arxiv.org/abs/1602.03894
https://doi.org/10.3847/0004-637X/827/2/97
https://arxiv.org/abs/1602.08099
https://arxiv.org/abs/1602.08099
https://doi.org/10.1051/0004-6361/201730533
https://arxiv.org/abs/1702.00176
https://arxiv.org/abs/1702.00176
https://doi.org/10.1051/0004-6361/201731731
https://arxiv.org/abs/1708.02225


BIBLIOGRAPHY

Zou, H. et al. (2017). “Project Overview of the Beĳing-Arizona Sky Survey”.
In: PASP 129.976, p. 064101. doi: 10.1088/1538- 3873/aa65ba. arXiv:
1702.03653 [astro-ph.GA] (cit. on p. 33).

Blomqvist, M. et al. (2018). “The triply-ionized carbon forest from eBOSS:
cosmological correlations with quasars in SDSS-IV DR14”. In: Journal of
Cosmology and Astroparticle Physics 2018.05, pp. 029–029. doi: 10.1088/1475-7
516/2018/05/029. url: https://doi.org/10.1088\%2F1475-7516\%2F2018
\%2F05\%2F029 (cit. on p. 52).

Busca, N. and C. Balland (2018). “QuasarNET: Human-level spectral classi-
fication and redshifting with Deep Neural Networks”. In: arXiv e-prints,
arXiv:1808.09955, arXiv:1808.09955. doi: 10.48550/arXiv.1808.09955. arXiv:
1808.09955 [astro-ph.IM] (cit. on p. 34).

Font-Ribera, A., P. McDonald, and A. Slosar (2018). “How to estimate the 3D
power spectrum of the Lyman-𝛼 forest”. In: JCAP 2018.1, 003, p. 003. doi:
10.1088/1475-7516/2018/01/003. arXiv: 1710.11036 [astro-ph.CO] (cit. on
p. 40).

Gontcho A Gontcho, S. et al. (2018). “Quasar - CIV forest cross-correlation with
SDSS DR12”. In: Mon. Not. Roy. Astron. Soc. 480.1, pp. 610–622. doi:
10.1093/mnras/sty1817. arXiv: 1712.09886 [astro-ph.CO] (cit. on p. 52).

Parks, D. et al. (2018). “Deep learning ofquasarspectra to discoverandcharacterize
damped Ly𝛼 systems”. In: Monthly Notices of the Royal Astronomical Society 476.1,
pp. 1151–1168. doi: 10.1093/mnras/sty196. url: https://doi.org/10.109
3\%2Fmnras\%2Fsty196 (cit. on p. 38).

Pérez-Ràfols, I. et al. (2018). “The SDSS-DR12 large-scale cross-correlation of
damped Lyman alpha systems with the Lyman alpha forest”. In: Mon. Not.
Roy. Astron. Soc. 473.3, pp. 3019–3038. doi: 10.1093/mnras/stx2525. arXiv:
1709.00889 [astro-ph.CO] (cit. on pp. 37, 88).

Rogers, K. K. et al. (2018). “Correlations in the three-dimensional Lyman-alpha
forest contaminated by high column density absorbers”. In: Mon. Not. Roy.
Astron. Soc. 476.3, pp. 3716–3728. doi: 10.1093/mnras/sty603. arXiv:
1711.06275 [astro-ph.CO] (cit. on pp. 51, 66).

Blomqvist, Michael et al. (2019). “Baryon acoustic oscillations from the cross-
correlation of Lyorption and quasars in eBOSS DR14”. In: A&A 629, A86. doi:
10.1051/0004-6361/201935641. url: https://doi.org/10.1051/0004-636
1/201935641 (cit. on p. 32).

Chabanier, S. et al. (2019). “The one-dimensional power spectrum from the
SDSS DR14 Ly𝛼 forests”. In: Journal of Cosmology and Astroparticle Physics

135

https://doi.org/10.1088/1538-3873/aa65ba
https://arxiv.org/abs/1702.03653
https://doi.org/10.1088/1475-7516/2018/05/029
https://doi.org/10.1088/1475-7516/2018/05/029
https://doi.org/10.1088\%2F1475-7516\%2F2018\%2F05\%2F029
https://doi.org/10.1088\%2F1475-7516\%2F2018\%2F05\%2F029
https://doi.org/10.48550/arXiv.1808.09955
https://arxiv.org/abs/1808.09955
https://doi.org/10.1088/1475-7516/2018/01/003
https://arxiv.org/abs/1710.11036
https://doi.org/10.1093/mnras/sty1817
https://arxiv.org/abs/1712.09886
https://doi.org/10.1093/mnras/sty196
https://doi.org/10.1093\%2Fmnras\%2Fsty196
https://doi.org/10.1093\%2Fmnras\%2Fsty196
https://doi.org/10.1093/mnras/stx2525
https://arxiv.org/abs/1709.00889
https://doi.org/10.1093/mnras/sty603
https://arxiv.org/abs/1711.06275
https://doi.org/10.1051/0004-6361/201935641
https://doi.org/10.1051/0004-6361/201935641
https://doi.org/10.1051/0004-6361/201935641


BIBLIOGRAPHY

2019.07, pp. 017–017. doi: 10.1088/1475-7516/2019/07/017. url: https:
//doi.org/10.1088\%2F1475-7516\%2F2019\%2F07\%2F017 (cit. on p. 32).

de Sainte Agathe, V. et al. (2019). “Baryon acoustic oscillations at z = 2.34 from
the correlations of Ly𝛼 absorption in eBOSS DR14”. In: Astron. Astrophys.
629, A85, A85. doi: 10.1051/0004-6361/201935638. arXiv: 1904.03400
[astro-ph.CO] (cit. on p. 32).

Dey, A. et al. (2019). “Overview of the DESI Legacy Imaging Surveys”. In: AJ
157.5, 168, p. 168. doi: 10.3847/1538-3881/ab089d. arXiv: 1804.08657
[astro-ph.IM] (cit. on pp. 29, 33).

du Mas des Bourboux, H. et al. (2019). “The Extended Baryon Oscillation
Spectroscopic Survey: Measuring the Cross-correlation between the Mg ii
Flux Transmission Field and Quasars and Galaxies at z = 0.59”. In: The
Astrophysical Journal 878.1, p. 47. doi: 10.3847/1538- 4357/ab1d49. url:
https://doi.org/10.3847 (cit. on pp. 44, 47, 59, 61).

Guo, Z. and P. Martini (2019). “Classification of Broad Absorption Line Quasars
with a Convolutional Neural Network”. In: ApJ 879.2, 72, p. 72. doi: 10.3847
/1538-4357/ab2590. arXiv: 1901.04506 [astro-ph.GA] (cit. on pp. 37, 67).

Ivezić, Ž. et al. (2019). “LSST: From Science Drivers to Reference Design and
Anticipated Data Products”. In: ApJ 873.2, 111, p. 111. doi: 10.3847/1538-43
57/ab042c. arXiv: 0805.2366 [astro-ph] (cit. on p. 116).

Lewis, A. (2019). “GetDist: a Python package for analysing Monte Carlo samples”.
In: arXiv: 1910.13970 [astro-ph.IM] (cit. on pp. 53, 61).

Zonca, A. et al. (2019). “healpy: equal area pixelization and spherical harmonics
transforms for data on the sphere in Python”. In: Journal of Open Source Software
4.35, p. 1298. doi: 10.21105/joss.01298. url: https://doi.org/10.21105
/joss.01298 (cit. on p. 45).

Bourboux, H. du Mas des et al. (2020). “THE COMPLETED SDSS-IV EXTENDED
BARYON OSCILLATION SPECTROSCOPIC SURVEY: BARYON ACOUSTIC
OSCILLATIONS WITH LYMAN-𝛼 FORESTS”. In: ApJ 901.2, p. 153. doi:
10.3847/1538-4357/abb085. arXiv: 2007.08995 (cit. on pp. viii, ix, 32–37,
39–47, 49–52, 54, 57, 59–61, 65, 69, 94).

Cuceu, A., A. Font-Ribera, and B. Joachimi (2020). “Bayesian methods for fit-
ting Baryon Acoustic Oscillations in the Lyman-𝛼 forest”. In: JCAP 2020.7,
035, p. 035. doi: 10.1088/1475-7516/2020/07/035. arXiv: 2004.02761
[astro-ph.CO] (cit. on p. 51).

Farr, J., A. Font-Ribera, and A. Pontzen (2020a). “Optimal strategies for identifying
quasars in DESI”. In: JCAP 2020.11, 015, p. 015. doi: 10.1088/1475-7516/202
0/11/015. arXiv: 2007.10348 [astro-ph.CO] (cit. on pp. 34, 69).

136

https://doi.org/10.1088/1475-7516/2019/07/017
https://doi.org/10.1088\%2F1475-7516\%2F2019\%2F07\%2F017
https://doi.org/10.1088\%2F1475-7516\%2F2019\%2F07\%2F017
https://doi.org/10.1051/0004-6361/201935638
https://arxiv.org/abs/1904.03400
https://arxiv.org/abs/1904.03400
https://doi.org/10.3847/1538-3881/ab089d
https://arxiv.org/abs/1804.08657
https://arxiv.org/abs/1804.08657
https://doi.org/10.3847/1538-4357/ab1d49
https://doi.org/10.3847
https://doi.org/10.3847/1538-4357/ab2590
https://doi.org/10.3847/1538-4357/ab2590
https://arxiv.org/abs/1901.04506
https://doi.org/10.3847/1538-4357/ab042c
https://doi.org/10.3847/1538-4357/ab042c
https://arxiv.org/abs/0805.2366
https://arxiv.org/abs/1910.13970
https://doi.org/10.21105/joss.01298
https://doi.org/10.21105/joss.01298
https://doi.org/10.21105/joss.01298
https://doi.org/10.3847/1538-4357/abb085
https://arxiv.org/abs/2007.08995
https://doi.org/10.1088/1475-7516/2020/07/035
https://arxiv.org/abs/2004.02761
https://arxiv.org/abs/2004.02761
https://doi.org/10.1088/1475-7516/2020/11/015
https://doi.org/10.1088/1475-7516/2020/11/015
https://arxiv.org/abs/2007.10348


BIBLIOGRAPHY

Farr, J. et al. (2020b). “LyaCoLoRe: synthetic datasets for current and future
Lyman-𝛼 forest BAO surveys”. In: JCAP 2020.3, 068, p. 068. doi: 10.1088/147
5-7516/2020/03/068. arXiv: 1912.02763 [astro-ph.CO] (cit. on p. 69).

Planck Collaboration et al. (2020). “Planck 2018 results. VI. Cosmological
parameters”. In: Astron. Astrophys. 641, A6, A6. doi: 10.1051/0004-6361/2
01833910. arXiv: 1807.06209 [astro-ph.CO] (cit. on pp. 32, 47, 53, 65, 71, 87,
89, 109, 120).

Tie, S. S. et al. (2020). “The DESI sky continuum monitor system”. In: Ground-
based and Airborne Instrumentation for Astronomy VIII. Ed. by C. J. Evans, J. J.
Bryant, and K. Motohara. Vol. 11447. Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, 1144785, p. 1144785. doi: 10.1117/12.25
61436. arXiv: 2101.11736 [astro-ph.IM] (cit. on p. 30).

Yèche, C. et al. (2020). “Preliminary Target Selection for the DESI Quasar (QSO)
Sample”. In: Research Notes of the American Astronomical Society 4.10, 179, p. 179.
doi: 10.3847/2515-5172/abc01a. arXiv: 2010.11280 [astro-ph.CO] (cit. on
p. 117).

Alam, S. et al. (2021). “Completed SDSS-IV extended Baryon Oscillation Spec-
troscopic Survey: Cosmological implications from two decades of spectro-
scopic surveys at the Apache Point Observatory”. In: Phys. Rev. D 103.8,
083533, p. 083533. doi: 10.1103/PhysRevD.103.083533. arXiv: 2007.08991
[astro-ph.CO] (cit. on p. 31).

Cuceu, A. et al. (2021). “Cosmology beyond BAO from the 3D distribution of the
Lyman-𝛼 forest”. In: Mon. Not. Roy. Astron. Soc. 506.4, pp. 5439–5450. doi:
10.1093/mnras/stab1999. arXiv: 2103.14075 [astro-ph.CO] (cit. on pp. 66,
72, 86).

Foroozan, S., A. Krolewski, and W. J. Percival (2021). “Testing large-scale structure
measurements against Fisher matrix predictions”. In: JCAP 2021.10, 044, p. 044.
doi: 10.1088/1475-7516/2021/10/044. arXiv: 2106.11432 [astro-ph.CO]
(cit. on p. 116).

Ho, M.-F., S. Bird, and R. Garnett (2021). “Damped Lyman-𝛼 absorbers from Sloan
digital sky survey DR16Q with Gaussian processes”. In: Monthly Notices of
the Royal Astronomical Society 507.1, pp. 704–719. issn: 0035-8711. doi: 10.1
093/mnras/stab2169. eprint: https://academic.oup.com/mnras/article-
pdf/507/1/704/39771986/stab2169.pdf. url: https://doi.org/10.1093
/mnras/stab2169 (cit. on p. 38).

McGreer, I., J. Moustakas, and J. Schindler (2021). simqso: Simulated quasar spectra
generator. Astrophysics Source Code Library, record ascl:2106.008 (cit. on pp. 69,
94).

137

https://doi.org/10.1088/1475-7516/2020/03/068
https://doi.org/10.1088/1475-7516/2020/03/068
https://arxiv.org/abs/1912.02763
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1117/12.2561436
https://doi.org/10.1117/12.2561436
https://arxiv.org/abs/2101.11736
https://doi.org/10.3847/2515-5172/abc01a
https://arxiv.org/abs/2010.11280
https://doi.org/10.1103/PhysRevD.103.083533
https://arxiv.org/abs/2007.08991
https://arxiv.org/abs/2007.08991
https://doi.org/10.1093/mnras/stab1999
https://arxiv.org/abs/2103.14075
https://doi.org/10.1088/1475-7516/2021/10/044
https://arxiv.org/abs/2106.11432
https://doi.org/10.1093/mnras/stab2169
https://doi.org/10.1093/mnras/stab2169
https://academic.oup.com/mnras/article-pdf/507/1/704/39771986/stab2169.pdf
https://academic.oup.com/mnras/article-pdf/507/1/704/39771986/stab2169.pdf
https://doi.org/10.1093/mnras/stab2169
https://doi.org/10.1093/mnras/stab2169


BIBLIOGRAPHY

Alexander, D. M. et al. (2022). The DESI Survey Validation: Results from Visual
Inspection of the Quasar Survey Spectra. doi: 10.48550/ARXIV.2208.08517. url:
https://arxiv.org/abs/2208.08517 (cit. on pp. 34, 35).

Cuceu, A. et al. (2022a). “New constraints on the expansion rate at redshift 2.3
from the Lyman-𝛼 forest”. In: arXiv e-prints, arXiv:2209.13942, arXiv:2209.13942.
doi: 10.48550/arXiv.2209.13942. arXiv: 2209.13942 [astro-ph.CO] (cit.
on p. 32).

Cuceu, A. et al. (2022b). “The Alcock-Paczyński effect from Lyman-𝛼 forest
correlations: Analysis validation with synthetic data”. In: arXiv e-prints,
arXiv:2209.12931, arXiv:2209.12931. doi: 10.48550/arXiv.2209.12931. arXiv:
2209.12931 [astro-ph.CO] (cit. on p. 51).

DESI Collaboration et al. (2022). “Overview of the Instrumentation for the Dark
Energy Spectroscopic Instrument”. In: AJ 164.5, 207, p. 207. doi: 10.3847/15
38-3881/ac882b. arXiv: 2205.10939 [astro-ph.IM] (cit. on pp. 27, 33, 66).

Ennesser, L. et al. (2022). “The impact and mitigation of broad-absorption-line
quasars in Lyman 𝛼 forest correlations”. In: Mon. Not. Roy. Astron. Soc.
511.3, pp. 3514–3523. doi: 10.1093/mnras/stac301. arXiv: 2111.09439
[astro-ph.CO] (cit. on pp. 37, 66).

Givans, J. J. et al. (2022). “Non-linearities in the Lyman-𝛼 forest and in its
cross-correlation with dark matter halos”. In: JCAP 2022.9, 070, p. 070. doi:
10.1088/1475-7516/2022/09/070. arXiv: 2205.00962 [astro-ph.CO] (cit. on
p. 31).

Ramírez-Pérez, C. et al. (2022). “CoLoRe: fast cosmological realisations over large
volumes with multiple tracers”. In: JCAP 2022.5, 002, p. 002. doi: 10.1088/14
75-7516/2022/05/002. arXiv: 2111.05069 [astro-ph.CO] (cit. on p. 68).

Wang, B. et al. (2022). “Deep Learning of Dark Energy Spectroscopic Instrument
Mock Spectra to Find Damped Ly𝛼 Systems”. In: ApJS 259.1, 28, p. 28. doi:
10.3847/1538-4365/ac4504. arXiv: 2201.00827 [astro-ph.GA] (cit. on
pp. 38, 67).

Yang, L. et al. (2022). “Metal Lines Associated with the Ly𝛼 Forest from eBOSS
Data”. In: The Astrophysical Journal 935.2, p. 121. doi: 10.3847/1538-4357
/ac7b2e. url: https://doi.org/10.3847\%2F1538-4357\%2Fac7b2e (cit. on
p. 51).

Youles, S. et al. (2022). “The effect of quasar redshift errors on Lyman-𝛼 forest
correlation functions”. In: Mon. Not. Roy. Astron. Soc. 516.1, pp. 421–433.
doi: 10.1093/mnras/stac2102. arXiv: 2205.06648 [astro-ph.CO] (cit. on
pp. 67, 69, 75, 77, 81, 86, 93, 95, 97).

138

https://doi.org/10.48550/ARXIV.2208.08517
https://arxiv.org/abs/2208.08517
https://doi.org/10.48550/arXiv.2209.13942
https://arxiv.org/abs/2209.13942
https://doi.org/10.48550/arXiv.2209.12931
https://arxiv.org/abs/2209.12931
https://doi.org/10.3847/1538-3881/ac882b
https://doi.org/10.3847/1538-3881/ac882b
https://arxiv.org/abs/2205.10939
https://doi.org/10.1093/mnras/stac301
https://arxiv.org/abs/2111.09439
https://arxiv.org/abs/2111.09439
https://doi.org/10.1088/1475-7516/2022/09/070
https://arxiv.org/abs/2205.00962
https://doi.org/10.1088/1475-7516/2022/05/002
https://doi.org/10.1088/1475-7516/2022/05/002
https://arxiv.org/abs/2111.05069
https://doi.org/10.3847/1538-4365/ac4504
https://arxiv.org/abs/2201.00827
https://doi.org/10.3847/1538-4357/ac7b2e
https://doi.org/10.3847/1538-4357/ac7b2e
https://doi.org/10.3847\%2F1538-4357\%2Fac7b2e
https://doi.org/10.1093/mnras/stac2102
https://arxiv.org/abs/2205.06648


BIBLIOGRAPHY

Alexander, D. M. et al. (2023). “The DESI Survey Validation: Results from
Visual Inspection of the Quasar Survey Spectra”. In: AJ 165.3, 124, p. 124.
doi: 10.3847/1538-3881/acacfc. arXiv: 2208.08517 [astro-ph.GA] (cit. on
p. 67).

Brodzeller, A. et al. (2023). “Performance of the Quasar Spectral Templates
for the Dark Energy Spectroscopic Instrument”. In: AJ 166.2, 66, p. 66. doi:
10.3847/1538-3881/ace35d. arXiv: 2305.10426 [astro-ph.IM] (cit. on
pp. 34, 63, 68, 94).

Chaussidon, E. et al. (2023). “Target Selection and Validation of DESI Quasars”. In:
ApJ 944.1, 107, p. 107. doi: 10.3847/1538-4357/acb3c2. arXiv: 2208.08511
[astro-ph.CO] (cit. on pp. 33–35, 66).

Cuceu, A. et al. (2023a). “Constraints on the Cosmic Expansion Rate at Redshift
2.3 from the Lyman-𝛼 Forest”. In: Phys. Rev. Lett. 130.19, 191003, p. 191003.
doi: 10.1103/PhysRevLett.130.191003. arXiv: 2209.13942 [astro-ph.CO]
(cit. on pp. 66, 72).

Cuceu, A. et al. (2023b). “The Alcock-Paczyński effect from Lyman-𝛼 forest
correlations: analysis validation with synthetic data”. In: Mon. Not. Roy.
Astron. Soc. 523.3, pp. 3773–3790. doi: 10.1093/mnras/stad1546. arXiv:
2209.12931 [astro-ph.CO] (cit. on p. 72).

DESI Collaboration et al. (2023a). “The Early Data Release of the Dark Energy Spec-
troscopic Instrument”. In: arXiv e-prints, arXiv:2306.06308, arXiv:2306.06308.
doi: 10.48550/arXiv.2306.06308. arXiv: 2306.06308 [astro-ph.CO] (cit.
on p. 33).

DESI Collaboration et al. (2023b). “Validation of the Scientific Program for the
Dark Energy Spectroscopic Instrument”. In: arXiv e-prints, arXiv:2306.06307,
arXiv:2306.06307. doi: 10.48550/arXiv.2306.06307. arXiv: 2306.06307
[astro-ph.CO] (cit. on pp. 34, 60).

Gordon, C. et al. (2023). “3D correlations in the Lyman-𝛼 forest from early DESI
data”. In: JCAP 2023.11, 045, p. 045. doi: 10.1088/1475-7516/2023/11/045.
arXiv: 2308.10950 [astro-ph.CO] (cit. on pp. 30, 71).

Guy, J. et al. (2023). “The Spectroscopic Data Processing Pipeline for the Dark
Energy Spectroscopic Instrument”. In: AJ 165.4, 144, p. 144. doi: 10.3847/15
38-3881/acb212. arXiv: 2209.14482 [astro-ph.IM] (cit. on pp. 29, 33, 34, 36,
49, 66).

Hadzhiyska, B. et al. (2023). “Planting a Lyman alpha forest on ABACUS-
SUMMIT”. In: Mon. Not. Roy. Astron. Soc. 524.1, pp. 1008–1024. doi:
10.1093/mnras/stad1920. arXiv: 2305.08899 [astro-ph.CO] (cit. on pp. 56,
57).

139

https://doi.org/10.3847/1538-3881/acacfc
https://arxiv.org/abs/2208.08517
https://doi.org/10.3847/1538-3881/ace35d
https://arxiv.org/abs/2305.10426
https://doi.org/10.3847/1538-4357/acb3c2
https://arxiv.org/abs/2208.08511
https://arxiv.org/abs/2208.08511
https://doi.org/10.1103/PhysRevLett.130.191003
https://arxiv.org/abs/2209.13942
https://doi.org/10.1093/mnras/stad1546
https://arxiv.org/abs/2209.12931
https://doi.org/10.48550/arXiv.2306.06308
https://arxiv.org/abs/2306.06308
https://doi.org/10.48550/arXiv.2306.06307
https://arxiv.org/abs/2306.06307
https://arxiv.org/abs/2306.06307
https://doi.org/10.1088/1475-7516/2023/11/045
https://arxiv.org/abs/2308.10950
https://doi.org/10.3847/1538-3881/acb212
https://doi.org/10.3847/1538-3881/acb212
https://arxiv.org/abs/2209.14482
https://doi.org/10.1093/mnras/stad1920
https://arxiv.org/abs/2305.08899


BIBLIOGRAPHY

Hahn, C. et al. (2023). “The DESI Bright Galaxy Survey: Final Target Selection,
Design, and Validation”. In: AJ 165.6, 253, p. 253. doi: 10.3847/1538-3881
/accff8. arXiv: 2208.08512 [astro-ph.CO] (cit. on pp. 33, 66).

Kirkby et al. 2023 (2023). “in preparation”. In: (cit. on p. 33).
Myers, A. D. et al. (2023). “The Target-selection Pipeline for the Dark Energy

Spectroscopic Instrument”. In: The Astronomical Journal 165.2, p. 50. doi:
10.3847/1538-3881/aca5f9. url: https://doi.org/10.3847 (cit. on pp. 33,
35).

Pérez-Ràfols, I. et al. (2023). “The cross-correlation of galaxies in absorption with
the Lyman 𝛼 forest”. In: Mon. Not. Roy. Astron. Soc. 524.1, pp. 1464–1477.
doi: 10.1093/mnras/stad1994. arXiv: 2210.02973 [astro-ph.CO] (cit. on
pp. 37, 66).

Raichoor, A. et al. (2023). “Target Selection and Validation of DESI Emission Line
Galaxies”. In: AJ 165.3, 126, p. 126. doi: 10.3847/1538-3881/acb213. arXiv:
2208.08513 [astro-ph.CO] (cit. on pp. 33, 66).

Schlafly, E. F. et al. (2023). “Survey Operations for the Dark Energy Spectroscopic
Instrument”. In: AJ 166.6, 259, p. 259. doi: 10.3847/1538-3881/ad0832.
arXiv: 2306.06309 [astro-ph.CO] (cit. on pp. 27, 33, 66).

Schlegel et al. 2023 (2023). “in preparation”. In: (cit. on p. 33).
Silber, J. H. et al. (2023). “The Robotic Multiobject Focal Plane System of the

Dark Energy Spectroscopic Instrument (DESI)”. In: AJ 165.1, 9, p. 9. doi:
10.3847/1538-3881/ac9ab1. arXiv: 2205.09014 [astro-ph.IM] (cit. on
p. 33).

Zhou, R. et al. (2023). “Target Selection and Validation of DESI Luminous Red
Galaxies”. In: AJ 165.2, 58, p. 58. doi: 10.3847/1538-3881/aca5fb. arXiv:
2208.08515 [astro-ph.CO] (cit. on pp. 33, 66).

DESI Collaboration et al. (2024a). “DESI 2024 VII: Cosmological Constraints
from the Full-Shape Modeling of Clustering Measurements”. In: arXiv e-prints,
arXiv:2411.12022, arXiv:2411.12022. doi: 10.48550/arXiv.2411.12022. arXiv:
2411.12022 [astro-ph.CO] (cit. on p. 66).

DESI Collaboration et al. (2024b). “Validation of the Scientific Program for the
Dark Energy Spectroscopic Instrument”. In: AJ 167.2, 62, p. 62. doi: 10.3847
/1538-3881/ad0b08. arXiv: 2306.06307 [astro-ph.CO] (cit. on pp. 116, 122).

Filbert, S. et al. (2024). “Broad absorption line quasars in the Dark Energy
Spectroscopic Instrument Early Data Release”. In: Mon. Not. Roy. Astron.
Soc. 532.4, pp. 3669–3681. doi: 10.1093/mnras/stae1610. arXiv: 2309.03434
[astro-ph.CO] (cit. on p. 37).

140

https://doi.org/10.3847/1538-3881/accff8
https://doi.org/10.3847/1538-3881/accff8
https://arxiv.org/abs/2208.08512
https://doi.org/10.3847/1538-3881/aca5f9
https://doi.org/10.3847
https://doi.org/10.1093/mnras/stad1994
https://arxiv.org/abs/2210.02973
https://doi.org/10.3847/1538-3881/acb213
https://arxiv.org/abs/2208.08513
https://doi.org/10.3847/1538-3881/ad0832
https://arxiv.org/abs/2306.06309
https://doi.org/10.3847/1538-3881/ac9ab1
https://arxiv.org/abs/2205.09014
https://doi.org/10.3847/1538-3881/aca5fb
https://arxiv.org/abs/2208.08515
https://doi.org/10.48550/arXiv.2411.12022
https://arxiv.org/abs/2411.12022
https://doi.org/10.3847/1538-3881/ad0b08
https://doi.org/10.3847/1538-3881/ad0b08
https://arxiv.org/abs/2306.06307
https://doi.org/10.1093/mnras/stae1610
https://arxiv.org/abs/2309.03434
https://arxiv.org/abs/2309.03434


BIBLIOGRAPHY

Ivanov, M. M. (2024). “Lyman alpha forest power spectrum in effective field
theory”. In: Phys. Rev. D 109.2, 023507, p. 023507. doi: 10.1103/PhysRevD.1
09.023507. arXiv: 2309.10133 [astro-ph.CO] (cit. on p. 126).

Miller, T. N. et al. (2024). “The Optical Corrector for the Dark Energy Spectroscopic
Instrument”. In: AJ 168.2, 95, p. 95. doi: 10.3847/1538-3881/ad45fe. arXiv:
2306.06310 [astro-ph.IM] (cit. on pp. 33, 66).

Poppett, C. et al. (2024). “Overview of the Fiber System for the Dark Energy
Spectroscopic Instrument”. In: AJ 168.6, 245, p. 245. doi: 10.3847/1538-3881
/ad76a4 (cit. on pp. 27, 33, 66).

Ramírez-Pérez, C. et al. (2024). “The Lyman-𝛼 forest catalogue from the Dark
Energy Spectroscopic Instrument Early Data Release”. In: Mon. Not. Roy.
Astron. Soc. 528.4, pp. 6666–6679. doi: 10.1093/mnras/stad3781. arXiv:
2306.06312 [astro-ph.CO] (cit. on pp. 30, 33, 36, 38–41, 57, 61, 70).

Ruhlmann-Kleider, V. et al. (2024). “High redshift LBGs from deep broadband
imaging for future spectroscopic surveys”. In: JCAP 2024.8, 059, p. 059. doi:
10.1088/1475-7516/2024/08/059. arXiv: 2404.03569 [astro-ph.CO] (cit. on
pp. 117, 120).

Adame, A. G. et al. (2025a). “DESI 2024 III: baryon acoustic oscillations from
galaxies and quasars”. In: JCAP 2025.4, 012, p. 012. doi: 10.1088/1475-7516
/2025/04/012. arXiv: 2404.03000 [astro-ph.CO] (cit. on p. 66).

Adame, A. G. et al. (2025b). “DESI 2024 IV: Baryon Acoustic Oscillations from the
Lyman alpha forest”. In: JCAP 2025.1, 124, p. 124. doi: 10.1088/1475-7516/2
025/01/124. arXiv: 2404.03001 [astro-ph.CO] (cit. on pp. 30, 41, 66, 68, 71,
73, 74, 88, 89, 98, 125).

Adame, A. G. et al. (2025c). “DESI 2024 VI: cosmological constraints from the
measurements of baryon acoustic oscillations”. In: JCAP 2025.2, 021, p. 021.
doi: 10.1088/1475-7516/2025/02/021. arXiv: 2404.03002 [astro-ph.CO]
(cit. on pp. 30, 65, 66).

Bailey, S. J. et al. (2025). “Redrock, in prep”. In: (cit. on pp. 29, 34, 67).
Bault, A. et al. (2025). “Impact of systematic redshift errors on the cross-correlation

of the Lyman-𝛼 forest with quasars at small scales using DESI Early Data”.
In: JCAP 2025.1, 130, p. 130. doi: 10.1088/1475-7516/2025/01/130. arXiv:
2402.18009 [astro-ph.CO] (cit. on pp. 33, 44, 49, 60, 68, 94).

Casas, L. et al. (2025). “Validation of the DESI DR2 Ly𝛼 BAO analysis using
synthetic datasets”. In: arXiv e-prints, arXiv:2503.14741, arXiv:2503.14741. doi:
10.48550/arXiv.2503.14741. arXiv: 2503.14741 [astro-ph.IM] (cit. on
pp. 67, 95).

141

https://doi.org/10.1103/PhysRevD.109.023507
https://doi.org/10.1103/PhysRevD.109.023507
https://arxiv.org/abs/2309.10133
https://doi.org/10.3847/1538-3881/ad45fe
https://arxiv.org/abs/2306.06310
https://doi.org/10.3847/1538-3881/ad76a4
https://doi.org/10.3847/1538-3881/ad76a4
https://doi.org/10.1093/mnras/stad3781
https://arxiv.org/abs/2306.06312
https://doi.org/10.1088/1475-7516/2024/08/059
https://arxiv.org/abs/2404.03569
https://doi.org/10.1088/1475-7516/2025/04/012
https://doi.org/10.1088/1475-7516/2025/04/012
https://arxiv.org/abs/2404.03000
https://doi.org/10.1088/1475-7516/2025/01/124
https://doi.org/10.1088/1475-7516/2025/01/124
https://arxiv.org/abs/2404.03001
https://doi.org/10.1088/1475-7516/2025/02/021
https://arxiv.org/abs/2404.03002
https://doi.org/10.1088/1475-7516/2025/01/130
https://arxiv.org/abs/2402.18009
https://doi.org/10.48550/arXiv.2503.14741
https://arxiv.org/abs/2503.14741


BIBLIOGRAPHY

Chaves-Montero, J. et al. (2025). “ForestFlow: predicting the Lyman-𝛼 forest clus-
tering from linear to nonlinear scales”. In: Astron. Astrophys. 694, A187, A187.
doi: 10.1051/0004-6361/202452039. arXiv: 2409.05682 [astro-ph.CO]
(cit. on p. 124).

Cuceu, A. et al. (2025a). “DESI DR1 Ly𝛼 forest: 3D full-shape analysis and
cosmological constraints, in prep.” In: (cit. on pp. 30, 71, 87–89, 91, 92, 94, 124).

Cuceu, A. et al. (2025b). “Validation of the DESI 2024 Ly𝛼 forest BAO analysis
using synthetic datasets”. In: JCAP 2025.1, 148, p. 148. doi: 10.1088/1475-75
16/2025/01/148. arXiv: 2404.03004 [astro-ph.CO] (cit. on pp. 67, 68).

DESI Collaboration et al. (2025a). “Data Release 1 of the Dark Energy Spectroscopic
Instrument”. In: arXiv e-prints, arXiv:2503.14745, arXiv:2503.14745. doi: 10.4
8550/arXiv.2503.14745. arXiv: 2503.14745 [astro-ph.CO] (cit. on pp. 30,
68, 70).

DESI Collaboration et al. (2025b). “DESI DR2 Results I: Baryon Acoustic Oscil-
lations from the Lyman Alpha Forest”. In: arXiv e-prints, arXiv:2503.14739,
arXiv:2503.14739. doi: 10.48550/arXiv.2503.14739. arXiv: 2503.14739
[astro-ph.CO] (cit. on pp. 23, 71, 95, 120, 124, 125).

DESI Collaboration et al. (2025c). “DESI DR2 Results II: Measurements of
Baryon Acoustic Oscillations and Cosmological Constraints”. In: arXiv e-prints,
arXiv:2503.14738, arXiv:2503.14738. doi: 10.48550/arXiv.2503.14738. arXiv:
2503.14738 [astro-ph.CO] (cit. on pp. i, 9, 23).

Gordon, C. et al. (2025). “Modelling the impact of quasar redshift errors on the
full-shape analysis of correlations in the Lyman-𝑎 forest”. In: arXiv e-prints,
arXiv:2505.08789, arXiv:2505.08789. doi: 10.48550/arXiv.2505.08789. arXiv:
2505.08789 [astro-ph.CO] (cit. on p. 30).

Guy, J. et al. (2025). “Characterization of contaminants in the Lyman-alpha forest
auto-correlation with DESI”. In: JCAP 2025.1, 140, p. 140. doi: 10.1088/1475-
7516/2025/01/140. arXiv: 2404.03003 [astro-ph.CO] (cit. on pp. xv, 33, 48,
49, 60, 61).

Herrera-Alcantar, H et al. (2025a). “The Lyman-𝛼 forest 3D correlation function
from LBG spectra: First measurement with DESI and BAO prospects., in prep”.
In: (cit. on pp. xii, 116–119).

Herrera-Alcantar, H. K. et al. (2025b). “Synthetic spectra for Lyman-𝛼 forest
analysis in the Dark Energy Spectroscopic Instrument”. In: JCAP 2025.1,
141, p. 141. doi: 10.1088/1475-7516/2025/01/141. arXiv: 2401.00303
[astro-ph.CO] (cit. on pp. 33, 39, 68, 69).

J Zou. et al. (2025). “in preparation”. In: (cit. on pp. 38, 59).

142

https://doi.org/10.1051/0004-6361/202452039
https://arxiv.org/abs/2409.05682
https://doi.org/10.1088/1475-7516/2025/01/148
https://doi.org/10.1088/1475-7516/2025/01/148
https://arxiv.org/abs/2404.03004
https://doi.org/10.48550/arXiv.2503.14745
https://doi.org/10.48550/arXiv.2503.14745
https://arxiv.org/abs/2503.14745
https://doi.org/10.48550/arXiv.2503.14739
https://arxiv.org/abs/2503.14739
https://arxiv.org/abs/2503.14739
https://doi.org/10.48550/arXiv.2503.14738
https://arxiv.org/abs/2503.14738
https://doi.org/10.48550/arXiv.2505.08789
https://arxiv.org/abs/2505.08789
https://doi.org/10.1088/1475-7516/2025/01/140
https://doi.org/10.1088/1475-7516/2025/01/140
https://arxiv.org/abs/2404.03003
https://doi.org/10.1088/1475-7516/2025/01/141
https://arxiv.org/abs/2401.00303
https://arxiv.org/abs/2401.00303


BIBLIOGRAPHY

Payerne, C. et al. (2025). “Selection of high-redshift Lyman-Break Galaxies from
broadband and wide photometric surveys”. In: JCAP 2025.5, 031, p. 031. doi:
10.1088/1475-7516/2025/05/031. arXiv: 2410.08062 [astro-ph.CO] (cit. on
pp. 116, 117).

The NOVAthesis template (v7.1.27) (Lourenço, 2021). (12cc90221730b8ba41bb3b1f8b517acd)Bibliography

Lourenço, J. M. (2021). The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. url: https://github.com/joaomlourenco/novathesis/raw/main/template.pdf(cit. on p. 143).

143

https://doi.org/10.1088/1475-7516/2025/05/031
https://arxiv.org/abs/2410.08062
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/main/template.pdf








2025 Measuring cosmic expansion and growth with the Lyman-𝛼 forest in DESI Calum Gordon


	EJEMPLAR_TESIS_0 4.pdf
	8. Annexos
	Annex 1. Taula de resposta segons el nivell de risc d’arbovirosis
	Zika virus screening during pregnancy: Results and lessons learned from a screening program and a post-delivery follow-up a...
	1  BACKGROUND
	2  METHODS
	2.1  Study setting
	2.2  Study design
	2.3  Laboratory testing
	2.4  Serology output definitions and follow-up of high-risk pregnant women
	2.5  Ultrasound examination output definitions
	2.6  Newborn children follow-up outputs
	2.7  Data collection and statistical analysis
	2.8  Ethical issues

	3  RESULTS
	3.1  Participant sample description
	3.2  Serological results
	3.3  Ultrasound results and post-delivery follow-up

	4  DISCUSSION
	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES

	Mpox cases finding: Evaluation of a Primary Care detection program in the Northern Metropolitan area from Barcelona (Spain)
	Introduction
	Material and methods
	Study setting
	Description of the community-based device
	Inclusion criteria of Mpox cases
	Laboratory testing
	Procedures
	Data collection and statistical analysis

	Results
	Discussion
	What is already known on this topic
	What this study adds
	How this study might affect research, practice or policy
	Ethical considerations


	EJEMPLAR_TESIS_1.pdf
	1f784da9b504add2e181d007a6e42b9b370600b17a0d37df3c6b7c314c422ee1.pdf
	Mental health in the short- and long-term adaptation processes of university students during the COVID-19 pandemic: A systematic review and meta-analysis
	1f784da9b504add2e181d007a6e42b9b370600b17a0d37df3c6b7c314c422ee1.pdf
	Predictive factors of the psychological impact of the COVID-19 pandemic on university students: a study in six Ibero-American countries
	_heading=h.1fob9te

	1f784da9b504add2e181d007a6e42b9b370600b17a0d37df3c6b7c314c422ee1.pdf
	7d75edc29e9227249a30c4631e047fcfdf7e0a15d0e9165b71da835ad82e4776.pdf
	_Hlk177118130
	_Hlk151220907
	_Hlk176883813
	_Hlk151125273
	_Hlk176879048

	1f784da9b504add2e181d007a6e42b9b370600b17a0d37df3c6b7c314c422ee1.pdf
	8d772d9085b35ff745c03657d7e3fac0619fd6a1b5dde21e14ed84f87982361a.pdf
	1f784da9b504add2e181d007a6e42b9b370600b17a0d37df3c6b7c314c422ee1.pdf

	EJEMPLAR_TESIS_0 7.pdf
	Front Matter
	Cover
	
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 The cosmological background
	1.1 Spacetime
	1.1.1 Geodesics and Christoffel symbols
	1.1.2 Einstein's field equations

	1.2 An expanding Universe
	1.2.1 Redshift
	1.2.2 Comoving distance

	1.3 Constituents of the cosmos
	1.4 Friedmann's equations
	1.5 A brief history of the early Universe

	2 The Growth of Structure
	2.1 Inflation
	2.2 Evolution of perturbations
	2.2.1 Transfer function and growth factor
	2.2.2 Linear matter power spectrum

	2.3 Baryon Acoustic Oscillations

	3 Measuring large-scale structure
	3.1 Clustering and redshift-space distortions
	3.1.1 Measuring BAO

	3.2 The Lyman- forest
	3.2.1 Optical depth
	3.2.2 Cosmology with Ly absorption


	4 The Dark Energy Spectroscopic Instrument
	4.1 Instrument and survey design
	4.2 DESI Ly

	5 Clustering measurements from the Ly forest in the DESI Early Data Release
	5.1 Introduction
	5.2 Data
	5.2.1 Quasar spectra
	5.2.2 Pixel masking
	5.2.3 The flux transmission field

	5.3 Measuring the correlation functions
	5.3.1 Ly weights
	5.3.2 Continuum distortion
	5.3.3 Autocorrelation
	5.3.4 Cross-correlation
	5.3.5 Covariance matrix

	5.4 Correlation function models
	5.4.1 Power spectra
	5.4.2 Non-linear corrections
	5.4.3 Modelling contaminants
	5.4.4 Modelling the continuum distortion

	5.5 Fits to the data
	5.5.1 Fit probability
	5.5.2 Comparison with eBOSS DR16

	5.6 Conclusion
	5.7 Appendix: complete fit results

	6 Modelling the impact of quasar redshift errors on full-shape analyses of correlations in the Ly forest.
	6.1 Introduction
	6.2 Method
	6.2.1 Data sets
	6.2.2 Continuum fitting
	6.2.3 Correlation functions
	6.2.4 BAO and full-shape information
	6.2.5 Correlation model

	6.3 Impact of redshift errors
	6.4 Modelling the contamination
	6.4.1 Variation with wavelength
	6.4.2 Autocorrelation model
	6.4.3 Modelling 
	6.4.4 Cross-correlation model

	6.5 Results
	6.5.1 Parameter degeneracies
	6.5.2 Fits

	6.6 Discussion
	6.6.1 Contamination on real data
	6.6.2 Mitigating contamination in real data

	6.7 Summary
	6.8 Appendix: full model results
	6.9 Appendix: mean continuum expansion
	6.9.1 Small-scale contamination model


	7 Lyman- BAO forecasts in DESI-II
	7.1 Fisher forecast
	7.1.1 Ly power
	7.1.2 Evaluating PNeff and Pw
	7.1.3 Covariance estimation
	7.1.4 Estimating BAO

	7.2 DESI-II forecast results
	7.2.1 Computing the Fisher matrix


	8 Conclusion
	Bibliography
	Back Matter
	
	Back Cover
	Spine



	Títol de la tesi: Measuring cosmic expansion and growth with the
Lyman -     forest in DESI
	Nom autor/a: Calum Gordon


