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ABREVIATURAS 

 

LMA: leucemia/s mieloblástica/s aguda/s  

LMA R/R: leucemia aguda mieloblástica recaída o refractaria 

LPA: leucemia promielocítica aguda (M3 clasificaicón FAB, t (15:17) (q22; q12) /PML-

RARα) 

NMD: neoplasia mielodisplásica 

NMPC: neoplasia mieloproliferativa crónica 

LSD1: demetilasa-1 específica de lisinas 

HSCs: hematopoietic stem cells o células madre hematopoyéticas 

LSC: células madre leucémicas 

ADN: ácido desoxirribonucleico 

SCF: Stem cell factor (factor de células madre) 

Tpo: Trombopoyetina (hormona principal estímulo de la tromobopoyesis) 

IL: interleucina (-“número”) 

GM-CSF: granulocyte macrophage-colony stimulating factor (factor estimulante de 

colonias granulocítico-macrofágico)  

Epo: eritropoyetina (hormona principal estímulo de la eritropoyesis) 

M-CSF: macrophage-colony stimulating factor (factor estimulante de colonias 

macrofágico) 

G-CSF: granulocyte-colony stimulating factor (factore estimulante de colonias 

granulocítico) 

SDF-1: stromal cell-derived factor-1 (factor 1 derivado de células del estroma) 

FLT-3 ligando:  ligando de la tirosina quinasa 3 similar a FMS 

TNF-a: tumour necrosis factor-alpha (factor de necrosis tumoral alfa) 

TGFβ: transforming growth factor beta (factor de crecimiento transformante beta). 

Agente fibrogénico, que estimula la quimiotaxis hacia los fibroblastos y aumenta la 

expresión de colágeno, fibronectina y proteoglicanos 

CXCL12: citocina CXC quimiotáctica para los linfocitos T y los monocitos número 12, 

específica para receptor CXCR4 

CXCR4: gen que codifica la proteína que actúa como receptor transmembrana 

(también llamado fusina o CD184) y que se une a la citocina CXCL12 en humanos.  

https://es.wikipedia.org/wiki/Factor_de_crecimiento_transformante_beta
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HIF1α: subunidad alfa del factor 1 inducible por hipoxia (HIF1A). Proteína codificada 

en humanos por el gen HIF1A, factor de transcripción esencial en la respuesta celular 

y sistémica a la hipoxia 

FOXO: regulador de la transcripción de la familia forkhead box O (horquilla de unión 

al ADN O) 

PAMPs: patrones moleculares asociados a patógenos 

DAMPs: patrones moleculares asociados a daño  

ROS: especies reactivas de oxígeno 

NRF2: regulador de la transcripción llamado factor nuclear eritroide 2 

MicroARN: ácido ribonucleico monocatenario de longitud entre 21 y 25 nucleótidos 

IncARN: ácido ribonucleico no codificante 

FISH: hibridación in situ fluorescente 

qASO-PCR: reacción en cadena de la polimerasa alelo específica cuantitativa 

ddPCR: PCR digital 

NGS: next-generation sequencing (secuenciación génica masiva)  

VAF: variant allel frequency (frecuencia alélica de la mutación) 

AloTPH: trasplante de progenitores hematopoyéticos alogénico 

RC1: primera respuesta completa  

snRNPs: small nuclear ribonucleoproteins (pequeñas ribonucleoproteínas nucleares) 

DNMT1: ADN metiltransferasa 1  

TP53: proteína supresora de tumores p53 

E2F1: factor de transcripción E2F1  

STAT3: transductor de señales y activador de la transcripción 3 

RB1: proteína del retinoblastoma  

MEF2D: factor potenciador de miocitos 2D  

MTA1: proteína asociada a metástasis 1  

ERα: receptor de estrógenos alfa  

HSP90: proteína de choque térmico 90  

HIF1: factor inducible por hipoxia 1  

AGO2: componente catalítico 2 del complejo RISC de argonauta  

 

 

https://es.wikipedia.org/wiki/Nucle%C3%B3tidos
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Resumen 

Las leucemias mieloblásticas agudas (LMA) constituyen el segundo tipo de leucemia 

más frecuente en la edad adulta, siendo la responsable de la mayor mortalidad. El 

estándar de tratamiento con intención curativa se basa en quimioterapia intensiva con 

citarabina y antraciclinas, incluyendo a menudo el trasplante alogénico de 

progenitores hematopoyéticos. Sin embargo, más del 50% de los pacientes no 

podrán optar a este tratamiento por su edad, comorbilidades u otros factores. En esta 

situación, hasta junio de 2021, en España, sólo estuvo disponible como tratamiento 

no intensivo la azacitidina en monoterapia, que ofrecía una tasa de remisiones 

completas inferior al 30% con una supervivencia global mediana inferior a 10 meses. 

Ante la necesidad de mejorar estos resultados, se han desarrollado estudios para 

evaluar nuevos fármacos en el tratamiento de la LMA; entre ellos, en la última década 

se han desarrollado múltiples estudios preclínicos investigando el papel de la 

inhibición de LSD1 en el cáncer, incluyendo la LMA, como una opción para tener en 

cuenta por el papel de la epigenética en el desarrollo de la enfermedad. Iadademstat, 

es una pequeña molécula con potente acción inhibidora de LSD1, que actúa 

demetilando los residuos lisina de la molécula histona con un efecto en la regulación 

de la transcripción de genes implicados en la diferenciación y proliferación celular, 

que mostró actividad anti leucémica en estudios preclínicos. En este trabajo, se 

presentan los resultados de los estudios piloto que muestran por primera vez en 

humanos, el perfil de seguridad de iadademstat y la actividad del fármaco.  Estos 

estudios muestran una actividad biológica robusta (inducción rápida y sostenida de 

genes de diferenciación como VCAN, S100A12, LY96, CD8 y diferenciación 

morfológica, sobre todo en LMA monocítica o con reordenamientos KMT2A, así como 

reducción de blastos), tanto en monoterapia como en combinación. Ambos estudios 

mostraron un perfil de toxicidad manejable, fundamentalmente restringido al 

compartimento hematopoyético. La dosis recomendada se estableció en 140 

µg/m²/día (en monoterapia) y 90 (con azacitidina). A pesar de mostrar un escaso papel 

clínico en monoterapia en el contexto de la LMA recaída o refractaria, se observaron 

más del 50% de respuestas completas, con o sin recuperación hemoperiférica, en 

pacientes que recibieron iadademstat en combinación con azacitidina. Estos 

resultados respaldan la continuación del desarrollo clínico de iadademstat en 

combinación con hipometilantes y otros agentes dirigidos. 
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Abstract  

Acute myeloid leukemia (AML) is the second most frequent type of leukemia in adults 

and represents the leading cause of leukemia-related mortality in this population. The 

standard treatment with curative intent is based on intensive chemotherapy using 

cytarabine and anthracyclines, often followed by allogeneic hematopoietic stem cell 

transplantation. However, over 50% of patients are ineligible for this approach due to 

advanced age, comorbidities or other limiting factors. Until June 2021, in Spain, the 

only non-intensive therapeutic option available for these patients was azacitidine 

monotherapy, which yielded complete remission (CR) rates below 30% and a median 

overall survival of less than 10 months, with most patients surviving under one year. 

These suboptimal outcomes have driven the development of new therapeutic 

strategies. Among these, the inhibition of lysine-specific demethylase 1 (LSD1) has 

emerged as a promising avenue, based on its role in epigenetic regulation and 

leukemogenesis. Iadademstat is a potent, selective LSD1 inhibitor that induces 

demethylation of lysine residues in histone proteins, thereby modulating gene 

transcription involved in cellular differentiation and proliferation. Preclinical studies 

have demonstrated its anti-leukemic potential. This article presents the first-in-human 

pilot studies evaluating the safety profile and biological activity of iadademstat. These 

studies demonstrated strong biological effects, including rapid and sustained 

upregulation of differentiation-related genes (e.g., VCAN, S100A12, LY96, CD8), 

morphological differentiation—particularly in monocytic AML and KMT2A-rearranged 

cases—and a reduction in blast cells, both as monotherapy and in combination 

regimens. The toxicity profile was manageable and predominantly limited to the 

hematopoietic compartment. The recommended dose was established at 140 

µg/m²/day for monotherapy and 90 µg/m²/day in combination with azacitidine. 

Although iadademstat alone showed limited clinical efficacy in relapsed/refractory 

AML, combination therapy with azacitidine resulted in complete remission in over 50% 

of patients, albeit often without hematologic recovery. These findings support the 

continued clinical development of iadademstat in combination with hypomethylating 

agents and targeted therapies. 
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1.1. HEMATOPOYESIS 

 
La hematopoyesis es el proceso fundamental de generación, maduración y 

proliferación continua de las células sanguíneas y del sistema inmunitario, que 

adquieren un determinado fenotipo a partir de células precursoras comunes e 

indiferenciadas que denominamos células madre hematopoyéticas (HSCs); que 

constituyen <0,1% de la población de la médula ósea. La sangre es uno de los tejidos 

de mayor índice proliferativo en el organismo; generándose entre 10 y 100 billones 

de células sanguíneas cada día en la médula ósea adulta para mantener las cifras 

estables en la periferia durante toda la vida del individuo (1-2). 

La formación de las HSCs deriva inicialmente de la hoja mesodérmica del embrión, 

migran a las islas sanguíneas del saco vitelino y luego se desplazan al bazo, hígado y 

ganglios linfáticos. Posteriormente y durante toda la vida, la médula ósea se encarga 

de la producción principal de células sanguíneas (mielopoyesis); en la infancia, 

predomina en los huesos largos mientras que en los adultos se sitúa en la pelvis, 

vértebras y esternón [Figura 1]. La maduración, activación y proliferación de células 

mieloide ocurre en la médula ósea y de las linfoides ocurre en el bazo, el timo y los 

ganglios linfáticos (1-4). 

 

Figura 1. Localización de la hematopoyesis en el desarrollo y edad adulta 
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El sistema hematopoyético se organiza de manera jerárquica. Las HSCs 

mayoritariamente se encuentran en estado quiescente e inactivas (fase G0) para 

protegerse del daño genómico, debiendo equilibrar el estado de quiescencia con su 

capacidad de autorrenovación y diferenciación, para poder mantener la producción 

continua de células sanguíneas (5-9). En este proceso intervienen mecanismos 

intrínsecos (como la vía de unión de extremos no homólogos (NHEJ) para reparar el 

daño en el ADN o la regulación de proteínas inhibidoras de quinasas como p57 y p21, 

que mantienen las HSCs en quiescencia (6-10)) y mecanismos extrínsecos, que 

incluyen a las células del estroma medular (fibroblastos, osteoblastos, adipocitos, 

macrófagos y células endoteliales) y las sustancias que éstas liberan como, CXCL12, 

SCF, TGF- β. Todo ello genera un ambiente hipóxico que estabiliza el factor HIF1α, 

favoreciendo el metabolismo anaeróbico (glucólisis) sobre la fosforilación oxidativa 

(OXPHOS); se liberan antioxidantes (FOXO, NRF2), que reducen la producción de 

especies reactivas de oxígeno (ROS) para proteger el ADN de las HSCs (11-14).  

Las HSCs, se activan en respuesta a estímulos inflamatorios (como la liberación de 

interferones tipo I y II, IL-1, G-CSF y TPO) o señales de peligro como los patrones 

moleculares asociados a patógenos (PAMPs) y los asociados a daño (DAMPs), que se 

unen a los receptores tipo Toll (TLR) de las HSCs en la denominada hematopoyesis 

“de emergencia”, induciendo la proliferación y expansión de las HSC y la  

diferenciación específica de subgrupos de HSCs y progenitores multipotentes (MPPs), 

que generan más linajes mieloides (componentes mieloides maduros que 

encontramos en la sangre periférica: hematíes, plaquetas, neutrófilos, monocitos, 

eosinófilos y basófilos) que linfoides para aumentar rápidamente la producción de 

células sanguíneas específicas [Figura 2]. Las HSC cambian la glucolisis por la 

fosforilación oxidativa para satisfacer la demanda energética; aumentan las ROS, se 

activan vías de señalización como p38 y MAPK favoreciendo la diferenciación y 

eliminación de células dañadas. Se postula que la activación prolongada de las HSC, 

las puede llevar a la extenuación y a la disfunción hematopoyética, predisponiendo a 

enfermedades malignas, por mecanismos sólo parcialmente esclarecidos por ahora. 

La maduración de los progenitores hematopoyéticos se caracteriza por dos procesos 

fundamentales, la disminución de la autorregeneración y la adquisición de identidad 

de linaje específica o diferenciación; cambios que a menudo se pueden seguir 

mediante la expresión de proteínas en la superficie celular (citometría de flujo 

multiparamétrica) [Figura Supl. 1] (1, 17-18). 
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Figura 2. Modelo de activación de las células madre hematopoyéticas 

 

 

 

1.2. LEUCEMIA MIELOBLÁSTICA AGUDA 

1.2.1 Concepto y leucemogénesis en la leucemia mieloblástica aguda  

La leucemia aguda mieloblástica engloba un conjunto diverso de subentidades con 

gran heterogeneidad clínica, fenotípica y genotípica. Se caracteriza por la 

proliferación descontrolada de precursores mieloides inmaduros (células madre 

leucémicas con capacidad de quiescencia y autorrenovación excesiva y, en mayor 

proporción, células progenitoras multiclonales, con rasgos de diferenciación 

anómalos), en la médula ósea, la sangre periférica y, más raramente, en órganos 

extramedulares. Esta proliferación descontrolada (leucemogénesis) es consecuencia 

de la interacción compleja de múltiples anomalías a nivel genético, en reguladores 

epigenéticos, factores de transcripción, desregulación de vías de señalización y 

disfunción del microambiente medular (19-22).   
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Estudios de seguimiento clonal han demostrado que las mutaciones iniciales ocurren 

frecuentemente en HSCs multipotentes, que luego acumulan mutaciones adicionales 

que favorecen el fenotipo leucémico [Figura 4]. Esto sustenta el concepto de jerarquía 

leucémica, donde un subconjunto de células —conocidas como células iniciadoras de 

leucemia (LIC)— mantienen el clon neoplásico. La selección de determinados clones a 

lo largo de la evolución de la enfermedad, tanto de forma intrínseca, como debida a 

la presión de determinados fármacos y cambios en el estroma, supone un reto para 

alcanzar un tratamiento curativo en esta entidad (23-28). 

 

Figura 3. Modelo esquemático de la adquisición de mutaciones en las HSCs pre- 
leucémicas que dan lugar a la LMA 

 

 
- Alteraciones genéticas y epigenéticas en la leucemogénesis de la LMA: 

Las variaciones estructurales cromosómicas recurrentes como t(15;17)(q24;q21), 

t(8;21)(q22;q22) o inv(16)(p13q22) entre otras, generan factores de transcripción 

híbridos que bloquean la diferenciación y promueven la proliferación. Están bien 

establecidas como marcadores diagnósticos y pronósticos [ver Tabla 5].  Sin 

embargo, casi el 50% de los pacientes con LMA no tiene alteraciones en el cariotipo. 

Los avances en las técnicas de secuenciación permitieron identificar mutaciones 

recurrentes en la LMA en genes como FLT3, NPM1, CEBPA, TET2, DNMT3A, IDH1/2 y 

TP53 entre otros, lo que mejoró la comprensión de la fisiopatología de la LMA y 

permitió la modificación de la clasificación de la OMS en base a los hallazgos 

moleculares (29). El estudio de Ley et al. de 2013 mostró, mediante secuenciación 

completa del genoma en 200 muestras de LMA, que casi todas (>95%) presentaban 

alguna mutación somática, se encontró una mediana de doce alteraciones genómicas 

en cada muestra, de las cuales una media de 3 eran mutaciones inductoras. Esto 
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resultó de gran relevancia en la clasificación de las LMA sin alteraciones estructurales 

y permitió agrupar dichas mutaciones en nueve categorías que se relacionan entre sí 

modificando la biología y el comportamiento clínico de la enfermedad [Figura 4]. 

Estos hallazgos se confirmaron en 2016 por Papaemmanuil E et al. (30-31) [Tabla Supl. 

1, recoge las mutaciones de genes más frecuentes en la LMA, su mecanismo de acción 

y su efecto clínico con las referencias respectivas (38-91)]. Las mutaciones de estos 

genes llevan a una alteración en la función de proteínas, activando vías de 

proliferación, inhibiendo la apoptosis e inhibiendo la diferenciación (35-37).   

 

Figura 4. Mutaciones recurrentes en la LMA de novo: interacción  

 

La epigenética se refiere a los cambios en la expresión génica que no implican 

alteraciones en la secuencia del ADN. Estos cambios pueden incluir metilación del 

ADN, del ARN no codificante y modificaciones en las histonas. La desregulación 

epigenética en la LMA es un proceso complejo que contribuye al desarrollo y 

progresión de la enfermedad, favoreciendo una proliferación celular descontrolada, 

resistencia a la apoptosis y mayor supervivencia de las células leucémicas, así como 

ausencia de diferenciación celular y acúmulo de células inmaduras. La epigenética 

engloba varios procesos [Figura Supl. 2] (32-35): 
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- La metilación del ADN (adición de grupos metilo a las citosinas en espacios CpG): 

En la LMA, ciertos genes, especialmente aquellos involucrados en la regulación 

del ciclo celular y la apoptosis, pueden estar hipometilados o hipermetilados. La 

hipermetilación de los promotores de genes supresores de tumores puede llevar 

a su silenciamiento, favoreciendo la proliferación celular descontrolada y la 

inhibición de la diferenciación. 

- Modificaciones de histonas: las histonas son proteínas que ayudan a empaquetar 

el ADN en la cromatina formando los nucleosomas. Las modificaciones post-

traduccionales en las histonas, como la acetilación y la metilación, juegan un papel 

crucial en la regulación de la expresión génica. Por ejemplo, la acetilación de 

histonas generalmente está asociada con la activación de la transcripción, 

mientras que ciertas formas de metilación pueden estar asociadas con su 

represión. En la LMA, se ha observado un desequilibrio en estas modificaciones, 

lo que altera la expresión de genes clave. 

- Los microARNs y otras especies de ARN no codificantes (IncARN), no se traducen 

a proteínas, pero pueden regular la expresión de otros genes (ribointerferencia) 

cuando se metilan, actuando como oncogenes o genes supresores de tumores en 

función del contexto en que se expresan. Esta expresión anómala se ha 

relacionado con la proliferación celular y la inhibición de la diferenciación.  

No sólo las mutaciones en determinados genes, sino la expresión génica se ha 

relacionado con la LMA y su comportamiento clínico. Los más conocidos son:  

- BAALC (8q22.2): Expresado en los progenitores CD34+ de la médula ósea. Su 

sobreexpresión en la LMA, que se correlaciona con la sobreexpresión de otros 

genes, se ha relacionado con peor pronóstico (92-97). 

- ERG (21q22): Forma parte de la familia ETS de factores de transcripción. Su 

sobreexpresión se ha relacionado con un peor pronóstico en la LMA de riesgo 

citogenético intermedio (98-99). 

- EVI1 (3q26.2): EVI1 codifica para una proteína con dedos de zinc, con un rol 

esencialmente estructural entre el ADN, el ARN, las proteínas y moléculas 

pequeñas, siendo esencial para la transcripción de genes que sustentan la 

hematopoyesis, incluyendo la autorregeneración de la HSCs. Su 

sobreexpresión (que podemos observar en algunas translocaciones del gen, 
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que dan lugar a un gen de fusión anómalo), se ha relacionado con un peor 

pronóstico (100-101). 

- MN1 (22q12.1):  Co-regulador de la transcripción. Su sobreexpresión se ha 

relacionado con peor pronóstico en la LMA de riesgo citogenético intermedio 

(102-103). 

- WT1 (11p13):  Se une a multitud de otras proteínas con efecto supresor de 

tumores. En la LMA, su sobreexpresión tiene impacto pronóstico adverso y su 

nivel de expresión, como herramienta de detección de enfermedad residual, 

ha mostrado su valor pronóstico en multitud de publicaciones (104-107). 

 
- El microambiente de la Médula Ósea: 

El microambiente de la médula ósea, o nicho hematopoyético, es esencial para el 

mantenimiento y regulación de la hematopoyesis normal. Está constituido por 

interacciones celulares, citoquinas, matriz extracelular (ECM) y vías de señalización. En 

la leucemia mieloblástica aguda (LMA), las células madre leucémicas alteran este 

entorno para favorecer su supervivencia, resistencia a la quimioterapia y evasión del 

sistema inmune:  

- Las células estromales, osteoblastos y osteoclastos modulan la dinámica ósea y 

secretan factores como SDF-1, promoviendo la adhesión y proliferación 

leucémica (108-114).  

- La sobreexpresión de IL-6, TNF-α y VEGF facilita la resistencia a la apoptosis, la 

inflamación y la angiogénesis tumoral (115-118).  

- La ECM remodelada potencia la invasividad leucémica mediante integrinas (αvβ3, 

α5β1) y metaloproteinasas (MMPs), que favorecen la migración celular y la 

agresividad de la enfermedad (119-120). 

- Diversas vías de señalización se encuentran aberrantemente activadas. La vía 

PI3K/AKT/mTOR regula el crecimiento y la supervivencia celular; su activación se 

asocia a mutaciones en FLT3 y resistencia terapéutica (121-123). La vía RAS/MAPK, 

comúnmente activada por mutaciones en KRAS o NRAS, impulsa la proliferación 

descontrolada y la resistencia a fármacos (124-125). Finalmente, las vías NOTCH y 

WNT, cruciales en la autorrenovación, se encuentran desreguladas, 

contribuyendo a la persistencia del clon leucémico y representando potenciales 

dianas terapéuticas emergentes (126-129).  
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El mejor entendimiento de todos estos mecanismos y la forma en que interaccionan 

requiere la incorporación de tecnologías emergentes en investigación traslacional 

como: La secuenciación de célula única, que permite caracterizar la heterogeneidad 

intratumoral, identificar subclones resistentes y estudiar la evolución clonal bajo 

presión terapéutica. La transcriptómica de una sola célula, que revela perfiles de 

expresión génica a nivel individual, permitiendo detectar trayectorias de 

diferenciación, subpoblaciones implicadas en la resistencia y su interacción con el 

microambiente. La edición génica (CRISPR/Cas9) posibilita el estudio funcional de 

mutaciones  clave en modelos celulares y animales, facilitando el desarrollo de 

terapias dirigidas (130-131).  Además, el diseño de organoides hematopoyéticos y 

xenoinjertos mejorados permite modelar de forma más precisa la interacción entre 

células leucémicas y el nicho medular, contorbuyendo ala mejor predicción de 

mecanismos de resistencia terapéutica (132,133). 

 

1.2.2. Etiología 

La mayoría de los pacientes con LMA no hay una causa identificable. No obstante, se 

reconoce que algunas neoplasias previas —como los síndromes mielodisplásicos, las 

neoplasias mieloproliferativas o la aplasia medular— pueden evolucionar a LMA, 

configurando las llamadas LMA secundarias (134–135). Asimismo, pacientes 

expuestos previamente a quimioterapia o radioterapia, especialmente a agentes 

alquilantes o inhibidores de la topoisomerasa II, presentan un mayor riesgo de 

desarrollar neoplasias mieloides relacionadas con la terapia (136). También se han 

descrito factores ambientales como el benceno, el tabaco o la radiación nuclear como 

potenciales inductores de la enfermedad (137). 

Finalmente, en los últimos años, se ha puesto de manifiesto que la presencia de 

hematopoyesis clonal de potencial indeterminado (CHIP) en individuos sanos 

especialmente de edad avanzada, que afecta a genes habitualmente mutados en las 

neoplasias mieloides como DNMT3A, TET2, ASXL1 o TP53 entre otros, si bien no es 

suficiente para desencadenar una LMA (o una NMD) (139). Comprender su papel en 

la evolución clonal es clave para desarrollar estrategias preventivas (140).  
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1.2.3. Epidemiología 

Es una neoplasia hematológica rara que supone el 1% de todos los diagnósticos 

anuales de patología neoplásica. Es la segunda leucemia más frecuente en la edad 

adulta y representa el 80% de las leucemias agudas del adulto. Su incidencia en la 

última década se mantiene estable en alrededor de 1,6/100000/habitantes/año, en 

Estados Unidos y Europa. La incidencia es mayor en varones con una ratio 5:3 [Figura 

Supl. 3]. La edad mediana al diagnóstico es de 69 años (141-143). Recientemente, el 

registro de enfermedades oncológicas en España reveló que las neoplasias mieloides 

supusieron el 30,81% de todos los casos de cánceres hematológicos diagnosticados 

en España. De ellos, el 33,5% se correspondieron a neoplasias mieloproliferativas 

(NMP); el 29,8%, a síndromes mielodisplásicos (SMD); el 25,7% a leucemias 

mieloblásticas agudas (LMA); el 5,2% a SMD/NMP; el 2,3% a leucemias agudas de 

linaje ambiguo y el 3,6% restante se correspondió con casos inespecíficos (133). La 

frecuencia de los distintos tipos de LMA es variable en función del del grupo etario y 

el área geográfica, además se debe tener en cuenta el impacto de la calidad de los 

datos de los distintos registros.  

 

1.2.4. Diagnóstico 

El diagnóstico de la LMA se basa en la identificación de las células de leucemia aguda, 

llamados blastos, en sangre periférica y/o médula ósea y/u otro tejido en una cantidad 

determinada en función de las características biológicas que la definen, de acuerdo 

con las nuevas clasificaciones de la OMS y la ICC (en general ≥20%). Los mieloblastos 

se definen en función de sus características morfológicas, del núcleo y del citoplasma 

[Figura 6] (144).  

 

Figura 6. Clasificación morfológica de los blastos, promielocitos y promielocitos 
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A ello se añade la caracterización por citometría de flujo multiparamétrica que mide 

la expresión aberrante de proteínas de membrana o intracelulares mediante un 

flurocromo unido al anticuerpo específico (145) y, el estudio genético mediante el 

cariotipo y la FISH, así como los estudios de biología molecular (qASO-PCR, ddPCR, 

NGS) para detectar mutaciones relacionadas con la LMA, lo que permite un 

diagnóstico integrado de la patología con implicaciones no sólo para la correcta 

clasificación de la enfermedad sino para su estratificación pronóstica y la estrategia 

terapéutica (146-149). 

 
 
 
1.2.5. Clasificación 

La clasificación de la LMA ha evolucionado desde criterios morfológicos e 

inmunohistoquímicos (FAB) [Tabla 1] (158-159), hacia enfoques basados en las 

alteraciones moleculares y genéticas. A partir de los años 80, se identificaron 

anomalías cromosómicas recurrentes como t(8;21), inv(16) y t(15;17), lo que permitió 

definir subtipos con perfiles clínicos diferenciados. Posteriormente, la Organización 

Mundial de la Salud (OMS) ha actualizado sus clasificaciones incorporando 

progresivamente el uso de técnicas como citometría de flujo, PCR y, más 

recientemente, secuenciación genómica masiva (NGS), con el fin de estratificar 

biológicamente a los pacientes según su pronóstico (160). En 2022, se publicaron dos 

nuevas clasificaciones: la 5ª edición de la OMS (161,162) y la clasificación del 

denominado consenso internacional de expertos, cuya propuesta se conoce por sus 

siglas en inglés ICC (International Consensus Classification) (163). Ambas priorizan las 

características moleculares en la definición diagnóstica, aunque presentan algunas 

diferencias conceptuales [Tabla 2] (164–165), cuya discusión no es objeto de este 

trabajo. La integración de citología, inmunofenotipo, citogenética, biología molecular 

y NGS permite una estratificación más precisa, con impacto clínico relevante en el 

diagnóstico, pronóstico y selección terapéutica. 

 

 

 



 

26 
 

Tabla 1. Clasificación FAB de las LMA 
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Tabla 2. Clasificación de la OMS 2016 y 2022 y clasificación ICC 2022 de las LMA 
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1.2.6. Manifestaciones clínicas  

 
Los pacientes con leucemia mieloblástica aguda (LMA) presentan síntomas derivados 

de la insuficiencia medular y la eritropoyesis ineficaz, como infecciones recurrentes, 

anemia, manifestaciones hemorrágicas mucocutáneas, cefalea y dolor óseo. Otros 

síntomas frecuentes incluyen astenia, disnea y opresión torácica, en función del grado 

de anemia. La coagulación intravascular diseminada (CID) es una complicación 

posible, especialmente en casos con el gen de fusión PML/RARα o hiperleucocitosis 

significativa (≥50–100×10⁹/L) (1). 

El inicio clínico suele ser rápido, desarrollándose en días o pocas semanas. Al examen 

físico, son comunes la palidez, equimosis, púrpura petequial o bullas hemorrágicas. 

En casos específicos puede observarse infiltración extramedular, como 

hepatoesplenomegalia, adenopatías (infrecuentes) o afectación del sistema nervioso 

central, particularmente en LMA con componente monocítico/monoblástico o 

reordenamientos del gen MLL en recaída. El sarcoma mieloide puede presentarse 

como lesiones cutáneas infiltrativas o masas sólidas, únicas o múltiples, con o sin 

afectación medular concomitante (1,161). 

 

1.2.7. Pronóstico  

 
La LMA se caracteriza por su elevada morbilidad y mortalidad, atribuibles a su rápida 

progresión y resistencia terapéutica. La supervivencia global a cinco años se sitúa en 

torno al 24%, con una mediana de supervivencia inferior a nueve meses, 

constituyendo así la neoplasia hematológica con peor pronóstico (166). Según datos 

de registros europeos, como el sueco y el alemán, las mejoras en supervivencia se 

relacionan con el uso de quimioterapia intensiva, la introducción de terapias dirigidas 

(e.g., midostaurina, quizartinib), el acceso ampliado al trasplante alogénico —

incluyendo modalidades con intensidad reducida, donantes haploidénticos o sangre 

de cordón—, así como los avances en medidas de soporte y el mejor estado basal de 

los pacientes mayores (167–169). 

La edad avanzada es un factor pronóstico adverso ampliamente documentado (170–

171), en parte por la mayor comorbidad, fragilidad, y menor tolerancia al tratamiento 

intensivo. Sin embargo, no debe considerarse un criterio exclusivo para limitar 

opciones terapéuticas, dado que el riesgo biológico sigue siendo determinante en 
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todos los grupos de edad (172–175, 221). Los pacientes de ≥80 años, que podrían 

representar hasta un 20% de los casos, están insuficientemente representados en 

ensayos clínicos (172). El estado funcional en el momento del diagnóstico, 

especialmente un ECOG >2 (Paras G et al. entre otros), se asocia con menor 

supervivencia y se incluye sistemáticamente en herramientas pronósticas (176–177). 

Asimismo, la presencia de comorbilidades influye negativamente en el pronóstico, si 

bien algunos estudios sugieren que su impacto es menor si están controladas, siendo 

más relevante el estado general del paciente. El índice de comorbilidad del 

trasplante, con puntuaciones >3, se ha validado por Østgård LSG et al o Aydin S et al., 

entre otros, como predictor de mortalidad temprana en pacientes de edad avanzada 

(178–179). En la actualidad, el riesgo biológico constituye el principal factor 

pronóstico al diagnóstico. Las alteraciones citogenéticas clásicas mantienen su 

relevancia pronóstica [ver Tabla Supl.2] (180–182); sin embargo, la incorporación de 

técnicas de secuenciación masiva (NGS) ha permitido una clasificación más precisa 

basada, recogida en la estratificación pronóstica de la European Leukemia Net 2022 

(ELN2022) (183–190). Ésta define tres grupos pronósticos según la presencia de 

translocaciones cromosómicas, mutaciones o co-mutaciones de impacto conocido 

[ver Tabla 3]: Riesgo favorable, con una mediana se supervivencia de 51 meses; 

Riesgo intermedio, con una mediana de supervivencia de 13 meses; Riesgo adverso, 

con una mediana de supervivencia de 6 a 9 meses; siendo de pronóstico muy adverso 

las inv3 y las mutaciones de TP53. 

Estos datos derivan principalmente de cohortes tratadas con esquemas intensivos 

estándar (quimioterapia tipo “7+3”) y consolidación mediante trasplante alogénico en 

pacientes de riesgo intermedio o alto. 

Esta clasificación no resulta aplicable en pacientes sometidos a tratamiento de baja 

intensidad con hipometilantes en monoterapia o en combinación con venetoclax o 

ivosidenib (inhibidor de IDH1), por lo que se ha propuesto recientemente en un 

trabajo multicéntrico liderado por Döhner et al. (191) una clasificación provisional que 

identifica tres grupos pronósticos en función de la presencia de mutaciones de TP53, 

NPM1A, IDH1 y la presencia o ausencia de mutaciones activadores en genes de 

señalización.  

Se prevé que estas clasificaciones evolucionen con la incorporación de nuevos 

tratamientos dirigidos y el avance en el conocimiento de los mecanismos de 

persistencia clonal y resistencia terapéutica. 
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Tabla 3. Clasificación pronóstica de la LMA de acuerdo con la ELN2022 para 

tratamiento intensivo y de ELN2024 para tratamiento de baja intensidad 
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La enfermedad residual detectable (ERD) se define como la presencia de células 

leucémicas por debajo del umbral morfológico (<5% de blastos en médula ósea) pero 

detectable mediante técnicas sensibles, en ausencia de afectación extramedular 

(192–195). Entre las herramientas principales, destaca la citometría de flujo 

multiparamétrica, con una sensibilidad de 10⁻⁴, útil para identificar poblaciones 

aberrantes y células madre leucémicas residuales; aunque presenta falsos negativos 

en hasta un 30% de los pacientes (196–199) y están en marcha nuevas estrategias para 

mejorar su valor predictivo negativo, como la detección de LSC (200-202), entre otras. 

La reacción en cadena de la polimerasa cuantitativa con transcriptasa inversa (RT-

qPCR) en población leucocitaria total de sangre periférica o médula ósea, para 

aquellas mutaciones específicas estables a lo largo del tiempo como PML/RARα, 

CBFβ/MHY11, RUNX1/RUNX1T1 o NPM1 (203-208), así como la PCR a tiempo real de 

la expresión de genes, como WT1 (209-210), cuya sensibilidad es de 10-6, permite 

tomar decisiones terapéuticas y ofrecer un TPH alogénico precoz en aquellos 

pacientes con positividad, alcanzando supervivencias prolongadas. Las tecnologías 

de NGS aplicadas a la ERD permiten una sensibilidad de detección variable según los 

casos (10-2 hasta 10⁻5) [Figura 7], aunque su uso clínico aún es limitado y restringido a 

ensayos que sugieren que podría guiar el tratamiento dirigido de mantenimiento en 

presencia, por ejemplo, de mutación de FLT3 (211–215).  

 
Figura 7. Puntos de corte de ERD en la LMA por las técnicas más comunes 

 

Finalmente, la secuenciación de ADN tumoral circulante (ctDNA) en sangre periférica 

representa una herramienta prometedora, mínimamente invasiva y con potencial 

predictivo de recaída de forma individualizada, como reportan Nakamura et al. (2019) 

en LMA post-ALoTPH, Liu et al. (2024) en población pediátrica y múltiples 

comunicaciones a congresos recientes; sin embargo, su implementación clínica 
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requiere estandarización, validación prospectiva y superación de limitaciones 

técnicas actuales (150–157). A pesar de las limitaciones técnicas de aplicabilidad y la 

universalización de sus resultados, múltiples estudios han establecido el impacto 

pronóstico de la ERD en la LMA y su utilidad para guiar el tratamiento una vez 

alcanzada la respuesta completa citológica (216-217).  

 

1.2.8. Tratamiento 

El tratamiento de la LMA se basa esencialmente en quimioterapia y debe perseguir 

alcanzar la respuesta completa o respuesta completa con recuperación 

hemoperiférica incompleta (RC/RCi), pues esto es clave para poder realizar un 

trasplante de progenitores hematopoyéticos (TPH) alogénico, lo que se asocia con la 

mayor probabilidad de alcanzar una supervivencia a largo plazo en la mayoría de los 

casos. En los últimos años se han aprobado nuevos fármacos en combinación y 

monoterapia que han mostrado mejorar la supervivencia libre de recaída y 

supervivencia global en algunos pacientes de alto riesgo: azacitidina y venetoclax  o  

ivosidenib, en pacientes de edad avanzada (>60 años) o con mal estado general 

(ECOG>2) o comorbididades; CPX-351, en leucemias agudas secundarias; gilteritinib 

o quizartinib en combinación con quimioterapia intensiva en LMA con mutaciones de 

FLT3 [Figura Supl. 5]. Aun así, dado el mal pronóstico global de la enfermedad, se 

recomienda siempre que sea posible la inclusión en ensayos clínicos.  
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1.2.8.1. Tratamiento intensivo 

El tratamiento estándar con intención curativa en la LMA se basa en quimioterapia 

intensiva con citarabina y antraciclinas (esquema “7+3”), que alcanza tasas de 

remisión completa del 60–80% en adultos jóvenes y del 30–70% en mayores de 60 

años, en función del riesgo biológico (173, 221–228).  

En pacientes con perfil favorable, se recomienda añadir gemtuzumab ozogamicina 

(GO), lo que mejora la supervivencia global (>80% a 5 años) (222–223). En casos con 

mutación en FLT3, la adición de inhibidores como midostaurina o quizartinib reduce 

el riesgo de recaída y mejora la supervivencia, como demostraron los ensayos RATIFY 

(supervivencia libre de recaída de 26,7 meses (IC95%, 19,4-no alcanzada) con 

midostaurina vs 15,5 meses (IC95%, 11,3 – 23,5) con placebo (P = 0.01)) y QUANTUM-

First  (supervivencia mediana de 31,9 meses (IC95%, 21.0-no estimable) para el brazo 

de quizartinib vs 15,1 meses (13,2-26,2) para el de placebo (Hazard ratio 0,78, IC95% 

0,62-0,98, p=0·032)), con cutáneo y hepático, fundamenetalmente, aunque 

clínciamente poco significativas (224–226). En LMA secundaria, el esquema 

convencional se sustituye por CPX-351 (vyxeos®), una formulación liposomal de 

citarabina y daunorrubicina con mejor perfil de eficacia en mayores de 60 años, 

especialmente en pacientes que reciben trasplante alogénico, con una mediana de 

supervivencia de 43,1 meses frente a 7,08 meses con “7+3” (227–229). Pese a 

citopenias más prolongadas, presenta menor toxicidad mucosa y permite su 

administración ambulatoria, mejorando la calidad de vida del paciente. Estudios en 

vida real han mostrado el mismo beneficio en pacientes menores de 60 años (230-

233). La LMA se puede tratar de forma eficaz con agentes que inducen diferenciación,  

el paradigma de eso es la leucemia promielocítica aguda, con una supervivencia 

global a 5 y 10 años >90% (234-235) bajo tratamiento combinado de ATRA y ATO 

(234-235). Con el fin de evitar recaídas, se plantean estrategias de mantenimiento tras 

alcanzar la respuesta completa, que puede basarse en quimioterapia menos 

intensiva, hipometilantes, tratamientos dirigidos específicos, inmunoterapia o una 

combinación de ellos (http://clinicaltrials.gov) (236-237). En España sólo está 

aprobado y financiado Onureg® (azacitidina oral), como tratamiento de 

mantenimiento tras quimioterapia intensiva en pacientes que no pueden realizarse un 

TPH alogénico como estrategia de consolidación de la respuesta,; en base al ensayo 

QUAZAR, Wey AH et al., que mostró beneficio en la supervivencia mediana con 

http://clinicaltrials.gov/
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respecto a placebo de 24,7 vs 14,8 meses (HR 0,7 IC95% 0,56 - 0,86) (238). El papel 

del trasplante (en particular del autólogo) como estrategia post-remisión se deberá 

reevaluar en el futuro con la introducción de las nuevas terapias y las estrategias de 

mantenimiento (239-242) [ver Figura 9].  

 

Figura 9. Recomendaciones generales para el tratamiento intensivo en la LMA 

 

 
En niñ@s, los esquemas de inducción son similares a los de adultos, aunque se 

intensifican las consolidaciones por su mayor tolerabilidad; incluyen más antraciclinas 

como daunorrubicina y mitoxantrone, así como etopósido u otros agentes alquilantes. 

A diferencia de los adultos, sólo se indica en primera línea el TPH alogénico en alto 

riesgo biológico, puesto que alrededor del 60-70% pueden obtener largas 

supervivencias sólo con la quimioterapia. Actualmente la supervivencia global a 5 

años de la LMA infantil se sitúa alrededor del 70-75% (243). 
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1.2.8.2. Tratamiento no intensivo 

A pesar de las recomendaciones de las principales guías clínicas (ESMO, NCCN, ELN) 

que promueven el tratamiento intensivo en pacientes sin comorbilidades, hasta el 

60% de los pacientes con LMA no lo reciben por factores como edad avanzada, mal 

estado general o limitaciones sociales (244). En este contexto, los tratamientos 

epigenéticos han desempeñado un papel relevante. Éstos ejercen control sobre la 

leucemogénesis, por mecanismos mal esclarecidos todavía; su efecto no es 

permanente, por lo que se prescriben hasta progresión de la enfermedad y se cree 

que esto tiene relación con la corta duración de las respuestas, observada 

particularmente en ensayos en monoterapia (245-247).  Las terapias epigenéticas 

actuales se fundamentan en 4 familias de fármacos, muchos de ellos están todavía en 

investigación:  

- Inhibidores de las metiltransferasas (azacitidina y decitabina, onureg, decitabina-

cedazuridina) 

- Inhibidores de histona deacetilasa (panobinostat, vorinostat, pracinostat, 

entinostat de eficacia limitada en monoterapia) 

- Inhibidores de EZH2 (en estudio) 

- Inhibidores LSD1 (sin evidencia clínica contrastada) 

Hasta junio de 2021, en España sólo se encontraba indicado y financiado el 

tratamiento con 5-azacitidina (75mg/m2/día subcutáneo o intravenoso, 7 días en 

ciclos de 28 días) en monoterapia, que ofrece alrededor de un 19% de respuestas 

completas con un beneficio en la supervivencia sobre el tratamiento de soporte de 

unos 4 a 6 meses, con menos de un año de supervivencia mediana. Resultados 

similares a los descritos con decitabina (20mg/m2/día intravenoso, 5 días en ciclos de 

28 días) en monoterapia (248-252). Se han ensayado combinaciones con otros 

fármacos, como inhibidores de histona deacetilasa, inhibidores de FLT3, 

inmunoterapia (anticuerpo antiCD47, inhibidores PD1/PDL-1, anticuerpos antiCD33), 

por ahora sin éxito, ya sea por ineficacia o exceso de toxicidad (253). Recientemente 

se aprobó el empleo de decitabina-cedazuridina oral (35-100mg, 1 comprimido al 

día, 5 días, cada 4 semanas) para el tratamiento de pacientes con LMA previamente 

no tratada en pacientes no candidatos a quimioterapia intensiva con resultados de 

eficacia y toxicidad equivalentes a la administración parenteral de decitabina, con un 

perfil de administración más cómodo y eficiente (254). 
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La combinación de azacitidina con venetoclax (400mg/día oral, ajustado si 

administración conjunta con inhibidores de citocromo CIP3A4, 21-28días, en ciclos 

de 28 a 42 días) constituye hoy el estándar no intensivo, con tasas de respuesta del 

66% y supervivencia mediana de 14,7 meses (255–256). No obstante, presenta 

toxicidad hematológica significativa, especialmente en los primeros ciclos (261–263), 

y menor eficacia en mutaciones como FLT3, RAS o TP53 (257–259). En pacientes con 

mutación de IDH1 no candidatos a quimioterapia intensiva, la combinación 

azacitidina–ivosidenib ha demostrado superioridad frente a azacitidina sola 

(supervivencia >24 meses vs 8 meses) y mejor perfil de toxicidad en el estudio AGILE 

(264).  

Actualmente se evalúan combinaciones de baja intensidad con fármacos dirigidos, 

inmunoterapia y terapias celulares en dobletes y tripletes siendo la toxicidad el 

principal factor limitante (265–269). La LMA con mutaciones en TP53 continúa siendo 

un desafío terapéutico sin tratamiento estándar establecido, que requiere de un 

abordaje integral entre los conocimientos preclínicos y el desarrollo de nuevas 

estrategias terapéuticas (270). 

 
1.2.8.3. Tratamiento en recaída o refractariedad 

Aproximadamente un 10–20% de pacientes jóvenes y hasta un 50% de mayores de 

60 años presentan leucemia mieloblástica aguda (LMA) refractaria primaria tras dos 

ciclos de inducción, y entre un 50–70% de los que logran remisión completa recaen 

posteriormente (271). La Tabla 4 recoge los esquemas más empleados y sus 

resultados. Globalmente, las estrategias de rescate muestran respuestas modestas 

(35–58% con tratamiento intensivo y 10–20% con baja intensidad) y una mediana de 

supervivencia inferior al año, incluso en pacientes tratados de forma intensiva (272–

287). En estos casos, se recomienda priorizar la inclusión en ensayos clínicos, siempre 

que el paciente sea candidato y haya sido informado del pronóstico. 

Actualmente se investigan combinaciones prometedoras de venetoclax y azacitidina 

con otros fármacos, buscando mejorar eficacia y tolerancia. Entre las terapias dirigidas 

destacan los inhibidores de BCL2 (en LMA sin mutaciones activadoras), de FLT3 (en 

mutaciones persistentes o adquiridas) y de menina (en mutaciones de NPM1, 

reordenamientos de KMT2A, NUP98 y vía MEIS1). También se ha explorado la 

inmunoterapia con: Anticuerpos conjugados, como gemtuzumab ozogamicina (anti-

CD33 con caliqueamicina), con eficacia limitada (26% de respuestas completas, 
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mediana de duración ~11 meses) y toxicidad extramedular (288–289); Anticuerpos 

biespecíficos, como flotetuzumab (anti-CD3/CD123), con respuestas limitadas ~20% 

y toxicidad relevante (290); Inhibidores de checkpoint (proteínas reguladoras de la 

respuesta inmune mediada, que cuando se sobre expresan reducen a fagocitosis 

mediada por linfocitos T), con eficacia aún escasa en LMA (291) y Terapias CAR-T/NK, 

dirigidas a antígenos como CD33, CD123 o CCL1, que no han logrado de momento 

resultados consistentes, aunque se investigan nuevas dianas y constructos para 

abordar la heterogeneidad biológica de la LMA (291–292). 

Tabla 4. Tratamientos empleados más habitualmente en la LMA recaída o refractaria 

 

Adicionalmente, es fundamental añadir todas las medidas de soporte que ayuden a 

reducir la toxicidad y complicaciones incluyendo: la profilaxis antimicrobiana 

(antifúngicos, antivirales o antibióticos) y tratamiento antibiótico de amplio espectro 

(ECIL-10 Recommendations 2024), el uso de factores estimulantes de colonias 

hematopoyéticas tras alcanzar la respuesta completa (NCCN Myeloid Growth Factors 

2024), la adecuación de intervalos adecuados entre ciclos hasta recuperación 

hematológica, el soporte transfusional adecuado confrome a las guías internacionales 

(AABB Clinical Practice Guideline), el tratamiento antiemético (ASCO Antiemetic 
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Guideline Update 2020), el acceso a unidades de cuidados intensivos para todos los 

pacientes en tratamiento, el ajuste de los tratamientos en función de las interacciones 

farmacológicas, la aplicación de las medidas de aislamiento e higiénico-dietéticas 

personalizadas o el soporte psicológico, fisioterapéutico o social según necesidad.  

A pesar de las mejoras obtenidas con el tratamiento en la última década, se debe 

ampliar el entendimiento de los mecanismos implicados en la leucemogénesis 

identificando nuevas dianas de tratamiento y establecer nuevas combinaciones de 

fármacos en base a la heterogeneidad biológica de la enfermedad y de forma 

individualizada al diagnóstico y en la evolución de la enfermedad 

 

1.3. LSD1 y LMA 

 

1.3.1. LSD1: Concepto y mecanismo de acción 

Los factores de transcripción y los modificadores de la cromatina desempeñan un 

papel fundamental en la programación y reprogramación de los estados celulares 

durante el desarrollo, así como en el mantenimiento del perfil transcripcional 

adecuado de la célula. Tras unirse al ADN, los factores de transcripción reclutan 

complejos coactivadores o correpresores, que están compuestos, en parte, por 

enzimas modificadoras de la cromatina que pueden facilitar o inhibir la transcripción 

mediante la modificación covalente de las colas de histonas. La metilación, es una de 

estas modificaciones y puede ocurrir tanto en residuos de arginina como de lisina. A 

diferencia de la acetilación, no altera la carga neta de la cromatina, sino que genera 

nuevos sitios de anclaje para el reconocimiento y la unión de las denominadas 

proteínas lectoras [Figura 10]. Tanto las regiones promotoras como las potenciadoras 

están sujetas a metilación de lisina, la cual suele asociarse positivamente con la 

transcripción activa. Existen dos familias de demetilasas de histonas: la familia de 

dominio Jumonji, que es la más amplia, y la familia de demetilasas específicas de lisina 

(LSD) (293). 

La desmetilasa específica de lisinas 1 (LSD1, también conocida como KDM1A, 

BHC110 o AOF2) fue identificada en 2004 como la primera enzima capaz de 

desmetilar histonas. Es una flavoproteína nuclear dependiente de FAD, que elimina 

grupos metilo de residuos de lisina en la cola H3 de las histonas, actuando 

principalmente sobre H3K4 demetilada o monometilada (H3K4me2/1) y, en  
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Figura 10. Esquema que muestra la metilación del ADN 

 

 
determinados contextos, sobre H3K9 metilada (294). A través de esta reacción 

oxidativa, que genera formaldehído, LSD1 ejerce habitualmente una función 

represora de la transcripción: al eliminar la metilación activadora de H3K4, induce una 

configuración de la cromatina más compacta, favoreciendo el silenciamiento génico. 

La inhibición de LSD1 mediante RNAi ha demostrado incrementar los niveles de H3K4 

metilada y activar la expresión de genes diana, confirmando su papel como co-

represor transcriptómico mediante modificaciones epigenéticas [Figura 11] (295).  

Su interacción con otras proteínas la estabiliza y facilita su actividad enzimática. 

Funcionalmente, LSD1 actúa integrada en complejos multiproteicos epigenéticos, 

siendo esencial para el complejo co-represor CoREST, formado por LSD1, el cofactor 

RCOR1 (CoREST) y las desacetilasas de histonas (HDAC1/2). La asociación con 

CoREST es crítica para la función de LSD1 en la cromatina: CoREST ancla y estabiliza 

LSD1 sobre nucleosomas, promoviendo la represión transcripcional mediante la 

desmetilación de H3K4 de forma efectiva, actividad para la que LSD1 sola no es 

eficiente (296-297). Además, LSD1 interactúa con factores de transcripción que 

contienen dominios SNAG, como GFI1/GFI1B en hematopoyesis o SNAIL en células 

epiteliales. A través de sus secuencias N-terminales, que mimetizan la cola N-terminal 

de la histona H3, estos factores reclutan LSD1 y el complejo CoREST/HDAC a regiones 

promotoras o potenciadoras específicas, integrando la represión génica mediada por 
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unión al ADN con la regulación epigenética mediante desmetilación de histonas (298-

299). En determinados contextos, LSD1 puede ejercer funciones coactivadoras. Por 

ejemplo, en genes regulados por el receptor de andrógenos, la variante neuronal 

específica LSD1-8a desmetila marcas represivas como H3K9me2, facilitando la 

activación transcripcional inducida por hormonas (300). Además de sus sustratos 

histónicos, LSD1 desmetila proteínas no histónicas como DNMT1, p53, E2F1, STAT3, 

RB1, MEF2D, MTA1, ERα, HSP90, HIF1 y AGO2, modulando así diversos procesos 

celulares (304).  

En la hematopoyesis, LSD1 controla la formación de hemangioblastos (derivados de 

las células del mesodermo), la célula progenitora capaz de dar lugar a progenitores 

hematopoyéticos y endoteliales. LSD1 y su correpresor CoREST modulan la 

diferenciación hematopoyética a través de las interacciones con GFI1 y GFI1b, 

factores esenciales para la proliferación, diferenciación y supervivencia de las células 

sanguíneas (318-321). Estudios pre-clínicos, in vitro e in vivo, han mostrado que la 

eliminación condicional de LSD1 en la médula ósea adulta conduce a un fallo rápido 

de la hematopoyesis multilínea en su diferenciación terminal (granulopoyesis, 

eritropoyesis y trombopoyesis) y se reduce la capacidad de autorrenovación de 

células madre hematopoyéticas. Este efecto desaparece al revertir la inhibición (295, 

322-326). 

En conjunto, LSD1 es un regulador epigenético versátil, clave para la modificación 

dinámica de marcas de histonas y la interacción con complejos co-activadores o co-

represores, coordinando programas de expresión génica. Su actividad es esencial en 

procesos biológicos fundamentales como el desarrollo embrionario, el 

mantenimiento de las células madre (301), la diferenciación específica tisular, la 

inflamación, la plasticidad neuronal, la termogénesis, la adipogénesis y el 

metabolismo (302) [Figura11]. Persisten interrogantes sobre los roles específicos de 

LSD1 en distintos tipos celulares específicos, incluyendo la identificación de tejidos 

en que sus funciones estructurales podrían ser más relevantes que su actividad 

enzimática o sobre cómo su inhibición farmacológica interfiere en sus interacciones 

con cofactores y la organización de la cromatina (303).  
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Figura 11. Estructura de LSD1 y sus funciones en la hematopoyesis 

 

 

1.3.2. Inhibición de LSD1 como estrategia terapéutica  

La inhibición de LSD1 constituye un área de creciente interés en la investigación 

biomédica, especialmente en oncología y en enfermedades neurológicas, tanto 

neurodegenerativas como psiquiátricas. LSD1 se encuentra frecuentemente 

sobreexpresada en diversos tumores sólidos, incluidos los de pulmón, mama, 

próstata, tracto gastrointestinal, así como en leucemias, participando en el bloqueo 

de la diferenciación celular y en el mantenimiento de las propiedades de células 

madre tumorales. Esta sobreactividad favorece la proliferación, invasividad y 

potencial metastásico de las células tumorales, correlacionándose con fenotipos 

agresivos (304). Dado su papel en el silenciamiento epigenético, LSD1 se ha 

consolidado como una diana terapéutica prometedora, especialmente en cánceres 

dependientes de un bloqueo en la diferenciación celular. Desde finales de la década 

de 2000, se han desarrollado múltiples inhibidores de LSD1, divididos principalmente 

en dos grupos [Tabla 8] (305-307). El primero agrupa inhibidores covalentes 

derivados de la tranilcipromina, como iadademstat (ORY-1001), GSK2879552, 

bomedemstat (IMG-7289) o INCB059872, que se unen irreversiblemente al cofactor 

FAD, bloqueando la actividad enzimática de LSD1 y permitiendo reprogramar la 

expresión génica (308, 304). El segundo grupo comprende inhibidores no covalentes, 
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como seclidemstat o CC-90011, que modulan LSD1 mediante interacciones 

reversibles con cofactores o proteínas asociadas (304).  

Los estudios preclínicos han demostrado que estos fármacos pueden restaurar 

marcas represivas en la cromatina y producir cambios transcripcionales que inhiben 

protooncogenes, inducen genes de diferenciación, y desencadenan detención del 

ciclo celular, senescencia y apoptosis en células tumorales. Las neoplasias con 

fenotipo indiferenciado parecen ser particularmente sensibles a estos agentes (308, 

317).  

Tabla 8. Principales estudios pre-clínicos con inhibidores de LSD1 

 

 
Estudios preclínicos han observado que la inhibición de LSD1 aumenta los niveles de 

hemoglobina fetal (HbF) en células eritroides, constituyendo una potencial estrategia 

terapéutica para hemoglobinopatías como la anemia falciforme (327). 

La LMA es el contexto oncológico donde más evidencia se ha acumulado sobre el 

papel patogénico de LSD1 y el potencial terapéutico de sus inhibidores. LSD1 está 

sobreexpresada en fenotipos inmaduros, como LMA con reordenamientos de KMT2A 

(MLL) o leucemia promielocítica aguda. Su actividad tiene un doble impacto: regula 

epigenéticamente la represión de genes supresores tumorales y mantiene las 

propiedades de autorrenovación de las células madre leucémicas, contribuyendo así 

a la persistencia de células leucémicas residuales y a la recaída de la enfermedad. La 

inhibición de LSD1 se postula como estrategia terapéutica mediante dos mecanismos 
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principales: revertir la represión génica aberrante promoviendo la diferenciación de 

las células leucémicas y reactivar genes supresores tumorales previamente 

silenciados (328-331). 

Datos preclínicos han demostrado que inhibir LSD1 reduce la capacidad de injerto de 

las células madre leucémicas y potencia el efecto de agentes como ATRA, 

evidenciando sinergias terapéuticas (328). En modelos in vitro, se ha observado que 

LSD1 colabora con oncoproteínas como MLL en la activación de genes clave (e.g., 

HOXA9, MEIS1), bloqueando la diferenciación mieloide. Su supresión, por RNAi o 

inhibidores, induce diferenciación y apoptosis en células leucémicas con 

reordenamientos KMT2A, sin afectar significativamente a células madre 

hematopoyéticas normales (329-331). Otros estudios confirman que tanto la 

depleción genética como la inhibición farmacológica de LSD1 inducen la 

diferenciación de blastos leucémicos hacia granulocitos/macrófagos, junto con la 

expresión de marcadores mieloides (CD11b, CD86) y la pérdida de capacidad de 

autorrenovación leucémica (332). En modelos murinos, la inhibición de LSD1 con 

GSK2879552 ha prolongado significativamente la supervivencia en leucemias 

agresivas, reactivando redes transcripcionales de diferenciación y aumentando la 

accesibilidad cromatínica global, activando factores como PU.1 y C/EBPα (326). 

Además, se han identificado sinergias potenciales con fármacos como citarabina, 

venetoclax, gilteritinib o inhibidores de histona deacetilasa, sugiriendo que las 

terapias combinadas podrían optimizar el tratamiento de la LMA (333-334). 

 

1.3.3. Iadademstat (ORY-1001)  

Iadademstat (ORY-1001) es un inhibidor selectivo y covalente de la demetilasa-1 

específica de lisinas (LSD1/KDM1A) que bloquea irreversiblemente el dominio 

catalítico de LSD1 e interfiere con su interacción con complejos represores como 

GFI1/CoREST, lo que facilita la acetilación y transcripción de genes de diferenciación 

(334-336). ORY-1001 ha mostrado eficacia preclínica en inducir diferenciación y 

reducir la proliferación en modelos de LMA dependientes de LSD1, especialmente 

en leucemias con reordenamientos de KMT2A y mutaciones en NPM1 (337-343). En 

base a estos resultados, ORY-1001 representa una estrategia prometedora en el 

tratamiento de la LMA.   
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 Hipótesis 

 

Estudios preclínicos han establecido una sólida justificación para el uso de LSD1 en 

pacientes con leucemia mieloide aguda.  

Estudios preclínicos han establecido que la inhibición de LSD1 con iadademstat tiene 

el potencial de superar el bloqueo de diferenciación característico de la LMA, 

atacando mecanismos epigenéticos clave, favoreciendo la diferenciación celular y 

reduciendo la carga tumoral en estudios in vitro e in vivo en modelos murinos.  

Con estas premisas, en estos trabajos se pretende mostrar por primera vez en 

humanos que iadademstat es capaz de inhibir LSD1 en pacientes con LMA, que es 

capaz de inducir diferenciación en los blastos y que tiene actividad antileucémica 

medible en monoterapia en pacientes con LMA avanzada (primer trabajo) y en 

combinación con azacitidina (segundo trabajo) con un perfil de seguridad aceptable. 
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3. OBEJTIVOS 
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3. Objetivos 

 

3.1. Objetivo principal 

1. Determinar la seguridad de la administración de inhibidores de LSD1, en 

monoterapia y en combinación, en pacientes con leucemia aguda 

mieloblástica 

 

3.2. Objetivos secundarios 

1. Mostrar la capacidad de inhibición de LSD1 en pacientes con LMA tratados 

con idademstat, por primera vez en humanos (farmacocinética y 

farmacodinámica) 

 

2. Analizar la eficacia de la inhibición de LSD1 con iadademstat en pacientes con 

leucemia aguda mieloblástica, particularmente en combinación con el 

estándar (correlacionar con 1) 

 

3. Determinar la dosis óptima de iadademstat en combinación con el estándar 

de tratamiento aprobado y financiado en España en el momento del estudio 

(azacitidina) 
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4. COMPENDIO DE PUBLICACIONES  
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4.1. Artículo 2 

First-in-Human Phase I Study of Iadademstat (ORY-1001): A First-in-Class Lysine-

Specific Histone Demethylase 1A Inhibitor, in Relapsed or Refractory Acute Myeloid 

Leukemia. By Olga Salamero, Pau Montesinos, Christophe Willekens, Jose Antonio 

Pérez-Simón, Arnaud Pigneux, MD, Christian Recher, Rakesh Popat, Cecilia Carpio, 

Cesar Molinero, Cristina Mascaro, Joaquim Vila, M. Isabel Arevalo, Tamara Maes, 

Carlos Buesa, Francesc Bosch and Tim C. P. Somervaille. J Clin Oncol, Sept 2020, 

38:4260-4273. doi: 10.1200/JCO.19.03250.  

URL:  https://ddd.uab.cat/record/252982 

https://ddd.uab.cat/record/252982
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4.2. Artículo 2  

 

Iadademstat in combination with azacitidine in patients with newly diagnosed acute 

myeloid leukaemia (ALICE): an open-label, phase 2a dose-finding study. By Olga 

Salamero, Antonieta Molero, José Antonio Pérez-Simón, Montserrat Arnan, Rosa Coll, 

Sara Garcia-Avila, Evelyn Acuña-Cruz, Isabel Cano, Tim C P Somervaille, Sonia 

Gutierrez, María Isabel Arévalo, Jordi Xaus, Carlos Buesa, Ana Limón, Douglas V 

Faller, Francesc Bosch, Pau Montesinos. Lancet Haematol. 2024 Jul;11(7): e487-e498. 

doi: 10.1016/S2352-3026(24)00132-7.  

https://ddd.uab.cat/record/313069 
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5. RESUMEN GLOBAL DE LOS RESULTADOS 
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El primer trabajo recoge la experiencia del uso por primera vez en humanos de ORY-

1001, un potente inhibidore de LSD1, en un ensayo fase 1 para pacientes con 

leucemia aguda mieloblástica en situación de recaída o refractariedad con el objetivo 

de recabar información sobre: su comportamiento farmacocinético, midiendo sus 

concentraciones plasmáticas mediante HPLC-MS/MS en días 1, 5 y 26 de un ciclo de 

28 días y determinando la Tmáx, AUC, vida media (40-100 h) y tasa de acumulación 

tras dosis repetidas para evidenciar el perfil de absorción, distribución, metabolismo 

y eliminación del fármaco en humanos; su perfil farmacodinámico en humanos 

basados en datos previos obtenidos en modelos murinos, midiendo mediante PCR 

cuantitativa en sangre, biomarcadores asociados a diferenciación leucémica (VCAN, 

S100A12, LY96 y CD86) en modelos de LMA con reordenamientos de MLL/KMT2A, 

en muestras recogidas antes y durante el tratamiento; y  la seguridad de su 

administración en humanos a las dosis supuestamente efectivas en base a estudios 

pre-clínicos, registrando los efectos adversos observados desde la primera toma del 

fármaco de acuerdo la clasificación del CTCAE v3.0 para determinar la gravedad y 

relación con el tratamiento.  Para ello, se reclutaron pacientes siguiendo el esquema 

de escalado de dosis “3+3”, siendo las dosis evaluadas: 5, 15, 30, 45, 60, 80, 140 y 

220 mg/m²/día, vía oral, dispensado en jeringa, durante 5 días consecutivos y 2 días 

de descanso en ciclos de 28 días (días 1-5, 8-12, 15-19, 22-26), hasta progresión o 

intolerancia o criterio del investigador o decisión del paciente. Una vez determinada 

la máxima dosis tolerada se evaluó la dosis en una cohorte de extensión. 
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Características de los pacientes: 

En el estudio se incluyeron 41 pacientes con LMA refractaria (24;59%) o en recaída 

(17; 41%); 27 en la primera parte de escalado de dosis y 14 en la parte de expansión. 

La edad mediana de los pacientes incluidos fue de 61 años (rango: 20-84). Las 

características clínicas y biológicas fueron las esperables para la población de estudio, 

con una alta proporción de pacientes de alto riesgo (refractarios, características 

citogenéticas y moleculares de alto riesgo, ≥2 tratamientos previos).  

Dosis Administradas y Escalado en base a los datos de PK, PD y toxicidad: 

La respuesta farmacodinámica se correlacionó con las concentraciones plasmáticas 

del fármaco (PK) para evaluar la relación dosis-respuesta, lo que muestra una visión 

integral de la actividad del fármaco en esta población de pacientes. Esto, se 

correlacionó a su vez con los efectos adversos grado 3 o más registrados en los 

pacientes a lo largo del periodo de seguimiento, lo que permitió determinar la dosis 

máxima tolerada en la primera parte del estudio (definida como la presencia de 

toxicidades limitantes de dosis en al menos dos pacientes de cada cohorte de 3) y 

proceder a confirmar la seguridad del fármaco en la parte de extensión. 

Los datos de farmaconcinética mostraron que Iadademstat presentó una rápida 

absorción, con una concentración máxima (Cmax) alcanzada aproximadamente 4 

horas después de la administración (Rango: 2-8), con una ratio de acumulación de 3 

a 6 tras dosis repetidas. Mostró amplia distribución tisular (volumen ~200 veces el 

agua corporal total) y vida media de distribución de 40-100 h. Se metabolizó 

principalmente en hígado y se eliminó con una vida media terminal de unas 8 h, 

permitiendo dosificación diaria.  
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Figura ejemplo de datos de farmacocinética 

 

Los datos de farmacodinámica mostraron que la inhibición de LSD1 por iadademstat 

es dosis-dependiente, alcanzando hasta un 80% de inhibición en células 

mononucleares. Se observó aumento significativo de CD11b y CD14, indicativo de 

diferenciación mieloide y monocítica, especialmente en pacientes con 

translocaciones KMT2A. Morfológicamente, se evidenció maduración de blastos 

inmaduros hacia células más diferenciadas.  
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A nivel molecular, se detectó disminución de VCAN y aumento de S100A12, CD86 y 

LY96, sugiriendo diferenciación leucémica y posible modulación de respuestas 

inmunes, lo que respalda el potencial terapéutico de iadademstat en LMA.Ejemplo 

de diferenciación morfológica en paciente con rMLL tratado con ORY-1001 en el día 

1 y el día 21 del primer ciclo 

 

Todos los pacientes experimentaron eventos adversos relacionados con el 

tratamiento durante el periodo de seguimiento. Se reportaron 66 efectos adversos 

graves (AEs grado 3-4 y SAEs); los más comunes fueron a nivel hematológico la 

trombopenia (61%), la neutropenia (68%), la anemia (29%) y, como extra 

hematológicos, las infecciones. Se reportaron tres efectos adversos severos: 2 casos 

de síndrome de diferenciación que se manejaron con corticoterapia y suspensión del 

fármaco; uno de ellos fue fatal y 1 caso de hemorragia intracraneal, que se consideró 

posiblemente relacionada (dado el mecanismo de acción del fármaco y lo observado 

en estudios pre-clínicos). También se observaron efectos adversos leves (grado 1-2) 

no hematológicos, siendo los más habituales la fatiga (34%), las náuseas (22%) o las 

mucositis (17%) i diarrea (17%). 
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Comportamiento de la trombopenia en un paciente con recuento basal normal 

durante el tratamiento y una vez parado. 

 

 

Se testaron dosis de entre 5 y 220 µg/m2/día, determinando que la dosis máxima 

tolerada fue de 220 µg/m²/día, sin embargo, se determinó que la dosis recomendada 

para la extensión fuese de 140µg/m2, debido a la aparición de eventos adversos 

graves y la evidencia de saturación de biomarcadores a dosis aún menores. 

La mediana de ciclos recibidos por paciente fue de 2 (rango: 1-6). 

Eficacia antileucémica: 

Los datos de respuestas de acuerdo con las recomendaciones del grupo internacional 

de expertos fueron pobres. Sin embargo, la evidencia de disminución transitoria del 

porcentaje de blastos, la diferenciación morfológica reportada en muestras de 

médula ósea o sangre periférica y los datos de diferenciación molecular fueron 

indicativos de una fuerte activación biológica. Se reportó una RC/RCi en 1 paciente, 

respuesta parcial en 4 (10%) y enfermedad estable en 12 pacientes (29%). La mediana 

de duración de la respuesta fue de 4,5 meses (rango: 2-9) y la mediana de 

supervivencia global de la serie fue de 6,6 meses (IC 95%: 4,2-9,1). 

Se observaron mejores resultados en determinados subgrupos de pacientes, como 

los que presentaron reordenamientos de KMT2A (MLL). En este caso, la tasa de 

respuesta global fue de 44% (4/9 pacientes). 
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Los datos obtenidos apoyaron el desarrollo de un ensayo clínico piloto fase 2a de la 

combinación de iadademstat en administración oral (dispensación en jeringa) a una 

dosis inicial de 60 o 90 µg/m²/día durante 5 días consecutivos y dos de descanso de 

forma semanal en ciclos de 28 días con azacitidina (gold-estándar de tratamiento en 

ese momento) subcutánea o endovenosa 75mg/m²/día días 1-7 o 5-2 descanso-2, en 

primera línea para pacientes con LMA no candidatos a tratamiento intensivo para 

evaluar la toxicidad, seguridad, tolerabilidad y eficacia preliminar de la combinación 

de iadademstat y azacitidina y determinar la mejor dosis de iadademstat en la 

combinación. Se estableció por protocolo la posibilidad de disminuir los días de 

administración y escalar hasta 140 µg/m² en función de los datos de eficacia y 

seguridad durante el seguimiento. 

Características de los pacientes: 

Entre 2018 y 2020 se incluyeron 36 pacientes adultos, con una mediana de edad de 

76 años, de 6 centros españoles con diagnóstico de LMA de acuerdo con los criterios 

de la OMS2016 previamente no tratada, con estado general conservado (ECOG 0-2) 

y no candidatos a tratamiento intensivo, tras confirmar el cumplimiento de todos los 

criterios de inclusión y ninguno de exclusión y obtención del consentimiento 

informado en todos los pacientes. Las características epidemiológicas, clínicas y 

biológicas de la serie fue el esperable para la población de estudio.  

Evaluación de la Seguridad: 

Todos los pacientes presentaron algún efecto adverso, recogidos según la definición 

de los Criterios de Terminología Común para Eventos Adversos (CTCAE, versión 4.0), 

evaluados semanalmente en el primer ciclo y luego al inicio de cada ciclo posterior. 

Los efectos adversos más frecuentemente reportados fueron trombocitopenia (69%), 

neutropenia (61%) y anemia (42%), principalmente de grado 3-4. Tres casos (8%) 

presentaron efectos adversos graves: una hemorragia intracraneal fatal, un síndrome 

de diferenciación y neutropenia febril. 

La mortalidad temprana a 30 días fue del 11%, consistente con tratamientos de baja 

intensidad en LMA en población de edad avanzada de alto riesgo. Las causas de 

muerte en estos pacientes fueron: hemorragia intracraneal, 2 pacientes; un paciente 

falleció por complicaciones relacionadas con una infección por COVID19; otro 

paciente falleció por progresión de la enfermedad.  
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Tabla resumen de los efectos adversos reportados relacionados con la terapia 

 

Con la dosis de 60mg/m2 se evidenció: Trombopenia, 53%; Neutropenia, 65%; 

Anemia, 14%; sin eventos fatales relacionados con el fármaco. Mientras que con la 

dosis de 90mg/m2, 68% presentaron trombopenia, 79% neutropenia y 11%  

anemia; en este grupo se reportó un evento fatal (hemorragia intracraneal, 

posiblemente relacionada con el tratamiento en un paciente con trombopenia de 

base sin que hubiese alcanzado todavía ninguna respuesta). En ambas dosis, se 

realizaron ajustes de tratamiento, como interrupciones, retrasos o reducciones de 

dosis, para manejar la toxicidad observada de acuerdo con lo preestablecido en el 

protocolo. 

Efectos adversos en función de la dosis administrada 

 



 

93 
 

Análisis Farmacocinético y Farmacodinámico: 

Se midió la concentración plasmática de iadademstat y su acumulación en el día 5 

frente al día 2 del primer ciclo de tratamiento para las dos dosis de iadademstat 

testadas en la combinación. Así mismo, se evaluó el grado de unión de LSD1. 

Iadademstat mostró una acumulación en plasma con dosis repetidas: en el día 5, las 

concentraciones plasmáticas aumentaron de manera dosis-dependiente. 

Con la dosis de 60 µg/m², la media de la concentración plasmática en el día 5 fue 

de 8.7 pg/mL (IC 95%: 3.9–13.6). Mientras que con la dosis de 90 µg/m², fue de 13.6 

pg/mL (IC 95%: 10.4–16.7), mostrando un incremento significativo comparado con la 

dosis más baja (p = 0.013). 

 
Datos de farmacocinética con las dos dosis empleadas en el estudio 

 

La inhibición de LSD1 en este estudio se midió por técnicas de citometría de flujo en 

los días 2 y 5 de tratamiento, siendo significativamente superior en el día 5 con la dosis 

de 90 µg/m² respecto a la de 60 µg/m²: 91.7% (IC 95%: 89.3–94.1) vs 77.1% (IC 95%: 

66.0–88.2) [p = 0.017]. 

 

Eficacia: 

Se evaluaron las respuestas globales en los pacientes que al menos se realizaron el 

primer estudio de médula ósea de acuerdo con los criterios de respuesta del IWG 

ajustado para la LMA. Se evaluó la enfermedad residual medible mediante citometría 
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de flujo multiparamétrica o PCR cuantitativa de acuerdo con las recomendaciones de 

la ELN2017, en los casos que alcanzaron una respuesta completa, de forma opcional 

en cada centro. Adicionalmente se analizaron otros parámetros como tiempo a la 

respuesta, duración de la respuesta y supervivencia global. Los pacientes fueron 

seguidos durante al menos 30 días después de la última dosis para monitorizar 

efectos adversos tardíos y recoger datos de supervivencia. Se documentó cualquier 

tratamiento anti-leucémico posterior y los resultados clínicos asociados. 

Veintisiete pacientes fueron evaluables para respuesta. La tasa de respuesta objetiva, 

que incluyó RC/RCi/RP, fue del 82%, con 52% alcanzando remisión completa (RC) o 

remisión completa con recuperación hematológica incompleta (RCi). 

El 91% de los pacientes evaluados para determinar la enfermedad residual medible 

por citometría de flujo multiparamétrica, una vez alcanzada la respuesta, presentaron 

enfermedad indetectable.   

La mediana de duración de la respuesta fue de 269 días; con un 36% de pacientes 

con una duración de 12 meses o más. 

Las respuestas en función de la dosis recibida fueron las siguientes: con la dosis de 

60 µg/m², 13 pacientes fueron evaluables, obteniendo una tasa de respuestas 

globales fue del 85% con 39% en RC/RCi y enfermedad residual no detectable en 

todos los pacientes testados (4). Mientras que con la dosis de 90 µg/m² se evaluaron 

14 pacientes, con 79% de pacientes en respuesta siendo el 64% RC/RCi y enfermedad 

residual indetectable en el 86% de los casos con el dato disponible (7/8). 

 

La dosis de 90 µg/m² fue seleccionada como la dosis recomendada para futuros 

estudios debido a las respuestas más profundas (mayor tasa de RC y RCi) y una mejor 

inhibición de LSD1, a pesar de un incremento porcentual en los efectos adversos, 
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considerando que la toxicidad hematológica fue manejable con medidas de soporte 

intensivas al inicio en la mayoría de les pacientes.  

Con una mediana de seguimiento de 22 meses (rango intercuartílico: 16-31), la 

mediana de la supervivencia global a 2 años de los pacientes tratados fue de 338 días, 

con un intervalo de confianza (IC) del 95% de 137 a 873 días. A los 6 meses sguían 

vivos un 67% de pacientes y a los 12 meses el 48%. 

A destacar, que los pacientes con LMA con componente monocítico o monoblástico 

(M4/M5) que fueron evaluables para respuesta, el 88% (7/8) presentaron respuesta 

clínicamente significativa y enfermedad residual indetectable en el 100% de los 

pacientes en RC/RCi.  Las respuestas en este subgrupo fueron particularmente 

duraderas, con una mediana de duración no alcanzada y un 71% de casos que 

mantenían la respuesta a los 12 meses. La mediana de supervivencia global a 24 

meses fue del 60% (IC 95%: 20–85%) en este grupo. 

En relación con el perfil molecular, que los siete pacientes con mutaciones en RAS 

respondieron. La mediana de supervivencia global en este grupo fue de 467 días (IC 

95%: 137–no evaluable), lo que sugiere respuestas sostenidas. Entre los 8 pacientes 

con mutaciones de TP53, 6 (75%) respondieron, con una mediana de duración de la 

respuesta de 239 días (IC 95%: 155–no evaluable) y una supervivencia de 305 días (IC 

95%: 55–471 días). Los resultados en pacientes con FLT3 fueron más variables. 

Globalmente los resultados de ambos estudios confirman a capacidad inhibidora de 

LSD1 de iadademstat, sucapacidad de inducir diferenciación en monoterapia en 

pacientes con LMA de alto riesgo, así como datos preliminares de eficacia en 

combinación con azacitidina, particularmente con la dosis de 90µg/m². Resulta un 

fármaco seguro para combinar con hipometilantes aunque se debe prestar especial 

atención a la trombocitopenia inducida por le propio mecanismo de acción y eventual 

síndrome de diferenciación. Es necesario generar evidencia en un mayor número de 

pacientes. Evaluar su papel en combinación con otros fármacos aprobados en  LMA 

y realizar estudios randomizados que permitan comparaciones directas con el 

estándar de tratamiento en poblaciones concretas. 
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6. RESUMEN GLOBAL DE LA DISCUSIÓN 
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Contexto actual del tratamiento de la LMA: 

La leucemia mieloide aguda (LMA) es una neoplasia hematológica caracterizada por 

la expansión clonal de células progenitoras mieloides inmaduras, que se acumulan en 

la médula ósea y otros tejidos, provocando insuficiencia medular y complicaciones 

severas (1). El principal factor pronóstico en esta entidad viene definido por las 

alteraciones genéticas y moleculares, siendo más frecuente hallar anomalías de alto 

riesgo en la población de edad más avanzada, con mayor probabilidad de no recibir 

tratamiento intensivo y también en pacientes con enfermedad refractaria o recaída de 

forma precoz (1). Los avances terapéuticos emergidos en la última década, con la 

incorporación de terapias dirigidas en combinación con quimioterapia intensiva o en 

monoterapia en situación de recaída o refractariedad, así como la generalización del 

uso combinado de venetoclax y azacitidina (o ivosidenib y azacitdina en pacientes con 

mutación de IDH1) en los pacientes no candidatos a tratamiento intensivo, han 

proporcionado beneficios tanto en respuestas como en supervivencia (3). Sin 

embargo, sigue siendo una enfermedad de mal pronóstico para muchos de los 

pacientes y es imprescindible desarrollar nuevos esquemas de tratamiento que 

permitan mejorar los resultados, sin incrementar significativamente la toxicidad (2). A 

su vez, es esencial investigar biomarcadores predictores de respuesta que nos guíen 

en la elección de la mejor estrategia terapéutica para cada paciente. 

Hoy en día, el tratamiento estándar no intensivo de la LMA se basa en la combinación 

de azacitidina con venetoclax con una mediana de respuestas del 66% y una 

supervivencia mediana de  alrededor de 14 meses (255); sin embargo, recientes 

estudios con mayor seguimiento muestran que no se trata de una opción curativa y 

que siguen existiendo subgrupos biológicos de la LMA que no se controlan 

adecuadamente con esta estrategia, siendo imprescindible el desarrollo de nuevos 

esquemas de tratamiento, tanto en recaída como en primera línea (344). 

Entre los mecanismos implicados en la leucemogénesis, la hipermetilación de 

determinados genes de transcripción da lugar a un bloqueo de la diferenciación y 

proliferación excesiva de las células blásticas, por ello, el desarrollo de fármacos que 

intervengan este mecanismo se ha planteado desde hace años como una herramienta 

potencialmente eficaz. En la última década algunos estudios han mostrado que LSD1 

está altamente expresada en multitud de tumores, incluida la LMA y se han testado 

inhibidores de LSD1 en fases pre-clínicas mostrando su potencialidad como 

estrategia terapéutica para pacientes con LMA.  
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Iadademstat, un fármaco oral de formulación líquida es un inhibidor potente y 

selectivo de LSD1 y que ha demostrado su capacidad para inducir la diferenciación 

de células leucémicas, una estrategia que ha sido exitosa en otras formas de leucemia, 

como la leucemia promielocítica aguda tratada con ácido transretinoico (4). Más aún, 

ha mostrado ser capaz de sacar del estado quiescente a la célula madre leucémicas e 

inducir su diferenciación y reducir su proliferación, lo que le hace un fármaco atractivo 

para combinar con otros fármacos más dirigidos a diana específica (3). En este trabajo, 

se muestran los resultados de dos estudios clínicos piloto que sientan las bases del 

potencial terapéutico de los inhibidores de LSD1 por primera vez en humanos: 

Datos de eficacia y seguridad 

El estudio fase 1 de escalado de dosis con iadademstat (ORY-1001) ha proporcionado 

por primera vez en humanos información relevante sobre la seguridad, tolerabilidad 

y actividad anti leucémica de la inhibición de LSD1 en un grupo limitado de pacientes 

con LMA recaída o refractaria. El estudio mostró cambios en la expresión de genes 

asociados con la diferenciación (sin bien de forma heterogénea), un porcentaje 

significativo de pacientes mostró un aumento en la expresión de CD11b 

(diferenciación mieloide) y se observó diferenciación morfológica en sangre 

periférica o médula ósea en algunos pacientes, así como disminución transitoria del 

porcentaje de blastos. Aunque el estudio no fue diseñado para evaluar la eficacia, se 

documentaron respuestas parciales y una RCi. Globalmente, las respuestas del 

estudio muestran que iadademstat en monoterapia ofrece respuestas modestas en 

LMA avanzadas, hecho esperable en una población previamente tratada, de edad 

avanzada y con factores de pronóstico adverso (345). La esperable rápida progresión 

de la enfermedad bajo tratamiento en monoterapia impacta en una menor exposición 

al fármaco que eventualmente podría mejorar la eficacia de este. Además, el reducido 

número de pacientes en cada nivel de dosis (debido al diseño de 3+3) limita la 

capacidad de evaluar la consistencia de los efectos farmacodinámicos observados; 

en particular en las primeras fases de escalado, con dosis infra terapéuticas del 

fármaco (efecto comúnmente observado en este tipo de ensayos, en que se debe 

primar la seguridad y evitar en la medida de lo posible efectos adversos indeseados 

con escalados de dosis más rápidos). 

La LMA en situación de R/R con múltiples tratamientos previos es una situación 

médica compleja per se lo que dificulta la interpretación de los datos de seguridad, 

pues la mayoría de los efectos adversos descritos en el estudio fase 1 se relacionaron 
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con la propia enfermedad y no con el fármaco a estudio.  La mielosupresión y sus 

consecuencias clínicas, pudieron ser manejadas satisfactoriamente con las medidas 

habituales en la mayoría de los casos. Sin embargo, el desarrollo de síndrome de 

diferenciación en 2 pacientes, uno fatal, la trombopenia severa y la presentación de 

hemorragias intracraneales precoces indica que se deben establecer las medidas de 

soporte de forma precoz o preventiva de los efectos adversos más habituales para no 

perjudicar la eficacia del tratamiento (345). Su perfil farmacocinético y de toxicidad, 

limitado esencialmente al compartimento hematopoyético, lo hacen un buen fármaco 

para terapias combinadas, lo que en base a otros estudios reportados mitiga el 

síndrome de diferenciación. El trabajo, constituye un primer paso hacia la validación 

clínica de iadademstat como herramienta terapéutica para la LMA. El estudio ha 

proporcionado una base sólida del efecto anti-leucémico atribuible directamente a la 

inhibición de LSD1 con iadademstat en monoterapia para el diseño de estudios de 

combinación. 

En el estudio fase IIa, la dosis recomendada se descendió de 140 µg/m² 

(monoterapia) a 90 µg/m² al combinar con azacitidina, en base a que la combinación 

de los dos fármacos epigenéticos aumenta el efecto farmacodinámico, lo que permite 

bajar dosis sin perder potencia. La combinación de iadademstat con azacitidina 

resultó en una alta tasa de respuestas globales, con negatividad de la enfermedad 

residual en prácticamente todos los casos y una supervivencia mediana superior al 

estándar de tratamiento entonces (azacitdina en monoterapia), confirmando la 

sinergia efectiva entre iadademstat y azacitidina. De las dos dosis evaluadas, la dosis 

de 90mg/m2 se asoció a mayor calidad de la respuesta y mejor comportamiento 

farmacocinético y farmacodinámico, siendo escogida como la dosis para la 

combinación con azacitidina. Adicionalmente se observaron resultados 

prometedores en subtipos con mala respuesta reportada el estándar actual de 

tratamiento (venetoclax y azacitidina), como la LMA con diferenciación monocítica o 

monoblástica o las mutaciones de RAS (346). La combinación, ofrece un enfoque 

innovador y efectivo que podría llenar un vacío en el tratamiento de la LMA, 

especialmente en pacientes no elegibles para terapias intensivas o de determinados 

grupos biológicos con malos resultados con las terapias actuales. 

Los efectos adversos relacionados con el tratamiento reportados con la combinación 

de iadademstat y azacitdina, fueron fundamentalmente trombopenia y neutropenia 

grados 3-4; hallazgo coherente con el mecanismo de acción y con los efectos 
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esperados en la LMA, especialmente en pacientes que ya presentan un perfil 

hematológico comprometido. Ambos estudios confirman que la ventana terapéutica 

intermitente, 5 días on/2 off, revierte parcialmente la inhibición de LSD1 como 

demuestra la recuperación de plaquetas al parar el fármaco observada en algunos 

pacientes. Este efecto, permitiría explorar ajustes de dosis en futuros esquemas de 

combinación con iadademstat con el fin de limitar la toxicidad hematológica. Se 

reportaron pocos efectos adversos graves, como fiebre neutropénica, síndrome de 

diferenciación. La tolerancia general de la combinación fue favorable, permitiendo 

ajustes de dosis y pausas en lugar de suspensiones definitivas en la mayoría de los 

casos. No se observaron toxicidades no esperadas en la combinación, lo que sugiere 

que puede ser un régimen terapéutico apropiado en pacientes vulnerables (346). 

Limitaciones principales de estos trabajos 

La gran heterogeneidad biológica de la enfermedad y los pocos pacientes y muestras 

analizables en cada cohorte del estudio en monoterapia podrían tener impacto en la 

heterogeneidad de los datos observados a nivel de diferenciación, tanto a nivel 

morfológico, como de expresión de marcadores. El diseño abierto y no controlado, 

junto con el tamaño reducido de la muestra, limita la generalización de los resultados 

y la capacidad de atribuir directamente los efectos observados al tratamiento con la 

combinación e impide una comparación directa con otros tratamientos de referencia 

en cuanto a datos de eficacia y toxicidad.  

No hubo diversidad étnica en el estudio.  

No se puede obviar la posible influencia de la pandemia de COVID-19 en la 

recolección de datos y muestras en un estudio multicéntrico; ni la tasa de mortalidad 

inicial observada en el estudio fase 2, lo que podría limitar también la generalización 

de los resultados. 

Comparación con otros tratamientos emergentes: 

En el panorama actual de tratamientos emergentes para la LMA, iadademstat se 

posiciona como una opción diferenciadora frente a inhibidores de FLT3, como 

gilteritinib, y a inhibidores de BCL-2, como venetoclax. Los inhibidores de FLT3 han 

mostrado altas tasas de respuesta en pacientes con mutaciones específicas, aunque 

su eficacia se ve comprometida por el desarrollo de resistencia (347). Mientras que 

venetoclax, especialmente en combinación con agentes hipometilantes, ha alcanzado 
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tasas de remisión del 50-70%, con una supervivencia mediana de 14,7 meses, 

demostrando su eficacia en el manejo de LMA; presenta un perfil de seguridad 

aceptable limitado esencialmente al compartimento hematopoyético que requiere de 

un manejo especializado y condiciona ajustes de dosis y duración de los ciclos en 

prácticamente todos los pacientes, una vez alcanzada la remisión (344). El estudio 

ALICE mostró que el “tratamiento epigenético dual” puede ser una herramienta 

eficaz, tal y como han confirmado estudios posteriores. En este estudio, la 

trombocitopenia grado 3-4 afectó a >60 % de los pacientes; sin embargo, las 

hemorragias fatales fueron raras (1/36 pacientes) y la toxicidad es mayoritariamente 

reversible al parar el fármaco. En el estudio, el síndrome de diferenciación aparece 

como un evento de baja frecuencia, aún así, se recomienda vigilancia y tratamiento 

precoz, igual que en otros fármacos que inducen diferenciación (inhibidores IDH o 

inhibidores de menina) con los que hoy en día hay mayor experiencia (348). 

Los estudios de este trabajo no deben compararse con los resultados obtenidos en 

ensayos fase 3 randomizados con suficiente potencia para mostrar diferencias 

significativas entre brazos y subgrupos de pacientes. Aun así, la combinación de 

iadademstat con azacitidina no solo supera las tasas de respuesta de los agentes 

hipometilantes solos, sino que también podría ser una alternativa efectiva para 

pacientes con perfiles genéticos complejos que no responden adecuadamente a 

otros tratamientos dirigidos. Además, la sinergia observada en estudios in vivo pre-

clínicos, sugiere un mecanismo de acción complementario que podría reducir la 

probabilidad de resistencia terapéutica (335, Tayari et al. ASH 2023; 142 (Supplement 

1): 5691). Al igual que venetoclax y azacitidina, los efectos adversos reportados 

sugieren que se requiere una monitorización estrecha y establecimiento de medidas 

de soporte de forma precoz o profiláctica, particularmente en el primer ciclo de 

tratamiento. En el estudio ALICE no se reportó lisis tumoral y en los pacientes en 

respuesta las citopenias no fueron persistentes. Futuros estudios deben ir dirigidos a 

identificar qué subgrupos de LMA obtienen mayor beneficio de la inhibición de LSD1, 

cuáles son las mejores combinaciones para controlar las toxicidades y optimizar la 

eficacia de forma individualizada (346). Idealmente, en estudios randomizados frente 

al estándar actual con venetoclax y azacitidina.  
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Desarrollo de inhibidores de LSD1: 

- Identificar pacientes que se benefician: 

El grado de expresión de LSD1 no se correlaciona con la respuesta a  los 

inhibidores; la implementación de herramientas avanzadas de monitoreo, como 

biomarcadores específicos de diferenciación (por ejemplo, VCAN, S100A12, LY96) 

junto con datos farmacocinéticos, podría facilitar la predicción de la respuesta al 

tratamiento y permitir ajustes terapéuticos en tiempo real, mejorando así la eficacia 

clínica y reduciendo la toxicidad y deberían implementarse como marcadores de 

enfermedad residual en futuros ensayos clínicos para guiar la estrategia terapéutica 

de un modo dinámico (346,348,349). 

- Desarrollar combinaciones efectivas:  

El desarrollo de iadademstat debe situarse en el contexto de las terapias 

emergentes para LMA bien sea en tripletes con dosis ajustadas o dobletes en 

mantenimiento o tratamientos secuenciales, en función de los datos biológicos. En 

particular, con los inhibidores de FLT3 (gilteritinib, quizartinib), IDH1/2 (ivosidenib, 

enasidenib), BCL-2 (venetoclax), inhibidores de menina y ATRA, que han demostrado 

eficacia en subgrupos moleculares específicos (349, 350). En contraste, los 

inhibidores de LSD1 no están restringidos a una mutación específica, sino que afectan 

vías epigenéticas globales en la leucemogénesis. Además, hay evidencia emergente 

de que la inhibición de LSD1 puede modular la inmunogenicidad de la leucemia: 

estudios preclínicos en modelos de neoplasia sólida muestran que la pérdida de 

LSD1 o su inhibición farmacológica potencia la inmunidad antitumoral a través de 

diversos mecanismos, que incluyen: la modificación de la expresión de antígenos 

tumorales y de la proteína de muerte celular programada 1 (PD-1) y de su ligando PD-

L1, de quimiocinas, de retrovirus endógenos (ERV), de complejos mayores de 

histocompatibilidad (MHC) así como la activación de las vías de señalización del 

interferón (IFN) y del factor de crecimiento transformante beta (TGFβ). Estos hallazgos 

justifican explorar combinaciones de inhibidores de LSD1 con inhibidores checkpoint 

e inhibidores de PARP (351). 

- Nuevos inhibidores de LSD1: 

Fruto de la investigación de los inhibidores de LSD1 en la última década, 

actualmente se han desarrollado a nivel clínico nuevos inhibidores de LSD1 (ensayos 
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fase I/II): 8 inhibidores irreversibles y 2 inhibidores reversibles (CC-90011, SP-2577).  

Los compuestos irreversibles, basados en tranylcypromina (ORY-1001, GSK-2879552, 

IMG-7289), han demostrado ser altamente potentes, sin embargo, generan una 

mielosupresión dosis-limitante (352, 353) lo que plantea la necesidad de posologías 

intermitentes o reversibles; además en algunos estudios, se asocian a labilidad 

cardíaca atribuible a la unión covalente al FAD (Shen et al., 2024). Por otro lado, los 

inhibidores reversibles de LSD1 (CC-90011, SP-2577) son más selectivos en cuanto a 

la metilación de histonas, con una farmacocinética menos predecible (354) y 

presentan menor mielotoxicidad, que es relevante particularmente en las hemopatías, 

porque los potenciales fármacos a asociar y la propia enfermedad, condicionan una 

hematopoyesis comprometida. Todos han mostrado datos biológicos de 

diferenciación, sin embargo, el reclutamiento de pacientes queda limitado por la 

toxicidad hematológica y la eficacia clinica limitada en monoterapia; por ello, se 

plantean ensayos en comobinación con fármacos habituales en las hemopatías 

mieloides [Tabla 9]. 

Todos ellos, han mostrado sinergia de la inhibición de LSD1 en combinación con con 

quimioterapia, hipometilantes, inhibidores de histona deacetilasa (HDACi) o 

inhibidores de BCL-2. En base a estos estudios, se están desarrollando nuevos 

fármacos duales para LMA, como LSD1/HDAC (4SC-202, JBI-802) o LSD1/Hsp90; 

como estrategia para evitar resistencias y disminuir la dosis farmacológica eficaz, para 

mejorar el perfil de toxicidad (también en desarrollo el agente dual JBI-802 

LSD1/HDAC6 en tumores sólidos y el agente reversible SP-2577 en NMD) (355).  Este 

tipo de fármacos permitiría sincronizar en una molécula los efectos terapéuticos de 

vías diferentes de la leucemogénesis, con potenciales ventajas en términos de 

adherencia terapéutica, exposición farmacológica mínima necesaria y, posiblemente, 

un menor coste sanitario a la larga. 

Globalmente, la inhibición de LSD1 es una estrategia potencialmente valiosa, que no 

sólo desbloquea la maduración celular, sino que reprograma la respuesta inmune y 

la reparación genómica.  Es necesario desarrollar biomarcadores que ayuden a 

seleccionar los pacientes y/o el momento de la enfermedad en que deben usarse los 

inhibidores de LSD1 para maximizar su eficacia y garantizar una mielotoxicidad 

limitada.   
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Tabla 9. Desarrollo de los inhibidores de LSD1 en clínica para neoplasias mieloides 
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Conclusiones 

De los trabajos con iadademstat, primer inhibidor de LSD1 testado en humanos para 

LMA, se conlcuye: 

1. En los pacientes con LMA en situación de recaída o refractariedad, iadademstat 

en monoterapia mostró ser seguro a una dosis de 140microgramos/día con 

toxicidad hematológica esperada y sin identificar toxicidades off-target en esta 

población de pacientes. La trombocitopenia y el síndrome de diferenciación, si 

bien fueron esperables, requieren protocolos de manejo específicos para 

minimizar sus efectos. Ha demostrado un potencial significativo para inducir la 

diferenciación de las células leucémicas (citológica y molecular), especialmente 

en algunos subtipos moleculares, aunque con una eficacia clínica limitada. 

 

2. Iadademsatat en combinación con azacitidina se mostró seguro y eficaz a las dos 

dosis testadas en pacientes con LMA previamente no tratada, con una alta tasa de 

respuestas globales y respuestas completas profundas. Lo que demuestra que 

inducción de diferenciación en pacientes con LMA no promielocítica, también 

constituye una herramienta terapéutica válida en combinación con otros agentes 

epigenéticos y consolida a Iadademstat como el primer inhibidor de LSD1 con 

beneficio clínico en la LMA previamente no tratada. La toxicidad de esta 

combinación queda restringida al compartimento hematopoyético y puede 

revertir al suspender el fármaco.  

 

 

3. El estudio ALICE sugiere que la combinación de azacitidina e iadademstat podría 

beneficiar a pacientes peor controlados con azacitidina y venetoclax, como las 

LMA de componente monoblástico o con mutaciones activadoras de RAS oTP53; 

sin embargo, esto debe confirmarse en estudios más amplios y randomizados.  
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8. LÍNEAS DE FUTURO 
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Líneas de futuro 

 En los últimos años, las terapias dirigidas para LMA están emergiendo como nuevas 

opciones terapéuticas para subgrupos concretos de pacientes con LMA. Sin 

embargo, algunos subtipos siguen presentando un pronóstico muy desfavorable y 

estamos lejos de obtener la curación en un porcentaje alto de casos.  

Iadademsstat en combinación con hipometilantes es seguro y muestra eficacia sin 

estar aparentemente influenciado por los subtipos con componente monoblástico o 

mutaciones activadoras como RAS, lo que supondría una ventaja frente a la 

combinación actualmente estándar con venetoclax y azacicitidina. Además, su perfil 

farmacocinético y ausencia de toxicidad extramedular lo hacen un buen candidato 

para nuevas terapias de combinación.  

El desarrollo de estudios que evalúen combinaciones tripartitas (iadademstat, 

agentes hipometilantes, venetoclax y otros inhibidores dirigidos) podría proporcionar 

una respuesta más robusta, con el potencial de superar los mecanismos de resistencia 

que emergen en monoterapias o combinaciones duales y abordar mejor la 

heterogeneidad biológica de la LMA. Se han iniciado ensayos clínicos en Estados 

Unidos y Reino Unido con la triple combinación de iadademstat, azacitdina y 

venetoclax (NCT06514261, NCT06357182). Otros grupos, también en estados 

unidos, están evaluando la seguridad y eficacia de iadademstat en combinación con 

gilteritinib en LMA con mutación de FLT3 recaída o refractaria (NCT05546580).  

Iadademstat, ejemplifica una traslación rápida, del fase I a combinaciones efectivas 

de fármacos en desarrollo (<4 años). Junto con otros inhibidores de LSD1 en 

desarrollo, configuran una nueva herramienta terapéutica para la LMA que requiere: 

optimizar combinaciones, mitigar la mielotoxicidad cruzada, incorporar el estudio de 

biomarcadores al diagnóstico y durante el seguimiento (KMT2A-r, GFI1B-alto, firmas 

de inmadurez o quiescencia (stemness), firmas de diferenciación monocítica) para 

evaluar su papel en la elección y/o modificación de la mejor combinación de fármacos 

de forma individualizada. 
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Suplementos (Supl.) 

 Figura Supl. 1. Modelo de hematopoyesis y señales del microambiente medular 
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Tabla Supl. 1. Resumen de las mutaciones más relevantes en LMA 
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Figura Supl. 2. Principales reguladores epigenéticos en la LMA 

 

 

Figura Supl. 3. Incidencia y mortalidad de las leucemias agudas mieloblásticas 
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Tabla Supl. 2. Alteraciones citogenéticas con impacto pronóstico en la LMA 
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Figura Supl. 4. Principales aprobaciones recientes en el tratamiento de la LMA 
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