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M. Florent Balacheff Universitat Autònoma de Barcelona Directeur
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Abstract

This thesis is dedicated to the topology and the geometry of Riemannian manifolds of positive scalar
curvature. To explore the structure of such manifolds, we adopt a metric perspective, specifically
through two metric generalisations of the notion of positive scalar curvature.

First, we focus on the topology of 3-manifolds of positive scalar curvature, and we provide a
new obstruction to the existence of complete Riemannian metrics of positive scalar curvature on
non-compact 3-manifolds. More precisely, we prove that if an orientable 3-manifold M admits a
complete Riemannian metric whose scalar curvature is positive and has a subquadratic decay at
infinity, then it decomposes as a (possibly infinite) connected sum of spherical manifolds and S2×S1
summands. As a consequence, the manifold M admits a complete metric of uniformly positive scalar
curvature. This result constitutes a generalisation of a theorem by Gromov and Wang, and its proof
builds upon a different approach of metric and topological nature. More generally, the topological
decomposition holds without any assumption on the scalar curvature, relying instead on a metric
estimate on the filling discs of closed curves in the universal cover, based in the notion of fill radius.
Moreover, the decay rate in the decomposition theorem is optimal, since the manifold R2×S1 admits
a complete metric of positive scalar curvature decaying exactly quadratically at infinity, yet it does
not decompose as a connected sum of spherical manifolds and S2 × S1 summands.

Then, we explore the notion of macroscopic scalar curvature and its relation to the systolic
geometry of a manifold. More precisely, we derive a macroscopic version of a celebrated systolic
inequality by Bray–Brendle–Neves on the area of non-contractible 2-spheres in a manifold of positive
scalar curvature. We show that if a complete Riemannian n-manifold with non-trivial codimension
1 homology with Z2-coefficients or Z-coefficients has positive macroscopic scalar curvature, then it
admits a non-nullhomologous hypersurface of small Urysohn (n− 2)-widht. The proof of this result
is based on an adaptation of Guth’s macroscopic version of the Schoen–Yau descent argument.

Keywords: scalar curvature, 3-manifold topology, quadratic decay, fill radius, macroscopic scalar
curvature, Urysohn width, systole.
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Résumé

Cette thèse est consacrée à la topologie et à la géométrie des variétés riemanniennes de courbure
scalaire strictement positive. Afin d’explorer la structure de telles variétés, nous adoptons un point
de vue métrique, en particulier à travers deux généralisations métriques de la notion de courbure
scalaire strictement positive.

Tout d’abord, nous nous concentrons sur la topologie des 3-variétés à courbure scalaire stricte-
ment positive, et nous fournissons une nouvelle obstruction à l’existence de métriques riemanni-
ennes complètes à courbure scalaire strictement positive sur des 3-variétés non compactes. Plus
précisément, nous prouvons que si une 3-variété orientable M admet une métrique riemannienne
complète à courbure scalaire strictement positive à décroissance sous-quadratique, alors elle se
décompose en une somme connexe (possiblement infinie) de variétés sphériques et de termes S2×S1.
En conséquence, la variété M admet une métrique complète à courbure scalaire uniformément
strictement positive. Ce résultat constitue une généralisation d’un théorème de Gromov et Wang, et
sa preuve repose sur une approche différente, de nature métrique et topologique. Plus généralement,
nous dérivons la décomposition topologique à partir d’une estimation métrique des disques de rem-
plissage des courbes fermées dans le revêtement universel, basée sur la notion de rayon de remplis-
sage, et sans hypothèse supplémentaire sur la courbure scalaire. De plus, le taux de décroissance
dans le théorème de décomposition topologique est optimal, puisque la variété R2 × S1 admet une
métrique complète à courbure scalaire strictement positive à décroissance exactement quadratique,
mais elle ne se décompose pas comme une somme connexe des variétés sphériques et de termes
S2 × S1.

Ensuite, nous explorons la notion de courbure scalaire macroscopique et sa relation avec la
géométrie systolique des variétés. Plus concrètement, nous établissons une version macroscopique
de la célèbre inégalité systolique de Bray–Brendle–Neves sur l’aire des 2-sphères non contractiles
dans une variété à courbure scalaire strictement positive. Nous montrons que si une n-variété
riemannienne complète avec une (n− 1)-homologie à coefficients dans Z2 ou dans Z non triviale a
une courbure scalaire macroscopique strictement positive, alors elle contient une hypersurface non
nulle en homologie de petite (n − 2)-largeur d’Urysohn. La preuve de ce résultat s’appuie sur une
adaptation d’une version macroscopique, due à Guth, de l’argument de descente de Schoen–Yau.

Mots-clés: courbure scalaire, topologie des 3-variétés, décroissance quadratique, rayon de remplis-
sage, courbure scalaire macroscopique, largeur d’Urysohn, systole.
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Resum

Aquesta tesi està dedicada a la topologia i la geometria de les varietats riemannianes de curvatura
escalar estrictament positiva. Per abordar el seu estudi hem adoptat un punt de vista mètric, conc-
retament a través de dues generalitzacions mètriques de la noció de curvatura escalar estrictament
positiva.

En primer lloc, ens centrem en la topologia de les 3-varietats riemannianes de curvatura es-
calar estrictament positiva, tot proporcionant una nova obstrucció a l’existència de mètriques rie-
mannianes completes de curvatura escalar estrictament positiva per les 3-varietats no compactes.
Concretament, demostrem que si una 3-varietat orientable M admet una mètrica riemanniana
completa la curvatura escalar de la qual és estrictament positiva i decreix subquadràticament a
l’infinit, aleshores M es descompon com una suma connexa (possiblement infinita) de varietats
esfèriques i de sumands S2 × S1. Com a conseqüència, la varietat M admet una mètrica Rieman-
niana completa de curvatura escalar uniformement estrictament positiva, resolent parcialment una
conjectura de Gromov. Aquest resultat constitueix una generalització d’un teorema de Gromov i
Wang, tot utilitzant una aproximació al problema de natura diferent, basada en tècniques mètriques
i topològiques. Més generalment, derivem la descomposició topològica sota una condició en termes
dels discs d’emplenament de corbes tancades en el recobriment universal, basada en la noció de
radi d’emplenament, sense cap hipòtesi addicional sobre la curvatura de la varietat. Aix́ı mateix, la
taxa de decreixement de la curvatura escalar en el teorema de descomposició és òptima. En efecte,
la varietat R2 × S1 admet una mètrica riemanniana completa de curvatura escalar estrictament
positiva amb un decreixement exactament quadràtic, però no es descompon com una suma connexa
de varietats esfèriques i de productes S2 × S1.

Tot seguit, ens dediquem a explorar la noció de curvatura escalar macroscòpica i la seva relació
amb la geometria sistòlica de les varietats. Més precisament, establim una versió macroscòpica
d’una cèlebre desigualtat sistòlica deguda a Bray–Brendle–Neves sobre l’àrea de les 2-esferes no
contràctils dins una varietat de curvatura escalar estrictament positiva. Demostrem que si una n-
varietat riemanniana completa amb una (n− 1)-homologia amb coefficients a Z2 o a Z no trivial té
curvatura escalar macroscòpica estrictament positiva, aleshores la varietat conté una hipersuperf́ıcie
no nul·la en homologia amb una (n − 2)-amplada d’Urysohn petita. La prova d’aquest resultat es
fonamenta en una adaptació d’una versió macroscòpica, deguda a Guth, de l’argument de descens
de Schoen–Yau.

Mots clau: curvatura escalar, topologia de 3-varietats, decreixement quadràtic, radi d’emplenament,
curvatura escalar macrsocòpica, amplada d’Urysohn, śıstole.
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Introduction

This thesis is about the topology and the geometry of Riemannian manifolds of positive scalar
curvature. The scalar curvature of a Riemannian n-manifold M is a central invariant in Riemannian
geometry. The scalar curvature scal(x) at a point x ∈M is defined as

scal(x) :=
∑
i ̸=j

sectx(ei ∧ ej),

where sectx denotes the sectional curvature of the manifold M at the point x and (ei) is an orthonor-
mal basis of the tangent space TxM . The scalar curvature can be equivalently defined through the
volumetric deviation of geodesic balls of infinitesimal radius with respect to Euclidean balls of the
same radius. More precisely, the volume of the geodesic ball B(x, r) centered at a point x ∈ M
satisfies

|B(x, r)| = bnr
n

(
1− scal(x)

6(n + 2)
r2 + O(r3)

)
, (1)

for radii r > 0 small enough, where bn denotes the volume of the unit ball in the Euclidean n-
dimensional space.

The scalar curvature constitutes the weakest curvature notion among all the classical curvatures
which can be defined from the Riemann curvature tensor. Hence, a central problem in Riemannian
geometry consists in understanding the relation between scalar curvature and the global topology
and geometry of a manifold.

Throughout this introduction, we shall provide a brief overview of the different developments
in the study of scalar curvature, and we will present our results within the context of this field. In
Section I, we will focus on the problem of determining which manifolds admit Riemannian metrics of
positive scalar curvature, a question that remains one of the central challenges in scalar curvature
geometry to this day. Next, in Section II, we will address this question in the specific case of
3-dimensional manifolds, starting with closed 3-manifolds and then turning to the case of open
3-manifolds. Finally, in Section III, we will address the interaction between scalar curvature and
systolic geometry. The results obtained during this thesis will be presented in Sections II and III.

I Manifolds of positive scalar curvature

A fundamental question in the study of scalar curvature is to determine when a manifold admits
a complete metric of positive scalar curvature. Among the numerous motivations for studying
manifolds admitting metrics of positive scalar curvature, there is the following theorem.

Trichotomy Theorem ([KW75a, KW75b, KW75c]). Let M be a closed connected n-manifold.
Then M belongs to exactly one of the following three classes:

15



16 Introduction

· Type 1: Closed manifolds admitting a Riemannian metric of positive scalar curvature.

· Type 2: Closed manifolds not admitting a Riemannian metric of positive scalar curvature,
but admitting a Riemannian metric of scalar curvature identically zero. In this case, such a
metric is Ricci-flat.

· Type 3: Closed manifolds not admitting a Riemannian metric of non-negative scalar curva-
ture.

Moreover, if n ≥ 3, then:

1. If M is of type 1, then any function f ∈ C∞(M) can be realised as the scalar curvature of a
Riemannian metric on M .

2. If M is of type 2, then a function f ∈ C∞(M) can be realised as the scalar curvature of a
Riemannian metric on M if and only if either f(x) < 0 for some x ∈M or f ≡ 0.

3. If M is of type 3, then a function f ∈ C∞(M) can be realised as the scalar curvature of a
Riemannian metric on M if and only if f(x) < 0 for some x ∈M .

The Trichotomy Theorem has deep implications. First, any manifold of dimension at least three
can be endowed with a Riemannian metric of negative scalar curvature, which can be assumed
to be constant. This result was first proven by Aubin [Aub70], and it was later extended to the
non-compact case for complete Riemannian metrics in [BK89]. On the contrary, we will see that
there exist topological obstructions to admitting metrics of positive scalar curvature. Moreover,
the Trichotomy Theorem implies that deciding whether the scalar curvature of a manifold can be
prescribed to be any function corresponds to determining if the manifolds admits a metric of positive
scalar curvature. Secondly, it follows from the Trichotomy Theorem that, on non-compact manifolds,
there is no restriction to admitting metrics of positive scalar curvature if one does not additionally
suppose the metric to be complete. Finally, it also implies that if a manifold of non-negative scalar
curvature does not admit a metric of positive scalar curvature, then the manifold is Ricci-flat. This
is known as Kazdan’s Deformation Theorem [Kaz82]. Recall that in dimension 3, Ricci-flatness
implies Riemannian-flatness, that is, the Riemann curvature tensor vanishes. In higher dimensions,
by the Cheeger-Gromoll Splitting Theorem [CG71, FW75], any smooth closed Ricci-flat manifold
is finitely covered by the product of a torus and a closed simply connected Ricci-flat manifold.
Hence, Kazdan’s Deformation Theorem implies rigidity results for manifolds of non-negative scalar
curvature which do not admit metrics of positive scalar curvature.

The classification of manifolds admitting complete Riemannian metrics of positive scalar curva-
ture can be divided into two separated questions: the determination of topological obstructions to
admit metrics of positive scalar curvature, and the elaboration of techniques to construct manifolds
with positive scalar curvature.

I.I Topological obstructions to complete metrics of positive scalar curvature

The Dirac operator method

The first obstructions to admit metrics of positive scalar curvature were derived from index theo-
retical considerations on the Dirac operator on spin manifolds. This approach has the advantage to
hold in any dimensions, but only for spin manifolds, that is, manifolds whose second Stiefel–Whitney
class vanishes.
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Let M be a closed spin Riemannian n-manifold. The Dirac operator D is a self-adjoint elliptic
first order differential operator which may be defined on the sections of a spinor bundle S → M
over M . We refer the reader to [LM89] for the precise construction of spinor bundles and the Dirac
operator on spin manifolds. The Dirac operator satisfies the Lichnerowicz Formula [Lic63]

D2 = ∇∗∇+
scal

4
,

where∇ denotes the covariant derivative on the spinor bundle induced by the Levi–Civita connection
and ∇∗ is the adjoint of ∇. A spinor φ ∈ C∞(M,S) is harmonic if it satisfies the Dirac equation
Dφ = 0. The Lichnerowicz Formula implies that, if the Riemannian manifold M has positive scalar
curvature, then any harmonic spinor must be trivial.

On the other hand, the Atiyah–Singer Index Theorem [AS71a, AS71b] for the Dirac opera-
tor D relates the existence of non-trivial harmonic spinors to a topological invariant, called the α-
genus α(M) of the manifold M . More precisely, the Atiyah–Singer Index Theorem implies that,
if α(M) ̸= 0, then M admits non-trivial spinors. Therefore, it follows from the Lichnerowicz Formula
that manifolds admitting metrics of positive scalar curvature have a vanishing α-genus.

A considerable collection of obstruction results for spin manifolds was derived using the Dirac
operator method. First, Lichnerowicz [Lic63] showed that there exist smooth closed manifolds
of dimension divisible by 4 with non-trivial α-genus, and therefore which do not admit a metric
of positive scalar curvature. An example of such manifolds is the Kummer surface, which is the
4-manifold given by the equation z21 + z22 + z23 + z24 = 0 in CP3. Later, Hitchin [Hit74] proved
the existence of exotic spheres (that is, n-manifolds homeomorphic but not diffeomorphic to the
standard sphere of dimension n) of dimension n ≡ 1, 2 (mod 8) not admitting metrics of positive
scalar curvature. The Dirac operator method also allowed to give a full description of which sim-
ply connected closed manifolds of dimension at least 5 admit metrics of positive scalar curvature.
More precisely, Gromov–Lawson [GL80b] and Stolz [Sto92] showed that a simply connected closed
manifold M of dimension n ≥ 5 admits a metric of positive scalar curvature if and only if either M
is not spinable, or M is spinable and α(M) = 0. Finally, Gromov–Lawson [GL80a] derived from a
twisted version of the Dirac operator and of the Lichnerowicz formula that enlargeable manifolds
do not admit metrics of positive scalar curvature. The class of enlargeable manifolds includes the
n-torus, closed solvmanifolds, closed hyperbolic manifolds and, more generally, any closed manifold
of non-negative sectional curvature. In particular, Gromov–Lawson proved that the n-torus does
not admit a metric of positive scalar curvature. This statement is known as the Geroch Conjecture,
and was one of the leading problems in the study of scalar curvature. The twisted Dirac operator
method also allowed Gromov–Lawson [GL83] to prove that closed aspherical 3-manifolds do not
admit Riemannian metrics with positive scalar curvature.

The minimal stable hypersurface descent method

Let M be a closed Riemannian n-manifold and let Σ ⊂M be a two-sided stable minimal hypersur-
face. The stability of the hypersurface Σ together with the second variation formula implies that
any function f ∈ C∞(Σ) satisfies the Stability Inequality∫

Σ

(
|∇f |2 −

(
Ric(ν, ν) + ∥II∥2

)
f2

)
dV ≥ 0, (2)

where Ric denotes the Ricci curvature tensor of M , ν is the unit vector field normal to Σ and II
is the second fundamental form of Σ. Schoen–Yau [SY79b] noticed that one can cleverly rearrange
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the Gauss equations to obtain the following identity

scal− scalΣ + ∥II∥2 = 2
(

Ric(ν, ν) + ∥II∥2
)
, (3)

where scal and scalΣ are the scalar curvatures of M and Σ, respectively. Therefore, after using
Schoen–Yau’s rearrangement (3), the Stability Inequality (2) implies that, for any function f ∈
C∞(Σ), ∫

Σ

(
|∇f |2 +

1

2
scalΣ f2

)
dV ≥ 1

2

∫
Σ

scal f2dV. (4)

It follows from the inequality (4) that if the manifold M has positive scalar curvature, then Σ also
admits a metric of positive scalar curvature. Indeed, for n = 3, it suffices to take f ≡ 1 and to use
the Gauss–Bonnet formula, to obtain from the inequality (4) that∫

Σ
scal ≤ 2

∫
Σ
κΣ = 8πχ(Σ),

where κΣ and χ(Σ) denote the Gauss curvature and the Euler characteristic of the surface Σ,
respectively. Therefore, the surface Σ must be either homeomorphic to a 2-sphere or to a projective
plane. The case n ≥ 4 needs to be treated with more care. One obtains a metric of positive scalar
curvature on Σ by conformally modifying the metric on Σ, and using the inequality (4) to ensure
that the new metric has positive scalar curvature. Notice that, in both cases, the induced metric
on Σ from the ambient manifold M does not necessarily have positive scalar curvature.

Hence, we conclude that if a Riemannian n-manifold M has positive scalar curvature, then any
stable minimal hypersurface in M also has positive scalar curvature. This is known as Schoen–Yau’s
descent argument ([SY79a] for n = 3, and [SY79b] for n ≥ 4). More generally, if the manifold M
has positive scalar curvature and one is able to construct a descending sequence

M ⊃ Σn−1 ⊃ · · · ⊃ Σ2

of closed oriented stable minimal k-submanifolds Σk, then Σ2 must be a disjoint union of 2-spheres
or projective planes. Hence, the descent method consists in showing that a manifold does not admit
metrics of positive scalar curvature by constructing a descending sequence M ⊃ Σn−1 ⊃ · · · ⊃ Σ2

of stable minimal hypersurfaces ending at a surface Σ2 of non-positive Euler characteristic.

The precise topological conditions that allow one to define such a descending sequence of stable
minimal surfaces were captured by Schick [Sch98] in the notion of SYS manifold. A closed orientable
n-manifold M is SYS if there exist cohomology classes α1, . . . , αn−2 ∈ H1(M ;Z) such that the
homology class

[M ] ⌢ (α1 ⌣ · · ·⌣ αn−2) ∈ H2(M ;Z)

does not lie in the image of the Hurewicz map π2(M) → H2(M). Indeed, if M is a SYS n-
manifold, then one can consider the non-trivial homology class [M ] ⌢ α1 ∈ Hn−1(M ;Z). By a
classical result in Geometric Measure Theory [FF60, Fed70], if the dimension of the manifold M
is n ≤ 7, then the class [M ] ⌢ α1 can be represented by a stable minimal hypersurface Σn−1

which minimises the volume among all representatives. The restriction in the dimension is due to
the well-known fact that, in higher dimensions, the volume-minimising hypersurface may present
singularities [BDGG69]. Since the minimal stable hypersurface Σn−1 inherits the SYS property, one
can apply the construction inductively to construct a descending sequence M ⊃ Σn−1 ⊃ · · · ⊃ Σ2

with Σ2 of non-positive Euler characteristic. Thus, we conclude that SYS manifolds of dimension
n ≤ 7 do not admit metrics of positive scalar curvature. This result was extended to the case n = 8
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by Joachim–Schick [JS00] using a result of Smale [Sma93]. Recently, Schoen–Yau [SY22] were able
to circumvent the restriction on the dimension, at least in certain situations.

The main advantage of the descent method is that, as opposed to the Dirac operator method,
it does not require the manifold M to be spin. It was conjectured by Gromov–Lawson–Rosenberg
[GL83, Ros91] that all the obstructions to admitting metrics of positive scalar curvature can be
determined by the Dirac operator method, at least for spin manifolds. However, Schick [Sch98]
disproved the Gromov–Lawson–Rosenberg conjecture by constructing a closed spin 5-manifold for
which all obstructions coming from the Dirac operator method vanish, but which does not ad-
mit a metric of positive scalar curvature by the descent method. Therefore, the descent method
provides new obsructions to admitting metrics of positive scalar curvature. On the other hand,
it requires H1(M ;Z) to be non-zero, and the regularity of stable minimal hypersurfaces imposes
restrictions on the dimension of M .

Obstructions in the non-compact case

The determination of which non-compact manifolds admit a complete metric of positive scalar
curvature or not is more delicate than in the compact case. In fact, when dealing with non-compact
manifolds, one must also consider complete metrics with uniformly positive scalar curvature, since
there exist complete Riemannian manifolds with positive scalar curvature which cannot be endowed
with a complete metric of uniformly positive scalar curvature.

Let M be a closed n-manifold. Rosenberg–Stolz [RS94] proved that M×R2 can be endowed with
a complete metric of positive scalar curvature, and M ×Rk admits a complete metric of uniformly
positive scalar curvature when k ≥ 3. Consequently, in [RS94] the authors also conjectured that
if M does not admit a metric of positive scalar curvature, then M ×R admits no complete metric of
positive scalar curvature, and M×R2 does not admit a metric of uniformly positive scalar curvature.
Rosenberg–Stolz’s conjecture was established when the dimension of M is n ≤ 2 by Gromov–Lawson
[GL83].

Recent methods on the study of scalar curvature

A new tool for the study of scalar curvature that has led to interesting results are the µ-bubbles
introduced by Gromov in [Gro23]. The µ-bubble method may be understood as an extension of the
minimal hypersurface approach which allows more flexibility when adapting the construction to the
topology and geometry of the manifold.

Given a Riemannian n-manifold M and a smooth function h on M , a µ-bubble (with respect
to h) is a subset Ω ⊂ int (M) which minimises a certain functional involving the (n − 1)-volume
of the boundary ∂Ω and a term depending on the values of h on Ω. The existence of µ-bubbles in
dimensions 3 ≤ n ≤ 7 and for suitable choices of the function h was established in [Gro23, Zhu21].
The variation formulae associated with such functional imply that the boundary ∂Ω of a µ-bubble Ω
with respect to h has mean curvature h, and that it satisfies a stability inequality analogous to
equation (2), involving the scalar curvatures of M and of Σ. In particular, the existence of µ-bubbles
can be seen as a mean-curvature prescription problem, and therefore the functional minimised
by µ-bubbles is often called the prescribed-mean-curvature functional. The stability inequality
for µ-bubbles may be used to derive significant geometric estimates to study the geometry of M
from lower bounds on the scalar curvature.

The µ-bubble method has led to a number of important results. In [Gro86], Gromov conjectured
that any closed aspherical n-manifold does not support a Riemannian metric of positive scalar curva-
ture, for any n ≥ 2. As mentioned above, Gromov’s conjecture was positively solved in dimension 3
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by Gromov–Lawson [GL83] using the twisted Dirac operator method. Using µ-bubbles, Chodosh–
Li [CL24] and independently Gromov [Gro20] recently established the conjecture in dimensions 4
and 5. However, Gromov’s conjecture remains wide open in higher dimensions. In [Gro17, Gro23],
Gromov stated the stronger conjecture that Q-essential manifolds do not admit metrics of positive
scalar curvature, which will be discussed in Section 1.3.4.

As we will see later, µ-bubbles have also played a central role in recent advances on the topological
classification of 3-manifolds of uniformly positive scalar curvature [Gro23, Wan23a].

In [Ste22], Stern developed an innovative approach to scalar curvature for dimension 3, which can
be understood as a dual version to the minimal surface method. Recall that if M is a closed oriented
3-manifold then, by Poincaré’s Duality, 2-homology classes are in bijective correspondence with
homotopy classes of S1-valued maps on M . Instead of working with stable minimal hypersurfaces,
which are constructed by minimising the area functional in a non-trivial 2-homology class, Stern
considered harmonic maps M → S1, that is, maps minimising the Dirichlet energy in their homotopy
class. Using Bochner’s Identity, Stern derived an inequality relating the topology of the level sets
of a harmonic map u : M → S1 with the scalar curvature of the ambient manifold. Among other
applications, the harmonic map method can be used to obtain an alternative proof of the Geroch
Conjecture for the 3-torus or for Bray–Brendle–Neves’ Systolic Inequality [BBN10] that will be
presented below.

The Hamilton–Ricci flow has also been employed to unravell the structure of Riemannian 3-
manifolds of bounded geometry with uniformly positive scalar curvature [BBM11] and to understand
the topology of the moduli spaces of such metrics [Cod12, BBMC21].

There are other approaches to the study of scalar curvature specially suited to dimension 4,
based on the Seiberg–Witten Theory.

I.II Existence of manifolds of positive scalar curvature

The fundamental example of manifolds which admit metrics of positive scalar curvature are compact
symmetric spaces, since they are non-flat and have non-negative sectional curvature. Examples of
compact symmetric spaces include the n-sphere Sn, the projective n-spaces RPn, CPn, HPn (and,
more generally, Grassmannian manifolds over R, C and H), the Cayley plane CaP2, and their
Riemannian products. More generally, apart from the flat torus, compact homogeneous spaces
admit metrics of positive scalar curvature. Also, manifolds obtained as quotients of non-flat compact
homogeneous spaces by a free isometric action of a compact group will also admit a metric of positive
scalar curvature. Furthermore, strictly convex hypersurfaces have positive sectional curvature, and
thus positive scalar curvature. In the realm of complex geometry, complex hypersurfaces of CPn

of degree at most n, and more generally K-stable Fano varieties, admit metrics of positive scalar
curvature.

There are simple procedures for producing manifolds of positive scalar curvature metrics from
previously known examples. For instance, if M is a closed Riemannian manifold of positive scalar
curvature and N is any closed manifold, then M ×N admits a metric of positive scalar curvature.
This follows from the additivity of scalar curvature under Riemannian products, that is, if M and N
are two Riemannian manifolds, then

scalM×N = scalM ◦πM + scalN ◦πN ,

where πM : M ×N →M and πN : M ×N → N are the corresponding projections.
The additivity of scalar curvature can be used in the more general setting of fibred manifolds

to produce examples of manifolds of positive scalar curvature. Given π : M → B a Riemannian
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submersion with totally geodesic fibres, one can always deform the Riemannian metric g of M by
rescaling the metric along the fibres of π by a factor of ε > 0. This procedure gives a family
of metrics (gε)ε>0 on M known as the canonical variation of g, for which π : M → B is still a
Riemannian submersion. By O’Neill’s formulae [O’N66] (see also [Bes87, Proposition 9.70]), the
scalar curvature scalε of (M, gε) for a fixed ε > 0 is given by

scalε =
1

ε2
scalF + scalB ◦π − ε2 |A|2 ,

with scalB and scalF the scalar curvatures of the base B and of the fibre F through the corresponding
point, respectively, and where |A|2 is the squared norm of O’Neill’s integrability tensor A. Therefore,
if π : M → B is a submersion whose fibres are totally geodesic and admit metrics of positive scalar
curvature, then M also can be endowed with a metric of positive scalar curvature, just by sufficiently
shrinking the fibres through the canonical variation. However, this techniques provide only a limited
number of examples.

A breakthrough in the study of scalar curvature is the Surgery Theorem [GL80a, SY79b].

Surgery Theorem ([GL80a, SY79b]). Let M be a (non-necessarily connected) closed n-manifold
of positive scalar curvature. If N is a manifold obtained from M by a surgery of codimension at
least 3, then N also admits a metric of positive scalar curvature.

In particular, the connected sum of two manifolds of positive scalar curvature can also be
endowed with a metric of positive scalar curvature. The Surgery Theorem is a powerful tool for
constructing new manifolds admitting metrics of positive scalar curvature.

II The topology of 3-manifolds of positive scalar curvature

Now, let us turn our attention to the specific case of 3-manifolds. As discussed previously, specific
examples of 3-manifolds admitting metrics of positive scalar curvature are the 3-sphere, spherical
manifolds, the product S2 × S1, and their connected sums. Recall that a spherical 3-manifold is
a manifold S3/Γ obtained as the quotient of the 3-sphere by a subgroup Γ < O(4) of isometries
acting freely on S3. In his Problem Section, Yau asked for a classification of 3-manifolds admitting
complete metrics of positive scalar curvature [Yau82, Problem 27].

Let us first discuss the case of closed 3-manifolds. Using the twisted Dirac operator method,
Gromov–Lawson [GL83] proved that, if a closed (not necessarily orientable) 3-manifold admits a
metric of positive scalar curvature, then it cannot contain an aspherical summand in its prime
decomposition (see Section 1.1.1). Hence, from the Kneser–Milnor Prime Decomposition Theorem
[Kne29, Mil62], the Surgery Theorem [GL80a, SY79b] and Perelman’s resolution of the Elliptisation
Conjecture [Per02, Per03a, Per03b] it follows that a closed orientable 3-manifold admits a metric of
positive scalar curvature if and only if it decomposes as a finite connected sum

S3/Γ1# . . .#S3/Γp#S2 × S1# . . .#S2 × S1

of spherical 3-manifolds S3/Γi and S2 × S1 summands. Recall that, unlike in the orientable case,
non-orientable closed prime 3-manifolds are not classified. As a consequence, the structure of non-
orientable closed 3-manifolds admitting metrics of positive scalar curvature is less understood.

The first problem one encounters when considering orientable open 3-manifolds is that the
Kneser–Milnor Prime Decomposition Theorem does not hold in general. Indeed, Scott [Sco77]
showed that not every open manifold decomposes as a connected sum of prime manifolds, even if
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one considers infinite connected sums. Other examples of open non-prime 3-manifolds which are
indecomposable as an infinite connected sum can be found in [ST89, Mai08].

However, a similar decomposition theorem has recently been proved for open 3-manifolds ad-
mitting complete Riemannian metrics of uniformly positive scalar curvature. Gromov [Gro23] and
Wang [Wan23a] used µ-bubble theory to show that if a complete orientable Riemannian 3-manifold
admits a metric of uniformly positive scalar curvature, then it decomposes as a possibly infinite con-
nected sum of spherical 3-manifolds and S2×S1. This decomposition result had already been proven
previously under additional hypothesis: more specifically, for manifolds with finitely generated fun-
damental group using K-theory methods [CWY10], and for manifolds with bounded geometry using
Ricci flow techniques [BBM11].

In [BGS24], we generalised the decomposition theorem of Gromov and Wang to complete ori-
entable Riemannian 3-manifolds whose scalar curvature is positive and exhibits a certain decay at
infinity.

Theorem A ([BGS24, Theorem 1.3]). Let M be a complete orientable Riemannian 3-manifold. Let
x ∈ M be a point. Suppose that M has positive scalar curvature, and that there exists a constant
C > 64π2 such that, for every point y ∈M with d(x, y) ≥ 1,

scal(y) >
C

d(x, y)2
. (5)

Then M decomposes as a possibly infinite connected sum of spherical manifolds and S2 × S1 sum-
mands.

One may wonder whether the conclusion of Theorem A holds under a weaker decay rate with
respect to the distance to the point x. The example of the manifold R2×S1 [Gro23, Section 3.10.2]
shows this is impossible. Indeed, the manifold R2 × S1 admits a complete metric of positive scalar
curvature decaying quadratically with respect to the distance to x with a constant C = 1

2 , but does
not decompose as an infinite connected sum of spherical manifolds and S2 × S1, see Section 1.5.2.

The proof of Theorem A relies on an estimate on the filling discs of closed curves, based on the
notion of fill radius introduced in [GL83, SY79a, SY83], which generalises the notion of positive
scalar curvature with the quadratic decay condition in equation (5). Let M be a Riemannian n-
manifold with empty boundary. The fill radius fillrad (γ) of a contractible closed curve γ in M
is the supremal positive real number R > 0 such that the curve does not bound a disc in its
closed R-neighbourhood. Gromov–Lawson [GL83] and Schoen–Yau [SY83] proved that if a complete
Riemannian 3-manifold M with bounded geometry has uniformly positive scalar curvature scal ≥
s > 0, then any contractible closed curve γ in M satisfies

fillrad (γ) ≤ 2π√
s
.

If a complete orientable Riemannian 3-manifold M has positive scalar curvature decaying at
infinity, then the fill radius of contractible closed curves in M is not uniformly bounded in general.
Still, if the decay is not too pronounced, one can control the growth of the fill radius of contractible
closed curves in M , or rather, of their lifts to the Riemannain universal cover of M . We prove
the topological decomposition of Theorem A by replacing the scalar curvature assumption with
this weaker condition on the growth of the fill radius of lifts of contractible closed curves to the
Riemannian universal cover of M .

The following rigidity result is a direct consequence of Theorem A and an adaptation of the
Surgery Theorem, see Section 1.6.
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Corollary B ([BGS24, Corollary 1.5]). Let M be a complete orientable Riemannian 3-manifold.
Let x ∈M be a point. Suppose that M has positive scalar curvature, and that there exists a constant
C > 64π2 such that, for every point y ∈M with d(x, y) ≥ 1,

scal(y) >
C

d(x, y)2
.

Then M admits a complete Riemannian metric with uniformly positive scalar curvature.

III Systolic geometry of manifolds of positive scalar curvature

Regarding the relation of scalar curvature to the geometry of a Riemannian manifold, we will mainly
consider its effect to systolic quantities.

Let M be a closed Riemannian 3-manifold with π2(M) ̸= 0. The homotopical 2-systole sysπ2(M)
of M is defined to be the least area among non-contractible 2-spheres immersed in M , see Section 2.2.
Bray–Brendle–Neves [BBN10] proved that if the scalar curvature of M satisfies scal ≥ s > 0, then

sysπ2(M) ≤ 8π

s
. (6)

Moreover, equality holds if and only if the Riemannian universal cover M is isometric to the standard
Riemannian cylinder S2(1)×R up to scaling. The proof of Bray–Brendle–Neves’ Systolic Inequality
(6) relies on the Stability Inequality (2) applied on a non-contractible 2-sphere of least area in its
homotopy class.

Bray–Brendle–Neves’ Systolic Inequality (6) has been generalised in multiple directions. For
example, Bray–Brendle–Eichmair–Neves proved an analogous inequality for embedded projective
planes, see [BBEN10]. In higher dimensions, Riemannian products of round spheres show that
one cannot expect in general a control of the 2-systole solely from a lower bound on the scalar
curvature. However, some generalisations have been derived under further topological assumptions
on the manifold M . For instance, Zhu proved that Bray–Brendle–Neves’ Systolic Inequality (6) holds
up to dimension 7 if the manifold admits a non-zero degree map to S2 × Tn−2, see [Zhu20]. The
author also generalised the Systolic Inequality (6) to the non-compact case for manifolds admitting
a non-zero degree map to S2×Tn−3×R, again up to dimension 7, see [Zhu23]. In another direction,
Richard obtained an estimate for the homotopical 2-systole of S2 × S2 endowed with a metric of
positive scalar curvature satisfying a certain stretching condition, see [Ric20].

Bray–Brendle–Neves’ Systolic Inequality (6) has also motivated analogous results for hypersur-
faces which are minimising within their homology class. In [Ste22], Stern gave a direct proof of
the homological analogue of the Systolic Inequality (6). A generalisation to dimensions from 4 to 7
was addressed by Chu–Lee–Zhu in [CLZ24], where they proved an upper bound on the codimen-
sion 1 homological systole (see Section 2.2) under a stronger curvature positivity condition, namely
positive bi-Ricci curvature, and obtained a rigidity statement for the equality case.

III.I Systolic geometry and positive macroscopic scalar curvature

Because of equation (1), scalar curvature can be understood as a measure of the volumetric deviation
of geodesic balls of infinitessimal radii with respect to the Euclidean balls of the same radius.
In [Gut10a], Guth introduced a macroscopic analogue of scalar curvature, which quantifies the
volumetric deviation of geodesic balls of a fixed finite radius.

Let M be a Riemannian n-manifold and denote by M̃ the universal Riemannian cover of M .
The macroscopic scalar curvature mscal(x,R) of M at a point x ∈ M and scale R > 0 satisfies
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mscal(x,R) ≥ s > 0 if and only if the volume of the geodesic ball BM̃ (x̃, R) in M̃ centered at a
lift x̃ of x and of radius R verifies ∣∣BM̃ (x̃, R)

∣∣ ≤ V n
s (R),

where V n
s (R) is the volume of any ball of radius R in the n-sphere of constant scalar curvature s.

The macroscopic scalar curvature is defined through the volumes of balls in the universal cover M̃
of M in order to ensure that flat manifolds have macroscopic scalar curvature equal to zero at any
scale, see Section 2.1.

One may wonder whether there is a macroscopic analogue of Bray–Brendle–Neves’ Systolic
Inequality (6). The following proposition shows that one cannot hope for a control of the homotopi-
cal systoles of a closed Riemannian manifold solely from a lower bound on its macroscopic scalar
curvature. The homotopical k-systole sysπk(M) of a Riemannian manifold M is defined to be the k-
volume of the smallest non-contractible k-dimensional sphere immersed in M . If instead of dealing
with non-contractible k-spheres, one considers non-nullhomologous k-dimensional submanifolds, one
obtains analogously the notion of homological k-systole sysHk(M) of M .

Proposition C ([Gil25, Proposition 1.5]). Let n ≥ 3 and k ∈ {2, . . . , n− 1}. For every s > 0,
there is a family of product Riemannian metrics (gε)ε∈(0,1) on Sk × Sn−k such that the following
holds.

1. For any point x ∈ Sk × Sn−k and any scale R > 0, one has that for every ε ∈ (0, 1)

mscal(Sk×Sn−k,gε)(x,R) ≥ s.

2. The homotopical k-systole and the homological k-systole verify

lim
ε→0

sysπk(Sk × Sn−k, gε) = lim
ε→0

sysHk(Sk × Sn−k, gε) = +∞.

However, one could hope to have an analogue of Bray–Brendle–Neves’ Systolic Inequality (6)
holding for a weaker metric invariant describing the size of topologically non-trivial hypersurfaces,
as for instance their codimension 1 Urysohn width.

Given a metric space X, the k-dimensional Urysohn width UWk(X) of X is a measure of
how far X is from being k-dimensional. For a precise definition of the notion of Urysohn width,
see Section 2.3. When dealing with Riemannian manifolds, the codimension 1 Urysohn width is
particularly relevant, since it is the first non-trivial Urysohn width. In [Gut17], Guth showed that
the codimension 1 Urysohn width of a n-dimensional Riemannian manifold M is related to its
volume |M | by

UWn−1(M) ≤ Cn |M |n ,

where Cn > 0 is a constant depending only on the dimension of M . As a consequence, the infimum
of the Urysohn (n − 2)-width among all non nullhomologous hypersurfaces immersed in M is a
weaker invariant than its homological (n− 1)-systole sysHn−1(M).

The main result in [Gil25] is the following macroscopic version of Bray–Brendle–Neves’ Systolic
Inequality (6). Let G = Z2 or Z. Consider a non-simply connected complete Riemannian n-
manifold M such that Hn−1(M ;G) ̸= 0. Notice that when the manifold M is compact and G-
orientable, having non-trivial codimension 1 G-homology already implies that M is not simply
connected, by Poincaré Duality and the Universal Coefficient Theorem. However, it is no longer
true when one considers non-compact manifolds. Consider the homotopical 1-systole sysπ1(M) of
M , that is, the length of the shortest non-contractible closed curve on M . Notice that if M is
non-compact, one may have sysπ1(M) = 0.



III Systolic geometry of manifolds of positive scalar curvature 25

Theorem D ([Gil25, Theorem 1.9]). There is a dimensional constant κn > 0 such that the following
holds. Let G = Z2 or Z. Let M be a non-simply connected complete Riemannian n-manifold such
that Hn−1(M ;G) ̸= 0 and sysπ1(M) > 0. Fix R > 0 and s > 0 such that κn/

√
s < R <

1
2 sysπ1(M). Suppose that mscal(x,R) ≥ s for every point x ∈ M . Then there exists a closed
embedded hypersurface Σ such that [Σ] ̸= 0 ∈ Hn−1(M ;G) and

UWn−2(Σ) ≤ n− 1

n
R.

In fact, one cannot expect Theorem D to hold for arbitrarily large values of the scale R, as
the volume growth of the metric balls centered at a fixed point is significantly affected beyond the
injectivity radius at that point, as shown by the following proposition.

Proposition E. Fix κ > 0. There is a family of Riemannian metrics (ḡs)s>0 on the real projective
space RP3 satisfying the following properties.

1. For every s > 0 large enough, there is a scale Rs > max
{

1
2 sysπ1(RP3, ḡs),

κ√
s

}
such that for

every x ∈M
mscalḡs(x,Rs) ≥ s.

2. For every s > 0 large enough, every closed embedded surface Σ in (RP3, ḡs) such that [Σ] ̸=
0 ∈ H2(RP3;Z2) has

UW1(Σ) > w,

for some constant w > 0 (which does not depend on s).

Structure of the thesis

This thesis is divided into two chapters. Chapter 1 is dedicated to the topology of 3-dimensional
manifolds of positive scalar curvature, with the principal aim of providing the proof of Theorem A.
In Chapter 2 we will present the different notions introduced in Section III, detail Propositions C
and E, and finally the proof of Theorem D.

Notation

Throughout this thesis, we will generally assume that all manifolds are smooth and connected,
unless explicitly otherwise. We will consider both manifolds without and with boundary. Accord-
ingly, we will explicitly state in each case whether or not the manifold has a boundary. We will also
specify whether the manifold is orientable or not necessarily in each case.

Metric balls will be considered closed. The closed metric ball centered at a point x and of ra-
dius R will be denoted by B(x,R), and its boundary will be denoted by S(x,R) := ∂B(x,R).
To avoid confusion, we will indicate the corresponding metric space when necessary. For in-
stance, BM̃ (x̃, R) denotes a metric ball in the universal Riemannian cover M̃ of a manifold M .

We shall also consider closed metric neighbourhoods. Given a metric space X and a subset
Z ⊂ X, we will denote the closed R-neighbourhood of Z in M by

U(Z,R) := {x ∈ X | d(x, Z) ≤ R} .
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Introduction

Cette thèse porte sur la topologie et la géométrie des variétés riemanniennes à courbure scalaire
strictement positive. La courbure scalaire constitue un invariant fondamental en géométrie rieman-
nienne. La courbure scalaire scal(x) d’une variété riemannienne de dimension n en un point x ∈M
est définie par

scal(x) :=
∑
i ̸=j

sectx(ei ∧ ej),

où sectx désigne la courbure sectionnelle de la variété M au point x, et (ei) est une base orthonormée
de l’espace tangent TxM . La courbure scalaire peut également être définie de manière équivalente
à partir de la déviation volumique des boules géodésiques de rayon infinitéssimal par rapport aux
boules euclidiennes de même rayon. Plus précisément, le volume de la boule géodésique B(x, r)
centrée au point x ∈M vérifie

|B(x, r)| = bnr
n

(
1− scal(x)

6(n + 2)
r2 + O(r3)

)
, (1)

pour des rayons r > 0 suffisamment petits, où bn représente le volume de la boule unité dans l’espace
euclidien de dimension n.

La courbure scalaire constitue la notion de courbure la plus faible parmi toutes les notions de
courbure que l’on peut définir à partir du tenseur de courbure de Riemann. Ainsi, un problème
majeur en géométrie riemannienne est de comprendre comment la courbure scalaire est liée à la
topologie et à la géométrie globales d’une variété.

Au fil de cette introduction, nous présenterons brièvement les principaux développements dans
l’étude de la courbure scalaire, puis nous énoncerons nos résultats dans le cadre de ce domaine.
Dans la Section I, nous nous intéresserons au problème de déterminer quelles variétés admettent
des métriques riemanniennes à courbure scalaire strictement positive, une question qui reste l’un des
principaux défis du domaine à ce jour. Ensuite, dans la Section II, nous aborderons cette question
dans le cadre des variétés de dimension 3, en commençant par les variétés fermées, puis en passant
aux variétés ouvertes. Enfin, dans la Section III, nous examinerons l’interaction entre la courbure
scalaire et la géométrie systolique. Les résultats obtenus au cours de cette thèse seront présentés
dans les Sections II et III.

I Variétés à courbure scalaire strictement positive

Une question fondamentale dans l’étude de la courbure scalaire consiste à déterminer quand une
variété admet une métrique complète à courbure scalaire strictement positive. Parmi les nombreuses
motivations pour l’étude des variétés admettant des métriques à courbure scalaire strictement pos-
itive, on peut citer le théorème suivant.
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Théorème de Trichotomie ([KW75a, KW75b, KW75c]). Soit M une variété fermée et connexe
de dimension n. Alors M appartient exactement à l’une des trois classes suivantes :

· Type 1: Variétés fermées admettant une métrique riemannienne à courbure scalaire stricte-
ment positive.

· Type 2: Variétés fermées n’admettant pas de métrique riemannienne à courbure scalaire
strictement positive, mais admettant une métrique riemannienne à courbure scalaire iden-
tiquement nulle. Dans ce cas, une telle métrique est Ricci-plate.

· Type 3: Variétés fermées n’admettant pas de métrique riemannienne à courbure scalaire
positive.

De plus, si n ≥ 3, alors :

1. Si M est de type 1, toute fonction f ∈ C∞(M) peut être réalisée comme la courbure scalaire
d’une métrique riemannienne sur M .

2. Si M est de type 2, une fonction f ∈ C∞(M) peut être réalisée comme la courbure scalaire
d’une métrique riemannienne sur M si et seulement si f(x) < 0 pour un certain x ∈ M
ou f ≡ 0.

3. Si M est de type 3, une fonction f ∈ C∞(M) peut être réalisée comme la courbure scalaire
d’une métrique riemannienne sur M si et seulement si f(x) < 0 pour un certain x ∈M .

Le Théorème de Trichotomie a des implications profondes. Premièrement, toute variété de
dimension au moins trois peut être munie d’une métrique riemannienne à courbure scalaire stricte-
ment négative, qui peut être supposée constante. Ce résultat a d’abord été démontré par Aubin
[Aub70], et a ensuite été étendu au cas non compact pour les métriques riemanniennes complètes
dans [BK89]. En revanche, il existe des obstructions topologiques à l’admission de métriques à cour-
bure scalaire strictement positive. De plus, le Théorème de Trichotomie implique que décider si la
courbure scalaire d’une variété peut être prescrite par une fonction quelconque revient à déterminer
si la variété admet une métrique à courbure scalaire strictement positive. Deuxièmement, il découle
du Théorème de Trichotomie que, sur les variétés non compactes, il n’existe aucune restriction à
l’admission de métriques à courbure scalaire strictement positive si l’on ne suppose pas en plus que
la métrique est complète. Enfin, le Théorème de Trichotomie implique en outre que si une variété
à courbure scalaire positive n’admet pas de métrique à courbure scalaire strictement positive, alors
elle est Ricci-plate. Ce résultat est connu sous le nom de Théorème de Déformation de Kazdan
[Kaz82]. Rappelons qu’en dimension 3, être Ricci-plat implique être Riemann-plat, c’est-à-dire que
le tenseur de courbure de Riemann s’annule identiquement. En dimensions supérieures, d’après
le Théorème de Séparation de Cheeger–Gromoll [CG71, FW75], toute variété fermée Ricci-plate
admet un revêtement fini par le produit d’un tore et d’une variété fermée simplement connexe et
Ricci-plate. Ainsi, le Théorème de Déformation de Kazdan entrâıne des résultats de rigidité pour les
variétés à courbure scalaire positive n’admettant pas de métriques à courbure scalaire strictement
positive.

La classification des variétés admettant des métriques riemanniennes complètes à courbure
scalaire strictement positive se divise en deux questions distinctes : la détermination des obstruc-
tions topologiques à l’admission de telles métriques, et l’élaboration de techniques pour construire
des variétés à courbure scalaire strictement positive.
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I.I Obstructions topologiques à la courbure scalaire strictement positive

La méthode de l’opérateur de Dirac

Les premières obstructions à l’existence de métriques à courbure scalaire strictement positive furent
établies à partir de considérations issues de la théorie de l’indice appliquée à l’opérateur de Dirac
sur les variétés spin. Cette approche a l’avantage de pouvoir s’appliquer en toute dimension, mais
uniquement aux variétés spin, c’est-à-dire aux variétés dont la seconde classe de Stiefel–Whitney
est nulle.

Soit M une variété riemannienne fermée spin de dimension n. L’opérateur de Dirac D est un
opérateur différentiel elliptique auto-adjoint d’ordre 1 défini sur les sections d’un fibré spinoriel
S →M sur M . Pour une construction précise des fibrés spinoriels et de l’opérateur de Dirac sur les
variétés spin, on pourra consulter [LM89]. L’opérateur de Dirac satisfait la Formule de Lichnerowicz
[Lic63]

D2 = ∇∗∇+
scal

4
,

où ∇ désigne la dérivée covariante sur le fibré spinoriel induite par la connexion de Levi–Civita,
et ∇∗ est l’adjoint de ∇. Un spineur φ ∈ C∞(M,S) est dit harmonique s’il satisfait l’équation
de Dirac Dφ = 0. La Formule de Lichnerowicz implique que, si la variété riemannienne M est à
courbure scalaire strictement positive, alors tout spineur harmonique est nécessairement trivial.

D’autre part, le Théorème de l’Indice d’Atiyah–Singer [AS71a, AS71b] appliqué à l’opérateur de
Dirac D relie l’existence de spineurs harmoniques non triviaux à un invariant topologique, appelé
le α-genre α(M) de la variété M . Plus précisement, le Théorème de l’Indice d’Atiyah–Singer
implique que, si α(M) ̸= 0, alors M admet des spineurs non triviaux. En conséquence, la Formule
de Lichnerowicz implique que les variétés admettant des métriques à courbure scalaire strictement
positive ont un α-genre nul.

Un grand nombre de résultats d’obstruction pour les variétés spin ont été dérivés grâce à
l’application de la méthode de l’opérateur de Dirac. Tout d’abord, Lichnerowicz [Lic63] mon-
tra qu’il existe des variétés fermées et lisses de dimension divisible par 4, ayant un α-genre non
trivial, et qui n’admettent donc pas de métrique à courbure scalaire strictement positive. Un ex-
emple de telles variétés est la surface de Kummer, qui est la variété de dimension 4 donnée par
l’équation z21 + z22 + z23 + z24 = 0 dans CP3. Plus tard, Hitchin [Hit74] démontra l’existence de
sphères exotiques (c’est-à-dire des variétés n-dimensionnelles qui sont homéomorphes, mais non
difféomorphes, à la sphere standard de dimension n) de dimension n ≡ 1, 2 (mod 8) qui ne peuvent
être équipées de métriques à courbure scalaire strictement positive. La méthode de l’opérateur
de Dirac a également permis de fournir une description complète des variétés fermées simplement
connexes de dimension au moins 5 qui peuvent admettre des métriques à courbure scalaire stricte-
ment positive. Plus précisement, Gromov–Lawson [GL80b] et Stolz [Sto92] ont montré qu’une
variété fermée simplement connexe M de dimension n ≥ 5 admet une métrique à courbure scalaire
strictement positive si et seulement si soit M n’est pas spinable, soit M est spinable et α(M) = 0.
Enfin, Gromov–Lawson [GL80a] ont obtenu, à partir d’une version tordue de l’opérateur de Dirac
et de la Formule de Lichnerowicz, que les variétés agrandissables n’admettent pas de métriques
à courbure scalaire strictement positive. La classe des variétés agrandissables comprend le tore
n-dimensionnel, les solvariétés fermées, les variétés hyperboliques fermées et, plus généralement,
toute variété fermée à courbure sectionelle positive. En particulier, Gromov–Lawson ont démontré
que le tore n-dimensionnel n’admet pas de métrique à courbure scalaire strictement positive. Cette
assertion est connue sous le nom de Conjecture de Geroch et a constitué l’un des principaux en-
jeux dans l’étude de la courbure scalaire. Par ailleurs, grâce à la méthode de l’opérateur de Dirac
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tordu, Gromov–Lawson [GL83] ont prouvé que les 3-variétés asphériques fermées n’admettent pas
de métriques riemanniennes à courbure scalaire strictement positive.

La méthode de descente des hypersurfaces minimales stables

Soit M une variété riemannienne fermée de dimension n, et Σ ⊂ M une hypersurface minimale
stable à deux faces. La stabilité de l’hypersurface Σ et la formule de la variation seconde entrâınent
que toute fonction f ∈ C∞(Σ) satisfait l’Inégalité de Stabilité∫

Σ

(
|∇f |2 −

(
Ric(ν, ν) + ∥II∥2

)
f2

)
dV ≥ 0, (2)

où Ric désigne le tenseur de courbure de Ricci de M , ν est le champ de vecteurs unitaires normal
à Σ, et II est la seconde forme fondamentale de Σ. Schoen–Yau [SY79b] ont observé qu’il est
possible, par un réarrangement ingénieux des équations de Gauss, d’obtenir l’identité suivante

scal− scalΣ + ∥II∥2 = 2
(

Ric(ν, ν) + ∥II∥2
)
, (3)

où scal et scalΣ désignent les courbures scalaires de M et de Σ, respectivement. Par conséquent,
en appliquant le réarrangement de Schoen–Yau (3), l’Inégalité de Stabilité (2) implique que, pour
toute fonction f ∈ C∞(Σ),∫

Σ

(
|∇f |2 +

1

2
scalΣ f2

)
dV ≥ 1

2

∫
Σ

scal f2dV. (4)

Il découle de l’inégalité (4) que si la variété M est à courbure scalaire strictement positive, alors Σ
admet également une métrique à courbure scalaire strictement positive. En effet, pour n = 3, il
suffit de prendre f ≡ 1 et d’utiliser la formule de Gauss–Bonnet, ce qui permet d’obtenir à partir
de l’inégalité (4) que ∫

Σ
scal ≤ 2

∫
Σ
κΣ = 8πχ(Σ),

où κΣ et χ(Σ) désignent respectivement la courbure de Gauss et la caractéristique d’Euler de la
surface Σ. Ainsi, la surface Σ doit être soit homéomorphe à une 2-sphere, soit au plan projectif.
Le cas où n ≥ 4 nécessite un traitement plus attentif. On peut obtenir une métrique à courbure
scalaire strictement positive sur Σ en modifiant de manière conforme la métrique induite sur Σ,
et en utilisant l’inégalité (4) pour garantir que la nouvelle métrique est bien à courbure scalaire
strictement positive.

Nous concluons donc que si une variété riemannienne n-dimensionnelle M est à courbure scalaire
strictement positive, alors toute hypersurface minimale stable dans M possède également une cour-
bure scalaire strictement positive. Cela constitue l’argument de descente de Schoen–Yau ([SY79a]
pour n = 3, et [SY79b] pour n ≥ 4). Plus généralement, si la variété M est à courbure scalaire
strictement positive et qu’il est possible de construire une suite descendante

M ⊃ Σn−1 ⊃ · · · ⊃ Σ2

de sous-variétés minimales stables, fermées et orientées, de dimension k, notées Σk, alors Σ2 doit
être une union disjointe de 2-sphères ou de plans projectifs. Ainsi, la méthode de descente consiste
à démontrer qu’une variété n’admet pas de métriques à courbure scalaire strictement positive en
construisant une suite descendante M ⊃ Σn−1 ⊃ · · · ⊃ Σ2 d’hypersurfaces minimales stables, se
terminant par une surface Σ2 dont la caractéristique d’Euler est négative.
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Les conditions topologiques précises permettant de définir une telle suite descendante de sur-
faces minimales stables ont été formulées par Schick [Sch98] à travers la notion de variété SYS. Une
variété M fermée, orientable et de dimension n est dite SYS s’il existe des classes de cohomolo-
gie α1, . . . , αn−2 ∈ H1(M ;Z) telles que la classe d’homologie

[M ] ⌢ (α1 ⌣ · · ·⌣ αn−2) ∈ H2(M ;Z)

n’appartient pas à l’image de l’application de Hurewicz π2(M) → H2(M). En effet, si M est une
variété SYS de dimension n, alors on peut considérer la classe d’homologie non triviale donnée
par [M ] ⌢ α1 ∈ Hn−1(M ;Z). D’après un résultat classique de la Théorie Géométrique de la
Mesure [FF60, Fed70], si la dimension de la variété M est n ≤ 7, alors la classe [M ] ⌢ α1 peut
être représentée par une hypersurface minimale stable Σn−1 qui minimise le volume parmi tous les
représentants de la classe. Cette restriction sur la dimension provient du fait bien connu qu’en
dimension supérieure, les hypersurfaces minimisantes peuvent présenter des singularités [BDGG69].
Puisque l’hypersurface minimale stable Σn−1 hérite de la propriété SYS, on peut appliquer la con-
struction de manière inductive pour obtenir une suite descendante M ⊃ Σn−1 ⊃ · · · ⊃ Σ2, où Σ2 est
une surface de caractéristique d’Euler négative. Il en résulte que les variétés SYS de dimension n ≤ 7
n’admettent pas de métrique à courbure scalaire strictement positive. Ce résultat a été étendu au
cas n = 8 par Joachim–Schick [JS00], à l’aide d’un résultat de Smale [Sma93]. Plus récemment,
Schoen–Yau [SY22] ont réussi à lever la restriction dimensionnelle, au moins dans certaines situa-
tions.

Le principal avantage de la méthode de descente est que, contrairement à la méthode de
l’opérateur de Dirac, elle ne nécessite pas que la variété M soit spin. Gromov–Lawson–Rosenberg
[GL83, Ros91] ont conjecturé que toutes les obstructions à l’existence de métriques à courbure
scalaire strictement positive pouvaient être détectées par la méthode de l’opérateur de Dirac, au
moins pour les variétés spin. Cependant, Schick [Sch98] a réfuté la conjecture de Gromov–Lawson–
Rosenberg en construisant une variété spin fermée de dimension 5 pour laquelle toutes les obstruc-
tions provenant de l’opérateur de Dirac s’annulent, mais dont on peut montrer, par la méthode
de descente, qu’elle n’admet pas de métrique à courbure scalaire strictement positive. Ainsi, la
méthode de descente fournit de nouvelles obstructions à l’admission de métriques à courbure scalaire
strictement positive. D’autre part, elle nécessite que H1(M ;Z) soit non nul, et la régularité des
hypersurfaces minimales stables impose des restrictions sur la dimension de M .

Obstructions dans le cas non compact

La détermination des variétés non compactes qui admettent ou non une métrique complète à cour-
bure scalaire strictement positive se révèle plus subtile que dans le cas compact. En effet, lorsqu’il
s’agit de variétés non compactes, il faut également prendre en considération les métriques complètes
à courbure scalaire uniformément positive, car il existe des variétés riemanniennes complètes à cour-
bure scalaire strictement positive qui ne peuvent pas être munies d’une métrique complète à courbure
scalaire uniformément positive.

Soit M une variété fermée de dimension n. Rosenberg–Stolz [RS94] ont démontré que M × R2

peut être munie d’une métrique complète à courbure scalaire strictement positive, et que M × Rk ad-
met une métrique complète à courbure scalaire uniformément positive lorsque k ≥ 3. En conséquence,
Rosenberg–Stolz [RS94] ont également conjecturé que si M n’admet pas de métrique complète à
courbure scalaire strictement positive, alors M × R n’admet pas de métrique complète à courbure
scalaire strictement positive, et M ×R2 n’admet pas de métrique à courbure scalaire uniformément
positive. La conjecture de Rosenberg–Stolz fut établie par Gromov–Lawson [GL83] lorsque la di-
mension de M est n ≤ 2.
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Méthodes récentes dans l’étude de la courbure scalaire

Un nouvel outil dans l’étude de la courbure scalaire, ayant conduit à des résultats remarquables,
sont les µ-bulles introduites par Gromov dans [Gro23]. La méthode des µ-bulles peut être comprise
comme une extension de l’approche des hypersurfaces minimales, offrant une plus grande flexibilité
pour adapter la construction à la topologie et à la géométrie de la variété.

Soit M une variété riemannienne de dimension n et h une fonction lisse sur M . Une µ-bulle
(associée à h) est une partie Ω ⊂ int (M) qui minimise une certaine fonctionnelle faisant intervenir
le volume (n − 1)-dimensionnel de la frontière ∂Ω ainsi qu’un terme dépendant des valeurs de h
sur Ω. L’existence de µ-bulles en dimensions 3 ≤ n ≤ 7, pour des choix appropriés de la fonction h, a
été établie dans [Gro23, Zhu21]. Les formules de variation associées à cette fonctionnelle impliquent
que la frontière ∂Ω d’une µ-bulle Ω associée à h a pour courbure moyenne la fonction h, et qu’elle
satisfait une inégalité de stabilité analogue à l’équation (2), mettant en jeu les courbures scalaires
de M et de Σ. En particulier, l’existence de µ-bulles peut être interprétée comme un problème
de prescription de la courbure moyenne, et ainsi la fonctionnelle minimisée par les µ-bulles est
fréquemment appelée la fonctionnelle de courbure moyenne prescrite. L’inégalité de stabilité pour
les µ-bulles peut être utilisée pour dériver des estimations géométriques significatives, permettant
d’étudier la géométrie de M à partir des bornes inférieures de la courbure scalaire.

La méthode des µ-bulles a conduit à un certain nombre de résultats importants. Dans [Gro86],
Gromov a conjecturé que toute variété asphérique fermée de dimension n n’admet pas de métrique
riemannienne à courbure scalaire strictement positive quand n ≥ 2. Comme mentionné précédemment,
la conjecture de Gromov a été résolue positivement en dimension 3 par Gromov–Lawson [GL83] à
l’aide de la méthode de l’opérateur de Dirac tordu. En utilisant les µ-bulles, Chodosh–Li [CL24]
et, indépendamment, Gromov [Gro20] ont récemment établi la conjecture en dimensions 4 et 5.
Cependant, la conjecture de Gromov reste largement ouverte en dimensions supérieures. Dans
[Gro17, Gro23], Gromov a énoncé une conjecture plus forte, selon laquelle les variétés Q-essentielles
n’admettent pas de métriques à courbure scalaire strictement positive, sujet qui sera discuté dans
la Section 1.3.4.

Comme nous le verrons ultérieurement, les µ-bulles ont joué un rôle central dans les récentes
avancées concernant la classification topologique des 3-variétés à courbure scalaire uniformément
positive [Gro23, Wan23a].

Dans [Ste22], Stern a développé une nouvelle approche pour aborder la courbure scalaire en
dimension 3, qu’il est possible de concevoir comme une version duale de la méthode des surfaces
minimales. Rappelons que si M est une variété orientée fermée de dimension 3, alors, d’après la Du-
alité de Poincaré, les classes de 2-homologie correspondent aux classes d’homotopie des applications
de M à valeurs dans S1. Au lieu de travailler avec des hypersurfaces minimales stables, constru-
ites en minimisant la fonctionnelle d’aire dans une classe de 2-homologie non triviale, Stern a opté
pour travailler avec des applications harmoniques M → S1, c’est-à-dire des applications minimisant
l’énergie de Dirichlet dans leur classe d’homotopie. En utilisant l’Identité de Bochner, il a obtenu
une inégalité reliant la topologie des ensembles de niveau d’une application harmonique u : M → S1
à la courbure scalaire de la variété ambiante M . Parmi ses nombreuses applications, la méthode
des applications harmoniques permet de fournir une démonstration alternative de la Conjecture de
Geroch pour le tore tridimensionnel ou de l’Inégalité Systolique de Bray–Brendle–Neves [BBN10],
qui sera présentée ci-dessous.

Le flot de Hamilton–Ricci a également été utilisé pour élucider la structure des variétés rieman-
niennes de dimension 3 à géométrie bornée et à courbure scalaire uniformément positive [BBM11],
ainsi que pour décrire la topologie des espaces de modules de telles métriques [Cod12, BBMC21].
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Il existe d’autres approches pour l’étude de la courbure scalaire, spécialement adaptées à la
dimension 4, basées sur la théorie de Seiberg–Witten.

I.II Existence de variétés à courbure scalaire strictement positive

L’exemple fondamental de variétés qui admettent des métriques à courbure scalaire strictement
positive sont les espaces symétriques compacts, car ils sont non plats et possèdent une courbure
sectionnelle positive. Parmi les examples d’espaces symétriques compacts, on trouve la n-sphère Sn,
les espaces projectifs RPn, CPn, HPn (et, de manière plus générale, les variétés grassmanniennes
sur R, C et H), le plan de Cayley CaP2, ainsi que leurs produits riemanniens. Plus généralement,
à part le tore plat, les espaces homogènes compacts admettent des métriques à courbure scalaire
strictement positive. De plus, les variétés obtenues comme quotients d’espaces homogènes compacts
et non plats par l’action isométrique libre d’un groupe compact admettent également des métriques
à courbure scalaire positive. Par ailleurs, les hypersurfaces strictement convexes possèdent une
courbure sectionnelle strictement positive, et donc leur courbure scalaire est strictement positive.
Dans le cadre de la géométrie complexe, les hypersurfaces complexes de CPn de degré inférieur ou
égal à n, et plus généralement les variétés de Fano K-stables, admettent des métriques à courbure
scalaire strictement positive.

Il existe des procédés simples permettant de construire de nouvelles variétés admettant des
métriques à courbure scalaire strictement positive à partir d’exemples déjà connus. Par exemple, si
M est une variété riemannienne fermée à courbure scalaire strictement positive et N est une variété
fermée quelconque, alors le produit M × N admet une métrique à courbure scalaire strictement
positive. Ce fait découle de l’additivité de la courbure scalaire dans les produits riemanniens : si
M et N sont deux variétés riemanniennes, alors

scalM×N = scalM ◦πM + scalN ◦πN ,

où πM : M ×N →M et πN : M ×N → N sont les projections correspondantes.
L’additivité de la courbure scalaire peut être utilisée dans le cadre plus général des variétés

fibrées pour produire des exemples de variétés à courbure scalaire strictement positive. Étant
donnée π : M → B une submersion riemannienne dont les fibres sont totalement géodésiques, il est
toujours possible de déformer la métrique riemannienne g de M en la redimensionnant le long des
fibres de π par un facteur ε > 0. Cette procédure engendre une famille de métriques (gε)ε>0 sur M ,
connue sous le nom de variation canonique de g, pour laquelle π : M → B reste une submersion
riemannienne. Par la Formule d’O’Neill [O’N66] (voir aussi [Bes87, Proposition 9.70]), la courbure
scalaire scalε de (M, gε) pour un ε > 0 fixé est donnée par

scalε =
1

ε2
scalF + scalB ◦π − ε2 |A|2 ,

où scalB et scalF désignent respectivement les courbures scalaires de la base B et de la fibre F au
point considéré, et où |A|2 est la norme au carré du tenseur d’intégrabilité d’O’Neill, noté par A.
Cela implique que, si π : M → B est une submersion dont les fibres sont totalement géodésiques et
admettent des métriques à courbure scalaire strictement positive, alors M peut également être munie
d’une métrique à courbure scalaire strictement positive, simplement en contractant suffisamment
les fibres via la variation canonique. Toutefois, ces techniques ne permettent de produire qu’un
nombre limité d’exemples.

Une avancée majeure dans l’étude de la courbure scalaire est le Théorème de Chirurgie [GL80a,
SY79b].
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Théorème de Chirurgie ([GL80a, SY79b]). Soit M une variété fermée de dimension n à courbure
scalaire strictement positive (non nécessairement connexe). Si N est la variété obtenue en effectuant
une chirurgie de codimension au moins 3 sur M , alors N admet aussi une métrique à courbure
scalaire strictement positive.

En particulier, la somme connexe de deux variétés à courbure scalaire strictement positive peut
être munie d’une métrique à courbure scalaire strictement positive. Le Théorème de Chirurgie est
un outil puissant pour construire de nouvelles variétés admettant des métriques à courbure scalaire
strictement positive.

II La topologie des 3-variétés à courbure scalaire strictement positive

Passons maintenant au cas spécifique des variétés de dimension 3. Comme discuté précédemment,
des exemples spécifiques de variétés 3-dimensionnelles admettant des métriques à courbure scalaire
strictement positive sont la 3-sphère, les variétés sphériques, le produit S2 × S1 et leurs sommes
connexes. Rappelons qu’une 3-variété sphérique est une variété S3/Γ obtenue comme quotient de
la 3-sphère par un sous-groupe Γ < O(4) d’isométries agissant librement sur S3. Dans sa Section
de Problèmes, Yau posa la question d’une classification des 3-variétés admettant des métriques à
courbure scalaire strictement positive [Yau82, Problème 27].

Commençons par discuter le cas des 3-variétés fermées. En utilisant la méthode de l’opérateur
de Dirac tordu, Gromov–Lawson [GL83] ont démontré que si une variété fermée (non nécessairement
orientable) de dimension 3 admet une métrique à courbure scalaire strictement positive, alors elle
ne peut pas contenir un terme asphérique dans sa décomposition en facteurs premiers (voir la
Section 1.1.1). Ainsi, à partir du Théorème de Decomposition de Kneser–Milnor [Kne29, Mil62],
du Théorème de Chirurgie [GL80a, SY79b] et de la résolution de la Conjecture d’Elliptisation par
Perelman [Per02, Per03a, Per03b], il s’ensuit qu’une 3-variété orientable fermée admet une métrique
à courbure scalaire strictement positive si et seulement si elle se décompose comme une somme
connexe finie

S3/Γ1# . . .#S3/Γp#S2 × S1# . . .#S2 × S1

de 3-variétés sphériques S3/Γi et de termes S2×S1. Rappelons que, contrairement au cas orientable,
les 3-variétés fermées non orientables premières ne sont pas classifiées. Par conséquent, la structure
des variétés fermées non orientables admettant des métriques à courbure scalaire strictement positive
reste moins bien comprise.

Le premier problème que l’on rencontre lorsqu’on considère des 3-variétés orientables ouvertes est
que le Théorème de Decomposition de Kneser–Milnor ne s’applique pas en général. En effet, Scott
[Sco77] a montré qu’il existe des variétés ouvertes qui ne se décomposent pas en somme connexe
de variétés premières, même si l’on considère des sommes connexes infinies. D’autres exemples de
variétés ouvertes non premières qui sont indécomposables en somme connexe infinie peuvent être
trouvés dans [ST89, Mai08].

Cependant, un théorème de décomposition similaire a récemment été démontré pour les variétés
ouvertes de dimension 3 admettant des métriques riemanniennes complètes à courbure scalaire
uniformément positive. Gromov [Gro23] et Wang [Wan23a] ont utilisé la méthode des µ-bulles
pour montrer que si une variété riemannienne orientable complète admet une métrique à courbure
scalaire uniformément positive, alors elle se décompose en une somme connexe, possiblement infinie,
de variétés sphériques et de S2×S1. Ce résultat de décomposition avait déjà été prouvé auparavant
sous des hypothèses supplémentaires : plus précisément, pour les variétés à groupe fondamental
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finiment engendré en utilisant des méthodes de K-théorie [CWY10], et pour les variétés à géométrie
bornée en utilisant le flot de Ricci [BBM11].

Dans [BGS24], nous avons généralisé le théorème de décomposition de Gromov et Wang aux
variétés riemanniennes orientables complètes de dimension 3 à courbure scalaire strictement positive
et présentant une certaine décroissance à l’infini.

Théorème A ([BGS24, Théorème 1.3]). Soit M une variété riemannienne orientable complète de
dimension 3. Soit x ∈ M un point. Supposons que M est à courbure scalaire strictement positive,
et qu’il existe une constante C > 64π2 telle que, pour chaque point y ∈ M avec d(x, y) ≥ 1, on ait
l’inégalité

scal(y) >
C

d(x, y)2
. (5)

Alors M se décompose en somme connexe, possiblement infinie, de 3-variétés sphériques et de
termes S2 × S1.

On pourrait se demander si la conclusion du Théorème A est vraie pour un taux de décroissance
en terme de la distance au point x plus faible. L’exemple de la variété R2 × S1 montre que cela est
impossible. En effet, la variété R2×S1 admet une métrique complète à courbure scalaire strictement
positive à décroissance quadratique en la distance au point x avec une constante C = 1

2 , mais elle ne
se décompose pas en somme connexe infinie de variétés sphériques et de S2×S1, voir la Section 1.5.2.

La démonstration du Théorème A repose sur une estimation des disques de remplissage des
courbes fermées dans la variété, basée sur la notion de rayon de remplissage introduite dans [GL83,
SY79a, SY83], qui généralise la notion de courbure scalaire strictement positive avec la condition
de décroissance quadratique dans l’équation (5). Soit M une variété riemannienne sans bord de
dimension n. Le rayon de remplissage fillrad (γ) d’une courbe fermée contractile γ dans M est le
plus grand nombre réel R > 0 tel que la courbe γ ne borde pas un disque dans son R-voisinage
fermé. Gromov–Lawson [GL83] et Schoen–Yau [SY83] ont prouvé que si une variété riemannienne
3-dimensionnelle complète à géométrie bornée a une courbure scalaire uniformément positive scal ≥
s > 0, alors toute courbe fermée contractile γ dans M satisfait

fillrad (γ) ≤ 2π√
s
.

Si une variété riemannienne orientable 3-dimensionnelle complète M possède une courbure
scalaire strictement positive qui décrôıt à l’infini, alors le rayon de remplissage des courbes fermées
contractiles dans M n’est pas nécessairement uniformément borné. Toutefois, si la décroissance n’est
pas trop prononcée, il est possible de contrôler la croissance du rayon de remplissage des courbes
fermées contractiles dans M , ou plus précisément, de leurs relevés dans le revêtement universel
riemannien de M . Nous prouvons la décomposition topologique du Théorème A en remplaçant
l’hypothèse sur la courbure scalaire par cette condition plus faible sur la croissance du rayon de
remplissage des relevés des courbes fermées contractiles dans le revêtement universel riemannien
de M .

Le résultat de rigidité suivant découle directement du Théorème A, ainsi que d’une adaptation
du Théorème de Chirurgie, voir la Section 1.6.

Corollaire B ([BGS24, Corollary 1.5]). Soit M une variété riemannienne orientable complète de
dimension 3, et soit x ∈M un point. Supposons que M est à courbure scalaire strictement positive,
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et qu’il existe une constante C > 64π2 telle que, pour tout point y ∈M vérifiant d(x, y) ≥ 1, on ait
l’inégalité

scal(y) >
C

d(x, y)2
.

Alors M admet une métrique riemannienne complète à courbure scalaire uniformément positive.

III Géométrie systolique des variétés à courbure scalaire strictement positive

En ce qui concerne la relation entre la courbure scalaire et la géométrie d’une variété riemannienne,
nous nous intéresserons avant tout à son effet sur les quantités de nature systolique.

Soit M une variété riemannienne fermée de dimension 3 avec π2(M) ̸= 0. La 2-systole homo-
topique sysπ2(M) de M désigne l’infimum des aires des 2-spheres immergées dans M non contrac-
tiles, voir la Section 2.2. Bray–Brendle–Neves [BBN10] ont démontré que si la courbure scalaire
de M satisfait scal ≥ s > 0, alors

sysπ2(M) ≤ 8π

s
. (6)

De plus, on a égalité si et seulement si le revêtement universel riemannien de M est isométrique
au cylindre riemannien standard S2(1)×R, à une homothétie près. La démonstration de l’Inégalité
Systolique de Bray–Brendle–Neves (6) repose sur l’Inégalité de Stabilité (2) appliquée à une 2-sphère
non-contractile d’aire minimale dans sa classe d’homotopie.

L’Inégalité Systolique de Bray–Brendle–Neves (6) a été généralisée dans plusieurs directions.
Par exemple, Bray–Brendle–Eichmair–Neves [BBEN10] ont démontré une inégalité analogue pour
les plans projectifs plongés. En dimension supérieure, les produits riemanniens de sphères rondes
montrent qu’on ne peut pas en général s’attendre à un contrôle de la 2-systole uniquement à partir
d’une borne inférieure sur la courbure scalaire. Néanmoins, certaines généralisations ont été dérivées
sous des hypothèses topologiques supplémentaires sur la variété M . Par exemple, Zhu [Zhu20] a
prouvé que l’Inégalité Systolique de Bray–Brendle–Neves (6) est valable jusqu’à la dimension 7 si la
variété admet une application vers S2×Tn−2 de degré non nul. Il a également généralisé l’Inégalité
Systolique (6) au cas non compact pour les variétés admettant une application de degré non nul
vers S2×Tn−3×R, toujours jusqu’à la dimension 7, voir [Zhu23]. Dans une autre direction, Richard
[Ric20] a obtenu une estimation pour la 2-systole homotopique de S2 × S2 équipée d’une métrique
à courbure scalaire strictement positive satisfaisant une certaine condition d’étirement.

L’Inégalité Systolique de Bray–Brendle–Neves (6) a également motivé des résultats analogues
pour des hypersurfaces minimisantes dans leur classe d’homologie. Dans [Ste22], Stern a fourni
une preuve directe de l’analogue homologique de l’Inégalité Systolique (6). Une généralisation aux
dimensions de 4 à 7 a été abordée par Chu–Lee–Zhu dans [CLZ24], où ils ont donné une majoration
de la systole homologique en codimension 1 (voir Section 2.2) sous une condition de positivité de
courbure plus forte, portant sur la courbure bi-Ricci positive, et ont obtenu un résultat de rigidité
pour le cas de l’égalité.

III.I Géométrie systolique et courbure scalaire macroscopique strictement positive

Comme conséquence de l’équation (1), la courbure scalaire peut être interprétée comme une mesure
de la déviation du volume des boules géodésiques de rayons infinitésimaux par rapport aux boules
euclidiennes de même rayon. Dans [Gut10a], Guth a introduit un analogue macroscopique de la
courbure scalaire, qui quantifie la déviation volumique des boules géodésiques d’un rayon fini fixé.

Soit M une variété riemannienne de dimension n, et soit M̃ le revêtement universel riemannien
de M . La courbure scalaire macroscopique mscal(x,R) de M au point x ∈ M et à l’échelle R > 0
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satisfait mscal(x,R) ≥ s > 0 si et seulement si le volume de la boule géodésique BM̃ (x̃, R) dans M̃
centrée en un relevé x̃ de x et de rayon R vérifie∣∣BM̃ (x̃, R)

∣∣ ≤ V n
s (R),

où V n
s (R) dénote le volume d’une boule de rayon R dans la n-sphère de courbure scalaire constante s.

La courbure scalaire macroscopique est définie à travers les volumes des boules dans le revêtement
universel M̃ de M , afin de garantir que les variétés plates ont une courbure scalaire macroscopique
égale à zero à toute échelle, voir la Section 2.1.

On pourrait se demander s’il existe un analogue macroscopique de l’Inégalité Systolique de
Bray–Brendle–Neves (6). La proposition suivante montre qu’on ne peut pas espérer un contrôle des
systoles homotopiques d’une variété riemannienne fermée uniquement à partir d’une borne inférieure
de la courbure scalaire macroscopique. La k-systole homotopique sysπk(M) d’une variété rieman-
nienne M est définie comme le k-volume de la plus petite k-sphère immergée dans M non contrac-
tile. Si, au lieu des k-sphères non contractiles, on considérait des sous-variétés k-dimensionnelles
non nulles en homologie, on obtiendrait de manière analogue la notion de k-systole homologique
sysHk(M) de M .

Proposition C ([Gil25, Proposition 1.5]). Soit n ≥ 3 et k ∈ {2, . . . , n− 1}. Pour chaque s > 0,
il existe une famille de métriques riemanniennes produit (gε)ε∈(0,1) sur Sk × Sn−k telle que les
conditions suivantes sont vérifiées.

1. Pour tout point x ∈ Sk × Sn−k et toute échelle R > 0, on a, pour chaque ε ∈ (0, 1),

mscal(Sk×Sn−k,gε)(x,R) ≥ s.

2. La k-systole homotopique et la k-systole homologique vérifient

lim
ε→0

sysπk(Sk × Sn−k, gε) = lim
ε→0

sysHk(Sk × Sn−k, gε) = +∞.

Cependant, on pourrait espérer avoir un analogue de l’Inégalité Systolique de Bray–Brendle–
Neves (6) pour un invariant métrique plus faible décrivant la taille des hypersurfaces topologique-
ment non triviales, comme par exemple leur largeur d’Urysohn de codimension 1.

La largeur d’Urysohn de dimension k d’un espace métrique X mesure à quel point X diffère d’être
k-dimensionnel. Pour une définition précise de la notion de largeur d’Urysohn, nous renvoyons à la
Section 2.3. Lorsqu’on considère des variétés riemanniennes, la largeur d’Urysohn de codimension
1 est particulièrement pertinente, car elle est la première largeur d’Urysohn non triviale. Dans
[Gut17], Guth a montré que la largeur d’Urysohn de codimension 1 d’une variété riemannienne M
de dimension n est liée à son volume |M | par :

UWn−1(M) ≤ Cn |M |n ,

où Cn > 0 est une constante qui dépend uniquement de la dimension de M . Par conséquent,
l’infimum de la (n − 2)-largeur d’Urysohn parmi toutes les hypersurfaces immergées dans M ho-
mologiquement non nulles est un invariant plus faible que la (n−1)-systole homologique sysHn−1(M)
de M .

Le résultat principal de [Gil25] est la version macroscopique suivante de l’Inégalité Systolique de
Bray–Brendle–Neves (6). Soit G = Z2 ou Z. Considérons une n-variété riemannienne complète non
simplement connexe M telle que Hn−1(M ;G) ̸= 0. Si la variété M est compacte et G-orientable, le
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fait d’avoir une G-homologie de codimension 1 non triviale implique déjà, par la Dualité de Poincaré
et le Théorème des Coefficients Universels, que M n’est pas simplement connexe. Cependant, cela
n’est plus vrai lorsqu’on considère des variétés non compactes. Considérons la 1-systole homotopique
sysπ1(M) de M , c’est-à-dire la longueur de la plus courte courbe fermée non contractile sur M .
Remarquons que si M est non compacte, on peut avoir sysπ1(M) = 0.

Théorème D ([Gil25, Theorem 1.9]). Il existe une constante dimensionnelle κn > 0 telle que ce
qui suit a lieu. Soit G = Z2 ou Z. Soit M une n-variété riemannienne complète non simplement
connexe telle que Hn−1(M ;G) ̸= 0 et sysπ1(M) > 0. Fixons R > 0 et s > 0 tels que κn/

√
s < R <

1
2 sysπ1(M). Supposons que mscal(x,R) ≥ s pour tout point x ∈M . Alors il existe une hypersurface
fermée plongée Σ telle que [Σ] ̸= 0 ∈ Hn−1(M ;G) et

UWn−2(Σ) ≤ n− 1

n
R.

Il ne faut pas s’attendre à ce que le théorème D reste valable pour des échelles R arbitrairement
grandes, car la croissance du volume des boules métriques centrées en un point donné est fortement
perturbée au-delà du rayon d’injectivité en ce point, comme le montre la proposition suivante.

Proposition E. Fixons κ > 0. Il existe une famille de métriques riemanniennes (ḡs)s>0 sur l’espace
projectif réel RP3 vérifiant les propriétés suivantes.

1. Pour tout s > 0 suffisamment grand, il existe une échelle Rs > max
{

1
2 sysπ1(RP3, ḡs),

κ√
s

}
telle que pour tout x ∈M

mscalḡs(x,Rs) ≥ s.

2. Pour tout s > 0 suffisamment grand, toute surface fermée plongée Σ dans (RP3, ḡs) telle que
[Σ] ̸= 0 ∈ H2(RP3;Z2) vérifie

UW1(Σ) > w,

pour une constante w > 0 indépendante de s.

Structure de la thèse

Cette thèse se compose de deux chapitres. Le Chapitre 1 est consacré à la topologie des variétés
3-dimensionnelles à courbure scalaire strictement positive, avec l’objectif principal de fournir la
démonstration du Théorème A. Dans le Chapitre 2, nous exposons les différentes notions introduites
dans la Section III, puis nous détaillons les Propositions C et E, et enfin nous présentons la preuve
du Théorème D.

Notation

Tout au long de cette thèse, nous supposerons généralement que toutes les variétés sont connexes,
sauf mention explicite du contraire. Nous considérerons des variétés avec ou sans bord. Ainsi, nous
préciserons explicitement, dans chaque cas, si la variété possède un bord ou non. Nous indiquerons
également si la variété est supposée orientable.

Nous travaillerons avec des boules métriques fermées. On notera la boule métrique fermée centrée
en un point x et de rayon R par B(x,R), et son bord sera noté S(x,R) := ∂B(x,R). Afin d’éviter
toute confusion, nous indiquerons l’espace métrique correspondant lorsque cela sera nécessaire. Par
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exemple, BM̃ (x̃, R) désigne une boule métrique dans le revêtement riemannien universel M̃ d’une
variété M .

Nous considérerons de même des voisinages métriques fermés. Étant donné un espace métrique X
et un sous-ensemble Z ⊂ X, nous noterons le voisinage fermé de rayon R de Z dans X par

U(Z,R) := {x ∈ X | d(x, Z) ≤ R} .
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Chapter 1

The topology of 3-manifolds of
positive scalar curvature

The objective of this first chapter is to prove Theorem A, that is, we will show that if an orientable
3-manifold M admits a complete Riemannian metric whose scalar curvature is positive and has a
subquadratic decay at infinity, then it decomposes as a possibly infinite connected sum of spherical
manifolds and S2 × S1.

To this end, in Sections 1.1 and 1.2, we will begin by presenting several classical results in
3-manifold topology, ultimately leading us to the definition of infinite connected sum, and discuss
the theory of ends, respectively. In Section 1.3 we will present the notion of fill radius, and we
will unravel the relation between the decay of scalar curvature and the growth of the fill radius.
Finally, in Sections 1.4 and 1.5 we will conclude the proof of Theorem A. In Section 1.6 we will
prove Corollary B using the Surgery Theorem.

1.1 The topology of 3-manifolds

In this section, we will present several classical results about the topology of 3-dimensional manifolds
that will be useful in the proof of Theorem A.

Recall that, since every topological 3-manifold admits a unique smooth structure up to diffeo-
morphism [Moi52b, HM74], there is little difference between working in the category of topological
3-manifolds or the category of smooth 3-manifolds. Hence, throughout this section we will consider
topological 3-manifolds, and all maps will always be assumed to be continuous unless explicitely
stated otherwise.

Let us introduce some notation. Let M be a 3-manifold. Let Bn denote the Euclidean unit
n-dimensional ball. A disc D in M is the image of B2 by a continuous map i : B2 → M . We
will specify in each situation whether a given disc D ⊂ M is embedded, that is, whether the map
i : B2 →M is an embedding. A ball B in M is the image of B3 by an embedding i : B3 →M . That
is, we will only consider embedded balls.

We will say that a closed curve γ ⊂ M bounds a disc in a subset B ⊂ M if there exists a
map i : B2 → B ⊂ M whose restriction to ∂B2 coincides with γ. This is equivalent to γ being
contractible in B.

A surface Σ embedded in M is two-sided if its normal bundle in M is trivial. A two-sided
surface Σ embedded in M is separating if the complement M − Σ of Σ in M consists of two
connected components. If Σ is a two-sided surface embedded in M , we define the splitting of M
along Σ as the manifold resulting from removing an open tubular neighbourhood of Σ in M . Notice
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that the splitting of M along Σ has two new boundary components, each of them homeomorphic
to Σ.

If M is a 3-manifold with non-empty boundary and Σ is a boundary component of M home-
omorphic to the 2-sphere, the capping off of Σ is the operation consisting in gluing a copy of the
3-ball B3 to M along a homeomorphism φ : ∂B3 → Σ. This construction does not depend on the
choice of the homeomorphism φ. A 3-manifold M has spherical boundary if its boundary ∂M is
non-empty and homeomorphic to a disjoint union of 2-spheres. If M is a 3-manifold with spherical
boundary, the result of capping off all its boundary components is denoted by M̂ .

1.1.1 The Kneser–Milnor Prime Decomposition Theorem

Let us start by introducing the notion of connected sum of two 3-manifolds.

Definition 1.1.1. Let M1 and M2 be two connected oriented 3-manifolds. Fix two embedded
balls B1 ⊂ M1 and B2 ⊂ M2 and an orientation-reversing homeomorphism φ : ∂B1 → ∂B2. The
connected sum of the manifolds M1 and M2 is the manifold defined as

M1#M2 := (M1 − int (B1)) ⊔ (M2 − int (B2))/x ∼ φ(x), x ∈ ∂B1.

The resulting manifold depends neither on the choice of the balls B1 and B2 nor on the choice
of the homeomorphism φ : ∂B1 → ∂B2, hence the connected sum of oriented 3-manifolds is well
defined. However, it may depend on the orientation of the summands M1 and M2. The connected
sum is associative and commutative, and the 3-sphere S3 verifies that for any oriented 3-manifold
M , the connected sum M#S3 is homeomorphic to the original manifold M .

Conversely, 3-manifolds can be decomposed as a connected sum of simpler manifolds. Let Σ ⊂M
be a separating embedded 2-sphere. Then the splitting of M along Σ is composed of two connected
components N1 and N2, and the boundary of each of them is homeomorphic to the 2-sphere. Denote
by M1 = N̂1 and M2 = N̂2 the result of capping off the manifolds N1 and N2 respectively. Then M
is homeomorphic to the connected sum M1#M2. This fact motivates the following definition.

Definition 1.1.2. A connected 3-manifold P is prime if whenever P decomposes as a connected
sum P1#P2, then either P1 or P2 is homeomorphic to the 3-sphere S3.

By Alexander’s Theorem [Ale24, Moi52a], a connected 3-manifold M is prime if and only if any
separating embedded 2-sphere in M bounds a ball, that is, there is an embedded ball B ⊂M such
that ∂B = Σ. Observe that, by definition, the 3-sphere S3 is a prime 3-manifold. Other examples of
prime 3-manifolds include R3, spherical 3-manifolds, flat 3-manifolds, hyperbolic 3-manifolds and
the product S2 × S1. Spherical manifolds, that is, manifolds obtained as a quotient S3/Γ of the
3-sphere by a subgroup Γ < O(4) of isometries acting freely on S3, will be discussed in more detail
in Section 1.1.2.

Orientable closed prime 3-manifolds are classified by their fundamental group, as a consequence
of Perelman’s resolution of the Elliptisation Conjecture [Per02, Per03a, Per03b]. Recall that a
manifold M is aspherical if all its higher homotopy groups πk(M), k ≥ 2, are trivial. Equivalently,
by Whitehead’s Theorem [Hat02, Theorem 4.5], a manifold is aspherical if its universal cover is
contractible.

Theorem 1.1.3 ([Per02, Per03a, Per03b]). Let P be an orientable closed prime 3-manifold. Then P
is either spherical, aspherical or homeomorphic to S2 × S1.
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Proof. If π1(P ) is finite, then the Elliptisation Theorem [Per02, Per03a, Per03b] implies that P is
a spherical manifold.

Now, suppose that π1(P ) is infinite. Then the universal cover P̃ of P is non-compact. By the
long exact homotopy sequence of a fibration [Hat02, Theorem 4.41], we have π2(P̃ ) ≃ π2(P ).

Suppose first that π2(P ) = 0. Then π2(P̃ ) = 0 and P̃ is 2-homotopically connected. By
Hurewicz’s Theorem [Hat02, Theorem 4.32], there is an isomorphism π3(P̃ ) ≃ H3(P̃ ). Since P̃ is
non-compact, we have by Poincaré Duality [Hat02, Theorem 3.35] that H3(P̃ ;Z) vanishes, so the
group π3(P̃ ) vanishes as well. Since the homology groups Hk(P̃ ;Z) vanish for k ≥ 4, we can apply
Hurewicz’s Theorem inductively to conclude that πk(P̃ ) = 0 for k ≥ 0. Therefore, the manifold P
is aspherical.

Finally, suppose that π2(P ) is nontrivial. Then, by Papakyriakopoulos’ Sphere Theorem 1.1.14,
which will be presented in Section 1.1.4, the manifold P contains an embedded 2-sphere S not
bounding a ball. Since P is prime, the 2-sphere S is non-separating. Then there exists a simple
closed curve γ in P intersecting S at a single point. Let T be a tubular neighbourhood of S ∪ γ,
see Figure 1.1.

S
γ

T

Figure 1.1: Tubular neighbourhood T of S ∪ γ.

It is easy to see that T is homeomorphic to S2 × S1 with a ball removed, and that its boundary
∂T is a separating 2-sphere in P . Again, since P is a prime manifold, the 2-sphere ∂T must bound
a ball in P . Therefore, P is obtained from T by capping off its spherical boundary with a ball. We
conclude that P is homeomorphic to S2 × S1.

The following fundamental theorem states that every closed oriented 3-manifold decomposes
uniquely as the connected sum of closed prime 3-manifolds. The existence of such a decomposition
was proven by Kneser [Kne29], and its uniqueness was shown by Milnor [Mil62].

Theorem 1.1.4 (Kneser–Milnor Prime Decomposition Theorem [Kne29, Mil62]). Let M be a closed
oriented 3-manifold. Then M is homeomorphic to a finite connected sum

P1# · · ·#Pk,

where each Pi is a closed prime 3-manifold. This decomposition is unique up to permutation of the
summands and addition or deletion of S3 summands.

Let us finish this section with the following lemma, which is a consequence of Van Kampen’s
Theorem [Hat02, Theorem 1.20].

Lemma 1.1.5. Let M1 and M2 be two oriented 3-manifolds. Then there is an isomorphism

π1(M1#M2) ≃ π1(M1) ∗ π1(M2).
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It is also true that every decomposition as a free product of the fundamental group of a closed
3-manifold M is realised as a connected sum decomposition. This is known as the Kneser Conjecture
[Hem76, Theorem 7.1], and it was proven by Stallings [Sta59].

1.1.2 Spherical 3-manifolds

Let us recall the definition of spherical 3-manifold.

Definition 1.1.6. A spherical 3-manifold is a quotient S3/Γ of the 3-sphere by a subgroup Γ < O(4)
acting on S3 freely and by isometries.

Equivalently, by the Killing–Hopf Theorem [GHL04, Theorem 3.82], a 3-manifold is spherical
if and only if it admits a metric of constant positive sectional curvature. By Synge’s Theorem
[dC92, Corollary 3.10], spherical 3-manifolds are orientable. Moreover, the fundamental group Γ of
a spherical 3-manifold is necessarily a subgroup Γ < SO(4).

Therefore, the classification of spherical 3-manifolds can be reduced to describing which sub-
groups of SO(4) act on S3 freely and by isometries. Spherical 3-manifolds were completely classified
by Seifert–Threlfall [TS31, TS33]. We will not describe the classification of spherical 3-manifolds
here, and we refer the reader to [Thu97, Section 4.4] instead.

A particularly well-known class of spherical 3-manifolds are the lens spaces, which correspond
to abelian subgroups of SO(4). Recall that, given two coprime integers p ≥ 1 and q, the lens
space Lp(q) is the quotient of S3 under the free action of Zp generated by

(z, w) 7→
(
e

2π
p
i
z, e

2πq
p

i
w
)
,

where we identified the 3-sphere S3 with {(z, w) | |z|2 + |w|2 = 1} ⊂ C2. For instance, the trivial
case of L1(1) corresponds to the 3-sphere S3, and L2(q) is homeomorphic to RP3, for any q ≥ 3
odd.

Lens spaces constitute the simplest example of a closed manifold whose topology cannot be
determined solely from homotopical considerations.

Proposition 1.1.7 ([Hem76, Exercise 2.11, Lemma 3.23]). Let Lp(q) and Lp′(q
′) two lens spaces,

where p, q and p′, q′ are two pairs of coprime numbers, with p, p′ ≥ 1.

1. Lp(q) and Lp′(q
′) are homeomorphic if and only if p = p′, and either q ≡ ±q′ (mod p) or

qq′ ≡ ±1 (mod p).

2. Lp(q) and Lp′(q
′) are homotopy equivalent if and only if p = p′ and qq′ ≡ ±k2 (mod p), for

some k ∈ N.

For instance, the lens spaces L7(1) and L7(2) have the same exact homotopy type, but they are
not homeomorphic.

Apart from the lens spaces, another example of spherical 3-manifold, which was of great historical
importance, is the Poincaré homology sphere. It corresponds to the binary icosahedral group I∗,
which admits the presentation ⟨a, b | a2 = b3 = (b−1a)5⟩. The binary icosahedral I∗ has order 120,
and it is the only perfect subgroup of SO(4). Hence, every homology 3-sphere is homeomorphic to
the Poincaré homology sphere.
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1.1.3 Infinite connected sums

Let us now turn our attention to open 3-manifolds, that is, non-compact manifolds without bound-
ary. To study the topology of open 3-manifolds, we must generalise the notion of connected sum in
order to describe connected sums of infinitely many prime manifolds.

Let us present the notion of connected sum along a graph, which was introduced in [Sco77]. We
shall use the formalism from [BBM20]. Recall that a colouring of a graph G is a map f : V (G)→ I
from the vertex set V (G) of G to a subset I ⊂ N, and the pair (G, f) is called a coloured graph.

Definition 1.1.8. Let I ⊂ N be a subset. Let F = {Mi}i∈I be a family of connected 3-manifolds
indexed by I, and (G, f) a locally finite coloured graph. By convention 0 ∈ I and M0 = S3. The
connected sum over F along the locally finite coloured graph (G, f) is the manifold obtained as
follows:

1. For each vertex v ∈ V (G), consider the manifold Yv obtained from Mf(v) by removing a
number deg (v) of disjoint balls from its interior,

2. For each edge e joining two vertices v and v′, glue two spherical boundary components from
∂Yv and ∂Yv′ along an orientation-reversing homeomorphism.

See Figure 1.2.

v v′

Mv Mv′

G

Figure 1.2: Connected sum modelled on a graph.

Equivalently, a 3-manifold M decomposes as a connected sum over F (along a certain locally
finite coloured graph) if there exists a locally finite collection of pairwise disjoint 2-spheres embedded
in M such that cutting M along the collection of 2-spheres and then capping off each new spherical
boundary component by a 3-ball results in a disjoint collection of manifolds belonging to F .

Clearly, the resulting manifold depends on the coloured graph on which it is modelled. If we
assume the graph G to be a finite tree, then we recover the usual notion of connected sum. In any
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case, one can turn any infinite connected sum modelled on a graph into one modelled on a tree by
adding some additional S2 × S1 summands.

Proposition 1.1.9 ([BBM20, Theorem 2.3]). Let M be a 3-manifold. Suppose that M decomposes
as a connected sum over a family F of connected 3-manifolds along a locally finite coloured graph.
Then M is isomorphic to a connected sum over F ∪

{
S2 × S1

}
along a locally finite coloured tree.

It would be convenient to have a generalisation of the Kneser–Milnor Prime Decomposition
Theorem 1.1.4 to the case of open 3-manifolds to study their topology. Unfortunately, not every
open 3-manifold is homeomorphic to a connected sum of prime manifolds along a locally finite graph.
Some examples of such manifolds can be found in [Sco77, Mai08]. Even when an open 3-manifold
is homeomorphic to a connected sum of closed prime 3-manifolds, this decomposition may fail to
be unique.

In [BBM20], the authors gave a classification of open 3-manifolds which decompose over a finite
family of closed prime oriented 3-manifolds. In order to introduce the topological invariants of their
classification, we shall need the following definition. We will denote by P the family of all closed
oriented prime 3-manifolds.

Definition 1.1.10. Let M be an oriented 3-manifold, and fix a prime 3-manifold P ∈ P. Given
a (possibly disconnected) compact oriented 3-manifold K with spherical boundary, we denote
by nP (K) the sum of the number of summands homeomorphic to P in the Kneser–Milnor prime
decomposition of each connected component of the capped-off manifold K̂. We define

nP (M) := sup {nP (K) | K ⊂M compact submanifold with spherical boundary} ∈ N ∪ {∞} .

Also, define

EP (M) := {e ∈ E(M) | nP (U) =∞, for every open neighbourhood U of e} ⊂ E(M),

where E(M) denotes the space of ends of M , see Section 1.2.1.

Intuitively, given a prime 3-manifold P ∈ P, the number nP (M) counts how many times the
summand P appears in an infinite connected sum decomposition of M , and EP (M) is the subset
of ends for which any of their neighbourhood contains infinitely many P summands.

Theorem 1.1.11 ([BBM20, Theorem 1.2]). Let M and M ′ be two open oriented 3-manifolds.
Suppose that M and M ′ both decompose as a connected sum over a finite subfamily F of P. Then M
is homeomorphic to M ′ if and only if the following conditions are satisfied.

1. For every prime 3-manifold P ∈ P, nP (M) = nP (M ′).

2. There is an homeomorphism ϕ : E(M) → E(M ′) such that ϕ(EP (M)) = EP (M ′), for every
prime 3-manifold P ∈ P.

Theorem 1.1.11 has some counterintuitive consequences. Let (Pi)i∈N be a sequence of manifolds
in P which are pairwise non-homeomorphic. By Theorem 1.1.11, the manifolds

P1#P2#P1#P2#P1#P2#P1# . . .

and

P1#P2#P2#P1#P2#P2#P1# . . . ,
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which are infinite connected sums modelled on the halfline, are homeomorphic. In [BBM20], the
authors also showed that the manifolds

. . .#S3#S3#S3#P1#P2#P3# . . .

and
. . .#P5#P3#P1#P2#P4#P6# . . .

are not homeomorphic.

1.1.4 The Loop Theorem and the Sphere Theorem

We will now present the Loop Theorem and the Sphere Theorem, two fundamental results in
3-manifold topology. The Loop Theorem will be crucial for the proof of Theorem 1.5.1, see Sec-
tion 1.4.1. In essence, both the Loop Theorem and the Sphere Theorem state that a feature of the
algebraic topology of a given 3-manifold can be realised by an object of geometric nature.

Historically, the origin of the Loop and Sphere Theorems can be traced back to 1910, when
Dehn [Deh10] published what today is known as Dehn’s Lemma. Apart from the fact that Dehn’s
Lemma is less general than the Loop and Sphere Theorems, Dehn’s proof contained a significant
gap. It was not until later that Papakyriakopoulos [Pap57b, Pap57a] proved definitively Dehn’s
Lemma and established the Loop Theorem and the Sphere Theorem. The modern formulation of
the Loop Theorem is due to Stallings [Sta60].

Theorem 1.1.12 (Loop Theorem). Let Σ be a closed (not necessarily connected) surface embedded
into a 3-manifold M . If, for a certain basepoint x ∈ Σ, the homomorphism induced by the inclusion
π1(Σ, x) → π1(M,x) is not injective, then there is a simple closed curve γ of Σ representing a
nontrivial element of ker (π1(Σ, x)→ π1(M,x)) and an embedded disc D ⊂M such that γ = ∂D =
D ∩ Σ.

The Loop Theorem is the basic tool for performing a topological operation on surfaces embedded
in a 3-manifold, known as compression.

Definition 1.1.13. Let Σ be a closed (not necessarily connected) surface embedded into an ori-
entable 3-manifold M . The surface Σ is incompressible if the morphism π1(Σ, x) → π1(M,x)
induced by inclusion is injective for any basepoint x ∈ Σ. Otherwise, the surface Σ is compressible.

γ

D

Σ Σ′

Figure 1.3: Compressing a surface.

A compressible surface Σ can be compressed into an (embedded) incompressible surface homol-
ogous to Σ as follows. By the Loop Theorem 1.1.12, take a simple closed curve γ in Σ representing a
nontrivial element of ker (π1(Σ, x)→ π1(M,x)) which bounds an embedded disc D ⊂ M intersect-
ing Σ only along its boundary. There is a diffeomorphism onto its image φ : D× [−1, 1]→M such
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that φ(·, 0) = idD and φ(D× [−1, 1])∩Σ = φ(∂D× [−1, 1]). Then compress Σ along the disc D as
follows. Remove the band φ(∂D × [−1, 1]) and glue two discs D± := φ(D × {±1}) to Σ along the
corresponding curve φ(∂D × {±1}), see Figure 1.3. Notice that φ(D × [−1, 1]) is a 1-handle in M ,
whose boundary corresponds to φ(∂D × [−1, 1]) ∪D±. Therefore, the compression, which consists
in substituting φ(∂D × [−1, 1]) by D±, yields a new surface Σ′ homologous to Σ in M .

The compression of Σ along a disc reduces its complexity. Namely, if γ is not separating in Σ,
then the compression simply reduces the genus of the compressed connected component of Σ by
one. On the other hand, if γ is separating in Σ, then the compression splits the corresponding
connected component into two new connected components. Each of them has strictly lower genus
than the compressed connected component of Σ. Hence, by iterating the procedure finitely many
times, we finally obtain an incompressible surface Σ′.

For the sake of completeness, we will finish this section by stating the Sphere Theorem.

Theorem 1.1.14 (Sphere Theorem [Pap57a]). Let M be an orientable 3-manifold with π2(M) ̸= 0.
Then there is an embedded 2-sphere S representing a non-trivial element of π2(M).

1.2 The theory of ends

The study of the topology of non-compact manifolds (or, more generally, non-compact topological
spaces) requires the use of topological invariants describing their topological structure at infinity. An
object which appears naturally in the study of the topology at infinity of a topological space is the
notion of end. Intuitively, an end of a non-compact topological space X is a connected component
of the complementary X −K, for an arbitrarily large compact subset K ⊂ X. The space of ends
was first defined by Freudenthal [Fre31], in his search for a definition of a notion of compactification
with some desirable properties, known nowadays as Freudenthal’s end compactification.

1.2.1 The space of ends

Although Freudenthal’s definition of space of ends holds for a larger class of topological spaces, for
our purposes it will suffice to assume that X is a connected countable locally finite CW-complex.
We say that a subset of X is bounded if it is contained in a compact subset of X, otherwise we say
it is unbounded.

Definition 1.2.1. An neighbourhood system of infinity in X is a descending sequence

U1 ⊃ U2 ⊃ . . .

of connected open unbounded subsets Ui ⊂ X whose boundary ∂Ui is compact and satisfying
⋂

i Ui =
Ø. An end e of X is an equivalence class of neighbourhood systems of infinity in X by the equivalence
relation

(U1 ⊃ U2 ⊃ . . . ) ∼ (V1 ⊃ V2 ⊃ . . . )

if and only if for every Ui there is a j such that Ui ⊂ Vj , and for every Vj there is an i such that
Vj ⊂ Ui. Each open subset Ui is said to be an open neighbourhood of the end e. The set of ends of
X is denoted by E(X).

For every open subset U ⊂ X with compact boundary we define

U∗ := {e ∈ E(X) | e is represented by U1 ⊃ U2 ⊃ . . . such that Ui ⊂ U for large enough i} .

The collection {U∗ | U ⊂ X open subset} defines a basis for a topology on E(X). The set E(X)
endowed with this topology is the space of ends of X.

The number of ends of X is defined as e(X) := |E(X)|.
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Notice that the space of ends of a compact CW-complex X is E(X) = Ø, and therefore e(X) = 0.
There is an equivalent definition of the notion of end that uses equivalence classes of proper rays
under proper homotopy equivalence, see [Geo08, Section 13.4], but we shall not make use of it.

Freudenthal [Fre31] proved the following structure theorem.

Theorem 1.2.2 ([Fre31]). Let X be a connected countable locally finite CW-complex. The space
of ends E(X) of X is compact, metrisable and totally disconnected. In particular, E(X) is homeo-
morphic to a subset of the Cantor set.

The number of ends of a CW-complex X can be expressed in terms of the cohomology of ends
of X. Let C∗(X) be the simplicial cochain complex corresponding to X. A cochain φ ∈ C∗(X)
is compactly supported if there is a compact subset K ⊂ X such that φ(σ) = 0 for any chain
σ ∈ C∗(X − K). Denote by C∗c (X) the cochain subcomplex of C∗(X) consisting of compactly
supported cochains, and define

C∗e (X) := C∗(X)/C∗c (X).

The cohomology of ends H∗
e (X;G) of X with coefficients in an abelian group G is the cohomology

associated to the complex C∗e (X) and the abelian group G. It can be shown that

H∗
e (X;G) = lim←−K

H∗(X −K;G),

where the direct limit runs over all compact subsets K ⊂ X.

Lemma 1.2.3 ([Eps61, Theorem 1]). Let F be a field. Then e(X) = dimF (H0
e (X;F )).

The following result is an application of Lemma 1.2.3 in the computation of the number of ends
of contractible manifolds, see for instance [Geo08, Proposition 16.4.1].

Proposition 1.2.4. Let M be a contractible n-manifold with n ≥ 2. Then e(M) = 1.

Proof. Fix a compact subset K ⊂M . The long exact sequence corresponding to the pair (M,M−K)
for reduced cohomology (with coefficients in a field) may be written

· · · ← H̃1(M)← H1(M,M −K)← H̃0(M −K)← H̃0(M)← H0(M,M −K)← 0,

and the contractibility of M gives an isomorphism H1(M,M −K) ≃ H̃0(M −K). Now, Poincaré
Duality [Hat02, Theorem 3.35] gives an isomorphism Hn−1(M) ≃ H1

c (M), where H1
c (M) denotes

the 1-cohomology group with compact support. Recall that H1
c (M) ≃ lim←−K

H1(M,M − K) (see
[Hat02, Section 3.3] for instance). Therefore,

Hn−1(M) ≃ lim←−K
H̃0(M,M −K).

Since M is contractible, the former space must vanish. Therefore

e(M) = dim
(

lim←−K
H0(M −K)

)
= dim

(
lim←−K

H̃0(M −K)
)

+ 1 = 1.
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1.2.2 The number of ends of a group

In Section 1.2.1 we defined the number of ends of a connected topological space with a countable
locally finite CW-structure. The following result motivates the definition of the notion of number
of ends of a finitely generated group.

Theorem 1.2.5 ([Eps61, Theorem 3]). Let X̄ be a simplicial complex. Let G be a finitely generated
group acting cocompactly by covering transformations on X̄. Then the number of ends e(X̄) depends
uniquely on the group G.

Therefore, the number of ends of such a simplicial cover is a group invariant.

Definition 1.2.6. The number of ends of a finitely generated group G is defined as e(G) := e(X̄),
where X̄ → X is any regular covering of a finite simplicial complex X with covering transformation
group G.

In particular, the number of ends of a finitely generated group G coincides with the number of
topological ends of its Cayley graph, and does not depend on the set of generators chosen to define
it. Using the theory of covering spaces one can show that the number of groups is invariant when
passing to a subgroup of finite index.

Theorem 1.2.7 ([Eps61, Theorem 11]). Let G be a finitely generated group and H a subgroup of G
of finite index. Then e(H) = e(G).

Unlike the number of topological ends of a CW-complex, the number of ends that a group may
have is limited. Recall that a group is virtually infinite cyclic if and only if it contains a finite index
group isomorphic to Z.

Theorem 1.2.8 ([Hop44; Sta71, Theorem 5.A.9]). The number of ends of a finitely generated
group G is either 0, 1, 2 or infinite. More precisely, we have the following.

1. e(G) = 0 if and only if G is finite.

2. e(G) = 2 if and only if G is virtually infinite cyclic.

3. e(G) =∞ if and only if G is isomorphic to

· an amalgamated free product A ∗C B with A,B subgroups of G and C a proper finite
subgroup of both A and B, or

· an HNN extension ⟨H, t | tct−1 = φ(c) for c ∈ C1⟩ over a finite subgroup H of G relative
to an isomorphism φ : C1 → C2 between two subgroups C1 and C2 of H.

4. e(G) = 1 if and only if G is not of type 1, 2 or 3.

It follows from Definition 1.2.6 that the number of ends of the fundamental group of a closed
manifold coincides with the number of ends of its universal cover.

Lemma 1.2.9. Let M be a closed n-manifold, and denote by M̃ the universal cover of M . Then
e(π1(M)) = e(M̃).

As a consequence of Proposition 1.2.4 and Lemma 1.2.9 we obtain the following.

Corollary 1.2.10. If M is a closed aspherical n-manifold with n ≥ 2, then e(π1(M)) = 1.



1.3 The fill radius 51

1.3 The fill radius

This section is devoted to the notion of fill radius and its interaction with the geometry of mani-
folds of positive scalar curvature. The fill radius of contractible closed curves was first introduced
in [GL83, SY79a, SY83], and it is related to the more general notion of filling radius of a Riemannian
manifold presented in [Gro83], see Section 2.3.1.

Let M be a Riemannian n-manifold with possibly nonempty boundary. Recall that, given a
subset Z ⊂M , the closed R-neighbourhood of Z in M is denoted by

U(Z,R) := {x ∈M | d(x, Z) ≤ R} . (1.1)

Definition 1.3.1. Let M be a Riemannian n-manifold with possibly nonempty boundary. The fill
radius of a contractible closed curve γ in M is defined as

fillrad (γ) := sup {R ≥ 0 | d(γ, ∂M) > R and [γ] ̸= 0 ∈ π1(U(γ,R))} .

Define also
fillrad (M) := sup {fillrad (γ) | γ contractible closed curve of M} .

Notice that if a manifold M has bounded diameter, then fillrad (M) ≤ diam (M).

Example 1.3.2 ([SY83, Remark 1]). A ball B3(R) of radius R > 0 in the Euclidean space R3

has fillrad (B3(R)) = R
2 . The standard Riemannian cylinder S2(1)× R has fillrad (S2(1)× R) = π

2 .

1.3.1 Positive scalar curvature and fill radius

The fill radius of a Riemannian manifold is affected by its curvature. Intuitively, the more positively
curved the manifold is, the smaller the fill radius. For instance, by the Bonnet–Myers Theorem
[GHL04, Theorem 3.85], a manifold of uniformly positive Ricci curvature must have finite diameter,
and hence bounded fill radius. In [RW10], the authors conjectured that some weaker conditions
of positive curvature (namely, uniformly 2-positive Ricci curvature and uniformly positive isotropic
curvature) also imply a bound on the fill radius.

For 3-manifolds of uniformly positive scalar curvature, the following bound on the fill radius was
established in [GL83, SY83], see also [Wol12, Theorem 9.3.1] for another exposition. A Riemannian
manifold M has uniformly positive scalar curvature if there exists a positive constant s > 0 such
that scal ≥ s > 0.

Theorem 1.3.3 ([GL83, Theorem 10.7], [SY83]). Let M be a complete Riemannian 3-manifold
with bounded geometry, possibly with nonempty boundary. If scal ≥ s > 0, then

fillrad(M) ≤ 2π√
s
. (1.2)

The value of the constant 2π was obtained by Gromov–Lawson [GL83]. Using a different ar-

gument, Schoen–Yau [SY83] derived Theorem 1.3.3 for the sharper value of the constant
√

8
3π,

and recently Hu–Xu–Zhang in [HXZ24] showed that the latter is optimal. However, we will use
Gromov–Lawson’s constant, since their proof is more suitable to our case, see Proposition 1.3.9.

Theorem 1.3.3 implies that when M is a complete orientable 3-manifold with bounded geometry
and uniformly positive scalar curvature scal ≥ s > 0, then the universal Riemannian cover M̃ of M
satisfies fillrad (M̃) ≤ 2π/

√
s. Therefore, an upper bound on the fill radius of the universal cover

provides a generalisation of the notion of uniformly positive scalar curvature.

More generally, we will consider 3-manifolds admitting a complete Riemannian metric of positive
scalar curvature with at most a quadratic decay at infinity.
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Definition 1.3.4. Let M be a complete Riemannian n-dimensional manifold. Fix a basepoint
x ∈M , and denote by rx(y) = d(x, y) the distance function to x.

1. The scalar curvature of M has a decay at infinity of rate α ≥ 0 and constant C > 0 if there
exists a constant R0 > 0 such that for every y ∈M with rx(y) ≥ R0,

scal(y) >
C

rx(y)α
.

Notice that a change of basepoint would only modify the constant R0 and would leave the
constant C unaltered. Hence, the basepoint x ∈M can be taken arbitrarily.

2. The scalar curvature of M has a subquadratic decay at infinity if it decays at infinity at rate α
and constant C, for some α < 2 and C > 0 .

3. The scalar curvature of M has at most C-quadratic decay at infinity if it has a decay at infinity
of rate α = 2 and constant C, for some C > 0.

With these definitions, if the scalar curvature of M is uniformly positive with scal ≥ s > 0, it
decays at infinity at rate α and constant C, for any α ≥ 0 and 0 < C ≤ s. Similarly, if the scalar
curvature of M has a subquadratic decay at infinity, it has at most C-quadratic decay at infinity
for any C > 0.

If a complete orientable 3-manifold M has positive scalar curvature decaying at infinity, then
the conclusion of Theorem 1.3.3 does not longer hold, since the fill radius of M is not necessarily
bounded in general. Still, if the decay is not too pronounced, one can control the growth of the fill
radius of the lifts to the universal cover of the closed curves contractible in M . This property will
serve as a generalisation of the notion of positive scalar curvature with at most C-quadratic decay
at infinity for some C > 64π2, see Theorem 1.3.7. Notice that if M is a compact manifold, the fill
radius of contractible curves of M is uniformly bounded by diam (M), which is why we consider the
lifts of such curves to the universal cover.

Definition 1.3.5. Let M be a complete Riemannian manifold, and denote by M̃ its universal
Riemannian cover. Fix a basepoint x ∈ M . Denote by B(x,R) the closed metric ball of radius R
centered at x.

1. The fill radius of M̃ grows at infinity at rate β ≥ 0 and with constant c > 0 if there is a
constant R′

0 ≥ 0 such that if R ≥ R′
0, then for every closed curve γ lying in B(x,R) and

contractible in M , any of its lifts γ̃ to M̃ satisfies

fillrad (γ̃) < cRβ.

Again, notice that the basepoint x ∈M may be taken arbitrarily since a change of basepoint
does not affect the rate β, nor the value of the constant c.

2. The fill radius of M̃ has sublinear growth at infinity if it grows at infinity at rate β and
constant c, for some β < 1 and c > 0.

3. The fill radius of M̃ has at most c-linear growth at infinity if it grows a rate β = 1 and constant
c, for some c > 0.

Example 1.3.6. The fill radius of the Euclidean 3-dimensional space R3 grows at infinity at rate
β = 1 and constant c = 1.
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The decay at infinity of the scalar curvature of a manifold and the growth at infinity of the fill
radius of its universal Riemannian cover are related as follows.

Theorem 1.3.7. Let M be an orientable complete Riemannian 3-manifold, and denote by M̃ its
universal Riemannian cover. Suppose that M has positive scalar curvature with at most C-quadratic
decay at infinity for some C > 64π2. Then, the fill radius of M̃ has at most c-linear growth at infinity
for some c < 1

3 .

We will prove the topological decomposition of Theorem A by replacing the scalar curvature
assumption with this weaker condition about the filling discs of the lifts of contractible closed curves,
namely that the fill radius of M̃ has at most c-linear growth at infinity with c < 1

3 , see Theorem 1.5.1
and Section 1.5.

The rest of Section 1.3.1 will be devoted to the proof of Theorem 1.3.7. In coherence with the
definition of the fill radius, see Definition 1.3.1, we introduce the following notation.

Definition 1.3.8. Let K be a subset of a complete Riemannian 3-manifold M . Let γ be a closed
curve lying in K and contractible in M . Define the fill radius of γ relative to K as

fillrad (γ ⊂ K) := sup {R ≥ 0 | d(γ, ∂K) > R and [γ] ̸= 0 ∈ π1(U(γ,R))} .

Recall that U(γ,R) is the closed R-neighbourhood of γ in M .

With this notation, one can adapt the proof of Theorem 1.3.3 in [GL83, Proof of Theorem 10.7]
to prove the following result.

Proposition 1.3.9. Let M be a complete Riemannian 3-manifold with scal > 0. Let K ⊂M be a
compact subset. Let sK > 0 be a constant such that scal(x) ≥ sK > 0 for every x ∈ K. Then, any
closed curve γ lying in K and contractible in M satisfies:

fillrad (γ ⊂ K) ≤ 2π
√
sK

.

Proof. We argue by contradiction following [GL83, Proof of Theorem 10.7]. The only difference here
is that we will need to carefully apply the Stability Inequality [GL83, Inequality 10.17] to functions
with support in K. We also give more details of some parts of the argument.

Let γ be a closed curve lying in K and contractible in M . Let ρ > π/
√
sK . Suppose that

d(γ, ∂K) > 2ρ and that γ does not bound a disc in U(γ, 2ρ) (in the proof, all the discs are non-
necessarily embedded topological discs). Consider B ⊂ M a closed metric ball whose interior
contains the domain K as well as a disc D ⊂ M bounded by γ. After slightly deforming B, we
may assume that the boundary ∂B of B is a smooth surface. Now, we modify the Riemannian
metric in a tubular neighbourhood of ∂B away from K to make it isometric to the Riemannian
product ∂B × [0, 1]. With the modified metric, the subset B is a manifold with (mean) convex
boundary. By [MY82], there exists a disc Σ ⊂ B bounded by γ of least area. Observe that Σ is a
stable minimal disc which is not contained in U(γ, 2ρ). Using Schoen-Yau’s rearrangement [SY79b],
the stability of the minimal surface Σ implies∫

Σ

(
|∇f |2 + κΣf

2 − 1

2

(
scal + ∥II∥2

)
f2

)
dA ≥ 0 (1.3)

for any function f ∈ C∞c (Σ), where κΣ and II denote the Gauss curvature and the second funda-
mental form of Σ.
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Now, consider the level set γρ := {x ∈ Σ | dΣ(γ, x) = ρ} which, after considering a smooth
aproximation of the function dΣ(γ, ·), consists of a disjoint collection of closed curves. Since γ does
not bound a disc in U(γ, 2ρ), there is at least one connected component σ of γρ which does not
bound a disc in U(γ, 2ρ). Let Ω ⊂ Σ be a small neighbourhood of σ. For every s ∈ [0, ρ], denote by

Ω(s) := {x ∈ Σ | dΣ(x,Ω) ≤ s}

the closed s-neighbourhood of Ω in Σ, see Figure 1.4.

U(γ, 2ρ)

γ

Σ

σ

Ω(s) Ω

γρ

Figure 1.4: The neighbourhood Ω(s) in the stable minimal disc Σ.

Following [GL83, Proof of Theorem 10.2], by analytic approximation of the domain Ω and
the distance function dΣ(·,Ω), we may assume that the level set ∂Ω(s) is piecewise smooth, for
every s ∈ [0, ρ]. Notice that, as d(γ, ∂K) > 2ρ, the set Ω(ρ) is contained in the compact K and its
interior does not intersect the curve γ. Therefore, if f ∈ C∞c (Σ) is a function supported in Ω(ρ),
the Stability Inequality (1.3) implies∫

Ω(ρ)

(
|∇f |2 + κΣf

2 − sK
2
f2

)
dA ≥ 0. (1.4)

For every s ∈ [0, ρ], we denote by

· γ(s) := ∂Ω(s) the boundary of Ω(s),

· ℓ(s) := ℓ(γ(s)) the length of the curve γ(s),

· Γ(s) :=
∫
γ(s) κg(s)+

∑
i θi(s), where κg(s) is the geodesic curvature of the curve γ(s) and θi(s)

are the external angles defined by the curve γ(s) at its vertices,

· κ(s) :=
∫
γ(s) κΣ the integral of the Gauss curvature κΣ of Σ over the curve γ(s),

· A(s) := |Ω(s)| the area of Ω(s), and

· χ(s) := χ(Ω(s)) the Euler characteristic of the surface Ω(s).

The Gauss–Bonnet Theorem [dC76, Section 4.5] applied to the surface Ω(s1)− int (Ω(s0)) gives∫ s1

s0

κ(s)ds = 2π (χ(s1)− χ(s0))− (Γ(s1)− Γ(s0)) ,
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which implies that, in the distributional sense,

κ(s) = (2πχ(s)− Γ(s))′ . (1.5)

Now consider the function f : Σ→ R defined by

f(x) =

{
cos

(
π
2ρdΣ(x,Ω)

)
if x ∈ Ω(ρ)

0 if x /∈ Ω(ρ)
.

Notice that the function f is supported in Ω(ρ). For this choice of function f , and using Coarea
Formula [BZ88, Theorem 13.4.2], the inequality (1.4) may be written as follows

π2

4ρ2

∫ ρ

0
ℓ(s) sin2

(
π
2ρs

)
ds +

∫ ρ

0
κ(s) cos2

(
π
2ρs

)
ds + 2πχ(0)− Γ(0) ≥

≥ sK
2

(∫ ρ

0
ℓ(s) cos2

(
π
2ρs

)
ds + |Ω|

)
.

(1.6)

Using equation (1.5) and integrating by parts, we have∫ ρ

0
κ(s) cos2

(
π
2ρs

)
ds + 2πχ(0)− Γ(0) =

π

2ρ

∫ ρ

0
(2πχ(s)− Γ(s)) sin

(
π
ρ s

)
ds. (1.7)

Now we use the fact that ℓ′(s) ≤ Γ(s) for every s ∈ (0, ρ) [Fia41] (see also [GL83, Proof of Theorem
10.2]), and we integrate by parts to obtain

− π

2ρ

∫ ρ

0
Γ(s) sin

(
π
ρ s

)
ds ≤ − π

2ρ

∫ ρ

0
ℓ′(s) sin

(
π
ρ s

)
ds =

=
π2

2ρ2

∫ ρ

0
ℓ(s)

(
cos2

(
π
2ρs

)
− sin2

(
π
2ρs

))
ds.

(1.8)

Hence, by equations (1.7) and (1.8), the inequality (1.6) implies(
π2

ρ2
− sK

)∫ ρ

0
ℓ(s) cos2

(
π
2ρs

)
ds +

4π2

ρ

∫ ρ

0
χ(s) sin

(
π
2ρs

)
cos

(
π
2ρs

)
ds ≥

≥ sK |Ω|+
π2

2ρ2

∫ ρ

0
ℓ(s) sin2

(
π
2ρs

)
ds.

(1.9)

Since the curve γ does not bound a disc in U(γ, 2ρ), we have χ(s) ≤ 0 for every s ∈ [0, ρ]. Therefore,
we obtain (

π2

ρ2
− sK

)∫ ρ

0
ℓ(s) cos2

(
π
2ρs

)
ds ≥ sK |Ω| > 0.

We conclude that ρ < π/
√
sK , which is a contradiction.

From Proposition 1.3.9, one can derive Theorem 1.3.7. More generally, we have the following
result.

Proposition 1.3.10. Let M be a complete Riemannian 3-manifold, and denote by M̃ its universal
Riemannian cover. Suppose that M has positive scalar curvature with a decay at infinity of rate
α ≥ 0 and constant C > 0.

1. If the decay is subquadratic (that is, α ∈ [0, 2)), then the fill radius of M̃ has sublinear growth
at infinity of rate β = α/2 ∈ [0, 1).
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2. If the decay is at most C-quadratic with C > 4π2, then the fill radius of M̃ has at most linear
growth at infinity with constant

c =
2π√

C − 2π
.

In particular, if the scalar curvature has at most C-quadratic decay at infinity with C > 64π2, then
the fill radius of M̃ has at most c-linear growth at infinity with c < 1

3 .

Proof. Fix a point x ∈M . Consider R0 > 0 such that every point y ∈M with rx(y) ≥ R0 satisfies

scal(y) >
C

rx(y)α
,

and define s0 := minB(x,R0) scal. Fix µ > 1. Let R ≥ R′
0, where

R′
0 =

max

{
R0,

(
C
s0

) 1
α
,
(

2π√
C

) 2
2−α

(
µα

(µ−1)2

) 1
2−α

}
if α ∈ [0, 2)

max
{
R0,

√
C
s0

}
if α = 2

.

Note that R ≥ max
{
R0, (

C
s0

)
1
α

}
in both cases.

Let γ be a closed curve lying in the closed metric ball B(x,R) and contractible in M . Take any
lift x̃ of x in the universal cover M̃ , and lift γ to a closed curve γ̃ lying in the set p−1(B(x,R)) =
U(π1(M) · x̃, R) formed by the points of M̃ at distance at most R from a point in the orbit of x̃ by
the action of the fundamental group of M , see equation (1.1).

Consider the µR-neighbourhood K = U(π1(M) · x̃, µR) of the orbit π1(M) · x̃. Since R ≥ ( C
s0

)
1
α ,

we have

min
K

scal >
C

(µR)α
.

By Proposition 1.3.9, the closed curve γ̃ has

fillrad (γ̃ ⊂ K) <
2π√
C

(µR)
α
2 .

Notice that
d(γ̃, ∂K) ≥ µR−R.

Hence, the curve γ̃ bounds a (non-necessarily embedded) disc in its 2π√
C

(µR)
α
2 -neighbourhood if

µR−R ≥ 2π√
C

(µR)
α
2 . (1.10)

1. Let us consider first the subquadratic case, that is, suppose α ∈ [0, 2). The inequality

R ≥
(

2π√
C

) 2
2−α

(
µα

(µ− 1)2

) 1
2−α

is equivalent to the inequality (1.10). Therefore,

fillrad (γ̃) <
2π√
C
µ

α
2 R

α
2 .

That is, the fill radius of M̃ has sublinear growth of rate β = α/2 and constant c = 2πµ
α
2 /
√
C.

Notice that this estimate holds for any µ > 1. In particular, one can let µ go to 1 in order to
make c as close to 2π/

√
C as desired, in which case R′

0 diverges to infinity.
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2. Now, suppose that α = 2 and C > 4π2. In this case, the inequality (1.10) is equivalent to

µ ≥
√
C√

C − 2π
.

Hence, for any µ ≥
√
C√

C−2π
, we have

fillrad (γ̃) <
2π√
C
µR.

In particular,

fillrad (γ̃) <
2π√

C − 2π
R.

That is, the fill radius of M̃ has at most c-linear growth, with c = 2π√
C−2π

. Notice that

C > 64π2 if and only if c < 1
3 .

1.3.2 Fill radius and simply connectedness at infinity

A slow growth at infinity of the fill radius of the universal Riemannian cover of a manifold may
constrain its topology at infinity. In this section, we will show that complete Riemannian manifolds
whose universal Riemannian cover has fill radius with at most c-linear growth at infinity with c < 1
are simply connected at infinity on contractible curves.

Let us begin by recalling the well-known notion of manifold simply connected at infinity (see
[Geo08, Section 16] for a detailed discussion on simply connectedness at infinity and related notions).

Definition 1.3.11. A manifold M is simply connected at infinity if for any compact subset B ⊂M ,
there is a compact subset K ⊂M containing B such that the morphism

π1(M −K)→ π1(M −B)

induced by the inclusion is trivial.

Intuitively, a manifold is simply connected at infinity if for any compact subset B, closed curves
sufficiently far from B can be contracted to a point avoiding B. Notice that simply connected
manifolds are not necessarily simply connected at infinity. For instance, the plane in dimension
two and the Whitehead manifold are simply connected (even contractible) but they are not simply
connected at infinity. If instead we require this condition to hold only for curves that are contractible
in M , we say that M is simply connected at infinity on contractible curves. More precisely:

Definition 1.3.12. A manifold M is simply connected at infinity on contractible curves if for any
compact subset B ⊂M , there is a compact K ⊂M containing B such that

ker (π1(M −K)→ π1(M)) = ker (π1(M −K)→ π1(M −B)),

that is, every closed curve γ ⊂M −K contractible in M is already contractible in M −B.

Example 1.3.13. Clearly, simply connectedness at infinity implies simply connectedness at infinity
on contractible curves. The converse is not true, as shown by the following example. Consider
the 3-manifold M obtained as an infinite connected sum (see Section 1.1.3) of manifolds S2 × S1
modelled on the halfline [0,+∞) with vertices at the integer points. The manifold M is simply
connected at infinity on contractible curves. However, M is not simply connected at infinity, since
the complementary of any compact contains (infinitely many) non-contractible curves.
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Let us now prove that if the fill radius of the universal Riemannian cover of a complete Rie-
mannian manifold M grows at most c-linearly at infinity with c < 1, then M is simply connected
at infinity on contractible curves. Notice that this result is valid for manifolds of any dimension.

Proposition 1.3.14. Let M be a complete Riemannian manifold, and denote by M̃ its universal
Riemannian cover. Suppose the fill radius of M̃ has at most c-linear growth at infinity for some
c < 1. Then the manifold M is simply connected at infinity on contractible curves.

Proof. Fix a point x ∈M . Consider c < 1 and R′
0 > 0 such that if γ is a closed contractible curve

lying in the closed metric ball B(x,R) for R ≥ R′
0, then any of its lifts γ̃ to the universal cover M̃

satisfies

fillrad (γ̃) < cR.

Notice that, since the projection from the universal cover to M is distance non-increasing, the
curve γ also satisfies fillrad (γ) < cR.

For any compact B ⊂ M , choose an r ≥ R′
0 such that B ⊂ B(x, r). Let R := r

1−c > r and
consider the closed metric ball K = B(x,R). Suppose that η ⊂ M − K is a closed curve that is
contractible in M . If η bounds a (non-necessarily embedded) disc in M − K, there is nothing to
prove, so suppose that η bounds a disc D which intersects K. That is, there exists a continuous
map i : B2 → M such that i(B2) = D and whose restriction to ∂B2 coincides with η. By an
approximation argument [Hir76, Theorem 2.12, Theorem 3.4], one can assume that i : B2 → M is
an immersion, that is, that D is an immersed disc in M . Approximate the distance function d(x, ·)
on the manifold M by a smooth function, and denote by f its restriction to the disc D. By Sard’s
Theorem [Hir76, Theorem 1.3], we can slightly adjust R to a regular value of f ◦ i so that the
preimage (f ◦ i)−1(R) consists of a finite collection of disjoint simple closed curves γj in B2, each of
which bounds a topological disc Dj ⊂ B2. Observe that two such discs are either disjoint or one is
contained within the other. It follows that the maximal discs D′

j in this family are disjoint. Note

also that i(B2 − ⊔jD′
j) ⊂ M − K. The images γ′j of ∂D′

j under the immersion i are contractible
closed curves in D, and hence in M . Since each closed curve γ′j lies in the metric ball B(x,R), we
have

fillrad (γ′j) < cR =
c

1− c
r.

The distance of each curve γ′j to the boundary ∂B(x, r) satisfies

d(γ′j , ∂B(x, r)) ≥ R− r ≥ c

1− c
r.

Therefore, each curve γ′j bounds a disc inside the complement M − B(x, r). That is, for each
closed curve γ′j , there exists a continuous map ij : D′

j → M − B(x, r), which can be assumed
to be an immersion, and whose restriction to ∂D′

j coincides with γ′j . By combining the maps

i : B2−⊔jD′
j →M −B(x, r) and ij : D′

j →M −B(x, r), we obtain a map B2 →M −B(x, r) whose

restriction to ∂B2 coincides with η. Thus, the curve η bounds a disc inside M−B(x, r) ⊂M−B.

Remark 1.3.15. A result closely related to Proposition 1.3.14 is [GL83, Corollary 10.9], where
the authors proved that a complete 3-manifold of uniformly positive scalar curvature and finitely
generated fundamental group is simply connected at infinity. Note that this result fails without the
assumption that the fundamental group is finitely generated; see Example 1.3.13 for a counterex-
ample. The hypothesis in Proposition 1.3.14 are more general (in particular, we do not make any
assumption on the dimension of M , nor on the fundamental group of M), but we derive a weaker
result, namely simply connectedness at infinity on contractible curves.
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Remark 1.3.16. By Proposition 1.3.10, Proposition 1.3.14 applies to complete Riemannian 3-
manifolds of positive scalar curvature with at most C-quadratic decay at infinity with C > 16π2.
Although we shall not make use of this fact, one can show directly this consequence by constructing
a minimising annulus in a compact domain K ⊂ M where the scalar curvature is bounded from
below by some sK > 0, without relying on the fill radius, as in the proof of Proposition 1.3.9. This
alternative approach applies when C > π2 and was first used in [GL83, Proof of Corollary 10.9].
Notice that for such manifolds, the fill radius of their universal cover has at most c-linear growth
at infinity, for any c > 0.

The following result is a direct consequence of the application of Proposition 1.3.14 to con-
tractible manifolds.

Corollary 1.3.17. Let M be a complete contractible Riemannian manifold. Suppose the fill radius
of M has at most c-linear growth at infinity for some c < 1. Then M is homeomorphic to Rn.

Proof. Proposition 1.3.14 together with the fact that the manifold M is contractible imply that M
is simply connected at infinity. And the only contractible manifold which is simply connected at
infinity is Rn. This result was proven first for manifolds of dimension n ≥ 5 [Sta62, Theorem 4],
then for 3-dimensional manifolds [Edw63], and finally for 4-dimensional manifolds [Fre82, Corollary
1.2].

In particular, any contractible complete 3-manifold with positive scalar curvature of subquadratic
decay at infinity, and more generally of C-quadratic decay at infinity for some C > 16π2, is homeo-
morphic to R3. This result was already obtained by Wang [Wan19]. It is an open question whether
any contractible complete 3-manifold with positive scalar curvature is homeomorphic to R3, despite
some recent progress in this direction [Wan23b, Wan24a, Wan24b, CLX25].

1.3.3 Fill radius and number of ends

In this section, we will examine how the growth of the fill radius of the universal Riemannian cover
of a manifold M influences the fundamental group π1(M) of M .

In [RW10], Ramachandran–Wolfson showed that the fundamental group of a closed manifold of
any dimension, whose universal Riemannian cover has bounded fill radius cannot contain finitely
generated subgroups with one end, and as a consequence, the fundamental group of such a manifold
is virtually free. Recall that a group G is virtually free if it contains a finite index free subgroup.
Recently, the same strategy was used in [CLL23] to prove a classification of closed manifolds admit-
ting a metric of positive scalar curvature in dimensions 4 and 5, under some additional topological
assumptions.

In this section, we derive the main result of [RW10] under a weaker hypothesis (the fill radius
of M̃ is not necessarily bounded, but has at most c-linear growth at infinity with c < 1

3), adapting
ideas present in [RW10, CLL23, GL83]. Note that the results in this section are valid for manifolds
of any dimension.

Theorem 1.3.18. Let M be a complete Riemannian manifold, and consider its Riemannian uni-
versal cover M̃ . Suppose the fill radius of M̃ has at most c-linear growth at infinity, with c < 1

3 .
Then, the fundamental group π1(M) does not contain any finitely generated subgroup with exactly
one end.

We start by proving the following version of [GL83, Corollary 10.11] for manifolds whose Rie-
mannian universal cover has fill radius with a certain growth at infinity.
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Lemma 1.3.19. Let M be a complete Riemannian manifold, and denote by p : M̃ →M its universal
Riemannian cover. Let x ∈ M be a point. Let β ≥ 0 and c > 0 be constants, and suppose that
either β < 1, or β = 1 and c < 1

2 . Suppose there is a constant R′
0 ≥ 0 such that if R ≥ R′

0 then, for

every closed curve γ lying in B(x,R) and contractible in M , any of its lifts γ̃ to M̃ verifies

fillrad (γ̃) < cRβ.

Let Z ⊂M be a path-connected compact subset and consider a path-connected component Z̄ of p−1(Z) ⊂
M̃ . Then, there is a constant R′′

0 ≥ R′
0 such that if R ≥ R′′

0, every path-connected component CR of
the level set ∂U(Z̄, R) satisfies

diam(CR) < 6c (d(x, Z) + diam (Z) + R)β.

Proof. Let R′′
0 ≥ R′

0 be a constant to be determined later. Let R ≥ R′
0 and denote L :=

d(x, Z) + diam (Z) + R. Fix a connected component CR of the level set ∂U(Z̄, R) and consider
two points z1, z2 ∈ CR. We shall prove that z1 and z2 lie within a distance at most 6cLβ. Let η̃ be a
curve in CR joining z1 to z2. Join each point zi to Z̄ by a minimal geodesic η̃i, and join the endpoints
of η̃1 and η̃2 lying in Z̄ by a curve η̃′ lying in Z̄; see Figure 1.5. The concatenation γ̃ = η̃1 ∗ η̃ ∗ η̃2 ∗ η̃′
is a closed curve contained in U(Z̄, R). Now, consider the projection γ of γ̃ to M . Then the closed
curve γ lies in the closed metric ball B(x, d(x, Z) + diam (Z) + R). Therefore,

fillrad (γ̃) < c (d(x, Z) + diam (Z) + R)β = cLβ.

That is, there exists a disc D ⊂ M̃ , which can be assumed immersed, with ∂D = γ̃ such that any
point a ∈ D satisfies d(a, γ̃) < cLβ.

η̃′

z2

Z̄

z1

b1

b2

∂U(Z̄, R)

∂U(Z̄, R− cLβ)

η̃1

η̃2

η̃

η̃′′

a

Figure 1.5: Scheme of the proof of Lemma 1.3.19.

Now, consider the curve η̃′′ = D ∩ ∂U(Z̄, R − cLβ). Since either β < 1 or β = 1 and c < 1
2 ,

for R′′
0 large enough, if R ≥ R′′

0 then every point a ∈ η̃′′ satisfies

d(a, η̃′) ≥ d(a, Z̄) = R− cLβ ≥ cLβ,

and clearly d(a, η̃) ≥ cLβ. Therefore, there is a point a ∈ D lying within a distance less than cLβ

from both curves η̃1 and η̃2. That is, there are points bi ∈ η̃i such that d(a, bi) < cLβ, for i = 1, 2.
Since d(bi, zi) < 2cLβ (otherwise the inequality d(a, bi) < cLβ would not hold), we obtain

d(z1, z2) ≤ d(z1, b1) + d(b1, a) + d(a, b2) + d(b2, z2) < 6cLβ.
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That is,

d(z1, z2) < 6c (d(x, Z) + diam (Z) + R)β.

Now, we prove Theorem 1.3.18.

Proof of Theorem 1.3.18. Let x ∈ M be a point and R′
0 ≥ 0 such that if γ is a contractible closed

curve lying in the closed metric ball B(x,R) for R ≥ R′
0, then any of its lifts γ̃ to the universal

cover M̃ satisfies

fillrad (γ̃) < cR,

with c < 1
3 . Suppose that G is a finitely generated subgroup of π1(M,x) with exactly one end. In

particular, the subgroup G is infinite. Consider a collection of closed curves η1, . . . , ηk based at x
representing the generators of G. Now, consider the lift X̄ of X = ∪iηi to the universal cover M̃ ,
and fix a lift x̃ ∈ X̄ of the point x. Notice that X̄ is homeomorphic to the Cayley graph of G
associated to the generating set represented by the homotopy classes of the curves {ηi}.

We shall need the following result.

Lemma 1.3.20. There exists a constant H > 0 such that for any minimising geodesic γ̃ joining
two points y1, y2 lying in X̄, we have

max
y∈γ̃

d(y, X̄) ≤ H.

Proof. We argue by contradiction. Suppose that for any H > 0, there is a minimal geodesic γ̃
joining two points y1 and y2 lying in X̄ and a point y0 ∈ γ̃ such that d(y0, X̄) = H; see Figure 1.6.
In particular, d(y0, yj) ≥ H for j = 1, 2, and d(y1, y2) ≥ 2H.

γ̃

y1

y′1

y2

y′2H X̄

∂U(X̄, H2 )

y0

Figure 1.6: Minimising curve γ̃ joining two points y1 and y2 lying in X̄.

Let y′j be the intersection point of γ̃ with the level set ∂U(X̄, H2 ) which is closest to yj , forj =

1, 2. The points y′1 and y′2 must lie in the same connected component of ∂U(X̄, H2 ), otherwise the
concatenation of γ̃ with a curve lying in X̄ joining y1 with y2, which is contractible, would have
nontrivial intersection with the cycle ∂U(X̄, H2 ). Applying Lemma 1.3.19 to Z̄ = X̄, β = 1 and
c < 1

3 , we have that for H large enough,

d(y1, y2) ≤ d(y1, y
′
1) + d(y′1, y

′
2) + d(y′2, y2) < H + 6c (diam (X) + H

2 ).

Since c < 1
3 , this contradicts the fact that d(y1, y2) ≥ 2H, for H sufficiently large.
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Now, let R ≥ R′
0. Fix a fundamental domain ∆ of X̄ for the action of G. Since e(X̄) = e(G) = 1,

there is a compact K ⊂ X̄ containing U(∆, R+H)∩ X̄ such that X̄−K has a unique (unbounded)
connected component.

Take a minimising curve γ̃ of M̃ joining two points y1 and y2 in X̄ at distance at least 2T in M̃ ,
where T > diam (K) +H. Choose a point y0 ∈ γ̃ with d(y0, yj) ≥ T for j = 1, 2 and a point ȳ0 ∈ X̄
at minimal distance from y0. By Lemma 1.3.20, the minimising curve γ̃ is at distance at most H
from X̄. Thus, d(y0, ȳ0) ≤ H. Translating the curve γ̃ by an element of G if necessary, we can
assume that ȳ0 lies in ∆. It follows that

B(y0, R) ∩ X̄ ⊂ B(ȳ0, R + H) ∩ X̄ ⊂ K.

Now, by the triangle inequality,

d(ȳ0, yj) ≥ d(y0, yj)− d(y0, ȳ0) ≥ T −H > diam (K).

Thus, both y1 and y2 lie in X̄ −K and can be joined by a curve τ lying in X̄ −K by construction.
Since B(y0, R) ∩ X̄ ⊂ K, the curve τ lies outside B(y0, R).

y0 γ̃

τ

y2

z2

X̄

K

∆

B(y0, R)

y1

z1

ȳ0

Figure 1.7: Sketch of the proof of Theorem 1.3.18.

Consider the intersection point zj of γ̃ with the sphere S(y0, R) = ∂B(y0, R) which is the closest
to the point yj for j = 1, 2. The points z1 and z2 must lie in the same connected component
of S(y0, R), otherwise the concatenation γ̃ ∗ τ would have a nontrivial intersection number with the
cycle S(y0, R), which is absurd since γ̃ ∗ τ is contractible. By Lemma 1.3.19 applied to Z̄ = {y0},
β = 1 and c < 1

3 , we have

d(z1, z2) < 6c (d(x, p(y0)) + R) (1.11)

where p : M̃ →M is the universal covering. Now, recall that p(y0) is at distance at most H from X
by Lemma 1.3.20. Thus, the distance between p(y0) and the basepoint x of X is bounded uniformly
in R. More precisely,

d(x, p(y0)) ≤ diam (X) + H.

Since the curve γ̃ is minimising, we have d(z1, z2) = 2R. By taking R large enough in the inequal-
ity (1.11), we obtain a contradiction with c < 1

3 .
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Finally, we recover the main result of [RW10] under more general assumptions (that is, not just
for closed manifolds whose universal cover has bounded fill radius).

Corollary 1.3.21. Let M be a complete Riemannian manifold with finitely presented fundamental
group. Denote by M̃ its Riemannian universal cover. Suppose the fill radius of M̃ has at most
c-linear growth at infinity, with c < 1

3 . Then π1(M) is virtually free.

Proof. We follow the argument of [RW10]. By Theorem 1.3.18, π1(M) does not contain finitely
generated subgroups of exactly one end. Since π1(M) is finitely presented, then it is accessible by
[Dun85]. Recall that a group is accessible if it is the fundamental group of a graph of groups such
that every edge group is finite and every vertex group is at most one-ended. Finally, an accessible
group without one-ended subgroups is virtually free, by a result of Serre [Ser80, Chapter 2, Section
2.6, Proposition 11].

Remark 1.3.22. In particular, if the fill radius of the universal cover of a complete Riemannian
manifold with finitely presented fundamental group is uniformly bounded above, then its funda-
mental group is virtually free.

1.3.4 Fill radius and aspherical summands

Another consequence of Theorem 1.3.18, combined with Corollary 1.2.10, is that manifolds which
decompose as the connected sum of a manifold with an aspherical summand do not admit complete
metrics such that the Riemannian universal cover has at most c-linear growth at infinity with c < 1

3 .

Corollary 1.3.23. Let P be a closed aspherical n-manifold and N be an arbitrary n-manifold with
n ≥ 2. Then the connected sum M = P#N does not admit any complete Riemannian metric such
that the fill radius of M̃ has at most c-linear growth at infinity, with c < 1

3 .

By [GL83], closed aspherical 3-manifolds do not support Riemannian metrics of positive scalar
curvature. The same statement for any dimension was conjectured by Gromov [Gro86].

Conjecture 1.3.24. A closed aspherical n-manifold does not admit any Riemannian metric with
positive scalar curvature.

Conjecture 1.3.24 was solved for n ∈ {4, 5} by Chodosh–Li [CL24], and independently by Gro-
mov [Gro20]. Gromov [Gro17, Section 4, Conjecture 12], [Gro23, Section 3.2] also conjectured a
stronger version of Conjecture 1.3.24, involving the notion of Q-essential manifold.

Definition 1.3.25. Let G be an abelian group. A closed n-manifold M is G-essential if the classi-
fying map f : M → K(π1(M), 1) induces a nontrivial homomorphism f∗ : Hn(M ;G)→ Hn(K;G)
in top dimensional G-homology, that is,

f∗[M ] ̸= 0 ∈ Hn(K;G).

A closed n-manifold M is essential if it is orientable and Z-essential, or if it is non-orientable and
Z2-essential.

Notice that any closed manifold M admitting a non-zero degree map to an essential manifold
M ′ is also essential. In particular, the connected sum M#M ′ of any closed manifold M with an
essential manifold M ′ is also essential.

Clearly, any closed aspherical manifold is Q-essential, and any closed Q-essential manifold is
essential. However, it is not true that every essential manifold is Q-essential.
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Example 1.3.26. The real projective spaces RPn are essential manifolds. Indeed, the inclusion
map i : RPn → RP∞ into the K(Z2, 1)-space RP∞ induces a non-trivial homomorphism in G-
homology for G = Z when n is odd and G = Z2 when n is even. However, RPn is not Q-essential,
since Hn(RP∞;Q) = 0 for every n ∈ N.

More generally, the lens spaces Lp(q1, . . . , qn) are essential manifolds which are not Q-essential.
Recall that, given p ∈ N and a sequence (qj)j∈N of integers such that (p, qi) = 1 for every i ∈
{1, . . . , n}, the lens space Lp(q1, . . . , qn) is the (2n − 1)-manifold obtained as the quotient of the
(2n − 1)-sphere S2n−1 = {|z1|2 + · · · + |zn|2 = 1} ⊂ Cn by the free action of Zp generated by the
rotation

(z1, . . . , zn) 7→
(
e

2πq1
p

i
z1, . . . , e

2πqn
p

i
zn

)
.

Similarly, the infinite dimensional lens space L∞
p (qj) is defined as the quotient of the infinite di-

mensional sphere S∞ = {
∑∞

j=1 |zj |
2 = 1} ⊂ C∞ by the free action of Zp generated by

(zj)j∈N 7→
(
e

2πqj
p

i
zj

)
.

Notice that for any sequence of integers (qj)j∈N, L2(q1, . . . , qn) = RP2n−1 and L∞
2 (qj) = RP∞.

Moreover, Lp(1, q) corresponds to the 3-dimensional lens space Lp(q) introduced in Section 1.1.2.
The infinite dimensional lens space Lp(qj) has a CW-complex structure, and contains Lp(q1, . . . , qn)
as its (2n− 1)-skeleton, for every n ∈ N. As in the case of projective spaces, the inclusion

i : Lp(q1, . . . , qn)→ L∞
p (qj)

induces a non-trivial homomorphism in Z-homology. Since the universal cover of L∞
p (qj) is S∞,

which is a contractible space, we conclude that L∞
p (qj) is a K(Zp, 1)-space. Therefore, Lp(q1, . . . , qn)

is essential, and it is not Q-essential since Hn(L∞
p (qj);Q) = 0 for every n ∈ N.

Gromov conjectured that Q-essential closed manifolds do not support metrics of positive scalar
curvature.

Conjecture 1.3.27 ([Gro17, Gro23]). A closed Q-essential n-manifold does not admit any Rie-
mannian metric with positive scalar curvature.

The results in Section 1.3.3 allow us to prove a weaker version of Conjecture 1.3.27 involving
the fill radius.

Proposition 1.3.28. Let M be a closed Q-essential n-manifold with n ≥ 2. Then M does not
admit any Riemannian metric such that the fill radius of its universal cover M̃ is bounded.

Proof. Suppose that M̃ has bounded fill radius. Then Corollary 1.3.21 implies that the funda-
mental group G of M is virtually free. This means that there is a finite covering p : N → M of
nonzero degree k such that the fundamental group F = π1(N) is free. Consider the classifying map
f : M → K(G, 1). We can lift the map f to obtain the following commutative diagram

N K(F, 1)

M K(G, 1).

f̄

p

f
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The corresponding commutative diagram induced in n-dimensional rational homology is

Hn(N ;Q) Hn(F ;Q)

Hn(M ;Q) Hn(G;Q).

f̄∗

p∗

f∗

Since F is a free group, its classifying space K(F, 1) is homotopy equivalent to a graph, and therefore
Hn(F ;Q) = 0. In particular f̄∗[N ] = 0. But, on the other hand, we have

(f ◦ p)∗[N ] = kf∗[M ],

which implies f∗[M ] = 0. Therefore, M is not Q-essential.

It follows from Proposition 1.3.28 and Theorem 1.3.3 that Q-essential closed 3-manifolds, and
more generally 3-manifolds containing a closed Q-essential term in their prime decomposition, do not
admit Riemannian metrics with positive scalar curvature, result that was already proved in [GL83].

Remark 1.3.29. It is not true that a closed manifold whose Riemannian universal cover has
bounded fill radius is not essential. Indeed, RPn is essential (but not Q-essential), and the fill
radius of its universal cover is clearly bounded (for any metric). More generally, the latter holds for
all lens spaces.

1.4 Simply connectedness at infinity on contractible curves and exhaustion by
compact domains with incompressible boundaries

In Section 1.3.2 we proved that Riemannian manifolds whose universal cover has at most c-linear
growth at infinity, for some c < 1, must be simply connected at infinity on contractible curves.
In this section, we derive two topological consequences of the simply connectedness at infinity on
contractible curves.

1.4.1 Localised compression of surfaces

A consequence of the Loop Theorem 1.1.12 is that a compressible surface Σ can be compressed into
an incompressible surface, see Section 1.1.4. When the ambient manifold is simply connected at
infinity on contractible curves, such a compression may be performed in a localised manner.

Proposition 1.4.1. Let M be an orientable 3-manifold. Suppose M is simply connected at infinity
on contractible curves. Let B ⊂ M be a compact subset, and consider a compact subset K ⊂ M
containing B such that

ker (π1(M −K)→ π1(M)) = ker (π1(M −K)→ π1(M −B)). (1.12)

Let Σ ⊂M −K be a compressible embedded orientable surface. Then Σ can be compressed into an
incompressible surface Σ′ ⊂ M − B so that the surface obtained at each step of the compression is
contained in M −B.

Proof. Suppose that Σ′ ⊂ M − B is the result of compressing Σ a number k of times. One can
write Σ′ as the union of Σ0 = Σ′ ∩ Σ, the part corresponding to the original surface Σ, which is
contained in M−K, and some embedded discs D±

1 , . . . , D
±
k ⊂M−B glued to Σ0 during the former

compressions.
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Σ′

γ

Di Di

γ′

Σ′

Figure 1.8: Deforming a loop.

Now, take a closed curve γ ⊂ Σ representing a nontrivial element of ker (π1(Σ
′)→ π1(M)). If

γ intersects some disc D±
i , one can homotope every arc of γ ∩ D±

i to the boundary ∂D±
i , and

push them slightly beyond, so that the resulting curve avoids D±
i ; see Figure 1.8. Repeating the

procedure for each disc, the closed curve γ can be homotoped to a closed curve γ′ lying in Σ0. Now,
since γ′ is a contractible loop contained in Σ0 ⊂M−K, the loop γ′ is already contractible in M−B
by the relation (1.12). We obtain

ker (π1(Σ
′)→ π1(M)) = ker (π1(Σ

′)→ π1(M −B)).

Now, we conclude by applying the Loop Theorem to the surface Σ′ contained in M−B, which gives
an embedded disc D ⊂ M − B such that Σ′ ∩D = ∂D is a closed curve representing a nontrivial
element in ker (π1(Σ

′)→ π1(M −B)). Thus, the result of the compression of Σ′ along D is again
contained in M −B.

1.4.2 Exhaustion by compact domains with incompressible boundaries

Using Proposition 1.4.1, we will prove that Riemannian manifolds which are simply connected at
infinity may be decomposed into compact domains along incompressible surfaces.

Proposition 1.4.2. Let M be a complete orientable Riemannian 3-manifold. Suppose that M
is simply connected at infinity on contractible curves. Then M admits an exhaustion by compact
connected domains

K1 ⊂ K2 ⊂ · · · ⊂M

with Ki ⊂ K̊i+1 and M = ∪iKi, such that ∪i∂Ki is a locally finite disjoint collection of embedded
orientable closed incompressible surfaces.

Proof. Let x ∈ M and consider the singleton K0 = {x}. Suppose we have constructed K0 ⊂
· · · ⊂ Ki, with Kj ⊂ U(Kj , 1) ⊂ Kj+1, where U(Kj , 1) is the closed 1-neighbourhood of Kj (see
equation (1.1)), such that ∂Kj is a closed incompressible surface. Take a closed metric ball B
containing U(Ki, 1). Since M is simply connected at infinity on contractible curves, there is a
compact subset K containing B such that

ker (π1(M −K)→ π1(M)) = ker (π1(M −K)→ π1(M −B)).

Now, take a metric ball B′ containing K. After approximating the distance function d(x, ·) by a
smooth function and slightly perturbing the radius of B′, we can suppose that the boundary of B′ is
an embedded orientable surface Σ. Since the surface Σ lies in M −K, we can use Proposition 1.4.1
to compress it inside M − B into an incompressible surface Σ′ (if Σ is already incompressible, we
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have Σ′ = Σ). Since B ⊂ B′ and Σ′ is homologous to Σ, the surface Σ′ encloses a compact connected
component Ki+1 containing B. The boundary ∂Ki+1 of Ki+1 lies in Σ′, and thus, is incompressible.

Finally, since Ki ⊂ U(Ki, 1) ⊂ B ⊂ Ki+1, we conclude that the compact subset Ki+1 contains
the closed metric ball B(x, i + 1). Hence, ∪iKi = M .

1.5 The Decomposition Theorem

As discussed in Section 1.3.1, using Theorem 1.3.7, Theorem A can be proven under a weaker
hypothesis on the growth at infinity of the fill radius of the universal cover, which generalises the
scalar curvature decay assumption.

Theorem 1.5.1. Let M be an orientable complete Riemannian 3-manifold, and denote by M̃ its
universal Riemannian cover. Suppose that the fill radius of M̃ has at most c-linear growth at infinity
for some c < 1

3 . Then M decomposes as a possibly infinite connected sum of spherical manifolds
and S2 × S1.

1.5.1 The proof of the Decomposition Theorem

We finally prove Theorem 1.5.1.

Proof of Theorem 1.5.1. By Proposition 1.4.2, consider an exhaustion of M by compact domains
K1 ⊂ K2 ⊂ · · · ⊂ M , whose boundaries form a locally finite collection of orientable closed con-
nected incompressible surfaces, denoted by {Σα}. Since each surface is incompressible, π1(Σα) is
a finitely generated subgroup of π1(M), which cannot have exactly one end by Theorem 1.3.18.
But since π1(Σα) is a surface group associated to a closed orientable surface, the only possibility is
that Σα is a 2-sphere.

The result of cutting M along the collection of 2-spheres {Σα} consists of the connected compo-
nents Yij of the pieces Yi = Ki −Ki−1. Consider Ŷij the result of capping the spherical boundary
components of Yij off by 3-balls. By the Kneser–Milnor Decomposition Theorem 1.1.4, each Ŷij
decomposes as a connected sum of prime closed 3-manifolds, see Section 1.1.1. Namely, there
is a finite collection of disjoint spheres

{
Σβij

}
, which can be taken inside int (Yij), such that

M − (∪αΣα ∪βij
Σβij

) consists of the disjoint union of prime manifolds with some punctures, see
Figure 1.9. Denote each of these punctured prime manifolds together with their boundary spheres
by Pijk, and the result of capping their spherical boundary components off by P̂ijk.

Now, construct a locally finite coloured graph (G, f) as follows. Consider the countable family
of manifolds F = {Ml}l∈I satisfying that each Ml is homeomorphic to exactly one P̂ijk. Clearly, F
is a subfamily of the family P of closed oriented prime 3-manifolds. The graph G has a vertex v for
each prime manifold Pijk, for which we set f(v) = l if P̂ijk is homeomorphic to Ml. The graph G
has an edge e joining a pair of vertices v, v′ for each sphere in the common boundary ∂Pv ∩ ∂Pv′ ,
where Pv and Pv′ are the prime manifolds corresponding to v and v′.

By construction, the manifold M decomposes as a (possibly infinite) connected sum over F
along the locally finite coloured graph (G, f), see Section 1.1.3. By Theorem 1.1.3, each closed
prime 3-manifold in F is either spherical, aspherical or homeomorphic to S2 × S1. By Corollary
1.3.23, the family F cannot contain aspherical 3-manifolds. Therefore, M is homeomorphic to
a (possibly infinite) connected sum of spherical manifolds and S2 × S1 modelled on the coloured
graph (G, f).
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x

K1

Ŷ1

K2

K3

Σα

Σβ

K4

Ŷ2

Ŷ3,2

Ŷ3,1
Ŷ4

P̂1 P̂2

P̂3,2

P̂3,1
P̂4,1 P̂4,2

G

Figure 1.9: Prime decomposition of M along the locally finite graph G.

1.5.2 An indecomposable 3-manifold of positive scalar curvature with quadratic decay

As observed in [Gro23, Section 3.10.2], the manifold R2× S1 admits a complete Riemannian metric
of positive scalar curvature with a C-quadratic decay for a constant C < 64π2. Since it does not
decompose as a connected sum of spherical manifolds and S2 × S1, this shows the optimality of the
decay rate in Theorem A.

Proposition 1.5.2 ([Gro23, Section 3.10.2]). The manifold R2×S1 admits a complete Riemannian
metric of positive scalar curvature with 1

2 -quadratic decay at infinity.

Proof. Take polar coordinates (r, θ) on the first factor R2, and consider the rotationally invariant
product metric

g = dr2 + f(r)2dθ2 + dt2.

By definition of the scalar curvature, the scalar curvature of g is twice the Gauss curvature of
(R2, dr2 + f(r)2dθ2). Since the metric is rotationally invariant, its scalar curvature is given by (see
[GHL04, 3.50, p.147], for instance)

scal = −2
f ′′

f
.
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Now, consider the function

f(r) =


sin (r) if r ∈ [0, π4 ]

φ(r) if r ∈ (π4 , 2)
√
r if r ∈ [2,+∞)

where φ is a concave smooth interpolation between sin (r) and
√
r. For this particular function, the

scalar curvature is

scal =


2 if r ∈ [0, π4 ]

−2 φ′′

φ if r ∈ (π4 , 2)
1
2

1
r2

if r ∈ [2,+∞)

In particular, the scalar curvature is positive with exactly quadratic decay at infinity.

Proposition 1.5.3. The manifold R2 × S1 does not decompose as a connected sum of spherical
manifolds and S2 × S1.

Proof. Suppose that R2 × S1 is homeomorphic to a connected sum M modelled on a locally finite
graph G of closed prime manifolds Pi, each of them homeomorphic to some spherical manifold or
to S2 × S1. Then, Lemma 1.1.5 implies

π1(M) ≃ ∗i π1(Pi) ∗ π1(G).

We can always add S2 × S1 summands to the connected sum to turn G into a locally finite tree.
Hence, π1(M) ≃ ∗iπ1(Pi). However, π1(R2 × S1) ≃ Z is torsion free, so, after permuting the
summands in the connected sum, one can assume that P1 ≃ S2 × S1 and Pi ≃ S3 for i ≥ 2.
Notice that, since R2 × S1 has one end, the tree G must have one end as well. So, after removing
some S3 terms, the tree G can be assumed to be homeomorphic to a half-line. Since an infinite
connected sum of 3-spheres modelled on a half-line graph is homeomorphic to R3, the manifold M
is homeomorphic to (S2×S1)#R3, which is homotopically equivalent to the wedge sum S2∨S1. We
obtain a contradiction with π2(R2 × S1) = 0.

Remark 1.5.4. In fact, the product R2×S1 is a prime (non-compact) 3-manifold, since it satisfies
π2(R2 × S1) = 0.

As for the optimal value of the decay constant C under which the conclusion of Theorem A holds,
Propositions 1.5.2 and 1.5.3 show that we cannot hope for more than C > 1

2 (while Theorem A
holds for C > 64π2). More generally, Gromov conjectured the following [Gro23, Section 3.6.1].

Conjecture 1.5.5 (Critical Rate of Decay Conjecture [Gro23]). There exists a dimensional con-
stant Cn > 0 such that the following holds. Let M be an orientable n-manifold that admits a
complete Riemannian metric of positive scalar curvature.

1. For every C < Cn, there exists a complete Riemannian metric on M of positive scalar curva-
ture with at most C-quadratic decay at infinity.

2. If M admits a complete Riemannian metric with positive scalar curvature with C-quadratic
decay at infinity for C > Cn, then M admits a complete Riemannian metric with uniformly
positive scalar curvature.
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1.6 The Surgery Theorem

In this section, we prove that a complete Riemannian manifold of positive scalar curvature with at
most C-quadratic decay at infinity for some C > 64π2 admits a complete Riemannian metric with
uniformly positive scalar curvature, see Corollary B. This rigidity result addresses the case (2) of
Conjecture 1.5.5.

By Theorem A, Corollary B follows from the following result.

Theorem 1.6.1. Let M be an orientable complete Riemannian 3-manifold which decomposes as
a possibly infinite connected sum of spherical manifolds and S2 × S1. Then M admits a complete
Riemannian metric of uniformly positive scalar curvature.

The proof of Theorem 1.6.1 is based on the following local construction, which provides a control
on the lower bound of the scalar curvature. This construction is key to the proof of Gromov–
Lawson’s Surgery Theorem [GL80b, Theorem A], which states that the connected sum of two
closed 3-manifolds of positive scalar curvature admits a metric of positive scalar curvature, compare
[Gro23, Section 1.3].

Theorem 1.6.2 ([GL80b]). Let (M, g) be a complete Riemannian 3-manifold with uniformly posi-
tive scalar curvature scal ≥ s > 0. Fix x ∈M . Let R ≤ min

{
1
2 injM (x), 1

}
, where injM (x) denotes

the injectivity radius of M at x. Let α ∈ (0, 1) be a constant. Then there exist a radius r ∈ (0, R)
and a Riemannian metric g′ on the punctured ball B(x,R)−{x} satisfying the following properties:

1. the new Riemannian metric g′ coincides with g on ∂B(x,R);

2. the punctured ball (B(x, r)−{x} , g′) is isometric to the standard Riemannian cylinder S2(r)×
R;

3. the scalar curvature of g′ satisfies scalg′ ≥ αs > 0.

Let us prove Theorem 1.6.1.

Proof of Theorem 1.6.1. Let (G, f) be a locally finite coloured graph such that M decomposes as
a connected sum of spherical manifolds and S2 × S1 along (G, f). For each vertex v of G, endow
the corresponding manifold Mf(v) with a metric of scal ≥ s > 0. For every edge e joining two
vertices v+ and v− of G, let (x+e , x

−
e ) be a pair of points such that x±e ∈ Mf(v±). For every edge e

of G, let Re > 0 be a radius satisfying the following two conditions:

1. Re ≤ min
{

1
2 injMf(v+)

(x+e ), 12 injMf(v−)
(x−e ), 1

}
,

2. the balls B(x±e , Re) are pairwise disjoint.

Now, fix α ∈ (0, 1). For each edge e of G, let re ∈ (0, Re) and (g±e )′ be the radius and the Riemannian
metric on B(x±e , Re) given by Theorem 1.6.2. For each edge e, glue (B(x+e , Re)− B(x+e , re), (g

+
e )′)

with (B(x−e , Re)−B(x−e , re), (g
−
e )′) by identifying their inner boundaries, both of which are isometric

to the round sphere S2(re) of radius re. The resulting Riemannian manifold (M ′, g′) is homeomorphic
to M by construction, and by Theorem 1.6.2, the Riemannian metric g′ has uniformly positive scalar
curvature scalg′ ≥ αs > 0.

Remark 1.6.3. The same strategy was used in [BBMC21], where the authors proved that an ori-
entable 3-manifold admits a complete Riemannian metric of positive scalar curvature and bounded
geometry if and only if the manifold decomposes as a possibly infinite connected sum of spherical
3-manifolds and S2 × S1 with finitely many summands up to homeomorphism.
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Another consequence of Theorems 1.6.1 and 1.6.2 is the following.

Corollary 1.6.4. Let M be a complete Riemannian 3-manifold with (uniformly) positive scalar
curvature and let x ∈ M be a point. Then the punctured manifold M − {x} admits a complete
Riemannian metric with (uniformly) positive scalar curvature.

Proof. The punctured manifold M − {x} is homeomorphic to the connected sum M#R3. Notice
that R3 decomposes as an infinite connected sum of 3-spheres S3 along the halfline [0,∞) with
vertices at the integer points. Hence, by Theorem 1.6.1, the space R3 can be endowed with a
metric of uniformly positive scalar curvature. If M has (uniformly) positive scalar curvature, using
Theorem 1.6.2 as in the proof of Theorem 1.6.1, one can construct a metric of (uniformly) positive
scalar curvature on M#R3 ≃M − {x}.
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Chapter 2

Systolic geometry and positive
macroscopic scalar curvature

In this chapter we will explore the systolic geometry of manifolds subject to lower bounds on their
macroscopic scalar curvature, with the aim of generalising Bray–Brendle–Neves’ Systolic Inequal-
ity 2.2.3 to the macroscopic setting. The main result proven in this chapter is Theorem D, which
states that a complete Riemannian n-manifold with non-trivial codimension 1 homology (with
Z2-coefficients or Z-coefficients) and with positive macroscopic scalar curvature large enough must
contain a non-nullhomologous hypersurface of small Urysohn (n−2)-width. Besides, we will present
the details of the proofs of Propositions C and E.

We will begin this second chapter by introducing the notion of macroscopic scalar curvature
Section 2.1 and discussing its main properties. In Section 2.2, we provide a brief overview of
systolic geometry and prove Proposition C. The rigorous definition of the Urysohn width will be
presented in Section 2.3, where we will also discuss its relation to other metric invariants and
scalar curvature. Section 2.4 is dedicated to the Coarea Formula, while in Section 2.5 we present a
macroscopic analogue of Schoen–Yau’s Stability Inequality (4), both of which are central ingredients
to the proof of Theorem D. In Section 2.6 we prove Theorem D. Finally, in Section 2.7 we give an
explicit construction showing Proposition E.

2.1 Macroscopic scalar curvature

It is a classical fact that the scalar curvature of a Riemannian n-manifold M can be defined in terms
of volumes of small geodesic balls [GHL04, Theorem 3.98]. More precisely, the volume of a geodesic
ball B(x, r) centered at a point x ∈M obeys the expansion:

|B(x, r)| = bnr
n

(
1− scal(x)

6(n + 2)
r2 + O(r3)

)
, (2.1)

for r > 0 small enough. Recall that bn denotes the volume of the Euclidean n-dimensional unit ball.

As Gromov pointed out in his Four Lectures [Gro23], despite its more geometrical flavour, the
definition of the scalar curvature in terms of the volume of infinitesimal balls is of little practical
use. This is due to the fact that the estimate in equation (2.1) is of infinitesimal nature, and does
not provide any estimate on the volume of a ball of fixed radius R > 0.

In order to illustrate this phenomenon, it is enlightening to compare estimates arising from a
lower bound on the scalar curvature with analogue estimates coming from lower bounds on the
Ricci curvature. Let M be a Riemannian n-manifold. Denote by V n

s (R) the volume of any ball
of radius R in the simply connected n-dimensional space form of constant scalar curvature s. By
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equation (2.1), if the scalar curvature of M satisfies scal > s for some s ∈ R, then for every x ∈M
there is a small radius r > 0 (depending on x) such that

|B(x, r)| ≤ V n
s (r). (2.2)

On the other hand, it is well-known that a lower bound Ric > s/n, with s ∈ R, implies by the
Bishop-Gromov Inequality [Bis63, Gro07] (see also [Ber03, Theorem 107]) that for any point x ∈M
and any radius R > 0 one has

|B(x,R)| ≤ V n
s (R).

Hence, a lower bound on the Ricci curvature gives a global estimate on the volume of balls, holding
at any scale, which can be effectively used to study the geometry and the topology of M . In
comparison, the volume estimate arising from a lower bound on the scalar curvature is infinitesimal,
and therefore it is extremely difficult, if not impossible, to get global information from it.

Motivated by the estimate in equation (2.2), Guth [Gut10a] introduced a macroscopic version of
scalar curvature, known as the macroscopic scalar curvature, which is defined through the volume
of geodesic balls of a fixed radius.

Before giving the definition of the notion of macroscopic scalar curvature, let us fix some notation.
Let Mn

σ denote the simply connected n-dimensional space form of constant sectional curvature σ.
By the Killing–Hopf Theorem [GHL04, Theorem 3.82], if σ > 0, σ = 0 or σ < 0 then Mn

σ is, up to
rescaling of the metric, isometric to the round n-sphere, the Euclidean n-space or the hyperbolic
n-space, respectively. The space form Mn

σ has constant scalar curvature equal to s = n(n − 1)σ.
Define the radius ρ of Mn

σ to be ρ = 1/
√
|σ|. Recall that V n

s (R) denotes the volume of any ball of
radius R in the space form Mn

σ of constant sectional curvature σ = s/n(n− 1). We will denote by

bn =
πn/2

Γ(n2 + 1)

the n-dimensional volume of the unit ball of Rn, where Γ denotes the Gamma function, and by
wn = (n + 1)bn+1 the n-dimensional volume of the unit n-sphere.

The quantity V n
s (R) can be expressed explicitely in terms of s ∈ R, the radius R > 0 and the

dimension n.

Lemma 2.1.1 ([GHL04, Section 3.H.3]). Let s ∈ R and R > 0. Then,

V n
s (R) =



wn−1

∫ R

0

(
sin (
√
σt)√

σ

)n−1

dt, if s > 0 and R < πρ

wnρ
n, if s > 0 and R ≥ πρ

bnR
n, if s = 0

wn−1

∫ R

0

(
sinh (

√
−σt)√
−σ

)n−1

dt, if s < 0

.

From the explicit form of Lemma 2.1.1, we obtain the following corollary.

Corollary 2.1.2. The function V n
s (R) satisfies the following properties.

1. Let R > 0 and s ∈ R. Then, for any λ > 0,

V n
s

(
R

λ

)
=

1

λn
V n
s/λ2(R).

In particular, V n
s (R) = V n

sR2(1)Rn.
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2. At every fixed scale R > 0, s 7→ V n
s (R) is a strictly decreasing function (see Figure 2.1), which

verifies

lim
s→−∞

V n
s (R) = +∞ and lim

s→+∞
V n
s (R) = 0.

100 50 50 100
s

2

4

6

8

10

Vs(R)/bn

Figure 2.1: The function s 7→ V n
s (R)/bn for n = 3 and R = 0.1, 0.2, . . . , 2.5.

Let us now define the notion of macroscopic scalar curvature, following [Gut10a].

Definition 2.1.3. The macroscopic scalar curvature mscal(x,R) of a Riemannian n-manifold M
at a point x ∈M and scale R > 0 is the unique s ∈ R such that∣∣BM̃ (x̃, R)

∣∣ = V n
s (R),

where x̃ is a lift of x to the Riemannian universal cover M̃ of M . Equivalently, the macroscopic
scalar curvature at a point x ∈M satisfies mscal(x,R) ≥ s if and only if∣∣BM̃ (x̃, R)

∣∣ ≤ V n
s (R). (2.3)

By Corollary 2.1.2 (2), the macroscopic scalar curvature is well defined. The macroscopic scalar
curvature satisfies the following properties.

Proposition 2.1.4. Let (M, g) be a Riemannian n-manifold. Fix a point x ∈M and a scale R > 0.

1. For any λ > 0, mscalλ2g(x,R) =
1

λ2
mscalg(x, Rλ ).

2. If M is a Riemannian-flat manifold, then mscal(x,R) = 0 at any scale R > 0.

3. lim
R→0

mscal(x,R) = scal(x).

Notice that, taking the infinitesimal limit, one recovers the classical scalar curvature. In the
asymptotic limit, the macroscopic scalar curvature is related with another Riemannian invariant,
the volume entropy [Man79].
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In [Gut10a], Guth conjectured macroscopic versions of some deep results and open questions
involving scalar curvature. For instance, Guth conjectured the Macroscopic Geroch Conjecture,
stating that the n-torus Tn does not admit any Riemannian metric such that mscal(x,R) > 0 at
any point x ∈ Tn and any scale R > 0. Guth also asked about a macroscopic version of Schoen’s
Conjecture [Sch89], which was later addressed in [Gut11, Kar15, BK19, Sab22].

Guth’s macroscopic approach to the study of scalar curvature consequently gave rise to a series of
works involving the macroscopic scalar curvature [Gut10b, AF17, BS21, Alp22, Sab22, ABG24]. In
fact, some of these papers explore variations of the notion of macroscopic scalar curvature originally
introduced by Guth and presented in Definition 2.1.3. For instance, in [ABG24] the authors work
with a condition of positive macroscopic scalar curvature defined through condition 2.3 along with
an additional acyclicity hypothesis, resembling the bounded fill radius condition of Theorem 1.3.3
presented in Chapter 1.

2.2 Systolic geometry

Let M be a non-simply connected Riemannian manifold. The systole of M is the length of the
shortest non-contractible closed curve on M . Since it is defined in terms of closed curves representing
non-trivial elements of π1(M), we will denote the systole of M by sysπ1(M). The origins of
systolic geometry date back to 1949, when Loewner (unpublished, see [Pu52]) proved that, for any
Riemannian metric g on the 2-torus T2, the systole of (T2, g) satisfies

sysπ1(T2, g)2 ≤ 2√
3

area (T2, g), (2.4)

where area (T2, g) denotes the area of (T2, g). Inequality (2.4) was the first example of a systolic
inequality. A closed n-manifold M satisfies a systolic inequality if there exists a constant C > 0
such that for any Riemannian metric g on M , the systole of (M, g) satisfies

sysπ1(M, g)n ≤ C vol(M, g).

Notice that the constant C may depend on the manifold M , but should be independent of the
Riemannian metric g. If for a given manifold M , such a constant does not exist, we say that M
exhibits systolic freedom.

Loewner’s Systolic Inequality (2.4) was followed by the corresponding systolic inequalities for
other surfaces [Pu52, Bla61, Bav86, Heb82, BZ88, Gro83]. Gromov [Gro83] was the first to ad-
dress the case of manifolds of higher dimension, and he proved the existence of non-trivial systolic
inequalities for essential manifolds. Later, Babenko [Bab00] showed that essential manifolds are
precisely those manifolds who admit non-trivial systolic inequalities.

Another possible generalisation of Loewner’s Systolic Inequality (2.4) consists in considering
higher dimensional analogues of the systole sysπ1(M). The higher dimensional systoles were first
considered by Berger [Ber72].

Definition 2.2.1. Let M be a Riemannian n-manifold with πk(M) ̸= 0 for some k ∈ {1, . . . , n− 1}.
The homotopical k-systole of M is defined as

sysπk(M) := inf {|Σ| | Σ ⊂M immersed k-sphere such that [Σ] ̸= 0 ∈ πk(M)} ,

where |Σ| denotes the k-dimensional volume of the k-sphere Σ.

One can also consider the homological analogue of the notion of systole.
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Definition 2.2.2. Let M be a Riemannian n-manifold with Hk(M ;Z) ̸= 0 for some k ∈ {1, . . . , n− 1}.
The homological k-systole of M is defined as

sysHk(M) := inf {|Σ| | Σ ⊂M immersed k-submanifold such that [Σ] ̸= 0 ∈ Hk(M ;Z)} ,

where |Σ| denotes the k-dimensional volume of the submanifold Σ in M .

In higher dimensions, one would be interested in determining whether a given n-manifold M
satisfies an intersystolic inequality, that is, if a certain product of k-systoles, for k ∈ {1, . . . , n− 1},
admits an upper bound in terms of a power of the volume, for any Riemannian metric g on M .
Unfortunately, a large number of examples of manifolds have been proven to exhibit intersystolic
freedom, see [Ber93, Gro96] for a discussion on the different results on intersystolic inequalities.

One way of overcoming intersystolic freedom is to consider smaller classes of Riemannian met-
rics. For instance, one could consider Riemannian metrics with a lower bound on some curvature.
Regarding lower bounds on the scalar curvature, Bray–Brendle–Neves proved the following result.

Theorem 2.2.3 (Bray–Brendle–Neves’ Isosystolic Inequality [BBN10]). Let M be a closed Rie-
mannian 3-manifold with π2(M) ̸= 0. Suppose that scal ≥ s > 0. Then

sysπ2(M) ≤ 8π

s
.

Moreoever, equality holds if and only if the Riemannian universal cover of M is isometric to the
standard Riemannian cylinder S2(1)× R.

We refer the reader to the Introduction for an overview on recent results and generalisations
related to Theorem 2.2.3.

We are interested in obtaining analogous estimates on systolic quantities arising from a positive
lower bound on the macroscopic scalar curvature. As stated in Proposition C, lower bounds on the
macroscopic scalar curvature do not necessarily imply an upper bound on the intermediate systoles.
Proposition C follows from the following proposition after appropriately rescaling the Riemannian
metric.

Proposition 2.2.4. Let n ≥ 3 and k ∈ {2, . . . , n− 1}. For every s > 0, there is a family of product
metrics (gε)ε∈(0,1) on Sk × Sn−k such that the following holds.

1. For any point x ∈ Sk × Sn−k and any scale R > 0, one has

lim
ε→0

mscalgε(x,R) =∞.

2. The homotopical and the homological k-systoles verify

sysπk(Sk × Sn−k, gε) = sysHk(Sk × Sn−k, gε) = wk

for every ε ∈ (0, 1), where wk is the k-dimensional volume of the round k-sphere.

Proof. Given 0 < ε ≤ a, consider the prolate k-dimensional hyperellipsoid given by

Ek(ε, a) =

{
x21
ε2

+ · · ·+
x2k
ε2

+
x2k+1

a2
= 1

}
⊂ Rk+1.

For every 0 < ε ≤ 1, let a(ε) ≥ 1 be the unique real number such that∣∣∣Ek(ε, a(ε))
∣∣∣ = wk.
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Consider the product Riemannian manifold (M, gε) = Ek(ε, a(ε))×Sn−k(1), which is diffeomorphic
to Sk×Sn−k. The Riemannian universal cover (M̃, g̃ε) of (M, gε) is given by the Riemannian product
of Ek(ε, a(ε)) with the Riemannian universal cover S̃n−k(1) of Sn−k(1). Notice that S̃n−k(1) is
isometric to the round (n− k)-sphere if 1 ≤ k ≤ n− 2, and the standard real line for k = n− 1.

Now fix a point x ∈ Sk × Sn−k and a scale R > 0. Consider the metric ball B(M̃,g̃ε)
(x̃, R) of

radius R centered at a lift x̃ of x to M̃ . Since (M̃, g̃ε) is a Riemannian product, the ball B(M̃,g̃ε)
(x̃, R)

is contained in the product of metric balls

BEk(ε,a(ε))(x̃1, R)×BS̃n−k(1)(x̃2, R),

where x̃1 and x̃2 denote the projections of x̃ to the corresponding factors. It is easy to show that∣∣∣BEk(ε,a(ε))(x̃1, R)
∣∣∣ ≤ 2wk−1Rεk−1.

Besides, the quantity
∣∣∣BS̃n−k(1)(x̃2, R)

∣∣∣ coincides with the volume V n−k
(n−k)(n−k−1)(R) of any ball of

radius R in the unit round (n−k)-sphere, which has scalar curvature (n−k)(n−k− 1). Therefore,∣∣∣B(M̃,g̃ε)
(x̃, R)

∣∣∣ ≤ 2wk−1V
n−k
(n−k)(n−k−1)(R)Rεk−1.

Hence, if one takes ε→ 0 for a fixed scale R > 0, then mscal(M,gε)(x,R)→∞ uniformly in x ∈M .
Nonetheless, for any 0 < ε ≤ 1, the k-systoles of (M, gε) are given by

sysπk(M, gε) = sysHk(M, gε) =
∣∣∣Ek(ε, a(ε))

∣∣∣ = wk.

2.3 Urysohn width

The notion of Urysohn width was introduced by Urysohn in the 1920s in the context of dimension
theory [Ury25]. Yet, it was not until 1983 that Gromov started using Urysohn width in a geometric
setting in his works on systolic geometry [Gro83, Gro86, Gro88]. Intuitively, the k-dimensional
Urysohn width of a metric space X quantifies how well X can be approximated by a k-dimensional
simplicial complex.

Definition 2.3.1. Let X be a metric space and k ∈ N. The k-dimensional Urysohn width UWk(X)
of X is defined as the infimal positive real number w > 0 such that there exists a continuous
map p : X → Y into a k-dimensional simplicial complex Y whose fibres satisfy

diamX(p−1(y)) ≤ w

for every y ∈ Y .

Notice that, after modifying the projection map p : X → Y , one can always assume that the
fibre p−1(y) is connected, for any y ∈ Y . From Definition 2.3.1 it follows directly that UW0(X) =
diam(X). The Urysohn width satisfies the following monotonicity properties.

Proposition 2.3.2. Let X be a metric space. The following properties hold.

1. Let f : X → X ′ be a distance non-decreasing map. Then UWk(X) ≤ UWk(X ′) for all k ∈ N.
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2. UW0(X) ≥ UW1(X) ≥ UW2(X) ≥ . . .

The original definition of Urysohn width was formulated in terms of open covers. Let {Ui}i
be an open cover of a metric space X. The open cover {Ui}i has multiplicity at most m if every
point x ∈ X lies in at most m different open sets Ui of the cover.

Proposition 2.3.3. Let X be a metric space and k ∈ N. Then UWk(X) ≤ w if and only if there
is an open cover {Ui} of X of multiplicity at most k + 1 such that diamX(Ui) ≤ w for every i.

See [Gut17, Lemma 0.8] for a proof of Proposition 2.3.3. The following classical theorem from
dimension theory has deep implications, since it can be used together with Proposition 2.3.3 in
order to derive Urysohn width estimates.

Theorem 2.3.4 (Lebesgue Covering Theorem [Leb11]). Let [0, 1]n be the Euclidean unit cube.
Suppose that {Ui} is an open cover of multiplicity at most n. Then there is an open set Ui of the
cover which contains points of two opposite faces.

The Lebesgue Covering Theorem 2.3.4 was first stated by Lebesgue [Leb11] and proven later by
Brouwer [Bro13]. For a proof of 2.3.4, see [HW41, Theorem IV.2]. The Lebesgue Covering Theorem
2.3.4, together with other similar theorems from dimension theory, may be used to derive precise
estimates for the codimension 1 Urysohn width of some metric spaces.

Proposition 2.3.5. The following properties hold true.

1. Let [0, 1]n denote the Euclidean unit n-cube. Then UWn−1([0, 1]n) = 1.

2. Let ∆n denote the Euclidean regular unit n-simplex. Then UWn−1(∆
n) = 1

n .

3. Let Bn denote the Euclidean unit n-ball. Then UWn−1(Bn) =
√

2n+2
n .

More precisely, the Lebesgue Covering Theorem 2.3.4 implies Proposition 2.3.5 (1), and Propo-
sition 2.3.5 (2) and (3) follow from the Knaster–Kuratowski—Mazurkiewicz Theorem [KKM29].

Suppose now that the metric space X arises from the distance structure induced by a Riemannian
metric on a n-manifold M . Then the decreasing sequence in Proposition 2.3.2 (2) ends at the
dimension of the manifold. Moreover, by the Lebesgue Covering Theorem and Proposition 2.3.2 (1),
the first non-zero Urysohn width of a manifold occurs at codimension 1.

Corollary 2.3.6. Let M be a Riemannian n-manifold. Then UWn(M) = 0 and UWn−1(M) > 0.

The explicit values of the Urysohn widths of the round n-sphere up to half its dimension are
also known, and they coincide with its diameter.

Theorem 2.3.7 ([Šče74]). Let Sn(1) denote the unit round n-sphere. Then

· UWk(Sn(1)) = π, if k ≤ n
2 , and

· UWk(Sn(1)) < π, if k > n
2 .

In fact, Theorem 2.3.7 holds also for the n-sphere Sn endowed with the extrinsic metric inherited
from its inclusion in the Euclidean space Rn+1.
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2.3.1 Urysohn width and other metric invariants

The Urysohn widths of a manifold, and specially the codimension 1 Urysohn width, are related
to other important metric invariants. For instance, Guth [Gut17] derived an estimate for the
codimension 1 Urysohn width of a Riemannian manifold from a control on the volume of geodesic
balls in M .

Theorem 2.3.8 ([Gut17, Theorem 0.1]). There is a dimensional constant cn > 0 such that the
following holds. Let M be a complete Riemannian n-manifold. Suppose that there is a radius
R > 0 such that, for every x ∈ M , the closed geodesic ball B(x,R) centered a x has volume
|B(x,R)| ≤ cnR

n. Then

UWn−1(M) ≤ R.

From Theorem 2.3.8 it follows that the codimension 1 Urysohn width of a Riemannian manifold
can be estimated in terms of its volume.

Corollary 2.3.9 ([Gut17, Corollary 0.3]). Let M be a closed Riemannian n-manifold. Then

UWn−1(M) ≤ c−1/n
n |M |1/n ,

where cn > 0 is the dimensional constant in Theorem 2.3.8.

A fundamental metric invariant is the filling radius, introduced by Gromov [Gro83] in its proof
of the systolic inequality. Let M be a closed Riemannian n-manifold. The Kuratowski embedding
of M is the map

f : M → L∞(M)
x 7→ d(x, ·)

from the manifold M to the space L∞(M) of bounded functions on M endowed with the supre-
mum norm. Notice that the Kuratoswki embedding is an isometry of metric spaces between M
and L∞(M).

Definition 2.3.10. Let M be a closed Riemannian n-manifold and denote by f : M → L∞(M)
the Kuratowski embedding of M . Let G = Z if M is orientable and G = Z2 otherwise. The filling
radius FillRad (M) of M is the infimal positive real number R > 0 such that

f∗[M ] = 0 ∈ Hn(U(f(M), R);G).

In other words, the filling radius of M is the smaller radius R > 0 such that the image f(M) of M
by the Kuratowski embedding bounds a (n + 1)-chain in its closed R-neighbourhood U(f(M), R)
in L∞(M). Notice that the fill radius fillrad (γ) of a closed curve γ in a manifold M introduced in
Section 1.3 is a homotopical and extrinsic version of Gromov’s filling radius for closed curves in a
manifold with boundary. Gromov proved the following estimate.

Theorem 2.3.11 ([Gro83, Appendix 1]). Let M be a closed Riemannian n-manifold. Then

FillRad (M) ≤ 1

2
UWn−1(M).

Another metric invariant which quantifying the size of manifold is the hyperspherical radius,
which was also defined by Gromov [GL83, Gro86].
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Definition 2.3.12. Let M be a closed Riemannian n-manifold. The hyperspherical radius HS(M)
of M is the supremal positive real number R > 0 such that there exists a 1-Lipschitz map of non-zero
degree

f : M → Sn(R)

from M to the round n-sphere of radius R.

The following theorem of Gromov can be used to estimate the hyperspherical radius of a mani-
fold.

Theorem 2.3.13 ([Gro88, Proposition F1]). Let X be a metric space. Suppose that X admits a
map φ : X → Sk(ρ) to the k-dimensional round sphere of radius ρ which is L-Lipschitz and not
null-homotopic. Then

UWk−1(X) >
π

2
· ρ
L
.

Corollary 2.3.14. Let M be a closed Riemannian n-manifold. Then

HS(M) ≤ π

2
UWn−1(M).

2.3.2 Urysohn width and scalar curvature

In [Gro86], Gromov conjectured that the scalar curvature and the codimension 2 Urysohn width of
a Riemannian manifold are related as follows.

Conjecture 2.3.15 ([Gro86, 2.A]). There is a dimensional constant λn > 0 such that the follow-
ing holds. Let M be a complete Riemannian n-manifold with uniformly positive scalar curvature
scal ≥ s > 0. Then UWn−2(M) ≤ λn√

s
.

The conjecture has been proven true for 3-manifolds [CL24, LM23], and some progress has been
made in the case of dimension 4 [DD22].

One could ask whether the macroscopic version of Conjecture 2.3.15 holds true. Notice that
Theorem 2.3.8 may be understood as a macroscopic generalisation of Conjecture 2.3.15 for the
codimension 1 Urysohn width. Indeed, given a point x ∈M in a complete n-Riemannian manifold M
and a scale R > 0, the condition |B(x,R)| ≤ cnR

n is equivalent to a certain lower bound on the
macroscopic scalar curvature mscal(x,R). Regarding the codimension 2 Urysohn width, Alpert–
Balitskiy–Guth [ABG24] showed one cannot control UWn−2(M) only from a lower bound of the
macroscopic scalar curvature at a certain scale. However, they showed that the macroscopic version
of Conjecture 2.3.15 holds true in dimension 3 for manifolds with finitely generated 1-homology
under an additional acyclicity condition on the geodesic balls. Alpert–Balitskiy–Guth [ABG24] also
conjectured that a lower bound on the macroscopic scalar curvature together with the acyclicity
condition imply an upper bound on the codimension 2 Urysohn width in general dimension.

2.4 The Coarea Formula

The Coarea Formula is a fundamental result in Geometric Measure Theory, established in its gen-
eral form by Federer [Fed69, Theorem 3.2.22]. It generalises Fubini’s Theorem in the context of
manifolds, and allows to decompose an integral over a manifold as an iterate integral over the level
sets of a given function. We will use the formulation given in [BZ88, Theorem 13.4.2].

Let M and N be Riemannian manifolds of dimensions m and n respectively, with m > n.
If f : M → N is a Lipschitz map between M and N , then Rademacher’s Theorem [Rad19] implies
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the differentiability of f almost everywhere in M . That is, for almost every point x ∈ M , one can
consider the differential map dxf : TxM → Tf(x)N . Fix a point x ∈M of differentiability of f , and
denote by f∗TxN the orthogonal complement of ker (dxf) in TxM . The Jacobian Jf(x) of the map f
at a point x ∈ M of differentiability of f is defined as follows. If dim (f∗TxN) = rank (dxf) = n,
then Jf(x) is defined to be the Jacobian of the restriction of the differential dxf to f∗TxN . If
dim (f∗TxN) = rank (dxf) < n, then Jf(x) = 0.

Given a Riemannian manifold M , we will denote the k-dimensional Hausdorff measure on M
by Hk

M .

Theorem 2.4.1 (Coarea Formula [BZ88, Theorem 13.4.2]). Let M and N be Riemannian manifolds
of dimensions m and n respectively, with m > n, and let f : M → N be a Lipschitz map. Given
any Lebesgue measurable subset A ⊂M , we have∫

A
Jf(x) dHm

M (x) =

∫
N
Hm−n

M

(
A ∩ f−1(y)

)
dHn

N (y).

Now let M be a Riemannian manifold and fix a point x ∈ M . The application of the Coarea
Formula 2.4.1 to the distance function d(x, ·) : M → R gives the following corollary.

Corollary 2.4.2. Let M be a Riemannian manifold. The volume of the geodesic ball B(x,R)
centered at a point x ∈M and of radius R > 0 satisfies

|B(x,R)| =
∫ R

0
|S(x, τ)| dτ.

2.5 The Macroscopic Stability Inequality

As discussed in the Introduction, Schoen–Yau [SY79a, SY79b] used the Stability Inequality (2) to
show that given a closed orientable Riemannian n-manifold M with positive scalar curvature, then
any stable minimal hypersurface Σ embedded in M inherits a metric of positive scalar curvature,
after a conformal change on the induced metric from M . In other words, by equation (2.1), if Σ
is a stable minimal hypersurface in M , then an upper bound on the volume of geodesic balls in M
of infinitesimal radius descends (up to a conformal change of the Riemannian metric of Σ) to an
upper bound on the volume of infinitesimal balls in Σ.

In [Gut10b], Guth developed a macroscopic analogue of Schoen–Yau’s descent based on the
Coarea Formula 2.4.1, called the Macroscopic Stability Inequality, relating the volume of geodesic
balls of a fixed radius in a stable minimal hypersurface to the volume of geodesic balls of a larger
radius in the ambient manifold. A crucial step in the proof of Theorem D consists in the application
of Guth’s Macroscopic Stability Inequality. Originally, the Macroscopic Stability Inequality was
developed for Z2-coefficients by Guth in [Gut10b] in order to give a shorter proof of Gromov’s
Isosystolic Inequality [Gro83] for the n-torus. Recently, the Macroscopic Stability Inequality has
been extended to Z-coefficients by Alpert in [Alp22].

In fact, the applicability of Guth’s Macroscopic Stability Inequality is not restricted to stable
minimal hypersurfaces, but also holds for hypersurfaces which are almost area-minimising in their
homology class. We start by rigorously defining the notion of almost minimising hypersurface.
Hereafter G will denote a coefficient group for homology, that will always be either Z2 or Z.

Definition 2.5.1. Let M be a complete Riemannian n-manifold with Hn−1(M ;G) ̸= 0. Let Σ
be a closed hypersurface embedded in M such that [Σ] ̸= 0 ∈ Hn−1(M ;G). The hypersurface Σ
is δ-almost minimising in its G-homology class if any embedded hypersurface Σ′ homologous to Σ
in Hn−1(M ;G) satisfies

|Σ| ≤
∣∣Σ′∣∣ + δ.
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Let us now state the Macroscopic Stability Inequality

Theorem 2.5.2 (Macroscopic Stability Inequality [Gut10b, Alp22]). Let G = Z2 or Z. Let M be a
non-simply connected complete Riemannian n-manifold such that Hn−1(M ;G) ̸= 0 and sysπ1(M) > 0.
Let Σ be a hypersurface embedded in M which is δ-almost minimising in its G-homology class. Fix
r > 0 and R > 0 such that 0 < r < R < 1

2 sysπ1(M). Then, for every x ∈ Σ,

|BΣ(x, r)| ≤ 1

R− r
|B(x,R)|+ δ.

The following lemma due to Gromov constitutes an intermediate step in the proof of the Macro-
scopic Stability Inequality 2.5.2.

Lemma 2.5.3 (Gromov’s Curve Factoring Lemma [Gro07, Proposition 5.28]). Let M be a Rie-
mannian n-manifold. Fix a point x ∈ M . Let γ be a closed curve contained in a closed geodesic
ball B(x,R) and let ε > 0. Then γ is Z-homologous to a 1-cycle

∑
i γi, where each γi is a closed

curve of length ℓ(γi) < 2t + ε.

Proof of Gromov’s Curve Factoring Lemma 2.5.3. Fix ε > 0. Let y1, . . . , yk be a finite collection
of cyclically ordered points lying in γ such that every arc σi in γ joining two consecutive points yi
and yi+1 has length ℓ(σi) < ε. For each point yi, let τi be a curve joining x with yi of length ℓ(τi) ≤ R,
see Figure 2.2.

yi σi

yi+1

τi

γ
x

B(x,R)

Figure 2.2: Scheme of the proof of Gromov’s Curve Factoring Lemma 2.5.3.

Define γi to be the 1-cycle defined by −τi+1 + σi + τi, which has length ℓ(γi) < 2R + ε. Then
γ =

∑k
i=1 γi as 1-chains. In particular, the closed curve γ and the 1-cycle

∑k
i=1 γi define the same

homology class in H1(M ;Z).

We reproduce the proofs of the Macroscopic Stability Inequality 2.5.2 by [Gut10b] and [Alp22],
giving more detail.

Proof of the Macroscopic Stability Inequality 2.5.2. Let x ∈ Σ be a point. Recall that as a conse-
quence of the Coarea Formula 2.4.1, for any radius R > 0 we have

|B(x,R)| =
∫ R

0
|S(x, τ)| dτ,
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see Corollary 2.4.2. Hence there exists a radius t ∈ (r,R) for which

|B(x,R)| ≥
∫ R

r
|S(x, τ)| dτ = (R− r) |S(x, t)| . (2.5)

Consider the closed ball B(x, t) of radius t. We shall now prove that every closed curve lying in
B(x, t) intersects Σ trivially.

Suppose that γ is a closed curve lying in B(x, t) with non-trivial intersection with Σ. Let
ε = sys (M)− 2R. By Gromov’s Curve Factoring Lemma 2.5.3, the closed curve γ is Z-homologous
to a sum

∑
i γi of closed curves γi of length ℓ(γi) < 2t + ε. Since γ intersects non-trivially the

hypersurface Σ, one curve γj in the sum
∑

i γi has non-trivial intersection with Σ. In particular,
the curve γj has to be non contractible. However,

ℓ(γj) < 2t + ε ≤ sysπ1(M),

which is a contradiction.

Consider the cycle Σ ∩ B(x, t) in B(x, t) relative to the boundary S(x, t). Notice that, since
t < 1

2 sysπ1(M), the ball B(x, t) is orientable. Otherwise the ball B(x, t) would contain a closed
curved along which the orientation of B(x, t) (and of the manifold M) is reversed. Such a curve
is non-contractible in M . Then, by Gromov’s Curve Factoring Lemma 2.5.3, there would exist a
non-contractible closed curve γi of length ℓ(γi) < sysπ1(M), which is a contradiction. Hence, by
Lefschetz’s Duality [Hat02, Theorem 3.43] and the Universal Coefficient Theorem [Hat02, Theorem
3.2], there are isomorphisms

Hn−1(B(x, t), S(x, t);Z) ≃ H1(B(x, t);Z) ≃ H1(B(x, t);Z).

Since every 1-cycle in B(x, t) intersects Σ trivially, we have

[Σ ∩B(x, t)] = 0 ∈ Hn−1(B(x, t), S(x, t);Z),

which implies that the chain Σ ∩ B(x, t) is Z-homologous to a chain
∑

imiZi in S(x, t), where
Zi ⊂ S(x, t) are connected components of S(x, t) \Σ and mi ∈ Z. We will discuss the cases G = Z2

and G = Z separately hereafter.

Let us first discuss the case G = Z2. Projecting to the chain complex with Z2-coefficients,
we obtain that the chain Σ ∩ B(x, t) is Z2-homologous to a chain

∑
i Zi. Consider the embedded

hypersurface Σ′ obtained from Σ by replacing Σ ∩ B(x, t) with ∪iZi ⊂ S(x, t) and smoothing out
the resulting cycle. Since the hypersurface Σ is Z2-homologous to Σ′, the δ-almost minimality of Σ
implies

|Σ ∩B(x, t)| ≤ |∪iZi|+ δ ≤ |S(x, t)|+ δ.

We conclude by noting that BΣ(x, r) ⊂ Σ ∩B(x, t) and using the inequality (2.5).

Finally, we address the case G = Z. For Z-coefficients, the chain Σ ∩ B(x, t) may fail to be Z-
homologous to a chain

∑
i Zi in S(x, t) consisting of a disjoint union of connected components Zi

of S(x, t) \ Σ. Still, the different connected components of Σ ∩ B(x, t) may be grouped into a
collection D1, . . . , DN−1 such that |Di| ≤ |S(x, t)|+ δ for every i ∈ {1, . . . , N − 1}.

We proceed as follows. Since every closed curve lying in B(x, t) has trivial intersection with Σ,
one can group the connected components of B(x, t) \ Σ into levels L1, . . . , LN in a way such that
every path starting at Li and ending at Lj has signed intersection number with Σ equal to j− i. For
each i ∈ {1, . . . , N}, define Si := Li∩S(x, t). Finally, group the connected components of Σ∩B(x, t)
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L1S1

S3

S4

S5

S6

S2

L2

L3

L4

L5

L6

D5

D4

D3

D2

D1

x

BΣ(x, r)

Figure 2.3: Subdivision of the ball B(x, t) into levels L1, . . . , LN separated by the dividers
D1, . . . , DN .

into dividers D1, . . . , DN−1 so that the divider Di is the common boundary between Li and Li+1

for i ∈ {1, . . . , N − 1}, see Figure 2.3. For convenience, we set D0 = Ø and DN = Ø.
For every i ∈ {1, . . . , N − 1} and every k ∈ {0, . . . , N}, consider the chain Di,k defined by

Di,k :=


Dk +

∑i
j=k+1 Sj , if k < i

Di, if k = i

Dk +
∑k

j=i+1 Sj , if k > i

.

In particular, we have Di,0 =
∑i

j=0 Sj and Di,N =
∑N

j=i+1 Sj the two connected components
of S(x, t) \ Di. Notice that, for every i ∈ {1, . . . , N − 1} and every k ∈ {0, . . . , N}, the chain Di

is Z-homologous to Di,k. For each i ∈ {1, . . . , N − 1}, let ki ∈ {0, . . . , N} be such that

|Di,ki | = min
k∈{0,...,N}

|Di,k| ,

and define D′
i := Dki . That is, for each i ∈ {1, . . . , N − 1}, the chain D′

i denotes the combina-
tion Di,k of least area. By the minimality of the Dki with respect to the combinations Di,k, one can
always assume that 0 ≤ k1 ≤ · · · ≤ kN−1 ≤ N .

Now, modify the hypersurface Σ by replacing each Di by the corresponding D′
i and perturb the

resulting hypersurface to make it embedded, see Figure 2.4.
We obtain an embedded hypersurface Σ′ which is Z-homologous to the original hypersurface Σ.

By the δ-almost minimality of Σ, we have

N−1∑
i=1

|Di| ≤
N−1∑
i=1

∣∣D′
i

∣∣ + δ. (2.6)

From the inequality (2.6) and the minimality of the D′
i, it follows that, for every i ∈ {1, . . . , N − 1},

|Di| ≤
∣∣D′

i

∣∣ + δ.
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D5

D4

D3

D2

D1

Σ

D′
5

D′
4

D′
3

D′
2

D′
1

Σ′

Figure 2.4: Modification of the surface Σ by replacing each Di by the corresponding D′
i.

The minimality of D′
i implies that |D′

i| ≤
∑i

j=0 |Sj | and |D′
i| ≤

∑N
j=i+1 |Sj |. We derive that for

every i ∈ {1, . . . , N − 1},
|Di| ≤ |S(x, t)|+ δ.

We conclude by observing that there is an i ∈ {1, . . . , N − 1} such that BΣ(x, r) ⊂ Di and using
the inequality (2.5).

2.6 The proof of Theorem D

The aim of this section is to present the proof of Theorem D.

Proof of Theorem D. Let G = Z2 or Z. Recall that M is a non-simply connected complete Rie-
mannian n-manifold with Hn−1(M ;G) ̸= 0 and sysπ1(M) > 0. Fix any non-trivial homology class
h ∈ Hn−1(M ;G). Recall that every codimension 1 homology class with coefficients either in Z2 or
in Z can be represented by a smooth closed embedded hypersurface [Tho54]. Let Σ be a δ-almost
minimising closed embedded hypersurface representing h. Fix a point x ∈ Σ and consider two radii
0 < r < R < 1

2 sysπ1(M) to be determined later. Let BΣ(x, r) be the metric ball centered at the
point x of radius r with respect to the induced metric on Σ. The Macroscopic Stability Inequal-
ity 2.5.2 together with the lower bound on the macroscopic scalar curvature of M at point x and
scale R imply

|BΣ(x, r)| ≤ 1

R− r
V n
s (R) + δ.

If, given 0 < r < R and s > 0, the inequality

1

R− r
V n
s (R) < cn−1r

n−1 (2.7)

holds, then Theorem 2.3.8 applied to the δ-almost minimising hypersurface Σ for δ > 0 small enough
implies that UWn−2(Σ) ≤ r. By Corollary 2.1.2.(1), the inequality (2.7) is equivalent to

1

(r/R)n−1
· 1

1− r/R
V n
sR2(1) < cn−1. (2.8)
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The value of the inner radius r that makes the left-hand term in the inequality (2.8) as small as
possible is r = n−1

n R. In this case, the inequality (2.8) becomes

V n
sR2(1) <

(n− 1)n−1

nn
cn−1,

which is equivalent to sR2 > κn := fn

(
(n−1)n−1

nn cn−1

)
, where fn : (0,∞)→ R is the inverse function

of the map s 7→ V n
s (1), see Corollary 2.1.2.(2).

2.7 Berger metrics on RP3

This section is dedicated to the construction of the family of Riemannian metrics (ḡs)s>0 on the
real projective space RP3 presented in Proposition E.

Throughout this section, we will identify the 3-sphere S3 with {(z, w) | |z|2 + |w|2 = 1} ⊂ C2,
and the 2-sphere S2 with {(z, t) | |z|2 + t2 = 1} ⊂ C× R. Consider the Hopf action on S3, that is,
the free action of S1 on S3 given by

θ · (z, w) = (eiθz, eiθw),

for every θ ∈ S1 = R/Z and every (z, w) ∈ S3. The quotient space S3/S1 corresponding to the Hopf
action is homeomorphic to S2, and the projection S3 → S2 defines a circle bundle structure on S3.
Let V(z,w) = (iz, iw) ∈ C2 denote the Hopf vector field, which is a unit vector field on S3 (with
respect to the round metric) tangent to the orbits of the Hopf action.

Definition 2.7.1. The Berger metric of parameter ε > 0 on S3 is the metric defined by

gε(X,Y ) = g(X,Y ) + (ε2 − 1)g(X,V )g(V, Y ),

for any pair of vectors X,Y tangent to S3, where g denotes the standard round Riemannian metric
on S3.

Intuitively, the Berger metric gε is obtained from the round metric g by shrinking the metric
in the direction of the Hopf fibres by a factor ε (so that they have length 2πε with respect to the
metric gε). The Berger metrics (gε)ε>0 define a 1-parameter family of Riemannian metrics on S3,
and the Berger metric gε corresponding to ε = 1 coincides with the standard round metric g on S3.

Lemma 2.7.2. The quotient map

H : (S3, gε) −→ S2(12)

(z, w) 7−→
(
zw̄, 12(|z|2 − |w|2)

) ,

known as the Hopf map, is a Riemannian submersion.

In fact, in more technical terms, the family of Berger metrics (gε)ε>0 corresponds to the canonical
variation of the round metric on S3 associated to the Riemannian submersion H : S3(1) → S2(12),
see [Bes87, Section 9.G].

The antipodal action of Z2 on the Berger sphere (S3, gε) is an isometric action. Hence, the real
projective space RP3 inherits a Riemannian metric from (S3, gε), that we denote by ḡε. The map H
induces a Riemannian submersion H̄ : (RP3, ḡε)→ S2(12), which defines a circle bundle on RP3. In
particular, the map H̄ is 1-Lipschitz.

Proposition E follows from Proposition 2.7.3 and Proposition 2.7.4.
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Proposition 2.7.3. Fix κ > 0. For every ε ∈ (0, 1), there is a scale Rε > 0 satisfying Rε ≥
1
2 sysπ1(RP3, ḡε) and Rε > κ/

√
sε, with sε := 6/ε2/3, such that for any point x ∈ RP3,

mscal(RP3,ḡε)(x,Rε) ≥ sε.

Proof. Fix ε ∈ (0, 1). Let κ′ > max
{
κ/
√

6, π
}

be a constant, and consider the scale Rε = κ′ 3
√
ε.

Notice that Rε > κ/
√
sε and Rε > sysπ1(RP3, ḡε) = πε. By the Coarea Formula 2.4.1 applied to

the fibration H : (S3, gε)→ S2(12) we have∣∣B(S3,gε)(x̃, Rε)
∣∣ ≤ ∣∣(S3, gε)∣∣ ≤ 2πε

∣∣S2(12)
∣∣ = 2π2ε.

Notice that the volume of the unit 3-sphere is 2π2, that is, w3 = 2π2. Therefore∣∣B(S3,gε)(x̃, Rε)
∣∣ ≤ w3ε =

∣∣S3( 3
√
ε)
∣∣ = V 3

6/ε2/3
(Rε).

The last equality holds since Rε ≥ π 3
√
ε. Therefore, the macroscopic scalar curvature of (RP3, ḡε)

at a scale Rε satisfies mscal(RP3,ḡε)(x,Rε) ≥ 6/ε2/3.

Finally we prove Proposition E (2).

Proposition 2.7.4. Let Σ be any closed immersed surface in (RP3, ḡε) representing the non-trivial
homology class in H2(RP3;Z2) ≃ Z2. Then

UW1(Σ) >
π

4
.

Proof of Proposition 2.7.4. Suppose that the inclusion map i : Σ → RP3 satisfies i∗[Σ] = [RP2],
where [Σ] ∈ H2(Σ;Z2) denotes the fundamental class of the surface Σ and [RP2] is the generator
of H2(RP3;Z2) ≃ Z2. Consider the map

φ = H̄ ◦ i : Σ→ S2(12),

given by the restriction of the map H̄ to Σ. The map φ is 1-Lipschitz, since it is the restriction of
the 1-Lipschitz map H̄ to Σ.

Let us show that φ is not null-homotopic. The Gysin sequence [Hat02, Section 4.D] applied to
the circle bundle H̄ : RP3 → S2 yields the exact sequence

· · · → H0(S2;Z2)→ H2(S2;Z2)
H̄∗
−−→ H2(RP3;Z2)→ H1(S2;Z2)→ · · · .

Since H1(S2;Z2) is trivial, the map

H̄∗ : H2(S2;Z2) ≃ Z2 → H2(RP3;Z2) ≃ Z2

is an epimorphism, and therefore an isomorphism. By the Universal Coefficient Theorem [Hat02,
Theorem 3.2], the corresponding induced map in homology

H̄∗ : H2(RP3;Z2)→ H2(S2;Z2)

is an isomorphism, and it sends the generator [RP2] to the fundamental class [S2]. Therefore

φ∗[Σ] = H̄∗[RP2] = [S2],

which implies that φ∗ : H2(Σ;Z2)→ H2(S2;Z2) is an isomorphism.

Hence the 1-Lipschitz map φ : Σ → S2(12) is not null-homotopic. By Theorem 2.3.13, we
conclude that UW1(Σ) > π

4 .
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[Bav86] Christophe Bavard. Inégalité isosystolique pour la bouteille de Klein. Math. Ann.,
274(3):439–441, 1986.

[BBEN10] Hubert Bray, Simon Brendle, Michael Eichmair, and André Neves. Area-minimizing
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topology Poznań 1989, volume 1474 of Lecture Notes in Math., pages 170–182. Springer,
Berlin, 1991.

[RS94] Jonathan Rosenberg and Stephan Stolz. Manifolds of positive scalar curvature. In
Algebraic topology and its applications, volume 27 of Math. Sci. Res. Inst. Publ., pages
241–267. Springer, New York, 1994.

[RW10] Mohan Ramachandran and Jon Wolfson. Fill radius and the fundamental group. J.
Topol. Anal., 2(1):99–107, 2010.
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Notation Index

scal scalar curvature
Ric Ricci curvature
sect sectional curvature
injM (x) injectivity radius of the manifold M at x
κΣ Gauss curvature of a surface Σ
II second fundamental form of a surface Σ in M
χ(Σ) Euler characteristic of a surface Σ
M1#M2 connected sum of M1 and M2

P family of closed oriented prime 3-manifolds

M̂ result of capping off the boundary components of a 3-
manifold M with spherical boundary

M̃ universal (Riemannian) cover of a (Riemannian) manifold
M

Sn n-dimensional sphere
S∞ infinite dimensional sphere
Tn n-dimensional torus
RPn real projective n-dimensional space
RP∞ infinite dimensional real projective space
Lp(q1, . . . , qn) (2n − 1)-dimensional lens space of parameters p and

q1, . . . , qn
Lp(qj) infinite dimensional lens space of parameters p and (qj)j∈N
Bn n-dimensional ball
Sn(r) n-dimensional round sphere of radius r
En(ε, a) n-dimensional sphere with the prolate ellipsoid metric of

axes ε ≤ a
Mn

σ simply connected n-dimensional space form of constant
scalar curvature

|Σ| k-volume of a k-dimensional submanifold Σ
bn n-dimensional volume of the unit Euclidean n-dimensional

ball
wn n-dimensional volume of the unit round n-dimensional

sphere.
V n
s (R) volume of a ball of radius R in the simply connected n-

dimensional space form of constant scalar curvature
U(Z,R) closed R-neighbourhood of the subset Z
B(x,R) closed metric ball of radius R centered at x
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S(x,R) closed metric sphere of radius R centered at x
Hk

X k-dimensional Hausdorff measure on a metric space X
mscal(x,R) macroscopic scalar curvature at the point x and scale R > 0
sysπk(M) k-dimensional homotopical systole of the manifold M
sysHk(M) k-dimensional homological systole of the manifold M
diam (X) diameter of a metric space X
diamX (Z) diameter of a subset Z in a metric space X
UWk(X) k-dimensional Urysohn width of the metric space X
HS(M) hypersphericity of the manifold M
FillRad(M) filling radius of the manifold M
fillrad (γ) fill radius of the contractible closed curve γ
fillrad (M) fill radius of the manifold M
E(X) space of ends of the connected locally finite CW-complex X
e(X) number of ends of connected locally finite CW-complex X
e(G) number of ends of the group G
Hk(X;G) k-dimensional homology group of the topological space X

with coefficients in G
Hk(X;G) k-dimensional cohomology group of the topological space X

with coefficients in G

H̃k(X;G) k-dimensional reduced cohomology group of the topological
space X with coefficients in G

Hk
c (X;G) k-dimensional cohomology group with compact support of

the topological space X with coefficients in G
Hk

e (X;G) k-dimensional cohomology of ends group with compact sup-
port of the topological space X with coefficients in G

C∞(M) space of smooth functions on the manifold M
C∞c (M) space of smooth functions with compact support on the

manifold M
(G, f) coloured graph
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