

ADVERTIMENT. L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús estableties per la següent llicència Creative Commons: <https://creativecommons.org/licenses/?lang=ca>

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: <https://creativecommons.org/licenses/?lang=es>

WARNING. The access to the contents of this doctoral thesis is limited to the acceptance of the use conditions set by the following Creative Commons license: <https://creativecommons.org/licenses/?lang=en>

Doctoral Program in Medicine - Department of Medicine

Universidad Autónoma de Barcelona

DOCTORAL THESIS

Respiratory complications following SARS-CoV-2 infection

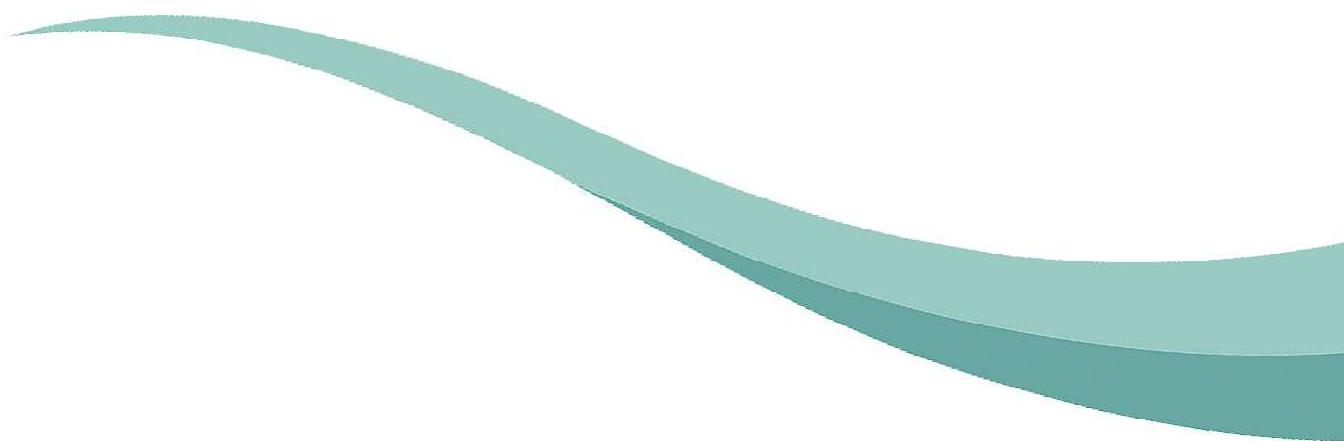
Thesis presented by **David Espejo Castellanos** for the degree
of PhD

Thesis supervisors:

María Jesús Cruz Carmona
Xavier Muñoz Gall

Thesis Tutor:

Jaume Ferrer Sancho


Barcelona, 2025

*“A lo que partió antes de tiempo
y, aunque fugaz,
sigue acompañándome en mi voluntad
de seguir construyendo”*

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

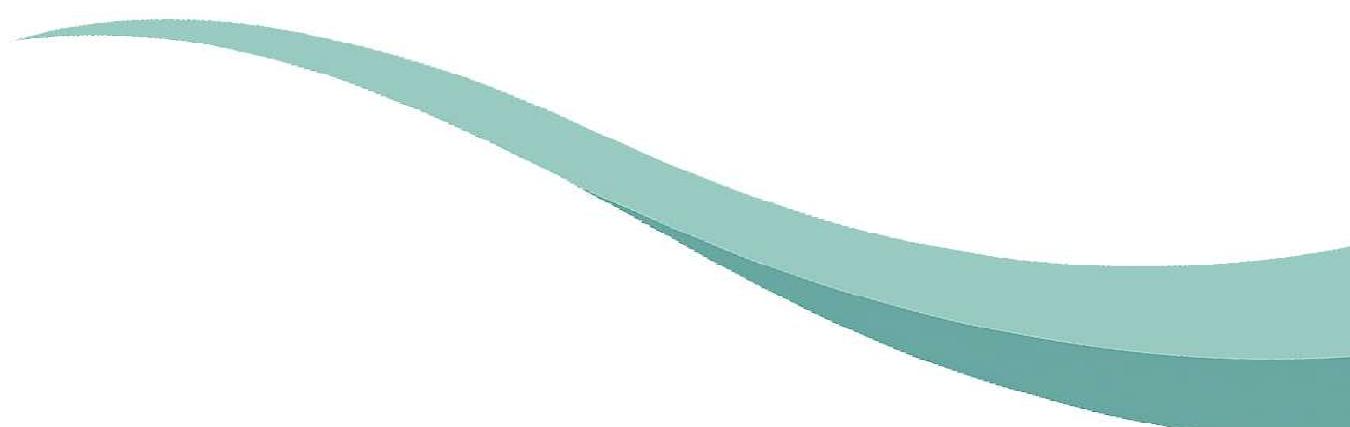
La elaboración de esta tesis doctoral representa la culminación de un objetivo tanto personal como profesional. Este logro no habría sido posible sin el apoyo de todas las personas de mi entorno que me han acompañado a lo largo de este camino y espero que sigan estando presentes en el futuro. Por ello, quiero expresar mi más sincero agradecimiento a todas aquellas personas que han sido esenciales durante este periodo.

En primer lugar, quería mencionar a mis directores de tesis por su ejemplo y compromiso que han dejado una huella en mi trayectoria personal y profesional. A María Jesús Cruz, por mostrarme la importancia de la disciplina y el rigor científico además de dirigirme de cerca y ayudarme de manera constante a crecer. Gracias por escucharme y guiarme en los momentos más difíciles, reforzando mi empeño de avanzar. A Xavier Muñoz, por su apoyo inquebrantable y su cercanía, que me han permitido sentirme respaldado en cada paso de este proceso. Gracias a su entusiasmo y pasión por el conocimiento, he aprendido a enfrentar con confianza los desafíos que se han presentado, y he descubierto mi propio potencial como investigador.

A mi tutor, Jaume Ferrer por acompañarme durante este proceso y darme su apoyo y experiencia para la realización de este trabajo.

Agradecer a mis compañeros de equipo de función pulmonar por hacer que este camino haya sido más ameno sintiéndome afortunado de tenerlos a mí lado; incluyendo a Christian, Antia y resto de integrantes del equipo incluyendo los compañeros de enfermería y secretaria. Especialmente, a Flor, por haberme ayudado a vivir esta etapa de forma más llevadera, convirtiendo cada desafío en una oportunidad de crecimiento compartido. También, a Iñigo, por tratarme con la misma dedicación que si fuera su propio doctorando, ayudándome a crecer y mejorar tanto en lo profesional como en lo personal.

ACKNOWLEDGEMENTS


A Marian, y a la unidad de ensayos clínicos, por darme un soporte incansable durante todo el proceso de realización de la tesis doctoral. A Ferran por su ayuda y disposición en la realización de este trabajo,

A todo el equipo del laboratorio de neumología por acercarme hacer mejor investigación y a conectar mejor la visión clínica con la visión de recerca básica. Añadir una especial mención, a David, por acompañarme durante todo el proyecto europeo y conseguir juntos el éxito.

A todo el equipo SE-COVID y al resto del servicio de Neumología, por su admirable labor atendiendo a los pacientes con COVID-19 en el momento más crítico de la pandemia, ayudando a un gran número de personas cuando más se necesitaba. Además, de una especial mención a todos los compañeros que me acompañaron durante la residencia, especialmente Marta A., Almudena, Galo, Eduardo, José y Marta Z. con quienes he compartido no solo trabajo, sino también una valiosa amistad.

Finalmente, quería dar las gracias a toda mi familia que han sido indispensables y me han acompañado durante todo este proceso. A mis padres, por su apoyo incondicional y su fe en mis capacidades. Ellos me han ayudado a perseguir mis sueños y enseñarme el valor de la constancia, la humildad y la perseverancia. A Mónica, mi compañera de viaje y un pilar fundamental, que me ayuda a perseguir mis metas con determinación. A mi pequeño Arnau, cuya curiosidad y alegría me iluminan cada día inspirándome a avanzar con ilusión en cada paso. A mi abuela María, a mi hermana Grisel·la y a mi tía Sandra, por creer en mí y apoyarme durante todo el proceso.

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

6MWT - 6-minute walk test

95% CI - 95% confidence interval

ACE2 - Angiotensin-converting enzyme 2

AEs - Adverse events

ARDS - Acute respiratory distress syndrome

AW - Prevalence of airway

BAL - Bronchoalveolar lavage

BMI - Body Mass Index

CO - Carbon monoxide

COP - Cryptogenic organizing pneumonia

COPD - Chronic obstructive pulmonary disease

COVID-19 - Coronavirus 2019

CRP - C-reactive protein

CT - Computed tomography

DLCO - Diffusing capacity of the lung for carbon monoxide

DPP9 - Dipeptidyl peptidase 9

ECMO - Extracorporeal membrane oxygenation

eCRF - Electronic case report form

FEV1 - Forced expiratory volume in 1 second

FVC - Forced vital capacity

GINA - Global Initiative for Asthma

GLI - Global Lung Function Initiative

HFNC - High-flow nasal cannula

HIV - Human immunodeficiency virus

HRCT - Chest high-resolution computed tomography

HRQoL - Health-related quality of life

ICU - Intensive care unit

IgE - Immunoglobulin E

IL - Interleukin

ILD - Interstitial lung diseases

IMV - Invasive mechanical ventilation

IPF - Idiopathic pulmonary fibrosis

LIST OF ABBREVIATIONS

IQR - Interquartile range

JAK - Janus Kinase

LDH - Lactate dehydrogenase

MAR - Missing at random

MERS-CoV - Middle East Respiratory Syndrome Coronavirus

mFAS - Modified full analysis set

mMRC - Modified Medical Research Council

MMRM - Mixed model for repeated measures

NIV - Non-invasive ventilation

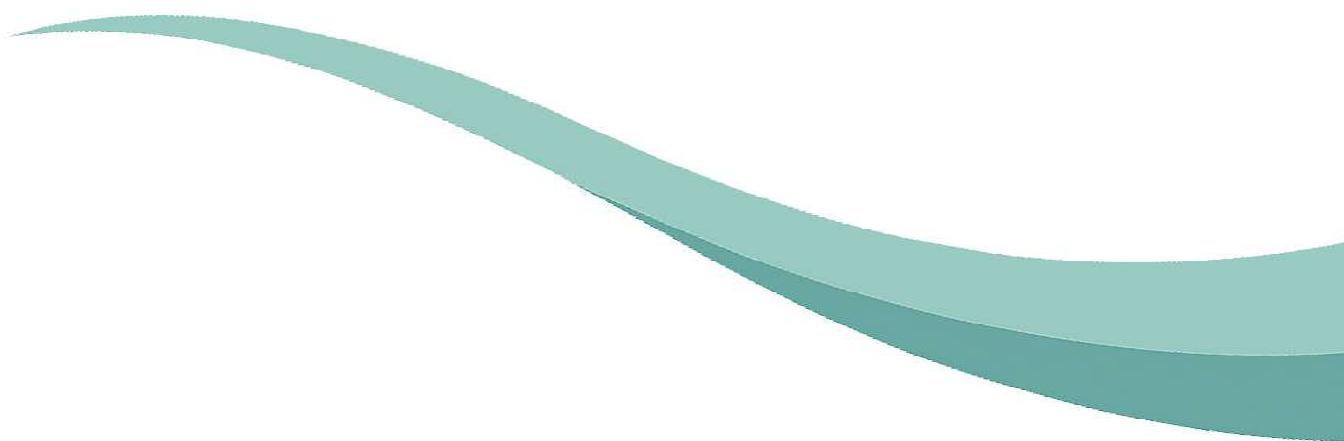
OP - Organizing pneumonia

OR - Odds ratio

OSAS - Obstructive sleep apnea syndrome

PP - Per-protocol

SARS-CoV - Severe acute respiratory syndrome Coronavirus


SARS-CoV-2 - Severe acute respiratory syndrome Coronavirus 2

SD - Standard deviation

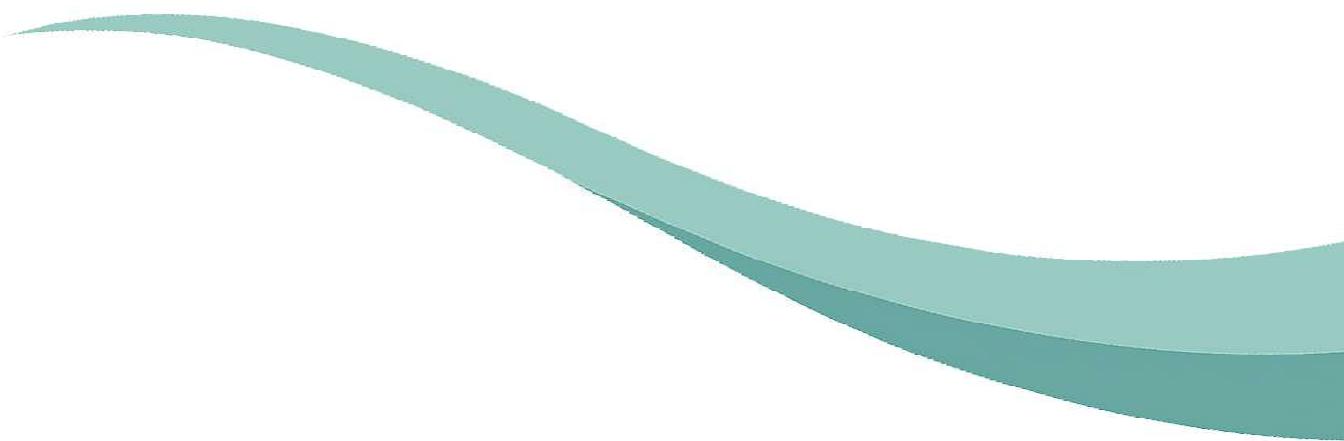
TMPRSS2 - Transmembrane serine protease 2

WHO - World Health Organization

TABLE OF CONTENTS

TABLE OF CONTENTS

SUMMARIES	19
SUMMARY	21
RESUMEN.....	23
1. INTRODUCTION.....	25
1.1. SARS-COV-2 INFECTION.....	27
1.1.1. Definition and Epidemiology	27
1.1.2. Pathogenesis.....	28
1.1.3. Clinical presentation	30
1.1.4. Treatment	31
1.2. RESPIRATORY COMORBIDITIES AND SARS-COV-2 INFECTION	32
1.2.1. Chronic obstructive pulmonary disease	33
1.2.2. Interstitial lung diseases.....	33
1.2.3. Obstructive sleep apnea syndrome.....	33
1.2.4. Bronchiectasis and cystic fibrosis	33
1.2.5. Asthma	34
1.3. RESPIRATORY COMPLICATIONS AFTER SARS-COV-2 PNEUMONIA	36
1.3.1. Parenchymal respiratory complications.....	37
1.3.1.1. Organizing pneumonia	38
1.3.1.2. Permanent fibrotic sequelae.....	40
1.3.1.3. Other parenchymal complications	42
1.3.2. Respiratory complications at the airway.....	43
1.3.3. Effect of acute treatment on respiratory sequelae	44


TABLE OF CONTENTS

1.3.4. Effect of bronchial asthma on respiratory sequelae.....	44
1.4. PURPOSE OF THE DOCTORAL THESIS.....	45
2. HYPOTHESIS	47
3. OBJECTIVES.....	51
3.1. MAIN OBJECTIVE	53
3.2. SECONDARY OBJECTIVES.....	53
4. METHODS	55
4.1. PART 1: ASSESS RESPIRATORY COMPLICATIONS	57
4.2. PART 2: ORAL CORTICOSTEROID DOSING STRATEGIES FOR POST-COVID ORGANIZING PNEUMONIA (NORCOVID CLINICAL TRIAL).....	61
5. RESULTS.....	71
5.1. PART 1: ASSESS RESPIRATORY COMPLICATIONS	73
5.1.1. Impact of dexamethasone on respiratory sequelae in the follow-up of hospitalized patients with SARS-CoV-2 pneumonia	73
5.1.2. Airway sequelae in post-acute COVID-19 syndrome	83
5.1.3. Acquired tracheomalacia due to SARS-CoV-2 pneumonia.....	89
5.1.4. Respiratory sequelae in patients with bronchial asthma after SARS-CoV-2 pneumonia	91
5.2. PART 2: ORAL CORTICOSTEROID DOSING STRATEGIES FOR POST-COVID ORGANIZING PNEUMONIA (NORCOVID CLINICAL TRIAL).....	97
6. DISCUSSION.....	107
7. CONCLUSIONS.....	123
8. FUTURE LINES OF RESEARCH.....	127
9. BIBLIOGRAPHY	131
10. ANNEXES	151

10.1. FINANCING AND SCIENTIFIC AWARDS.....	153
10.1.1. Financing.....	153
10.1.2. Scientific awards.....	153
10.2. SCIENTIFIC PRODUCTION.....	154
10.2.1. Abstract presented at conferences related to this doctoral thesis.....	154
10.2.1.1. Abstract 1.....	154

SUMMARIES

SUMMARY

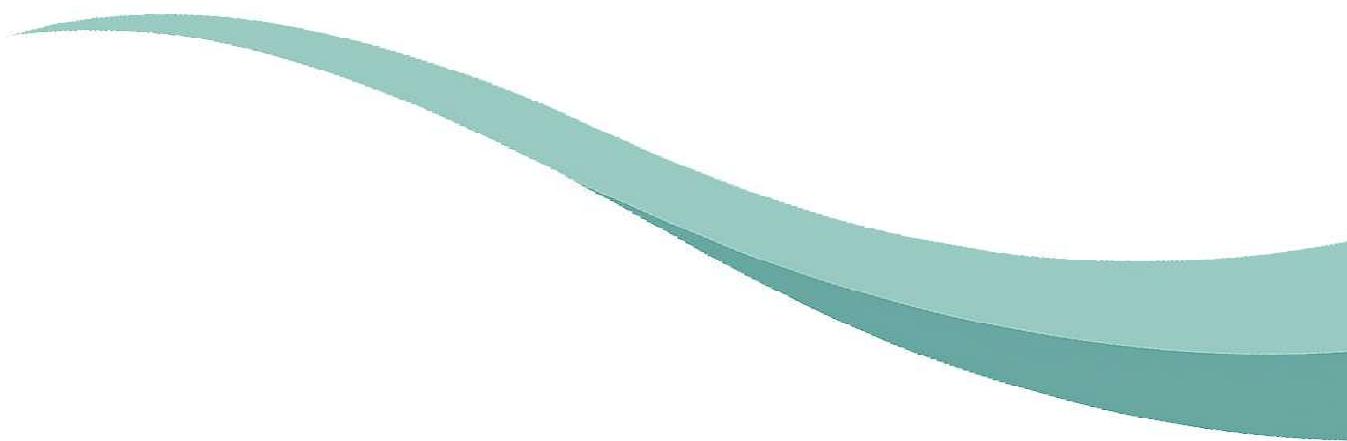
Since its emergence in late 2019 in Wuhan, the zoonotic disease caused by the coronavirus-19 (COVID-19) has rapidly spread worldwide. Although many cases are mild or asymptomatic, a proportion of patients develop Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pneumonia, which can lead to various long-term pulmonary complications, affecting both the lung parenchyma and the airways. Characterizing these complications is essential, as some cases may require treatment to prevent permanent sequelae. In this context, adequate follow-up after hospital discharge is crucial for these patients.

This doctoral thesis aimed to study the presence of respiratory complications following SARS-CoV-2 pneumonia based on the viral involvement itself, the acute treatment administered, and the presence of comorbidities (such as bronchial asthma), as well as to evaluate the need for additional medical interventions for these complications.

Five studies were conducted. First, the impact of dexamethasone during SARS-CoV-2 pneumonia on respiratory complications was assessed, revealing that patients treated with dexamethasone experienced less dyspnea, improved pulmonary function, and fewer signs of fibrosis in follow-up assessments. Second, the prevalence and characteristics of airway involvement were analyzed, revealing that it was common among patients hospitalized with COVID-19 and associated with older age, a history of smoking, lower body mass index (BMI), and cardiometabolic comorbidities. Third, the prevalence of tracheomalacia following hospitalization for SARS-CoV-2 pneumonia was examined, with findings indicating that 0.8% of patients exhibited this complication. Fourth, the incidence and severity of respiratory sequelae were compared between asthmatic and non-asthmatic patients; no significant differences were found in the frequency of sequelae between the two groups. However, asthmatic patients exhibited greater bronchial thickening and/or tracheomalacia, whereas bronchiectasis was more common among non-asthmatic individuals.

Finally, a fifth study involved the design of a clinical trial to determine the optimal dosage of oral corticosteroids for one of the most common complications of COVID-19: organizing pneumonia. The study demonstrated that a descending regimen of 0.5 mg/kg/day over three months was equally effective but associated with fewer adverse effects compared to the conventional treatment regimens, which involve higher doses and an unrestricted duration of six months.

RESUMEN

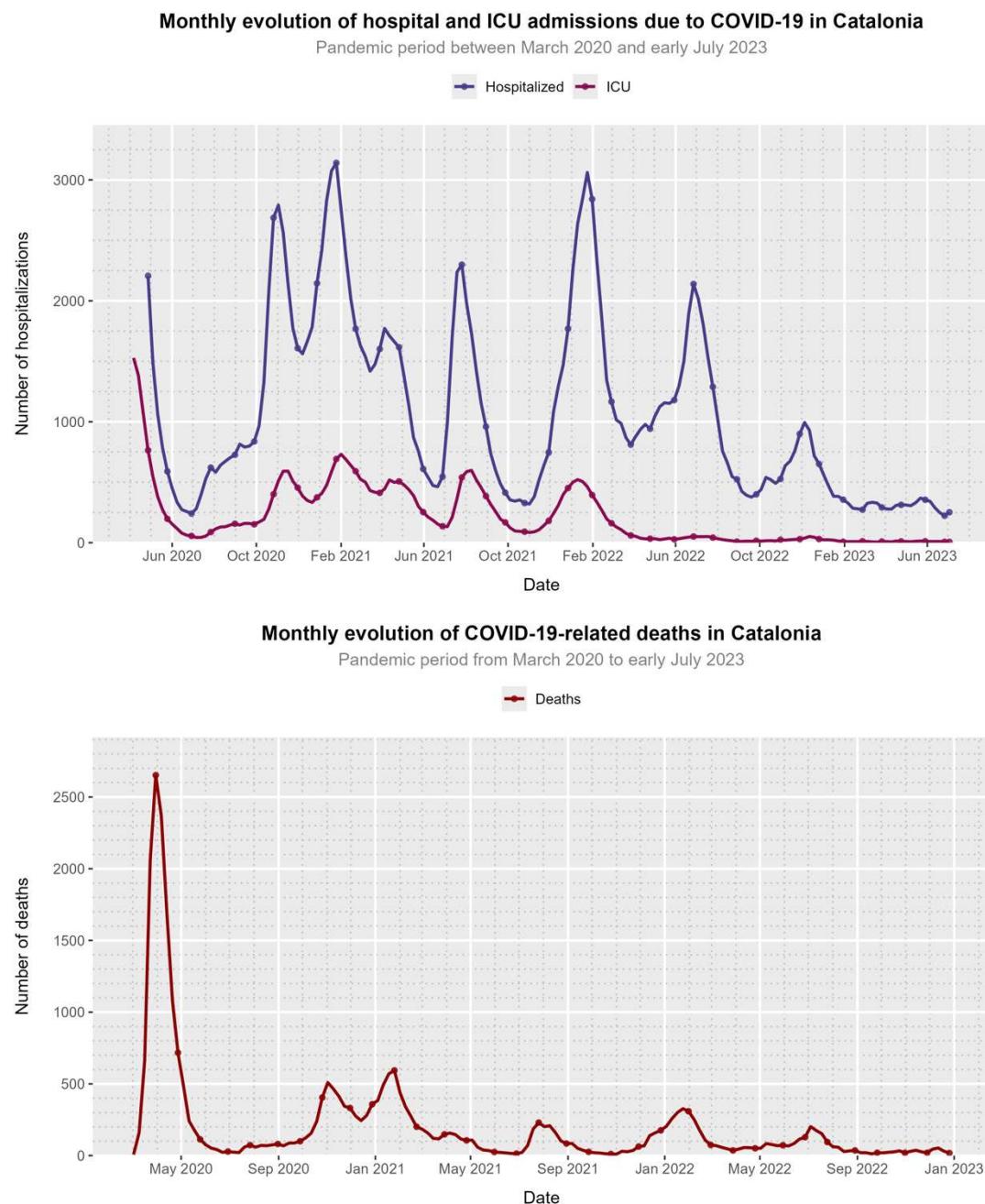

Desde su aparición a finales de 2019 en Wuhan, la enfermedad zoonótica causada por el COVID-19 se ha diseminado rápidamente por todo el mundo. Aunque muchos casos son leves o asintomáticos, una proporción de pacientes desarrolla neumonía por SARS-CoV-2, lo que puede derivar a largo plazo a diversas complicaciones pulmonares, tanto a nivel parenquimatoso como en la vía aérea. Caracterizar estas complicaciones es fundamental, ya que en algunos casos pueden requerir tratamiento para prevenir secuelas permanentes. En este contexto, resulta crucial realizar un seguimiento adecuado tras el alta hospitalaria de estos pacientes.

Esta tesis doctoral tuvo como objetivo estudiar la presencia de complicaciones respiratorias después de una neumonía por SARS-CoV-2 en base a la propia afectación viral, al tratamiento agudo administrado y la presencia de comorbilidades (asma bronquial) y evaluar la necesidad de intervenciones médicas adicionales para estas complicaciones.

Se plantearon cinco estudios. En primer lugar, se evaluó el impacto de la dexametasona durante la neumonía por SARS-CoV-2 en las complicaciones respiratorias en los pacientes tratados con dexametasona tuvieron menos disnea, mejor función pulmonar y menos signos de fibrosis en el seguimiento evolutivo. En segundo lugar, se analizó la prevalencia y las características de afectación de las vías aérea y se demostró que afectación de las vías respiratorias fue común entre los pacientes hospitalizados con COVID-19 y se asoció con mayor edad, antecedentes de tabaquismo, menor índice de masa corporal (IMC) y comorbilidades cardiometaabólicas. En tercer lugar, se analizó la prevalencia de traqueomalacia tras la hospitalización por neumonía por SARS-CoV-2; el 0,8% de los pacientes presentaban esta complicación. En cuarto lugar, se comparó la incidencia y gravedad de secuelas respiratorias en pacientes asmáticos y no asmáticos; no se hallaron diferencias en la frecuencia de secuelas entre ambos grupos. Sin embargo, los pacientes asmáticos mostraron mayor engrosamiento bronquial y/o traqueomalacia, mientras que las bronquiectasias fueron más comunes en no asmáticos.

Finalmente se diseñó, en un quinto estudio, un ensayo clínico para determinar que dosis de corticoides orales podría ser más útil para una de las complicaciones más frecuentes de la COVID-19 como es la neumonía organizada. Se demostró que una dosis de 0.5 mg/Kg/día en pauta descendiente durante tres meses es igual de efectiva y con menos efectos adversos que los esquemas clásicos de tratamiento de esta entidad con dosis superiores y una duración libre de seis meses.

1. INTRODUCTION


1.1. SARS-COV-2 INFECTION

1.1.1. Definition and Epidemiology

COVID-19 belongs to the group of betacoronaviruses, which are viruses that infect a wide range of animals and can cause respiratory infections ranging from mild to severe in humans. By the end of 2019, the first cases of the disease, officially named SARS-CoV-2, were identified in Wuhan (1). The disease caused by COVID-19 spread worldwide, and on March 11, 2020, the World Health Organization (WHO) declared it a global pandemic. As of December 31, 2024, the virus has resulted in more than 777 million confirmed cases and over 7.08 million deaths worldwide (2).

Highly pathogenic coronaviruses of zoonotic origin had previously affected humans, causing severe respiratory diseases. Specifically, in 2002, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emerged, and in 2012, the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified (3,4).

Determining the incidence at the national level and in Catalonia during the pandemic is highly challenging, as testing was not always conducted to confirm cases, and in some instances, the infection was pauci-symptomatic. Figure 1 presents the recorded hospitalizations due to COVID-19 in our setting, as well as intensive care unit (ICU) admissions from 2020 to 2023 and mortality rates over the same period.

Figure 1: Representation of the waves in Catalonia, adapted from Institut d'Estadística de Catalunya (Idescat)

1.1.2. Pathogenesis

The virus enters the human body through the upper respiratory tract and primarily binds to the cells of the nasal cavity, where it initiates its replication (5). The interaction occurs between the spike (S) protein of the virus and the angiotensin-converting enzyme 2 (ACE2), which is a receptor widely expressed in the epithelial cells of the respiratory tract. The

transmembrane serine protease 2 (TMPRSS2) facilitates this interaction by enabling the fusion of the virus with the cell membrane and its entry into the cytoplasm (6).

In the cytoplasm of the host cell, the virus utilizes the cellular machinery for replication, transcription, and translation of new viral particles (7). During this process, the host activates its innate immune response; however, SARS-CoV-2 has developed mechanisms to evade this response by blocking interferon production and reducing the activation of macrophages and dendritic cells. Consequently, uncontrolled viral replication occurs, leading to an increase in viral load within the organism (8,9).

In the alveoli, type II alveolar cells express a high number of ACE2 receptors, leading to an inflammatory response that triggers diffuse alveolar damage, characterized by macrophage activation and the infiltration of neutrophils and lymphocytes into pulmonary tissue. This process results in the disruption of the alveolar-capillary barrier, pulmonary edema, and the formation of hyaline membranes. In severe cases, this condition can progress to acute respiratory distress syndrome (ARDS) (10). In some patients, the activation of the immune system becomes dysregulated, resulting in a cytokine storm due to the massive release of proinflammatory mediators, which amplify inflammation and cause multi-organ tissue damage (11). In Figure 2, the pathophysiology of SARS-CoV-2 infection is summarized.

Figure 2: Pathophysiology of SARS-CoV-2 infection according to Jeong et al. (12)

1.1.3. Clinical presentation

Around 80% of patients with SARS-CoV-2 infection present with mild symptoms or an almost pauci-symptomatic clinical course. The main symptoms include fever, fatigue, dry cough, anosmia, ageusia, and muscle pain, while less common symptoms include pharyngolaryngotracheitis, diarrhea, conjunctivitis, or headache (13).

However, in the remaining 20% of patients, alveolar inflammation progresses due to viral replication, leading to pulmonary infiltrates in the form of viral pneumonia associated with hypoxic respiratory failure. Within this group, approximately 5% of patients develop an excessive proinflammatory response characterized by a cytokine storm, resulting in diffuse alveolar damage and ARDS. This excessive inflammation not only affects the lungs but can also lead to dysfunction in other organs and multi-organ failure (12,13).

It is important to note that the clinical progression described above was observed during the initial phases of the pandemic. As the virus has evolved and vaccination campaigns have been implemented, the clinical presentation has progressively shifted toward less severe forms (14,15).

1.1.4. Treatment

Initially, various treatment modalities were applied, many of which were based on expert recommendations or prior experience in treating similar diseases. Antimalarial drugs such as hydroxychloroquine were used; however, subsequent studies did not demonstrate significant clinical benefits and identified potential cardiac risks associated with their use. As a result, the administration of hydroxychloroquine was discouraged in patients with COVID-19 (16). Other treatments initially used included antiretroviral drugs used for human immunodeficiency virus (HIV), such as Lopinavir/Ritonavir. However, subsequent studies demonstrated that they did not provide significant benefits and were associated with a high incidence of adverse effects (17). Azithromycin, a macrolide antibiotic with broad antibacterial, anti-inflammatory, and antiviral properties, was also routinely used at the beginning of the pandemic. However, studies demonstrated that this treatment did not reduce recovery time, the risk of hospitalization, or mortality (18,19).

As the pandemic progressed, scientific evidence supporting the use of certain medications became available. Among antiviral drugs, Remdesivir was found to reduce recovery time in hospitalized patients with moderate COVID-19, particularly when administered in the early stages of the disease. However, it did not demonstrate a significant impact on reducing mortality, the need for mechanical ventilation, or the duration of hospitalization. (20,21).

Secondly, the administration of dexamethasone at a daily dose of 6 mg for up to 10 days was shown to reduce 28-day mortality by one-third in patients requiring mechanical ventilation and by one-fifth in those receiving supplemental oxygen. This underscores its effectiveness in patients with severe SARS-CoV-2 infection requiring oxygen therapy. (22).

INTRODUCTION

Furthermore, studies demonstrated that in patients with moderate to severe ARDS, intravenous dexamethasone, when combined with standard treatment, significantly increased the number of ventilator-free days over a 28-day period compared to standard treatment alone (23). These findings establish dexamethasone as a key advancement in COVID-19 management, particularly for its role in modulating the inflammatory response in severe cases. A dosage of 6 mg per day for 10 days has been identified as effective, with no clear evidence supporting higher doses or alternative treatment durations (24–26).

Thirdly, a monoclonal antibody targeting interleukin-6, known as Tocilizumab, has demonstrated efficacy in reducing mortality and has been used to treat the 'cytokine storm' in patients with severe COVID-19 (27–29).

These three treatments have been the most widely used for managing COVID-19 patients. Other treatments, such as Janus Kinase (JAK) inhibitors like Baricitinib and Ruxolitinib or convalescent plasma, have been employed in the context of clinical trials but have not been routinely used in our setting. (30–32).

Alongside treatments for managing acute-phase COVID-19, the development of vaccines was crucial in mitigating the spread of SARS-CoV-2 and reducing disease severity and mortality (33). The first mRNA vaccines, such as BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), emerged in late 2020 and demonstrated high efficacy in preventing severe symptomatic infection, hospitalization, and death (34,35). Subsequently, various COVID-19 vaccines have been developed, providing improved protection for the general population, particularly for the most vulnerable individuals.

1.2. RESPIRATORY COMORBIDITIES AND SARS-COV-2 INFECTION

SARS-CoV-2 infection directly affects the respiratory system, which is why it was initially hypothesized that the presence of chronic respiratory diseases could represent a significant risk factor for disease progression (36). The following section will address the main

respiratory comorbidities in relation to SARS-CoV-2 infection and their impact on the clinical progression of patients.

1.2.1. Chronic obstructive pulmonary disease

Patients with Chronic obstructive pulmonary disease (COPD) have a higher risk of severe COVID-19 compared to the general population. The hospitalization rate for COVID-19 in COPD patients is significantly higher, and there is an increase in mortality (37–39). Currently, there is no evidence that standard COPD treatment, including inhaled corticosteroids when indicated, affects the prognosis of SARS-CoV-2 infection. Therefore, it is recommended to maintain the treatment without modifications in patients with COPD and SARS-CoV-2 infection (38).

1.2.2. Interstitial lung diseases

The COVID-19 pandemic has significantly affected patients with interstitial lung diseases (ILD), increasing the risk of severe infection, hospitalization, and mortality (40,41). SARS-CoV-2 infection has been observed to exacerbate or accelerate the progression of pulmonary fibrosis in these patients, although its long-term effects remain unclear (40).

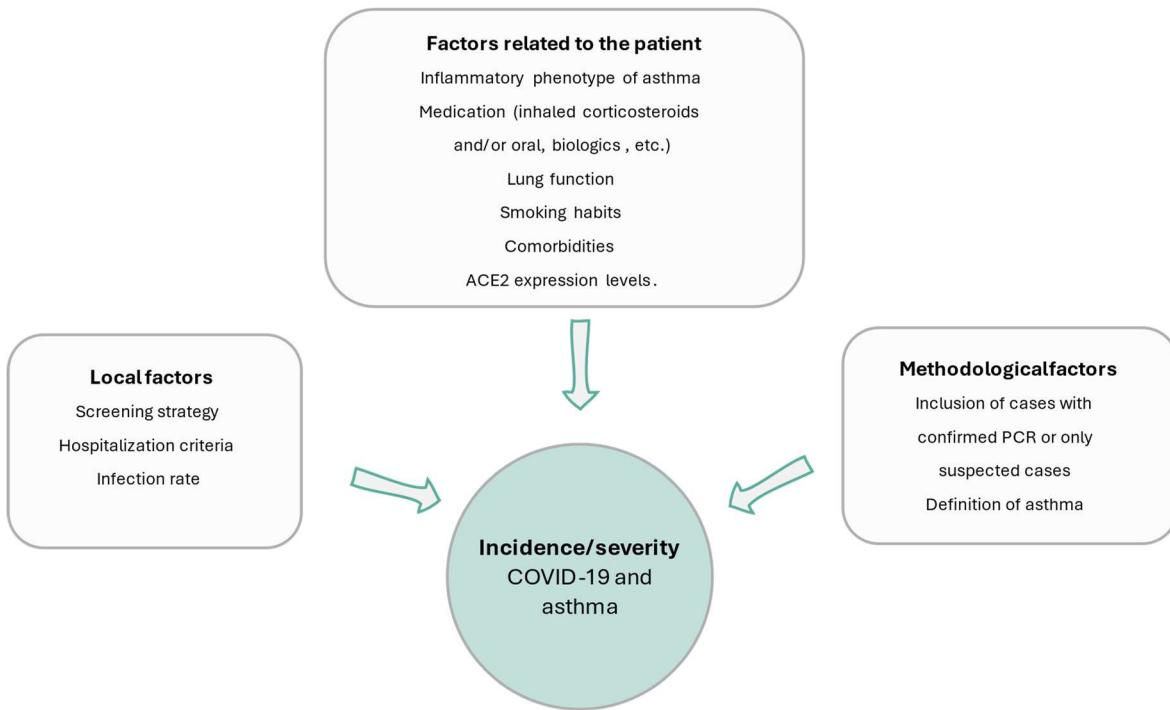
1.2.3. Obstructive sleep apnea syndrome

Obstructive sleep apnea syndrome (OSAS) has been identified as a risk factor for COVID-19 infection and is associated with increased disease severity (42). Untreated OSAS increases the likelihood of ARDS, ICU admission, invasive mechanical ventilation, and mortality (43,44).

1.2.4. Bronchiectasis and cystic fibrosis

Although studies are limited, patients with bronchiectasis have been observed to have a higher risk of severe disease, hospitalization, and a probable increase in mortality (45). In patients with cystic fibrosis, the impact of SARS-CoV-2 infection was lower than expected, likely due to the protective measures implemented. However, it was observed that in

INTRODUCTION


patients with poorer pulmonary function or other associated comorbidities, such as diabetes mellitus, the infection tended to be more severe (36).

1.2.5. Asthma

Asthmatic patients have an increased susceptibility to viral respiratory infections, which tend to be more severe compared to the general population (46). This vulnerability could be explained by an alteration in the production and release of interferons (α , β , γ) in these patients (47). It is estimated that up to 80% of asthma exacerbations are associated with various viruses, including certain types of coronaviruses (48). This led to the initial assumption during the pandemic that individuals with asthma might be particularly susceptible to SARS-CoV-2 infection.

Numerous studies have been published to assess whether asthma genuinely increases the risk of contracting COVID-19, and current evidence suggests that it does not significantly elevate the risk (49,50). It has also been demonstrated that having asthma does not increase the severity of SARS-CoV-2 infection, the risk of hospitalization, the need for ICU admission, or mechanical ventilation compared to the non-asthmatic population (51,52). Having asthma and contracting COVID-19 does not increase the mortality risk of the disease. Some studies even suggest that it may reduce the risk (53).

Several factors and mechanisms have been proposed to explain why asthma may not increase the risk or could even offer protection against SARS-CoV-2 infection (Figure 3). It has been suggested that the T2 response may confer lower susceptibility compared to asthma with a non-T2 response. In this regard, our group demonstrated in a study conducted during the first wave, involving 2,226 patients, that the prevalence of asthma was 3.2%. The study involved 71 patients, of whom 40% exhibited a T2 response, compared to 59% with a non-T2 response (54).

Figure 3: Factors and mechanisms by which asthma could influence the incidence and severity of SARS-CoV-2 infection (adapted from Eger et al.) (55)

To explain this occurrence, several hypotheses have been proposed. Firstly, the T2 response is characterized by eosinophilic inflammation, and it has been demonstrated that having eosinophil counts above 200 cells/mm³ decreases the risk of COVID-19 mortality (56). Secondly, studies have shown that allergic asthma is associated with reduced levels of ACE2 and TMPRSS2, thereby decreasing viral entry into cells (57). Indeed, it has been demonstrated that interleukin-13 (IL-13) and immunoglobulin E (IgE) reduce the expression of the ACE2 receptor (58). Thirdly, the deficiency in interferon production, particularly observed in asthmatic patients with a T2-Th2 response, may prevent the proinflammatory state associated with severe COVID-19 (59). Finally, regarding treatment with inhaled corticosteroids, evidence suggests that they do not increase the severity of COVID-19, and some authors have even proposed them as a protective factor (60). In this regard, several clinical trials were conducted to evaluate the use of inhaled corticosteroids in COVID-19 treatment to prevent disease progression. The findings suggest that the addition of inhaled corticosteroids to standard care in hospitalized patients with COVID-19 pneumonia is safe and may reduce the risk of disease progression (61).

INTRODUCTION

Focusing on the severity of COVID-19 in asthmatic patients, the T2 response is associated with lower disease severity. In our study, patients with a T2 response had a higher proportion of mild cases compared to those with a non-T2 response (45% vs 12%). No significant differences were found between the two groups in terms of age, sex, smoking status, comorbidities, asthma severity, or administered treatments (54). When analyzing the relationship between asthma severity there does not appear to be an increase in the severity of viral infection. In a study by Rial et al., which analyzed a cohort of 545 patients with severe asthma treated with biological therapies, 35 were diagnosed with COVID-19, and only 8 required hospitalization. When comparing these data with asthmatic patients hospitalized for COVID-19 without biological treatment in Spain, no significant differences were found in disease severity, presence of comorbidities, ICU admissions, or mortality (62).

Therefore, we can conclude that bronchial asthma does not significantly increase the risk of COVID-19 infection or disease severity, with this effect being particularly evident in patients with a T2 response (49–51,53,54).

1.3. RESPIRATORY COMPLICATIONS AFTER SARS-COV-2 PNEUMONIA

Respiratory complications are among the most common conditions following COVID-19, particularly in patients who developed severe pneumonia, ARDS, or had pre-existing pulmonary diseases (63). Since the onset of the pandemic, various persistent respiratory symptoms have been described, including dyspnea, cough, and sputum production, among others, following SARS-CoV-2 pneumonia. In many cases, these symptoms are associated with abnormalities in pulmonary function tests or findings on chest computed tomography (CT) scans (64). Among the findings on chest CT scans, parenchymal abnormalities have been the most extensively studied; however, airway abnormalities have also been described (63).

These respiratory complications can significantly impact patients' quality of life by limiting their ability to engage in physical activities and increasing the risk of long-term

complications. Therefore, monitoring patients following SARS-CoV-2 pneumonia is crucial for identifying respiratory complications and assessing the need for therapeutic interventions to prevent permanent respiratory sequelae.

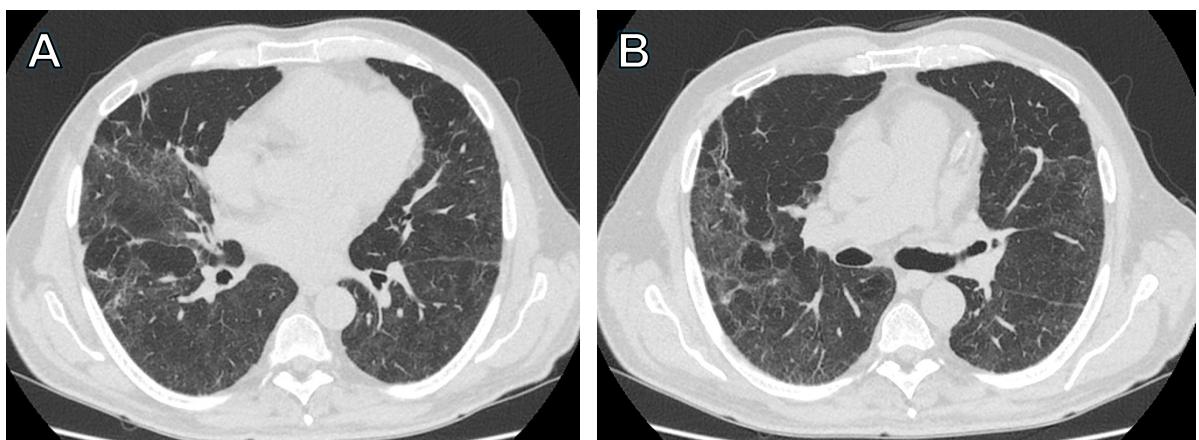
1.3.1. Parenchymal respiratory complications

Since the onset of the COVID-19 pandemic, increasing concern has emerged regarding potential parenchymal complications following SARS-CoV-2 infection. Similar viruses, such as SARS-CoV and MERS-CoV, had previously demonstrated persistent pulmonary abnormalities on CT scans, even years post-infection, including fibrotic changes (65). This suspicion was confirmed following the first publications on the follow-up of patients with SARS-CoV-2 pneumonia in China. At six months, approximately 22-56% of patients exhibited ground-glass opacities and irregular lines on chest CT, along with impaired pulmonary diffusion capacity (64). Subsequent studies have confirmed similar findings. For instance, a meta-analysis including over 70 studies revealed that half of the patients exhibited inflammatory sequelae on chest CT. In 38% of cases, these findings were associated with impaired diffusion capacity, and in 17%, with a restrictive ventilatory defect (66).

Regarding inflammatory complications, the most frequently observed parenchymal disease has been organizing pneumonia (67). However, other entities have also been reported, including nonspecific lymphocytic pneumonia, hypersensitivity pneumonitis, and eosinophilic pneumonia (5,63,68,69). In some cases, reticular patterns or ground-glass opacities have been observed without a definitive diagnosis being established.

When these respiratory complications progress over time, particularly when targeted treatment is required but not initiated early, irreversible fibrotic changes may develop. In fact, it is estimated that fibrotic sequelae are present in approximately 29% of patients (66). For this reason, it is important to conduct a targeted assessment of these complications and to initiate treatment if necessary.

1.3.1.1. Organizing pneumonia


Organizing pneumonia (OP) is an ILD characterized by a pattern of lung tissue repair following injury. The pathogenesis of OP involves inflammation in which the bronchioles and alveoli are filled with granulation tissue, disrupting the normal lung architecture(70,71).

This inflammatory response is a nonspecific lung reaction to damage, though it may also occur without a known cause, in which case it is termed "cryptogenic". Cryptogenic organizing pneumonia (COP) is a rare condition with an undetermined incidence and prevalence. While it was previously estimated that approximately 50% of OP cases were COPs, the majority are now considered secondary. Indeed, fewer than 15% are classified as cryptogenic, probably due to advances in the diagnosis of secondary causes (72,73). Secondary causes of OP include infectious diseases, rheumatologic diseases, radiotherapy, drugs, organ transplantation, hematologic cancer and inflammatory bowel disease, with post infectious etiologies being the most prevalent (70,71). Although it is well known that certain viral or bacterial infections can cause OP, the prevalence in these conditions is not well established and depends on the type of infection and its severity. In the context of SARS-CoV-2 infection, some studies emphasize that OP is one of the most significant complications (74,75) with an estimated prevalence of between 12% and 32% (76,77).

Clinically, it presents with symptoms of subacute onset. The most common symptoms include dyspnea, which worsens particularly with physical activity, and a dry cough. In some cases, patients may also exhibit flu-like symptoms, including fever (70,78–80).

The diagnosis requires a multidisciplinary approach that integrates clinical and radiological evaluation, and in some cases, histopathological sampling (70). Laboratory tests are nonspecific, although inflammatory markers may be elevated (78,80). Pulmonary function tests can be normal in some cases or reveal a restrictive ventilatory disorder and/or a decreased diffusing capacity for carbon monoxide (DLCO) (70,79).

Radiologically, chest X-rays reveal bilateral pulmonary opacities that may appear patchy or diffuse with areas of consolidation. On chest CT, a predominant pattern of ground-glass opacities or multifocal peripheral consolidations can be observed, which may present with or without an air bronchogram. These lesions can be unilateral or bilateral and are distributed throughout all pulmonary zones, although they tend to be slightly more predominant in the subpleural region and the lower lung zones. A linear or band-like pattern with subpleural opacities parallel or perpendicular to the pleura is another possible manifestation. A characteristic finding that may appear is migratory opacities, showing spontaneous regression in some areas while new consolidations emerge in others. A specific but uncommon sign (found in less than 5% of cases) of organizing pneumonia is the reversed halo sign (also known as the atoll sign) (70,78,81,82).

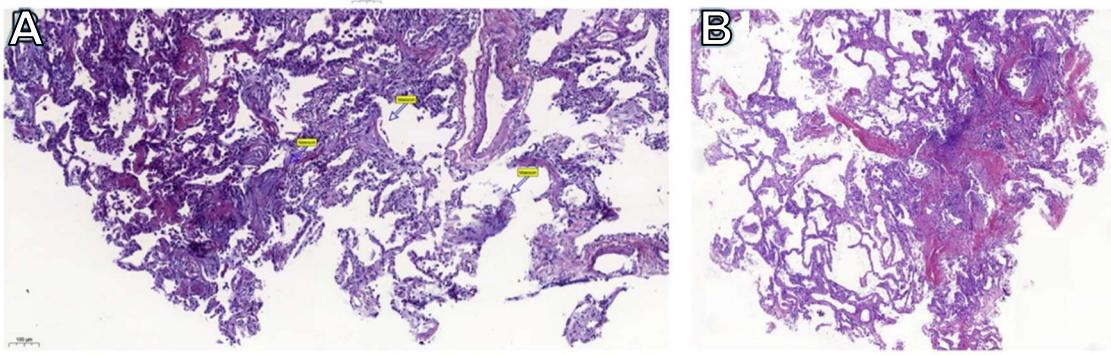


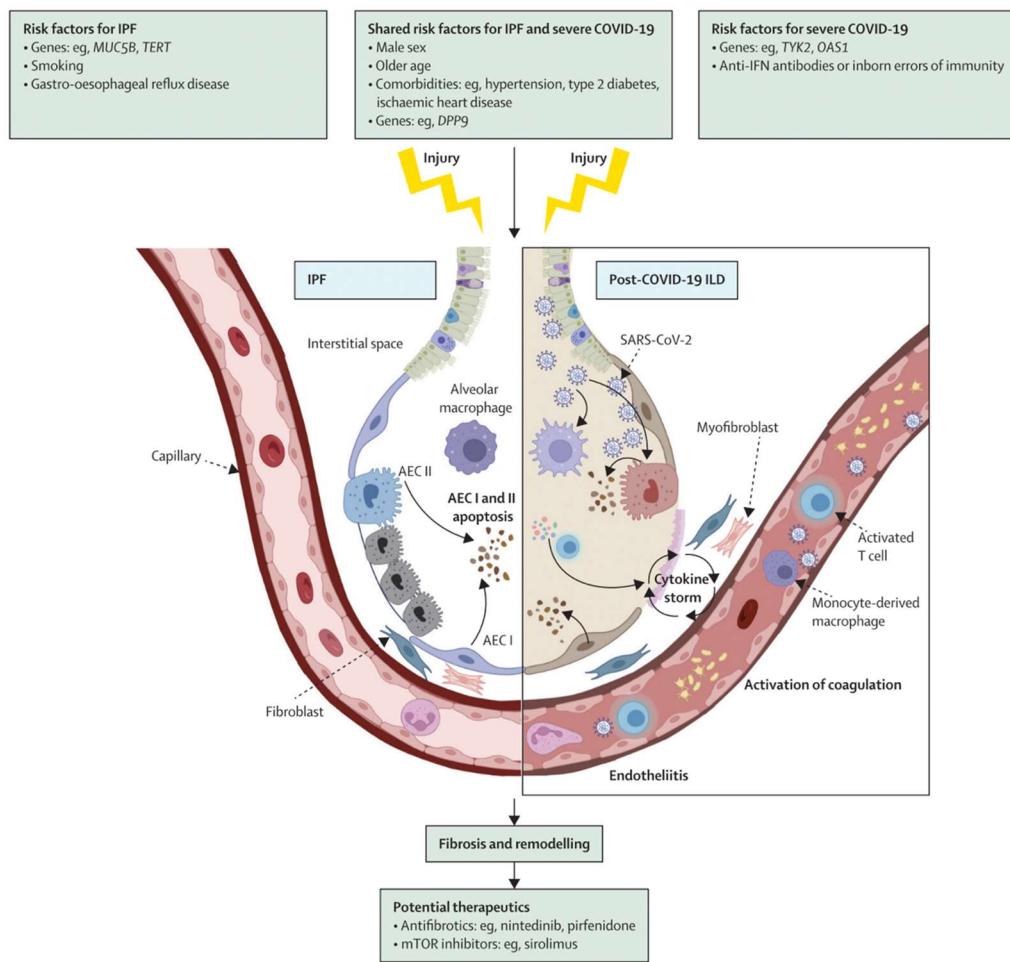
Figure 4: CT performed six months after COVID-19 infection showing radiological features consistent with organizing pneumonia. The patient is a 71-year-old male who was previously admitted to the ICU with SARS-CoV-2 pneumonia, requiring ventilatory support with high-flow nasal cannula (HFNC).

In some cases, bronchoscopy is required to establish a definitive diagnosis. Bronchoalveolar lavage (BAL) analysis is recommended to rule out infections or other pathologies, such as eosinophilic pneumonia or alveolar hemorrhage (78,79,83). Characteristic findings in biopsy samples of OP include granulation tissue buds composed of fibroblasts and myofibroblasts embedded in connective tissue, preserved pulmonary

INTRODUCTION

architecture, mild chronic interstitial inflammation, and a patchy distribution (81,84). In figure 5 shows a biopsy from a patient diagnosed with OP after SARS-CoV-2 pneumonia.

Figure 5: Biopsy consistent with organizing pneumonia, adapted from Culebras et al. (76) **A.** Hematoxylin and eosin-stained section showing expanded interstitium with chronic inflammation and fibroblastic plugs within the alveolar spaces (arrows). **B.** Low-magnification hematoxylin and eosin-stained section demonstrating partially collagenized Masson bodies.


To date, no randomized controlled trials evaluating potential therapies for OP have been published. Spontaneous remission is uncommon. Systemic glucocorticoid therapy is the preferred treatment for symptomatic patients (70,84). The typical initial dosage of prednisone is 0.5 to 1 mg per kilogram of ideal body weight per day, up to 60 mg, given once daily. This dose is maintained for 2 to 4 weeks, then gradually reduced to 0.25 mg per kilogram per day over 4 to 6 months. If the patient improves, the dose is tapered to zero over the next 6 to 12 months (70). Alternative treatment options, though supported by limited evidence, include macrolides, due to their anti-inflammatory properties, as well as immunosuppressive therapies such as cyclophosphamide, azathioprine, mycophenolate, and rituximab (70).

1.3.1.2. Permanent fibrotic sequelae

As previously mentioned, fibrotic changes following SARS-CoV-2 pneumonia may represent an irreversible respiratory sequelae. Several risk factors for the development of fibrotic changes have been described. First, the severity of COVID-19, as patients with severe disease are at higher risk of developing diffuse alveolar damage secondary to ARDS

(85). This damage may result from direct viral infection or, more commonly, from the immune response, leading to severe inflammation and fibrotic remodeling of the lung tissue (86).

Male sex, older age, and preexisting conditions such as obesity, type 2 diabetes, and hypertension have also been associated with a higher incidence of fibrotic changes (63,75). Moreover, certain genes associated with idiopathic pulmonary fibrosis (IPF), such as dipeptidyl peptidase 9 (DPP9), have also been linked to increased severity of COVID-19 (87). These risk factors had already been associated with IPF, which has led some authors to highlight similarities between the two conditions (Figure 6).

Figure 6: Similarities between IPF and post-COVID fibrosis. Adapted from Singh et al. (63)

Fortunately, although some initial similarities were observed and there was concern that many patients might experience unfavorable progression, our clinical experience indicates

INTRODUCTION

that the progression of fibrotic changes is not common. In most cases, we have observed that these changes remain as a permanent sequela without progressive evolution.

Nevertheless, multiple treatments and clinical trials have been developed for the management of post-COVID-19 fibrosis. Firstly, some therapies used during the acute phase may play a role in reducing fibrotic changes. As previously mentioned, corticosteroids such as dexamethasone have been shown to reduce mortality in severe cases of COVID-19 and may help limit fibrosis progression by reducing pulmonary inflammation (22,88,89). However, their efficacy in post-COVID-19 interstitial lung disease has yet to be confirmed. Secondly, clinical trials have been proposed to evaluate the potential benefit of antifibrotic therapies in patients with established fibrotic abnormalities (90). In particular, studies were designed to assess the efficacy of pirfenidone (FIBRO-COVID, NCT04607928) and nintedanib (NINTECOR, NCT04541680). To date, no results have been published. However, an abstract has been released reporting the findings of the FIBRO-COVID study, indicating that most patients with fibrotic changes following severe COVID-19 showed improvement or stability regardless of whether they received the pirfenidone or the placebo (91).

Despite advances in the treatment of severe COVID-19 pneumonia, the possibility of persistent pulmonary fibrosis remains a concern, and ongoing studies will help clarify the behavior of fibrotic changes (90). For now, we can state that in most cases these changes do not progress over time. Even in cases where progression is observed, it is worth establishing an accurate diagnosis of the underlying condition, as in some instances other preexisting interstitial diseases have been identified, with COVID-19 acting as a trigger (90).

1.3.1.3. Other parenchymal complications

Other less common presentations have been described in the literature. Post-COVID-19 interstitial lung disease may occasionally present with histological findings resembling hypersensitivity pneumonitis. Recent reports have described granulomatous inflammation and Th1-mediated responses, indicating an uncommon presentation that should be taken

into consideration (68). Additionally, isolated cases of acute eosinophilic pneumonia associated with SARS-CoV-2 infection have also been reported, further expanding the spectrum of post-COVID-19 parenchymal involvement (69).

1.3.2. Respiratory complications at the airway

Airway involvement has been less studied compared to parenchymal-origin respiratory complications, despite its potential role in persistent respiratory symptoms. It is well established that, following a respiratory infection, whether bacterial or viral, airway alterations may occur, such as bronchial thickening, tracheomalacia, or bronchiectasis (92).

Regarding active SARS-CoV-2 infection, it has been reported that the virus can infect the ciliated epithelium of the airways, which may lead to long-term bronchial wall thickening, bronchiectasis, and small airway disease (93,94). Additionally, beyond the infection itself, another risk factor that may lead to airway involvement is the requirement for mechanical ventilation in patients with severe COVID-19 (95).

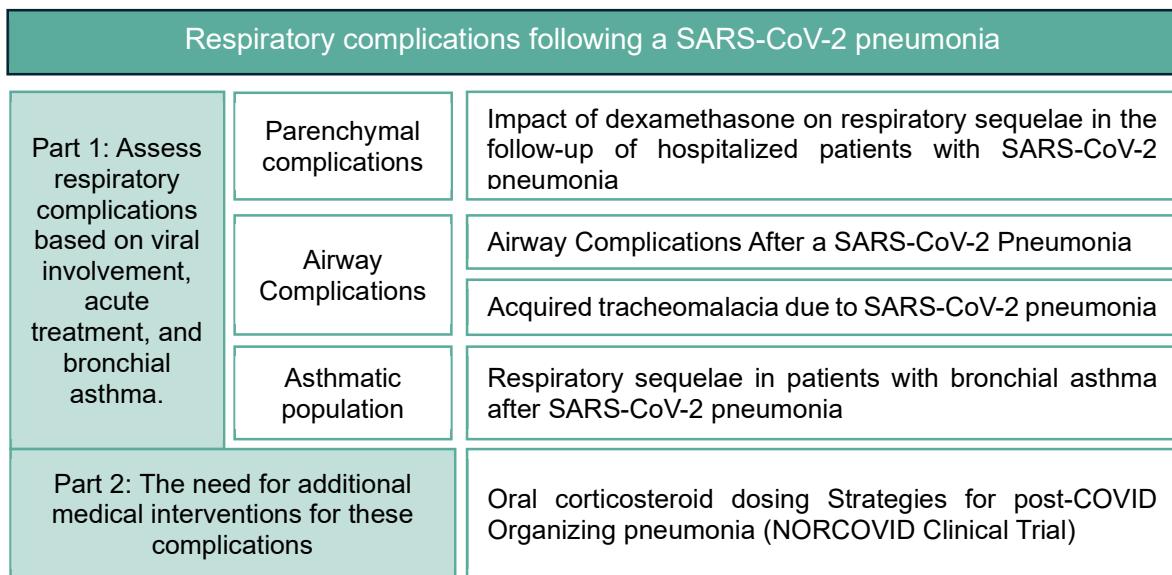
The most commonly reported post-COVID-19 airway alterations are bronchiectasis. An incidence of bronchiectasis ranging from 11-24% has been described on chest CT during the follow-up of post-COVID-19 patients (96,97). It has also been observed that some patients exhibit an air-trapping pattern in post-COVID-19 follow-up, which may suggest the presence of bronchiolitis (98). Another airway involvement, such as tracheomalacia, has not been evaluated, although acquired tracheomalacia secondary to airway infections and prolonged mechanical ventilation following intubation or tracheostomy has been described (99). Therefore, it would not be surprising to consider that post-COVID-19 patients may present tracheomalacia secondary to the viral infection itself.

To date, there are no specific studies that investigate this involvement in depth. Given the potential impact of these sequelae on symptomatology and clinical recovery, it is essential to conduct studies aimed at evaluating airway involvement in post-COVID-19 follow-up, enabling a better understanding of its progression and its impact on quality of life.

1.3.3. Effect of acute treatment on respiratory sequelae

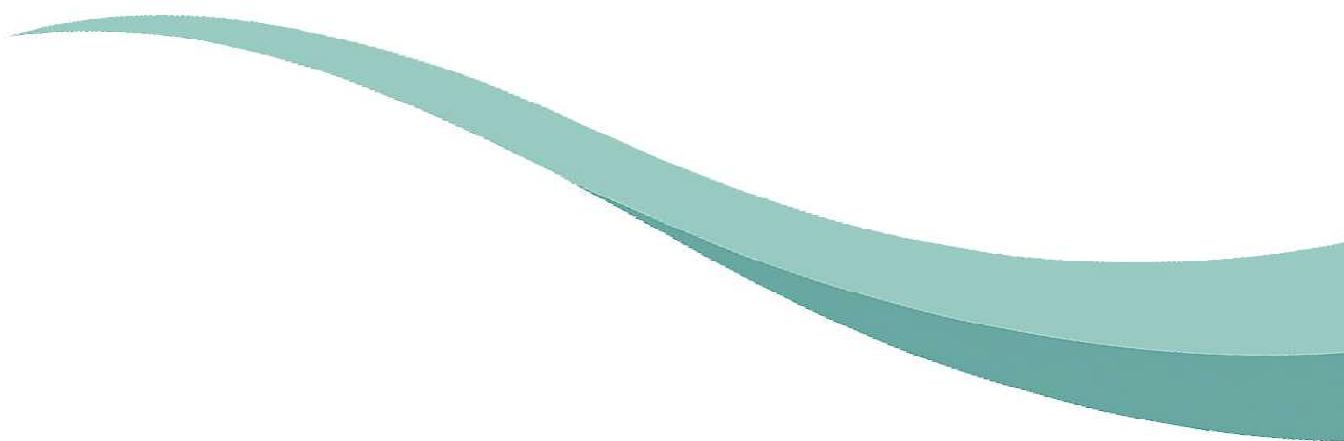
Previously, the effects of treatments in the acute phase of COVID-19 and which of them have shown efficacy have been described. However, how these treatments may affect respiratory complications has not been as thoroughly investigated. Specifically, in the case of dexamethasone, the only study published to date in the United Kingdom included adults hospitalized between February 2020 and March 2021 for COVID-19, who met the current recommendations for dexamethasone treatment. Patients were divided into two groups based on whether or not they had received the treatment. Health-related quality of life (HRQoL) was evaluated before hospital admission and one year after discharge, and the reduction in HRQoL was found to be similar in both groups at the one-year follow-up. Thus, the authors concluded that dexamethasone, as an acute-phase treatment, does not appear to influence post-COVID-19 quality of life (100). However, further evidence is needed to determine the impact of dexamethasone on respiratory complications.

1.3.4. Effect of bronchial asthma on respiratory sequelae


Numerous studies have assessed the risk of COVID-19 infection and disease severity in asthmatic patients. However, there is limited evidence on whether these patients have a significantly higher risk of developing respiratory complications after SARS-CoV-2 pneumonia. The only study that directly evaluated whether asthmatic patients experience more persistent respiratory symptoms found no significant differences compared to non-asthmatic individuals (101). However, two large population-based cohorts from the United Kingdom and the United States have reported that asthma may be associated with a higher risk of persistent respiratory symptoms (102,103). Nonetheless, uncertainty remains regarding the impact of asthma on post-COVID-19 respiratory sequelae.

1.4. PURPOSE OF THE DOCTORAL THESIS

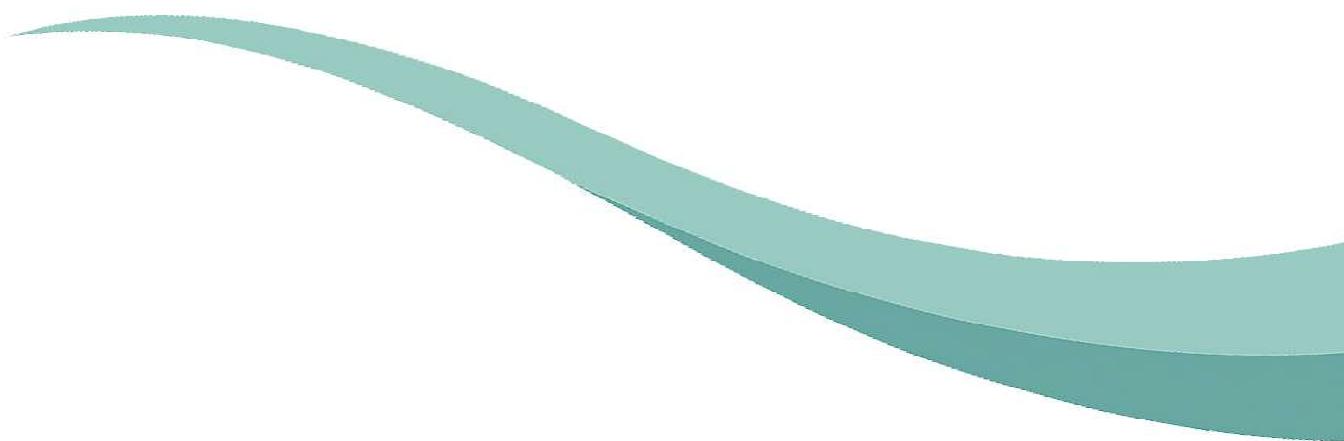
Since many patients develop pulmonary complications following SARS-CoV-2 pneumonia, the objective of this doctoral thesis was to determine the presence of respiratory complications after SARS-CoV-2 pneumonia based on the viral involvement itself, the acute treatment administered, and the presence of comorbidities (bronchial asthma). Additionally, it aimed to assess the need for further medical interventions for these complications.


The first part evaluates respiratory complications according to different conditions. The first study aims to determine whether the use of dexamethasone during the acute phase improves clinical outcomes during follow-up. Subsequently, two studies focus on determining the prevalence of airway involvement after hospitalization for COVID-19 pneumonia and identifying and assessing associated risk factors. Finally, a study was conducted to compare whether there are differences in the number and/or severity of respiratory sequelae between asthmatic and non-asthmatic patients who have suffered from SARS-CoV-2 pneumonia.

The second part, which focuses on evaluating the need for additional medical interventions for these complications, includes a clinical trial involving patients who developed OP during post-COVID-19 follow-up. The objective was to assess the efficacy of oral corticosteroid therapy in this condition and determine whether a less intensive corticosteroid regimen provides a therapeutic effect that is not inferior to the standard recommended regimen.

Figure 7: Overview diagram of the studies included in this thesis

2. HYPOTHESIS

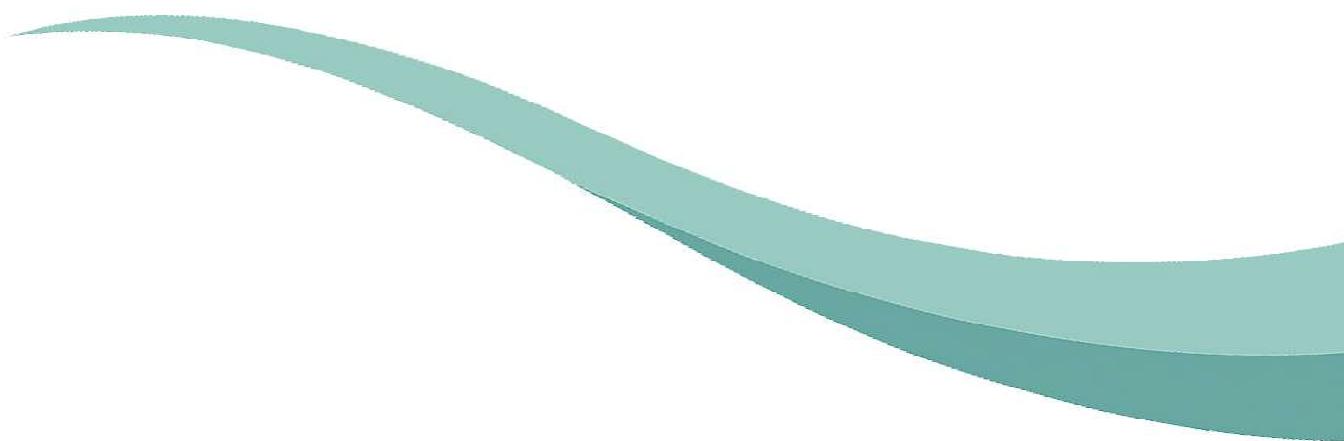


HYPOTHESIS

Patients recovering from SARS-CoV-2 pneumonia may experience respiratory complications that vary depending on the initial treatment and may require additional medical interventions. Moreover, asthmatic patients experience fewer complications compared to other hospitalized patients.

3. OBJECTIVES

3.1. MAIN OBJECTIVE


Determine the presence of respiratory complications after SARS-CoV-2 pneumonia based on the extent of viral involvement, the acute treatment administered, and the presence of comorbidities, particularly bronchial asthma. Additionally, the study aims to evaluate the need for further medical interventions resulting from these complications

3.2. SECONDARY OBJECTIVES

- 1) To compare the clinical outcomes of patients with severe COVID-19 pneumonia who were treated with dexamethasone versus those who received alternative treatments, in order to determine whether dexamethasone leads to improved outcomes during follow-up.
- 2) Determine the prevalence of airway (AW) involvement and of tracheomalacia following hospitalization for COVID-19 pneumonia and describe and assess risk factors for this condition.
- 3) To determine whether there are differences in the number and/or severity of respiratory sequelae between patients with and without asthma who have experienced SARS-CoV-2 pneumonia.
- 4) Evaluate the efficacy of oral corticosteroid therapy in treating OP secondary to SARS-CoV-2 infection and determine whether a less intensive corticosteroid regimen yields a therapeutic effect that is non-inferior to the standard recommended regimen for this condition.

4. METHODS

4.1. PART 1: ASSESS RESPIRATORY COMPLICATIONS

Patient cohort and baseline data

All patients included in the various studies were selected from the cohort of individuals seen at a specialized post-COVID-19 respiratory sequelae clinic, who had required hospitalization for SARS-CoV-2 pneumonia between March 2020 and December 2021. The patients were evaluated between three and nine months after hospital discharge. Each patient underwent a clinical interview, physical examination, chest high-resolution computed tomography (HRCT), spirometry, carbon monoxide (CO) transfer test and 6-min walking test (6MWT).

Demographic data (sex, age, BMI and smoking status), comorbidities, and hospital admission information were collected. This included data on ventilatory support, laboratory parameters (leukocyte count, platelet count, D-dimer, lactate dehydrogenase [LDH], C-reactive protein [CRP], and interleukin-6 [IL-6]), radiographic findings at admission, ICU admission requirements, secondary complications, and treatments administered during hospitalization. Disease was defined as severe if the patient needed $\text{FiO}_2 < 40\%$, very severe if they needed $\text{FiO}_2 > 40\%$, and critical if they needed ventilatory support.

The study was approved by the local ethics committee (Hospital Vall d'Hebron Ethics Committee approval (PR [AG]222/2020), and all subjects signed an informed consent document prior to their participation.

Follow-up

Clinical evaluation included the degree of dyspnea using the modified Medical Research Council (mMRC) scale and the presence of other respiratory symptoms. A comprehensive physical examination was performed. Additionally, a complete pulmonary function study, including forced spirometry and DLCO, was conducted for all participants. The tests were carried out using an ultrasonic spirometer incorporated into a complete Viasys pulmonary function system (VYaire-Vyntus Body) according to the guidelines of the European

METHODS

Respiratory Society and the American Thoracic Society (104). All data were expressed as percentages of the predicted values published by the Global Lung Function Initiative (GLI) (105,106). For forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and DLCO, values below 80% were considered low, while for the FEV1/FVC ratio, values below 70% were considered low. The 6MWT was performed according to the 2014 ERS/ATS Statement guidelines (107).

A HRCT scan of the chest with 1 mm slices at 10 mm intervals during maximum inspiration was performed during follow-up. All imaging features were independently interpreted by a radiologist and a pulmonologist. For controversial images, another radiologist was consulted. The HRCT scans were evaluated for the following features: location (unilateral or bilateral) and distribution (central, peripheral, or both) of the lesion, type of lesion (single, multiple, or diffuse), presence of ground-glass opacity, consolidation, linear opacities, reticulation, and/or mixed pattern, and interstitial changes (septal thickening, crazy paving and fibrosis). Airway involvement was also assessed, and if present, the characteristics of the airway (bronchial wall thickening, bronchiectasis, tracheomalacia, and bronchiolitis) were evaluated. The chest CT scans were evaluated following the descriptions provided in the Fleischner Society guidelines for Radiology (108).

DLCO and presence of fibrosis at the HRCT scan were defined as main follow-up outcome variables.

Different design study

a) Impact of dexamethasone on respiratory sequelae in the follow-up of hospitalized patients with SARS-CoV-2 pneumonia

A longitudinal retrospective study was designed involving all patients seen at a specialized post-COVID-19 respiratory sequelae clinic who had required hospitalization for SARS-CoV-2 pneumonia between March 2020 and April 2021. The patients were divided into two groups: those who were admitted from July 2020 onwards and received dexamethasone

treatment, and those who were admitted between March and June 2020, prior to the use of dexamethasone as a treatment for SARS-CoV-2 pneumonia. Patients who did not require oxygen were excluded, as they were not candidates for dexamethasone treatment. During the study period, the strains included were the wild-type strain or Wuhan strain, the Alpha variant (B.1.1.7), which reached Spain in late 2020, and the Beta (B.1.351) and Gamma (P.1) variants, which were less widespread in this country (109).

b) Airway sequelae in post-acute COVID-19 syndrome

A retrospective longitudinal study was conducted, involving all patients who attended a specialized post-COVID-19 respiratory sequelae clinic following hospitalization for SARS-CoV-2 pneumonia between March 2020 and September 2021. The patients were categorized into two groups based on the presence or absence of airway involvement, and these groups were compared to assess differences and associated factors.

c) Acquired tracheomalacia due to SARS-CoV-2 pneumonia

A retrospective study was conducted, including all patients with tracheomalacia who attended a specialized post-COVID-19 respiratory sequelae clinic after hospitalization for SARS-CoV-2 pneumonia between February 2020 and August 2021. Tracheomalacia was diagnosed using expiratory HRCT imaging. The clinical characteristics of patients diagnosed with tracheomalacia on expiratory HRCT imaging were analyzed (110).

d) Respiratory sequelae in patients with bronchial asthma after SARS-CoV-2 pneumonia

A retrospective case-control study was designed that included all asthma patients treated for SARS-CoV-2 pneumonia at our unit for post-COVID-19 respiratory sequelae from May to December 2020. For each asthma patient, two control patients were matched after adjustment for the date of hospital admission, sex, age and severity of SARS-CoV-2 pneumonia. The severity of asthma was graded according to GINA (Global Initiative for Asthma) guidelines (111). Patients were considered to have a T2-Th2 phenotype when they presented allergic symptoms with sensitization to pneumoallergens, a T2-ILC2 phenotype

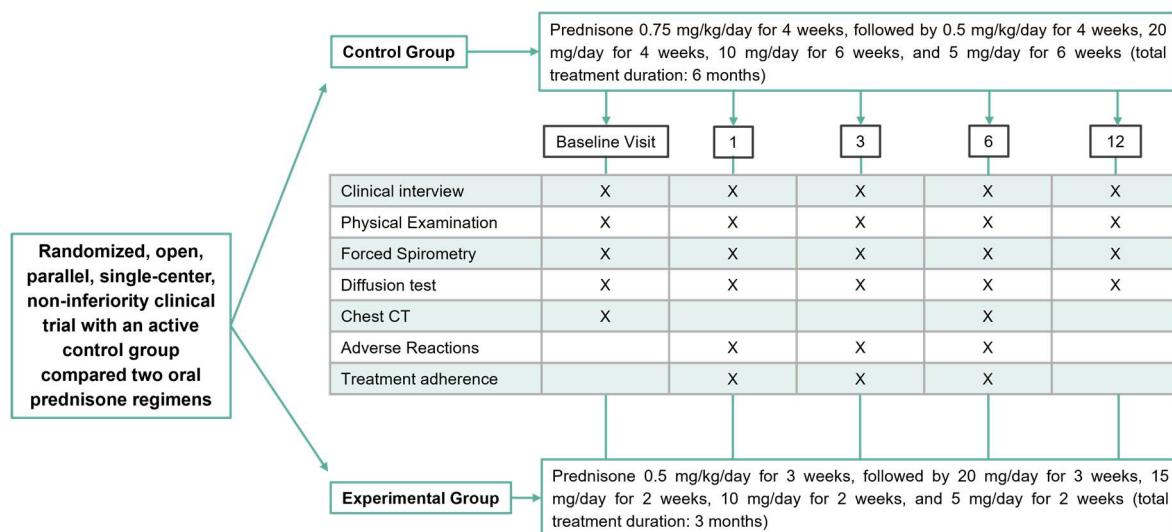
METHODS

when there was eosinophilia in blood or sputum without the presence of allergy, and a non-T2 phenotype when no sensitization or allergic symptoms were found, nor eosinophilia in blood or sputum (109).

Statistical Analysis

A descriptive analysis of the demographic, clinical, and functional characteristics of all patients was conducted, with stratification based on different groups according to various studies, such as dexamethasone treatment, airway sequelae, and asthma patients. Absolute frequencies and corresponding percentages were calculated for qualitative variables. Quantitative variables with a normal distribution were described using the mean and \pm standard deviation (SD), while those that did not follow a normal distribution were described using the median and 25th-75th percentiles.

Demographic, clinical, and functional characteristics of patients were compared with another group using the Student's t-test for normally distributed quantitative variables and the Mann-Whitney U test for non-normally distributed variables. For qualitative variables, the Chi-square test or Fisher's exact test was applied as appropriate.


Multivariate linear and logistic regression models were employed to assess the association between dexamethasone treatment and alveolar-capillary diffusion and the presence of fibrosis on follow-up CT scans respectively. Potential confounding factors were tested and included in the final models if (i) they were related to both the exposure and the outcome, (ii) they were modified ($>10\%$ change in the regression coefficient) the estimates of the remaining variables, or (iii) there was documented evidence in the literature supporting an association with the outcome variables analyzed.

Results were considered statistically significant if p -value < 0.05 . Analyses were performed using the STATA 18.0 statistical software package (StataCorp, College Station, TX, USA).

4.2. PART 2: ORAL CORTICOSTEROID DOSING STRATEGIES FOR POST-COVID ORGANIZING PNEUMONIA (NORCOVID CLINICAL TRIAL)

Trial Design

A randomized, open-label, assessor-blinded, parallel-group, single-center, non-inferiority clinical trial with an active control group comparing two oral prednisone regimens. The control group received prednisone 0.75 mg/kg/day for 4 weeks, followed by 0.5 mg/kg/day for 4 weeks, 20 mg/day for 4 weeks, 10 mg/day for 6 weeks, and 5 mg/day for 6 weeks (total treatment duration: 6 months). The experimental group received prednisone 0.5 mg/kg/day for 3 weeks, followed by 20 mg/day for 3 weeks, 15 mg/day for 2 weeks, 10 mg/day for 2 weeks, and 5 mg/day for 2 weeks (total treatment duration: 3 months). Upon diagnosing OP, the patients were randomized to one of the two treatment arms. Subsequent visits were held at 1, 3, 6, and 12 months. Study outcome variables were assessed by trained hospital nurses and a radiologist who were blinded to the patient's treatment allocation (Figure 8).

Figure 8: Diagram of the treatment groups in the clinical trial

The trial was conducted in compliance with the principles of the Declaration of Helsinki (112) and the Harmonised Tripartite Guideline for Good Clinical Practice from the International Conference on Harmonisation (113). It was approved by local authorities and trial.gov

METHODS

number NCT04534478 and it is reported in accordance with the CONSORT statement (114). All patients provided written informed consent before trial entry.

Participants and Randomization

All patients over 18 years of age who had been diagnosed with OP at a post-COVID respiratory sequelae outpatient clinic at Vall d'Hebron Hospital were assessed. This clinic systematically reviewed all patients who had required hospitalization for SARS-CoV-2 pneumonia between March 2020 and December 2021. The diagnosis of OP was established by a multidisciplinary committee based on clinical and radiological data, pulmonary function, and anatomopathological evaluations (see Table 1). All patients included met the inclusion criteria, and none met the exclusion criteria. A complete list of the inclusion and exclusion criteria is provided in Table 2.

Table 1: Criteria used for the diagnosis of organizing pneumonia in the multidisciplinary committee

Criteria **	
The definitive diagnosis of organizing pneumonia was established after discussion in the multidisciplinary committee, considering: a compatible clinical context, HRCT findings, and compatible histology in cases where it was available:	
Clinical symptoms +/- abnormal pulmonary function tests + compatible HRCT + compatible biopsy + discussion in a multidisciplinary committee	55 (69.6%)
Clinical symptoms +/- abnormal pulmonary function tests + compatible HRCT + discussion in a multidisciplinary committee	24 (30.4%)
Compatible clinical context+/- abnormal pulmonary function tests	
Previous hospitalization for SARS-CoV-2 pneumonia, with persistent symptoms such as dyspnea, cough, and chest pain +/- abnormal pulmonary function tests during post-COVID-19 follow-up	
Radiological criteria	
Typical pattern (most common): Patchy alveolar opacities peripheral and peribronchial	
Other Criteria: progressive fibrosis with reticulation and areas of consolidation, predominant nodule solitary/multiple nodules, bronchocentric consolidation, Irregular lines or subpleural bands, ground-glass opacity	
Histopathological criteria	
Buds of granulation tissue consisting of fibroblasts and myofibroblasts embedded in connective tissue, preserved lung architecture, mild interstitial chronic inflammation; patchy distribution	

** The criteria were adapted from: Cordier JF. *Cryptogenic Organising Pneumonia*. Eur Respir J. 2006 Aug;28(2):422-46 and Cottin V, Cordier JF. *Cryptogenic Organizing Pneumonia*. Semin Respir Crit Care Med. 2012 Oct;33(5):462-75.

Table 2: Inclusion and exclusion criteria of the study

Criteria
Inclusion Criteria
Patients aged 18 years or older
Diagnosis of COVID-19 pneumonia that required hospitalization
Multidisciplinary diagnosis of organizing pneumonia post COVID-19
No contraindications to the study drug
After being properly informed, voluntarily agree to participate in the study after understanding its objectives and risks and provide consent.
Exclusion Criteria
Do not authorize their participation
Patients with contraindications to receiving corticosteroid treatment
Inability to understand the study requirements, in the investigator's opinion
Expected survival less than the study duration, in the investigator's opinion
Clinical evidence of active infection, including but not limited to bronchitis, pneumonia, sinusitis, urinary tract infection, and/or cellulitis
Patient scheduled to receive a lung transplant during the study period
Inability to undergo pulmonary function tests
Poorly controlled diabetes mellitus (HbA1c >10%)
Pregnancy or lactation
Are participating in another interventional study

Patients were randomized in a 1:1 ratio to the two treatment arms. Randomization codes were generated using the PROC PLAN of the SAS system. The randomization of patients was managed through the electronic case report form (eCRF) and was concealed until the confirmation of the randomization for each patient. To minimize missing data, patients who withdrew from the trial regimen prematurely were asked to attend all visits and undergo all examinations as originally planned. For patients who did not attend all visits, vital status at the end of the study was determined.

Interventions

Patients received oral prednisone in the morning with breakfast, adjusted for weight and based on the treatment arm assigned. All patients were also treated with omeprazole 20 mg/day while taking prednisone and trimethoprim/sulfamethoxazole 80/400mg/day to

METHODS

prevent opportunistic infections as long as the prednisone dose exceeded 10 mg/day. Additionally, calcium and alendronic acid were given to prevent bone-related complications. At the end of the prednisone treatment, before discontinuation, plasma cortisol levels were determined to prevent adrenal insufficiency.

Procedures and assessments

For all patients included, demographic data were collected along with information obtained from the clinical interview, physical examination, blood tests, pulmonary function tests (spirometry and CO transfer test), the 6MWT, and chest CT (Figure 8).

All these procedures are described in Table 3. Moreover, all initial visit variables are described in Table 4.

Table 3: Description procedures

Procedure	Description
Spirometry	It was performed using an ultrasonic spirometer incorporated into a complete Viasys pulmonary function system (VYaire-Vyntus Body) according to the 2005 ERS/ATS standards (115), using the theoretical values proposed by the GLI (105).
CO transfer test	It was conducted with the same equipment using the single-breath method, following the 2019 ERS/ATS standards (104) and using the values proposed by the GLI (106).
6MWT	It was performed according to the guidelines of ERS/ATS Statement in 2014 (107).
Chest CT	It was performed on all patients with 1 mm slices at 10 mm intervals during maximum inspiration, and expiratory slices. The parenchymal involvement was evaluated and categorized into ground-glass opacity, reticulation, linear opacities, condensation or a mixed pattern, which included at least two of the abnormalities. The readings were independently performed by a radiologist and a pulmonologist. In case of disagreement, a second radiologist provided the tie-breaking opinion. In chest CT, improvement was defined as a 25% reduction in overall involvement compared to the previous chest CT. Stability was defined as no significant changes, and worsening was defined as a 25% increase in overall involvement compared to the previous chest CT.

Table 4: Variables collected during the baseline visit

Variables collected during the baseline visit	
Met the inclusion criteria and none of the exclusion criteria	
Signature of informed consent	
Randomization	
Datos demographics	
Age	
Sex	
Height	
Weight	
Exposure to tobacco	Smoker, former smoker and non-smoker
Year packages	
Comorbidities	
Previous treatment	
SARS-CoV-2 admission	
Date of test	
Type of test	
Result	
Record symptoms of this episode	
COVID-19 severity	No oxygen required, Oxygen therapy FiO ₂ <40%, NIV or HFNC and IMV or ECMO
Organizing pneumonia diagnosis	
Pathology report	
Committee diagnosis	
Date of test	
WHO Scale- the ordinal clinical improvement (the clinical variable recommended by the WHO R&D Blueprint expert group)	
1. Not hospitalized, no limitations on activities	
2. Not hospitalized, limitation on activities	
3. Hospitalized, not requiring supplemental oxygen	
4. Hospitalized, requiring supplemental oxygen	
5. Hospitalized, on NIV or high flow oxygen devices	
6. Hospitalized, on IMV or ECMO	
7. Death	
Vital Signs	
Heart rate	
Systolic blood pressure	
Diastolic blood pressure	
Respiratory rate	
Body temperature	
Physical examination	
Blood test	
Complete blood count (total leukocytes, % neutrophils, % lymphocytes, % eosinophils, % basophils, % monocytes), electrolytes (Na, K), liver function (AST, ALT, total bilirubin, ALP, GGT), renal function (creatinine, urea), and inflammatory markers (CRP, LDH)	
Spirometry	
FVC (absolute value)	
FVC (% of theoretical value)	
FEV1 (absolute value)	

METHODS

FEV1 (% of theoretical value)	
FEV1/FVC (% of theoretical value)	
DLCO (absolute value)	
DLCO (% of theoretical value)	
KCO (% of theoretical value)	
6MWT	
Meters travelled	
Initial oxygen saturation	
Mean oxygen saturation	
Maximum desaturation	
Initial heart rate	
Final heart rate	
Chest CT	
Localization	Unilateral and bilateral
Distribution	Central, peripheral, central + peripheral
Injuries	Simple, multiple, diffuse
Main Characteristics	Ground glass opacity, consolidation, linear opacities, reticulation, mixed type, nothing.

During follow-up, clinical progress, pulmonary function test, chest CT scans, adverse events (AEs), and treatment adherence were assessed. Variables and definitions are detailed in Table 5.

Table 5: Variables collected during the follow-up visits

Variables collected during the follow-up visits	
Study treatment	
The patient taken the medication correctly	Yes or no
Fulfilment	
Reason	
Concomitant medication	
Who Scale- the ordinal clinical improvement (the clinical variable recommended by the WHO R&D Blueprint expert group)	
1. Not hospitalized, no limitations on activities	
2. Not hospitalized, limitation on activities	
3. Hospitalized, not requiring supplemental oxygen	
4. Hospitalized, requiring supplemental oxygen	
5. Hospitalized, on NIV or high flow oxygen devices	
6. Hospitalized, on IMV or ECMO	
7. Death	
Vital Signs	
Heart rate	
Systolic blood pressure	
Diastolic blood pressure	
Respiratory rate	
Body temperature	

Physical examination	
Blood test *	
Complete blood count (total leukocytes, % neutrophils, % lymphocytes, % eosinophils, % basophils, % monocytes), electrolytes (Na, K), liver function (AST, ALT, total bilirubin, ALP, GGT), renal function (creatinine, urea), and inflammatory markers (CRP, LDH), cortisol	
Spirometry	
FVC (absolute value)	
FVC (% of theoretical value)	
FEV1 (absolute value)	
FEV1 (% of theoretical value)	
FEV1/FVC (% of theoretical value)	
DLCO (absolute value)	
DLCO (% of theoretical value)	
KCO (% of theoretical value)	
6MWT	
Meters traveled	
Initial oxygen saturation	
Mean oxygen saturation	
Maximum desaturation	
Initial heart rate	
Final heart rate	
Chest CT *	
Localization	Unilateral and bilateral
Distribution	Central, peripheral, central + peripheral
Injuries	Simple, multiple, diffuse
Main Characteristics	Ground glass opacity, consolidation, linear opacities, reticulation, mixed type, nothing.
Comparison with the baseline CT	Improvement was defined as a 25% reduction in overall involvement compared to the previous chest CT. Stability was defined as no significant changes, and worsening was defined as a 25% increase in overall involvement compared to the previous chest CT
Adverse Effects	
Description	It was any harmful health incident, regardless of its causal relationship with the study drug. AEs were recorded throughout the study and up to 30 days after the administration of the last dose of prednisone.
Started time	
End date	
Intensity	Mild, moderate, intense, very intense
Serious	Yes or no
Have the patient received any concomitant treatment	
Causality	They were classified as related AEs when there was a temporal relationship with the administration of the medication indicating a possible causal relationship that could not be explained by other factors, or as unrelated AEs when the relationship with the study drug was unlikely or due to other factors such as the clinical condition or other therapeutic interventions.
Outcome	Recovered, recovered with residual effects, not yet recovered, death, unknown

* In this case, it was only repeated at the 6-month visit.

End points

The primary efficacy endpoint was the between-treatment comparison of the change in pulmonary diffusion capacity as measured by the baseline-adjusted predicted DLCO (%) from baseline to 6 months, in terms of non-inferiority using a non-inferiority margin of 10%.

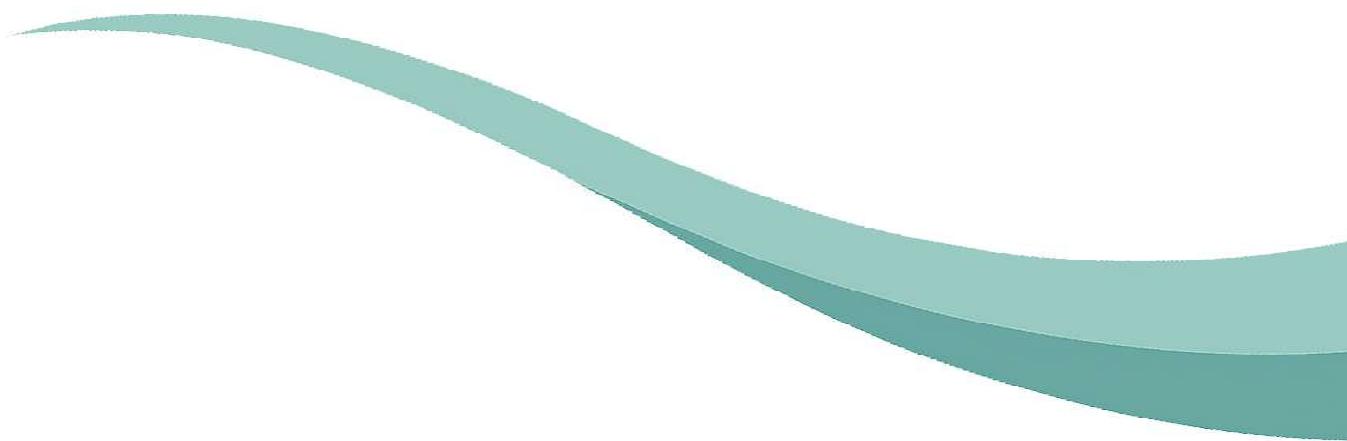
The secondary variables analysed included: the percentage of patients with DLCO values <80% predicted, FVC, FEV1, and FEV1/FVC% from forced spirometry, the distance covered in the 6MWT, the need to increase the oral corticosteroid dose or to start a new treatment period, parenchymal involvement on the chest CT, complications related to prednisone treatment (both severe and non-severe), complications of any type (both severe and non-severe), all-cause mortality, and the ordinal clinical improvement (the clinical variable recommended by the WHO R&D Blueprint expert group for the acute phase). This variable was assessed at each visit, and the worst score obtained during the study was recorded as a summary measure.

Sample size

Sixty patients per group were planned to be randomized to ensure an 80% statistical power for demonstrating the non-inferiority of the less intensive prednisone regimen compared to the established regimen for the predicted DLCO. This calculation was based on a non-inferiority margin of 10% and a SD of 14.3% and accounted for a potential imbalance of up to 2.5% against the experimental treatment, with a one-sided alpha value of 2.5%.

Statistical analysis

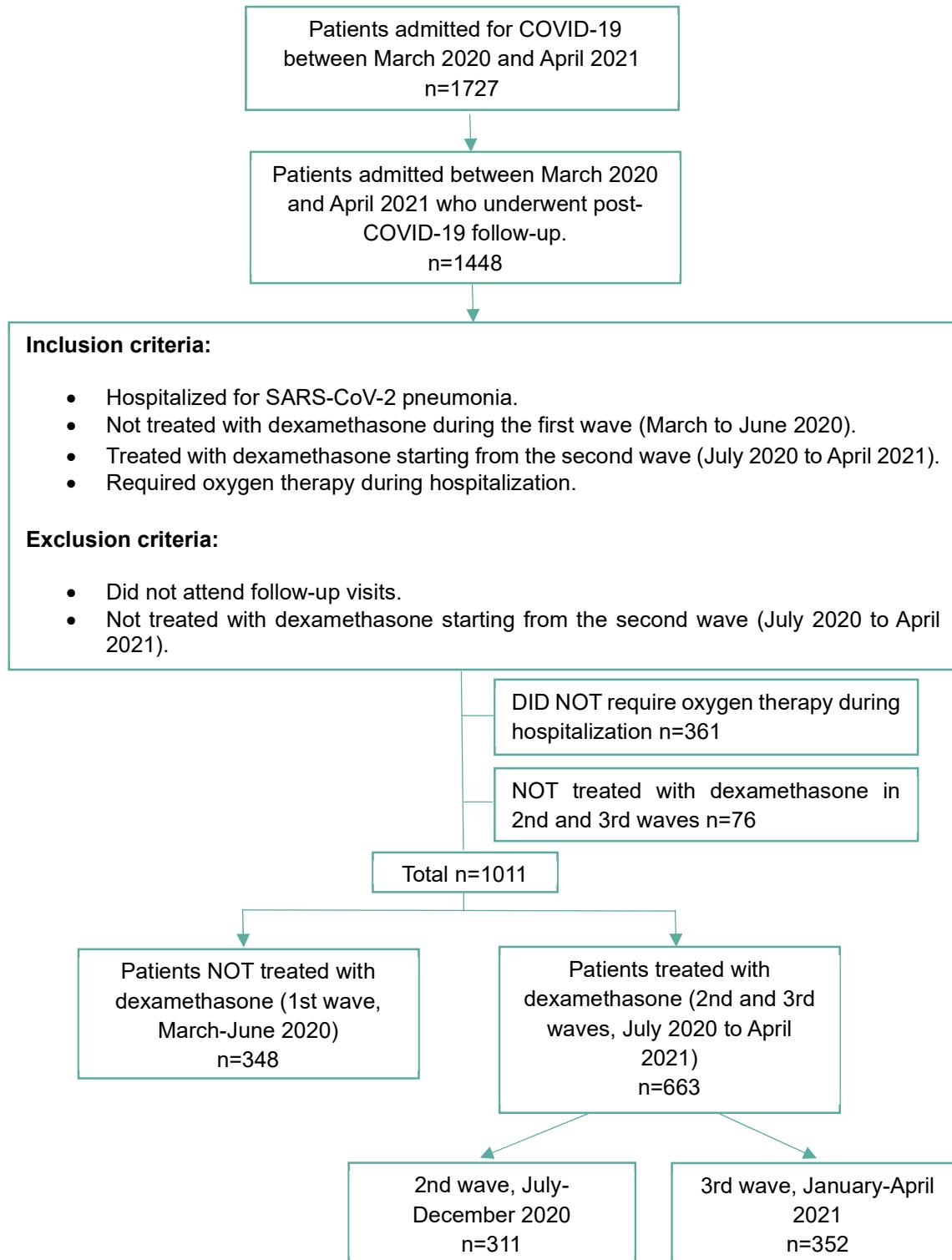
Two efficacy populations were predefined: the modified full analysis set (mFAS) based on the intention-to-treat principle and the per-protocol (PP) population. For the primary efficacy endpoint of non-inferiority, both mFAS and PP were co-primary, while mFAS was primary for the remaining endpoints.


Categorical variables were summarized using frequencies and percentages, and continuous variables were reported as mean \pm SD, or median with interquartile range (IQR), as appropriate.

The primary efficacy variable and Gaussian longitudinal continuous variables were analysed using a mixed model for repeated measures (MMRM), which deals appropriately with observations missing at random (MAR). The MMRM model included treatment, visit, treatment-by-visit interaction, and a continuous baseline variable, with a common unstructured covariance structure to model within-patient errors. Other variables were analysed using Fisher's exact test for categorical data, Student's t-test for Gaussian variables, and the Mann-Whitney test for non-Gaussian continuous and ordinal variables.

Analyses were performed using SAS 9.2 software (SAS Institute Inc., Cary, NC, USA), with a significance level of 0.05 (two-sided).

5. RESULTS



5.1. PART 1: ASSESS RESPIRATORY COMPLICATIONS

5.1.1. Impact of dexamethasone on respiratory sequelae in the follow-up of hospitalized patients with SARS-CoV-2 pneumonia

A total of 1,448 patients who had been hospitalized for SARS-CoV-2 pneumonia between March 2020 and April 2021 were evaluated at the post-COVID medical unit. All patients were diagnosed with pneumonia based on radiological findings on chest X-rays and a positive SARS-CoV-2 test. Patients who did not require oxygen therapy during hospitalization and those not treated with dexamethasone during the second and third waves were excluded, resulting in a final analysis of 1,011 patients. The patients were divided into two groups: 348 patients who were not treated with dexamethasone (first wave) and 663 patients who were treated with dexamethasone, further subdivided into 311 patients from the second wave and 352 patients from the third wave (Figure 9).

Figure 9: Patient Flowchart according to dexamethasone treatment

The mean age at admission was 58.9 years (± 12.7), and 387 patients (38.3%) were female.

Patients treated with dexamethasone were older, with a mean age of 59.5 years (± 12.5), compared to those not treated with dexamethasone, whose mean age was 57.8 years (\pm

13.1; $p = 0.044$). Smokers in the treated group had a higher pack-year history, 30 (18-50) vs. 25 (11-40) in the no treatment group ($p = 0.016$). Regarding comorbidities, patients treated with dexamethasone had a higher prevalence of obesity, with 309 patients (46.6%), and gastroesophageal reflux disease, with 32 patients (4.8%), compared to those not treated with dexamethasone, among whom 139 patients (39.9%) had obesity and three (0.9%) had gastroesophageal reflux disease, indicating a significant difference between the two groups ($p = 0.043$ and $p = 0.001$ respectively). No other significant differences were observed in baseline demographic characteristics or comorbidities between the two groups (Table 6).

Table 6: Baseline demographic characteristics of the study population according to dexamethasone treatment

	Total (n=1011)	No dexamethasone treatment (n=348)	Dexamethasone treatment (n=663)	p-value
Age at admission (years), mean (SD)	58.9 (12.7)	57.8 (13.1)	59.5 (12.5)	0.044
Sex, female, n (%)	387 (38.3)	138 (39.7)	249 (37.6)	0.514
BMI (kg/m²), mean (SD)	29.5 (5.0)	29.1 (5.0)	29.7 (4.9)	0.073
Race, n (%)				
White	729 (72.1)	254 (73.0)	475 (71.6)	0.547
Asian	10 (1.0)	5 (1.4)	5 (0.8)	
Black	11 (1.1)	5 (1.4)	6 (0.9)	
Hispanic/Latino	247 (24.4)	81 (23.2)	166 (25.0)	
Other	14 (1.4)	3 (1.0)	11 (1.7)	
Smoking status, n (%)				
Active smokers	44 (4.4)	15 (4.3)	29 (4.4)	0.790
Former smokers	351 (34.7)	116 (33.3)	235 (35.4)	
Non-smokers	616 (60.9)	217 (62.4)	399 (60.2)	
Pack-years, median (IQR)	32.2 (22.8)	25 (11-40)	30 (18-50)	0.016
Comorbidities, n (%)				
Hypertension	423 (41.8)	147 (42.2)	276 (41.6)	0.851
Obesity	448 (44.3)	139 (39.9)	309 (46.6)	0.043
Diabetes	219 (21.7)	69 (19.8)	150 (22.6)	0.305
Renal insufficiency	73 (7.2)	26 (7.5)	47 (7.1)	0.823
Immunosuppression	50 (5.0)	20 (5.6)	30 (4.5)	0.394
Ischemic heart disease	53 (5.2)	12 (3.5)	41 (6.2)	0.064
Heart failure	28 (2.8)	11 (3.2)	17 (2.6)	0.583
Atrial fibrillation	42 (4.2)	15 (4.3)	27 (4.1)	0.857
Solid cancer	91 (9.0)	34 (9.8)	57 (8.6)	0.536
Leukemia	18 (1.8)	8 (2.3)	10 (1.5)	0.366

RESULTS

Psychiatric disorder	129 (12.8)	43 (12.4)	86 (13.0)	0.781
Gastroesophageal reflux	35 (3.5)	3 (0.9)	32 (4.8)	0.001
Respiratory comorbidities, n (%)				
Asthma	45 (4.5)	13 (3.7)	32 (4.8)	0.424
Obstructive sleep apnea (OSA)	78 (7.7)	24 (6.9)	54 (8.1)	0.503
Chronic obstructive pulmonary disease (COPD)	51 (5.0)	14 (4.0)	37 (5.6)	0.282
Bronchiectasis	12 (1.2)	3 (0.9)	9 (1.4)	0.490
Cystic fibrosis	1 (0.1)	0 (0.0)	1 (0.2)	0.999
Pulmonary arterial hypertension	9 (0.9)	5 (1.4)	4 (0.6)	0.288
Pulmonary fibrosis	2 (0.2)	2 (0.6)	0 (0.0)	0.118
Other interstitial lung disease	11 (1.1)	5 (1.4)	6 (0.9)	0.526
Scoliosis/kyphosis	9 (0.9)	1 (0.3)	8 (1.2)	0.176
Thoracic trauma	8 (0.8)	2 (0.6)	6 (0.9)	0.722

Patients treated with dexamethasone had a shorter hospital stay than those not treated, with median values of 10 days (6-16) vs. 17 days (10-34) respectively ($p < 0.001$). Additionally, 259 (39.1%) of the patients treated with dexamethasone were admitted to the ICU, compared to 200 (57.5%) of those not treated ($p < 0.001$). ICU stay was also shorter for the treated group, with a median of 8 days (5-16) compared to 12 days (6-24) for the untreated group ($p = 0.007$). Patients treated with dexamethasone required a lower FiO_2 , and fewer needed ventilatory support during hospitalization; they presented lower rates of acute respiratory distress, and fewer secondary infections, septic shock, and deep vein thrombosis. Table 7 presents the remaining hospitalization variables according to dexamethasone treatment.

Table 7: Hospitalization Variables According to Dexamethasone Treatment and subanalysis of the treated group according to the pandemic wave.

	Total (n=1011)	Without DEX treatment 1 st wave (n=348)	With DEX treatment (n=663)	p-value	With DEX treatment subanalysis (n=663)		
					2 nd wave (n=311)	3 rd wave (n=352)	p-value
Duration of hospital stay (days), median (p25-p75)	12 (7-21)	17 (10-34)	10 (6-16)	<0.001	10 (6-17)	9 (6-15)	0.046
ICU admission, n (%)	45 (45.4)	200 (57.5)	259 (39.1)	<0.001	122 (39.2)	137 (38.9)	0.935
Duration of ICU stay (days), median (p25-p75)	10 (5-20)	12 (6-24)	8 (5-16)	0.007	11 (5-21)	7 (5-14)	0.008
Oxygen therapy, n (%)							
Yes	1011 (100)	348 (100)	663 (100)	--	311 (100)	352 (100)	--
FiO ₂ <40	487 (48.2)	109 (31.3)	378 (57.0)	<0.001	177 (56.9)	201 (57.1)	0.961
FiO ₂ >40	524 (51.8)	239 (68.7)	285 (43.0)		134 (43.1)	151 (42.9)	
Ventilatory support, n (%)							
None	509 (50.3)	112 (32.2)	397 (59.9)	<0.001	185 (59.5)	212 (60.2)	0.846
HFNC	448 (44.3)	182 (52.3)	266 (40.1)	<0.001	127 (40.8)	139 (39.5)	0.724
NIV	43 (4.3)	29 (8.3)	14 (2.1)	<0.001	9 (2.9)	5 (1.4)	0.188
IMV	241 (23.8)	138 (39.7)	103 (15.5)	<0.001	55 (17.7)	48 (13.6)	0.151
ECMO	7 (0.7)	6 (1.7)	1 (0.1)	0.008	0 (0.0)	1 (0.3)	0.999
Type Rx of lung involvement at hospital admission, n (%)							
Alveolar infiltrate	929 (91.9)	308 (88.5)	621 (93.7)	0.004	282 (90.7)	339 (96.3)	0.003
Pleural effusion	2 (0.3)	2 (0.6)	0 (0.0)	0.118	0 (0.0)	0 (0.0)	--
Interstitial pattern	117 (11.6)	68 (19.5)	49 (7.4)	<0.001	38 (12.2)	11 (3.1)	<0.001
Atelectasis	5 (0.5)	2 (0.6)	3 (0.5)	0.999	1 (0.3)	2 (0.6)	0.999
Other	5 (0.5)	1 (0.3)	4 (0.6)	0.665	4 (1.3)	0 (0.0)	0.048
Laterality							
Unilateral	97 (9.6)	37 (10.6)	60 (9.1)	0.421	32 (10.3)	28 (7.9)	0.290
Bilateral	913 (90.4)	311 (89.4)	602 (90.9)		278 (89.7)	324 (92.1)	
Extent of lung involvement							
<33%	311 (32.8)	81 (23.3)	250 (37.8)	<0.001	115 (37.1)	135 (38.4)	0.180
33-66%	470 (46.5)	166 (47.7)	304 (45.9)		152 (49.0)	152 (43.2)	
>66%	209 (20.7)	101 (29.0)	108 (16.3)		43 (13.9)	65 (18.5)	

RESULTS

Secondary complications, n (%)							
Acute respiratory distress	440 (43.5)	179 (51.4)	261 (39.4)	<0.001	122 (39.2)	139 (39.5)	0.945
Heart failure	18 (1.8)	5 (1.4)	13 (1.9)	0.626	7 (2.3)	6 (1.7)	0.613
Septic shock	28 (2.8)	19 (5.5)	9 (1.4)	<0.001	6 (1.9)	3 (0.9)	0.230
Acute cardiac injury	8 (0.8)	4 (1.2)	4 (0.6)	0.465	1 (0.3)	3 (0.9)	0.627
Acute kidney injury	79 (7.8)	31 (8.9)	48 (7.3)	0.355	20 (6.5)	28 (7.9)	0.451
Secondary infection	24 (24.5)	107 (30.8)	141 (21.3)	0.001	63 (20.3)	78 (22.2)	0.550
Pneumothorax	15 (1.5)	5 (1.4)	10 (1.5)	0.924	5 (1.6)	5 (1.4)	0.851
Cerebrovascular accident	8 (0.8)	4 (1.2)	4 (0.6)	0.353	1 (0.3)	3 (0.9)	0.380
Pulmonary embolism	47 (4.7)	15 (4.3)	32 (4.8)	0.771	18 (5.8)	14 (3.9)	0.278
Deep vein thrombosis	42 (4.2)	24 (7.0)	18 (2.7)	0.001	9 (2.9)	9 (2.6)	0.790
Corticosteroid treatment, n (%)							
Corticosteroids (yes)	756 (74.8)	93 (26.7)	663 (100)	<0.001	311 (100)	352 (100)	NA
Type of corticosteroids							
Prednisone	30 (4.0)	19 (20.4)	11 (1.7)	<0.001	2 (0.6)	9 (2.6)	0.054
Methylprednisolone	105 (13.9)	80 (86.0)	25 (3.8)	<0.001	11 (3.5)	14 (4.0)	0.766
Dexamethasone	663 (87.7)	0 (0.0)	663 (100)	<0.001	311 (100)	352 (100)	NA
Hydrocortisone	7 (0.9)	7 (7.5)	0 (0.0)	<0.001	0 (0.0)	0 (0.0)	NA
Cumulative dose of corticosteroids, median (p25-p75)	375 (375-375)	577 (356-1125)	375 (375-375)	<0.001	375 (375-375)	375 (375-375)	0.561
Other treatments, n (%)							
Hydroxychloroquine	328 (32.4)	327 (93.7)	1 (0.2)	<0.001	1 (0.3)	0 (0.0)	0.469
Lopinavir/ritonavir	257 (25.4)	257 (73.9)	0 (0.0)	<0.001	--	--	--
Darunavir/cobicistat	26 (2.6)	26 (7.5)	0 (0.0)	<0.001	--	--	--
Antibiotics	585 (57.9)	335 (96.3)	250 (37.7)	<0.001	133 (42.8)	117 (33.2)	0.012
Baricitinib	1 (0.10)	0 (0.0)	1 (0.15)	0.999	0 (0.0)	1 (0.3)	0.999
Remdesivir	56 (5.5)	6 (1.7)	50 (7.5)	<0.001	50 (16.1)	0 (0.0)	<0.001
Tocilizumab	179 (17.7)	156 (44.8)	23 (3.5)	<0.001	19 (6.1)	4 (1.1)	<0.001
Convalescent plasma	7 (0.7)	0 (0.0)	7 (1.1)	0.103	6 (1.9)	1 (0.3)	0.055

Regarding post-COVID-19 follow-up, patients treated with dexamethasone were seen later, after a median of 180 days (109-262) compared to 92 days (61-182) for those not treated ($p < 0.001$). Clinically, patients treated with dexamethasone experienced proportionally lower levels of dyspnea, recorded in 188 patients (28.4%) compared to 131 patients (37.6%)

in the non-dexamethasone group ($p = 0.003$). Comparing patients treated with dexamethasone between the second and third waves, those from the later wave reported significantly less dyspnea. There were no significant differences in the other symptoms reported during the follow-up consultations. In pulmonary function tests, the DLCO of patients treated with dexamethasone was better at 76.9% (± 15.6), compared to 69.9% (± 20.7); similarly, patients from the third wave had better DLCO values than those from the second wave. There were no differences in the other spirometry values. Regarding the 6MWT, patients treated with dexamethasone walked a greater distance and had a better average oxygen saturation (Table 8).

Table 8: Clinical and functional data during post-COVID-19 follow-up according to dexamethasone treatment and subanalysis of the treated group according to the pandemic wave.

	Total (n=1011)	Without DEX treatment 1 st wave (n=348)	With DEX treatment (n=663)	p-value	With DEX treatment subanalysis (n=663)		
					2 nd wave (n=311)	3 rd wave (n=352)	p-value
Time from discharge to post- COVID consultation (days), median (p25-p75)	144 (92-251)	92 (61-182)	180 (109-262)	<0.001	138 (103-261)	238 (123-262)	<0.001
Symptoms, n (%)							
Cough	71 (7.0)	23 (6.6)	48 (7.2)	0.709	19 (6.1)	29 (8.2)	0.291
Expectoration	17 (1.7)	6 (1.7)	11 (1.7)	0.939	5 (1.6)	6 (1.7)	0.922
Dyspnea	319 (31.6)	131 (37.6)	188 (28.4)	0.003	105 (33.8)	83 (23.6)	0.004
Chest pain	35 (3.5)	14 (4.0)	21 (3.2)	0.480	12 (3.9)	9 (2.6)	0.340
Dyspnea (mMRC; 0-4), median (p25- p75)	1 (1-2)	1 (1-2)	1 (1-2)	0.989	1 (1-2)	1 (1-2)	0.174
Pulmonary function, mean (SD)							
FVC (% predicted)	90.4 (17.8)	91.2 (19.1)	90.0 (17.0)	0.477	88.3 (17.2)	91.5 (16.6)	0.026
FEV1 (% predicted)	92.7 (19.3)	94.3 (21.4)	91.9 (18.0)	0.075	90.5 (18.3)	93.1 (17.7)	0.091
FEV1/FVC (%)	80.7 (7.6)	81.6 (8.1)	80.2 (7.2)	0.005	80.3 (7.2)	80.1 (7.3)	0.724
DLCO (% predicted)	74.4 (20.2)	69.9 (20.7)	76.9 (15.6)	<0.001	74.9 (19.0)	78.8 (19.9)	0.013
KCO (% predicted)	85.1 (17.6)	81.1 (16.8)	87.4 (17.7)	<0.001	85.0 (15.7)	89.7 (19.1)	<0.001

RESULTS

6-minute walk test, mean (SD)							
Distance (m), median (p25-p75)	420 (360-480)	405 (360-465)	435 (360-480)	0.002	435 (360-480)	435 (375-484)	0.233
Baseline SpO ₂ (%)	96.9 (1.7)	96.3 (1.8)	97.3 (1.9)	<0.001	96.8 (1.9)	98.0 (1.7)	<0.001
Lowest SpO ₂ (%)	93.2 (4.1)	92.6 (4.2)	93.7 (3.8)	<0.001	93.2 (3.5)	94.3 (4.2)	<0.002
Mean SpO ₂ (%)	94.9 (3.1)	94.2 (3.1)	95.4 (3.0)	<0.001	94.9 (2.9)	96.0 (3.1)	<0.001

Radiologically, there were no differences in the number of pathological chest CT scans across the different groups. However, there were differences in the type of parenchymal involvement, with a notable decrease in reticulation observed in the dexamethasone-treated group (23 [4.4%]) compared to the non-dexamethasone group (28 [9.5%]). As for interstitial changes, there were clear differences between the groups: patients treated with dexamethasone had significantly fewer septal thickenings (30 [5.8%]) and less fibrosis (18 [3.5%]) compared to those not treated with dexamethasone, who presented 31 (10.5%) cases of septal thickening and 46 (15.6%) cases of fibrosis. It is important to note that in this case, there were no differences between patients in the second and third waves, during which time both groups received dexamethasone. In the thoracic CT scans, no clear differences were observed in the percentage of bronchial involvement between the two groups. However, differences were noted in the type of bronchial involvement; patients treated with dexamethasone exhibited fewer cases of bronchiolitis 37 cases (10.3%) compared to 61 cases (33.3%) in the untreated group ($p < 0.001$). Additionally, patients treated with dexamethasone showed a higher prevalence of bronchiectasis, which was recorded in 269 cases (74.9%) compared to 117 cases (63.9%) in the non-treated group ($p = 0.007$), and greater bronchial thickening, recorded in 227 cases (63.2%) compared to 70 cases (38.3%) among those not treated ($p < 0.001$) (Table 9).

Table 9: Description of chest CT findings during post-COVID-19 follow-up according to dexamethasone treatment and subanalysis of the treated group according to the pandemic wave.

	Total (n=1011)	Without DEX treatment 1 st wave (n=348)	With DEX treatment (n=663)	p-value	With DEX treatment subanalysis (n=663)		
					2 nd wave (n=311)	3 rd wave (n=352)	p-value
Pathological, n (%)	816 (81.9)	294 (84.7)	522 (80.4)	0.093	251 (81.5)	271 (79.5)	0.517
Parenchymal Involvement, n (%)							
Ground-glass opacity	209 (25.6)	73 (24.8)	136 (26.1)	0.009	65 (25.9)	71 (26.2)	0.449
Consolidation	6 (0.7)	5 (1.7)	1 (0.2)		1 (0.4)	0 (0.0)	
Linear opacities	54 (6.6)	21 (7.1)	33 (6.3)		11 (4.4)	22 (8.1)	
Reticulation	51 (6.3)	28 (9.5)	23 (4.4)		13 (5.2)	10 (3.7)	
Mixed type *	373 (45.7)	122 (41.5)	251 (48.1)		123 (49.0)	128 (47.2)	
None	123 (15.1)	45 (15.3)	78 (14.9)		38 (15.1)	40 (14.8)	
Interstitial, n (%)							
Septal thickening	61 (7.5)	31 (10.5)	30 (5.8)	0.012	11 (4.4)	19 (7.0)	0.197
Crazy paving	4 (0.5)	2 (0.7)	2 (0.4)	0.622	0 (0.0)	2 (0.7)	0.500
Fibrosis	64 (7.8)	46 (15.6)	18 (3.5)	<0.001	8 (3.2)	10 (3.7)	0.753
No	690 (84.6)	223 (75.9)	467 (89.5)	<0.001	224 (89.2)	243 (89.7)	0.874
Bronchial Involvement, n (%)							
Bronchial Involvement	542 (66.4)	183 (62.2)	359 (68.8)	0.058	175 (69.7)	184 (67.9)	0.653
Type of bronchial involvement, n (%)							
Bronchiectasis	386 (71.2)	117 (63.9)	269 (74.9)	0.007	121 (69.1)	148 (80.4)	0.014
Bronchial thickening	297 (54.8)	70 (38.3)	227 (63.2)	<0.001	109 (62.3)	118 (64.1)	0.717
Bronchiolitis	98 (18.1)	61 (33.3)	37 (10.3)	<0.001	29 (16.6)	8 (4.4)	<0.001
Tracheomalacia	18 (3.3)	7 (3.8)	11 (3.1)	0.640	2 (1.1)	9 (4.9)	0.062

*Mixed type: patient presents two of the other conditions

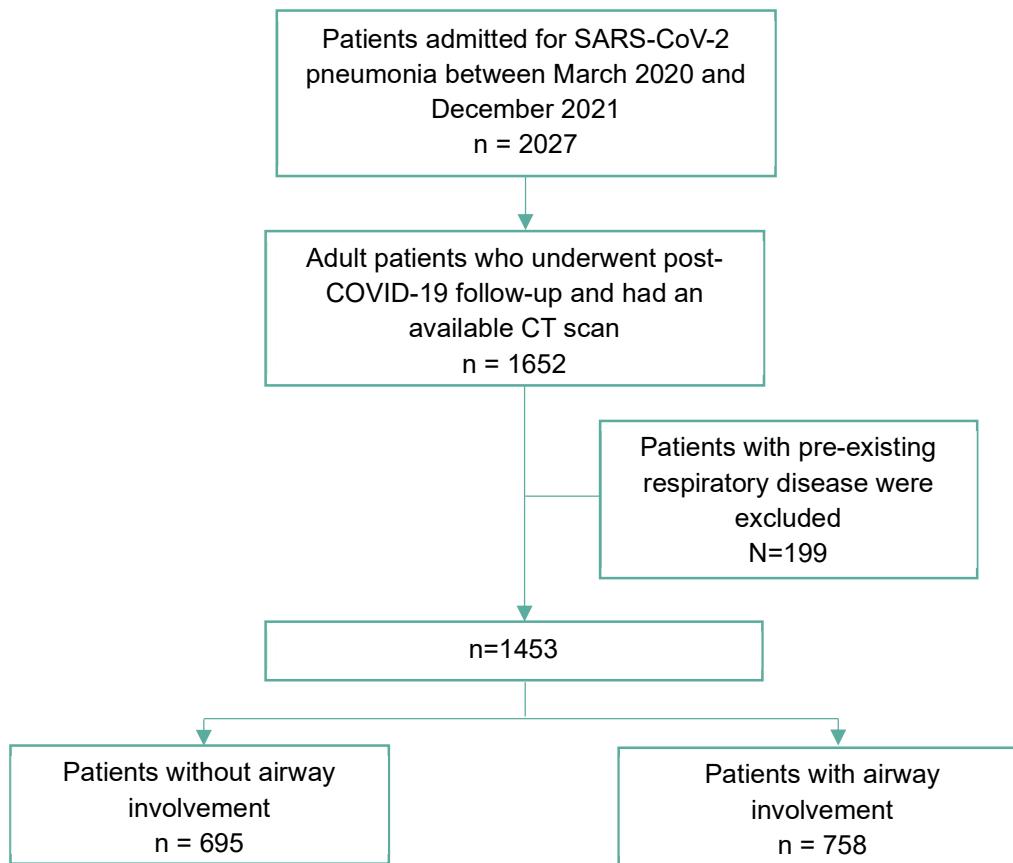
In the multivariate analysis, a linear regression model was created to evaluate the association between dexamethasone treatment and alveolar-capillary diffusion, adjusted for potential confounding factors such as age, sex, severity during hospitalization, and time from discharge to post-COVID visit. The model showed a mean DLCO of 81.24% (95% confidence interval [CI]: 71.22, 91.26) with a significant improvement of 9.25% (95% CI: 0.50, 18.00; p = 0.038) among patients treated with dexamethasone, even after adjustment

RESULTS

for confounding variables. In the logistic regression model assessing the association between dexamethasone treatment and the presence of fibrosis on follow-up CT scans, adjusted for confounding factors, it was found that patients treated with dexamethasone had a lower likelihood of fibrosis on follow-up, with an Odds Ratio (OR) of 0.24 (95% CI: 0.12, 0.49; $p < 0.001$) (Table 10).

Table 10: Adjusted analysis using a multiple linear regression model of the relationship between dexamethasone treatment during hospital admission and the value of DLCO assessed at follow-up, and adjusted analysis using a logistic regression model of the relationship between dexamethasone treatment and the presence of fibrosis in follow-up CT.

DLCO (% predicted)		
	Coefficient [†] (95% CI)	p-value
Constant *	81.24 (71.22-91.26)	<0.001
Dexamethasone treatment	9.25 (0.50-18.00)	0.038
Age at admission (years)	-0.25 (-0.34- -0.15)	<0.001
Sex (male)	3.54 (1.01-6.00)	0.005
BMI (kg/m ²)	0.92 (0.67-1.71)	<0.001
Fibrosis on admission X-ray	-1.27 (-5.01-2.47)	0.506
Lung transplant patient	-27.16 (-44.76- -9.56)	0.003
FiO ₂ >40%	-5.71 (-8.66- -2.76)	<0.001
Non-invasive ventilation (NIV)	-6.32 (-9.76- -2.88)	<0.001
Invasive mechanical ventilation (IMV)	-10.27 (-16.55- -4.01)	0.001
Hydroxychloroquine on admission	10.22 (1.52-18.91)	0.021
Tocilizumab on admission	-1.97 (-5.64-1.70)	0.292
Duration of hospital stay (days)	-0.06 (-0.11- -0.01)	0.025
Time from discharge to post-COVID consultation	0.03 (0.02-0.05)	0.021
Presence of fibrosis on follow-up CT scan		
	OR (95% CI)	p-value
Dexamethasone treatment	0.24 (0.12-0.49)	<0.001
Age at admission (years)	1.04 (1.02-1.07)	0.001
Sex (Male)	1.35 (0.74-2.45)	0.330
BMI (kg/m ²)	0.93 (0.87-0.99)	0.032
Fibrosis on admission X-ray	0.71 (0.31-1.01)	0.409
FiO ₂ >40%	2.45 (1.07-5.61)	0.034
Non-invasive ventilation (NIV)	2.62 (1.38-4.99)	0.003
Tocilizumab on admission	0.77 (0.39-1.51)	0.452
Time from discharge to post-COVID consultation	0.98 (0.99-1.00)	0.467


*: Adjusted mean value based on the multiple linear regression equation corresponding to the mean DLCO (% predicted) in a subject with average values for continuous variables and the reference category for categorical variables.

†: The coefficients represent an increase or decrease in percentage units of DLCO for (i) each unit of the continuous variables, or (ii) the difference relative to the reference category in the categorical variables.

5.1.2. Airway sequelae in post-acute COVID-19 syndrome

Among the 2,027 patients admitted for SARS-CoV-2 pneumonia between March 2020 and December 2021, 1,652 had post-COVID-19 follow-up visit with an available chest CT scan. Of these 1,652 patients, 199 were excluded due to pre-existing respiratory diseases, specifically: 80 with asthma, 71 with COPD, 13 with bronchiectasis, 2 with cystic fibrosis, 8 with pulmonary hypertension, 20 with ILD, 5 with a history of lung transplantation, 13 with kyphoscoliosis, and 10 with prior thoracic trauma (note: some patients had multiple comorbidities).

The remaining patients were divided into two groups based on the presence or absence of airway involvement on chest CT: 758 patients exhibited airway abnormalities, while 695 did not. Among those with airway involvement: 527 patients (69.5%) had bronchiectasis, 435 (57.4%) had bronchial wall thickening, 122 (16.1%) had bronchiolitis, and 22 (2.9%) had tracheomalacia. Notably, a single patient could present with more than one airway abnormality (Figure 10).

Figure 10. Patient flowchart according to airway involvement

The mean age at admission was 56.8 years (± 13.3). Patients with airway involvement were older, with a mean age of 60.1 years (± 12.2), compared to those without airway involvement, whose mean age was 53.2 years (± 13.5 ; $p < 0.001$). In patients with airway involvement, there was a predominance of males, comprising 63.1%, compared to 55.5% in those without airway involvement ($p = 0.004$). Additionally, these patients had a slightly lower BMI, with a mean of 29 kg/m^2 (± 4.8) compared to 29.9 (± 5.3) in those without airway involvement ($p = 0.016$). Regarding race, there was a higher proportion of White patients among those with airway involvement, 73.5%, compared to 65.1% of those without airway involvement ($p = 0.005$). Smoking or ex-smoking status was more prevalent in patients with airway involvement compared to non-smokers ($p < 0.001$). Furthermore, a positive correlation was found with the pack-year history, as patients with a higher pack-year history had a greater likelihood of airway involvement ($p = 0.036$).

Regarding comorbidities, patients with airway involvement had a higher prevalence of hypertension, with 314 patients (41.4%) compared to 213 (30.7%) in those without airway involvement ($p < 0.001$). Diabetes was present in 165 patients (21.8%) vs. 109 (15.7%) ($p = 0.003$), ischemic heart disease in 45 (5.9%) vs. 18 (2.6%) ($p = 0.002$), heart failure in 17 (2.2%) vs. 5 (0.7%) ($p = 0.018$), and other heart diseases in 70 (9.2%) vs. 42 (6%) ($p = 0.024$) in patients with and without airway involvement, respectively (Table 11).

Table 11: Baseline demographic characteristics of the study population according to airway involvement

	Total (n=1453)	Not airway involvement (n=695)	With airway involvement (n=758)	p-value
Age at admission (years), mean (SD)	56.8 (13.3)	53.2 (13.5)	60.1 (12.2)	<0.001
BMI (kg/m ²), mean (SD)	29.5 (5.1)	29.9 (5.3)	29 (4.8)	0.016
Sex, n (%)				
Male	864 (59.5)	386 (55.5)	478 (63.1)	0.004
Female	589 (40.5)	309 (44.5)	280 (36.9)	
Race, n (%)				
White	1008 (69.5)	452 (65.1)	656 (73.5)	0.005
Asian	32 (2.2)	20 (2.9)	12 (1.6)	
Black	17 (1.2)	10 (1.4)	7 (0.9)	
Hispanic/Latino	394 (27.2)	212 (30.6)	182 (24)	
Smoking status, n (%)				
Active smokers	60 (4.1)	21 (3)	39 (5.2)	<0.001
Former smokers	443 (30.5)	184 (26.5)	259 (34.2)	
Non-smokers	950 (65.4)	490 (70.5)	460 (60.7)	
Pack-years, median (p25-p75)	26 (15-40)	20 (10-30)	30 (16-40)	0.036
Comorbidities, n (%)				
Hypertension	527 (36.3)	213 (30.7)	314 (41.4)	<0.001
Obesity	623 (42.9)	315 (45.3)	308 (40.6)	0.071
Diabetes	274 (18.9)	109 (15.7)	165 (21.8)	0.003
Renal insufficiency	86 (5.9)	41 (5.9)	45 (5.9)	0.999
Immunosuppression	73 (5.0)	33 (4.8)	40 (5.3)	0.719
Ischemic heart disease	63 (4.3)	18 (2.6)	45 (5.9)	0.002
Heart failure	22 (1.5)	5 (0.7)	17 (2.2)	0.018
Atrial fibrillation	41 (2.8)	18 (2.6)	23 (3.0)	0.639
Other heart diseases	112 (7.7)	42 (6.0)	70 (9.2)	0.024
Solid cancer	107 (7.4)	45 (6.5)	62 (8.2)	0.214
Leukemia	22 (1.5)	10 (1.4)	12 (1.6)	0.834
Psychiatric disorder	176 (12.1)	83 (11.9)	93 (12.3)	0.849
Gastroesophageal reflux	41 (2.8)	16 (2.3)	25 (3.3)	0.252

RESULTS

Patients with airway involvement during hospitalization for SARS-CoV-2 pneumonia had a longer hospital stay, with a median of 11 days (6-23) compared to 8 days (5-15) ($p < 0.001$). A higher proportion of patients with airway involvement required ICU admission (44.2% vs. 35.9%; $p = 0.001$), and their ICU stay was significantly longer (12 days [7-25] vs. 9 days [4-19]; $p = 0.001$).

Patients requiring oxygen therapy, regardless of FiO_2 levels, exhibited higher airway involvement (81.3% vs. 74.2%; $p = 0.001$). Similarly, patients with airway involvement had greater ventilatory support requirements, including invasive mechanical ventilation (25.6% vs. 18.4%, $p = 0.001$) and high-flow nasal cannula therapy (42.7% vs. 34.9%; $p = 0.002$).

Moreover, patients with airway involvement showed significantly elevated inflammatory markers upon admission compared to those without airway involvement. Additionally, a greater extent of lung involvement was observed on admission chest radiographs in these patients. All relevant data is presented in Table 12.

Table 12: Hospitalization Variables According to Airway involvement: clinical, blood test and X-ray

	Total (n=1453)	Not airway involvement (n=695)	With airway involvement (n=758)	p-value
Duration of hospital stay (days), median (p25-p75)	10 (5-19)	8 (5-15)	11 (6-23)	<0.001
ICU admission, n (%)	585 (40.3)	250 (35.9)	335 (44.2)	0.001
Duration of ICU stay (days), median (p25-p75)	11 (5-22)	9 (4-19)	12 (7-25)	<0.001
Oxygen therapy, n (%)				
Yes	1132 (77.9)	516 (74.2)	616 (81.3)	0.001
$\text{FiO}_2 < 40$	495 (43.7)	238 (46.1)	257 (41.7)	0.137
$\text{FiO}_2 > 40$	637 (56.3)	278 (53.9)	359 (58.3)	
Ventilatory support, n (%)				
None	829 (57.1)	427 (61.4)	402 (53.0)	0.001
HFNC	567 (39.0)	243 (34.9)	324 (42.7)	0.002
NIV	38 (2.6)	13 (1.9)	25 (3.3)	0.088
IMV	322 (22.2)	128 (18.4)	194 (25.6)	0.001
ECMO	11 (0.8)	5 (0.7)	6 (0.8)	0.874

Blood test on admission, median (p25-p75)				
Leukocytes (x 10 ⁹ /L)	6.4 (4.9-8.2)	6.3 (4.8-7.9)	6.5 (5.0-8.5)	0.067
Neutrophils (%)	76.8 (68.6-83.2)	75.8 (68.0-82.4)	77.6 (69.6-83.9)	0.025
Lymphocytes (%)	15.7 (10.7-22.5)	16.7 (11.8-23.4)	15.0 (9.8-21.6)	<0.001
Fibrinogen (g/L)	5.4 (4.7-6.2)	5.3 (4.6-6.1)	5.4 (4.7-6.2)	0.023
D-dimer (ng/mL)	233 (160-401)	224 (153-378)	244 (170-423)	0.008
PCR (mg/dL)	9.4 (4.5-15.2)	8.8 (4.1-14.6)	10.0 (5.2-15.4)	0.017
IL-6 (pg/mL)	45.9 (24.8-83.1)	41.9 (23.2-74.7)	49.5 (26.6-90.0)	0.001
Ferritin (ng/mL)	554 (320-989)	493 (261-944)	597 (347-1039)	0.001
LDH (UI/L)	335 (276-421)	326 (270-411)	343 (283-428)	0.006
Type Rx of lung involvement at hospital admission, n (%)				
Alveolar infiltrate	1336 (91.9)	637 (91.7)	699 (92.2)	0.694
Pleural effusion	1 (0.1)	0 (0.0)	1 (0.1)	0.999
Interstitial pattern	150 (10.3)	79 (11.4)	71 (9.4)	0.211
Atelectasis	9 (0.6)	4 (0.6)	5 (0.7)	0.999
Other	6 (0.4)	3 (0.4)	3 (0.4)	0.999
Laterality				
Unilateral	163 (11.2)	81 (11.7)	82 (10.8)	0.619
Bilateral	1290 (88.8)	614 (88.4)	676 (89.2)	
Extent of lung involvement				
<33%	570 (39.2)	283 (40.7)	287 (37.8)	0.288
33-66%	629 (43.3)	301 (43.3)	328 (43.2)	
>66%	254 (17.5)	111 (15.9)	143 (18.9)	

Regarding secondary complications, patients with airway involvement had a higher incidence of acute respiratory distress, with 42.9% compared to 34.4% in those without airway involvement ($p = 0.001$). Airway involvement was also associated with a higher rate of heart failure (2.1% vs. 0.6; $p = 0.012$). Additionally, patients with airway involvement had a higher prevalence of secondary infections (27.4% vs. 16.9%; $p < 0.001$) and septic shock (3.7% vs. 1.3%; $p = 0.004$). Furthermore, deep vein thrombosis was more common in patients with airway involvement (5.5% vs. 2.7%; $p = 0.012$). In terms of acute phase treatment, a significant difference was observed in antibiotic use, with 57.1% of patients with airway involvement requiring antibiotics compared to 48.6% in those without airway involvement ($p = 0.001$). No other treatment approaches appeared to influence airway involvement (Table 13).

RESULTS

Table 13: Hospitalization Variables According to Airway involvement: secondary complications and treatment

	Total (n=1453)	Not airway involvement (n=695)	With airway involvement (n=758)	p-value
Secondary complications, n (%)				
Acute respiratory distress	564 (38.8)	239 (34.4)	325 (42.9)	0.001
Heart failure	20 (1.4)	4 (0.6)	16 (2.1)	0.012
Septic shock	37 (2.6)	9 (1.3)	28 (3.7)	0.004
Acute cardiac injury	14 (1.0)	5 (0.7)	9 (1.2)	0.286
Acute kidney injury	113 (7.8)	38 (5.5)	75 (9.9)	0.002
Secondary infection	325 (22.4)	118 (16.9)	207 (27.4)	<0.001
Pneumothorax	19 (1.3)	7 (1.0)	12 (1.6)	0.329
Cerebrovascular accident	10 (0.7)	3 (0.4)	7 (0.9)	0.346
Pulmonary embolism	58 (4.0)	34 (4.9)	24 (3.2)	0.108
Deep vein thrombosis	60 (4.2)	19 (2.7)	41 (5.5)	0.012
Treatment, n (%)				
Hydroxychloroquine	381 (26.2)	187 (26.9)	194 (25.6)	0.570
Lopinavir/ritonavir	306 (21.1)	161 (23.2)	145 (19.1)	0.059
Darunavir/cobicistat	31 (2.1)	18 (2.6)	13 (1.7)	0.249
Antibiotics	771 (53.1)	338 (48.6)	433 (57.1)	0.001
Baricitinib	2 (0.1)	1 (0.1)	1 (0.1)	0.999
Remdesivir	56 (4.3)	24 (3.8)	32 (4.8)	0.350
Tocilizumab	209 (14.4)	91 (13.1)	118 (15.6)	0.180
Convalescent plasma	8 (0.6)	4 (0.6)	4 (0.6)	0.953
Corticosteroids (yes)	879 (60.5)	407 (58.6)	472 (62.3)	0.149
Type of corticosteroids				
Prednisone	35 (4.0)	16 (3.9)	19 (4.0)	0.943
Methylprednisolone	154 (17.5)	71 (17.4)	83 (17.6)	0.947
Dexamethasone	766 (87.1)	349 (85.8)	417 (88.4)	0.251
Hydrocortisone	10 (1.1)	6 (1.5)	4 (0.85)	0.527

The post-COVID-19 follow-up visit was conducted at 157 days (100-252). There were no significant clinical differences between patients with and without airway involvement. Regarding functional tests, a slight decrease in diffusion capacity was observed, with a mean of 76.5% (\pm 21.3) in patients with airway involvement, compared to 79.1% (\pm 20.7) in those without ($p = 0.026$), while no alterations were found in spirometry parameters. In the 6MWT, a minimal difference in the distance walked was found: 420 meters (360-480) for patients with airway involvement vs. 435 meters (375-480) for those without ($p = 0.021$). In terms of chest CT scans, patients with airway involvement generally showed less ground-glass opacification (18.2% vs. 40.7%; $p < 0.001$) and more septal thickening (8.9% vs. 2.7%;

$p < 0.001$). No significant differences were observed in terms of pulmonary fibrosis between the two groups (Table 14).

Table 14: post-COVID-19 follow-up according to airway involvement

	Total (n=1453)	Not airway involvement (n=695)	With airway involvement (n=758)	p-value
Time from discharge to post-COVID consultation (days), median (p25-p75)	157 (100-252)	169 (101-253)	147 (98-251)	0.313
Symptoms, n (%)				
Cough	100 (6.9)	41 (5.9)	59 (7.8)	0.156
Expectoration	28 (1.9)	12 (1.7)	16 (2.1)	0.595
Dyspnea	440 (30.3)	205 (29.5)	235 (31.0)	0.532
Chest pain	59 (4.1)	24 (3.5)	35 (4.6)	0.261
Dyspnea (mMRC; 0-4), median (p25-p75)	1 (1-2)	1 (1-2)	1 (1-2)	0.947
Pulmonary function, mean (SD)				
FVC (% predicted)	91.3 (16.1)	91.6 (15.8)	91.0 (17.8)	0.454
FEV1 (% predicted)	93.8 (17.8)	93.7 (17.0)	94.0 (18.4)	0.712
FEV1/FVC (%)	81.4 (6.8)	81.4 (6.9)	81.4 (6.8)	0.854
DLCO (% predicted)	77.8 (21.0)	79.1 (20.7)	76.5 (21.3)	0.026
KCO (% predicted)	88.1 (17.6)	89.2 (17.69)	87.2 (17.6)	0.039
6MWT, mean (SD)				
Distance (m), median (p25-p75)	420 (360-480)	435 (375-480)	420 (360-480)	0.021
Baseline SpO2 (%)	97.2 (1.9)	97.3 (1.8)	97.0 (1.6)	0.032
Lowest SpO2 (%)	93.6 (3.8)	93.7 (3.6)	93.5 (4.0)	0.287
Mean SpO2 (%)	95.3 (2.8)	95.4 (2.7)	95.2 (2.9)	0.222
Parenchymal Involvement Chest TC, n (%)				
Principal characteristic				
Ground-glass opacity	291 (25.7)	154 (40.7)	137 (18.2)	<0.001
Consolidation	6 (0.5)	4 (1.1)	2 (0.3)	
Linear opacities	72 (6.4)	31 (8.2)	41 (5.4)	
Reticulation	59 (5.3)	23 (6.1)	36 (4.8)	
Mixed type	488 (43.1)	156 (41.3)	332 (43.8)	
None	217 (19.2)	10 (2.7)	207 (27.4)	
Interstitial				
Septal thickening	78 (6.9)	10 (2.7)	68 (8.9)	<0.001
Crazy paving	5 (0.4)	0 (0.0)	5 (0.7)	0.176
Fibrosis	86 (7.6)	26 (6.9)	60 (7.9)	0.533

5.1.3. Acquired tracheomalacia due to SARS-CoV-2 pneumonia

From February 2020 to August 2021, 1,920 patients were included in the cohort.

Tracheomalacia was observed in 15 (0.8%) on expiratory HRCT imaging. The median age

RESULTS

of these patients was 65.5 years. The treatment for SARS-CoV-2 infection in these patients was modified in the light of the new information obtained during the different waves of the pandemic. Several treatment protocols were applied including antiviral therapies as well as corticoids and empirical antibiotherapy with cephalosporins and quinolones. In this group, 10 patients received hydroxychloroquine, 9 lopinavir/ritonavir, 2 tocilizumab, 5 dexamethasone and 13 azithromycin (some patients received several treatments at the same time). Regarding the symptoms identified on clinical examination, only 3 (20%) patients were asymptomatic; 10 (67%) had dyspnoea and 2 (13%) had cough. In HRCT, 14 patients were diffuse tracheomalacia, affecting the entire trachea. Of these, in 6 cases, there was clear associated bronchomalacia. In one patient, the malacia was segmental at the level of the upper third of the trachea. No tracheal stenosis was observed. In 9 patients, tracheomalacia affected both at the membranous and cartilaginous level, and in 6 cases, the membranous part was only affected. Ground glass opacities in the CT scan were found in all patients with tracheomalacia. 6 patients (40%) also presented other parenchymatous alterations such as septal thickening and reticulation. 12 patients also had airway sequelae such as bronchiectasis, bronchiolitis or airway bronchial thickening. The baseline characteristics and findings reported at the follow-up visit for pulmonary function and chest CT are summarized in Table 15.

Table 15: Baseline characteristics of 15 patients with tracheomalacia in thoracic HRCT.

Characteristics	
Gender, male n (%)	8 (53)
Age, median (p25-p75)	65.5 (48 – 75)
Smokers n (%)	4 (27)
Respiratory disease n (%)	
Chronic Obstructive Pulmonary Disease	1 (7)
Asthma	2 (13.3)
Obstructive Sleep Apnoea	2 (13.3)
None	10 (67)
Ventilatory support n (%)	
Invasive ventilatory support	5 (33.3)
Non-Invasive ventilatory support	3 (20)
O ₂ venturi effect †	2 (13.3)
No oxygen therapy or ventilation support	5 (33.3)

Radiology pattern	
Unilobed pneumonia	5 (33.3)
Multilobe pneumonia	10 (66.6)
Diffuse interstitial disease	0
Severity of SARS-CoV-2 pneumonia n (%)	
Mild	5 (33.3)
Severe	2 (13.3)
Very Severe	0 (0)
Critical	8 (53.3)
Data from follow-up visit	
Pulmonary respiratory function test, median (p25-p75)	
Forced vital capacity (FVC%)	89.2 (66-123)
Forced expiratory volume in the 1st second (FEV1%)	92.3 (38-131)
FVC/FEV1	83.3 (43-99)
Diffusing capacity for carbon monoxide (DLCO%)	64.7 (43-109)
HRCT Tracheomalacia characteristics n (%)	
Membranous part	6 (40)
Membranous and cartilaginous (Both)	9 (60)
Cicatricial stenosis	0
Location	
Segmental (upper third)	1 (6.6)
Diffuse	14 (93.3)
HRCT parenchymal sequelae n (%)	
Ground Glass Opacities	15 (100)
Ground Glass Opacities and reticulation or septal thickening	6 (40)
HRCT airway tract sequelae n (%)	
Bronchiectasis	9 (60)
Bronchial thickening	1 (6.6)
Bronchiolitis	2 (13.3)
Only tracheomalacia	3 (20)
Treatment n (%)	
No treatment	8 (53)
LABA	2 (13)
LAMA	2 (13)
Inhaled corticosteroids	2 (13)
Oral corticosteroids	2 (13)
CPAP	1 (7)
Surgery	0 (0)

† O₂ Venturi effect: Oxygen provided by Venturi system

5.1.4. Respiratory sequelae in patients with bronchial asthma after SARS-CoV-2 pneumonia

A total of 2,457 patients were attended during the study period, 66 of whom had asthma (26 males, 39%), with a median age of 52 years (28-83) and a median BMI of 29 Kg/m² (17-48). Patients were adjusted with controls based on the date of hospital admission, sex, age

RESULTS

and severity of COVID-19, as discussed earlier. There were no significant differences were observed between groups regarding the number of days requiring ICU admission or the duration of ventilatory support. Regarding treatment during the acute phase, controls required significantly more tocilizumab compared to asthmatic patients ($p = 0.034$). However, no differences were observed regarding the rest of the treatment (Table 16).

Table 16: Baseline demographic characteristics and hospitalization variables according to asthma

	Asthma (n = 66)	No asthma (n = 132)	p-value
Age, median (IQR)	52 (17.25)	58 (15.00)	0.14
Sex, male, n (%)	26 (39)	54 (41)	0.48
BMI, median (IQR)	29 (7.50)	30 (7.81)	0.09
Comorbidities, n (%)	53 (80)	89 (67)	0.09
Smoking habit, n (%)			
Non-smoker	45 (68)	78 (59)	0.38
Smoker	1 (2)	5 (4)	
Ex-smoker	20 (30)	49 (37)	
Pack/years, median (p25-p75)	14.5 (2-35)	30 (3-60)	0.24
Data collected during admission, n (%)			
Duration of ventilatory support, median (IQR)	12 (13)	10 (8)	0.31
Days of stay in the ICU, median (IQR)	13 (16)	8 (19.50)	0.81
Severity COVID-19			
Mild $\text{FiO}_2 < 40\%$	39 (59)	78 (59)	1.00
Moderate $\text{FiO}_2 > 40\%$	5 (8)	10 (8)	
Severe NIVM or NIV	22 (33)	44 (33)	
COVID-19 treatment			
Kaletra	32 (48)	54 (41)	0.19
Remdesivir	1 (1)	6 (4)	0.26
Tozilizumab	5 (8)	24 (18)	0.034
Hydroxychloroquine	35 (53)	70 (53)	0.56
Azithromycin	36 (54)	71 (54)	0.51
Dexametasone	21 (32)	50 (38)	0.25

As for phenotype, 48 patients were T2-Th2, eight T2-ILC2, and 10 non-T2. No differences were found between the phenotypes in asthma severity (only 6% had severe asthma) or asthma treatment. Table 17 presents the characteristics of asthmatic patients according to different phenotypes.

Table 17: Characteristics of asthmatic patients according to different phenotypes

	Asthma (n = 66)	T2-Th2 (n = 48)	T2-ILC2 (n = 8)	Non-T2 (n = 10)	p-value
Atopy, n (%)	48 (73)	48 (100)	0	0	0.0001
Rhinitis, n (%)	35 (53)	32 (67)	3 (37)	0	0.0001
Rhinosinusitis, n (%)	6 (9)	4 (8)	2 (25)	0	0.17
Rhinopolyposis, n (%)	7 (11)	4 (8)	3 (37)	0	0.023
Asthma severity, n (%)					
Intermittent	13 (20)	11 (23)	0	2 (20)	0.73
Mild persistent	19 (29)	14 (29)	2 (25)	3 (30)	
Moderate persistent	30 (45)	21 (44)	5 (62)	4 (40)	
Severe persistent	4 (6)	2 (4)	1 (13)	1 (19)	
Type 2 Inflammatory Markers, median (IQR)					
Eosinophils, x 10 ⁹ /L	300 (200)	200 (275)	350 (275)	100 (150)	0.05
Total IgE, KU/L	88 (228.50)	118 (243.50)	48 (55)	9 (54.50)	0.67
Asthma medication, n (%)					
SABA on demand	39 (59)	30 (62)	4 (50)	5 (50)	0.65
LABA on demand	4 (6)	4 (8)	0	0	0.45
Inhaled corticosteroids	52 (79)	37 (77)	8 (100)	7 (70)	0.26
LABA	49 (87)	34 (71)	8 (100)	7 (70)	0.21
LAMA	17 (26)	8 (17)	5 (62)	4 (40)	0.012
No treatment	3 (4)	2 (4)	0	1 (10)	0.58
Oral corticosteroids	0	0	0	0	1.00
Montelukast	15 (23)	11 (23)	3 (37)	1 (10)	0.38
Azithromycin	2 (3)	0	2 (25)	0	0.001
Biological treatment	1 (1)	1 (2)	0	0	0.83

Regarding the different asthma phenotypes, no differences were observed in age, sex, smoking habits, BMI, or comorbidities. The severity of pneumonia was lower in patients with the T2-Th2 phenotype. Regarding treatments among the different phenotypes, no major differences were observed. However, the T2-ILC2 phenotype required more tocilizumab than the others, although the number of patients in each group was very small (Table 18).

RESULTS

Table 18: Baseline demographic characteristics and hospitalization variables according to asthma phenotypes

	T2-Th2 (n = 48)	T2-ILC2 (n = 8)	Non-T2 (n = 10)	p-value
Age, median (IQR)	49 (10.75)	67 (9)	58 (24)	0.07
Sex, male, n (%)	19 (39)	4 (50)	3 (30)	0.45
BMI, median (IQR)	30 (6)	26 (7)	30 (10)	0.19
Comorbidities, n (%)	37 (77)	6 (75)	10 (100)	0.54
Smoking habit, n (%)				
Non-smoker	32 (67)	5 (63)	8 (80)	0.97
Smoker	1 (2)	0	0	
Ex-smoker	15 (31)	3 (37)	2 (20)	
Data collected during admission, n (%)				
Duration of ventilatory support, median (IQR)	12 (12)	11 (10)	14 (23.50)	0.13
Days of stay in the ICU, median (IQR)	13 (17.50)	17 (10)	10 (10)	0.25
Severity COVID-19				
Mild FiO ₂ <40%	32 (67)	3 (37)	4 (40)	0.002
Moderate FiO ₂ >40%	0	3 (37)	2 (20)	
Severe NIVM or NIV	16 (33)	2 (25)	4 (40)	
COVID-19 treatment				
Kaletra	22 (46)	5 (62)	5 (50)	0.68
Remdesivir	1 (2)	0	0	0.82
Tozilizumab	1 (2)	3 (37)	1 (10)	0.002
Hydroxychloroquine	24 (50)	5 (62)	6 (60)	0.72
Azithromycin	23 (48)	6 (75)	7 (70)	0.21
Dexametasone	17 (35)	1 (12)	3 (30)	0.43

At the post-COVID-19 follow-up visit, asthma patients exhibited a higher prevalence of cough, fatigue, and wheezing compared to the control population; however, no significant differences in pulmonary function parameters were detected. The chest CT did not reveal differences in terms of parenchymal involvement, with mixed interstitial involvement being the most frequent sequela. Although no differences were found in terms of the incidence of airway involvement, the type of involvement did vary patients with asthma had more tracheomalacia, more bronchial thickening and less bronchiectasis than the control population (Table 19).

Table 19: post-COVID-19 follow-up according to asthma

	Asthma (n = 66)	No asthma (n = 132)	p-value
Symptoms, n (%)			
Dyspnea	30 (45)	58 (44)	0.48
mMRC			0.47
0	32 (48)	75 (57)	
1	24 (36)	35 (26)	
2	10 (16)	22 (17)	
Cough	10 (15)	8 (6)	0.04
Fatigue	12 (18)	0	0.0001
Expectoration	1 (1)	1 (1)	0.56
Chest pain	4 (6)	5 (4)	0.35
Wheezing	5 (8)	0	0.004
Pulmonary function			
FEV1 (%), median (IQR)	83 (20.8)	87 (28.2)	0.20
FEV1 (%) < 80%, n (%)	19 (29)	35 (26)	--
FVC (%), median (IQR)	88 (18)	87 (25.88)	0.10
FVC (%) < 80%, n (%)	14 (21)	36 (27)	--
FEV1 / FVC, median (IQR)	77 (8)	80 (8.4)	0.32
FEV1 / FVC < 70%, n (%)	10 (15)	8 (6)	--
DLCO (%), median (IQR)	76 (20)	79 (22.4)	0.33
DLCO (%) < 80%, n (%)	21 (32)	70 (53)	--
KCO (%), median (IQR)	85 (25.8)	83 (18)	0.26
Chest CT, n (%)			
Pathological, yes	52 (79)	103 (78)	0.98
Principal			
None	38 (57)	51 (39)	0.09
Ground glass	10 (15)	36 (27)	
Consolidation	1 (2)	2 (2)	
Linear opacities	2 (3)	3 (2)	
Reticulation	1 (2)	6 (4)	
Mixed type *	14 (21)	34 (26)	
Interstitial			
None	62 (94)	121 (90)	0,67
Septal thickening	4 (6)	8 (6)	
Crazy paving	0	1 (2)	
Fibrosis	0	2 (2)	
Bronchial involvement, yes	40 (61)	71 (54)	0,24
Bronchial involvement			
Bronchiectasis	11 (17)	40 (30)	0,007
Bronchial thickening	22 (33)	25 (19)	
Bronchiolitis	3 (4)	7 (5)	
Tracheobronchomalacia	4 (7)	0	

*Mixed type: patient presents two of the other conditions

RESULTS

The sequelae in asthma patients were independent of their asthma phenotype. No differences were observed in clinical presentation, pulmonary function, or chest CT findings (Table 20).

Table 20: post-COVID-19 follow-up according to asthma phenotypes

	T2-Th2 (n = 48)	T2-ILC2 (n = 8)	Non-T2 (n = 10)	p-value
Symptoms, n (%)				
Dyspnea	21 (44)	4 (50)	5 (50)	0.90
mMRC	0	24 (50)	4 (50)	0.59
	1	18 (37)	2 (25)	
	2	6 (13)	2 (25)	
Cough	8 (17)	1 (12)	1 (10)	0.84
Fatigue	9 (19)	1 (12)	2 (20)	0.90
Expectoration	1 (2)	0	0	0.83
Chest pain	2 (4)	0	2 (20)	0.12
Wheezing, n (%)	4 (8)	1 (12)	0	0.57
Pulmonary function				
FEV1 (%), median (IQR)	83 (19.50)	76 (33)	88 (29)	0.20
FVC (%), median (IQR)	88 (15)	94 (23.50)	93 (34.50)	0.56
FEV1 / FVC, median (IQR)	77 (9.50)	73 (15.75)	76 (8)	0.37
DLCO (%), median (IQR)	79 (20)	72 (28.25)	70 (27)	0.51
KCO (%), median (IQR)	86 (22.50)	84 (21.25)	76 (18.50)	0.62
Chest CT, n (%)				
Pathological, yes	35 (73)	8 (100)	9 (90)	0.14
Principal				
None	30 (62)	3 (37)	5 (50)	0.23
Ground glass	6 (13)	1 (13)	3 (30)	
Consolidation	0	0	1 (10)	
Linear opacities	2 (4)	0	0	
Reticulation	1 (2)	0	0	
Mixed type *	9 (19)	4 (50)	1 (10)	
Interstitial				
None	45 (94)	8 (100)	9 (90)	0.67
Septal thickening	3 (6)	0	1 (10)	
Crazy paving	0	0	0	
Fibrosis	0	0	0	
Bronchial involvement, yes	27 (56)	5 (62)	8 (80)	0.37
Bronchial involvement				
Bronchiectasis	7 (15)	2 (25)	2 (20)	0.81
Bronchial thickening	14 (29)	2 (25)	6 (60)	
Bronchiolitis	3 (6)	0	0	
Tracheobronchomalacia	3 (6)	1 (12)	0	

*Mixed type: patient presents two of the other conditions

5.2. PART 2: ORAL CORTICOSTEROID DOSING STRATEGIES FOR POST-COVID ORGANIZING PNEUMONIA (NORCOVID CLINICAL TRIAL)

Patients

In this study the intention was to randomize 120 patients, but recruitment was halted after randomization of 82 patients (41 per group) due to a critically slow recruitment rate. Among the patients who were randomized and included in the mFAS population, 79 (96.34%) completed the trial regimen, and 74 (90.24%) finished the trial (Figure 11).

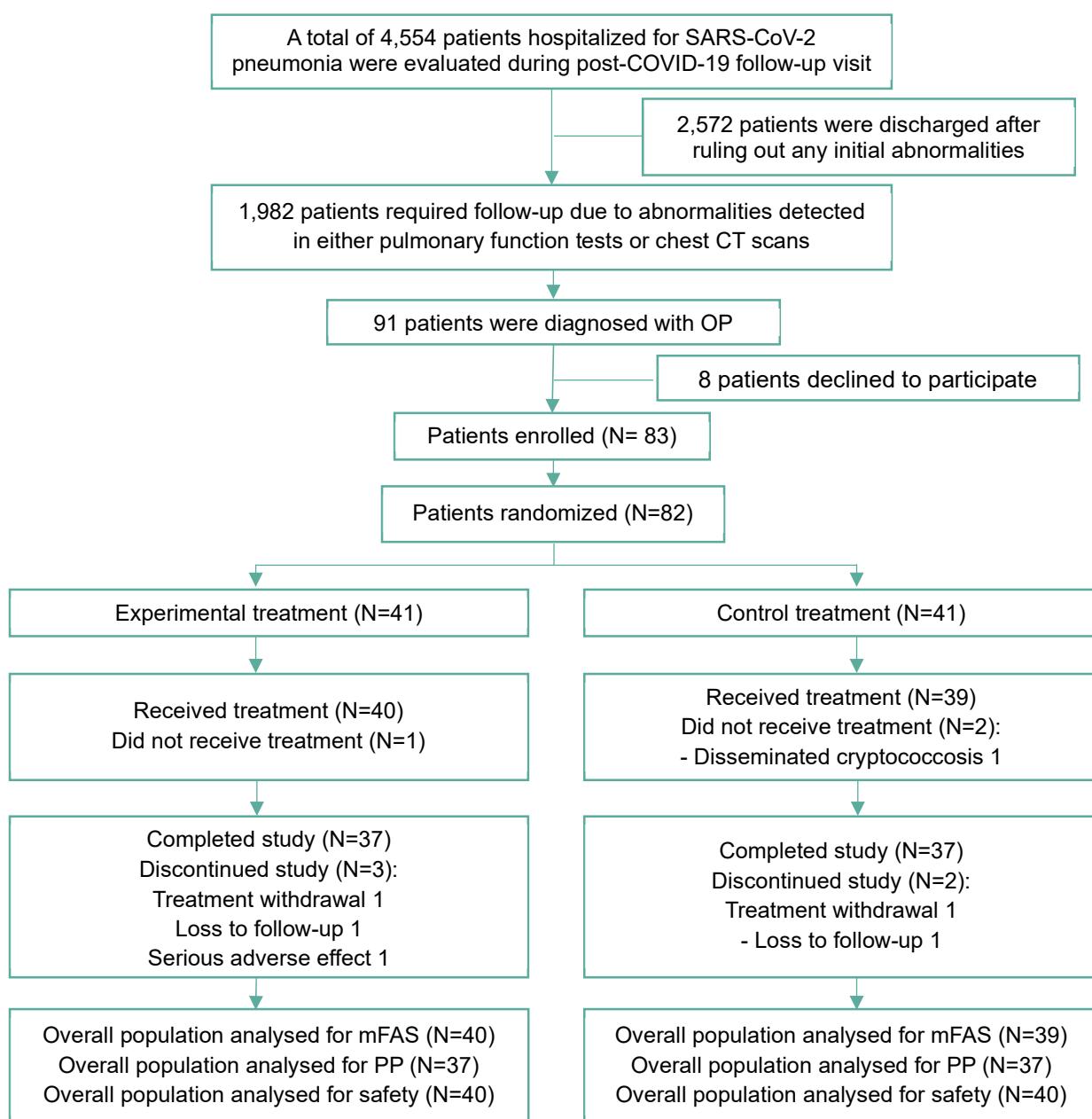


Figure 11: Flowchart of patient enrollment

RESULTS

In the mFAS population, the mean age was 61.5 years (10.9%), and 56 (70.9%) were men. Fifty-five patients (69.6%) had histopathology consistent with OP, while the others were diagnosed based on clinical and radiological criteria. Baseline clinical characteristics of the mFAS population are displayed in Table 21. Comorbidities are outlined in Table 22.

Table 21: Demographic data and clinical characteristics of the mFAS population

	Control (n=39)	Experimental (n=40)	Total (n=79)
Age, mean (SD)	62.7 (11.3)	60.3 (10.6)	61.5 (10.9)
Sex, male, n (%)	29 (74.4)	27 (67.5)	56 (70.9)
BMI, mean (SD)	28.1 (3.6)	28.8 (3.8)	28.5 (3.7)
Tobacco exposure, n (%)			
Smoker	0 (0)	2 (5)	2 (2.5)
Former smoker	13 (33.3)	15 (37.5)	28 (35.4)
Non-smoker	26 (66.6)	23 (57.5)	49 (62)
COVID-19 severity, n (%)			
No oxygen required	3 (7.7)	5 (12.5)	8 (10.1)
Oxygen therapy FiO ₂ <40%	8 (20.5)	13 (32.5)	21 (26.6)
NIV or HFNC	13 (33.3)	5 (12.5)	18 (22.8)
IMV or ECMO	15 (38.5)	17 (42.5)	32 (40.5)
Post-COVID control, n (%)			
Dx OP with pathological anatomy	27 (69.2)	28 (70)	55 (69.6)
Symptoms, n (%)			
Cough	6 (15)	6 (15)	12 (15)
Expectoration	0 (0)	2 (5)	2 (2.5)
Fever	0 (0)	0 (0)	0 (0)
Dyspnea	37 (95)	39 (98)	76 (96)
mMRC			
0	2 (5.1)	1 (2.5)	3 (3.8)
1	14 (35.9)	11 (27.5)	25 (31.6)
2	21 (53.8)	23 (57.5)	44 (55.7)
3	2 (5.1)	5 (12.5)	7 (8.9)
Chest pain	8 (20.5)	3 (7.5)	11 (13.9)
Respiratory function tests, mean (SD)			
FVC (% of theoretical value)	76.9 (24.7)	78.7 (21.6)	77.8 (2)
FEV1 (% of theoretical value)	80.8 (25.9)	83.2 (22.9)	82 (24.3)
DLCO (% of theoretical value)	55.5 (16.5)	59.31 (16.7)	57.5 (16.6)
DLCO/VA (% of theoretical value)	76.9 (17.5)	79.2 (19.2)	78 (18.3)
Chest CT, n (%)			
Pathological	39 (100)	40 (100)	79 (100)
Parenchymal involvement	Linear opacities	1 (2.6)	0 (0)
	Mixed type *	32 (82.1)	30 (75)
	Reticulation	2 (5.1)	1 (2.5)
	Ground glass opacity	4 (10.3)	9 (22.5)

*Mixed type: patient presents two of the other conditions. All patients with consolidations exhibited additional findings and were therefore classified under the mixed pattern

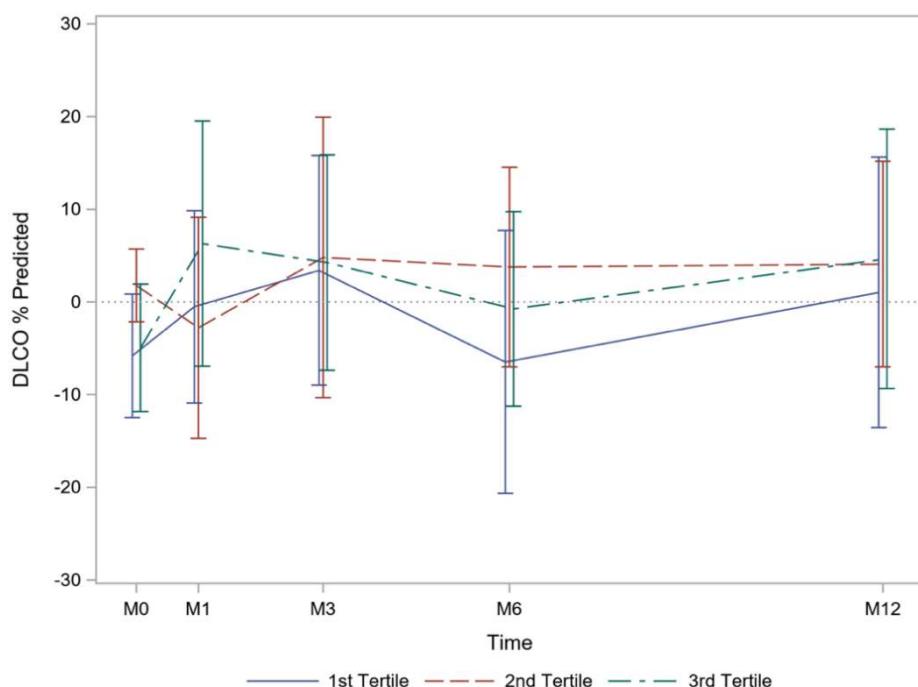
Table 22: Comorbidities for the modified mFAS population

Comorbidities, n (%)	Control (n=39)	Experimental (n=40)	Total (n=79)
Asthma	3 (7.7)	1 (2.5)	4 (5.1)
Sleep apnea/hypopnea syndrome	3 (7.7)	2 (5.0)	5 (6.3)
Chronic obstructive pulmonary disease	1 (2.6)	0 (0)	1 (1.3)
Arterial hypertension	17 (43.6)	14 (35.0)	31 (39.2)
Diabetes Mellitus	11 (28.2)	7 (17.5)	18 (22.8)
Cancer	3 (7.7)	6 (15.0)	9 (11.4)
Obesity	8 (20.5)	9 (22.5)	17 (21.5)
Dyslipidemia	9 (23.1)	11 (27.5)	20 (25.3)
Cardiovascular	7 (17.9)	5 (12.5)	12 (15.2)
Renal	5 (12.8)	3 (7.5)	8 (10.1)
Digestive	5 (12.8)	4 (10.0)	9 (11.4)
Allergy	0 (0)	4 (10.0)	4 (5.1)
Hyperuricemia	1 (2.6)	2 (5.0)	3 (3.8)
Hyperprolactinemia	1 (2.6)	0 (0)	1 (1.3)
Hypothyroidism	1 (2.6)	7 (17.5)	8 (10.1)
Respiratory	2 (5.1)	2 (5.0)	4 (5.1)
Hearing impairment	2 (5.1)	1 (2.5)	3 (3.8)
Anxiety/Depression	4 (10.3)	5 (12.5)	9 (11.4)
Osteoarthritis/Lumbalgia	8 (20.5)	8 (20.0)	16 (20.3)
Benign Prostatic Hyperplasia	6 (15.4)	2 (5.0)	8 (10.1)
Others	11 (28.2)	17 (42.5)	28 (35.4)

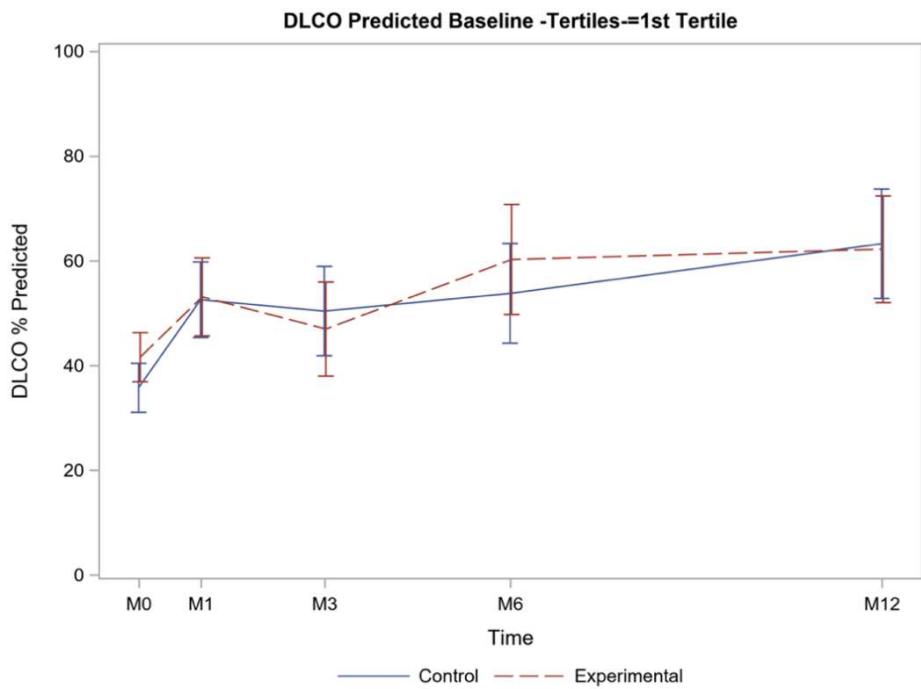
Primary endpoint

The initial mean DLCO was 59.3% (± 16.7) in the experimental group and 55.5% (± 16.5) in the control group. At 6 months, the mean increases were 11.7% (95% CI: 7.18-16.17) and 12.8% (95% CI: 8.57-17.11), respectively. The difference between groups at 6 months was 1.16 (95% CI: -5.06, 7.38) in the mFAS population and 1.23% (95% CI: -5.13, 7.59) in the protocol population, the experimental regimen being non-inferior to the control group within a margin of 10%. At 12 months, the mean increases were 15.5% (95% CI: 10.28, 20.73) and 22.26% (95% CI: 17.01, 27.51) respectively. The difference between groups at 12 months was 6.75 (-0.66, 14.17) with a $p = 0.074$. Table 23 shows the evolution of the diffusion test in the mFAS population.

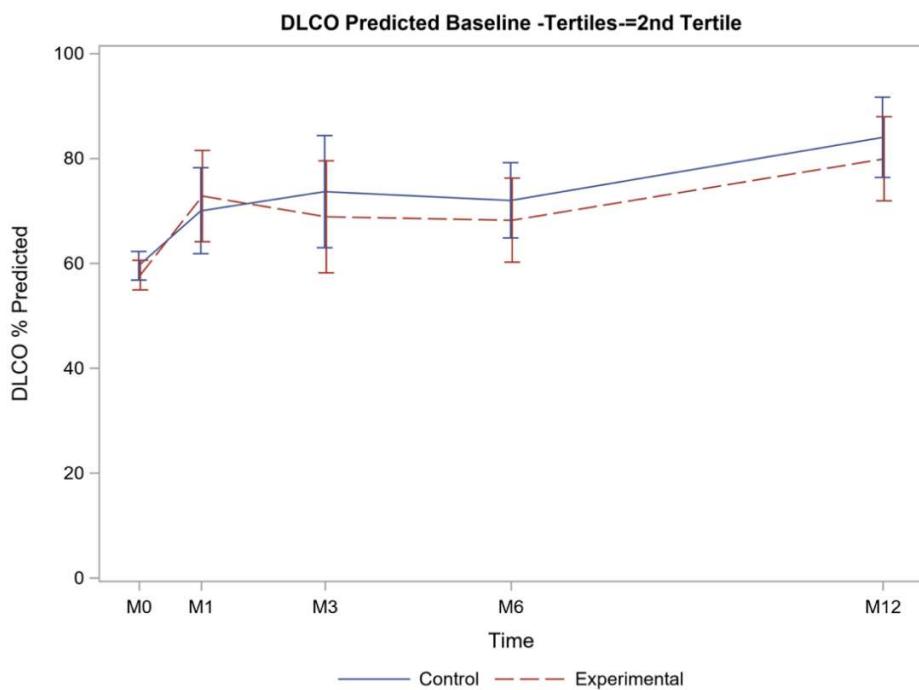
RESULTS


Table 23: Evolution of diffusion test

	Baseline*	Baseline-adjusted changes from Baseline	
		At 6 months *	At 12 months *
DLCO SB (% of the theoretical value)			
Control (n=39)	55.54 (16.48)	12.84 [8.57,17.11]	22.26 [17.01,27.51]
Experimental (n=40)	59.31 (16.65)	11.68 [7.18,16.17]	15.50 [10.28,20.73]
<i>Difference between control and experimental groups</i>	--	1.16 [-5.06,7.38] p = 0.711	6.75 [-0.66,14.17] p = 0.074
<i>Difference between control and experimental groups (PP)</i>	--	1.23 [-5.13,7.59] p = 0.701	7.12 [-0.58,14.82] p = 0.069
Patients with DLCO <80% of predicted			
Control (n=38)	54.66 (15.77)	13.78 [9.52,18.05]	23.09 [17.76,28.42]
Experimental (n=36)	55.87 (13.54)	12.41 [7.68,17.13]	17.01 [11.46,22.56]
<i>Difference between control and experimental groups</i>	--	1.38 [-4.99,7.75] p = 0.668	6.08 [-1.61,13.77] p = 0.120


All analyses are presented for mFAS population, except for the sensitivity analyses of the main per-protocol variable (PP), as noted in the table.

*: Mean (SD) for Baseline Values and Baseline-Adjusted Changes from Baseline [95% CI] for 6- and 12-Month Visits. Inferential results are based on mixed models for repeated measures.


Exploratory analyses among DLCO tertile levels did not show a differential treatment effect (Figures 12 to 15 p = 0.1450).

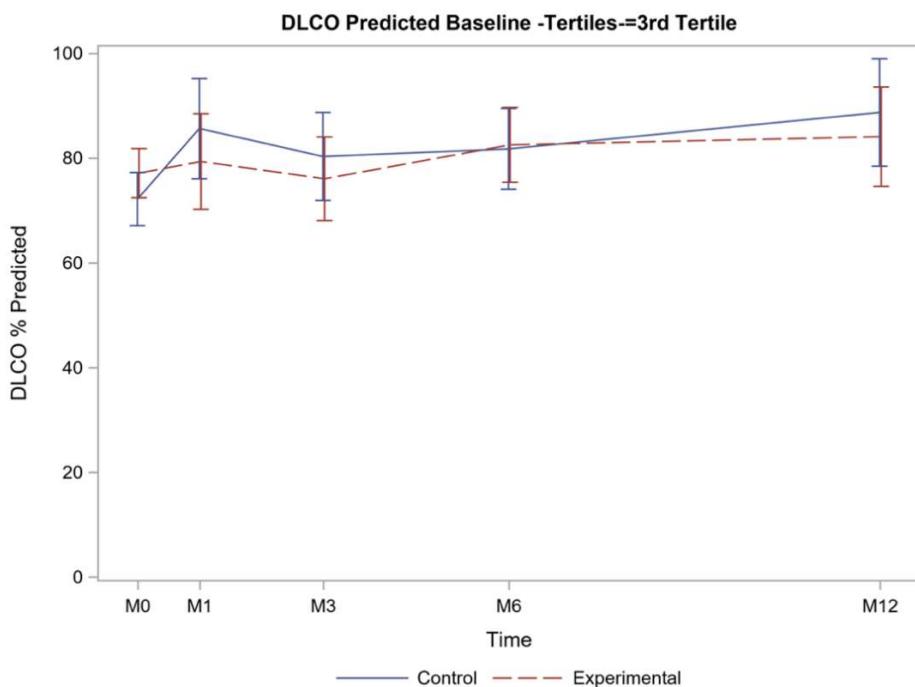

Figure 12: the difference DLCO evolution between group in tertiles

Figure 13: DLCO evolution in 1st tertile

Figure 14: DLCO evolution in 2nd tertile

Figure 15: DLCO evolution in 3rd tertile

Secondary endpoints

In the subgroup of patients with an initial DLCO below 80%, the non-inferiority criterion between the two corticosteroid treatment protocols was also met (Table 2). Regarding spirometry, the control group showed greater increases in FVC and FEV1 than the experimental group. The difference in FEV1 between the groups reached statistical significance, with a $p = 0.033$; however, no significant differences were observed between the groups in the FEV1/FVC ratio ($p = 0.607$) or in the six-minute walk test results (Table 24).

Chest CT abnormalities were present in all patients, with ground-glass opacity in 13 patients (16.5%), reticulation in 3 (3.8%), linear opacities in 1 (1.3%), and a mixed pattern in 62 (78.5%). All patients with consolidations exhibited additional findings and were therefore classified under the mixed pattern. When comparing the chest CT at 6 months to the baseline CT, no patients in the experimental group showed worsening; 32.5% remained unchanged, 52.5% showed improvement, and 15% achieved resolution of abnormalities. In

the control group, 2.6% worsened, 43.6% remained stable, 46.2% improved, and 7.7% achieved resolution. No significant differences were observed between groups (Table 24).

Baseline symptoms are summarized in Table 21. Clinical progression was assessed using the WHO Clinical Progression Scale. Initially, 23.7% of the control group and 13.2% of the experimental group were not hospitalized and did not present activity limitations. At 12 months, these rates rose to 85.7% and 75.7% respectively, with no significant differences ($p = 0.3755$) (Table 24).

Of all the patients who completed the treatment regimen, three in the experimental group and two in the control group presented relapses.

Table 24: Progression of Secondary Endpoints

	Baseline *	Baseline-Adjusted Changes from Baseline at 6 months *		
FVC (% of theoretical value)				
Control (n=37)	76.88 (24.72)	9.51 [4.93,14.09]		
Experimental (n=38)	78.69 (21.58)	3.69 [-1.00,8.37]		
<i>Difference between control and experimental groups</i>		5.82 [-0.73,12.38] p = 0.081		
FEV1 (% of theoretical value)				
Control (n=37)	80,7 (25.9)	9,51 [5,23, 13,79]		
Experimental (n=38)	83,15 (22.9)	2,76 [-1,7, 7,21]		
<i>Difference between control and experimental groups</i>		6,75 [0,57, 12,93] p = 0.033		
FEV1/FVC (% of theoretical value)				
Control (n=37)	82.48 (5.67)	82.24 [80.75, 83.72]		
Experimental (n=38)	82.96 (6.37)	81.68 [80.13, 83.23]		
<i>Difference between control and experimental groups</i>		0.56 [-1.59, 2.70] p = 0.607		
WT6 (Meters walked) &				
Control (n=27)	375 (316-450)	30 [-9 ,53]		
Experimental (n=27)	405 (346-465)	45 [6 ,104]		
<i>Median difference between control and experimental groups</i>		32.5 [-10, 75] p = 0.148		
Chest CT				
	Baseline	Change with respect to baseline at 6 months		
Control (n=39)	39 (100)	Deterioration	1 (2.6)	p = 0.149
		Stability	17 (43.6)	
		Improvement	18 (46.2)	
		Resolution	3 (7.7)	

RESULTS

Experimental (n=40)	40 (100)	Deterioration	0 (0)	
		Stability	13 (32.5)	
		Improvement	21 (52.5)	
		Resolution	6 (15)	
WHO grade scale	Baseline		At 6 months	
		$p = 0.646$		
Control (n=38), n (%)				
1. Not hospitalized, no limitations on activities	9 (23.7)	22 (57.9)		
2. Not hospitalized, limitation on activities	26 (68.4)	16 (42.1)		
3. Hospitalized, not requiring supplemental oxygen	2 (5.3)	0		
4. Hospitalized, requiring supplemental oxygen	1 (2.6)	0		
Experimental (n=38) [§] , n (%)				
1. Not hospitalized, no limitations on activities	5 (13.2)	19 (51.4)		
2. Not hospitalized, limitation on activities	31 (81.6)	18 (48.6)		
3. Hospitalized, not requiring supplemental oxygen	2 (5.3)	0		
4. Hospitalized, requiring supplemental oxygen	0 (0.0)	0		

^{*}: Mean (SD) for Baseline Values and Baseline-Adjusted Changes from Baseline [95% CI] for 6- and 12-Month Visits. Inferential results are based on mixed models for repeated measures.

[&]: Median (25th - 75th) percentiles for descriptive data and median difference [95%CI] for inference using the Hodges-Lehmann estimator

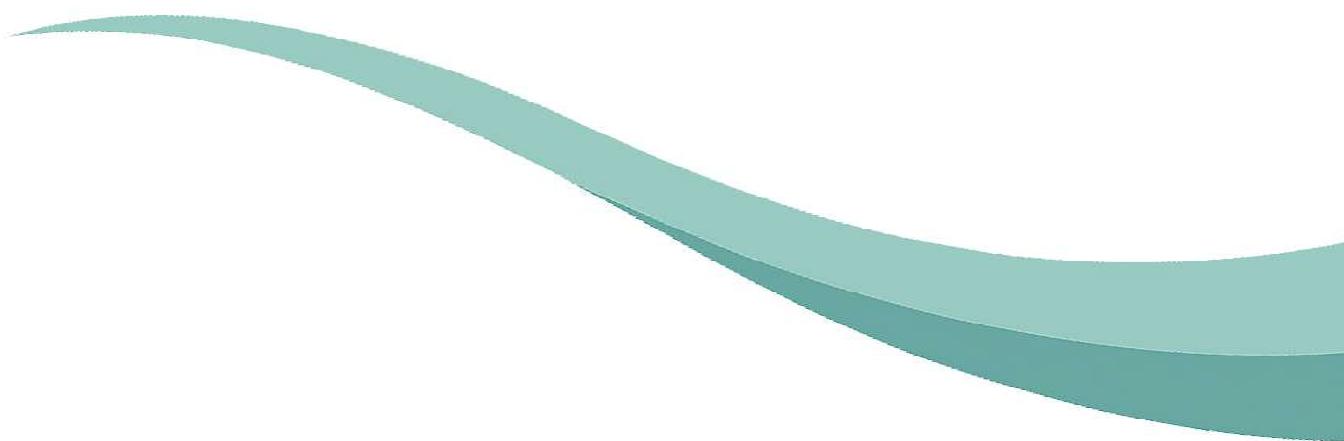
[§]: One missing value for one patient.

Safety and side-effect profile

Non-severe complications of any type were more frequent in the control group (22 cases, 56.4%) than in the experimental group (9 cases, 22.5%) ($p = 0.003$). No differences between the groups were observed in severe complications or in complications of any degree related to prednisone treatment (Table 25). During the trial, one patient in the control group succumbed to disseminated cryptococcosis caused by *C. neoformans*. Additionally, two patients developed pulmonary thromboembolism, one experienced deep vein thrombosis, and another developed adrenal insufficiency. Table 26 details the primary corticosteroid-related adverse effects.

Table 25: Adverse Effects

	Control (n = 39)	Experimental (n = 40)	p-value
	n (%)		
Complications of prednisone treatment (severe)	1 (2.56)	0 (0)	0.494
Complications of prednisone treatment (non-severe)	8 (20.51)	5 (12.5)	0.378
Complications of any type (severe)	1 (2.56)	2 (5)	>0.999
Complications of any type (non-severe)	22 (56.4)	9 (22.5)	0.003


Table 26: Description of adverse effects related to treatment

System Organ Class Preferred Term **	Serious	Control (n=40)	Experimental (n=40)	Total (n=80)
		Occurrences/Subjects(%)		
Endocrine disorders				
Adrenal insufficiency	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
General disorders				
Swelling	No	2 / 2 (5)	0 / 0 (0)	2 / 2 (2.5)
Investigations				
Cortisol decreased	No	0 / 0 (0)	1 / 1 (2.5)	1 / 1 (1.3)
Weight increased	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
Metabolism and nutrition disorders				
Hyperglycaemia	No	2 / 2 (5.0)	1 / 1 (2.5)	3 / 3 (3.8)
Dyslipidaemia	No	0 / 0 (0)	1 / 1 (2.5)	1 / 1 (1.3)
Musculoskeletal and connective tissue				
Musculoskeletal pain	No	0 / 0 (0)	1 / 1 (2.5)	1 / 1 (1.3)
Myalgia	No	0 / 0 (0)	1 / 1 (2.5)	1 / 1 (1.3)
Nervous system disorders				
Dizziness	No	0 / 0 (0)	1 / 1 (2.5)	1 / 1 (1.3)
Paraesthesia	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
Tremor	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
Psychiatric disorders				
Insomnia	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
Respiratory, thoracic and mediastinal				
Pulmonary embolism	Yes	0 / 0 (0)	1 / 1 (2.5)	1 / 1 (1.3)
Skin and subcutaneous tissue disorders				
Erythematous rash	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
Skin lesion	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)
Vascular disorders				
Hypertension	No	1 / 1 (2.5)	0 / 0 (0)	1 / 1 (1.3)

**A patient may be in multiple categories.

6. DISCUSSION

DISCUSSION

In this doctoral thesis, the respiratory complications arising from SARS-CoV-2 pneumonia have been characterized in greater detail. It was observed that, during the acute phase, dexamethasone plays a pivotal role in the development of subsequent respiratory complications. Furthermore, it was found that over half of the patients seen at the post-COVID clinic (52.2%) present airway abnormalities, associated with a particular clinical phenotype characterized by greater severity, a higher comorbidity burden, and a more complicated hospital course. Nonetheless, among these airway abnormalities, tracheomalacia remains an exceptional complication in SARS-CoV-2 survivors. With respect to asthma, it has not been identified as a risk factor for respiratory complications following SARS-CoV-2 pneumonia. Finally, it has been demonstrated that a less intensive corticosteroid regimen (0.5 mg/kg/day) for organizing pneumonia is just as effective as more prolonged and higher-dose regimens, thereby reducing adverse effects in the management of this common complication.

Dexamethasone plays a role in respiratory sequelae

The patients treated with dexamethasone experienced less dyspnea, had better DLCO, walked a greater distance in the six-minute walk test and had a better average oxygen saturation in post-COVID-19 follow-up. Radiologically, a notable decrease in reticulation, significantly fewer septal thickenings and less fibrosis were observed in the dexamethasone-treated group compared to the non-dexamethasone group. In consonance with previous studies, our results also indicate associations between dexamethasone treatment during hospitalization and shorter hospital and ICU stays, and lower FiO_2 and ventilatory support requirements.

Although it has been demonstrated that dexamethasone represents a major step forward in COVID-19 treatment, many individuals continue to experience symptoms such as shortness of breath, persistent cough, and reduced lung capacity months after their initial infection.

DISCUSSION

Therefore, the evidence indicates that many patients present respiratory sequelae at both the clinical and imaging levels, as well as in pulmonary function tests (82,116). Since organizing pneumonia has been identified as the most common pulmonary sequela following SARS-CoV-2 pneumonia, it is reasonable to suggest that corticosteroids administered in the acute phase may aid recovery in these patients (67). Organizing pneumonia is a diffuse interstitial lung disease (ILD) characterized by a pattern of lung tissue repair following injury, such as that caused by SARS-CoV-2 pneumonia, that can progress to fibrotic changes observed in chest computed tomography (CT), particularly in cases that advance without treatment. Therefore, administering anti-inflammatory treatment in the acute phase, when an inflammatory response occurs (117), may improve recovery from viral injury, reducing repair defects and subsequent fibrotic changes

In this regard, the present study demonstrated clinical improvement and enhanced lung function in the group treated with dexamethasone during follow-up, suggesting that the anti-inflammatory effects of the drug extend beyond the acute phase and provide long-term respiratory benefits. Radiological assessments further reinforce these clinical findings, as patients treated with dexamethasone exhibited fewer fibrotic changes such as septal thickening and fibrosis than the untreated group. Other studies have suggested that dexamethasone in the acute phase of COVID-19 may be a factor that may reduce post-COVID-19 syndrome by controlling inflammation (118,119). Although it appeared that symptoms were decreasing in these patients, Leavy et al.'s study showed no improvements in quality of life or other secondary outcomes, such as lung function, in patients treated with systemic corticosteroids one year after COVID-19 infection (100). It is worth noting that data on lung function in many patients in that study were incomplete (for example, other diagnostic tests such as chest CT were not always available) which limits the assessment of its impact. Additionally, the baseline quality of life questionnaire prior to hospitalization was assessed retrospectively (100). In the present study, the sequelae following pneumonia

caused by SARS-CoV-2 can be evaluated better, as all patients underwent a clinical evaluation combined with functional respiratory tests and chest CT scans.

Although, as previously mentioned, in the present study we observed differences in parenchymal involvement in patients treated/not treated with dexamethasone, no differences were observed in terms of airway involvement between the two groups. In this regard, in patients with COVID-19 infection, intense and persistent inflammation in the airways can cause tissue damage and deterioration of the epithelial barrier function of the airways, thus producing alterations in the airway (117). The results of the present study suggest that dexamethasone treatment produces a change in the type of alterations in the airway, reducing the degree of bronchiolitis but increasing the bronchiectasis. If these results are confirmed in future studies, the reason why this may happen will have to be studied.

This study has several limitations. First, its retrospective design may introduce bias; the fact that comparison groups were from different time periods may have influenced the results since variations in viral strains may affect disease severity and treatment response. The follow-up period also varied between groups, with dexamethasone-treated patients generally being seen later, a difference that may have influenced the assessment of long-term outcomes. However, multivariate analysis shows that differences in DLCO and fibrosis on chest CT in dexamethasone- treated/non-treated patients remained significant, even after adjusting for the time from discharge to post-COVID consultation. Although these patients received other treatments that might influence disease progression, the use of antivirals, tocilizumab, or convalescent plasma among dexamethasone-treated patients was limited and unlikely to account for the observed outcomes.

In conclusion, this study demonstrates that dexamethasone treatment during hospitalization for severe COVID-19 is associated with improved long-term respiratory outcomes, including reduced dyspnea, better lung function, and fewer radiological signs of pulmonary fibrosis. These findings support the continued use of dexamethasone as a key treatment in

managing severe COVID-19, not only for reducing acute mortality but also for promoting better long-term recovery.

Airway involvement constitutes a distinct clinical phenotype

It has been observed that, following SARS-CoV-2 pneumonia, more than half of patients display airway abnormalities on chest CT, and multiple abnormalities may coexist within the same individual. Among those with airway involvement, the majority presented with bronchiectasis or bronchial wall thickening, suggesting a chronic inflammatory process or a post-infectious response mediated by epithelial damage and alterations in tissue repair (93). These findings contrast with previous studies, which reported a lower proportion of bronchiectasis—approximately 11–24%—although those investigations did not specifically focus on airway assessment (96,97). In addition, bronchiolitis was observed in 16.1% of affected patients, consistent with earlier reports identifying it as a post-COVID-19 complication (98). Finally, tracheomalacia was much less frequent, illustrating the wide range of manifestations associated with this disease.

In patients with airway involvement, significant clinical, functional, and prognostic differences have been identified compared to those without such involvement. These patients were older, predominantly male, had a lower body mass index, and a higher proportion of White individuals. Moreover, they more frequently reported a history of smoking and a markedly greater burden of comorbidities, particularly cardiovascular risk factors such as hypertension and diabetes mellitus, as well as ischemic heart disease and heart failure. These findings are consistent with previous studies linking hypertension, diabetes, and various cardiac comorbidities to increased susceptibility for severe COVID-19 (120–122).

Furthermore, patients with airway involvement exhibited prolonged hospitalization and longer stays in intensive care units, in addition to more frequent requirements for ventilatory support, indicating a more severe clinical presentation during their hospital stay. Moreover,

elevated inflammatory markers and a greater extent of pulmonary involvement were observed in the initial radiological images. Previous studies have already demonstrated that higher COVID-19 severity is associated with a more intense systemic inflammatory response (123,124). This heightened inflammatory reaction likely contributes to increased respiratory complications, including airway involvement (125). Similarly, it has been shown that patients with comorbidities and cardiac complications during hospitalization can exhibit a more pronounced inflammatory response, which may explain the greater degree of airway involvement in this subgroup of patients (126).

It is also important to note that patients with airway involvement experienced more secondary complications, such as secondary infections and septic shock. These complications may be associated with an exacerbated inflammatory process and increased vulnerability due to airway alterations (127). This is further supported by the more frequent use of antibiotics in these patients, likely reflecting a higher burden of associated infections.

Patients who develop deep vein thrombosis (DVT) as a secondary complication often experience more pronounced airway involvement. This occurs because systemic hyperinflammation not only intensifies the prothrombotic state that promotes clot formation in the deep venous system, but also fosters airway edema and inflammation, thereby exacerbating respiratory compromise (128).

During the post-COVID follow-up, conducted approximately five months after hospital discharge, no clinically significant differences were observed between the groups. However, patients with airway involvement showed a slight reduction in pulmonary diffusion capacity, as well as a shorter distance walked in the six-minute walk test, though these findings had limited clinical relevance. On chest CT scans, these patients exhibited fewer ground-glass opacities but a higher degree of septal thickening, with no difference in the prevalence of pulmonary fibrosis. These results suggest that airway alterations and parenchymal abnormalities are not always interrelated, and likely involve different underlying mechanisms.

This study has several limitations that should be considered. First, its retrospective design can introduce selection bias and complicate the establishment of causal relationships. Furthermore, although pre-existing respiratory disorders were excluded, the presence of undiagnosed comorbidities or early disease stages prior to SARS-CoV-2 infection cannot be ruled out. Another point to highlight is the choice of chest CT over bronchoscopy, which may lead to either overestimation or underestimation of certain abnormalities—particularly in the context of the pandemic and among critically ill patients. Additionally, as this is a single-center cohort, the findings may not be fully generalizable to other populations with different resources or clinical characteristics. Finally, long-term follow-up is essential to assess the evolution of these changes and to determine whether they might progress to additional complications, such as fibrosis or stenosis, or instead show improvement.

Focusing now on the study of tracheomalacia, it is an exceptional sequela observed in SARS-CoV-2 survivors and is consistently associated with parenchymal and other airway findings. In our opinion, there are three possible explanations for the appearance of tracheomalacia in the SARS CoV-2 survivor population. The first one is orotracheal intubation. Although the prevalence of primary or secondary tracheomalacia is unknown in the general population, its most common acquired cause is orotracheal intubation or tracheostomy. In these cases, tracheomalacia is related to increases in the respiratory airway pressure, oxygen toxicity and recurrent infections (99). Recently, Guarnieri et al. reported tracheomalacia in 8 of 151 patients with SARS-CoV-2 acute respiratory distress syndrome who required intubation or tracheostomy and mechanical ventilation (129). In the present series, however, intubation was only required in five patients.

Secondly, respiratory infections are a well-known cause of tracheomalacia and were present in 67% of our patients. It should be highlighted that chronic infections are more strongly associated with tracheomalacia than acute presentations. However, in our experience, tracheomalacia is not an isolated finding, because all patients had parenchymal alterations and 80% had other airway sequelae. Therefore, high levels of inflammation, such

as those related with SARS CoV-2 infection, may be responsible for these alterations. In fact, Borczuk et al. found airway inflammation in the form of chronic diffuse inflammation in 41% of cases in a series of 68 necropsies in the initial stages of the pandemic (128).

The third possible explanation for the tracheomalacia in these patients is the presence of previous respiratory diseases. Five patients were affected by asthma, COPD or OSA. Although seldom described, some authors estimate the incidence of tracheomalacia in adult patients with respiratory airway disease to be approximately 12.6% (99).

The present study has some limitations. Probably, bronchoscopy should be used as a gold-standard diagnostic tool for this disease,⁵ but CT scan was used in the context of the pandemic, and in severe stages of the disease in which the use of more invasive techniques was not justified. In fact, emerging evidence in pediatric populations suggests that CT scan can effectively diagnose tracheomalacia and should be considered as a less invasive alternative to bronchoscopy (130). Another limitation is that tracheomalacia may also have existed before the SARS-CoV-2 infection, especially since most series established the mean age of presentation at 40 years old (99). However, in the present series of patients, a guided clinical interview did not reveal any respiratory symptoms before the SARS CoV-2 infection that might have been related to a possible tracheomalacia or any predisposing factor that might explain its presence. Finally, we cannot rule out the development of cicatricial stenosis in the long term.

Overall, the findings from these studies underscore the clinical relevance of identifying airway abnormalities in patients following SARS-CoV-2 pneumonia, given that such complications are both common and understudied. The different forms of airway involvement can trigger respiratory symptoms with a substantial impact on patients' quality of life, and they are a well-established predisposing factor for recurrent respiratory infections, potentially leading to serious comorbidities in the future. Further research is needed to elucidate the specific pathophysiology of these abnormalities and to develop

targeted interventions aimed at improving patient outcomes and minimizing long-term pulmonary sequelae.

Asthma does not increase the risk of respiratory complications

The results of the present study demonstrated that patients with asthma (regardless of severity), do not appear to have a higher incidence of respiratory sequelae after experiencing SARS-CoV-2 pneumonia that required hospital admission. However, there were differences in airway involvement: bronchiectasis was more common in non-asthma patients, and bronchial thickening and/or tracheomalacia in asthma patients, regardless of asthma phenotype.

The relationship between asthma and SARS-CoV-2 infection throughout the pandemic has been the subject of multiple studies, which have reached a variety of conclusions. Currently, there seems to be a consensus that SARS-CoV-2 infection in patients with asthma is less common than in the general population (51) and less severe in those who present a T2-TH2 asthma phenotype (53,54). As a result, we might surmise that the appearance of sequelae in patients with SARS-CoV-2 infection could also be influenced by whether they have asthma, and, if they do, whether they present a particular phenotype. In general, approximately 29% of patients severely affected by SARS-CoV-2 present fatigue and 19% dyspnea one year after infection(131). At radiological level, it has been reported that approximately 45% of patients present ground glass opacities on chest CT, 28% fibrosis and approximately 21% reticulations (132). There are hardly any data regarding airway involvement, although the appearance of bronchiectasis seems to be the predominant form (132).

Around 40% of the patients included in this study had dyspnea between three and six months after hospital discharge, regardless of whether or not they had asthma. Asthma patients had more fatigue, cough and wheezing than controls. This finding contrasts with the only related study reported to date, in which no differences were found between patients

with and without asthma in terms of the evolution of symptoms(101). More significant is the fact that no differences were found between the two populations in terms of parenchymal involvement, highlighting that neither the presence of asthma, nor the presence of a particular phenotype, is a risk factor for lung injury in the case of SARS-CoV-2 infection. Another interesting point is the fact that asthma could prevent the appearance of bronchiectasis after SARS-CoV-2 infection. Bronchiectasis is common after severe lung infections, regardless of the causative agent (133), and SARS-CoV-2 infection does not appear to be an exception; Han et al (97) reported bronchiectasis in 7% of patients with SARS-CoV-2 infection at the time of admission, but the rate had risen to 24% in a control CT scan six months after hospital discharge. The administration of inhaled corticosteroids in patients with asthma may prevent the appearance of bronchiectasis due to their anti-inflammatory effect, in the same way as they reduce the severity of SARS-CoV-2 infection (61,134).

We observed that patients with asthma had more bronchial thickening than controls. This finding is difficult to attribute to the viral infection itself, since practically all patients with asthma present this type of alteration (135). The presence of tracheomalacia in these patients may have a different explanation; although it may be due to their asthma, it has also been attributed to the SARS-CoV-2 infection (110).

The present study is not without limitations. It is a single-center, retrospective study in which lung function tests and chest CT were not available prior to SARS-CoV-2 pneumonia. However, the confirmation that there were no differences in respiratory sequelae between asthmatic patients and controls lends support to the notion that asthma is not a risk factor in SARS-CoV-2 pneumonia. Moreover, although patients were adjusted for severity, the percentage of patients treated with tozilizumab was higher in the controls. However, this difference does not seem to affect the respiratory sequelae between both groups.

Oral corticosteroids lasting three months may be recommended in post-COVID OP

This study is the first clinical trial conducted on patients with OP since the first description of this condition in the 1970s (136). It has demonstrated that a 3-month treatment regimen, starting with a dose of 0.5 mg/kg/day, is as effective as longer treatments with higher initial doses and halves the rate of adverse effects.

Systemic glucocorticoids are the preferred treatment for symptomatic patients with respiratory impairment due to OP (70,84). Although they have proven effective, they are not free from side effects, especially when administered at the high doses and extended durations currently proposed for the treatment of this condition (137) Only 23% of patients treated with the experimental regimen experienced corticosteroid-related adverse effects, compared to 56% of those treated with the conventional regimen. For the treatment of patients with any post-COVID-19 respiratory sequelae, a low-dose prednisone regimen can be as effective as one with a higher dose, and also presents fewer adverse effects (138).

Progression to pulmonary fibrosis following post-infectious OP is a significant concern, particularly in patients who experience recurrences (139) The recurrence rate is estimated to be between 20% and 30%, similar to that of COP, which ranges between 9% and 33% according to various studies (139–142). In this study, the recurrence rate was similar in both treatment groups, ranging from 5% to 7.5%. Generally, irrespective of recurrence, it is estimated that between 10% and 15% of patients with post-infectious OP may progress to pulmonary fibrosis (143). In the specific context of post-COVID-19 OP, the incidence of pulmonary fibrosis appears to be more pronounced. Some studies suggest that up to 30% of patients with post-COVID-19 OP may develop fibrotic sequelae (66,144). This high percentage is attributed to the intense inflammatory response triggered by SARS-CoV-2 and the extensive lung damage that can occur during the acute phase of the infection (5). In this context, intensive clinical and radiological follow-up seems crucial to detect early progression to fibrosis and adjust treatment accordingly.

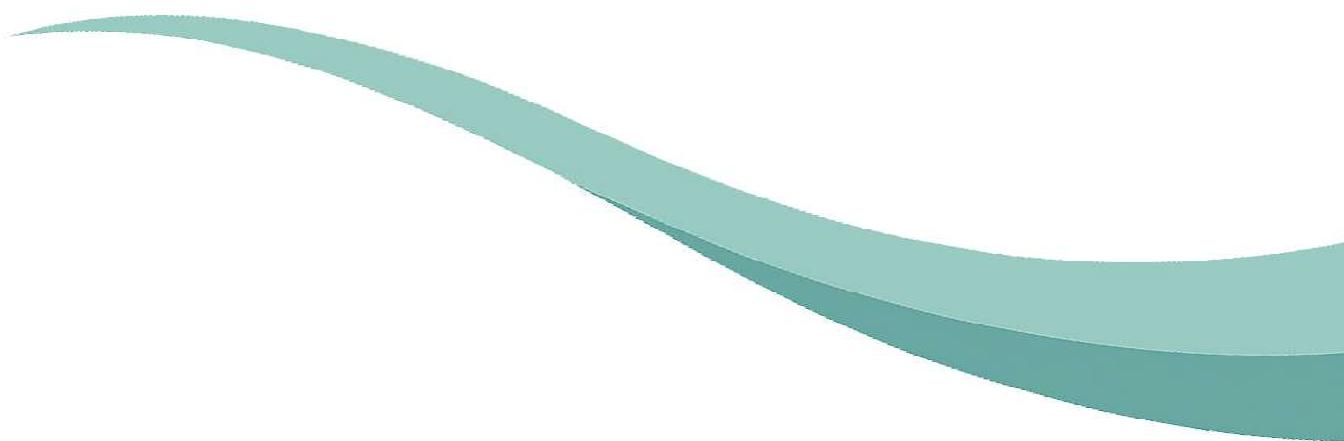
Diffusion is one of the parameters that can be monitored in both the management and follow-up of these patients. Reductions in DLCO are common in patients with diffuse ILD, as in the case of idiopathic pulmonary fibrosis (IPF), and are associated with increased mortality (145). Changes in DLCO values over time may indicate stabilization, improvement, or worsening of the disease and can thus guide therapeutic decisions (146). DLCO has already been analysed in various clinical trials investigating interstitial lung diseases, primarily in the context of assessing the response to antifibrotic drugs, immunosuppressants, or corticosteroids themselves. Thus, in patients with IPF, hypersensitivity pneumonitis, nonspecific interstitial pneumonia, or even in patients with systemic sclerosis with lung involvement, stable increased DLCO was associated with a favourable response to treatment (147–151). In most of these studies, changes greater than 15% were considered significant (151,152). The fact that a change of 10% was established as significant in the present study may reinforce the value of the observed results. It is important to emphasize that, in these trials, DLCO served not only to assess the response to treatment but also the progression of the disease, as a DLCO that remains stable or improves indicates a slowing or reversal of interstitial damage. In this context, when analysing the subgroup of patients with DLCO <80%, similar increases were observed in both treatment groups.

Chest CT is an essential component for both the diagnosis and follow-up of OP. As described in multiple studies the majority of patients included in this clinical trial exhibited a mixed pattern with peripheral consolidations, reticulation, and ground glass opacities (67,75,116). Fewer than 20% of the patients presented any of these alterations in isolation. This variable was analysed as secondary since a significant proportion of patients show only a partial resolution of alveolar opacities, while reticular opacities tend to persist despite treatment (82). Indeed, only 15% and 7.7% of patients in the experimental and control groups respectively showed complete resolution of changes in CT at the end of the study. No differences were observed in the degree of improvement between the treatment

DISCUSSION

regimens. Nor were there significant differences in other secondary variables such as FVC, the distance walked in the 6MWT, or quality of life.

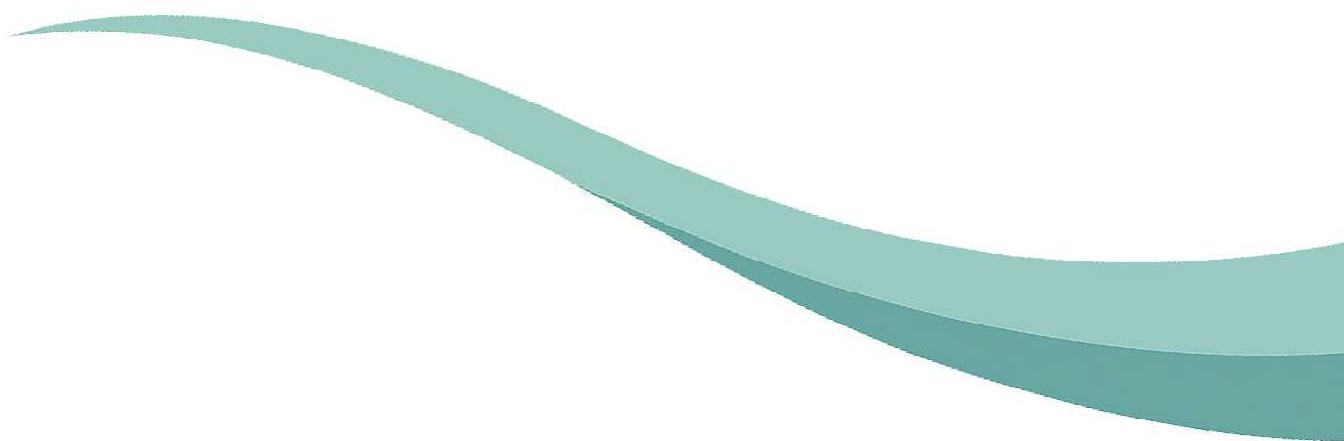
As recommended by the WHO, particularly in patients with infection and/or post-COVID-19 sequelae, in the study variables we included the WHO Clinical Progression Scale, which reflects patient trajectory and resource use over the course of clinical illness. This scale was created to facilitate data pooling across cohort studies and clinical trials, with the objective of expediting the exchange of knowledge to benefit patients infected with SARS-CoV-2 and to guide optimal resource planning (153). Again, no differences were observed between the groups.


This study is not without limitations. First, it is an open-label, single-center clinical trial, a circumstance that may introduce biases and limit the generalizability of the results to other populations and clinical settings. However, the raters responsible for measuring all the study outcomes were blinded to patient allocation, thereby reducing the risk of this detection bias. Second, the study was prematurely terminated after recruiting 66% (79/120) of the planned sample size due to a critical decline in patient enrollment. Although the reduced sample size may have affected the statistical power for certain secondary outcomes, the 95% confidence intervals calculated from the recruited sample provide adequate precision to support the conclusion of non-inferiority for both mFAS and PP analyses of the primary endpoint. Consequently, this reduction did not compromise the study's primary objectives. Third, the use of clinical interviews with patients to assess treatment adherence, without additional verification methods, may also have introduced a bias. The lack of a placebo group could also be seen as a limitation, as it makes it impossible to determine whether the observed improvements are solely due to corticosteroid treatment or to the natural progression of the disease. However, given that all patients included were symptomatic and had both radiological and pulmonary function abnormalities, it would have been unethical to leave any patients untreated. Finally, the fact that up to 30% of the patients were diagnosed without histological tests to confirm the diagnosis could be considered a

limitation. Nonetheless, it should be stressed that all patients, with or without histology, were diagnosed by consensus in a multidisciplinary committee consisting of clinicians, radiologists, and pathologists. In fact, having access to histopathological studies in up to 70% of the patients is considered extraordinarily valuable, given the challenges of conducting such studies during peak pandemic waves.

Despite these limitations, we believe we can conclude that a three-month treatment of prednisone starting at a dose of 0.5 mg/kg/day in patients with post-COVID-19 organizing pneumonia can be as effective as the longer standard regimen, with the additional advantage of fewer adverse effects. In the absence of clinical trials and given the difficulty of conducting them, we think that this treatment protocol can be extended to all patients with post-infectious organizing pneumonia, regardless of the causative agent. It may be more controversial to generalize these results to other aetiologies of organizing pneumonia, particularly idiopathic or cryptogenic forms, although the results of this study open up this possibility.

7. CONCLUSIONS



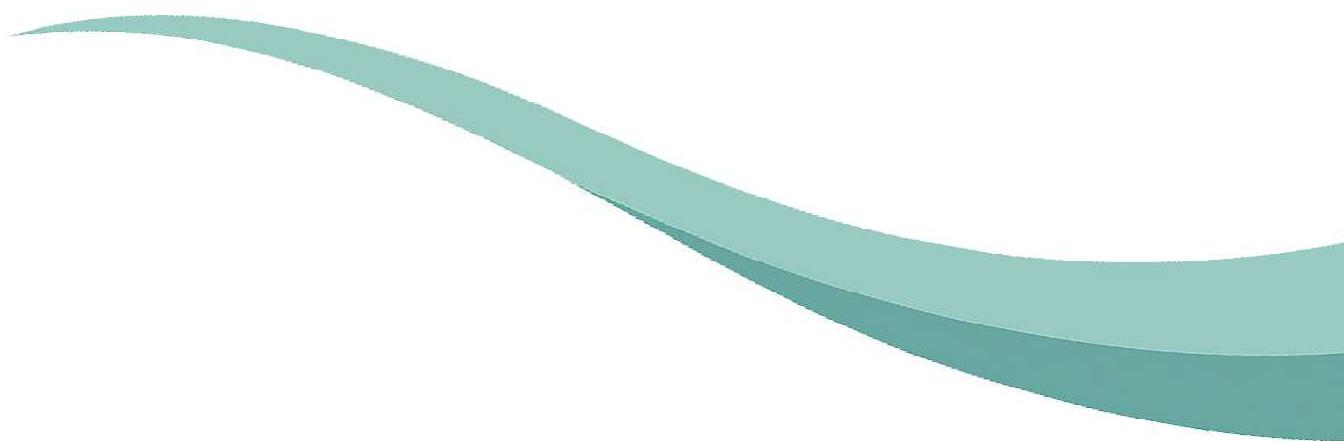
CONCLUSIONS

1. The dexamethasone treatment during hospitalization for severe COVID-19 is associated with improved long-term respiratory outcomes, including reduced dyspnea, better lung function, and fewer radiological signs of pulmonary fibrosis.
2. Airway involvement was common among patients hospitalized with COVID-19 and was associated with older age, smoking history, lower BMI, and cardiometabolic comorbidities. This phenotype was linked to more severe in-hospital disease progression but did not result in worse clinical outcomes during post-COVID follow-up.
3. Patients with asthma (regardless of severity), do not appear to have a higher incidence of respiratory sequelae after experiencing SARS-CoV-2 pneumonia that required hospital admission.
4. The three-month treatment of prednisone starting at a dose of 0.5 mg/kg/day in patients with post-COVID-19 organizing pneumonia can be as effective as the longer standard regimen, with the additional advantage of fewer adverse effects.

8. FUTURE LINES OF RESEARCH

FUTURE LINES OF RESEARCH

Although this thesis has focused on respiratory complications following SARS-CoV-2 pneumonia, the findings obtained pave the way for several future research directions:


- ◆ **Long-term follow-up of post-COVID fibrotic sequelae.** Extending the follow-up of patients with fibrotic changes identified on chest CT through multicenter studies lasting at least two years would enable a more thorough characterization of these sequelae. Such studies could clarify whether fibrotic patterns stabilize over time or, conversely, show progression warranting specific interventions. Furthermore, investigating genetic or molecular factors potentially influencing disease progression would be highly valuable. This information not only applies to the SARS-CoV-2 context, but could also be extrapolated to other viral pneumonias, thereby advancing our understanding and management of fibrotic sequelae arising from different etiologies.
- ◆ **Systematic Evaluation of Airway Involvement.** Implementing advanced protocols for functional assessment and imaging (expiratory chest CT, pulmonary MRI, functional imaging), in conjunction with artificial intelligence tools (machine learning, deep learning), is essential to accurately quantify and compare airway alterations following viral pneumonias of various etiologies (e.g., COVID-19, influenza, or RSV). Automated analysis of radiological patterns and clinical data enables correlation of the severity of airway involvement with symptomatology and quality of life, identification of risk factors, and prioritization of therapeutic interventions (respiratory physiotherapy, anti-inflammatory treatments). This approach ultimately reduces the burden of post-infectious sequelae and optimizes recovery across a broad spectrum of patients.
- ◆ **Characterizing viral-induced asthma exacerbations** (e.g., COVID-19, influenza, or RSV) is essential, as these events can accelerate airway dysfunction and heighten the risk of long-term respiratory sequelae. Investigating the frequency, severity, and immunological profile of such exacerbations will facilitate the design of more tailored

therapeutic interventions and support the implementation of preventive strategies aimed at reducing their incidence.

- ◆ **Optimization of corticosteroid use in organizing pneumonia.** The evidence gathered from this clinical trial, which focuses on optimizing corticosteroid dosage and treatment duration in post-COVID-19 organizing pneumonia (OP), may lay the groundwork for future research addressing OP secondary to other infectious etiologies or even cryptogenic OP. Should the findings confirm that lower-dose regimens and shorter treatment periods provide efficacy comparable to conventional protocols, this would support the adoption of less aggressive therapies, thereby reducing the risk of adverse effects.
- ◆ **Advancing Post-COVID research through AI and omics.** The use of machine learning algorithms to analyze large clinical, imaging, and histopathological datasets, along with omics studies (genomics, transcriptomics, proteomics, metabolomics), enables the identification of predictive patterns of sequelae, progression markers, and novel therapeutic targets. Integrating these tools into personalized medicine platforms will optimize patient follow-up and treatment in the aftermath of COVID-19 infection.

9. BIBLIOGRAPHY

BIBLIOGRAPHY

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *The Lancet*. 2020;395(10223):497–506.
2. World Health Organization. WHO Coronavirus (COVID-19). 2025; Available from: <https://covid19.who.int>.
3. Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. *Nat Med*. 2004;10(S12):S88–97.
4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. *N Engl J Med*. 2012;367(19):1814–20.
5. Sridhar S, Nicholls J. Pathophysiology of infection with SARS-CoV-2. What is known and what remains mystery. *Respirology*. 2021;26(7):652–65.
6. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell*. 2020;181(2):271-280.e8.
7. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. *Trends Immunol*. 2020;41(12):1100–15.
8. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. *Cell*. 2020;181(5):1036-1045.e9.
9. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. *Science*. 2020;369(6504):718–24.

10. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. *Nat Rev Microbiol*. 2021;19(3):141–54.
11. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. *Cytokine Growth Factor Rev*. 2020;53:25–32.
12. Jeong YJ, Wi YM, Park H, Lee JE, Kim SH, Lee KS. Current and Emerging Knowledge in COVID-19. *Radiology*. 2023;306(2).
13. Guan W jie, Ni Z yi, Hu Y, Liang W hua, Ou C quan, He J xing, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med*. 2020;382(18):1708–20.
14. Daniel ABC, Edgar PB, Vivian MCC, Isabel RGM. COVID-19 in the post-vaccination era: Who is at risk of severe disease? *J Allergy Infect Dis*. 2023;5(1):6–8.
15. Kawamura S, Yamaguchi F, Kusakado R, Go Y, Nohmi S, Yoshizaki C, et al. Changes in Clinical Features and Severity of COVID-19 with the Emergence of Omicron Variants: A Shift Towards a Common Disease. *Infect Drug Resist*. 2024;17:5595–5603.
16. Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. *Can Med Assoc J*. 2020;192(21):E590–E590.
17. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med*. 2020;382(19):1787–99.
18. Oliver ME, Hinks TSC. Azithromycin in viral infections. *Rev Med Virol*. 2021;31(2).
19. Butler CC, Dorward J, Yu LM, Gbinigie O, Hayward G, Saville BR, et al. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an

adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial. *The Lancet*. 2021;397(10279):1063–74.

20. Pan H, Peto R, Henao Restrepo AM, Preziosi MP, Sathiyamoorthy V, Karim QA, et al. Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. *The Lancet*. 2022;399(10339):1941–53.

21. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 - Final Report. *N Engl J Med*. 2020;383(19):1813–26.

22. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in Hospitalized Patients with Covid-19. *N Engl J Med*. 2021;384(8):693–704.

23. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. *JAMA*. 2020;324(13):1307–16.

24. Granholm A, Kjær MBN, Munch MW, Myatra SN, Vijayaraghavan BKT, Cronhjort M, et al. Long-term outcomes of dexamethasone 12 mg versus 6 mg in patients with COVID-19 and severe hypoxaemia. *Intensive Care Med*. 2022;48(5):580–9.

25. Munch MW, Myatra SN, Vijayaraghavan BKT, Saseedharan S, Benfield T, Wahlin RR, et al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive without Life Support in Adults with COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. *JAMA*. 2021;326(18):1807–17.

26. Taboada M, Rodríguez N, Varela PM, Rodríguez MT, Abelleira R, González A, et al. Effect of high *versus* low dose of dexamethasone on clinical worsening in patients

hospitalised with moderate or severe COVID-19 pneumonia: an open-label, randomised clinical trial. *Eur Respir J.* 2022;60(2):2102518.

27. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. *Lancet.* 2021;397(10285):1637–45.

28. Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized with COVID-19 Pneumonia: A Randomized Clinical Trial. *JAMA Intern Med.* 2021;181(1):24–31.

29. Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. *N Engl J Med.* 2020;383(24):2333–44.

30. Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. *J Allergy Clin Immunol.* 2020;146(1):137-146.e3.

31. Simonovich VA, Burgos Pratx LD, Scibona P, Beruto M V., Vallone MG, Vázquez C, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. *N Engl J Med.* 2021;384(7):619–29.

32. Patoulias D, Doumas M, Papadopoulos C, Karagiannis A. Janus kinase inhibitors and major COVID-19 outcomes: time to forget the two faces of Janus! A meta-analysis of randomized controlled trials. *Clin Rheumatol.* 2021;40(11):4671–4.

33. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. *Lancet Infect Dis.* 2022;22(9):1293–302.

34. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. *N Engl J Med.* 2021;384(5):403–16.
35. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med.* 2020;383(27):2603–15.
36. Chiner-Vives E, Cordovilla-Pérez R, de la Rosa-Carrillo D, García-Clemente M, Izquierdo-Alonso JL, Otero-Candelera R, et al. Short and Long-Term Impact of COVID-19 Infection on Previous Respiratory Diseases. *Arch Bronconeumol.* 2022; 58:39–50.
37. Graziani D, Soriano JB, Del Rio-Bermudez C, Morena D, Díaz T, Castillo M, et al. Characteristics and prognosis of COVID-19 in patients with COPD. *J Clin Med.* 2020;9(10):1–11.
38. Halpin DMG, Criner GJ, Papi A, Singh D, Anzueto A, Martinez FJ, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. *Am J Respir Crit Care Med.* 2021;203(1):24–36.
39. Sanchez-Ramirez DC, Mackey D. Underlying respiratory diseases, specifically COPD, and smoking are associated with severe COVID-19 outcomes: A systematic review and meta-analysis. *Respir Med.* 2020; 171:106096.
40. Valenzuela C, Waterer G, Raghu G. Interstitial lung disease before and after COVID-19: a double threat? *Eur Respir J.* 2021;58(6):2101956.
41. Lee H, Choi H, Yang B, Lee SK, Park TS, Park DW, et al. Interstitial lung disease increases susceptibility to and severity of COVID-19. *Eur Respir J.* 2021;58(6).
42. Miller MA, Cappuccio FP. A systematic review of COVID-19 and obstructive sleep apnoea. *Sleep Med Rev.* 2021; 55:101382.

43. Hariyanto TI, Kurniawan A. Obstructive sleep apnea (OSA) and outcomes from coronavirus disease 2019 (COVID-19) pneumonia: a systematic review and meta-analysis. *Sleep Med.* 2021; 82:47–53.
44. Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. *Diabetologia.* 2020; 63(8):1500–15.
45. Crichton ML, Shoemark A, Chalmers JD. The Impact of the COVID-19 Pandemic on Exacerbations and Symptoms in Bronchiectasis: A Prospective Study. *Am J Respir Crit Care Med.* 2021; 204(7):857–9.
46. Corne JM, Marshall C, Smith S, Schreiber J, Sanderson G, Holgate ST, et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. *The Lancet.* 2002; 359(9309):831–4.
47. Wark PAB, Johnston SL, Buccieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. *J Exp Med.* 2005; 201(6):937–47.
48. Johnston SL. Overview of Virus-induced Airway Disease. *Proc Am Thorac Soc.* 2005; 2(2):150–6.
49. Wang Y, Ao G, Qi X, Ma M. The relationship between severe or dead COVID-19 and asthma: A meta-analysis. *Clin Exp Allergy.* 2021; 51(2):354–9.
50. Liu S, Cao Y, Du T, Zhi Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. *J Allergy Clin Immunol Pract.* 2021; 9(2):693–701.
51. Sunjaya AP, Allida SM, Di Tanna GL, Jenkins CR. Asthma and COVID-19 risk: a systematic review and meta-analysis. *Eur Respir J.* 2022; 59(3):2101209.

52. Terry PD, Heidel RE, Dhand R. Asthma in Adult Patients with COVID-19. Prevalence and Risk of Severe Disease. *Am J Respir Crit Care Med.* 2021; 203(7):893–905.
53. Hou H, Xu J, Li Y, Wang Y, Yang H. The Association of Asthma With COVID-19 Mortality: An Updated Meta-Analysis Based on Adjusted Effect Estimates. *J Allergy Clin Immunol Pract.* 2021; 9(11):3944-3968.e5.
54. Muñoz X, Pilia F, Ojanguren I, Romero-Mesones C, Cruz MJ. Is asthma a risk factor for COVID-19? Are phenotypes important? *ERJ Open Res.* 2021; 7(1):00216–2020.
55. Eger K, Hashimoto S, Braunstahl GJ, Brinke A ten, Patberg KW, Beukert A, et al. Poor outcome of SARS-CoV-2 infection in patients with severe asthma on biologic therapy. *Respir Med.* 2021; 177.
56. Ho KS, Howell D, Rogers L, Narasimhan B, Verma H, Steiger D. The relationship between asthma, eosinophilia, and outcomes in coronavirus disease 2019 infection. *Ann Allergy Asthma Immunol.* 2021; 127(1):42–8.
57. Jackson DJ, Busse WW, Bacharier LB, Kattan M, O'Connor GT, Wood RA, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. *J Allergy Clin Immunol.* 2020; 146(1):203-206.e3.
58. Kimura H, Francisco D, Conway M, Martinez FD, Vercelli D, Polverino F, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. *J Allergy Clin Immunol.* 2020; 146(1):80-88.e8.
59. Carli G, Cecchi L, Stebbing J, Parronchi P, Farsi A. Is asthma protective against COVID-19? *Allergy.* 2021; 76(3):866–8.
60. Liao SY, Petrache I, Fingerlin TE, Maier LA. Association of inhaled and systemic corticosteroid use with Coronavirus Disease 2019 (COVID-19) test positivity in patients with chronic pulmonary diseases. *Respir Med.* 2021; 176.

61. Agustí A, De Stefano G, Levi A, Muñoz X, Romero-Mesones C, Sibila O, et al. Add-on inhaled budesonide in the treatment of hospitalised patients with COVID-19: a randomised clinical trial. *Eur Respir J.* 2022; 59(3):2103036.
62. Rial MJ, Valverde M, del Pozo V, González-Barcala FJ, Martínez-Rivera C, Muñoz X, et al. Clinical characteristics in 545 patients with severe asthma on biological treatment during the COVID-19 outbreak. *J Allergy Clin Immunol Pract.* 2021; 9(1):487-489.e1.
63. Singh SJ, Baldwin MM, Daynes E, Evans RA, Greening NJ, Jenkins RG, et al. Respiratory sequelae of COVID-19: pulmonary and extrapulmonary origins, and approaches to clinical care and rehabilitation. *Lancet Respir Med.* 2023; 11(8):709–25.
64. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. *The Lancet.* 2023; 401(10393):e21–33.
65. Wu X, Dong D, Ma D. Thin-Section Computed Tomography Manifestations During Convalescence and Long-Term Follow-Up of Patients with Severe Acute Respiratory Syndrome (SARS). *Med Sci Monit.* 2016; 22:2793–9.
66. Fabbri L, Moss S, Khan FA, Chi W, Xia J, Robinson K, et al. Parenchymal lung abnormalities following hospitalisation for COVID-19 and viral pneumonitis: A systematic review and meta-analysis. *Thorax.* 2022; 78(2):191–201.
67. Myall KJ, Mukherjee B, Castanheira AM, Lam JL, Benedetti G, Mak SM, et al. Persistent post–COVID-19 interstitial lung disease: An observational study of corticosteroid treatment. *Ann Am Thorac Soc.* 2021; 18(5):799–806.

68. Aljama C, Pilia MF, Ojanguren I. Hypersensitivity Pneumonitis-like Histological Findings Secondary to SARS-CoV-2 Pneumonia. *Arch Bronconeumol.* 2024; 60(7):435–6.
69. Descalzo V, Salvador F, Sansano I, Persiva Ó, Antón A, Clofent D, et al. Acute Eosinophilic Pneumonia Associated With SARS-CoV-2 Infection. *Arch Bronconeumol.* 2021; 57(57):50–2.
70. King TE, Lee JS. Cryptogenic Organizing Pneumonia. Taichman DB, editor. *N Engl J Med.* 2022; 386(11):1058–69.
71. Cherian S V., Patel D, Machnicki S, Naidich D, Stover D, Travis WD, et al. Algorithmic Approach to the Diagnosis of Organizing Pneumonia. *Chest.* 2022; 162(1):156–78.
72. Zhang Y, Li N, Li Q, Zhou Y, Zhang F, Chen T, et al. Analysis of the clinical characteristics of 176 patients with pathologically confirmed cryptogenic organizing pneumonia. *Ann Transl Med.* 2020; 8(12):763–763.
73. Vieira AL, Vale A, Melo N, Caetano Mota P, Jesus JM, Cunha R, et al. Organizing pneumonia revisited: insights and uncertainties from a series of 67 patients. *Sarcoidosis Vasc Diffuse Lung Dis.* 2018; 35(2):129–38.
74. Wang Y, Jin C, Wu CC, Zhao H, Liang T, Liu Z, et al. Organizing pneumonia of COVID-19: Time-dependent evolution and outcome in CT findings. *PLoS One.* 2020; 15(11):e0240347.
75. Johnston J, Dorrian D, Linden D, Stanel SC, Rivera-Ortega P, Chaudhuri N. Pulmonary Sequelae of COVID-19: Focus on Interstitial Lung Disease. *Cells.* 2023; 12(18):2238.
76. Culebras M, Loor K, Sansano I, Persiva Ó, Clofent D, Polverino E, et al. Histological Findings in Transbronchial Cryobiopsies Obtained From Patients After COVID-19. *Chest.* 2022; 161(3):647–50.

77. Vadász I, Husain-Syed F, Dorfmüller P, Roller FC, Tello K, Hecker M, et al. Severe organising pneumonia following COVID-19. *Thorax*. 2021; 76(2):201–4.
78. Cottin V, Cordier JF. Cryptogenic organizing pneumonia. *Semin Respir Crit Care Med*. 2012; 33(5):462–75.
79. Choi KJ, Yoo EH, Kim KC, Kim EJ. Comparison of clinical features and prognosis in patients with cryptogenic and secondary organizing pneumonia. *BMC Pulm Med*. 2021; 21(1):336.
80. Bahá A, Yıldırım F, Köktürk N, Galata Z, Akyürek N, Demirci NY, et al. Cryptogenic and secondary organizing pneumonia: Clinical presentation, radiological and laboratory findings, treatment, and prognosis in 56 cases. *Turk Thorac J*. 2018; 19(4):201–8.
81. Cordier JF. Cryptogenic organising pneumonia. *Eur Respir J*. 2006; 28(2):422–46.
82. Besutti G, Monelli F, Schirò S, Milone F, Ottone M, Spaggiari L, et al. Follow-Up CT Patterns of Residual Lung Abnormalities in Severe COVID-19 Pneumonia Survivors: A Multicenter Retrospective Study. *Tomography*. 2022; 8(3):1184–95.
83. Jara-Palomares L, Gomez-Izquierdo L, Gonzalez-Vergara D, Rodriguez-Becerra E, Marquez-Martin E, Barrot-Cortés E, et al. Utility of high-resolution computed tomography and BAL in cryptogenic organizing pneumonia. *Respir Med*. 2010; 104(11):1706–11.
84. Cottin V, Cordier JF. Cryptogenic organizing pneumonia. *Semin Respir Crit Care Med*. 2012; 33(5):462–75.
85. Sinha P, Bos LD. Pathophysiology of the Acute Respiratory Distress Syndrome. *Crit Care Clin*. 2021; 37(4):795–815.
86. Ware LB, Matthay MA. The Acute Respiratory Distress Syndrome. *N Engl J Med*. 2000; 342(18):1334–49.

87. Allen RJ, Guillen-Guio B, Croot E, Kraven LM, Moss S, Stewart I, et al. Genetic overlap between idiopathic pulmonary fibrosis and COVID-19. *Eur Respir J*. 2022; 60(1):2103132.
88. Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. *Nat Med*. 2022; 28(1):201–11.
89. Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, et al. Methylprednisolone infusion in early severe ards: Results of a randomized controlled trial. *Chest*. 2007;131(4):954–63.
90. Alrajhi NN. Post-COVID-19 pulmonary fibrosis: An ongoing concern. *Ann Thorac Med*. 2023; 18(4):173–81.
91. Bermudo Peloche G, Del Río B, Vicens-Zygmunt V, Valenzuela C, Laporta R, Rigual J, et al. Pirfenidone in post-COVID-19 pulmonary fibrosis (FIBRO-COVID): a phase 2 randomised clinical trial. *Eur Respir J*. 2025; 65(4):2402249.
92. Gao Y, Guan W, Liu S, Wang L, Cui J, Chen R, et al. Aetiology of bronchiectasis in adults: A systematic literature review. *Respirology*. 2016; 21(8):1376–83.
93. Ryu G, Shin HW. SARS-CoV-2 Infection of Airway Epithelial Cells. *Immune Netw*. 2021; 21(1):1–16.
94. Madas BG, Füri P, Farkas Á, Nagy A, Czitrovszky A, Balásházy I, et al. Deposition distribution of the new coronavirus (SARS-CoV-2) in the human airways upon exposure to cough-generated droplets and aerosol particles. *Sci Rep*. 2020; 10(1).
95. Treggiari MM, Romand JA, Martin JB, Suter PM. Air cysts and bronchiectasis prevail in nondependent areas in severe acute respiratory distress syndrome: A computed tomographic study of ventilator-associated changes. *Crit Care Med*. 2002; 30(8):1747–52.

96. Shi H, Han X, Jiang N, Cao Y, Alwaid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. *Lancet Infect Dis.* 2020; 20(4):425–34.
97. Han X, Fan Y, Alwaid O, Li N, Jia X, Yuan M, et al. Six-month follow-up chest CT findings after severe COVID-19 pneumonia. *Radiology.* 2021; 299(1):E177–86.
98. Franquet T, Giménez A, Ketai L, Mazzini S, Rial A, Pomar V, et al. Air trapping in COVID-19 patients following hospital discharge: retrospective evaluation with paired inspiratory/expiratory thin-section CT. *Eur Radiol.* 2022;32(7).
99. Carden KA, Boiselle PM, Waltz DA, Ernst A. Tracheomalacia and Tracheobronchomalacia in Children and Adults. *Chest.* 2005; 127(3):984–1005.
100. Leavy OC, Russell RJ, Harrison EM, Lone NI, Kerr S, Docherty AB, et al. One year health outcomes associated with systemic corticosteroids for COVID-19: a longitudinal cohort study. *ERJ Open Res.* 2024; 00474–2024.
101. Eggert LE, He Z, Collins W, Lee AS, Dhondalay G, Jiang SY, et al. Asthma phenotypes, associated comorbidities, and long-term symptoms in COVID-19. *Allergy.* 2022; 77(1):173–85.
102. Wang L, Foer D, Zhang Y, Karlson EW, Bates DW, Zhou L. Post–Acute COVID-19 Respiratory Symptoms in Patients With Asthma: An Electronic Health Records–Based Study. *J Allergy Clin Immunol Pract.* 2023; 11(3):825-835.e3.
103. Thompson EJ, Williams DM, Walker AJ, Mitchell RE, Niedzwiedz CL, Yang TC, et al. Long COVID burden and risk factors in 10 UK longitudinal studies and electronic health records. *Nat Commun.* 2022; 13(1):3528.
104. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society

and European Respiratory Society Technical Statement. *Am J Respir Crit Care Med.* 2019; 200(8):e70–88.

105. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. *Eur Respir J.* 2012; 40(6):1324–43.

106. Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW, Francis RW, et al. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. *Eur Respir J.* 2017; 50(3):1700010.

107. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European respiratory society/American thoracic society technical standard: Field walking tests in chronic respiratory disease. *Eur Respir J.* 2014; 44(6):1428–46.

108. Bankier AA, MacMahon H, Colby T, Gevenois PA, Goo JM, Leung ANC, et al. Fleischner Society: Glossary of Terms for Thoracic Imaging. *Radiology.* 2024; 310(2).

109. Espejo D, Pilia F, Romero-Mesones C, Ojanguren I, Cruz MJ, Muñoz X. Respiratory sequelae in patients with bronchial asthma after SARS-CoV-2 pneumonia: a retrospective study in a large academic centre in 2020. *ERJ Open Res.* 2025; 11(1):00510–2024.

110. Espejo D, Zapata M, Omari S, Muñoz X, Cruz MJ. Acquired tracheomalacia due to SARS-CoV-2 pneumonia. *Clin Respir J.* 2024 Jan;18(1):e13719.

111. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2024. Available from: <https://ginasthma.org/>

112. World Medical Association Declaration of Helsinki. *JAMA.* 2013; 310(20):2191.

113. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Harmonised Guideline: Integrated Addendum

to ICH E6(R1): Guideline for Good Clinical Practice E6(R2). 2016. European Medicines Agency.

114. Schulz KF. CONSORT 2010 Statement: Updated Guidelines for Reporting Parallel Group Randomized Trials. *Ann Intern Med.* 2010; 152(11):726.
115. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. *Eur Respir J.* 2005; 26(2):319–38.
116. Wu X, Liu X, Zhou Y, Yu H, Li R, Zhan Q, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. *Lancet Respir Med.* 2021; 9(7):747–54.
117. Yamaya M, Kikuchi A, Sugawara M, Nishimura H. Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. *Respir Investig.* 2023; 61(2):270–83.
118. Badenes Bonet D, Caguana Vélez OA, Duran Jordà X, Comas Serrano M, Posso Rivera M, Admetlló M, et al. Treatment of COVID-19 during the Acute Phase in Hospitalized Patients Decreases Post-Acute Sequelae of COVID-19. *J Clin Med.* 2023;12(12).
119. Davelaar J, Jessurun N, Schaap G, Bode C, Vonkeman H. The effect of corticosteroids, antibiotics, and anticoagulants on the development of post-COVID-19 syndrome in COVID-19 hospitalized patients 6 months after discharge: a retrospective follow up study. *Clin Exp Med.* 2023; 23(8):4881–8.
120. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized with COVID-19 in the New York City Area. *JAMA - Journal of the American Medical Association.* 2020; 323(20):2052–9.

121. Alzoughool F, Abumweis S, Alanagreh L, Atoum M. Associations of pre-existing cardiovascular morbidity with severity and the fatality rate in COVID-19 patients: a systematic review and meta-analysis. *Osong Public Health Res Perspect.* 2022;13(1):37–50.

122. Eftekhar Z, Haybar H, Mohebbi A, Saki N. Cardiac Complications and COVID-19: A Review of Life-threatening Co-morbidities. *Curr Cardiol Rev.* 2024; 20(3).

123. Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, et al. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. *J Med Virol.* 2023; 95(4).

124. Viermyr HK, Halvorsen B, Sagen EL, Michelsen AE, Barrat-Due A, Kåsine T, et al. High viral loads combined with inflammatory markers predict disease severity in hospitalized COVID-19 patients: Results from the NOR-Solidarity trial. *J Intern Med.* 2024; 296(3):249–59.

125. Najjar-Debbiny R, Barnett-Griness O, Khoury J, Gronich N, Weber G, Adir Y, et al. Association Between COVID-19 Infection and Pulmonary Fibrosis: A Nested Case-Control Study. *Am J Med.* 2023; 136(11):1087-1093.e2.

126. Zhou S, Zhang A, Liao H, Liu Z, Yang F. Pathological Interplay and Clinical Complications between COVID-19 and cardiovascular diseases: An Overview in 2023. *Cardiology.* 2024; 149(1):60–70.

127. Weckler BC, Kutzinski M, Vogelmeier CF, Schmeck B. Multiorgan sequelae following non-COVID-19 respiratory infections: a review. *Infection.* 2025.

128. Borczuk AC, Salvatore SP, Seshan S V., Patel SS, Bussel JB, Mostyka M, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. *Mod Pathol.* 2020; 33(11):2156–68.

129. Guarnieri M, Andreoni P, Gay H, Giudici R, Bottioli M, Mondino M, et al. Tracheostomy in mechanically ventilated patients with sars-cov-2-ards: Focus on tracheomalacia. *Respir Care*. 2021; 66(12):1797–804.
130. Douros K, Kremmydas G, Grammeniatis V, Papadopoulos M, Priftis KN, Alexopoulou E. Helical multi-detector CT scan as a tool for diagnosing tracheomalacia in children. *Pediatr Pulmonol*. 2019; 54(1):47–52.
131. Kelly JD, Curteis T, Rawal A, Murton M, Clark LJ, Jafry Z, et al. SARS-CoV-2 post-acute sequelae in previously hospitalised patients: systematic literature review and meta-analysis. *Eur Respir Rev*. 2023; 32(169):220254.
132. Guinto E, Gerayeli F V., Eddy RL, Lee H, Milne S, Sin DD. Post-COVID-19 dyspnoea and pulmonary imaging: a systematic review and meta-analysis. *Eur Respir Rev*. 2023; 32(169):220253.
133. Chalmers JD, Polverino E, Crichton ML, Ringshausen FC, De Soyza A, Vendrell M, et al. Bronchiectasis in Europe: data on disease characteristics from the European Bronchiectasis registry (EMBARC). *Lancet Respir Med*. 2023; 11(7):637–49.
134. Bafadhel M, Faner R, Taillé C, Russell REK, Welte T, Barnes PJ, et al. Inhaled corticosteroids for the treatment of COVID-19. *Eur Respir Rev*. 2022; 31(166):220099.
135. Berair R, Hartley R, Mistry V, Sheshadri A, Gupta S, Singapuri A, et al. Associations in asthma between quantitative computed tomography and bronchial biopsy-derived airway remodelling. *Eur Respir J*. 2017; 49(5):1601507.
136. Geddes DM. BOOP and COP. *Thorax*. 1991;46(8):545–7.
137. Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term Systemic Corticosteroid Exposure: A Systematic Literature Review. *Clin Ther*. 2017; 39(11):2216-2229.

138. Dhooria S, Chaudhary S, Sehgal IS, Agarwal R, Arora S, Garg M, et al. High-dose versus low-dose prednisolone in symptomatic patients with post-COVID-19 diffuse parenchymal lung abnormalities: an open-label, randomised trial (the COLDSTER trial). *Eur Respir J.* 2022; 59(2):2102930.

139. Saito Z, Kaneko Y, Hasegawa T, Yoshida M, Odashima K, Horikiri T, et al. Predictive factors for relapse of cryptogenic organizing pneumonia. *BMC Pulm Med.* 2019; 19(1):10.

140. Drakopanagiotakis F, Paschalaki K, Abu-Hijleh M, Aswad B, Karagianidis N, Kastanakis E, et al. Cryptogenic and Secondary Organizing Pneumonia. *Chest.* 2011; 139(4):893–900.

141. Kim M, Cha SI, Seo H, Shin KM, Lim JK, Kim H, et al. Predictors of relapse in patients with organizing pneumonia. *Tuberc Respir Dis.* 2015; 78(3):190–5.

142. Yamamoto M, Ina Y, Kitaichi M, Harasawa M, Tamura M. Clinical Features of BOOP in Japan. *Chest.* 1992; 102(1):21–5.

143. Beardsley B, Rassl D. Fibrosing organising pneumonia. *J Clin Pathol.* 2013; 66(10):875–81.

144. Lee JH, Yim JJ, Park J. Pulmonary function and chest computed tomography abnormalities 6–12 months after recovery from COVID-19: a systematic review and meta-analysis. *Respir Res.* 2022; 23(1).

145. Bermudo G, Suarez-Cuartin G, Rivera-Ortega P, Rodriguez-Portal JA, Sauleda J, Nuñez B, et al. Different Faces of Idiopathic Pulmonary Fibrosis With Preserved Forced Vital Capacity. *Arch Bronconeumol.* 2022; 58(2):135–41.

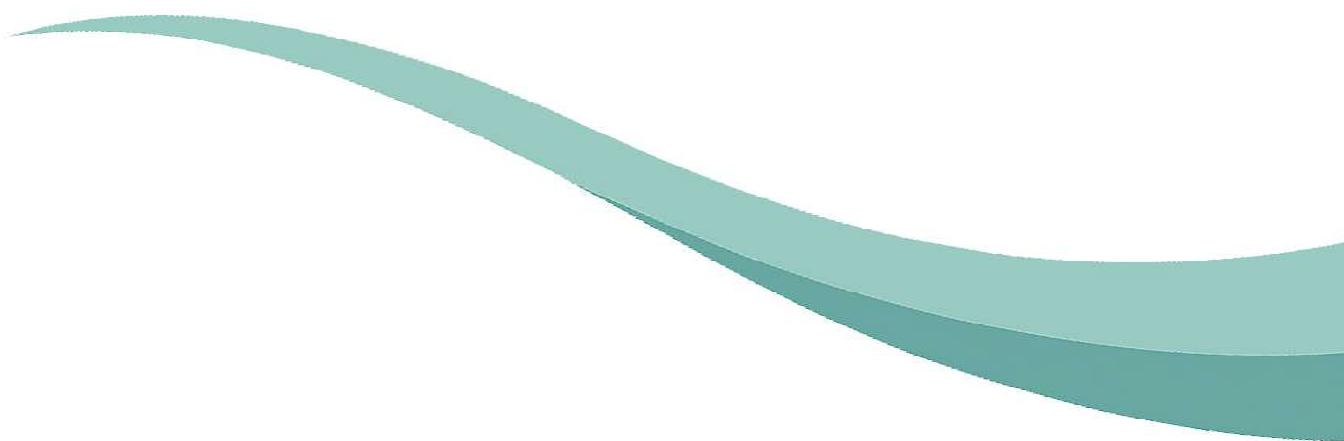
146. Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Antoniou KM, Bissell BD, et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in

Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. *Am J Respir Crit Care Med.* 2022; 205(9):E18–47.

147. Mateos-Toledo H, Mejía-Ávila M, Rodríguez-Barreto Ó, Mejía-Hurtado JG, Rojas-Serrano J, Estrada A, et al. An Open-label Study With Pirfenidone on Chronic Hypersensitivity Pneumonitis. *Arch Bronconeumol.* 2020; 56(3):163–9.

148. Richeldi L, Azuma A, Cottin V, Kreuter M, Maher TM, Martinez FJ, et al. Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with idiopathic pulmonary fibrosis (FIBRONEER-IPF). *BMJ Open Respir Res.* 2023; 10(1).

149. Maher TM, Assassi S, Azuma A, Cottin V, Hoffmann-Vold AM, Kreuter M, et al. Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with progressive pulmonary fibrosis (FIBRONEER-ILD). *BMJ Open Respir Res.* 2023; 10(1).


150. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, et al. Nintedanib for Systemic Sclerosis–Associated Interstitial Lung Disease. *N Engl J Med.* 2019; 380(26):2518–28.

151. Kolb M, Raghu G, Wells AU, Behr J, Richeldi L, Schinzel B, et al. Nintedanib plus Sildenafil in Patients with Idiopathic Pulmonary Fibrosis. *N Engl J Med.* 2018; 379(18):1722–31.

152. Md B, Kardatzke D, Noble PW, Albera C, Bradford WZ, Costabel U, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. *Lancet.* 2011; 377(9779):1760-9.

153. Marshall JC, Murthy S, Diaz J, Adhikari NK, Angus DC, Arabi YM, et al. A minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis [Internet].* 2020 Aug 1;20(8):e192–7.

10. ANNEXES

10.1. FINANCING AND SCIENTIFIC AWARDS

10.1.1. Financing

PhD student, David Espejo Castellanos has received financial support during his doctoral thesis:

- ◆ Rio Hortega programme from Instituto de Salud Carlos III (CM23/00174)

The studies in the articles presented in this doctoral thesis have been partially funded by:

- ◆ This study was financially supported by the Instituto de Salud Carlos III through project Fis PI21/01046, entitled "*Characterization and Risk Factors of Pulmonary Sequelae in Patients Who Survive COVID-19 Pneumonia*", awarded to Xavier Muñoz Gall for the period 2022–2024.
- ◆ Fondo Europeo de Desarrollo Regional (FEDER).

10.1.2. Scientific awards

PhD student, David Espejo Castellanos has received scientific award during his doctoral thesis:

- ◆ Winner of the Best Communication in the EPID Area at the SEPAR 2024 Annual Congress. The title of the communication was: "Impacto del uso de corticoides orales en la neumonía organizada post COVID-19 (ensayo clínico NORCOVID)"

10.2. SCIENTIFIC PRODUCTION

10.2.1. Abstract presented at conferences related to this doctoral thesis

10.2.1.1. Abstract 1

Espejo Castellanos D, González Amezcu A, Pilia MF, Granados Rosales GD, Romero Mesones C, Ramon Belmonte MA, Ojanguren Arranz I, Villar Gómez A, Cruz Carmona MJ, Torres Benítez F, Muñoz Gall X. Impact of the use of oral corticoids in organizing pneumonia post COVID-19 (The NORCOVID clinical trial). Eur Respir J. 2024;64(Suppl 68):PA698.
doi:10.1183/13993003.congress-2024.PA698

Conference Abstract

Impact of the use of oral corticoids in organizing pneumonia post COVID-19 (the NORCOVID clinical trial)

David Espejo Castellanos | Aitor González Amezua | María Florencia Pilia | Galo David Granados Rosales | Christian Romero Mesones | María Antonia Ramon Belmonte | Iñigo Ojanguren Arranz | Ana Villar Gomez | María Jesús Cruz Carmona | Ferran Torres Benítez | Xavier Muñoz Gall | See Less

European Respiratory Journal 2024 64(suppl 68): PA698; DOI: <https://doi.org/10.1183/13993003.congress-2024.PA698>

 Permissions

 Add to Favourites

 Labels

 Cite

 Share

 Alerts

 Log in or register to access this content

Article

Info & Metrics

 Focus

 Previous

 Next

Abstract

Introduction: Organizing pneumonia (OP) is one of the most frequent sequelae of Sars-CoV-2 pneumonia. The aim of this study is to establish the optimal dose of oral corticosteroids for the treatment of this complication.

Methods: Randomized, open, parallel, single-center, non-inferiority clinical trial with an active control group comparing two oral prednisone regimens. The control group received prednisone 0.75 mg/Kg/day 4 weeks; 0.5mg/Kg/day 4 weeks; 20mg/day 4 weeks; 10mg/day 6 weeks; 5 mg/day 6 weeks (6 months) and the experimental group prednisone 0.5 mg/Kg/d 3 weeks, 20 mg/day 3 weeks; 15mg/day 2 weeks; 10mg/day 2 weeks, 5mg/day 2 weeks (3 months). Visits were carried out at baseline and at 3, 6 and 12 months with clinical history, physical examination, functional tests and chest CT. The primary outcome was non-inferiority with a margin of 10% in CO transfer (DLCO) at 6 months.

Results: Seventy-nine patients were randomized, 40 in the experimental group and 39 in the control group. Mean baseline DLCO was 59.3% (SD 16.7) in the experimental group and 55.5% (SD 16.5) in the control group, with mean improvements at 6 months of 11.7% (95%CI 7.18 -16.17) and 12.8% (95%CI 8.57-17.11) respectively. The difference between groups at 6 months was 1.23% [(95%CI -5.13-7.59], the experimental regimen being non-inferior to the control group with the margin of 10%. Patients in the experimental group had less than half as many adverse effects as controls: 9 (23%) vs 22 (56%) ($p=0.0027$).

Conclusions: Treatment with oral corticosteroids lasting three months (initial dose of prednisone 0.5 mg/Kg/d) may be recommended in patients with post-COVID OP.

Funded by: Instituto de Salud Carlos III(PI21/01046)

Footnotes

Cite this article as *Eur Respir J* 2024; 64: Suppl. 68, PA698

This article was presented at the 2024 ERS Congress, in session "Innovative perspectives on cellular mechanisms in lung diseases".

This is an ERS International Congress abstract. No full-text version is available. Further material to accompany this abstract may be available at www.ers-education.org (ERS member access only).