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SUMMARY

Thyroid cancer (TC) is among the fastest-growing solid malignancies worldwide, with papillary
thyroid carcinoma (PTC) accounting for approximately 90% of all cases. Although the prognosis for
most PTC patients is favorable, a subset still faces risks of aggressive progression and recurrence,
highlighting the need for deeper understanding of its molecular mechanisms and novel therapeutic
strategies. In recent years, obesity-associated chronic inflammation has been recognized as a major
driver of PTC development. Adipose tissue, functioning as an endocrine organ, secretes various
adipokines that play critical roles in tumor immunity, metabolic reprogramming, and
microenvironment modulation. Among them, adiponectin (APN) is a key anti-inflammatory adipokine
with regulatory functions in metabolism, autophagy, and cellular proliferation. Through its receptors,
AdipoR1 and AdipoR2, APN activates signaling pathways such as AMPK and PPAR-a, contributing
to energy homeostasis, autophagy induction, and modulation of the PI3K/Akt/mTOR axis. However,
the poor stability of the APN protein limits its clinical application, prompting growing interest in its
small-molecule receptor agonist, AdipoRon. With high oral bioavailability and stability, AdipoRon has
shown potential in inducing apoptosis and autophagy across multiple tumor models. Recent studies
also suggest an interaction between APN signaling and low-density lipoprotein (LDL) metabolism.
Particularly in BRAF-mutated PTC, LDL promotes tumor progression via the MAPK/ERK pathway,
while APN may counteract these effects by enhancing LDLR degradation. Thus, investigating the
regulatory role of AdipoRon in PTC, especially in relation to lipid metabolism and LDL signaling,
holds significant scientific and therapeutic value. This study aims to comprehensively investigate
the expression patterns, biological functions, and molecular mechanisms of adiponectin (APN) and
its receptors (AdipoR1 and AdipoR2) in thyroid cancer, particularly PTC. Special emphasis is placed
on the interplay between APN signaling and LDL metabolism, and the antitumor potential of
AdipoRon in promoting apoptosis and/or autophagy.

A combination of bioinformatics and cell-based functional experiments was employed to explore the
role of APN signaling in PTC. Public databases including TCGA, GTEx, and GEO were utilized to
analyze the differential expression of APN receptor-related genes (ADIPOR1, ADIPOR2) across
normal thyroid tissue, benign tumors, and PTC, along with correlations with clinicopathological
parameters and prognosis. Two thyroid cancer cell lines with distinct mutational backgrounds
(BRAF-mutated BCPAP and RET/PTC1-rearranged TPC-1) were treated with AdipoRon to evaluate
its effects on cell proliferation and migration. Western blotting was used to assess the expression of
key proteins involved in apoptosis, autophagy, and relevant signaling pathways (AKT, mTOR, ERK).
Furthermore, combined treatment with LDL and AdipoRon was applied to examine the modulation
of LDL-induced tumor-promoting effects and explore the potential synergistic mechanisms under
dysregulated lipid metabolism conditions.

Our findings reveal a significant role of APN signaling in the pathogenesis and progression of PTC.
APN and its receptors (ADIPOR1/2) are differentially expressed in PTC compared to benign thyroid
tissues, with functional divergence: ADIPORL is mainly involved in cell death and immune regulation,
whereas ADIPOR?2 is closely linked to metabolic remodeling. In PTC patients, perithyroidal adipose
tissue exhibited elevated APN secretion along with altered inflammatory cytokine profiles,
suggesting its contribution to tumor transformation via the local inflammatory microenvironment.
AdipoRon effectively inhibited proliferation and migration of PTC cells, induced apoptosis and
autophagy, and showed mutation-dependent activity. Under high LDL conditions, AdipoRon
suppressed LDLR expression and interfered with AKT/mTOR/ERK signaling, reversing LDL-induced
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proliferative effects. Collectively, these findings highlight the critical role of the APN-LDL axis in
metabolic regulation of PTC and support the therapeutic potential of AdipoRon as a targeted
intervention in metabolically dysregulated thyroid cancer.
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[. INTRODUTION
I. 1. Overview of Thyroid Cancer

I. 1.1 Epidemiology of Thyroid Cancer

Over the past two decades, the thyroid cancer incidence has risen dramatically worldwide; In 2022,
approximately 821,214 new cases of thyroid cancer were reported worldwide, corresponding to an
age standardized incidence rate (ASR) of 9.1 per 100,000, it ranks as the seventh most prevalent
cancer worldwide. The global mortality ranked 24th, with 47,507 deaths and an ASR of 0.44.
Incidence was significantly higher among females than males (20.2% vs. 7.5%) (Figure 1) . Europe
accounted for 9.6% of new cases and 12.4% of deaths worldwide (Figure 2)(1). Thyroid cancer
incidence rates increase sharply after age 40, peaking in the 65—74 age group (Figure 3). Despite of
some authors suggest that this increment could be attributed to an overdiagnosis effect, this type is
projected to rise to the fourth position among all cancers by 2030(2).

Figure 1. Thyroid cancer incidence rate by sex in 2022. From GLOBOCAN 2020, Global Cancer Observatory,
IARC. https://gco.iarc.fr/today

Thyroid
Recent Trends in SEER Age-Adjusted Incidence Rates, 2000-2022
By Sex, Delay-adjusted SEER Incidence Rate, All Races / Ethnicities, All Ages, All Stages

25 Legend (Sex)
A Female
A—A
ot - " . ¥ Mo
A—K e
20 ==
A~
4
E:
g s >
8 <
4 A
a S e
o
2 10
(14
et WSS v v
v
v
Y —v

L

0

2000 2004 2008 2012 2016 2020 2022

Year of Diagnosis


https://gco.iarc.fr/today

16

Figure 2. Thyroid cancer incidence and mortality rate in 2022. From GLOBOCAN 2020, Global Cancer
Observatory, IARC. https://gco.iarc.fr/today
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Figure 3. Thyroid cancer incidence rate by age in 2022. From GLOBOCAN 2020, Global Cancer Observatory,
IARC. https://gco.iarc.fritoday
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I. 1.2 Classification of Thyroid Cancer

According to the 2022 WHO Classification of Thyroid Neoplasms, thyroid tumors are categorized
based on their cell of origin into three primary groups: follicular cell derived neoplasms (FDNSs),
parafollicular (C cell) derived tumors, and miscellaneous tumors. FDNs are further classified by
biological behavior into: Benign tumors, Low risk neoplasms and Malignant neoplasms, including:
Follicular thyroid carcinoma (FTC), Invasive encapsulated follicular variant of papillary thyroid
carcinoma, Papillary thyroid carcinoma (PTC), Oncocytic carcinoma of the thyroid (OC), Anaplastic
thyroid carcinoma (ATC) and High grade follicular derived carcinomas: Differentiated high grade
thyroid carcinoma (DHGTC) which is newly defined, Poorly differentiated thyroid carcinoma (PDTC).
Notably, DHGTC is a newly proposed entity characterized as an aggressive PTC/FTC/OC tumor
exhibiting 25 mitoses per 2 mm? and/or tumor necrosis, but lacking anaplastic features (Figure4)(3,4).

Figure 4. Algorithm for diagnosis of thyroid tumors (WHO 5th edition)
From Chiba, T. Molecular Pathology of Thyroid Tumors: Essential Points to Comprehend Regarding the Latest WHO Classification.
Biomedicines 2024, 12, 712. https://doi.org/10.3390/biomedicines12040712
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I. 1.3 Clinical Characteristics of PTC

PTC accounts for approximately 90% of all thyroid cancers. Its incidence varies according to tumor
size, with tumors larger than 2 cm exhibiting distinct clinical behavior. Since 2014, the overall
incidence of PTC particularly localized tumors and microcarcinomas <1.0 cm has declined,
accompanied by a significant decrease in the rate of distant metastasis (APC = —17.86). However,
the incidence of tumors >2.0 cm has remained relatively stable. Despite the reduction in early stage
diagnoses, mortality related to PTC based on incidence has continued to rise from 2000 to 2018
(APC = 1.35), indicating a decline in overdiagnosis of indolent tumors but limited advances in the
detection or treatment of advanced stage disease(5). These findings suggest that the incidence of
advanced PTC has not been significantly affected by recent improvements in diagnostic or
therapeutic technologies.

PTC is a well differentiated thyroid carcinoma that, along with FTC and OC, forms the group of DTC.
DTCs are generally localized and associated with excellent prognoses, with 5 year survival rates
exceeding 98%(6). In contrast, PDTC, a more aggressive subtype, has a markedly lower 5 year
survival rate of about 76%(7). Due to the indolent and localized nature of DTC, larger tumors often
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display low risk features such as univocality, confinement within the thyroid gland, and absence of
lymph node metastasis. In these cases, the extent of thyroidectomy may not significantly influence
oncologic outcomes, and lobectomy may suffice. However, for patients with DTC tumors measuring
between 1 and 4 cm, total thyroidectomy is associated with a reduced risk of recurrence(8).

I. 1.4 Histopathology and Variants of PTC

The diagnosis of PTC primarily relies on the distinctive nuclear features of thyroid tumor cells rather
than on architectural patterns alone. Although various structural variants exist and underscore the
importance of architectural changes, diagnostic emphasis remains firmly on nuclear morphology.
The characteristic nuclear features include (Figure5)(9,10): Enlarged, elongated nuclei with crowding
and overlapping; Irregular nuclear contours; Clear or vesicular chromatin with chromatin margination,
resulting in the distinctive “Orphan Annie eye” nuclei; Multiple small nucleoli situated beneath the
nuclear membrane; Nuclear grooves resulting from irregular nuclear contours visible in two
dimensional sections; Intranuclear pseudo inclusions formed by cytoplasmic invaginations into deep
nuclear grooves. These nuclear characteristics enlarged and overlapping nuclei, chromatin clearing,
irregular nuclear contours, grooves, and intranuclear cytoplasmic pseudo inclusions are hallmark
features of PTC and are essential for its histopathological diagnosis (10).

Figure 5. Characteristic Nuclear Features of PTC. Adapted from WHO Classification of Tumours Editorial Board:
Endocrine and Neuroendocrine tumours, vol. 8. 5th edn. (International Agency for Research on Cancer, Lyon, France,

2022) https://tumourclassification.iarc.who.int.

I. 1.5 Risk factors for thyroid cancer

The risk of developing thyroid cancer is multifactorial. However, some factors may increase this risk,
and the most important ones are described below.

I. 1.5.1 Internal Factors
Family History

Having a first degree relative, especially a sibling, with thyroid cancer increases the risk of sporadic
PTC(11). Female relatives have a 2% cumulative risk, nearly triple that of the general population;
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male relatives show a 1% risk with a Standardized Incidence Ratio (SIR) of 2.5. In families with 22
early onset PTC cases (<60 years), the risk rises to 10% in females and 24% in males. Twin studies
show a 23 fold increased risk(12). Familial non medullary thyroid cancer (FNMTC), defined by =3
affected family members, often presents younger, with multifocality, early onset, and higher
recurrence and aggressiveness(13—15). Compared to sporadic cases, familial PTC is typically more
invasive and recurrent(16—21), though some studies report no significant difference(21-26). Even
micropapillary forms can be aggressive in familial cases. Familial cases account for ~5% of all thyroid
cancers, mainly PTC, and may involve chromosomal alterations(27)

Hormonal factors

The levels of thyroid stimulating hormone (TSH) is associated with a higher risk in euthyroid patients
with nodules (28). Rising thyroglobulin levels may serve as an indicator of increased risk, while TSH
shows inconsistent associations (29). Some studies link higher TSH with cancer diagnosis, but
results vary. Cancer patients often show lower triiodothyronine (T3) and higher free thyroxine (fT4);
an fT4/fT3 ratio >3.3 increases risk 3.6 fold (30,31). Higher free T3 (fT3) is linked to lower risk, while
fT4 >2.2 ng/dL significantly increases it(32) .

Age and gender
Age

The majority of thyroid cancer cases occur in adults between 25 and 65 years old, with a peak
incidence in people aged 40 to 50. It is less frequent in very young children and older adults(33).
Age is recognized as a crucial prognostic indicator in DTC(34).

Evidence suggests that survival rates decline with increasing age in patients with PTC, and DTC
exhibits more aggressive clinical behavior in elderly individuals(35,36).

Furthermore, in ATC, as a key prognostic factor, age has a significant influence on patient outcomes,
with individuals under 50 years of age exhibiting the most favorable prognoses (37)

Gender

Thyroid cancer, especially PTC, is more frequent in females. Its incidence rises after puberty and
peaks again during the perimenopausal period, declining after menopause, likely due to estrogen
level changes(38). In women under 45, late menarche (=14 years), long menstrual cycles (>30 days),
recent pregnancy (within 5 years), and parity (2—3 births) increase PTC risk, while long term
breastfeeding (>12 months) is also linked to higher risk(39—41) Oral contraceptive use appears
protective, particularly in younger women(42,43) Family history also increases susceptibility(44).
These sex based differences suggest that thyroid cancer may be influenced by endogenous
estrogen levels, especially among obese or overweight women(45) . In adipose tissue, increased
aromatase expression promotes the synthesis and conversion of endogenous sex steroids (46),
leading to elevated estrogen levels that contribute to thyroid cancer development (47). Estrogen
primarily acts through nuclear estrogen receptors (ERs), with ER-a and ER-B having opposing
effects on thyroid cancer cell proliferation (48). Differential expression of these receptors allows
estrogen to regulate cell proliferation via multiple signaling pathways, including PI3K/AKT, MEK/ERK,
vascular endothelial growth factor (VEGF), and NF-kB (49). Estrogen can also stimulate cell
proliferation through non-ER pathways (50), and influence tumor progression by modifying the tumor
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microenvironment. For example, it may affect oxidative stress responses, autophagy, and VEGF
secretion, thereby enhancing angiogenesis in thyroid cancer(51) .

Racial Disparities

There has been a striking 150.2% surge in thyroid cancer incidence since 1973 in Whites and 73.2%
in Blacks with consistently lower rates in Black populations, partly due to healthcare disparities,
though intrinsic factors likely contribute(52). Compared to Whites, A higher incidence of
extrathyroidal extension has been observed in Black and Hispanic patient populations, while Asian
patients show similar rates(53) . Treatment patterns also differ: Black patients are more likely to
receive radioactive iodine, while Hispanic patients are less likely(54). African Americans face lower
survival, possibly due to more aggressive tumor types and larger tumors at diagnosis(55) .
Asian/Pacific Islanders have higher rates of brain metastases(56) , and Hispanics are often
diagnosed younger, with greater lymph node involvement and more advanced disease than
Whites(57) .

I. 1.5.2 External Factors

lonizing Radiation

Exposure to iodine 131 (**!1) during childhood significantly increases the risk of TC due to the gland's
pronounced ability to absorb 3| (58). After the Chernobyl accident, pediatric population (aged 0-
19) in contaminated areas experienced a sharp upward trend in the occurrence of TC, a risk that has
persisted for decades(59-63). Contaminated milk was the main source of radiation, with doses up
to 42 Gy, though many studies rely on retrospective questionnaires, which may cause bias (64—66).
Itis estimated that by 2065, Chernobyl radiation may cause around 16,000 thyroid cancer cases(67).
Molecular studies show frequent RET/PTC3 gene rearrangements in both radiation induced and
sporadic PTC (64-66). Even low dose radiation exposure, such as from the Hiroshima event,
increases cancer risk(68) . Living near nuclear plants shows no statistically significant increased
risk(69) , yet 3! therapy remains a standard treatment for thyroid cancer (70). lonizing radiation
causes DNA damage, with children’s thyroids being particularly sensitive(71-74). Medical imaging
like CT scans also raises the risk of micropapillary carcinoma(75). Mobile phone use alone shows
no clear link to thyroid cancer, but certain DNA repair gene variants may increase risk(76,77).
Radiofrequency radiation induces oxidative stress and DNA damage, contributing to
carcinogenesis(78). Minimizing radiation exposure in children and avoiding unnecessary imaging is
critical to reduce thyroid cancer risk.(79)

Smoking

Current smoking has been associated with a reduced risk of thyroid cancer(80). Negative
correlations have been reported between smoking and the risk of thyroid nodules as well as PTC(81) .
Nonetheless, some studies have found little evidence supporting significant associations between
hormonal factors, smoking, or alcohol consumption and thyroid cancer risk (82).

Endocrine Disruptors

Endocrine disruptors are harmful environmental agents linked to thyroid cancer, though their effects
on thyroid hormone levels remain unclear(83) . Dioxins and dioxin like compounds, such as
polychlorinated biphenyls (PCBs), disrupt thyroid function and are associated with increased thyroid
cancer risk(84,85). They interfere with thyroid hormone transport, cause cytotoxic damage, and
induce metabolic enzymes(86,87). PCBs promote cancer cell growth by affecting genes like PIK3R1
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and PI3K/Akt pathways, key in thyroid cancer processes(88). Phthalates, common plasticizers, enter
the body via ingestion, inhalation, or skin contact and disrupt thyroid function(89,90). Exposure to
Di(2 ethylhexyl) phthalate (DEHP), a phthalate, is linked to higher differentiated thyroid cancer risk
and PTC incidence(91,92). Bisphenol A (BPA) acts as a weak antagonist to thyroid hormone
receptors, inhibiting their activity(93,94). BPA exposure correlates with elevated TSH levels, which
may increase thyroid cancer risk through hormone disruption and TSH overstimulation(95).
According to the fetal origin hypothesis, fetuses and infants exhibit increased susceptibility to BPA’s
harmful effects(96). Chronic cadmium (Cd) exposure is linked to thyroid issues like multinodular
goiter, disrupted thyroglobulin secretion, including hyperplastic changes in parafollicular cells(97).
Studies show Cd disrupts thyroid function even at low levels and may induce thyroid cancer and
autoimmune thyroid diseases(98-104). Its toxicity mainly involves oxidative stress triggering
apoptosis via DNA damage and Bax activation(101). A South Korean study found high Cd in thyroid
tissue correlates with advanced cancer stages, possibly linked to dietary habits (104).

Manganese, mainly ingested through diet, is essential for metabolism but excessive exposure during
pregnancy can disrupt thyroid hormone balance, affecting offspring neurodevelopment (105-107).
However, links between manganese and thyroid cancer remain unclear (108). Lead’s carcinogenic
role is debated; in PTC patients, serum lead negatively correlates with TSH and positively with T3,
suggesting complex effects on thyroid pathology(109). Vanadium, especially toxic as V205, may
influence thyroid inflammation by inducing Th1l chemokines, but its direct link to thyroid cancer lacks
conclusive evidence (110-113). Selenium, an essential micronutrient, is vital for thyroid function, yet
excess intake may negatively impact thyroid hormone metabolism(113,114).

Epidemiological studies show that occupational exposure to insecticides and fungicides is connected
to greater incidence of thyroid cancer, with a marked effect on papillary thyroid microcarcinoma
(tumors =1 cm) (115). Exposure to biocides in the workplace also elevates thyroid cancer risk, though
a direct link remains unconfirmed between pesticide use and thyroid cancer in women(115). While
PCBs and organochlorine pesticides (OCPs) have not been directly linked to PTC (116), overall
pesticide exposure is considered a potential risk factor for thyroid cancer (117). Pesticides may
disrupt thyroid function by inhibiting iodine uptake, increasing hormone clearance, interfering with
thyroid enzyme activities, altering hormone cellular uptake, and modifying gene expression(118),
potentially promoting tumor development. Common pesticides like quizalofop-p-ethyl, 2,4-D,
chlorpyrifos, glyphosate, and imazethapyr have been evaluated but generally show no significant
carcinogenicity related to thyroid cancer(119,120). Certain occupations, including healthcare
workers, technicians, medical professionals, nurses, construction workers, cleaners, pest control
staff, and customer service employees, exhibit higher thyroid cancer rates, particularly papillary
microcarcinomas and larger tumors (121).

Volcanic Eruptions and Pollution

Several studies report the increment in the incidence of TC in in volcanic regions such as; Iceland
and the Philippines report thyroid cancer incidences exceeding those in similar non volcanic
areas(82,122,123) or Near Mount Etna, Sicily, volcanic plume exposure may raise thyroid cancer
rates(124) . Most of causes it is because in these volcanic areas show elevated trace elements in
water, air, and urine, including cadmium, mercury, uranium, and vanadium, which correlate strongly
and may contribute to thyroid carcinogenesis(125) . These populations also face increased DNA
damage risk, especially in children’s (126).
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Others elements

Nitrates

Nitrate pollution disrupts thyroid function by inhibiting iodide uptake, potentially raising TSH levels
(127). While animal studies link elevated TSH to thyroid disease and cancer(128), a cohort study
found no strong association between high nitrate in water and thyroid dysfunction in postmenopausal
women(129). However, epidemiological data suggest long term nitrate nitrogen exposure (>5 mg/L)
in drinking water may increase thyroid cancer risk by 2.6 fold (130).

I. 1.5.3 Other Factors

Diet

Dietary factors influence thyroid cancer risk beyond just iodine intake(131). For instance, an
increased risk of thyroid cancer has been correlated with overconsumption of particular fruits and
vegetables(132), although no specific dietary pattern has yet been conclusively linked to thyroid
cancer(133). Diet also plays a direct role in modulating inflammation; diets rich in fats and processed
sugars contribute to obesity, which can promote tumor development(134). Given the complex
interactions among dietary components, the Dietary Inflammatory Index (DII) was designed to more
accurately quantify the link between diet and inflammation(135). Higher DIl scores indicate a more
pro inflammatory diet and have been associated with an elevated cancer risk(136). Latest research
supports an association between pro-inflammatory diets and an higher likelihood of DTC, particularly
in overweight individuals(137).

Overweight/obesity

As obesity has reached epidemic levels worldwide, the incidence of both obesity or/ overweight and
thyroid cancer, especially with the histological pattern PTC, has increased simultaneously,
highlighting their potential connection.

Despite the biological mechanisms between Overweight and obesity should be explored in deep.
Meta-analysis performed with 22 prospective studies in relation between thyroid cancer incidences
in association with different anthropometric factors; including BMI, suggested that the excess
adiposity throughout adulthood could be promoted an elevated incidence across most common
forms of TC, including the rare ATC(138). This link may involve hormonal imbalances such as insulin
resistance, disrupted hormone synthesis, and altered signaling pathways(139). Furthermore, excess
adipose tissue creates chronic local and systemic inflammation that fosters tumor growth (140). Both
obesity and benign thyroid conditions elevate thyroid cancer risk (141), with overweight and obesity
strongly associated with PTC(142).

Obesity and overweight cause’s insulin resistance and hypoadiponectinemia, raising insulin and
Insulin like Growth Factor 1(IGF-1) levels, which may increase thyroid cancer risk. Insulin resistance
is central to this association, interacting with IGF-1, adipokines, and TSH to promote tumor
development(143). Diabetes also raises DTC risk(144), and insulin resistance correlates with its
prevalence (145). Metabolic syndrome and insulin resistance further contribute to thyroid cancer
risk(146). A Mendelian randomization study linked type 2 diabetes to thyroid cancer risk, however,
found no evidence of a connection between obesity and thyroid cancer(147).
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Among the risk factors for TC, a growing body of evidence suggests that inflammation plays a
significant role in the occurrence and progression of it. Additionally, diet and obesity are linked with
low grade chronic inflammation, which affects thyroid cancer through inflammatory mediators,
various cytokines, and adipokines. Therefore, the mechanisms by which chronic inflammation
influences TC warrant further attention in future research.

Figure 6. Schematic model of Risk factors for thyroid cancer. (BioRender.com)
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I. 1.6 Molecular basis in thyroid cancer

I.1.6.1 Common genetic alterations in thyroid cancer
BRAF Mutation

V-Raf murine sarcoma viral oncogene homolog B1 (BRAF) is located on human chromosome 7(148).
The major hotspot mutation in BRAF occurs in exon 15, specifically BRAF’s T1799A mutation leads
to the V60OE amino acid alteration, known as the classic V600OE mutation(149).

BRAF encodes a serine/threonine protein kinase characterized by significant single nucleotide
polymorphisms (SNPs), and is frequently activated through somatic point mutations. It is considered
a key oncogenic driver in various human cancers(150). The BRAFY®%E mutation is the most prevalent
genetic change reported in adult sporadic PTC, occurring almost exclusively in this subtype(151—
153). Importantly, this mutation arises independently of RET/PTC rearrangements or RAS
mutations(154).

RAS mutation

The RAS gene family, including HRAS, KRAS, and NRAS, encodes the small GTPase p21, which is
essential for transmitting extracellular signals to the MAPK and PI3K/AKT signaling pathways(155).
In thyroid cancer, point mutations can occur in all three RAS genes, with NRAS being the most
frequently mutated(156). RAS mutations observed in approximately 10-20% of PTCs and 25% of
poorly differentiated thyroid carcinomas (PDTCs)(157). These mutations are particularly enriched in
the follicular variant of PTC (FVPTC) (158,159). Additionally, RAS mutations have been detected in
about 40% of follicular adenomas (FAs) and 68% of sporadic medullary thyroid carcinomas (MTCs)
that lack RET mutations(160,161).

Current evidence suggests that RAS mutations represent an independent oncogenic pathway, which
is mutually exclusive from other driver alterations such as BRAFY®%E mutations and PAX8-PPARy
rearrangements(162). As an early and pivotal molecular event, RAS mutations are implicated across
various stages of thyroid tumor development, ranging from benign FA and FVPTC to FTC, PDTC,
and even ATC, supporting a continuum model of tumor progression(163,164). In advanced thyroid
cancers, RAS mutations frequently co-occur with alterations in genes such as TP53, B-catenin,
PTEN, and PIK3CA(165-167), suggesting a cooperative role in promoting malignant progression
and dedifferentiation. However, the natural course and clinical outcome of RAS positive thyroid
tumors remain unclear, and their precise biological behavior warrants further investigation(168).

RET/PTCL1 rearrangement
RET/PTC rearrangement is a specific chromosomal translocation event involving genes located on

chromosome 1921-q22. These genes belong to the receptor tyrosine kinase family and mediate
extracellular signal transduction pathways that regulate cell growth(169-171). RET/PTC
rearrangements are frequently observed in PTC, occurring in approximately 25% of adult and up to
50% of pediatric PTC cases. To date, 16 distinct RET fusion types have been identified, with
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RET/PTC1 and RET/PTC3 being the most prevalent subtypes(172).

Among them, RET and its fusion partner gene CCDCG6 (termed H4) are typically co-expressed in a
colocalized pattern(173). The oncogenic mechanism mainly involves the fusion of the RET tyrosine
kinase domain with heterologous partner proteins such as CCDC6 or NCOA4, leading to constitutive
kinase activation. In this context, the chimeric RET fusion gene is transcriptionally activated under
the control of the partner gene’s promoter, circumventing the need for ligand dependent activation
characteristic of wild type RET(174,175).

This constitutive activation continuously stimulates classical oncogenic pathways such as the
RAS/MAPK and PI3K/AKT signaling cascade(176). As a result, RET/PTC rearrangements induce
misexpression of RET in thyroid follicular cells, conferring several malignant phenotypes, including
growth factor independent proliferation, resistance to apoptotic stimuli, and enhanced migration and
invasiveness(177).

Importantly, RET/PTC activation is considered A hallmark early alteration during PTC pathogenesis,
while subsequent mutations in BRAF, RAS, or the TERT promoter may act synergistically to drive
tumor progression and aggressiveness(178,179). Clinically, RET/PTC rearrangements are more
frequently observed in younger patients, and are associated with classic papillary histological
features, locally aggressive behavior, along with an increased frequency of lymph node
metastasis(172,180), underscoring their distinct biological and clinical significance in PTC.

I. 1.6.2 Altered signaling pathways in thyroid cancer
MAPK Signaling Pathway

BRAF as a key element, is integral to the classical growth factor signaling cascade, specifically the
RAS/MAPK pathway(181,182). The RAF protein family shares a similar structural organization, with
a catalytic domain located at the C-terminus and regulatory elements distributed in the N-terminal
region. In its inactive state, RAF usually exists as a monomer in the cytoplasm. Its activation is a
complex process involving membrane localization, homo- or heterodimerization with other family
members, and multi-site phosphorylation and dephosphorylation(183).

The BRAF V6%°E mutation has been shown to constitutively activate the MAPK pathway, enhancing
ERK signaling to drive aberrant cancer cell proliferation and transformation(184). Furthermore, this
mutation can potentiate its oncogenic effects through several downstream MAPK branches,
promoting the upregulation of various cancer related proteins. For example: Promotes lymph node
metastasis via upregulation of CXC chemokines(185);Induces vascular endothelial growth factor A
(VEGFA) expression, enhancing tumor invasiveness(186);Stimulates matrix metalloproteinases
(MMPs), increasing extracellular matrix degradation and invasion capability(187);Activates the
urokinase type plasminogen activator (UPA) and its receptor UPAR, leading to FAK/PI3K/Akt
pathway activation, which inhibits senescence and enhances cancer cell proliferation and
migration(188);Increases secretion of transforming growth factor 1 (TGFB1), indirectly suppressing
sodium/iodide symporter (NIS) expression, thereby promoting thyroid cancer progression and
dedifferentiation(189,190); Induces endocrine gland derived vascular endothelial growth factor
(Prokl) expression(191);Upregulates hypoxia inducible factor 1a (HIF-1a) even in normoxic
conditions, activating metabolism and angiogenesis related pathways(192);Modulates proteins
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such as prohibitin (PHB)(193), vimentin(194), and thrombospondin 1 (TSP1)(195), collectively
enhancing cancer cell metastasis and survival.

In summary, the BRAFV®%°E mutation drives tumor cell proliferation, growth, migration, invasion, and
angiogenesis primarily through sustained activation of the MAPK pathway and its downstream
oncogenic effectors. It represents one of the most critical driving events in the pathogenesis of
several solid tumors, particularly thyroid cancer.

NF-kB Signaling Pathway

In thyroid cancer, the BRAFY®%°E mutation can activate the NF-kB signaling pathway (196,197). As a
classical pro-inflammatory pathway, NF-kB has been confirmed to play a crucial role in the
development and progression of various tumors. It can promote the transition from chronic
inflammation to cancer or provide a tumor promoting inflammatory microenvironment (198). Studies
have shown that NF-kB is significantly activated in thyroid tumors, especially in ATC, and in vitro
experiments further demonstrate that its activation is closely associated with tumor cell
proliferation(199,200).

Notably, studies have found that BRAFV%E can directly couple with the NF-kB signaling pathway,
and this mechanism is independent of the traditional MEK-ERK signaling cascade (201). Moreover,
in vitro experiments with MEK inhibitors have shown that their antitumor efficacy is significantly
enhanced when combined with NF-kB pathway inhibition, suggesting that NF-kB activation may
contribute to the increased aggressiveness of BRAFV6%E driven thyroid cancer (202).

PI3K/Akt Signaling Pathway

The PI3K/Akt signaling pathway plays a pivotal role in the initiation and progression of thyroid cancer.
In PTC, mutations in PI3K pathway related genes, such as PIK3CA, have been reported at relatively
high frequencies (203). In ATC and FTC, genetic alterations involving both PI3K/Akt and MAPK
pathways are more prevalent (204). Among them, Akt activation has been observed in most ATC
samples harboring PIK3CA mutations(205) , indicating a critical role for this pathway in malignant
progression.

Moreover, research has highlighted that alterations in PI3K/Akt pathway related genes are mutually
exclusive between FTC and follicular thyroid adenoma (FTA) (206), suggesting that this pathway
may be involved in distinguishing between benign and malignant tumors. PIK3CA and AKT1
mutations are relatively common in advanced thyroid cancers, particularly in metastatic or recurrent
cases (207). Interestingly, AKT1 mutations had not been previously reported in thyroid cancer,
highlighting a potentially novel oncogenic mechanism.

BRAF mutations play a crucial role in the development of ATC and its lymph node metastasis,
whereas PIK3CA mutations tend to appear in the later stages of ATC(208) . It has been shown that
mutations in PISK/Akt pathway related genes can coexist with BRAF mutations and may act
synergistically to promote the progression from PTC to ATC (209). Moreover, aberrant activation of
the PI3K/Akt pathway may contribute to resistance mechanisms against BRAF/MEK targeted
therapies, further supporting the oncogenic collaboration between these two pathways (210)

From a molecular perspective across different thyroid cancer subtypes, the MAPK and PI3K/Akt
pathways also show a division of labor in differentiated thyroid cancers. MAPK pathway mutations
are more likely to drive tumor development toward PTC, while PI3K/Akt pathway mutations are
associated with the formation of FTA and FTC. With the accumulation of genetic mutations, both
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pathways may be activated simultaneously, driving the evolution of tumors into poorly differentiated
thyroid carcinoma (PDTC) and even ATC (211). Furthermore, additional oncogenic mutations, such
as in TP53, CTNNB1, and ALK, may accelerate this malignant transformation process.

Wnt/B-catenin Signaling Pathway

The Wnt/B-catenin signaling pathway is crucial for various cancers, and its dysregulation is closely
related to the process of cell proliferation, tumor progression, and prognosis. When this pathway is
inactivated or key components are absent, it may contribute to tumor initiation and
development(212—-214). For example, elevated cytoplasmic expression of Wnt5A has been closely
linked to melanoma progression and poor clinical outcomes(215), whereas increased nuclear [3-
catenin expression is typically associated with enhanced cell proliferation, reduced tumor size, and
improved survival outcomes(216).

In ATC, three independent studies have reported nuclear localization of 3-catenin in approximately
40-60% of cases, indicating the significant role of this pathway in ATC(217-219). These studies
further identified mutations in B-catenin and the Axin1 gene. Two of the studies found that all B-
catenin mutations were located at conserved serine/threonine residues that are normally
phosphorylated by CK1 and GSK3, resulting in increased p-catenin stability as well as its sustained
accumulation within the cytoplasmic and nuclear compartments. Nuclear accumulation of B-catenin
is generally associated with high tumor cell proliferation and loss of differentiation, indicating poor
prognosis(217,218).

Although B-catenin is widely recognized for promoting cell proliferation, subsequent studies have
noted that its expression is absent in a subset of ATC samples(220). These findings suggest that
ATC is not a uniform entity but rather comprises multiple subtypes, each characterized by distinct
and sometimes mutually exclusive driver mutations. For instance, some subtypes may harbor
mutations primarily in the Wnt/B-catenin pathway, whereas others may feature TP53 mutations(221)
or promotion of the PISK/Akt pathway(222). These three types of alterations constitute some of the
most common oncogenic events in ATC. Therefore, clarifying whether mutual exclusivity exists
among key driver gene mutations is essential for more precise classification of ATC.

In contrast to B-catenin, mutations in Axin1 occur more frequently, with over half of ATC samples
reported to carry mutations in the functional domains of Axin1(218). These mutations may affect its
binding domains with APC, B-catenin, and Dvl, as well as its regulatory region for G proteins, thereby
impairing its function as a negative regulator of B-catenin. Such discrepancies across studies may
reflect genetic differences among patient populations.

Activation of the Wnt/B-catenin pathway in thyroid cancer mainly occurs via two mechanisms:
disruption of cell adhesion structures and activation of upstream oncogenic signals. E-cadherin, a
calcium dependent adhesion molecule, maintains cell polarity and adhesion by linking B-catenin to
the cytoskeleton(223). Downregulation or functional inhibition of E-cadherin is believed to promote
the release and cytoplasmic accumulation of B-catenin, thereby inducing epithelial-mesenchymal
transition (EMT). In various thyroid cancers, including papillary, follicular, and anaplastic types, E-
cadherin downregulation is common and may result from promoter methylation or oncogene
activation, ultimately weakening cell-cell adhesion and enhancing migration and invasion
capabilities(224—-226). Therefore, activation of the Wnt/B-catenin pathway may stem from loss of
adhesion function or be directly induced by oncogenic signals stabilizing and activating 3-catenin—
two mechanisms that may act synergistically in tumorigenesis and progression.
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I. 1.6.3 Epigenetics

RASSF1A represents one of the tumor suppressor genes most often epigenetically suppressed in
sporadic human tumors(227,228). As a critical component of several key oncogenic signaling
pathways, including Ras/PI3K/AKT, Ras/RAF/MEK/ERK, and Hippo loss of RASSF1A function is
believed to play a pivotal role in the initiation and progression of various solid tumors(229,230). In
FTC, RASSF1A promoter hypermethylation is negatively correlated with BRAF mutations(231,232).
Moreover, higher levels of RASSF1A promoter methylation have been observed in multifocal lesions,
thyroid capsule invasion, and regional lymph node involvement, suggesting its involvement in tumor
progression(233,234). Furthermore, this methylation pattern has been strongly correlated with
advanced stages of thyroid cancer(235), potentially influencing the progression of PTC and its
transition to a more invasive phenotype via the PI3K/AKT pathway(236).

Solute Carrier Family 5 Member 8 (SLC5A8), a sodium/monocarboxylate cotransporter, is also
considered a tumor suppressor. In PTC, it is frequently silenced through promoter methylation, which
is inversely correlated with BRAF mutations(237). While high methylation of the RARB2 promoter
has not been observed in PTC or FTC, it is significantly elevated in ATC, implying that RARB2
promoter methylation may be associated with tumor aggressiveness(238). Furthermore, its
methylation level is positively correlated with BRAFV6%E mutations(239).

SPARC related modular calcium binding protein 2 (SMOC?2) is a secreted matricellular protein that
enhances angiogenic factor activity(240), promotes cell cycle progression(241), and facilitates cell
adhesion and migration(242). Despite generally lower SMOC2 expression in PTC compared to NT
tissue, even in cases harboring BRAF mutations cellular experiments have shown the opposite trend:
SMOC2 expression slightly increases in normal thyroid cell lines (Nthy-ori 3-1) following transfection
with mutant BRAF. Additionally, significantly reduced SMOC2 expression occurs in lymphocytic
thyroiditis and follicular neoplasms, including adenomas and carcinomas(243).

Tissue Inhibitor of Metalloproteinases 3 (TIMP3) and Death Associated Protein Kinase (DAPK) are
often silenced through abnormal promoter methylation in PTC, and their methylation status is closely
associated with BRAF mutations(244). Similarly, promoter methylation of PTEN is elevated in
follicular tumors but nearly absent in normal thyroid tissues. This methylation pattern may be linked
to alterations in genes involved in the PI3K/AKT signaling pathway(245).

In both thyroid tissues and peripheral blood of PTC patients, PTEN expression is strongly correlated
with lymph node metastasis(246).

A meta-analysis revealed that high methylation levels of the promoter regions of RASSF1A, PTEN,
DAPK, CDH1, and RAR2 are significantly associated with an increased risk of thyroid cancer(247).
Collectively, these findings suggest that BRAF mutations not only drive tumorigenesis through
genetic alterations but may also promote thyroid cancer development and progression by
orchestrating genome wide hyper and hypomethylation events that regulate oncogene and tumor
suppressor gene expression(248).
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Figure 7. Schematic model of signaling pathways in thyroid cancer. (BioRender.com)
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I. 2. Chronic Inflammation and Thyroid Cancer

I. 2.1 Overview of the Inflammatory Process and cancer

Inflammation is a complex defensive response initiated by the body to restore tissue homeostasis
when faced with infections, tissue damage, stress, or dysfunction (249). However, in the 19th century,
Virchow was the first to suggest a connection between inflammation and cancer, based on his
observation of inflammatory cells in tumor biopsies(250). Over time, cancer related chronic
inflammation has come to be recognized as a key factor, with clear evidence linking chronic
inflammatory processes to malignant progression in most types of cancer. The biological
mechanisms underlying this relationship involve changes in the tumor microenvironment (TME) such
as: the DNA damage, angiogenesis and tissue Remodeling and suppression of anti-tumor
immunity(251).

Additionally, chemokines (e.g., IL-8/CXCL8) form concentration gradients to guide the recruitment
and directed migration of leukocytes, mainly neutrophils and monocytes, by promoting their rolling,
adhesion, and transmigration through the vessel wall to the site of inflammation(252), thereby
facilitating pathogen clearance and initiating tissue repair and also will be involved in the spread the
tumoral cells (253).

In the acute inflammation, resolution occurs after the elimination of the causative agents through a
series of active “pro-resolving” mechanisms, including the replacement of pro-inflammatory lipid
mediators with pro-resolving lipid mediators. Neutrophil recruitment and activation are inhibited, and
they undergo programmed cell death (apoptosis), after which they are recognized and engulfed by
macrophages to prevent the release of intracellular inflammatory mediators, reducing secondary
tissue damage and promoting inflammation resolution and tissue repair. Moreover, pro-inflammatory
signaling pathways such as NF-kB are negatively regulated by anti-inflammatory cytokines like IL-
10 and transforming growth factor-B (TGF-B), which reduce the expression of pro-inflammatory
mediators (254). In addition to soluble mediators, regulatory immune cells such as regulatory T cells
(Tregs) and regulatory B cells (Bregs) produce immunosuppressive factors to maintain immune
homeostasis. Endothelial cells restore barrier function to limit leukocyte extravasation, and
extracellular matrix remodeling offers a scaffold for cell proliferation and tissue repair(249).
However, when acute inflammation persists due to continual stimulation by pathogens, foreign
bodies, toxins, or autoantigens, and cannot be fully resolved(255), dysregulation of immune
homeostasis may lead to autoimmune diseases. A deficiency in pro-resolving mediators impairs
macrophage mediated clearance of apoptotic neutrophils, causing the inflammatory process to
"stall." Macrophages, depending on their M1 or M2 polarization state, can secrete large amounts of
pro-inflammatory and pro-fibrotic factors, resulting in persistent inflammation that can last for weeks,
months, or longer. This chronic state leads to repeated cycles of tissue damage and repair, activation
of fibroblasts, promotion of collagen deposition, and ultimately fibrosis and irreversible tissue
remodeling(256).
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I. 2.2 Chronic Inflammation and Risk Factors for Thyroid Cancer

I. 2.2.1 Autoimmune Thyroid Diseases and Thyroid Cancer

Hashimoto's thyroiditis (HT) , a widespread autoimmune disease, is a key factor in the development
of hypothyroidism. Its epidemiological characteristics are similar to those of thyroid tumors, both
showing a marked sex difference, with significantly higher incidence in females than in
males(257,258). However, male patients with TC tend to exhibit more aggressive behavior at the
time of diagnosis(259). After puberty, the incidence of thyroid nodules increases significantly in
children(260), and the presence of nodules in this population indicates a higher risk of PTC(261).
Studies have found that children with coexisting HT and PTC are more likely to experience
extrathyroidal extension, capsular invasion, and lymph node metastasis(262). HT is a T-cell
mediated autoimmune disease in which aberrant T-cell attacks lead to lymphocytic and plasmacytic
infiltration of thyroid tissue(263). Consequently, increasing attention has been paid in recent years
to the potential link between HT and PTC, with the hope of gaining new insights into the relationship
between chronic inflammation and tumorigenesis.

However, current studies on the association between HT and PTC remain inconclusive. On one
hand, several studies have reported an increased risk of PTC in patients with HT(264—-266), with
those having nodular HT being more likely to develop PTC compared to those with non-nodular
HT(267). However, other studies have found no notable correlation between HT and PTC(268,269).
However, HT is only one type of “chronic thyroiditis.” Other forms of chronic inflammation or systemic
inflammatory conditions may also be linked with thyroid tumorigenesis and its advancement, though
the evidence is less well established than for HT(270).

I. 2.2.2 Other Chronic Inflammatory Conditions and Thyroid Cancer Risk

Subacute thyroiditis (SAT), typically triggered by viral infections in genetically predisposed
individuals, primarily affects middle aged women(271,272). Though rare, SAT can coexist with PTC,
and its ultrasound features may resemble malignancy, potentially masking PTC(273,274). Fine
needle aspiration biopsy (FNAB) is advised for nodules with malignant potential in SAT cases(275).
Beyond HT, other autoimmune diseases, such as idiopathic inflammatory myopathies, RA, SSc, pSS,
and SLE, may also raise thyroid cancer risk through systemic inflammation, especially in younger
women(276-279).

I. 2.3 Clinical Relationship Between Inflammation and Thyroid Cancer

I. 2.3.1 Clinical Significance of Inflammation Related Markers and Immune Cells in Thyroid
Cancer

In recent years, the relationship between inflammation and tumor development has received
considerable attention. Inflammatory mediators in the blood, such as neutrophils, lymphocytes,
monocytes, and platelets, have become important indicators for evaluating prognosis and metastatic
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risk in TC patients due to their accessibility and low cost. Inflammatory scores like neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR),
and systemic immune inflammation index (Sll) have demonstrated significant prognostic value in
various cancers(280-282). NLR reflects the dynamic balance between systemic inflammatory
response and immune defense, with higher NLR often associated with poor response to
chemotherapy and immunotherapy, as well as unfavorable prognosis(283-286). PLR has also
shown prognostic potential in renal cancer, lung cancer, and colorectal cancer, with platelets
releasing chemokines and growth factors that may promote tumor progression(287—-290). LMR
reflects host immune homeostasis, and lower LMR is generally linked to worse outcomes, especially
in anaplastic thyroid carcinoma and PTC(291-293). SlI tends shown to be upregulated in patients
diagnosed with DTC and may correlate with tumor multifocality, though its relationship with invasive
tumor features remains unclear(294). Additionally, indicators such as lymphocyte and neutrophil
counts(295), platelet count (PLT)(296), fibrinogen (FIB)(297), glucose-to-lymphocyte ratio
(GLR)(298), prognostic nutritional index (PNI)(299), and albumin-to-globulin ratio (AGR) have also
been studied for prognostic evaluation(280).

Despite efforts to establish clinical diagnostic models based on various inflammatory indicators for
predicting thyroid cancer, current studies face several limitations. These include a limited range of
evaluated markers, inconsistent results across studies, and a lack of large scale, multicenter
research to reach consensus. Moreover, further investigation is needed to determine the optimal
thresholds, key marker molecules, and the precise relationship between these inflammatory
indicators and thyroid cancer prognosis and metastatic risk(300-302).

I. 2.3.2 Molecular Link between Inflammation and Thyroid Cancer

I. 2.3.2.1 Expression of Inflammatory Cytokines and Their Association with Tumor Staging,
Invasiveness, and Prognosis

Inflammatory cytokines/factors serve a key function in orchestrating immune regulation and
inflammation. These include cytokines, chemokines, and growth factors, which can exert either pro-
inflammatory or anti-inflammatory effects. In the context of chronic inflammation, these factors also
contribute to tumor initiation, progression, metastasis, and immune evasion, thereby exhibiting
significant tumor promoting properties(303).

In thyroid cancer, cytokines, particularly interleukins (ILs), are considered critical in tumorigenesis
and disease progression. These molecules not only directly promote tumor cell proliferation and
invasion but also facilitate tumor advancement and immune escape by inducing angiogenesis and
suppressing anti-tumor immune responses. Studies have shown significantly altered serum levels of
IL-1, IL-6, IL-8, and IL-27 in patients with thyroid cancer(304—-308), suggesting their potential as
biomarkers for assessing malignancy and prognosis (305).

I. 2.3.2.2 Molecular Mechanisms Linking Inflammation and Thyroid Cancer

Numerous previous studies have enriched the understanding of the interplay between inflammation
and tumors. Dysregulation of inflammatory molecules and pathways is closely associated with
tumorigenesis. Under the influence of pro-inflammatory cytokines such as interleukin 6 (IL-6), tumor
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necrosis factor a (TNF-a), and epidermal growth factor (EGF), signaling pathways including nuclear
factor-kB (NF-kB), AKT/mTOR, and MAPK are activated, or autophagy is regulated to affect cellular
metabolic reprogramming, thereby promoting thyroid cancer cell survival, proliferation, invasion, and
metastasis.

Oxidative Stress

Cells generate reactive oxygen species (ROS) using oxygen, which are categorized into two types:
free radicals, such as superoxide anion (O2-) and hydroxyl radical (OH-), and non-radical molecules
like hydrogen peroxide (H202). These ROS are essential for many biological functions, including
intracellular signal transduction, control of apoptosis, transcriptional activity, immune defense, and
endocrine function(309). Normally, the redox regulatory system in the human body controls and
balances ROS homeostasis to prevent oxidative stress(310). Oxidative stress can affect multiple
signaling pathways related to cell proliferation(311), and ROS can influence tumorigenesis and
progression through mechanisms such as DNA damage, regulation of apoptosis, and
autophagy(312).

In thyroid cancer, redox imbalance has been observed in the blood(313), increased oxidative
stress(314), and an imbalance of oxidative/antioxidative systems in tissues(315). Cellular
experiments have also found reduced expression of reductases, which is associated with elevated
free radical levels in tumor tissues(316,317). Taken together, the evidence points to an association
between oxidative stress and thyroid malignancy.

Oxidative DNA Damage

Oxidative stress plays a central role in inducing DNA damage that facilitates tumorigenesis(318).
Direct interactions between ROS and DNA may result in oxidative base damage in DNA(319). In
mouse models, elevated oxidative DNA damage in the thyroid promotes somatic mutations within
the thyroid(320). Compared to normal tissues, higher oxidative DNA damage has been found in FTC
and PTC, potentially related to malignant progression of thyroid cancer(321). Dysregulation of
related signaling pathways has been identified in malignant thyroid tumors(322,323). Studies
suggest oxidative DNA damage may lead to BRAF gene mutations(324) and RET/PTC
rearrangements(325). Analysis of TCGA data shows that thyroid peroxidase (TPO) related genes
are differentially expressed among thyroid tumors of various differentiation statuses, with lower
expression in tumors harboring the BRAFY6°E mutation, suggesting a link to PTC tumor
differentiation(326).

Interleukins

Abnormal proliferation of tumor cells is a key step in tumor initiation and progression. Studies have
shown that interleukins play an important role in regulating the proliferation of thyroid cancer cells.

The IL-1 family includes the pro-inflammatory cytokines IL-1a and IL-1B, as well as the inhibitory
cytokine IL-1 receptor antagonist (IL-1ra). IL-1a and IL-13 exert their functions by binding to type |
IL-1 receptor (IL-1R), thereby activating downstream signaling pathways and inducing immune and
inflammatory responses(327). IL-1 exerts a bidirectional regulatory effect on thyroid cancer cell
proliferation, with variations observed among different cell lines(328-332). CD4"* T cell subsets can
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release IL-22, which binds to its receptor and activates multiple signaling pathways, including
JAK/STAT3 and MAPK, as well as transcription factor regulation, thereby promoting tumor
progression(333,334).

In addition, several interleukins can induce epithelial mesenchymal transition (EMT) in thyroid cancer
cells, enhancing their invasiveness.As a pro-inflammatory chemokine, IL-8 binds to its receptor and
induces EMT through the IL-8-Akt—Slug pathway, thereby promoting tumor invasion and
progression(335). IL-11, through its receptor, can promote the migration, invasion, and EMT process
of ATC cells via the PI3K pathway, possibly driving their high metastatic potential(336). In PTC, high
expression of IL-13 receptors upregulates EMT-related molecules such as N-cadherin, Vimentin,
and Snail, thereby enhancing cell migration and invasion. Knockdown of IL13Ra2 significantly
reduces the invasiveness of PTC cells, suggesting that IL-13 may participate in thyroid cancer
progression by regulating EMT, although the detailed mechanism requires further
investigation(337,338).

IL-17 may be closely linked with the invasiveness of thyroid cancer through its pro-angiogenic
effects(339). It can also inhibit tumor immune escape by suppressing the PD-L1 pathway(340). IL-
10, on the other hand, promotes tumor immune escape through its immunosuppressive effects,
thereby affecting thyroid cancer aggressiveness(341). IL-4 exerts a weak stimulatory effect on
thyroid cancer cell proliferation. Its tumor promoting effect is linked with the upregulation of the Bcl-
2 and the slight downregulation of the Bax, resulting in inhibition of apoptosis(342), and conferring
resistance to thyroid cancer cells against the toxic effects of chemotherapy drugs(343).

Chemokines

Chemokines are a type of cytokine that guide cell movement and are key players in cancer
development and spread. By binding to specific receptors, they help control tumor cell migration,
invasion, and metastasis(344). They also affect how immune cells behave within the tumor
environment. Studies have linked chemokines to lymph node metastasis in several cancers(345).
Inflammatory cytokines like IL-6 and TNF-a can increase chemokine expression(346,347), which
may trigger EMT, making tumor cells more invasive(348). Chemokines also influence immune cell
infiltration and responses to immunotherapy, making them important targets in cancer diagnosis and
treatment(349).

Within the CXC family, CXCR1 and CXCR2 share ligands like CXCL1, CXCL6, and CXCL8. These
receptors are found in immune cells and thyroid cancer tissues, suggesting a role in tumor behavior.
One study found that CXCRL1 is overexpressed in PTC and linked to lymph node metastasis(350).
However, other research showed no clear relationship between CXCR1/2 levels and clinical
features(351). CXCL5, a CXCRz2 ligand, can promote PTC cell migration and EMT, supporting a role
for CXCR2 in tumor progression(352).

CXCRS binds to interferon inducible ligands (CXCL9, CXCL10, and CXCL11) and was first studied
in autoimmune thyroiditis(353—355). More recently, CXCR3 has been shown to be overexpressed in
TC, especially PTC, and may aid metastasis by regulating immune responses and cell
migration(356). Immunohistochemistry reveals higher CXCR3 levels in PTC tissues and tumor
infiltrating lymphocytes, indicating a role in immune regulation. CXCR3 is also elevated in some
thyroid lymphomas and linked to poor outcomes(357).
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CXCR4, one of the earliest cancer related CXC receptors, promotes tumor growth by preventing cell
death and supporting migration(358-360). High CXCR4 expression in TC is linked to lymph node
metastasis, advanced stage, and poor prognosis, making it a promising therapeutic target(361).

CXCRT7 binds to CXCL12 and CXCL11, supporting tumor cell adhesion, migration, and survival(362).
In PTC, CXCRY is associated with lymph node metastasis(363). It can also drive tumor progression
through effects on the cell cycle and VEGF related angiogenesis(364,365).

The CXCL12/CXCR4/CXCR7 axis plays a major role in TC progression(366). Both CXCR4 and
CXCR7 are highly expressed in thyroid tumors and promote invasiveness more than
proliferation(367). In medullary thyroid carcinoma, this axis may regulate EMT(368). In FTC, high
CXCR4/CXCRY levels are found in distant metastases and are linked to worse survival. CXCL12
promotes FTC cell growth and EMT, while CXCR4 inhibitors reduce invasion(369).

CCR3, a CC chemokine receptor, binds to ligands like CCL5, CCL11, and CCL24. It is upregulated
in PTC, showing increased levels in tumors relative to normal tissue (370), but it is not clearly
associated with lymph node metastasis, suggesting a role in tumor growth rather than spread(371).

CCR6, the receptor for CCL20, is involved in both immune regulation and cancer cell movement. Its
role in thyroid cancer is still being explored.

Epidermal growth factor (EGF)

Epidermal growth factor (EGF) exerts its function by binding to the epidermal growth factor receptor
(EGFR). EGFR is a transmembrane glycoprotein with intrinsic tyrosine kinase activity that
participates in signal transduction pathways regulating various cellular processes, such as growth,
differentiation, and apoptosis. Several growth factor ligands have the ability bind to and activate
EGFR, including EGF and transforming growth factor-alpha (TGF-a)(372).

Upon activation, EGFR triggers phosphorylation and downstream signaling through multiple
cascades, including the PI3BK/AKT/mTOR pathway, RAS/MAPK, STAT, and NF-kB pathways(373),
promoting cell proliferation and survival(374). In thyroid tumors, EGFR is frequently
overexpressed(375), and its expression is associated with the proliferation and metastasis of thyroid
cancer(376,377), aggressive tumor behavior, and TNM staging(378-380). In cases of ATC, studies
have reported a correlation between EGFR expression and poor clinical outcomes(381). EGFR
expression is also related to tumor dedifferentiation(382); however, its role as a prognostic marker
for recurrence in PTC remains controversial(383,384). Although anti-EGF or anti-TGFa antibodies
show limited effects on thyroid cancer cell proliferation(385), EGFR tyrosine kinase inhibitors (TKIs)
can induce apoptosis in ATC cell lines(386).

TNF-a
TNF-a is another key pro-inflammatory cytokine, mainly secreted by adipose tissue and inflammatory

cells. Although TNF-a can induce apoptosis, under chronic inflammatory conditions, it may instead
promote tumorigenesis by upregulating granulocyte colony stimulating factor (G-CSF), interleukins,
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prostaglandins, and other vasoactive mediators(387,388), enhancing the expression of VEGF(389),
as well as adhesion molecules such as ICAM-1, E-selectin, and VCAM-1, thereby facilitating tumor
metastasis(390). Elevated TNF-a expression has been observed in patients with DTC, and its levels
decrease following **!I treatment, indicating its potential as a diagnostic biomarker(391). However,
some studies report no association between TNF-a and thyroid cancer risk(392), whereas meta-
analyses suggest a strong link between the two(393). This discrepancy may be due to the dual role
of TNF-a, which might contribute to tumor initiation but decline as the tumor progresses, coinciding
with increased TGF-f3 expression that promotes EMT and enhances tumor cell migration(394), while
diminishing the immune system’s anti-tumor capacity. Therefore, further clinical and mechanistic
studies are warranted to clarify these roles(395).

Figure 8. Schematic model of AdipoRon regulating inflammatory downstream effects.
(BioRender.com)
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Adipokines

Adipose tissue is recognized both for its capacity to store energy and its essential endocrine
functions like the metabolism regulation, and endocrine signaling. In recent years, studies have
shown that adipose tissue secretes a variety of bioactive molecules collectively known as adipokines,
including leptin, APN, resistin, TNF-a, and IL-6, among others. These adipokines play key roles in
numerous physiological processes, such as inflammatory responses, insulin sensitivity, and cell
apoptosis(396).

Under normal conditions, adipose tissue maintains homeostatic functions. However, in obesity,
adipocytes increase in size and number, immune cell infiltration intensifies, and the local
microenvironment becomes disrupted. These changes result in abnormal adipokine secretion,
leading to chronic low-grade inflammation. More importantly, adipose tissue dysfunction has been
closely linked to the development of various diseases, particularly cancer. Aberrantly secreted
adipokines can influence the tumor microenvironment through autocrine, paracrine, and endocrine
mechanisms, thereby promoting tumor cell proliferation, migration, angiogenesis, and immune
evasion(397).

These alterations in adipose tissue provide a possible mechanistic link between metabolism and
cancer development and offer potential targets for cancer prevention and therapy. Therefore, in
depth investigation of the endocrine functions of adipose tissue and its association with
tumorigenesis is of great significance in understanding the mechanisms underlying obesity related
cancers.

Resistin

Resistin is a small adipokine encoded by the RETN gene(398). In humans, resistin is primarily
secreted by peripheral mononuclear cells(399), and its expression is closely associated with immune
cell infiltration in adipose tissue(400). Increasing evidence suggests that resistin may act as a critical
link between obesity and tumorigenesis by mediating chronic low grade inflammation, thereby
promoting tumor initiation and progression(401).

At the molecular level, resistin regulates tumor related biological behaviors through multiple signaling
pathways. It can activate TLR4, PI3K, and NF-kB pathways, inducing the expression of pro-
inflammatory cytokines such as TNF-a and IL-6, thus amplifying inflammatory responses(402,403).
These pro-inflammatory cytokines further activate the JAK/STAT and MAPK (including ERK)
signaling cascades, promoting cancer cell proliferation, differentiation, and metastasis(404).
Activation of the ERK pathway upregulates SOCS3, a negative regulator of the JAK2/STAT3
signaling, causing G1 phase cell cycle arrest and enhancing tumor cell drug resistance(405).

Furthermore, resistin can increase the expression of the chemokine SDF-1 (CXCL12) via MAPK and
NF-kB pathways(406). SDF-1 interacts with its receptors CXCR4 and CXCR?7 to facilitate tumor cell
migration and angiogenesis(407). Resistin also activates the PI3K/AKT pathway, leading to
phosphorylation and inactivation of pro-apoptotic proteins, thereby promoting cell survival(408).
Regarding adhesion molecules, resistin upregulates ICAM-1 and VCAM-1 expression through NF-
KB signaling, enhancing tumor cell adhesion and metastatic potential(409,410).
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In addition to TLR4, studies have identified cyclic AMP activated protein 1 (CAP1) as receptor for
resistin. CAP1 activation is closely linked to cell migration and invasion, and its high expression in
various tumors correlates with increased metastatic risk and poor prognosis(411-413).

However, the specific roles and mechanisms of resistin in thyroid cancer remain to be further
elucidated.

Leptin

Leptin is a circulating hormone mainly secreted by adipose tissue, playing a key role in regulating
energy balance and body weight. By interacting with its hypothalamic receptors, leptin regulates
energy storage and promoting satiety(414). Obese individuals often exhibit leptin resistance along
with elevated leptin levels(415). Additionally, leptin activates intracellular signaling pathways such
as AKT/PI3K and ERK/MAPK, which regulate the cell cycle, cell proliferation, migration and invasion,
stimulate angiogenesis, and suppress anti-inflammatory cytokines(416).

Overexpression of leptin and its receptor (OB-R) has been observed in various cancers (417—420),
including thyroid cancer, where elevated serum leptin levels have been reported(421) and linked to
tumor staging(422), indicating a higher risk of occurrence(423). In PTC, leptin and OB-R expression
levels are higher and associated with tumor invasiveness(424). Cell experiments show that leptin
stimulates proliferation and inhibits apoptosis through activation of the PI3K/AKT signaling
pathway(425), enhancing migratory phenotypes and promoting metastasis(426).

I. 3. Overview of Adiponectin

Adiponectin (APN) is a multifunctional secretory protein primarily produced by differentiated mature
adipocytes(427). In addition, other cell types such as cardiomyocytes, skeletal muscle cells, and
lymphocytes also express and secrete APN(428—431). In humans, APN is encoded by the ADIPOQ
gene located on chromosome 3qg27. Structurally, APN contains an N-terminal signal peptide region,
a variable region, a collagenous domain, and a C-terminal globular domain(382). The C-terminal
globular domain is the main functional region of APN and can be cleaved to produce an
independently active form called globular APN.

APN is synthesized as a monomer in adipocytes and then assembles into multimers. In the
bloodstream, it exists mainly in three isoforms: low molecular weight (LMW) trimers, middle
molecular weight (MMW) hexamers (two trimers), and (HMW) multimers composed of multiple
trimers with a molecular weight exceeding 250 kDa. The HMW form is considered to have the
strongest biological activity(432). Different isoforms exert diverse biological effects in different
tissues by activating specific signaling pathways for example, the trimeric APN activates AMP
activated protein kinase (AMPK) in skeletal muscle(433), whereas HMW APN can induce activation
of the NF-kB pathway(434). Studies suggest that the HMW isoform mainly mediates pro-
inflammatory effects, while the trimeric form is more associated with anti-inflammatory actions(435).

Moreover, globular APN is a cleaved form generated by proteolysis of the C-terminal domain,
present at lower concentrations in plasma(436). This form is produced by neutrophil elastase
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cleavage, with a molecular weight around 18-25 kDa, and also shows significant metabolic
regulatory functions in various tissues(437).

I. 3.1 Regulation of APN Secretion

The expression of APN is controlled by a variety of transcription factors, with the promoter region
containing several active binding sites, including PPAR response elements, C/EBP binding sites,
FOXO regulatory elements, and E-box sequences(438,439). Peroxisome proliferator activated
receptor gamma (PPARYy), highly expressed in adipose tissue, acts as a positive regulator of APN
expression. Its ligands, especially thiazolidinediones (TZDs), significantly promote APN expression
and secretion(440-442).

Conversely, inflammatory factors such as reactive ROS, TNF-a, and IL-6 negatively regulate APN
expression by suppressing promoter activity(443,444). In obesity, APN expression is commonly
downregulated, and its serum levels are negatively correlated with insulin sensitivity. Insulin
resistance promotes the release of inflammatory and vascular factors, further inhibiting APN gene
expression(445—-447).

The function of APN depends on its multimeric forms, post-translational modifications are critical for
its activity regulation. A conserved cysteine residue at the N-terminus plays a key role in forming
intermolecular disulfide bonds necessary for multimerization(448). Studies have shown that in
diabetic patients, succinylation of this cysteine blocks disulfide bond formation, inhibiting
multimerization and reducing plasma APN levels(449). Additionally, hydroxylation and glycosylation
targeting multiple conserved lysines in the collagen region also affect multimer formation(450—-452).

Certain endoplasmic reticulum (ER) molecules regulate APN multimerization and secretion. ERp44
forms disulfide bonds with APN cysteines, retaining multimers in early secretory compartments, while
Erol-La releases ERp44 bound APN, facilitating secretion of HMW forms(453,454). DsbA-L acts as
a molecular chaperone that promotes APN multimerization in adipocytes and alleviates ER stress
induced secretion impairment via an autophagy dependent mechanism, thereby enhancing HMW
APN release(455). Mutations in the ADIPOQ gene can also disrupt APN multimerization, leading to
secretion defects(456,457).

I. 3.2 APN Receptors and Mechanisms

APN exerts its biological effects through membrane receptors, with different oligomeric forms
showing tissue specific targeting. Current research identifies three main receptors: AdipoR1,
AdipoR2, and T-cadherin(458,459). AdipoR1 is predominantly expressed in skeletal muscle, while
AdipoR2 is mainly found in the liver. Structurally and functionally, AdipoR1 preferentially binds
globular APN, whereas AdipoR2 primarily recognizes full length APN(460).

Both receptors possess seven transmembrane domains with intracellular C-termini and extracellular
N-termini, containing zinc-binding catalytic sites on the cytoplasmic side of the plasma
membrane(461). The globular domain of APN binds to the extracellular portion of these receptors,
triggering downstream signaling pathways in target tissues such as skeletal muscle, liver, heart,
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kidney, and pancreas(462). Key downstream molecules activated include AMPK, p38 mitogen
activated protein kinase (p38 MAPK), and PPARa, which play crucial roles in glucose and fatty acid
metabolism(461).

The adaptor protein APPL1 directly binds the intracellular regions of AdipoR1 and AdipoR2,
regulating and initiating these signaling cascades(463). Although T-cadherin lacks an intracellular
domain, it can bind MMW and HMW APN forms on the cell surface, clustering these highly active
isoforms to enhance AdipoR1/2 binding and synergistically promote APN signaling(464).

Degradation mechanisms of APN remain incompletely understood. Besides exocytosis, APN
multimers may be retained and degraded within the ER. ER stress induces autophagy activation,
and APN itself promotes autophagy via AMPK dependent signaling. Additionally, suppression of
MEK/ERK1/2 signaling in adipocytes leads to a significant reduction in intracellular and secreted
APN, suggesting this pathway is involved in APN degradation regulation(465—467).

Figure 9. Schematic model of Overview of APN downstream effects. (BioRender.com)
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I. 3.3 Biological Functions and Therapeutic Potential

APN exhibits multiple biological effects, including anti-inflammatory, anti-diabetic, insulin sensitizing,
cardioprotective, anti-atherosclerotic, and immune regulatory functions(468—474). Therefore,
developing agonists that activate APN receptors and their downstream signaling is considered a
promising strategy for treating cardiovascular and metabolic diseases(475).

Studies show that insulin resistance and type 2 diabetes patients commonly have decreased APN
levels(476). Supplementation with recombinant APN improves insulin resistance(477,478). In animal
models, elevating APN levels alleviates insulin resistance induced by high fat, high sugar diets(479)
and reduces hypertension induced by high salt diets(480). These findings highlight the significant
potential and application prospects of APN in preventing and treating cardiometabolic disorders.

I. 4. APN and Thyroid Cancer

APN is an adipocyte derived hormone with well-established roles in glucose regulation, lipid
metabolism, anti-inflammatory response, and anti-tumor activity. Increasing evidence suggests that
APN may influence the development and progression of various cancers, including TC

I. 4.1 Clinical Correlation between Serum APN Levels and Thyroid Cancer

Despite there are few studies to analyzed APN and TC development. One studies found
relationship between in APN levels in the serum of patients with various types of thyroid cancer were
significantly reduced in both sexes(481) and a multicenter prospective study further indicated a
negative correlation between serum APN levels and thyroid cancer risk in women(482). In both
studies, the authors suggesting that this association may reflect the long term effects of low APN
exposure(481,482). However, APN levels alone were not significantly correlated with tumor
malignancy, size, or clinical stage(483,484).

Further research revealed that reduced APN levels were associated with the HOMA index, a marker
of insulin resistance and metabolic syndrome. Interestingly, when APN was analyzed in combination
with IGF-1 and its binding protein IGFBP-3, an independent correlation with tumor size
emerged(485). Additionally, no correlation between APN levels and medullary thyroid carcinoma has
been identified to date(486); whereas in differentiated thyroid cancers such as papillary and follicular
types, serum APN levels were lower in patients compared to those with benign thyroid diseases or
healthy controls(487).

Moreover; Meta-analyses have shown that obesity related indicators are significantly associated with
the risk of developing papillary, follicular, and anaplastic thyroid carcinomas(488), suggesting that
adipokines may play a potential role in thyroid cancer pathogenesis(489).

Despite the preliminary evidence suggesting a role of APN in thyroid cancer development, current
studies face certain limitations, current studies on the clinical relevance of serum APN in thyroid
cancer require further validation through large scale, systematic investigations, existing findings
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suggest that APN, as an inflammation related factor derived from adipose tissue, may play a key
role in the initiation and progression of thyroid cancer and thus warrants deeper exploration(490).

I. 4.2 APN Receptors (AdipoR1 and AdipoR2) in Thyroid Tissue (TC)

The expression levels of AdipoR1 and AdipoR2 have been shown to exhibit tumor type specific
associations with clinical parameters. In prostate cancer, these receptors are found to be
downregulated (491). In contrast, both receptors have been detected in gastric(492,493) and lung
cancers(494), where they are expressed in malignant tissues but are either absent or expressed at
significantly lower levels in normal tissues. Notably, in gastric cancer, AdipoR1 appears to be more
closely associated with patient prognosis than AdipoR2(493). In endometrial adenocarcinoma,
decreased AdipoR1 expression has been linked to tumor invasion and lymph node metastasis(495),
whereas in lung cancer, AdipoRz2 is primarily expressed in non-small cell lung cancer, with its high
expression correlating with advanced clinical staging. Similar findings have been reported in
esophageal adenocarcinoma(496) and colorectal cancer(497), where AdipoR2 expression may be
associated with lymphatic metastasis.

To date, studies investigating the expression of APN receptors in TC are limited. Existing evidence
suggests that APN receptors are expressed in human thyroid tissues and are downregulated in
thyroid tumor tissues compared to normal controls(498). Interestingly, a study by Cheng et al. further
demonstrated that AdipoR1 and AdipoR2 are overexpressed in PTC tissues relative to adjacent non
tumorous tissues(499). Moreover, the differential expression of these receptors in thyroid tumors has
been linked with tumor invasiveness and clinical staging, indicating their potential as favorable
prognostic biomarkers in TC.

These inconsistencies may reflect the tissue specific expression patterns of AdipoR1 and AdipoR2,
as well as their involvement in distinct signaling pathways that mediate tumorigenesis differently
across cancer types. Nevertheless, insufficient comprehensive studies examining the correlation
between APN receptors and clinical features in thyroid cancer, particularly in the context of
progression from differentiated to poorly differentiated subtypes. This transformation is often driven
by the accumulation of genetic alterations, including BRAF V6%%E RAS, or RET/PTC rearrangements,
in combination with TERT promoter or TP53 mutations. Therefore, investigating the link between
serum APN levels, APN receptor expression, and the clinical status of thyroid cancers with varying
degrees of differentiation holds significant value. Such research may offer valuable insights for the
development of novel targeted therapies for TC.

I. 4.3 Anti-tumor Mechanisms of APN

APN exerts a variety of biological functions, including metabolic regulation, anti-inflammation, and
cytoprotection, by binding to its receptors and activating several signaling pathways(500,501). The
N-terminal intracellular region of APN receptors can interact with the adaptor protein APPL1,
mediating downstream signal transduction. Among these pathways, AMPK and PPAR-a are two key
effectors of APN signaling. The AMPK pathway is activated under conditions of energy deficiency to
promote ATP production and inhibit energy consumption, thus maintaining cellular energy
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homeostasis(502,503). APN primarily activates AMPK through AdipoR1, while stimulation of PPAR-
a is mainly mediated via AdipoR2(504).

Studies have shown that trimeric forms of APN significantly activate the AMPK pathway via
AdipoR1(505,506), while hexameric or HMW forms predominantly act on AdipoR2, activating PPAR-
a. However, inhibition of either receptor alone cannot fully block downstream signaling, suggesting
potential functional compensation between AdipoR1 and AdipoR2(507).

Activation of AMPK can upregulate tumor suppressor genes such as p53 and p21, leading to cell
cycle arrest and apoptosis(508). Additionally, APN can inhibit Akt activity through the LKB1-AMPK
axis, thereby blocking protein synthesis and cell growth in tumor cells, promoting autophagy, and
counteracting the proliferative effects of the PISK/AK/MTOR pathway(509-512). Some studies
suggest the existence of a negative feedback regulation within this pathway: APN may promote
TSC2 phosphorylation by inhibiting Akt, which indirectly offsets AMPK-mediated mTOR
suppression(513).

In terms of anti-inflammatory and anti-tumor effects, APN related pathways can also activate tumor
suppressive factors such as protein phosphatase 2A (PP2A)(514,515) and S1P, thereby inhibiting
pro-inflammatory and pro-tumor signaling pathways like INK/STAT3(516) and NF-kB, reducing the
expression of inflammatory factors in the tumor microenvironment, and suppressing tumor migration
and angiogenesis (517). For instance, JNK is a key component of the MAPK cascade, playing an
important role in regulating cell proliferation, apoptosis, and metabolic reprogramming (e.g., the
Warburg effect) (518,519). APN can enhance JNK signaling and induce caspase-3 mediated
apoptosis. The STAT3 pathway promotes tumor progression by supporting cell proliferation,
inhibiting apoptosis, and suppressing anti-tumor immunity(516,520); however, APN or its receptor
agonists can inhibit STAT3 signaling, antagonizing the tumor promoting effects of leptin(521).

Notably, APN may exhibit tissue specific dual roles in different tumors. For example, in hepatocellular
carcinoma, APN has been shown to promote phosphorylation of BCKDK at Ser31, which further
activates the ERK1/2 pathway and enhances tumor cell proliferation and migration(522).

Additionally, in some estrogen dependent tumors, APN can interfere with hormone signaling driven
cancer cell proliferation by regulating the expression of ERa and its downstream targets(523,524).
In breast cancer, APN suppresses the Wnt/B-catenin signaling pathway, thereby affecting the
transcription of proliferation associated genes like cyclin D1(525). Meanwhile, the ubiquitin
proteasome system (UPS), which regulates protein degradation, cell cycle, and apoptosis, is also
involved: APN downregulates the expression of the deubiquitinating enzyme USP2 in tumor cells,
promoting the degradation of cyclin D1 and exerting anti-tumor effects(526). Moreover, APN induces
cell cycle arrest and apoptosis in cancer cells by upregulating pro-apoptotic protein Bax and
downregulating anti-apoptotic protein Bcl-2(527).

This adipokina can also exert antitumor effects through indirect mechanisms by modulating various
bioactive molecules, including other adipokines (such as leptin and resistin), inflammatory cytokines
(such as TNF-a and IL-6), extracellular matrix components, pro-angiogenic factors (such as vascular
endothelial growth factor, VEGF), and metabolic regulators such as insulin and IGF-I, thereby
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contributing to insulin sensitization, immune modulation, and inhibition of tumor
angiogenesis(528,529).

Notably, serum ANP levels have been found to correlate with IGF-I and its binding protein IGFBP-3
in thyroid cancer tumor volume, suggesting a potential link between APN and thyroid cancer via the
IGF signaling axis. Dysregulation of the IGF pathway has been implicated in various malignancies,
including breast cancer (530), pancreatic cancer (531), and bladder cancer(532), and is generally
associated with poor prognosis in thyroid cancer(533,534). As a mitogenic factor, IGF-I is functionally
regulated by IGFBP-3. Upregulation of IGF-I or downregulation of IGFBP-3 may promote tumor cell
proliferation(535).

Currently, studies on the biological effects of ANP in TC cells remain limited. Mitsiades et al. reported
that recombinant APN had no significant effect on the proliferation and apoptosis of TC cells(536).
However, subsequent studies by Nigro et al. demonstrated that APN alone could inhibit thyroid
cancer cell proliferation and migration(537). Additionally, other research has shown that APN can
activate the AMPK phosphorylation pathway in K1 and BCPAP cell lines(538). More recent studies
revealed that recombinant human APN can suppress proliferation and migration of PTC cells,
potentially via the autophagy pathway mediated by ADIPOR2(539).

In summary, APN regulates a complex antitumor signaling network by activating multiple pathways,
including AMPK, PI3K/Akt/mTOR, and STAT3/NF-kB. It plays an important role in the development
of endocrine related tumors and represents a promising therapeutic target worthy of further
investigation.

I. 4.4 APN and analogs (AdipoRon) as a therapeutic approach in Thyroid Cancer

APN regulates multiple physiological processes through its receptors AdipoR1 and AdipoR2,
including energy metabolism, inflammatory responses, and apoptosis. Given APN’s multifaceted
anti-tumor effects, there has been active research in developing small molecule agonists that can
mimic its biological functions. AdipoRon, an orally active small molecule APN receptor agonist, can
simultaneously activate both AdipoR1 and AdipoR2, thereby inducing downstream AMPK signaling
pathways and exerting biological effects similar to those of APN. Its molecular design ensures good
stability and bioavailability, making it an ideal candidate drug for APN function replacement and
treatment of related metabolic diseases(540). In the field of metabolic diseases, AdipoRon has
demonstrated significant anti-diabetic and anti-obesity effects, improving insulin resistance and
chronic inflammatory states(541,542). In recent years, increasing studies have focused on the anti-
tumor potential of AdipoRon. Multiple preclinical models have shown that AdipoRon can regulate
tumor cell proliferation, apoptosis, and autophagy by activating AMPK and inhibiting the
PISK/Akt/mTOR pathway. Additionally, it modulates the tumor microenvironment by suppressing the
expression of pro-inflammatory factors and angiogenic factors, thereby inhibiting tumor growth and
metastasis. Relevant research has made positive progress in various tumor models including breast
cancer(543), ovarian cancer(544), and pancreatic cancer(545), demonstrating its broad anti-tumor
applicability.
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The role of AdipoRon in TC has yet to be clearly defined. Existing studies have confirmed that APN
receptors AdipoR1 and AdipoR2 are expressed on the surface of TC cells, and AdipoRon exerts
anti-tumor effects through activation of these receptors(546,547). Cellular experiments indicate that
AdipoRon significantly inhibits TC cell, colony formation, migration, and invasion, while promoting
tumor cell differentiation, suggesting its potential therapeutic value. Mechanistically, AdipoRon
mainly acts through AdipoR2, promoting the expression and phosphorylation activation of the key
autophagy regulator ULK1. Activation of ULK1 enhances cellular autophagy levels, thereby inhibiting
tumor growth. It is noteworthy that ULK1 regulation involves multiple phosphorylation sites; studies
have also found that the Ser638 site of ULK1 is phosphorylated after AdipoRon treatment, indicating
a complex regulation of its activity. Moreover, the expression changes of autophagy related marker
proteins such as LC3B at different time points reflect the dynamic nature of the autophagy process
and the complex interplay of multiple signaling pathways. Overall, AdipoRon effectively restricts the
malignant behavior of thyroid cancer cells by activating autophagy pathways(548), providing
important theoretical support for the clinical application of APN receptor agonists in thyroid cancer.

Although autophagy is considered a key mechanism underlying AdipoRon’s anti-tumor effects,
current studies suggest its roles extend beyond this. In other tumor models, AdipoRon can induce
tumor cell growth arrest by delaying or blocking the GO/G1 phase of the cell cycle, but whether it
directly mediates cell death through cytotoxicity remains unclear(544,545). Notably, several tumor
cell experiments have observed increased expression of apoptosis related proteins following
AdipoRon treatment; however, the precise apoptotic mechanisms remain controversial. For example,
in pancreatic cancer, although an increase in Annexin V positive cells suggests apoptosis occurrence,
caspase dependent apoptosis is not the primary mode of cell death(544,545). Besides apoptosis,
AdipoRon has also been shown to induce other forms of cell death, such as RIPK1/ERK dependent
necroptosis. Regarding the AMPK signaling pathway, AdipoRon activates AMPK and its downstream
target acetyl-CoA carboxylase (ACC), but does not exert its effects through the mTOR pathway(544).
Furthermore, in other tumor models, AdipoRon regulates multiple AMPK dependent and
independent signaling pathways, for example inhibiting STAT3 signaling while activating the ERK1/2
pathway(545), indicating a complex and diverse mechanism of anti-cancer action. The specific
mechanisms of AdipoRon in thyroid cancer remain to be further elucidated.

Considering the close association between overweigh/obesity, metabolic abnormalities, and thyroid
cancer development, AdipoRon, as a small molecule APN receptor agonist, shows dual potential in
regulating tumor metabolism and promoting cellular autophagy, offering new avenues for its
application in thyroid cancer therapy. Moreover, AdipoRon holds promise as an innovative
therapeutic strategy targeting obesity related tumors.
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Figure 10. Schematic model of AdipoRon anti-tumor mechanisms. (BioRender.com)
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Figure 10. Schematic illustration of the proposed anti-tumor mechanisms of AdipoRon and its receptors. AdipoRon
primarily acts through activation of the AMPK signaling pathway, promoting autophagy and apoptosis, while suppressing
tumor cell proliferation and migration. In addition, it modulates the tumor microenvironment by downregulating pro-
inflammatory and pro-angiogenic factors, and may exert its effects through both AMPK-dependent and AMPK-independent
pathways.
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I. 5. Low Density Lipoprotein Metabolism in Thyroid Cancer: From Lipid Regulation to Tumor
Progression

I. 5.1 Lipid Metabolism in Cancer

Since Warburg first discovered that tumor cells tend to convert glucose into lactate under aerobic
conditions, a phenomenon known as aerobic glycolysis, research into cancer metabolism has
continued to deepen(549). As a critical component of metabolic reprogramming in tumors, lipid
metabolism plays a pivotal role in TC. Thyroid cancer cells regulate lipid synthesis, degradation, and
fatty acid oxidation to meet the energy demands and membrane biosynthesis required for rapid
proliferation. Lipid metabolism is also closely intertwined with glucose and amino acid metabolism,
collectively maintaining metabolic homeostasis in tumor cells(550). Moreover, dysregulation of lipid
metabolizing enzymes and their metabolites not only supports tumor growth but may also influence
the tumor microenvironment and activate oncogenic signaling pathways. Therefore, elucidating the
aberrant mechanisms of lipid metabolism in thyroid cancer is of great significance for identifying
novel metabolic therapeutic targets.

Lipids, alongside carbohydrates, serve as the primary energy source for most tissues and play
crucial roles in energy storage, membrane construction, and signal transduction. Based on their
chemical structures, lipids are categorized into triglycerides, steroids (such as cholesterol),
phospholipids, and glycolipids, each with multifunctional roles in energy storage, signal regulation,
and maintaining cellular structure(551-553). Epidemiological studies have shown that metabolic
syndrome and dyslipidemia are associated with an increased risk of thyroid cancer(554,555).
Furthermore, various lipoprotein types have been linked to thyroid cancer risk; for instance, reduced
high density lipoprotein (HDL) levels are closely correlated with an elevated risk of thyroid
cancer(556,557). A Mendelian randomization study reported associations between DTC risk and
total cholesterol, HDL, apolipoprotein B, and the apolipoprotein B to apolipoprotein Al ratio(558).
Low density lipoprotein (LDL) levels are not only associated with tumor aggressiveness, but in vitro
studies have confirmed that LDL can promote the proliferation and migration of thyroid cancer
cells(559). Metabolically, compared to adjacent normal tissues, TC tissues exhibit significantly
elevated levels of monounsaturated fatty acids (MUFA), whereas serum MUFA levels are relatively
decreased(560,561). Additionally, receptors related to fatty acids are generally upregulated in TC
tissues, suggesting enhanced lipid uptake capacity, which may be modulated by specific mutation
types(562-565).

After being taken up by tumor cells, fatty acids are converted into acyl-CoA forms by acyl-CoA
synthetases located on the outer mitochondrial membrane, and subsequently enter the mitochondria
for oxidative metabolism. This process is commonly referred to as fatty acid B-oxidation (FAO).
During FAO, peroxisome proliferator activated receptors (PPARS) serve as critical transcriptional
regulators. As members of the nuclear receptor superfamily, PPARs act as lipid sensors and
transcriptionally activate the expression of enzymes involved in FAO(566). In addition, the activity of
FAO is tightly regulated by AMPK, which maintains cellular metabolic homeostasis by inhibiting
biosynthetic pathways and the activation of degradative pathways involved in energy
production(567). Upon activation, AMPK undergoes autophosphorylation and inactivates its



48

downstream target ACC, thereby promoting FAO(568). These mechanisms suggest that enhanced
fatty acid metabolism may contribute to the progression of thyroid cancer(569).

Under conditions of energy deficiency, hepatic mitochondria can synthesize ketone bodies through
FAO, including acetoacetate (AcAc), acetone, and (-hydroxybutyrate, which serve as alternative
energy sources for extrahepatic tissues and organs(570,571). Metabolomic analyses have shown
significantly elevated serum levels of B-hydroxybutyrate in patients with PTC, whereas acetone
levels are notably decreased in FTC, indicating differential patterns of ketone body metabolism
among thyroid cancer subtypes(572-574).

Moreover, tumor cells exhibit markedly enhanced lipogenesis, which not only provides energy and
membrane biosynthesis precursors, but also participates in the regulation of multiple signaling
pathways, thereby disrupting lipid metabolic homeostasis(575,576). Various key enzymes involved
in lipogenesis have been found to be significantly upregulated in multiple types of cancer. Sterol
regulatory element binding proteins (SREBPS), the master transcription factors for the synthesis of
cholesterol, fatty acids, and triglycerides, play a central role in this process(577). In DTC, elevated
SREBP1 expression is closely associated with tumor size and metastasis(578).

The activation of SREBP1c depends on the AKT/mTOR signaling pathway and can upregulate the
expression of fatty acid synthase (FASN), thereby further enhancing lipogenesis(579). FASN has
been confirmed to be highly expressed in various types of thyroid cancers, including PTC and
ATC(580,581). ACC is another key enzyme involved in lipogenesis; it not only promotes fatty acid
synthesis but also inhibits FAO(582). In PTC harboring the BRAFV8%E mutation, ACC2 expression is
lower than in wild type tumors, suggesting metabolic reprogramming through enhanced FAO(583).
Activation of the AMPK pathway in PTC leads to increased pACC, further regulating lipid metabolic
status(584). Additionally, stearoyl-CoA desaturase (SCD), particularly SCD1, is upregulated in both
ATC and PTC, potentially regulated by DTX4(585,586).

Notably, phospholipid metabolism also plays an important role in thyroid cancer. Although related
studies are limited, existing evidence shows abnormal distribution of phospholipid metabolism in
thyroid cancer. Lipidomic analyses have revealed significant upregulation of phosphatidylcholine
(PC), phosphatidylethanolamine (PE), and sphingolipids in both PTC and FTC, suggesting their
potential as metabolic biomarkers to distinguish benign and malignant thyroid tumors(587-590).
Systematic investigation of lipid metabolism related enzymes in the future may uncover metabolic
characteristics and potential therapeutic targets in thyroid cancer.

Phospholipid degradation is a crucial step in lipid metabolism and plays a key role in tumor
progression. Phospholipases, the core enzymes catalyzing phospholipid hydrolysis, have
carcinogenic potential in various cancers(591). Among them, PLCD3 is considered an oncogene
that promotes tumor progression by modulating the Hippo signaling pathway, with potential
diagnostic and therapeutic value(592). Moreover, the circ_0003747/miR-338-3p axis can regulate
PLCD3 expression, and downregulation of this gene helps inhibit tumor growth, other enzymes
involved in phospholipid degradation, such as sphingomyelinases, also warrant further investigation
regarding their roles in tumors(593).
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In recent years, lipid metabolism has garnered increasing attention in anticancer research, mainly
focusing on inhibiting lipid synthesis and inducing ferroptosis via lipid peroxidation. Additionally,
certain lipid molecules themselves exhibit potential in suppressing tumor progression. For example,
ceramide can ameliorate drug resistance in FTC, while inhibition of glucosylceramide synthase
enhances antitumor efficacy(594). The lipogenesis associated enzyme pyruvate carboxylase can
activate the AKT/mTOR pathway, upregulating SREBP1c and FASN expression, thereby enhancing
the anticancer response of PTC cells(595). Furthermore, sphingosine-1-phosphate has been found
to inhibit migration of ATC cells, and activation of estrogen receptors also contributes to the
suppression of PTC progression(596).

AdipoRon, a novel APN receptor agonist, exerts antitumor effects by inhibiting glucose and amino
acid metabolism and inducing autophagy in thyroid cancer cells(597). Notably, autophagy is not only
a key mechanism in maintaining cellular homeostasis but also participates in lipid metabolic
regulation. Studies have shown that in breast cancer, AdipoRon regulates LDL receptor (LDLR)
levels through autophagy induction, thereby modulating cholesterol homeostasis(598).

Figure 11. Schematic model of Lipid metabolism and their potential mediators in cancer.
(BioRender.com)
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Figure 11. Tumor cells exhibit enhanced FAO and de novo lipogenesis, regulated by key pathways including AMPK,
AKT/mTOR, and SREBPs. These metabolic alterations support tumor growth, survival, and progression, and may serve
as potential therapeutic targets.



50

. 5.2 LDL Metabolism in Cancer

As previously mentioned, dysregulated lipid metabolism is closely associated with the risk of
tumorigenesis and the invasive metastasis of various types of cancers. Lipid metabolism involves a
wide array of enzymes and metabolic products, and it is intricately interconnected with glucose and
amino acid metabolism. In vitro studies have provided multiple lines of evidence supporting the role
of cholesterol metabolism in the development and progression of thyroid cancer, and its mechanisms
of action have also been extensively explored in various tumor models.

In normal cells, cholesterol homeostasis is maintained through a combination of synthesis, transport,
uptake, and metabolism(599). Cancer cells exhibit significant metabolic reprogramming, and
cholesterol being a critical structural component of the cell membrane plays a role in maintaining
membrane integrity and fluidity. During tumor cell proliferation, large amounts of cholesterol are
required to support membrane biosynthesis and function. Moreover, certain cholesterol derived
metabolites can modulate the tumor microenvironment by suppressing immune responses and
promoting tumor progression(600,601).

When intracellular cholesterol levels drop, the activity of HMG-CoA reductase is upregulated, and
SREBPs, located in the endoplasmic reticulum, are transported to the Golgi apparatus for processing
and activation, thereby promoting cholesterol uptake. LDL is the primary circulatory carrier of
cholesterol, responsible for transporting cholesterol synthesized in the liver to peripheral tissues.
Upon increased expression of LDLR, its extracellular domain binds circulating LDL, which is then
internalized into cells via endocytosis. The complex is subsequently delivered to lysosomes, where
cholesteryl esters are hydrolyzed by lipases to release free cholesterol for cellular utilization.
Accumulated intracellular cholesterol inhibits SREBP activation, reducing further cholesterol uptake
in a negative feedback loop(602—604).

LDL and its oxidized form (ox-LDL) play particularly critical roles in regulating cholesterol
homeostasis. LDL consists of a lipid core wrapped by apolipoprotein ApoB-100, and approximately
70% of circulating LDL cholesterol (LDL-C) is internalized and degraded through LDLR mediated
endocytosis(605,606). LDLR activity is regulated by SREBP2, which upregulates the expression of
key genes such as LDLR, HMGCR, and SQLE under cholesterol deprived conditions(607-610).
Additionally, PCSK9 promotes the degradation of LDLR, thereby inhibiting LDL-C clearance(611).
When intracellular cholesterol is in excess, it can be exported to the plasma via ABCA1 and ABCG1,
a process regulated by liver X receptors (LXRs)(612). LXRs can also enhance E3 ubiquitin ligase
activity to promote LDLR degradation, thus reducing LDL uptake(613,614).

The unsaturated fatty acids in LDL are susceptible to oxidation by reactive ROS and reactive nitrogen
species (RNS), ox-LDL, which can further induce oxidative stress(615,616). The oxidatively modified
ApoB-100 can no longer be recognized by LDLR and is instead taken up via scavenger receptors
such as LOX-1, SR-A, and CD36, contributing to inflammatory responses and tumor
progression(617,618).

Aberrant changes in blood cholesterol levels are among the key features of many types of tumors.
Cancer cells often accumulate cholesterol by upregulating its synthesis or enhancing its uptake
capacity(619,620). Multiple studies have demonstrated that cholesterol content is generally elevated
in various tumor tissues, which may be associated with the overexpression of LDLR. This facilitates
the uptake of LDL and is often accompanied by dysregulation of the negative feedback control of
LDL-C levels(621-623). LDL not only serves as the primary carrier of cholesterol transport, but also
plays a critical role in tumor initiation and progression.
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An increasing number of studies have revealed that LDL can promote tumor cell proliferation,
migration, and survival by activating several oncogenic signaling pathways, including PI3K/Akt, ERK,
and STAT3(624—-626). Among them, the PI3K/Akt pathway further activates mTOR signaling, which
induces SREBP mediated cholesterol synthesis and uptake, thus providing metabolic support for
cancer cells(627). In addition, LDL can enhance EMT, endowing tumor cells with stemness and
invasiveness, and increasing their resistance to chemotherapy and immunotherapy(628,629).

LDL also plays a significant role in tumor immune evasion. Studies have shown that LDL can
suppress the anti-tumor activity of yoT cells, thereby increasing the risk of tumor metastasis(630).
Clinical data indicate that elevated LDL levels are associated with poor prognosis in chronic
lymphocytic leukemia and with poor response to PD-1/PD-L1 immune checkpoint therapy(631,632).
Moreover, LDL can activate endothelial cells, promoting tumor angiogenesis and lymphatic
metastasis(633), and enhance the stem like phenotype of tumor cells(634).

ox-LDL, as a key mediator of lipid metabolism disorders and chronic inflammation, is also believed
to play an important role in tumorigenesis. On one hand, ox-LDL can induce oxidative stress and
promote the accumulation of DNA damage, thereby driving tumor initiation; on the other hand,
activation of hypoxia-inducible factors and inflammatory cytokines by ox-LDL can reshape the tumor
microenvironment and promote metastasis(635-637). A growing body of evidence supports the pro-
tumorigenic roles of ox-LDL in promoting cancer cell proliferation, invasion, and metastasis.

The tumor promoting effects of ox-LDL are mainly mediated by its receptors, scavenger receptors
CD36 and LOX-1. Both receptors are highly expressed in various metabolism related diseases,
indicating their key roles under metabolic dysregulation(638). In tumors, the synergistic interaction
between ox-LDL and LOX-1 can induce the production of reactive oxygen species (ROS), leading to
oxidative DNA damage. Through activation of the NF-kB signaling pathway, this process upregulates
the expression of VEGF, MMP-2, and MMP-9, thereby enhancing tumor cell proliferation, invasion,
and angiogenesis(639,640).

CD36, another receptor for ox-LDL, is not only involved in lipid uptake but also plays roles in immune
recognition, inflammatory responses, cell adhesion, and apoptosis(641). Studies have shown that
ox-LDL can be internalized via CD36, leading to the accumulation of oxysterols and the induction of
cardiotrophin 1 (CT-1) expression. This, in turn, enhances inflammation, cell proliferation, and
angiogenesis, promoting the growth of glioblastoma xenografts(642). Furthermore, the binding of
ox-LDL to CD36 can activate focal adhesion kinase 1 (FAK1) and the small GTPase RAC1, leading
to cytoskeletal remodeling and loss of cell polarity, ultimately triggering the EMT process(643).

Cells can degrade damaged organelles and proteins by forming autophagosomes that fuse with
lysosomes, thereby preventing the accumulation of harmful components and recycling their
breakdown products to maintain metabolic homeostasis(644).

In tumor cells, autophagy plays a dual role. On the one hand, as a protective mechanism, autophagy
can eliminate damaged components such as dysfunctional mitochondria and oxidized proteins,
preventing their toxic accumulation and maintaining genomic stability, thus exerting a tumor
suppressive effect in the early stages of carcinogenesis(645). By clearing damaged mitochondria
and reducing reactive ROS levels, autophagy helps to lower the risk of DNA damage and chronic
inflammation, thereby inhibiting tumor initiation(646). In addition, autophagy can interact with
programmed cell death pathways to promote apoptosis or senescence, contributing to the
elimination of potentially malignant cells(647).

On the other hand, under metabolic stress or anticancer treatment pressure, tumor cells can utilize
autophagy to recycle intracellular resources, enabling them to adapt to unfavorable environments



52

and support survival and continuous growth(648). In the advanced stages of tumor progression,
autophagy becomes a key metabolic adaptation mechanism that allows cancer cells to cope with
nutrient deprivation, oxidative stress, or therapeutic interventions(649).

During cancer progression, ox-LDL has been shown to induce autophagy in tumor cells.
Mechanistically, ox-LDL can activate the PPARy signaling pathway, upregulate proline oxidase
(POX) expression, and subsequently induce autophagy. Additionally, POX promotes autophagy by
generating superoxide anions that regulate the key autophagy protein Beclin 1(650). Another study
demonstrated that ox-LDL can also partially induce autophagy by activating microRNA-155 (miR-
155)(651). Through autophagy activation, cancer cells undergoing EMT can enhance their
resistance to apoptosis and gain survival advantages after detaching from the primary tumor
site(652).

Statins, by inhibiting the mevalonate pathway, reduce the synthesis of isoprenoids such as farnesyl
pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), thereby interfering with the
prenylation of small G proteins and suppressing cancer cell proliferation and migration. Multiple
studies have shown that statins may help reduce cancer related mortality and recurrence, ultimately
improving patient prognosis.

Figure 12. Schematic model of LDL-mediated effects in cancer.
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Figure 12. FAO, lipogenesis, and cholesterol uptake are tightly regulated by signaling pathways such as AMPK,
AKT/mTOR, and SREBP1/2. Enhanced LDL uptake via LDLR and ox-LDL contributes to tumor proliferation, migration,
EMT, and autophagy by activating pathways including PI3K/Akt, STAT3, and NF-kB.
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I. 6. Potential Crosstalk between APN and LDL Signaling

As an adipokine with potential clinical significance, APN has garnered widespread attention in clinical
settings, with its levels reflecting the state of metabolic dysregulation in the body(653). Studies have
shown that levels of VLDL and LDL are negatively correlated with APN, indicating that APN plays
an important role in lipid metabolism regulation, including HDLc(654).

In patients with TC, more aggressive tumor types exhibit a higher degree of LDL uptake mediated
by LDL receptors(655). Cellular studies further demonstrate that LDL promotes proliferation and
migration of thyroid cancer cells through its receptor, which may explain why more invasive thyroid
cancers show increased LDL uptake(656). Different thyroid cancer cell lines with various mutations
differ in their LDL uptake; notably, in cell lines harboring the BRAF V6% mutation, LDL uptake leads
to overactivation of the RAS/RAF/MAPK (MEK)/ERK signaling pathway, further revealing the close
association between thyroid cancer aggressiveness and LDL uptake and metabolism.

In other tumor types, studies have found that APN levels positively correlate with tumor risk, and
higher APN levels are associated with poorer survival outcomes(657-660). However, other reports
indicate a negative correlation between APN levels and tumor risk(661,662). In the context of TC,
the relationship between APN levels and tumor risk remains controversial. Some studies show a
negative correlation between APN levels and TC risk, while others suggest that APN alone is
insufficient as an independent predictor of TC risk. Subsequent research has suggested an
association between APN and metabolic syndrome in the development of TC, implying that APN
levels alone may not fully reflect its relationship with thyroid cancer and should be considered
alongside other metabolic related factors(663—666).

LDL can promote the release of APN from adipocytes(667), and this mechanism is more related to
the regulation of cholesterol transport rather than the direct action of cholesterol itself(668). In breast
cancer cells, studies have found that APN inhibits LDL induced cancer cell proliferation by activating
the autophagy pathway, which promotes the degradation of LDLR(669). Additionally, regarding
oxLDL, APN binds to oxLDL and inhibits oxLDL induced ERK phosphorylation and NF-kB pathway
activation(670).

Currently, research on the anticancer mechanisms of APN in thyroid cancer is relatively limited, and
its precise role remains to be fully elucidated. Some studies have shown that APN can inhibit the
proliferation and migration of papillary thyroid cancer cell lines, although detailed mechanistic studies
are still lacking(671). Further research indicates that APN activates autophagy via its receptor
ADIPOR2 through an mTOR independent mechanism, thereby suppressing cell proliferation and
migration(672). As a novel APN receptor agonist, AdipoRon exerts antitumor effects by inhibiting
glucose and amino acid metabolism in thyroid cancer cells and inducing autophagy through the
AdipoR2-ULK signaling axis(673).

It is noteworthy that autophagy is not only a key mechanism for cellular homeostasis regulation but
also patrticipates in lipid metabolism regulation(674). Studies in breast cancer have shown that
AdipoRon maintains cholesterol homeostasis by inducing autophagy to regulate LDLR levels(669).
However, whether AdipoRon similarly regulates cholesterol metabolism in thyroid cancer by
suppressing LDLR or interfering with its downstream signaling to inhibit tumor growth and migration
has not yet been reported. This mechanism remains to be further explored.
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IIl. HYPOTHESES AND AIMS

II.1 Hypotheses

ANP is a major adipokine, plays a key role in lipid metabolism, insulin sensitivity, and anti-
inflammatory regulation. It has also been reported to influence the expression and activity of LDL
receptors in specific tissues. (675). We hypothesize that APN regulates tumor growth, particularly in
BRAF-mutant thyroid cancer, by modulating lipid uptake and metabolism. Moreover, treatment with
the adiponectin receptor agonist, AdipoRon, may enhance these effects by promoting apoptosis
and/or autophagy.

1.2 Aims
11.2.1 General Aim

This study aims to comprehensively investigate the biological functions and molecular mechanisms
of APN signaling in thyroid cancer, with the goal of providing novel theoretical insights and identifying
therapeutic strategies for targeted intervention in this disease.

11.2.2 Specific Aims

1. To investigate the gene expression patterns of adiponectin receptor (ADIPOR1, ADIPOR2) and
related genes (APPL1, CDH13) in BT, PCT and normal thyroid tissue, using bioinformatics
databases (TCGA, GTEx, GEO), and evaluate their correlation with clinicopathological parameters
and prognosis.

2. To analyze the secretion profile ability of neck adipose tissue obtained from different histological
pattern diagnosis (BT versus PTC) to deliver the most important cytokines and adipokines

3. To explore differential expression of ADIPOR1 and ADIPOR2 in a cohort of patients from HSCSP
with different histological pattern diagnosis: BT, PCT and normal thyroid tissue.

4. To evaluate the gene expression patterns of ADIPOR1 and ADIPOR2 in BRAF mutated and
RET/PTC1 rearranged thyroid cancer tissues and cell lines using public databases, in order to
predict potential underlying molecular pathways.

5. To investigate the expression of ADIPOR1 and ADIPOR2 in human thyroid cancer cell lines
(BCPAP and TPC-1), assess the functional effects of AdipoRon treatment, and explore potential
synergistic or antagonistic mechanisms.

6. To determine the gene expression patterns of LDLR and lipid metabolism related genes (SREBF1,
SREBF2, APOE, PCSK9, HMGCR, APOB) in BT, PCT and normal thyroid tissue, using
bioinformatics databases (TCGA, GTEx, GEO), and evaluate their correlation with
clinicopathological parameters and prognosis.
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7. To investigate the gene expression patterns of LDLR in BRAF mutated and RET/PTCL1 rearranged
thyroid cancer tissues and cell lines using public databases, in order to predict potential underlying
molecular pathways.

8. To investigate the combined effect of AdipoRon and LDL on human thyroid cancer cell lines
(BCPAP and TPC-1) and explores the possible synergistic or antagonistic mechanisms.



lll. MATERIALS AND METHODS

lll.1. Reagents and Treatments

Tablel. List of Reagent used for cell experiments
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Product Manufacturer Reference #
Dimethyl Sulfoxide (DMSO) Cell Signaling 12611
PRIMI1640 Gibco 11875-093
DMEM Gibco 11995-065
FBS Gibco 16000-044
Trypan blue dye,0.4% BIO RAD 145-0013
Counting slides BIO RAD 145-0011
L-Glutamine Gibco 15410314
Penicillin-Streptomycin (P/S) Gibco 15276355
Trypsin 10x Biowest X0930-100
potassium bromide (KBr) Sigma-Aldrich P0838
AdipoRon Cayman Chemical 15941
Vemurafenib (PLX4032) Cayman Chemical 10618

LDL (Human) Self-prepared Custom

* FBS was heat inactivated at 55 °C for 30 minutes in a water bath. During incubation, the serum
was gently mixed every 5-10 minutes to ensure even heating and prevent protein precipitation.

Isolation of LDL from Human Serum

1. LDL particles (density: 1.019-1.063 g/mL) were isolated from pooled human serum using
sequential density gradient ultracentrifugation with KBr. The density of the serum was adjusted to
1.019 g/mL by adding KBr, calculated using the following formula:

grams of KBr =V (p final-p initial)/1-(0.312xp final).

where V is the total serum volume in mL, p is the density in g/mL, and 0.312 is the density of solid
KBr.

After mixing gently to avoid bubble formation, the KBr adjusted 100mL serum was evenly distributed
into six 20 mL ultracentrifuge tubes (Beckman, maximum 17 mL per tube). Each tube was carefully
overlaid with a 3 mL KBr solution (p = 1.019 g/mL) to form a sharp density boundary and prevent
mixing. The tubes were then balanced to equal weight.

2. Ultracentrifugation was initially performed at 36,000 rpm, 8°C for 20 hours using a fixed-angle
rotor. After centrifugation, the upper layer containing VLDL was discarded, and the lower fraction
containing LDL was carefully retained and transferred into a 100 mL graduated cylinder. KBr solution
with a density of 1.019 g/mL was added to bring the total volume up to 100 mL. Subsequently, solid
KBr was added to increase the density to a density of 1.063 g/mL.

3. Each tube was carefully overlaid with 3mL of KBr solution (p = 1.063 g/mL). Following
centrifugation at 36,000 rpm, 8 °C for 20 hours using a fixed-angle rotor, the LDL fraction was
observed in the upper layer. This LDL-rich layer was carefully collected.
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4. To remove KBr and exchange the buffer for downstream cellular experiments, the LDL fraction
obtained from ultracentrifugation was subjected to gel filtration chromatography. The sample was
loaded onto a pre-equilibrated desalting column previously equilibrated with sterile PBS. The LDL
fraction (2.5 mL) was carefully applied to the column, and eluted with 3.5 mL PBS.

5. ApoB from the LDL fraction was measured using an immunoturbidimetric method, employing a
commercial kit optimized for the COBAS ¢501 automated analyzer (Roche Diagnostics, Minato City,
Tokyo, Japan).

All solutions and materials used were endotoxin free (LPS-free) to ensure compatibility with
subsequent cellular assays.

Experimental Treatments: AdipoRon and Vemurafenib
AdipoRon Preparation and Treatment

AdipoRon (1 mg) was dissolved in 100 yL of DMSO to prepare a 10 mg/mL stock solution. The
solution was aliquoted and stored at —20 °C until use.

Medium Preparation
Complete medium: RPMI 1640 supplemented with 1% P/S, 1% L-Glutamine, and 10% FBS.
Control medium: RPMI 1640 with 1% P/S, 1% L-Glutamine, 5% FBS, and 0.1% DMSO.

AdipoRon medium (100 uM): Prepared by adding 100 uyL of AdipoRon stock (10 mg/mL) to
23.33 mL of control medium.

For experimental treatments, the AdipoRon stock solution was diluted in control medium to final
concentrations of 6.25, 12.5, 25, 50, and 100 uM at 24, 48 and 72 hours).

Vemurafenib Preparation and Treatment

Vemurafenib was prepared as a 1 mg/mL stock solution. For treatment, the stock was diluted at a
ratio of 1:2,000 in either control medium or AdipoRon medium to achieve the desired final working
concentration (1uM). Cells were treated with the resulting Vemurafenib-containing medium for the
MTT assay and Wound healing assay.

LDL Supplementation

LDL was added to either control or AdipoRon medium to reach a final concentration of 200 pg/mL.
Cells were incubated with LDL containing medium as per experimental protocols. Control groups
received an equal volume of vehicle without LDL.

All working solutions were filtered through a 0.22 ym nylon membrane filter prior to use.

Cell Lines and Cell Culture

The cell lines used were carried out on cell lines derived from human PTC, TPC1 (bearing RET/PTC
rearrangement) and BCPAP (bearing the BRAFY%%°E oncogene).
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Both cell lines were provided by Paolo Vigneri of Azienda Ospedaliero Universitaria Policlinico
Vittorio Emanuele Catania, Catania, Sicilia, IT.

Cell line maintenance

Aliquots of cell lines (BCPAP, TPC-1), cryopreserved in 10% DMSO in FBS and stored in liquid
nitrogen, were rapidly thawed in a 37 °C water bath. Following thawing, residual DMSO was removed
by centrifugation at 900 rpom for 5 minutes. Cell viability was assessed using 0.4% trypan blue
solution, and cells were counted with the TC20™ automated cell counter (Bio-Rad, #1450102). Cells
were then expanded in complete RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% FBS, 100 U/mL penicillin, and 1 pupg/mL streptomycin. Cultures were
maintained at 37 °C in a humidified incubator with 5% CO,.

I11.2. Publica databases

Sample Collection and Grouping

Human thyroid tissue samples
1. Data Mining from the TCGA-THCA Cohort

Gene expression profiles and clinical information of thyroid cancer (TCGA-THCA) were downloaded
from the GDC Data Portal (https://portal.gdc.cancer.gov/) on December 23, 2024.

The cohort included 505 PTC samples from the TCGA-THCA dataset. However, 43 samples were
excluded from the analysis due to missing data. Clinical information was extracted from XML files
and included gender, age, clinical stage, and TNM classification. For lymph node status, samples
were categorized as NO (n = 236; no lymph node metastasis) or N1 (n = 226; presence of lymph
node metastasis)

Clinical and pathological data for 55 pairs of matched tumor and adjacent normal tissues of the PTC
samples were retrieved from the GDC portal. Among them, 28 pairs were classified as NO, and 27
as N1.

2. Data Mining from the Genotype Tissue Expression (GTEx) Portal

RNA-Seq expression data for 355 normal thyroid tissue were obtained from the Genotype Tissue
Expression (GTEXx) Project. The data used for the analyses described in this manuscript were
obtained from: the GTEx Portal on 12/23/24 accession number phs000424.vN.pN on 12/23/2024.
All data were batch corrected and normalized using the method described by Wang, Q. et al.(676) .
Expression levels are presented as log2 transformed Transcripts Per Million (TPM) value.

3. Data Mining from the GSE60542 dataset

Gene expression data were obtained from the GSE60542 dataset, available in the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). This dataset was originally published
by Tarabichi et al.,(677)GSE60542 dataset: This GEO dataset (log2 RMA normalized intensity) was
reannotated and filtered to exclude lymph node-derived samples. Samples were grouped based on
IDs: “-PT” (PTC tumor) and “-N” (adjacent normal tissue). Lymph node status (NO vs N1) was
determined from clinical annotations. Two differential analysis strategies were used:
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PTC (NO, n=14) vs Normal (NO, n= 14)

PTC (NO,n=14) vs PTC (N1, n=19)

Mutation grouping: Based on mutation annotations, samples were classified into:
BRAF-mutant (n = 20) vs non-BRAF (n = 13)

RET/PTCL1 fusion (n = 5) vs non-fusion (n = 28)

Human Thyroid Cell Line Samples

RNA-seq data from two human PTC cell lines were obtained from the GEO database
(https:/iwww.ncbi.nlm.nih.gov/geo/).

e 1. The GSE171483 dataset includes expression profiles (raw counts) from BCPAP cells treated
with Vemurafenib (100 uM) or control (n = 3 per group). Sample names were matched, and a design
matrix (~0 + group) was constructed for differential expression analysis. This dataset was published
by Bonaldi et al.(678)

e 2. The GSE261830 dataset contains RNA-seq data (TPM values) from TPC-1 cells treated with

Selpercatinib (48 hours, n = 3) and control (n = 3). These data were used for differential gene
expression analysis and visualization. The dataset was published by Katayama et al.(679)

Expression Analysis and Functional Annotation

Differential Expression and Visualization

For TCGA vs GTEX, comparison log2(TPM + 1) expression matrices were processed using the limma
package (https://bioconductor.org/packages/devel/bioc/html/limma.html).

Volcano plots were generated to visualize gene expression changes in LDL-related and adiponectin
receptor genes. Gene expression boxplots were performed by ggplot2, and statistical significance
was evaluated by Wilcoxon test using ggpubr R package (https://rpkgs.datanovia.com/ggpubr/)

Survival Analysis

Kaplan—Meier survival curves were generated by stratifying ADIPOR1/2 expression by median value.
Log rank test was used for significance. Univariate and multivariate Cox regression models were
constructed with variables including gene expression, age, gender, and stage. Results were
visualized as forest plots.

Correlation Analysis

Pearson correlation coefficients and p-values were calculated between ADIPOR1/2, LDLR and 15
core pathway genes (including MTOR, AKT1/2/3, MAPK1/3, NFKB1, autophagy and apoptosis
markers) in: GSE171483 (Vemurafenib treated) and GSE261830 (Selpercatinib treated). Results
were visualized using dotplot where point size represents —log10(p value), and color indicates
correlation strength.

Enrichment Analysis

Genes significantly correlated with ADIPOR1/2 or LDLR (p > 0.3 or < -0.3, FDR < 0.05) were used
for GO Biological Process (BP) and KEGG pathway enrichment.

Enrichment was performed using the clusterProfiler package (Bioconductor.org/packages), with
Benjamini Hochberg adjusted p value < 0.05 as the threshold. Pathways related to predefined
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biological keywords (e.g., lipid, autophagy, apoptosis, MAPK, AKT) were highlighted in red on dot
plots.
Gene Set Enrichment Analysis (GSEA)

Differential gene ranking (log2FC) from GSE60542, GSE171483 and GSE261830 was used as input
for GSEA (GO BP & KEGG) via cluster Profiler.

Parameters: min GSSize = 10, p value Cutoff =0.5. Pathways with adjusted p < 0.25 and containing
relevant keywords were exported and plotted using gseaplot2.

Figure 13. Bioinformatics analysis workflow used to analyze the different datasets.

Bioinformatics Analysis Workflow

Public Databases: TCGA, GTEx, GEO

sample collection and grouping
Tissue Samples Cell Line Samples

h 4

GTEx-Healthy Thyroid Tissues (n=355)
GSEZ261830 (BCPAP):
TCGA-THCA (n=505): Control group
1. N classification: no/with lymph node metastasis NO/N1 Vemurafenib treat group
2. Paired no lymph node metastasis (N0): NT/PTC
GSE171483 (TPC-1):
GSEB0542 dataset: Control grooup
1. N classification: no/with lymph node metastasis NO/N1 Selpercatinib treat group
2. Paired no lymph node metastasis (N0): NT/PTC
3. Mutation grouping:

a. BRAF-mutant /non-BRAF

b. RET/PTC1 fusion/ non-fusion

| ! ' by

Paired(NO) NT/PTC PTC NO/N1 BRAF—mutant/non—-BRAF RET/ F'T0f1 fusion/ non-
usion

Survival Analysis Expression Analysis and Functional Annotation

Differential Expression

Kaplan—Meier survival curves Enrichment Analysis

Multivariate Cox regression

Gene Sel Enrichment Analysis (GSEA)

Correlation Analysis

I11.3. Human tissue and serum samples

Sample Source and Ethics Statement

Surgical snap-frozen specimens (adipose and thyroid) and serum were obtained from patients
recruited from January 2009 at Santa Creu i Sant Pau Hospital (HSCSP), as described above. These
belonged to the sample collection registered at Instituto de Salut Carlos Il (Spain; C.000281). All
procedures involving human tissue were approved by the institutional ethics committee of Santa
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Creu i Sant Pau Hospital, and written informed consent was obtained from all participants. All this
research was carried out in line with relevant European guidelines/regulations.

Patients Included in the Study

A recruitment of a cohort of patients (n=84) diagnosed with TC was carried out at HSCSP in
Barcelona, Spain. The clinical information collected from them was sex, age, weight, height, poorly
health habits and no dyslipidemia pathology or statin treatment. Depending on their histopathological
diagnosis, tumors were identified, as follows: BT and PTC. Final histological Final diagnosis was
conducted by two independent pathologists as WHO 2007 criteria details

Freshly adipose tissue (0.1-0.3 g) was collected in conjunction with the surgical technique of central
lymph node dissection (area VI), without additional morbidity to the patients. These tissues were
maintained in explant culture in conditioned media (CM), DMEM media supplemented with 1%
bovine serum albumin (BSA), overnight (O/N). Afterwards, this media was collected and employed
for ELISA analysis.

Table 2. Clinical Characteristics of the Study Cohorts

Characteristic PTC (n=52) BT (n=32)

Age (years, mean £ 5D) 538.211470 60.92 £17.54

BMI (kg/m® mean £ SD) 2841571 27.6316.81

Sex 24 males / 28 females 7 males / 25 females

[11.4. ELISA Assay

Multiplex ELISA Assay Using Luminex xMAP Technology

Cytokines and adipokines were analyzed from the CM from NAT explant culture described before
(thyroid and adipose tissue) Table 2, by Flexible Bead-Based Multiplex Assays technology.

Human ProcartaPlex Mix&Match 5-plex (PPX-05MX2W929) kit for EGF, IL-6, LEP, Acrp30, resistin
and ProcartaPlex (EPX01A-10223-901) kit for TNF-alpha were used for Luminex assay.

Luminex® XMAP® is an immunoassay based on beads that allows to detect a maximum of 100
analytes at in one sample. These beads are microspheres dyed inside in a combination of red and
infrared fluorophores corresponding a specific spectral signature, or bead region.

The sample was incubated with unique beads couple to specific antibodies to the target analytes in
different areas. Afterwards it was washed to cast aside the unattached molecules. A mixture of
biotinylated detection antibodies and a streptavidin phycoerythrin (PE) reporter was prepared and
incubated with the sample. The Luminex instrument utilized a single laser to excite the beads and
define the region where our target analytes were bound. The number of attached analytes is
proportional to the extent of the PE derived signal which is measured by another laser. A
considerable number of readings of the same bead region was performed to ensure accuracy in the
detection.
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Data Acquisition and Processing

Raw fluorescence data were acquired on a Luminex 200 system and analyzed with XPONENT
software. Median fluorescence intensity (MFI) values were converted to absolute concentrations
(pg/mL) using the standard curve. Final data were exported and processed using R software for
statistical analysis, including outlier detection, transformation (if required), and appropriate
hypothesis testing with graphical output.

Figure 14. ELISA Analysis Workflow (Create from BioRender)
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I.5. MTT assay

To analyze cytotoxicity using the MTT assay, 3,000 TPC-1 cells and 2,000 BCPAP cells were seeded
per well in a 96-well microplate media (RPMI 1640) supplemented with 1% FBS and AdipoRon
(100uM) at 6.25, 12.5, 25, 50 and 100uM or 0.01% DMSO as control for 24 and 48 hours. To
determine the cell viability under this treatment, 20uL MTT solution (5 mg/mL) of 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT; Sig-ma-Aldrich) was added. After incubating
it at 37°C for 4h, 100 pL 0.01% DMSO was supplemented, and it was incubated again at 37°C for
10 minutes. Lastly, absorbance was read at 570 nm by using a microplate reader (xMark, Bio-Rad).
The growth inhibitory rate was calculated as: [(OD 540 treatment-OD 540 blank)/ OD 540 control-
OD 540 blank] x100%. Each experiment was repeated at least three independent times in
sextuplicate.
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I11.6. Wound healing assay

To analyze the cell migration, both cell lines (TPC1 and BCPAP) were seeded at high densities until
70% confluence was reached. In terms of migration capacity, the cells were scratched using a 10 uL
pipette tip and washed with PBS 1X. The wounds were photographed at 0 hours (t = 0) and after 16
hours with or without AdipoRon treatment (50uM,100uM), LDL incubation (200 pg/mL ApoB) and 5%
FBS at 37 °C using an inverted microscope and analyzed with Image analysis was performed using
ImageJ software (Version 1.53; National Institutes of Health, USA(680). The percentage of wound-
healing was obtained from a minimum of three measurements of the wound area, and each result
was the mean of three independent experiments.

[11.7. DAPI (4',6-diamidino-2-phenylindole) stain

The cells were washed with PBS to remove any residual media. Cold methanol was then added
slowly to ensure complete coverage of the cells, taking care to avoid detaching them. The cells were
incubated with methanol at -20°C for 10-15 minutes to permeabilize and fix the cellular structures.
After incubation, the methanol was carefully removed, and the cells were washed with PBS to
eliminate any excess methanol. Subsequently, the cells were stained with 300nM DAPI and
incubated for 1-5 minutes in the dark. The staining solution was then removed, and the cells were
washed 2-3 times with PB. Fluorescence images were captured using an Olympus BX51
fluorescence microscope equipped with an Olympus U-RFL-T light source and an Olympus DP72
digital camera (Olympus Corporation, Tokyo, Japan). A DAPI filter set (excitation 358 nm/emission
461 nm) was used to visualize nuclear staining. Image analysis was performed using ImageJ
software (version 1.53, NIH, USA).

111.8. Flow cytometry

Sample Preparation: Both cell lines were seeded at a density of 2 x 10° cells/well and maintained for
two days in a complete medium for proper growth. After two days, the medium was changed to a
basal medium plus 0.1% DMSO (vehicle) as a control or with AdipoRon, and were maintained for 24,
48, or 72 hours, depending on the experiment.

The cells were harvested using trypsin digestion and centrifuged at 900rpm for 5 minutes. After
discarding the supernatant, the cells were washed once with 1 mL ice cold 1x PBS. A 10 pL aliquot
of the resuspended cell suspension was taken for cell counting using automatic cell counter.
Following this, the cells were washed twice with cold PBS at 600 g for 5 minutes each time. Ethanol
at 70% cold was then added to fix the cells, and they were left to rest overnight (O/N) at -20 °C. After
fixation, a centrifugation was performed at 1000 g for 5 minutes at 4°C. The pellet was resuspended
in 1 mL of cold PBS and centrifuged again at 600 g for 10 minutes at 4°C in two rounds to remove
any residual ethanol. Following the washes, the Abbkine cell staining kit was used for cell cycle
staining.

The staining solution contained RNAse A 100X, propidium iodide 50X, and Assay buffer 10 X; 500
ML of the staining solution was added to the pellet, which was then resuspended and incubated at
37°C for 30 minutes light protected. After incubation, the sample was centrifuged at 900 g for 5
minutes at 4°C, the pellet was resuspended in 200 L of cold PBS, and the cells were analyzed using
a flow cytometer (MACSQuant Analyzer 10) to obtain propidium iodide intensity and cell cycle
histograms of the samples, these results were analyzed by the software MACSQuantify.
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[11.9. Hematoxylin and Eosin (H&E) staining of Cultured Cells

Cultured cells grown on sterile coverslips were gently washed with PBS and fixed with 4%
paraformaldehyde for 15 minutes at room temperature. After fixation, cells were rinsed twice with
PBS and stained with Harris hematoxylin for 5—7 minutes. Excess hematoxylin was removed by
washing under running tap water, followed by differentiation in 1% acid alcohol (1% HCI in 70%
ethanol) for a few seconds. Subsequently, eosin staining was performed for 1—-2 minutes to visualize
cytoplasmic components. After staining, the coverslips were dehydrated through a graded ethanol
series (70%, 80%, 95%, and 100%), cleared in xylene, and mounted onto microscope slides using
a neutral mounting medium.

[11.10. Acridine orange (AO) staining of Cultured Cells

TPC-1 and BCPAP cells (1.0 x 10*) were cultured on sterile coverslips and incubated in a CO,
incubator at 37 °C for 24 hours. After incubation, the culture medium was removed and replaced with
the appropriate treatment medium for varying time periods, according to the experimental design.
Following treatment, the medium was discarded, and cells were incubated with a solution of AO
working solution (2.5 ug/mL) for 15 minutes at 37 °C. After staining, cells were washed three times
with PBS to remove excess dye. Fluorescence images were acquired using an Olympus BX51
fluorescence microscope equipped with an Olympus U-RFL-T light source and a DP72 digital camera
(Olympus Corporation, Tokyo, Japan). Green fluorescence (excitation ~500 nm, emission ~526 nm)
represents cytoplasmic and nuclear RNA, whereas red fluorescence (excitation ~460 nm, emission
~650 nm) indicates the presence of acidic vesicular organelles (AVOs), a hallmark of autophagy.
Merged green/red fluorescence images were analyzed using ImageJ software (version 1.53, NIH,
USA). The green-to-red fluorescence intensity ratio was calculated as a semi-quantitative measure
of autophagic activity. Data were obtained from at least three independent microscopic fields per
condition, and the average ratio was used for statistical analysis.

Table 3. Reagents and Consumables Used in Cell Based Assays

MTT assay Vybrant® MTT Cell | Thermo Fisher V-13154
Proliferation Assay Kit
MTT assay 96-Well Plate Corning 3599
Wound healing assay 6-Well Plate Corning CLS351146
Acridine Orange Sigma-Aldrich A6014
Acridine Orange Culture Slides BD BioCoat 354632
DAPI Thermo D3571
DAPI Culture Slides BD BioCoat 354632
Flow Cytometry P1/ Cell Cycle Analysis Kit Canvax CA112
H&E Sigma-Aldrich 318906
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l11.11. Western blot (WB)

1. Total Protein Extraction

Extraction from Cells and Human Thyroid Tissue

Cells (TPC-1 and BCPAP) and tumoral and normal thyroid tissues protein extractions were executed
in a similar fashion. In both conditions, samples were lysed with 1X RIPA lysis buffer (Millipore 20-
188) supplemented with 1X protease inhibitor cocktail (P8340-1mL, Sigma-Aldreich), 1mM
phenylmethylsulphonyl fluoride (PMSF, Sigma, St. Louis, MO, USA) and 1mM sodium
orthovanadate (ORTHO, Sigma). Then, they were incubated at 4°C for 15 minutes and centrifuge at
15,000 x g at 4°C. Protein quantification was done following the kit A53225 (Thermo Fisher) kit.
Measure absorbance at 480 nm using xMark Microplate Spectrophotometer (BIO-RAD, #1681150).
Collect supernatant and store at —80°C until used.

2. Western Blotting

Stain-Free Gel Imaging and Quantification

the protein extracts were mixed with a 4X Laemmli loading buffer and heated at 94 °C for 4 minutes.
Then, 20 pg of protein was size-separated on a 10% TGX Stain-Free precast gel (Bio-Rad, Hercules,
CA, USA), transferred to a 0.2 ym PVDF membrane (Bio- Bio-Rad, Hercules, CA, USA) and the
membrane were blocked with 3% dried milk in Tris-buffered saline containing 0.05% of Tween-20
(TBST buffer) for 15 minutes. Finally, membranes were incubated with optimized dilutions of the
primary antibody (Table 4) overnight at 4 °C. Thereafter, the membranes were washed three times
for 10 minutes with TBST buffer and re-incubated with the IgG HRP conjugated secondary antibody
for 1hours (Table 4). Finally, the membranes were washed three times for 10 minutes with TBST
buffer and analyzed using an Immun-Star Western Chemiluminescence Kit (Bio-Rad, Hercules, CA,
USA). Imaging and data analysis were performed following the protocol described in Taylor et al.
and Neris, R.L.S., et al. TGX Stain-free gels were activated for 1 minutes after SDS-electrophoresis.
Images were captured using a ChemiDoc XRS Gel Documentation System (Bio-Rad, Hercules, CA,
USA) and Image Lab software (version 6.0.1, Bio-Rad, Hercules, CA, USA). Data normalization
analysis for each protein band was performed with the stain-free gel image saved, and the
background was adjusted in such a way that the total background was subtracted from the sum of
the density of all the bands in each lane(681).

Table 4. List of antibodies used for Western Blot

Antibody Species | Dilution | Company catalog#
AdipoR1 Rabbit 1:1000 | Bioss Antibodies bs-0611R
AdipoR2 Rabbit 1:1000 | Thermo Fisher XK3744985D
mTOR Rabbit 1:1000 | Cell Signaling 2972
phosphorylated mTOR | Rabbit 1:1000 | Cell Signaling 2971
ERK1/2 Rabbit 1:1000 | Cell Signaling 9102
phosphorylated ERK1/2 | Rabbit 1:1000 | Cell Signaling 9101

AKT Rabbit 1:1000 | Cell Signaling 9272
phosphorylated AKT Rabbit 1:1000 | Cell Signaling 9271

NFKB Rabbit 1:1000 | Cell Signaling 3035
Annexin V Rabbit 1:1000 | GeneTex GTX103250
AIF Rabbit 1:1000 | GeneTex GTX113306
Caspase 9 Rabbit | 1:1000 | Cell Signaling 9502




Caspase 3 Rabbit 1:1000 | GeneTex GTX110543
p62 Rabbit 1:1000 | Santa Cruz Biotechnology sc-28359
LC3B Rabbit 1:1000 | Cell Signaling 2775

LDLR Mouse | 1:500 Proteintech 66414-1-lg
SREBP-1 Rabbit | 1:1000 | Cell Signaling 95879
Secondary Anti-mouse 1:10,000 | Jackson Immuno 156092
Secondary Anti-rabbit 1:10,000 | Jackson Immuno 156914

Table 5. Reagent Formulations for SDS-PAGE Running Buffer 10X

Reagent Company Final Concentration | Amount
Tris base SIGMA 0.250M 30.3¢g
Glycine SIGMA 1.924M 144.4¢g
SDS SIGMA 0.035M 10g
aaH20 To 1L

* adjust the pHto 8.3

Table 6. Reagent Formulations for SDS-PAGE Transfer Buffer 1X

Reagent Company Final Concentration | Amount
Tris base SIGMA 0.250M 39
Glycine SIGMA 1.924M 14.4g
Methanol SIGMA 20% 200mL
daH20 To 1L

* adjust the pHto 8.3

Table 7. Reagent Formulations for SDS-PAGE TBST 10X
Reagent Company Final . Amount

Concentration

Tris base SIGMA 0.2mM 48g
Nacl SIGMA 1.5M 1769
daH20 To 2L

* adjust the pHto 7.6

Table 8. Reagent Formulations for SDS-PAGE Stripping Buffer 1X

Final
Reagent Company Concentration Amount
Glycine SIGMA 100mM 15¢g
SDS SIGMA 1% 19
Tween 20 SIGMA 0.1% ImL
daH20 1L

* adjust the pHto 2.2

I11.12. Statistical Anal

ysis
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All statistical analyses were performed using GraphPad Prism version 10.0 (GraphPad Inc., San
Diego, CA, USA). A p value of < 0.05 was considered statistically significant. Two-way ANOVA
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followed by Sidak’s multiple comparisons test was used to evaluate the effects of time and cell type
on each dependent variable. For comparisons involving more than two groups, one-way ANOVA
was used, and Tukey’s post hoc test was applied when appropriate. For comparisons between two
groups, an unpaired two tailed Student’s t test was employed.
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IV.RESULTS

IV.1.1.1 Adiponectin Receptor Expression and Antitumor Potential of AdipoRon in PTC:
Insights from Multi-Omics and Tissue Level Validation

Integrated Analysis of TCGA and GTEx Data Reveals Differential Gene Expression Patterns
of Adiponectin Receptors in Thyroid Cancer

To investigate the expression characteristics and potential clinical significance of the adiponectin
signaling pathway in PTC, we integrated transcriptome data from tumor samples (n = 505) in the
Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) data collection and normal thyroid tissue
samples (n = 355) from the GTEXx project, both obtained from the UCSC Xena platform
(https://xena.ucsc.edu/). Gene expression profiles were recomputed and batch-corrected, as
described by Wang et al., enabling direct comparisons across cohorts. After unified normalization
describe before, to ensure comparability between tumor and normal tissues, differential expression
analysis identified a large number of genes significantly differentially expressed between the two
groups (FDR < 0.05, |log, fold change| > 1). In Figure 15A, a volcano plot illustrating the global
expression changes is shown, among the adiponectin pathway related genes, CDH13 was
significantly upregulated in tumor tissues, while ADIPOR2 and APPL1, although not reaching
significance, were significantly downregulated (FDR < 0.05), suggesting that these genes may play
important regulatory roles in the development of thyroid cancer.

In relation with ADIPOR1 and ADIPOR2 Expression and Their Survival Analysis, the results
showed that ADIPORL1 expression was significantly higher than ADIPOR2 (p < 0.0001)), indicating
that these two receptors may have distinct regulatory patterns or functional differentiation in thyroid
cancer (Figl5 B). Moreover, the Kaplan—Meier survival analysis using clinical follow up data,
revealed that patients with high ADIPOR1 expression was significantly associated with shorter
overall survival (p = 0.015), while ADIPOR2 expression was not significantly correlated with
prognosis (p = 0.23) (Figl5 C). Finally, the multivariate Cox regression analysis indicated that age
was the only statistically significant significantly associated with overall survival (HR =1.13, 95% CI:
1.07-1.20, p < 0.001), whereas ADIPOR1 and ADIPOR2 were not independent prognostic factors
(HR=1, p>0.05) (Figl5 D).
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IV.1.1.2 Validation of ADIPOR1 and ADIPOR2 gene Expression Differences Using Paired
Samples from Multiple Datasets

To validate the above findings, we examined the differential expression of ADIPOR1 and ADIPOR2
in 28 paired thyroid tumor and adjacent normal tissue samples (stage NO) from the TCGA-THCA
dataset. The analysis revealed no significant differences in the expression levels of either gene
between tumor and normal tissues from the same patients (p = 1, paired Wilcoxon test) (Figure 16
A-B). In contrast, analysis of an independent public dataset, available from Gene Expression
Omnibus (GEO) database, GSE60542 (n =14, paired samples), which includes paired PTC and
normal samples, ADIPOR1 and ADIPOR2 were significantly downregulated in tumor tissues in
comparison with their normal counterparts (p < 0.01) (Figure 16 C-D). The discrepancies between
these two cohorts may reflect sample heterogeneity or differences in analytical platforms,
underscoring the need for further validation in larger and multicenter cohorts.

IV.1.1.3 Differences in ADIPOR1 and ADIPOR2 gene expression According to Lymph Node
Metastasis Status of the TCGA-THCA and GEO cohorts

A comparison of gene expression in samples stratified by lymph node status (negative, NO; and
positive, N1) revealed that ADIPOR2 expression was significantly decreased in patients with N1
status compared to NO samples (p = 5.5 x 1078). In contrast, ADIPORL1 expression did not differ
significantly between N0 and N1 groups (p = 0.64), (Fig. 17 A-B). However, this pattern was not
replicated in datasets obtained from the GEO database, where no significant association was found
neither ADIPOR1 (p = 0.32) nor ADIPOR2 (p = 0.87) in relation with lymph node status. This
discrepancy may reflect again the biological heterogeneity, technical variability across cohorts or
sample size limitations, underlining the importance of validation in independent sample sets to clarify
the biological relevance of these findings in this tumor type (Fig. 17C-D).
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Figure 16. Cross-dataset validation
of ADIPOR1 and ADIPOR2
expression in paired PTC and
adjacent normal thyroid tissues.
(A-B) In TCGA-THCA NO subgroup
(n=28 paired samples), expression of
ADIPOR1 and ADIPOR2. (C-D)
Independent GEO dataset GSE60542,
which includes paired PTC and normal
samples (n = 14). Statistical
significance was assessed using the
paired Wilcoxon signed-rank test
for both TCGA-THCA and GSE60542
datasets.

Figure 17. Comparison of ADIPOR1
and ADIPOR2 gene expression
between lymph node—positive (N1)
and lymph node—-negative (NO) PTC
samples in TCGA and GEO
datasets. (A-B) Results from TCGA-
THCA dataset. (C-D) Results from
GSE60542 dataset. For comparison
between NO and N1 groups, statistical
significance was assessed using the
Wilcoxon rank-sum test for both
TCGA and GEO datasets.
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IV.1.1.4 KEGG Pathway Enrichment Analysis of ADIPOR1/2 Related Genes

Using expression data from NO and N1 stages samples in TCGA and GEO datasets

We performed KEGG pathway enrichment analyses on genes positively correlated with ADIPOR1
and ADIPOR2 gene expression, respectively. ADIPOR1 associated genes were mainly enriched in
pathways related to apoptosis, immune regulation, and cellular senescence, suggesting its
involvement in early tumor cell fate decisions and microenvironment modulation (Fig.18 A-B). In
contrast, ADIPOR2 associated genes were significantly enriched in pathways related to protein
degradation and metabolic processes, indicating a potential role in maintaining metabolic
homeostasis (Fig. 18 C-D). Further analysis in N1 stage (lymph node-positive) samples revealed
that ADIPOR1 related pathways predominantly involved cell death and proliferation regulation, such
as the p53 signaling pathway and cell cycle control (Fig.19 A-B). Meanwhile, ADIPOR2 related
genes were closely linked to lipid metabolic reprogramming, including fatty acid metabolism and
cholesterol transport pathways (Fig.19 C-D). Taken together, ADIPOR1 and ADIPOR2 may exhibit
functional divergence at different stages of thyroid cancer progression, respectively participating in
key processes such as cell death, immune modulation, and metabolic remodeling, highlighting their
distinct mechanistic roles in PTC development.
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Figure 18. KEGG pathway enrichment analysis of ADIPOR1/2-associated genes in NO-stage PTC from TCGA and
GEO datasets. (A) KEGG enrichment of genes upregulated in ADIPOR1-high samples from TCGA-THCA (NO-stage
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PTC). (B) In TCGA dataset, genes upregulated in ADIPOR2-high. (C) In the GEO dataset (GSE60542), genes

upregulated in ADIPOR1-high (D) In the GEO dataset (GSE60542), genes upregulated in ADIPOR2-high. KEGG pathway
enrichment was performed using a hypergeometric test with Benjamini-Hochberg correction for multiple comparisons.
Only pathways with adjusted p values < 0.05 were considered statistically significant and are described in the text.

Pathways highlighted in red represent key biologically relevant processes. Dot size indicates the number of enriched genes;

the x-axis represents —log10(adjusted p value).
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Figure 19. KEGG pathway enrichment analysis of ADIPOR1/2-associated genes in N1-stage PTC from TCGA and
GEO datasets. (A) In TCGA-THCA, ADIPOR1-high samples showed significant enrichment in pathways including
apoptosis and Autophagy. (B) ADIPOR2-high samples from TCGA were significantly enriched in apoptosis, colorectal
cancer, and pancreatic cancer pathways, suggesting an association with tumor progression mechanisms. (C) GEO dataset
(GSE60542) confirmed that ADIPOR1-high expression was significantly associated with enrichment in cell cycle supporting
roles in cell proliferation. (D) In the GEO dataset, ADIPOR2-high samples were significantly enriched in fatty acid
degradation, PPAR signaling pathway, and carbon metabolism, indicating that ADIPOR2 may contribute to lipid metabolic
regulation in metastatic PTC. KEGG pathway enrichment was performed using a hypergeometric test with Benjamini-
Hochberg correction for multiple comparisons. Only pathways with adjusted p values < 0.05 were considered statistically
significant and are described in the text. Pathways highlighted in red represent key biologically relevant processes (e.g.,

autophagy, apoptosis). Dot size indicates the number of enriched genes; the x-axis represents —log10(adjusted p value).
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IV.1.1.5 Comparison of factors secreted in cervical adipose tissue (CAT) between patients
with PTC and BT

To investigate the potential regulatory immunometabolic role of cervical adipose tissue in relation
with PTC, secretion levels of adipokines and proinflammatory cytokines were analyzed in cervical
adipose tissue (CAT) samples obtained from a cohort of patients diagnosed with PTC (n = 52) and
BT (n = 32) in the HSCSP (see Table 2). As described in the Materials and Methods section, the
samples were maintained in explant culture overnight at 37 °C, and enzyme-linked immunosorbent
assays (ELISA) were performed. The results, presented in Figure 6, showed that although none of
the cytokines reached statistical significance (p > 0.05), several factors, including adiponectin and
TNF-q, exhibited a trend toward increased levels in the PTC group. No sex-related differences were
observed (data not shown).
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Figure 20. Secretion levels of adipokines and inflammatory cytokines from cervical adipose tissue (CAT) of PTC
and BT patients. ELISA was performed to quantify TNF-a, IL-6, EGF, leptin, ANP, and resistin secretion (per mg of CAT)
in PTC (n =52) and BT (n = 32) patient samples. Data are presented as mean + SD. Statistical significance was assessed

using the Wilcoxon rank-sum test (ns = not significant).

IV.1.1.6 Differential Expression of AdipoR1 and AdipoR2 in Tumor and Normal Thyroid
Tissues of PTC and BT Patients

The AdipoR1 and AdipoR2 analysis of the protein expression by western blot in paired tumor and
adjacent normal thyroid tissues from PTC versus BT patients diagnosed with PTC (n = 17) and BT
(n=17) at the HSCSP, showed that in PTC patients, both AdipoR1 and AdipoR2 protein levels were
significantly higher in tumor tissues compared to paired normal tissues (p < 0.01) (Fig. 21 A). In
contrast, in BT patients, only AdipoR2 was significantly upregulated in tumor tissues (p < 0.05),
whereas AdipoR1 expression showed no significant change (p > 0.05) (Fig. 21 B).
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Figure 21. Western blot analysis was performed on paired tumor (Tumoral) and normal (Normal) thyroid tissues
from patients with PTC and BT. In PTC tissues, both AdipoR1 and AdipoR2 were significantly upregulated in tumor
tissues compared to normal tissues (p < 0.01). In BT samples, only AdipoR2 expression was significantly increased in
tumors, while AdipoR1 expression showed no significant difference. Representative data are shown as mean + SD.
Statistical significance between paired tumor and normal tissues in both PTC and BT patients was assessed using the
paired Wilcoxon signed-rank test. P values are indicated as * P < 0.05; ** P < 0.01; ns = not significant.
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IV.1.2.1 Expression and Functional Roles of ADIPOR1/2 in Relation to BRAF Mutation in PTC

In orde to investigate whether BRAF mutation status affects the expression levels of adiponectin
receptors ADIPOR1 and ADIPOR2, we first analyzed samples in the GEO dataset GSE60542, the
samples with different BRAF mutation statuses from PTC tissues. The results showed no significant
difference in ADIPOR1 and ADIPOR2 expression between the BRAF mutant and wild-type groups
(ADIPOR1: p = 0.645; ADIPOR2: p = 0.5312), suggesting that at the tissue level, BRAF mutation
has a limited impact on adiponectin receptor expression. (Fig. 22 A-B). However, in the PTC cell
line BCPAP, treatment with the BRAF inhibitor Vemurafenib for 48 hours significantly downregulated
the expression of both ADIPOR1 and ADIPOR2 (p < 0.05). (Fig. 22 C-D).
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Figure 22. Relationship between BRAF mutation and ADIPOR1/2 expression in PTC tissues and BCPAP cell
models. (A-B) Boxplots showing expression levels of ADIPOR1 and ADIPOR2 in PTC tissues from the GEO dataset
(GSE60542), stratified by BRAF mutation status. (C-D) Boxplots of ADIPOR1 and ADIPOR2 expression in BCPAP cells
(GSE171483) treated with BRAF inhibitor Vemurafenib versus control. Representative data are shown as mean + SD.
Statistical comparisons between two groups were performed using the Wilcoxon rank-sum test. P values are indicated
as *p <0.05.
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IV.1.2.2 Enrichment Analysis of Apoptosis, Inflammation, and Lysosome Pathways Related
to BRAF Mutation Status

To further elucidate the molecular mechanisms associated with BRAF mutation in PTC, gene set
enrichment analysis (GSEA) was performed comparing BRAF-mutant and wild-type samples from
the GEO dataset GSE60542. Results demonstrated significant positive enrichment of the MAPK
signaling pathway, TNF signaling pathway, apoptosis pathway, and lysosome pathway in the BRAF-
mutant group. (Fig. 23 A-D). Further GSEA analysis was conducted in the BRAF-mutant PTC cell
line BCPAP (GSE171483) treated with the BRAF inhibitor Vemurafenib, showing that the apoptosis
regulation pathway and intrinsic apoptotic signaling pathways were significantly enriched, indicating
that BRAF inhibition in vitro can reactivate apoptotic programs, potentially representing a key
mechanism of its antitumor effect. (Fig. 23 E-F).
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Figure 23. Gene Set Enrichment Analysis (GSEA) of PTC tissues from the GEO dataset (GSE60542) and BCPAP
cells (GSE171483). (A-D) Analysis (GSEA) of PTC tissues BRAF-mutant tumors showed positive enrichment of the MAPK
signaling pathway (A), TNF signaling pathway (B), apoptosis (C), and lysosome (D), (E-F) GSEA of BCPAP cells
(GSE171483) treated with the BRAF inhibitor Vemurafenib. The regulation of apoptotic signaling pathway (E) and (F)
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intrinsic apoptotic signaling pathway. GSEA was performed using a permutation-based method. Significance was
determined by normalized enrichment score (NES) and FDR adjusted g-values, with pathways considered significant at
FDR < 0.25.

IV.1.2.3 Correlation Analysis of ADIPOR1/2 with Key Apoptosis and Autophagy Genes under
BRAF Inhibition in BCPAP cell line

Using the GSE171483 dataset, to explore the potential roles of ADIPOR1 and ADIPOR2 against
BRAF targeted therapy, we performed Pearson correlation analysis on gene expression profiles in
vemurafenib treated BCPAP cells, assessed the relationships between ADIPOR1/2 and key
apoptosis markers (CASP3, CASP9, AIFM1) as well as autophagy-related genes (SQSTML,
MAP1LC3B). Results demonstrated that expression levels of both ADIPOR1 and ADIPOR2 were
significantly positively correlated with multiple pro-apoptotic and autophagy genes. Notably, the
downstream genes associated with ADIPOR1 and ADIPOR2 were not completely overlapping,
suggesting potential functional divergence or distinct regulatory mechanisms between the two
receptors in modulating cell death pathways (Fig. 24).
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Figure 24. Correlation of ADIPOR1/2 expression with key apoptotic and autophagic genes under BRAF inhibition.
Analysis was performed in BCPAP cells treated with the BRAF Inhibition vemurafenib. ADIPOR1 and ADIPOR2 expression
levels were correlated with apoptosis-related genes and autophagy markers. Correlation coefficients were calculated using
Pearson correlation analysis. Positive correlations (in red) suggest potential co-regulation, while negative correlations (in
blue) indicate possible inverse relationships. Dot size reflects statistical significance (-log10 of p value), and color scale

indicates direction and strength of the correlation (from blue: negative, to red: positive).
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IV.1.2.4 AdipoRon Inhibits Proliferation and Migration of BCPAP Cell Line

MTT assay results showed that AdipoRon treatment at 25 yM and 100 uM significantly inhibited
BCPAP cell proliferation at 24, 48, and 72 hours in a time-dependent manner. Compared with
untreated controls, cell viability was markedly reduced (a: p < 0.001; b: p < 0.0001), indicating a
sustained inhibitory effect of AdipoRon on cell growth (Fig. 25 A). Treatment with a concentration
gradient of AdipoRon (6.25-100 uM) for 48 hours caused a clear dose dependent decrease in
BCPAP cell proliferation. Nonlinear regression analysis of the dose response curve further validated
the strong pharmacological inhibitory effect of AdipoRon on BCPAP cells (Fig. 25 B). Additionally,
wound healing assays revealed that AdipoRon significantly suppressed BCPAP cell migration, with
the wound closure rate notably lower than that of the control group (p < 0.01) (Fig. 25 C).
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Figure 25. AdipoRon inhibits cell viability and migration in BCPAP cells. (A) Cells were treated with AdipoRon at
concentrations of 25 yM and 100 pM for 24, 48, and 72 hours. Cell viability was assessed by the MTT assay and normalized
to the corresponding untreated control. Data are presented as mean + SD (n = 3). Statistical comparisons were performed
using one-way ANOVA followed by Dunnett’s post hoc test. a: p < 0.001; b: p < 0.0001 vs. control group. (B) Cells were
treated with increasing concentrations of AdipoRon (6.25—-100 uM) for 48 hours. A nonlinear regression model fitted the
dose—response curve, showing concentration-dependent inhibition of proliferation. (C) Wound healing assay further
demonstrated impaired migration capacity after AdipoRon exposure. Data are presented as mean + SD (n=3). Statistical

comparisons were performed using one-way ANOVA followed by Dunnett’s post hoc test. ** p < 0.01 vs. control group.
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IV.1.2.5 AdipoRon Induces Changes in the Cell Cycle, Nuclear and Cytoplasmic Morphology
in BCPAP Cell Line

Flow cytometry analysis showed that treatment with AdipoRon (25 uM) for 48 hours led to an
increase in the sub-GO/GL1 cell population, suggesting possible induction of apoptosis. However, this
increase did not reach statistical significance (Fig. 26 A). DAPI staining demonstrated enhanced
nuclear fluorescence intensity in AdipoRon treated cells, indicative of nuclear condensation
compatible with apoptosis processes. Nonetheless, differences in fluorescence intensity between
treated and control groups were not statistically significant (Fig. 26 B). H&E staining revealed
morphological changes in AdipoRon treated BCPAP cells, such as cytoplasmic vacuolization and
reduced cell volume, suggesting autophagy related structural remodeling in the cells (Fig. 27 A). AO
staining further confirmed a significant increase in AVOs in AdipoRon treated cells, as evidenced by
enhanced red fluorescence, indicating markedly elevated autophagic activity (p < 0.0001 vs. control)
(Fig. 27 B).
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Figure 26. AdipoRon seems to induce apoptotic changes responses in BCPAP cells. (A) BCPAP cells were treated
with AdipoRon (25 uM) for 48 hours. Flow cytometry after PI staining. (B) Fixed cell DAPI staining showed enhanced
nuclear fluorescence intensity following AdipoRon treatment, implying nuclear condensation consistent with apoptosis,
though without statistically significant change. Data are presented as mean + SD (n = 3). Statistical comparisons between
two groups were performed using unpaired two tailed Student’s t test (ns = not significant).
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IV.1.2.6 AdipoRon has the ability to modulate autophagy and apoptosis signaling pathways
without fully activating their effector mechanisms in the BCPAP Cell Line

Western blot results demonstrated significant alterations in autophagy- and apoptosis-related
signaling pathways in AdipoRon treated cells. Specifically, phosphorylated AKT (p-AKT) levels were
markedly elevated, indicating activation of survival signaling pathways that typically suppress
autophagy. However, phosphorylated mTOR (p-mTOR) and ERK (p-ERK) levels showed no
significant changes, suggesting incomplete activation or a blockage within the autophagy-related
signaling cascade. In support of this, the autophagy marker p62 accumulated significantly, and the
LC3B-Il/I ratio remained unchanged, indicating impaired autophagic flux and an overall state of
incomplete or suppressed autophagy (Fig. 28 A-B). Apoptosis-related proteins showed a significant
increase in Annexin V expression (p < 0.05) and a non-significant increase in Caspase-3, indicating
partial induction of apoptosis. In contrast, Caspase-9 expression was reduced, suggesting that the
execution phase of apoptosis was not fully activated. (Fig. 28 C).
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IV.1.2.7 AdipoRon Enhances the Antitumor Effect of Vemurafenib on BCPAP Cell Line

To investigate whether AdipoRon has able to potenciate the antitumor efficacy of the BRAF inhibitor
Vemurafenib, combination treatments were performed on BCPAP cells. The MTT assays showed
that compared to Vemurafenib alone (1 pM), co-treatment with AdipoRon (50 uM or 100 pM) for 48
hours was able to reduce the cell viability (p < 0.0001), indicating that AdipoRon markedly enhances
Vemurafenib’s inhibitory effect on cell proliferation (Fig. 29 A). Furthermore, wound healing assays
demonstrated pronounced suppression of cell migration in the combination treatment groups, along
with significant cellular loss of adhesion observed after 16 hours (p < 0.01) (Fig. 29 B).

AdipoRon 100 yM Vemurafenib Vemurafenib+AdipoRon 100 uM

--- |
5

BCPAP 48

,@": o ,f_,w I
& ,,«"o §
]
% 20
= 0
A gy
'&e . s<2°°°
&

Figure 29. AdipoRon enhances the antitumor effect of Vemurafenib in BCPAP cells. (A) BCPAP cells were treated
with Vemurafenib (1 uM) alone or in combination with AdipoRon (50uM or 100uM) for 48 hours. Cell viability was assessed
by the MTT assay. Data are presented as mean + SD (n 23). Statistical significance was evaluated using one-way ANOVA
followed by Dunnett’s post hoc test; ****p < 0.0001 vs Vemurafenib alone. (B) Wound healing assay demonstrated that
AdipoRon further impaired cell migration in Vemurafenib treated BCPAP cells after 16 hours. Red dashed lines indicate
the wound edges. Scale bar = 200 ym. Data are presented as mean + SD (n=3). Statistical significance was evaluated

using one-way ANOVA followed by Dunnett’s post hoc test; *p < 0.05 ; **p < 0.01 vs. Control group.
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IV.1.3.1 Expression of ADIPOR1 and ADIPOR2 and their Impact on the Biological Behavior of
PTC Tissue and the PTC Cellular Model (TPC-1) Harboring RET/PTC1 Rearrangement

To investigate the impact of RET/PTC1 rearrangement on adiponectin receptor expression, we
analyzed the GEO dataset GSE60542. The results showed that in PTC tissues harboring RET/PTC1
rearrangement, ADIPOR1 was significantly downregulated in RET/PTC1 rearrangement tissues
compared to non-mutant tissues (p = 0.0027), whereas ADIPOR2 showed upregulated (p = 0.016).
This suggests that RET/PTC1 rearrangement may specifically regulate ADIPOR1 and ADIPOR2
expression (Fig. 30 A-B). Further, in the TPC-1 cell model treated with the RET tyrosine kinase
inhibitor selpercatinib (GSE261830), ADIPOR1 expression was significantly increased (p < 0.05),
while ADIPOR2 expression remained unchanged. This indicates that RET signaling activity may
suppress ADIPOR1 transcriptional expression under in vitro conditions, and this inhibitory effect can
be reversed by RET-targeted inhibition (Fig. 30 C-D). Collectively, these findings imply that the RET
signaling pathway may participate in tumorigenesis and progression of PTC by modulating
downstream signaling through suppression of ADIPOR1 expression.

A B
RET vs nonRET: ADIPOR1 RET vs nonRET: ADIPOR2

ns

Expression (log2)
Expression (log2)
.

L

- .‘--.
e
RET nonRET RET nonRET
C D
ADIPOR1 Expression in TPC-1 ADIPOR2 Expression in TPC-1
* ns

= o

[1 4 o

o] =]

o o

=1 O,

< —

5 5 5

@ @

B ]

2 2

w wo

= = ‘

Bs I (=

Control Selpm;:atinib Control Snlparlcalinib

Figure 30. Relationship between RET/PTC1 rearragement and ADIPOR1/2 expression in PTC tissues and TPC-1
cell models. (A-B) Boxplots showing expression levels of ADIPOR1 and ADIPOR2 in PTC tissues from the GEO dataset
(GSE60542), stratified by RET/PTC1 rearrangement status. (C-D) Boxplots of ADIPOR1 and ADIPOR2 expression in TPC-
1 cells (GSE261830) RET- tyrosine kinase inhibitors (selpercatinib) versus control cells (without treatment). Statistical

comparisons were performed using the Wilcoxon rank-sum test. Significance levels: *p <0.05 ; **p < 0.01.
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IV.1.3.2 Enrichment Analysis of Apoptosis, Inflammation, and Lysosomal Signaling Pathways
Associated with RET/PTC1 Rearrangement Status

Gene Set Enrichment Analysis (GSEA) comparing RET/PTC1-positive and -negative PTC tissue
samples revealed significant enrichment of pro-inflammatory TNF signaling and cell cycle regulation
pathways in tumors harboring the RET/PTC1 rearrangement. This indicates that this mutation may
activate inflammatory responses and promote cellular proliferation. (Fig. 31 A-B). In the TPC-1 cell
model treated with the RET tyrosine kinase inhibitor selpercatinib, lipid metabolism and
atherosclerosis pathways, as well as cytokine-cytokine receptor interaction pathways, were
significantly enriched. This suggests that RET signaling inhibition may regulate tumor cell metabolic
activities and immune modulation. (Fig. 31 C-D).
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Figure 31. Enrichment of inflammatory, proliferative, metabolic, and immune pathways in RET/PTC1
rearrangement versus non-mutant PTC tissues and TPC-1 cells. (A-B) Gene Set Enrichment Analysis (GSEA) of
PTC tissues from the GEO dataset (GSE60542), stratified by RET/PTCL1 rearragement status. (A) TNF signaling pathway
and (B) Cell cycle pathway were significantly enriched in RET/PTC1 rearragement tumors. (C-D) GSEA of TPC-1 cells
(GSE261830) treated with the RET- tyrosine kinase inhibitors (selpercatinib). The regulation of (C) Lipid and
atherosclerosis and (D) Cytokine—cytokine receptor interaction. GSEA was performed using a permutation-based method.
Significance was determined by normalized enrichment score (NES) and FDR adjusted q values, with pathways considered
significant at FDR < 0.25.
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IV.1.3.3 Correlation Analysis of ADIPOR1 and ADIPOR2 with Key Apoptosis and Autophagy
Genes under RET Inhibition

Pearson correlation analysis was performed in TPC-1 cells treated with the RET inhibitor
selpercatinib to examine the relationship between ADIPOR1/2 and key apoptosis-related genes
(CASP3, CASP9, AIFM1), as well as autophagy markers (SQSTM1, MAP1LC3B). The results
showed that ADIPORL1 expression was significantly positively correlated with MTOR, but negatively
correlated with CASP9. In contrast, ADIPOR2 expression was positively correlated with MAPK1/3
and AKT3, but negatively correlated with AKT1 and the autophagy related genes SQSTM1 and
MAP1LC3B. These findings suggest that, under RET signaling inhibition, ADIPOR1 and ADIPOR2
may regulate tumor cell apoptosis and autophagy through distinct mechanisms involving the mTOR
and AKT pathways. (Fig. 32)

Correlation of ADIPOR1/2 with related genes (Selpercatinib-treated)

ADIPOR1

AIFM1 o
CASP9
CASP3 - ®
SQSTM1 4 ®
MAP1LC3B °
ANXAS
QBIBBE% ] -log10(p-value)
NFKB1 4 ® ® 025
AKT3 - @ 050

AKT2 4 ® @ o075
MAPK3 1
MAPK1 - ® .00

MTOR 4 o @ 1>
ADIPOR2
AIFM1 < @ Correlation

SQSTM1 4 O 0.5
MAP1LC3B « ®
ANXAS o 0.0
ADIPOR2 4
ADIPOR1 1 05
NFKB1 - .
AKT3 4 o
AKT2 4 o
AKT14 o]
MAPK3 4 o]
MAPK1 4 ®
MTOR 4

-1.0 0.5 0.0 05 1.0
Pearson correlation

Figure 32. Pearson Correlation of ADIPOR1/2 expression with key apoptotic and autophagic genes under
RET/PTC1 inhibition. Analysis was performed in TPC-1 cells treated with the RET inhibitor Selpercatinib. ADIPOR1 and
ADIPOR2 expression levels were correlated with apoptosis related genes and autophagy markers. Correlation
coefficients were calculated using Pearson correlation analysis. Positive correlations (in red) suggest potential co-
regulation, while negative correlations (in blue) indicate possible inverse relationships. Dot size reflects statistical
significance (-log10 of p value), and color scale indicates direction and strength of the correlation (from blue: negative, to

red: positive).
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IV.1.3.4 AdipoRon Inhibits Proliferation of TPC-1 Cell Line

AdipoRon treatment significantly suppressed TPC-1 cell proliferation and migration. MTT assays
revealed that treatment with 25 yM and 100 uM AdipoRon for 24, 48, and 72 hours led to a significant
time-dependent decrease in cell proliferation compared to controls (p < 0.001 or p < 0.0001) (Fig 33.
A). Dose-response curve analysis further confirmed the concentration dependent inhibitory effect of
AdipoRon on TPC-1 proliferation (Fig. 33 B). The wound healing assays showed a non-significant
trend of slower migration in the AdipoRon treated group, with visibly reduced wound closure rates
(Fig 33. C). These effects were less pronounced compared to those observed in BCPAP cells.
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Figure 33. AdipoRon inhibits cell viability and migration in TPC-1 cells. (A) TPC-1 cells were treated with AdipoRon
at concentrations of 25 uM and 100 uM for 24, 48, and 72 hours. Cell viability was assessed by the MTT assay and
normalized to the corresponding untreated control. Data are presented as mean + SD (n = 3). Statistical comparisons were
performed using one-way ANOVA followed by Dunnett’s post hoc test. a: p < 0.001; b: p < 0.0001 vs. control group. (B)
TPC-1 cells were treated with increasing concentrations of AdipoRon (6.25-100 uM) for 48 hours. A nonlinear regression
model fitted the dose response curve, showing concentration-dependent inhibition of proliferation. (C) Wound healing
assay further demonstrated impaired migration capacity after AdipoRon exposure. Data are presented as mean + SD (n =
3). Statistical comparisons were performed using one-way ANOVA followed by Dunnett’s post hoc test. (ns = not
significant).
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IV.1.3.5 AdipoRon Does Not Significantly Induce Changes in the Cell Cycle, Nuclear and
Cytoplasmic Morphology in the TPC-1 Cell Line

AdipoRon treatment failed to significantly induce apoptosis or autophagy related responses in TPC-
1 cells. Flow cytometry analysis showed no notable increase in the sub-GO/G1 cell population,
indicating absence of apoptotic cell cycle arrest (Fig. 34 A). DAPI staining revealed no significant
changes in nuclear staining intensity or typical apoptotic nuclear condensation (Fig. 34 B). H&E
staining showed no obvious morphological alterations except for abundant cytoplasmic vacuolization,
suggestive of metabolic stress or paraptosis-like changes. (Fig. 35 A). Acridine orange staining
indicated no significant accumulation of acidic vesicular organelles, further confirming lack of
autophagy activation (Fig. 35 B). Overall, AdipoRon did not markedly induce apoptosis or autophagy
in TPC-1 cells.
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Figure 34. AdipoRon fails to induce apoptosis or autophagy in TPC-1 cells. (A) Flow cytometry analysis following
Pl staining revealed no significant increase in the sub-G0/G1 population in TPC-1 cells after treatment with 25 uM
AdipoRon for 48 hours, suggesting the absence of apoptotic cell cycle arrest. (B) Fixed-cell DAPI staining showed no
notable enhancement in nuclear fluorescence intensity after AdipoRon exposure, further supporting a lack of apoptotic
nuclear condensation. Data are presented as mean + SD (n = 3). Statistical comparisons between two groups were
performed using unpaired two tailed Student’s t test (ns = not significant).
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Figure 35. AdipoRon fails to induce
apoptosis or autophagy in TPC-1
cells. (A) H&E staining of TPC-1 cells
treated with 25 pM AdipoRon
revealed no significant morphological
alterations compared to control. (B)
AO staining showed no increase in
red fluorescence signal, indicating
that AdipoRon did not promote
autophagic vacuole formation in TPC-
1 cells. Data are presented as mean
+ SD (n = 3). Statistical comparisons
between two groups were performed
using unpaired two tailed Student’s t
test (ns = not significant).
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IV.1.3.6 Survival Pathways Activated and Autophagy Partially Inhibited by AdipoRon in TPC-
1 Cell Line

Protein expression results indicated that AdipoRon treatment significantly increased levels of
phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR), suggesting activation of
proliferation-associated signaling pathways; however, phosphorylated ERK (p-ERK) levels remained
unchanged (Fig. 36 A). Regarding apoptosis-related proteins, Caspase-3 expression decreased,
while Annexin V, AlF, and Caspase-9 levels showed no significant changes, indicating no effective
induction of apoptosis (Fig. 36 C). Autophagy markers showed decreased LC3B II/I ratio and
unchanged p62 expression, implying autophagy was not activated. In summary, AdipoRon
activated proliferation signaling but failed to fully trigger apoptosis or autophagy pathways, potentially
leading to impaired cellular functions (Fig. 36 B)
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IV.2. Expression Characteristics of LDLR in PTC and the Potential Relationship with
AdipoRon

IV.2.1 Transcriptomic Analysis Reveals Differential Expression of LDLR and Lipid
Metabolism-Related Genes in PTC tissues.

Transcriptome data analysis demonstrated that, compared with normal thyroid tissues, multiple key
cholesterol and lipid regulatory genes including SREBF1, APOE, PCSK9, and LDLR were
significantly upregulated in PTC tissues, whereas other genes such as HMGCR, SREBF2, and
APOB were significantly downregulated (Fig. 37 A-B). More specifically, in lymph node-negative (NO)
patients, LDLR expression in tumor tissues was significantly higher than in normal tissues (p =
0.0091) (Fig. 37 C). Further comparison between lymph node-positive (N1) and lymph node-
negative (NO) groups revealed a markedly elevated LDLR expression in the N1 tumor group (p =
4.3x1079) (Fig. 37 D).
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Figure 37. Transcriptomic analysis reveals differential expression of LDL related lipid metabolism genes in
papillary thyroid cancer (PTC). (A-B) Volcano plots show differentially expressed lipid metabolism genes in thyroid
tumor vs. normal tissues using transcriptomic data. Key cholesterol/lipid regulators (SREBF1, APOE, PCSK9, LDLR) are
upregulated in PTC, while others (HMGCR, SREBF2, APOB) are downregulated. Significantly upregulated (red) and
downregulated (blue) genes were defined by FDR < 0.05 and |log, fold change| > 1. Key cholesterol/lipid regulators are
highlighted. (C) Boxplot comparing LDLR expression in normal thyroid and PTC tissues (GEO dataset, NO stage). LDLR
expression is significantly higher in tumor samples (p = 0.0091 Wilcoxon test). (D) Boxplot of LDLR expression in lymph
node-negative (NO) vs. positive (N1) PTC samples (TCGA-THCA cohort), showing a significant increase in N1 tumors (p
= 4.3x107° Wilcoxon test).
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IV.2.2 LDLR Expression Modulated by BRAF Mutation and Its Association with Apoptosis-
Related Genes in PTC Tissue and the BCPAP Cell Line.

LDLR expression in PTC may be regulated by the BRAF signaling pathway and linked to apoptosis
related gene functions. In the GSE60542 dataset, LDLR expression showed an increasing trend in
BRAF-mutant PTC tissues compared with wild-type cases, although this difference was not
statistically significant (p = 0.645) (Fig. 38 A). In the BCPAP cell line, treatment with the BRAF
inhibitor vemurafenib (20 pM, 48 hours) significantly downregulated LDLR expression (p < 0.01),
indicating that LDLR may be positively regulated by BRAF signaling (Fig. 38 B). Correlation analysis
in BCPAP cells (Vemurafenib-treated) revealed that LDLR, ADIPOR1, and ADIPOR2 shared
consistent positive correlations with pro-apoptotic genes (CASP3, CASP8, FAS, TNFRSF1A) and
necroptosis markers (MLKL, RIPK3), while exhibiting negative associations with anti-apoptotic
regulators such as BCL2 and TP53. These findings support the potential cooperative pro-death role
of LDLR and adiponectin receptors in BCPAP thyroid cancer cells (Fig. 38 C).
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IV.2.3 AdipoRon Suppresses LDL-Induced Proliferation and Migration of BCPAP Cells and
Enhances Autophagy Activity

MTT assays showed that under LDL stimulation (200 pg/mL), treatment of BCPAP cells with
AdipoRon at 50 pM and 100 uM for 24 and 48 hours especially 100 uM for 48 hours significantly
reduced cell viability compared to LDL-only treated cells (p < 0.01), demonstrating that AdipoRon
effectively inhibits LDL-induced proliferation. (Fig. 39 A). Wound healing assays revealed that both
AdipoRon alone and combined with LDL reduced cell migration capacity. Although some differences
did not reach statistical significance, a clear inhibitory trend was observed (Fig. 39 B). Acridine
orange staining for autophagy demonstrated a significant increase in red autophagic vesicles in the
LDL plus 50 uyM AdipoRon group (p < 0.0001), indicating that AdipoRon promotes LDL-induced
autophagy activation (Fig. 39 C).
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IV.2.4 AdipoRon Restores Sighaling Balance and Promotes Apoptotic and Stress Response
Pathways in LDL-Treated BCPAP Cell Line.

The LDL treatment, combined AdipoRon application led to a decrease in mTOR phosphorylation,
while phosphorylation levels of AKT and ERK were increased, as shown by Western blot analysis
(Fig. 40 A). Autophagy markers showed a significant increase in the LC3B-II/I ratio and decreased
p62 expression, demonstrating effective induction of autophagy (Fig. 40 B). Regarding apoptosis
related proteins, AIF expression was downregulated, whereas Caspase-9 and Caspase-3 levels
were upregulated, indicating activation of intrinsic apoptotic signaling (Fig. 40 C). AdipoRon alone
significantly inhibited LDLR protein expression, suggesting suppression of cellular LDL uptake,
accompanied by activation of intracellular lipid synthesis programs. Although LDL treatment
promoted LDLR protein expression, LDLR levels did not significantly change in the combined
AdipoRon group. Lipid metabolism regulator SREBP-1 exhibited decreased precursor form (128 kDa)
and increased active nuclear form (68 kDa), indicating enhanced nuclear activation of SREBP-1 (Fig.
40 D).
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IV.2.5 LDLR Expression Modulated by RET/PTC1 rearrangement and Its Link to Apoptosis-
Related Genes in PTC Tissue and TPC-1 Cell Line

To explore the relationship between LDLR and the RET/PTC1 rearrangement gene in PTC,
transcriptomic analysis of GEO dataset GSE60542 was conducted. No significant difference in LDLR
expression was observed between samples with or without RET/PTC1 rearrangement (p > 0.05),
indicating limited impact of RET/PTC1 status on LDLR expression (Fig. 41 A). Further analysis
based on GSE261830 assessed the effect of the RET-specific inhibitor Selpercatinib (20 uM, 48 h)
on LDLR expression in RET/PTC1-positive TPC-1 cells. Compared to DMSO control, Selpercatinib
slightly reduced LDLR expression, though not significantly (Fig. 41 B). Correlation analysis under
Selpercatinib treatment showed LDLR negatively correlated with autophagy markers SQSTM1 and
MAP1LC3B, but positively correlated with ANXA5 and AKT3. (Fig. 41 C)
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IV.2.6 AdipoRon Attenuates LDL-Induced Proliferation in TPC-1 Cells and enhanced

autoph

agy

To verify whether AdipoRon can counteract LDL-promoted proliferation in PTC cells (TPC-1), cells
were treated with LDL (200 pg/mL) in the presence of varying concentrations of AdipoRon (50 uM,

100 uM), and cell viability was measured at 24 and 48 hours.

MTT assays showed that 100 uM

AdipoRon significantly inhibited LDL-induced proliferation at 48 hours (p < 0.001) (Fig. 42 A). Scratch
wound assays indicated trends of reduced migration following AdipoRon alone or combined with
LDL treatment, though without statistical significance (Fig. 42 B). Acridine orange staining revealed
a significant increase in red autophagic vesicles in the LDL plus 50 yM AdipoRon group (p < 0.001),
indicating enhanced autophagy induced by AdipoRon under LDL stimulation (Fig. 42 C)
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IV.2.7 AdipoRon Reverses LDL Induced Signhaling Aberrations and Activates Programmed
Cell Death and Stress Responses in TPC-1 Cell Line

To further elucidate the regulatory mechanisms of AdipoRon in LDL stimulated TPC-1 cells, key
signaling pathways and apoptosis/autophagy related proteins were examined by Western blot.
Combined LDL and AdipoRon treatment significantly decreased phosphorylation of mMTOR and ERK,
while phosphorylation of AKT proteins increased, indicating activation of AKT pathways concurrent
with suppression of mTOR and ERK signaling (Fig. 43 A). Autophagy markers showed elevated
LC3B-Il/I ratio and reduced p62 levels, reflecting increased autophagy (Fig. 43 B). Apoptosis related
proteins exhibited downregulated Caspase-9 and AlF, but upregulated Caspase-3, suggesting
inhibition of mitochondrial (intrinsic) apoptosis (Fig. 43 C). AdipoRon alone significantly decreased
LDLR protein expression, implying suppressed LDL uptake and no activation of intracellular lipid
synthesis. SREBP-1 precursor (128 kDa) decreased while the nuclear active form (68 kDa)
increased, indicating enhanced nuclear localization and activation of SREBP-1. Although LDLR
expression tended to decrease under combined treatment, changes were not statistically significant
(Fig. 43 D)
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Figure 43. AdipoRon (25 pM, 48 hours) Reverses LDL (200 pg/ml, 48 hours) Induced Signaling Aberrations and
Activates Programmed Cell Death and Stress Responses in TPC-1 Cells (A) Expression levels of Total and
Phosphorylated AKT, mTOR, and ERK following AdipoRon treatment, (B) Expression levels of Autophagy Related Proteins
p62 and LC3B-II/LC3B-I Ratio, (C) Expression levels of Apoptosis Related Proteins Annexin V, AlF, Caspase 9 and

Caspase 3. Statistical comparisons between two groups (A—-C) were performed using unpaired two tailed Student’s t test.
(D) Expression levels of LDLR and SREBP-1 Protein upon AdipoRon and LDL treatment. Statistical significance among
multiple groups (D) was evaluated using one-way ANOVA followed by Dunnett’s post-hoc test. Data are presented as
mean = SD (n = 3). * p < 0.05, ** p < 0.01, **** p < 0.0001, ns = not significant.
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V. DISCUSSION

V. 1 Exploring the Relationship Between APN and Its Receptors in Thyroid Cancer

In this study, the secretion levels of adipokines and inflammatory cytokines in cervical adipose tissue
obtained from a cohort of patients with PTC and BT showed significantly elevated levels of APN and
TNF-a in the PTC group, while IL-6 levels were markedly reduced. These findings support the
hypothesis of a possible reciprocal regulatory relationship between APN with other inflammatory
factors, highlighting the potential role of adipose tissue in the malignant tumor microenvironment. In
line with our findings, previous studies have reported the roles of inflammatory factors such as ROS,
TNF-a, and IL-6, as well as various vascular factors, can negatively regulate APN expression by
suppressing the activity of its promoter in overweight/obese conditions (682—687). Conversely, APN
can indirectly modulate the expression or function of other adipokines (leptin and resistin), a variety
of inflammatory cytokines (TNF-a and IL-6), extracellular matrix components, pro-angiogenic factors
(VEGF), and metabolic regulators. Through these interactions, APN is involved in a wide range of
biological processes, including the maintenance of metabolic homeostasis, immune regulation, and
inhibition of tumor angiogenesis(688,689).

These biological effects are exerted by binding to its membrane receptors, AdipoR1 and AdipoR2,
which are expressed predominantly expressed in skeletal muscle, and liver respectively, though both
are also expressed at lower levels in other organs. Our results revealed differential expression
patterns of AdipoR1 and AdipoR2 across thyroid tumor types (PTC versus BT), as well as between
tumoral and adjacent normal thyroid tissue in PTC patients. Notably, AdipoR1 was specifically
upregulated in PTC, suggesting a potential role in malignant progression. In contrast, AdipoR2
expression was elevated in both benign and malignant lesions, implying its involvement in broader
metabolic regulatory processes. This differential expression could be indicating distinct roles for
these receptors in the cellular signaling pathways involved such as cell proliferation, cell cycle and
apoptosis.

The analysis of public database (TCGA and GTEX), confirm a differential expression pattern of
AdipoR1 and AdipoR2 in PTC samples. Interferingly, these receptors did not exhibit synchronized
expression trends, suggesting distinct regulatory mechanisms. Further analysis of the TCGA-THCA
dataset revealed that ADIPOR1 expression was significantly higher than ADIPOR2, supporting the
hypothesis of functional divergence between the two receptors in thyroid cancer development.
However, after validation these differences and as well as between lymph node metastasis positive
and negative tumor tissues using paired samples using GEO datasets, we can detect heterogeneity
and platform specific variation, with inconsistent expression trends observed between them with
inconsistent expression trends. These findings highlight potential biological differences and technical
biases across cohorts, suggesting that further validation using independent sample sets is necessary
to clarify the biological significance of APN receptors in thyroid cancer. Interestingly was to
detected in the Survival analysis (Kaplan—Meier) that high ADIPOR1 expression was significantly
associated with reduced overall survival, whereas ADIPOR2 expression showed no significant
correlation with patient prognosis. Nevertheless, further multivariate Cox regression analysis
identified age as the only statistically significant independent prognostic factor, and neither ADIPOR1
nor ADIPOR? retained independent prognostic value after adjusting for other clinical variables. Our
receptors expression findings could be in consistent with the survival analysis results, in which high
ADIPOR1 expression was associated with a malignancy, but also could be further support the
hypothesis of functional divergence between the two receptors in thyroid cancer development.
However, our analysis has a limitation in the number of the samples analyzed, we can further analyze
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the receptors expression profiles in samples with NO stage in TCGA and GEO datasets and
performed KEGG pathway enrichment analysis on genes positively correlated with high expression
of each receptor. The results of these analysis showed that ADIPOR1 associated genes were
mainly enriched in pathways related to apoptosis, immune regulation, and cellular senescence,
suggesting that ADIPOR1 may play a role in early tumorigenesis by modulating cell fate and the
tumor microenvironment. In contrast, ADIPOR2 associated genes were significantly enriched in
pathways involving protein degradation and metabolism, indicating a preference for regulating
metabolic homeostasis. Further analysis of N1 stage (lymph node metastasis positive) samples
revealed that ADIPORL related genes were significantly enriched in pathways closely associated
with cell growth and death, such as the p53 signaling pathway and cell cycle regulation. Meanwhile,
ADIPOR2 related pathways were concentrated on lipid metabolic reprogramming, including fatty acid
metabolism and cholesterol transport, suggesting its involvement in adaptive metabolic regulation in
advanced stages. In summary, ADIPOR1 and ADIPOR2 may mediate distinct biological processes
at different stages of thyroid cancer, with ADIPORL1 primarily participating in cell death and immune
modulation, and ADIPOR2 involved in metabolic remodeling. This supports their functional
differentiation and complementary roles in the development and progression of PTC.

V. 2 Exploring the Relationship Between AdipoRon and BRAF mutation in Thyroid Cancer

AdipoRon, orally active APN receptors agonist with a favorable stability and bioavailability having
considered an ideal candidate for APN replacement and the treatment of metabolic disorders. This
agonist, has demonstrated multiple beneficial effects, including anti-diabetic and anti-obesity
properties, primarily through improving insulin resistance and chronic inflammation. Nevertheless, in
the last years, the antitumoral potential of AdipoRon has garnered increasing attention and some
reports suggest its ability to regulate different pathways involved in the proliferation, apoptosis, and
autophagy by the by activating AMPK and inhibiting the PI3K/Akt/mTOR pathway(690,691).
Moreover, its capacity to improve the tumor microenvironment has been reported in various cancers
such as breast cancer(543), ovarian cancer(544), and pancreatic cancer(545), their capacity to
improve the tumor microenvironment by suppressing pro-inflammatory cytokines and angiogenesis,
thereby inhibiting tumor growth and metastasis.

In thyroid cancer, the therapeutic application of AdipoRon is still in preclinical studies. In 2024, it was
reported that in vitro treatment with AdipoRon suppressed the proliferation, migration, and invasion
of PTC cells and also was the ability to enhance autophagic activity and promote apoptosis by
upregulating the expression and phosphorylation of ULK1, a key autophagy related protein,
potentially mediated via AdipoR2, thereby inhibiting tumor growth(548).

In our study, we detected the expression of AdipoR1 and AdipoR2 in both human PTC cell lines used
(BCPAP and TPC-1). Although not statistically significant was found, there was a trend toward higher
expression levels of both receptors in BCPAP compared to TPC-1. A key difference between these
cell lines lies in their mutational profiles: Notably, BCPAP carries the BRAFV®%°E mutation, the most
frequent and PTC specific oncogenic alteration linked to tumor aggressiveness, which leads to
constitutive activation of the classical RAS/MAPK pathway, enhanced ERK signaling, and promotes
abnormal proliferation and malignant transformation of cancer cells.

To determine whether BRAFV®%E status influences ADIPOR1/2 expression, we analyzed the
expression of APN receptors in PTC tissues with different BRAF mutation statuses using the GEO
dataset GSE60542. The results did not confirm this hypothesis, suggesting that BRAF mutations
may have limited influence on APN receptor expression at the tissue level. However, the analysis
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conducted in the BRAFY®E mutated PTC cell line BCPAP, treatment with the BRAF inhibitor
(vemurafenib) for 48 hours significantly reduced the expression levels of ADIPOR1 and ADIPOR2.
This indicates that inhibition of BRAF activity in vitro can markedly affect the expression of APN
receptors, suggesting that ADIPOR1/2 may be directly regulated by the BRAF-MAPK pathway. The
discrepancy between tissular samples and cell line results may reflect the influenced of the
heterogenicity of data set samples, the role of the tumor microenvironment and the complexity of
intracellular signaling networks.

To further elucidate the molecular mechanisms of BRAF mutations in PTC, we performed Gene Set
Enrichment Analysis (GSEA) on BRAF mutant versus wild type samples in dataset GSE60542. The
analysis revealed significant enrichment of pathways including the MAPK signaling, TNF signaling,
apoptosis, and lysosome related pathways in the BRAF mutant group. These findings indicate that
BRAF driven PTC activates multiple signaling cascades associated with tumor progression, stress
response, inflammation, and autophagy, reflecting a complex network of compensatory and survival
mechanisms under oncogenic stress.

Furthermore, in the BRAF mutated PTC cell line BCPAP (GSE171483), we conducted GSEA
following Vemurafenib treatment. The results demonstrated significant enrichment of pathways
related to apoptotic regulation and intrinsic apoptotic signaling, suggesting that BRAF inhibition in
vitro may reactivate apoptotic programs, which could be a key mechanism underlying its antitumor
effects.

Both tissue and cell-based analyses indicate that BRAF mutations in PTC are closely associated
with the activation of multiple oncogenic and stress related signaling pathways. Targeted inhibition
of BRAF can partially reverse these effects, notably enhancing apoptotic signaling.

To assess the potential role of ADIPOR1/2 under BRAF mutated conditions, we preformed Pearson
correlation analyses on expression profiles from Vemurafenib treated BCPAP cells. The expression
of ADIPOR1/2 was significantly positively correlated with several key pro-apoptotic genes (e.g.,
CASP3, CASP9, AIFM1) and autophagy-related genes (e.g., SQSTM1, MAP1LC3B). Notably, the
downstream genes associated with ADIPOR1/2 showed partially distinct patterns, suggesting that
these two receptors may regulate cell death through differentiated mechanisms. Taken together,
under BRAF inhibition, ADIPOR1/2 may modulate apoptosis and autophagy via cooperative or
independent signaling pathways, thereby contributing to tumor cell death. Based on these findings,
we treated BRAF mutant PTC cells (BCPAP) with AdipoRon. The results showed significant
suppression of cell proliferation and migration. Subsequent experiments assessed apoptosis and
autophagy. Although apoptotic tendencies were observed, the changes did not reach statistical
significance. Among apoptosis-related proteins, Annexin V and Caspase-9 were significantly
elevated, indicating partial activation of early apoptotic signals. However, Caspase-3 expression was
reduced, suggesting that the execution phase of apoptosis may be incomplete or suppressed.
Interestingly, p-AKT levels were significantly increased, while p-ERK levels remained unchanged,
indicating that AKT-mediated antiapoptotic signaling was active, potentially interfering with the
effective transmission or execution of pro-apoptotic signals.

In autophagy related analyses, AdipoRon treatment led to a notable accumulation of AVOs,
evidenced by enhanced red fluorescence, compatible with upregulated autophagic activity. The
increase in p-AKT further suggests that AKT may be involved in the regulation of autophagy.
However, no significant changes were observed in p-mTOR or p-ERK, implying that AdipoRon
induced autophagy may proceed through an mTOR-independent mechanism, or that classical
signaling routes may be obstructed. In terms of autophagy markers, p62 was markedly accumulated,
while the LC3B-Il/I ratio remained unchanged, indicating that autophagic flux was incomplete or
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blocked at a late stage(692—694). These findings suggest that although autophagy could be not fully
activated, AdipoRon may still induce autophagy via mTOR independent mechanisms, potentially
involving the AKT signaling axis.

Subsequent co-treatment of BCPAP cells with Vemurafenib and AdipoRon significantly enhanced
the inhibitory effects on cell proliferation and migration, outperforming either monotherapy. These
results suggest that while AdipoRon’s antitumor effects may not be entirely dependent on the BRAF-
MAPK pathway, its efficacy is markedly enhanced when BRAF signaling is suppressed, revealing a
potential synergistic interaction between the two treatments.

We further speculate that the persistently activated MAPK pathway in BRAF mutated tumors may
exert pro-autophagic and anti-apoptotic effects, forming a protective feedback loop that counters
AdipoRon induced cell death. In other words, BRAF mutant cells may employ MAPK mediated
survival mechanisms to limit the pro-death effects of AdipoRon, thereby diminishing its therapeutic
efficacy. When BRAF signaling is blocked by Vemurafenib, this protective mechanism may be
disrupted, allowing AdipoRon induced apoptosis and autophagy to proceed more effectively.
Through coordinated regulation of MAPK and AMPK signaling pathways, the combination therapy
may further modulate AKT activity and its downstream targets, thereby amplifying cell death and
achieving a more potent antitumor effect (see Figure 44).

Figure 44. Schematic model of the Relationship Between AdipoRon and BRAF mutation in
Thyroid Cancer. (BioRender.com)
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V. 3 Exploring the Relationship Between AdipoRon and RET/PTC1 rearragment in Thyroid
Cancer

RET/PTC rearrangement is a specific chromosomal alteration commonly found in PTC, occurring in
about 25% of adult and up to 50% of pediatric cases(695). The most prevalent subtypes are
RET/PTC1 and RET/PTC3(696). This rearrangement leads to the formation of fusion genes
combining the RET tyrosine kinase domain with proteins like CCDC6 or NCOA4, resulting in
constitutive RET activation(697). This persistent activity drives oncogenic pathways such as
RAS/MAPK and PI3K/AKT, promoting uncontrolled proliferation, resistance to apoptosis, and
increased invasiveness of thyroid cells(698). These features highlight the distinct biological and
clinical role of RET/PTC in PTC. While BRAFV®%E driven tumors may resist MAPK targeted therapies
via feedback activation of pathways like PI3K/Akt, RET/PTCL1 driven tumors co-activate both MAPK
and PI3K/Akt pathways from the start. Thus, evaluating the antitumor potential of agents like
AdipoRon in RET/PTC driven PTC is important, as it may offer new therapeutic strategies for
genetically distinct thyroid cancer subtypes (699).

Based on these findings, the impact of RET/PTC rearrangement on the expression of APN receptors
using the GEO dataset GSE60542 confirm the differential pattern in the ADIPORSs gene expression,
suggesting this type of mutation rearrangement may specifically regulate ADIPORL1. Further analysis
using dataset GSE261830, where TPC-1 cell line was treated with the RET tyrosine kinase inhibitor
selpercatinib revealed a negatively regulate of ADIPOR1 transcription in vitro, and this repression
can be effectively relieved by targeted RET inhibition. Taken together, although ADIPOR1
expression responded differently to RET/PTC rearrangement in tissue samples and cell models, the
overall trend suggests that the RET signaling pathway may suppress ADIPORL1 expression, thereby
modulating downstream signaling activity and contributing to PTC tumorigenesis. This observation
provides a potential explanation for the biological mechanism by which RET/PTC rearrangements
drive tumor development, as well as for the differential sensitivity of such tumors to AdipoRon.
Moreover, GSEA comparing pathway activity between RET/PTC1 positive and negative PTC tissue
samples revealed significant enrichment of the TNF signaling and cell cycle regulation pathways,
suggesting that this gene rearrangement may promote tumorigenesis and progression by activating
inflammatory responses and proliferation-related signaling pathways. Interestingly, it was observed
that selpercatinib treatment in vitro led to significant enrichment of pathways related to lipid
metabolism, atherosclerosis, and cytokine—cytokine receptor interactions. These findings suggest
that inhibition of RET signaling may modulate tumor cell metabolic activity and immune regulation.
Taken together, RET/PTC1 rearrangement may contribute to tumor progression not only by
downregulating ADIPORL1 expression and activating inflammatory and proliferative pathways, but
also by reshaping metabolic and immune microenvironments. Targeted RET inhibition may exert
antitumor effects by reversing these aberrant pathways.

Further analysis revealed that following selpercatinib treatment in TPC-1 cells, ADIPOR1/2 exhibited
distinct patterns of correlation with cell death related genes. Specifically, ADIPOR1 expression was
associated with apoptosis related genes such as CASP3, CASP9, and AIFM1, while ADIPOR2 was
more closely correlated with autophagy related genes including SQSTM1 and MAP1LC3B. These
results suggest that ADIPOR1 and ADIPOR2 may regulate cell death through different signaling
mechanisms.

Experimental validation revealed that AdipoRon significantly inhibited the proliferation and migration
of TPC-1 cells; however, it did not markedly induce apoptosis or autophagy, suggesting that its
antitumor effects may not depend on classical cell death mechanisms. Protein expression analysis
further supported this observation, as no substantial activation of apoptotic or autophagic pathways
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was detected, indicating that AdipoRon may influence RET/PTCL1 driven cellular behavior through
non-canonical mechanisms.

Our results, showed partial activation of proliferation related signaling upon AdipoRon treatment, but
failed to demonstrate complete induction of apoptosis or autophagy, which may limit its overall
antitumor efficacy. Compared to BCPAP cells, TPC-1 cells exhibited greater resistance to AdipoRon
induced migration inhibition and higher tolerance in terms of apoptotic and autophagic responses.
This differential sensitivity may stem from the presence of RET/PTCL1 rearrangement in TPC-1 cells,
wherein constitutive activation of RET kinase not only triggers the MAPK pathway but may also
modulate multiple other signaling axes involved in cell death regulation, thereby enhancing
resistance to AdipoRon mediated cytotoxic stress.

Some studies have shown that AdipoRon can exert antitumor effects through non-classical cell death
mechanisms such as cell cycle arrest and necroptosis(700). In our study, we observed that AdipoRon
treatment induced GO/G1 phase cell cycle arrest in BCPAP cells, indicating its significant activity in
regulating the cell cycle. Meanwhile, AdipoRon treatment was accompanied by marked activation of
ADIPOR2. Given that ADIPOR2 regulates lipid metabolism and antioxidant responses via the PPAR-
a pathway(701,702), it is speculated to play a role in cell death regulation.

We further hypothesize that APN or AdipoRon alone may simultaneously activate ADIPOR1 and
ADIPOR?2, initiating distinct signaling pathways such as AMPK and PPAR-q, respectively. There may
be a functional balance between these pathways that maintains cell survival. Only when the signaling
of one receptor is significantly enhanced or inhibited, disrupting this balance, might cells initiate
apoptosis or autophagy. This mechanism provides a new perspective on the antitumor effects of
APN related drugs and suggests that targeted modulation of different APN receptor pathways could
potentially enhance their anticancer efficacy (see Figure 45).



106

Figure 45. Schematic model of the Relationship Between AdipoRon and RET/PTC1
rearragment in Thyroid Cancer. (BioRender.com)
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V. 4 Exploring the Relationship Between AdipoRon and LDL in Thyroid Cancer

Previously results for our group identified that the cholesterol is involved in the aggressive behavior
PTC, through intratumorally accumulation of its metabolite 27-hydroxycholesterol (27-HC) and also
with a LDLR dysregulation, suggesting a potential therapeutic target in high-risk thyroid
cancers(655,656). On the other hand, in breast cancer cells, APN has been shown to promote the
degradation of LDL receptor (LDLR) by activating the autophagy pathway, thereby inhibiting LDL
induced cancer cell proliferation(703). Additionally, APN can bind oxidized LDL (oxLDL) and
suppress oxLDL induced ERK phosphorylation and NF-kB pathway activation(704).

AdipoRon has been reported to exert anti-tumor effects in thyroid cancer cells by suppressing
glucose and amino acid metabolism and inducing autophagy via the AdipoR2-ULK signaling
axis(705). Notably, autophagy is not only a key mechanism for maintaining cellular homeostasis but
also plays an essential role in lipid metabolism regulation(706). Studies in breast cancer have
demonstrated that APN regulates LDLR levels through autophagy to maintain intracellular
cholesterol balance(703).

However, whether AdipoRon regulates cholesterol metabolism in thyroid cancer through a similar
mechanism possibly by inhibiting LDLR or interfering with its downstream signaling remains unknown.
In this sense, Transcriptomic analysis revealed significant alterations in the expression of key genes
involved in cholesterol and lipid metabolism in PTC tissues compared to normal thyroid tissues.
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Notably, genes such as SREBF1, APOE, PCSK9, and LDLR were significantly upregulated, whereas
HMGCR, SREBF2, and APOB were markedly downregulated, suggesting a potential reprogramming
of lipid metabolic pathways in these types of tumors.

Our in vitro experiments demonstrated that treatment with AdipoRon significantly inhibited LDL-
induced PTC cell proliferation in both cell lines analyzed (BCPAP and TPC-1) and that both
AdipoRon alone and in combination with LDL also reduced cell migration capacity. Furthermore, AO
staining revealed that treatment with 50 uM AdipoRon combined with LDL markedly enhanced
autophagic activity, which may indicate that AdipoRon can enhances LDL-induced autophagy
mechanism.

At the mechanistic level, LDLR expression in PTC may be regulated by the BRAF signaling pathway
and may be functionally associated with apoptosis related genes. In the GSE60542 dataset, LDLR
expression was higher in PTC tissues harboring BRAF mutations than in wild type samples, although
the difference did not reach statistical significance (p = 0.645). However, in BCPAP cells carrying the
BRAFY60%E mutation, treatment with the BRAF inhibitor Vemurafenib (20 uM, 48 h) significantly
downregulated LDLR expression (p < 0.01), supporting the hypothesis that LDLR is positively
regulated by BRAF signaling(655).

Correlation analysis further revealed that after Vemurafenib treatment, LDLR expression was
positively correlated with pro-apoptotic genes such as CASP9, AKT2, and MAPK1, and negatively
correlated with Annexin V and AKT3, suggesting a potential role of LDLR in the regulation on the
tumoral cell survival. Further analysis demonstrated that in lymph node-negative (NO) patients, LDLR
expression in tumor tissues was significantly higher than in adjacent normal tissues. Moreover,
comparison between lymph node-positive (N1) and NO patients revealed a further increase in LDLR
expression in N1 tumor tissues. These findings suggest that LDLR and related lipid metabolism
receptors may play important roles in the initiation, progression, and lymphatic metastasis these
tumors. In relation with these data, protein expression analysis shown that AdipoRon under LDL
stimulated conditions may induce in BCPAP cells, both Caspase-dependent apoptosis and
autophagy via activation of the AKT signaling pathway. Furthermore, in relation with the metabolism
lipid, the LDLR expression was consistently upregulated, and AdipoRon failed to significantly reverse
the LDL-induced upregulation of LDLR, suggesting that its suppressive effect on LDLR is limited in
a high-lipid environment. This implies a possible compensatory mechanism by which cells enhance
cholesterol uptake to maintain lipid homeostasis. At the same time, the treatment significantly
enhanced the nuclear activation of the lipid metabolism associated transcription factor SREBP-1, as
evidenced by a reduction in the precursor form (128 kDa) and increase in the active nuclear form
(68 kDa). Our results, are align with the studies that shown that AdipoRon can activate the AdipoR2—
PPARa signaling axis(707). This enhancement of lipid catabolism may result in an imbalance
between lipid supply and demand, leading to compensatory activation of the SREBP-1 mediated
fatty acid synthesis pathway to restore lipid homeostasis. This phenomenon highlights the dynamic
adaptability of the lipid metabolic network via self-regulatory feedback mechanisms (see Figure 46).
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Figure 46. Schematic model of the Relationship Between AdipoRon LDL in BCPAP cells.
(BioRender.com)
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Figure 46. AdipoRon suppresses LDL-induced proliferation and migration of BCPAP cells and enhances autophagic activity, potentially
through the AdipoR2-ULK axis. Despite increased LDLR expression under high lipid conditions, AdipoRon fails to significantly reverse

LDLR upregulation, suggesting a compensatory mechanism to maintain cholesterol homeostasis.

In the absence of BRAF harboring mutation, and in the presence or absence of the RET/PTC1
rearrangement, the transcriptomic analysis from GEO dataset GSE60542, showed no significant
difference between both conditions, suggesting that RET/PTC1 fusion status has limited impact on
LDLR expression. Although LDLR expression was slightly reduced when Selpercatinib drug was
used the change was not statistically significant. Under conditions of RET pathway inhibition,
correlation analysis between LDLR and key apoptosis/autophagy-related genes revealed that LDLR
expression was negatively correlated with autophagy markers SQSTM1 (p62) and MAP1LC3B
(LC3B), but positively correlated with ANXA5 and AKT3. These findings suggest that under RET
pathway suppression, reduced LDLR expression may be associated with decreased autophagic
activity and partial activation of apoptotic signaling. Our data, further revealed that AdipoRon
effectively attenuated LDL induced proliferation of TPC-1 cells. Moreover, despite of, both AdipoRon
alone and in combination with LDL showed a decreasing trend in cell migration, the changes did not
reach statistical significance. The APN in presence of the LDL in the media was able to enhanced
the autophagic activity.

To further elucidate the regulatory mechanism of AdipoRon under LDL stimulated conditions in TPC-
1 cells, we examined the expression of key signaling proteins and markers related to apoptosis and
autophagy. Western blot analysis revealed that AdipoRon alone significantly downregulated LDLR
protein levels, suggesting that it can suppress cellular LDL uptake and prevent cholesterol overload
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and subsequent activation of lipid synthesis pathways. Under LDL stimulation, combined AdipoRon
treatment resulted in reduced phosphorylation of mTOR and ERK, while p-AKT levels increased,
indicating activation of the AKT pathway alongside inhibition of mTOR and ERK signaling. With
regard to apoptotic markers, Caspase-9 and AlF levels were downregulated, while Caspase-3
expression was elevated, suggesting partial inhibition of mitochondrial-mediated intrinsic apoptosis.
For autophagy markers, the LC3B-Il/I ratio increased and p62 expression decreased, supporting the
conclusion that autophagy was effectively activated(694,708,709). Collectively, these results indicate
that under LDL stimulation, AdipoRon activates AKT signhaling and suppresses mTOR, thereby
enhancing autophagic activity, along with a complex modulation of apoptotic pathways (see Figure
47).

Importantly, these findings differ from those observed in the BCPAP cell line, where ERK signaling
was not significantly affected. This differences as a response can be support our hypothesis that
while BCPAP cells harbor the BRAFV%%E mutation, which constitutively activates the MAPK pathway,
making ERK signaling resistant to AdipoRon modulation, TPC-1 cells carry the RET/PTC1 fusion,
which activates upstream tyrosine kinases and it is less sensitive to the AdipoRon action. Moreover,
under LDL condition, this upstream positioning allows for more efficient negative regulation by
AdipoRon, resulting in simultaneous suppression of ERK and mTOR pathways. In TPC-1 cells, we
observed a phenomenon similar to that in BCPAP cells: under basal conditions, AdipoRon
downregulated LDLR expression, whereas exogenous LDL stimulation generally led to upregulated
LDLR expression. Notably, combined treatment demonstrated that AdipoRon could partially reverse
the LDL induced upregulation of LDLR, although LDLR levels remained relatively high compared to
AdipoRon treatment alone. Additionally, AdipoRon treatment significantly enhanced the nuclear
activation of the key lipid metabolism transcription factor SREBP-1, characterized by a decrease in
its precursor form and an increase in the active nuclear form; this trend persisted under LDL
stimulation. Integrating the findings of enhanced autophagic activity, we propose that under LDL
treatment, AdipoRon may activate the AMPK signaling pathway via AdipoR1, leading to AKT
activation and mTOR inhibition, thereby promoting autophagy. The enhanced autophagy facilitates
intracellular cholesterol clearance and LDLR degradation, modulating cellular LDL handling capacity.
Meanwhile, AdipoRon may also activate the PPAR-a pathway via AdipoR2, promoting fatty acid B-
oxidation and increasing lipid catabolism. These two mechanisms synergistically affect intracellular
lipid metabolism: on one hand, autophagy promotes LDLR degradation and cholesterol processing;
on the other hand, accelerated fatty acid metabolism enhances lipid efflux, together, these processes
resulting in a lipid supply-demand imbalance within the cell. To maintain lipid homeostasis, cells
activate a compensatory feedback loop mediated by SREBP-1-driven fatty acid synthesis (see
Figure 46/47).

This phenomenon can be suggested a reveal an adaptive lipid metabolic mechanism induced by
AdipoRon under high-lipid conditions, reflecting its potential dual-pathway regulation of lipid
metabolism and cellular homeostasis.
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Figure 47. Schematic model of the Relationship Between AdipoRon LDL in TPC-1 cells.

(BioRender.com)
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Figure 47. Mechanistic model illustrating the regulatory effects of AdipoRon on lipid metabolism, autophagy, and apoptosis in TPC-1

thyroid cancer cells under LDL-stimulated conditions. AdipoRon downregulates LDLR expression, inhibits ERK and mTOR signaling, and

activates AKT, thereby enhancing autophagic flux. The elevated LC3B-Il/I ratio and decreased p62 expression indicate effective autophagy

induction. Concurrently, AdipoRon partially suppresses mitochondrial apoptosis while engaging the AdipoR1-AMPK—-AKT and AdipoR2—

PPARa pathways.
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VI. CONCLUSIONS

The main conclusions are as follows:

1. APN related genes are differentially expressed in PTC tissues compared to BT, suggesting their
involvement in PTC tumorigenesis and progression.

2. The secretion level of APN in adipose tissue was higher in PTC patients than in BT patients, and
was associated with altered levels of inflammatory cytokines. This suggests that APN may participate
in PTC malignant transformation by modulating the local inflammatory microenvironment.

3. The expression levels of APN receptors, ADIPOR1 and ADIPOR2, were both elevated in PTC
tissues compared to BT. Bioinformatics analysis based on public datasets further revealed that
ADIPORL1 is primarily involved in regulating cell death and immune modulation, whereas ADIPOR2
is more closely associated with metabolic remodeling. These findings indicate distinct biological
functions of the two receptors in PTC progression.

4. The proliferation and migration of two PTC cell lines with different genetic backgrounds (BCPAP
and TPC-1) were inhibited by AdipoRon treatment. The antitumor effects of AdipoRon may be
mediated through the modulation of apoptotic and autophagic pathways.

5. In BCPAP cells, co-treatment with the BRAF inhibitor Vemurafenib enhanced the suppressive
effects of AdipoRon, whereas TPC-1 cells showed relatively lower sensitivity to AdipoRon.

5. AdipoRon reduced LDLR expression in BCPAP cells and inhibited LDL-induced proliferative
effects. Under high LDL conditions, AdipoRon activated the AKT signaling pathway and induced
apoptosis and autophagy via an mTOR-independent mechanism.

6. AdipoRon downregulated LDLR expression in TPC-1 cells and inhibited LDL-induced proliferation.
However, under high LDL conditions, AdipoRon activated AKT while inhibiting mTOR and ERK
signaling pathways, resulting in decreased apoptosis but enhanced autophagy.
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