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Abstract

Understanding the visual and structural language of documents is central to Docu-
ment AI. This thesis explores the hypothesis that layout acts as a latent language—a
structured grammar that governs how information is arranged and interpreted in vi-
sually rich documents. Departing from traditional OCR-centric pipelines, we investi-
gate layout-aware approaches across three interlinked axes: Interpretation, Represen-
tation, and Generation. In the Interpretation axis, we introduce transformer-based
segmentation frameworks, including SWINDOCSEGMENTER and its semi-supervised
extension SEMIDOCSEG, enabling precise instance-level parsing in both high-resource
and low-resource settings. For Representation, we develop self-supervised and graph-
based models such as SELFDOCSEG and DOC2GRAPHFORMER, learning robust, task-
agnostic embeddings that capture visual, spatial, and relational cues without reliance
on annotated data. In the Generation axis, we propose layout-conditioned generative
frameworks—DOCSYNTH, DOCSYNTHV2, and SKETCHGPT—that model documents as
sequences of layout primitives and enable controllable synthesis, sketch completion,
and document design.
The collective contributions of this thesis establish a unified perspective of layout as
both signal and structure, enabling end-to-end systems that not only read but reason
and generate with layout awareness. We demonstrate the practical value of these con-
tributions through deployments in real-world document intelligence systems and by
proposing new benchmarks for multimodal document reasoning. This work opens
new frontiers in treating layout not as noise to be removed, but as a language to be
learned.
Keywords – Computer Vision, Pattern Recognition, Document AI, Document Under-
standing, Layout Understanding, Document Layout Analysis, Vision-Language Mod-
els, Instance Segmentation, Self-Supervised Learning, Semi-Supervised Learning, Graph
Neural Networks, Document Generation, Layout as Language, Multimodal Reasoning,
Structured Document Synthesis
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Resum

Comprendre el llenguatge visual i estructural dels documents és essencial en la In-
tel·ligència Artificial Documental. Aquesta tesi explora la hipòtesi que el disseny de
l’estructura de pàgina actua com un llenguatge latent, una gramàtica estructurada
que regeix com s’organitza i interpreta la informació en documents visualment rics.
Allunyant-nos dels enfocaments tradicionals centrats en OCR, investiguem mètodes
conscients de l’estructura al llarg de tres eixos interconnectats: Interpretació, Repre-
sentació i Generació. En l’eix d’Interpretació, presentem arquitectures basades en
Transformers com ara SWINDOCSEGMENTER i la seva extensió semi-supervisada SEMI-
DOCSEG, que permeten una segmentació precisa a nivell d’instància tant en escenaris
amb recursos com amb pocs recursos etiquetats. A l’eix Representació, desenvolupem
models auto-supervisats i basats en grafs, com SELFDOCSEG i DOC2GRAPHFORMER,
que aprenen representacions robustes, agnòstiques a la tasca, integrant senyals visu-
als, espacials i relacionals sense necessitat d’anotacions. A l’eix de Generació, pro-
posem marcs generatius condicionats a l’estructura com DOCSYNTH, DOCSYNTHV2 i
SKETCHGPT, que modelen els documents com seqüències de primitives estructurals,
permetent síntesi controlada, auto-completat d’esbossos i generació estructurada de
documents.
Les contribucions d’aquesta tesi estableixen una visió unificada del disseny de pàgina
com a senyal i estructura, permetent sistemes que no només llegeixen sinó que també
raonen i generen amb consciència del disseny. Demostrem el valor pràctic d’aquests
avenços mitjançant aplicacions reals d’intel·ligència documental i proposem nous bancs
de proves per al raonament multimodal. Aquest treball obre noves fronteres per tractar
el disseny no com a soroll, sinó com un llenguatge que cal aprendre.
Paraules Clau – Visió per Computador, Reconeixement de Patrons, Intel·ligència Ar-
tificial Documental, Comprensió de Documents, Comprensió del Disseny de Pàgina,
Anàlisi del Disseny de Documents, Models Visió-Llenguatge, Segmentació per Instàn-
cies, Aprenentatge Auto-supervisat, Aprenentatge Semi-supervisat, Xarxes Neuronals
de Grafs, Generació de Documents, Disseny com a Llenguatge, Raonament Multimodal,
Síntesi Estructurada de Documents
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Resumen

Comprender el lenguaje visual y estructural de los documentos es fundamental en la
Inteligencia Artificial Documental. Esta tesis explora la hipótesis de que el diseño de
la estructura de página actúa como un lenguaje latente, una gramática estructurada
que rige cómo se organiza e interpreta la información en documentos visualmente
complejos. Alejándonos de los enfoques tradicionales centrados en OCR, investig-
amos métodos basados en la estructura a lo largo de tres ejes interrelacionados: Inter-
pretación, Representación y Generación. En el eje de Interpretación, introducimos ar-
quitecturas basadas en Transformers como SWINDOCSEGMENTER y su extensión semi-
supervisada SEMIDOCSEG, que permiten una segmentación precisa a nivel de instan-
cia en contextos tanto con abundancia como escasez de datos etiquetados. En el eje
de Representación, desarrollamos modelos auto-supervisados y basados en grafos,
como SELFDOCSEG y DOC2GRAPHFORMER, que aprenden representaciones robustas,
agnósticas a la tarea, integrando señales visuales, espaciales y relacionales sin necesi-
dad de anotaciones. En Generación, proponemos marcos generativos condicionados
al diseño de página como DOCSYNTH, DOCSYNTHV2 y SKETCHGPT, que modelan los
documentos como secuencias de primitivas de diseño, habilitando la síntesis contro-
lada, la auto-completación de bocetos y el diseño estructurado de documentos.
Las contribuciones de esta tesis establecen una perspectiva unificada del diseño de
página como señal y estructura, permitiendo sistemas que no solo lean, sino que tam-
bién razonen y generen con conciencia del diseño. Mostramos el valor práctico de
estos aportes mediante despliegues en sistemas reales de inteligencia documental y
proponiendo nuevos benchmarks para el razonamiento multimodal. Este trabajo abre
nuevas fronteras para tratar el diseño no como ruido a eliminar, sino como un lenguaje
que debe aprenderse.
Palabras Clave – Visión por Computador, Reconocimiento de Patrones, Inteligen-
cia Artificial Documental, Comprensión de Documentos, Comprensión del Diseño de
Página, Análisis de Diseño de Documentos, Modelos Visión-Lenguaje, Segmentación
por Instancias, Aprendizaje Auto-supervisado, Aprendizaje Semi-supervisado, Redes
Neuronales de Grafos, Generación de Documentos, Diseño como Lenguaje, Razon-
amiento Multimodal, Síntesis Estructurada de Documentos
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Chapter 1

Introduction

Design is the silent ambassador of your brand.
– Paul Rand

Documents are more than containers of text—they are structured canvases where
language, layout, and logic converge. In this thesis, we explore the hypothesis that

layout itself functions as a visual language—one that can be parsed, represented,

and generated by intelligent systems. From fine-grained layout segmentation to

structure-aware representation learning and layout-conditioned document syn-

thesis, this work examines the cognitive scaffolding that enables machines to read

and compose documents like humans. The journey begins by revisiting the fun-

damental role of documents in our daily lives and builds toward a unified view of

Document AI where interpretation, representation, and generation converge un-

der the lens of layout understanding.

1.1 Reading Systems in our Daily Life

Documents are deeply embedded in nearly every aspect of our daily lives—ranging
from administrative paperwork and financial records to handwritten notes and cul-
tural archives [141]. The modern world generates a vast and diverse ecosystem of doc-
uments that vary not only in content but also in layout, visual structure, modality, and
purpose [77]. While early optical character recognition (OCR) systems primarily fo-
cused on extracting textual content [36, 279], the complexity of contemporary docu-
ments necessitates a deeper, more holistic understanding that transcends mere char-
acter recognition [63, 189, 125]. This evolution from simple text extraction to intelligent

1
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: A diverse set of document types showcasing the visual and structural com-
plexity of reading systems encountered in daily life.

document processing (IDP) marks a critical shift in the field of Document Artificial
Intelligence (AI) or Visually-rich Document Understanding (VrDU), which combines
computer vision and Natural Language Processing (NLP) to interpret a document’s tex-
tual content and its structural and visual cues [237, 46, 29].

The pervasive role of documents across diverse real-world domains underscores the
need for intelligent reading systems that go beyond basic text recognition to achieve
human-like understanding. As illustrated in Figure 1.1, the types of documents we
engage with daily—from financial reports and engineering blueprints to handwritten
notes, cultural media, and environmental signage—span a broad spectrum of layouts,
languages, and formats. This diversity presents a two-fold challenge: automated doc-
ument understanding systems must not only extract explicit textual content but also
interpret the implicit meaning encoded in spatial arrangements, typographic cues, and
hierarchical structures. Bridging this perceptual-semantic gap is central to advancing
machine reading in complex visual documents.

1.2 The Visual Grammar of Documents

Just as grammar governs the structure and meaning of written language, document
layouts encode a visual grammar that guides human comprehension and interac-
tion. Across domains—from legal contracts and architectural blueprints to historical
manuscripts and comic books—this grammar manifests in the spatial organization of
text, images, symbols, and whitespace. These visual structures carry semantic weight,
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Table 1.1: Reading systems across document domains: motivations and cognitive in-
sights.

Domain Practical Motivation Cognitive / Perceptual Insight

Fintech / Legaltech
(forms, invoices,
cheques)

Automated workflows require
reliable extraction of key–value
pairs, signatures, and stamps.

Humans group totals, dates, and
parties using Gestalt
proximity [266]; models replicate
such grouping strategies.

Technical Diagrams
(mechanical,
electrical)

Accurate retrieval of
specifications improves
CAD/CAM productivity.

Experts follow spatial continuity,
aligned with Gestalt’s principle of
good continuation [67].

Scene Text (signage,
storefronts)

Mobile OCR aids real-time
navigation and accessibility in
dynamic viewpoints.

Eye-tracking studies reveal rapid
fixations on high-contrast
lettering [239].

Cultural Media
(infographics,
comics, newspapers)

Digitisation supports archiving,
semantic indexing, and media
analytics.

Reading order is
layout-dependent;
comprehension is tied to spatial
organization [44].

Historical Archives
(manuscripts,
registries)

Layout-aware transcription helps
preserve fragile and
non-standard formats.

Split-attention occurs when
marginalia overlaps with main
body text [234].

Handwriting &
Sketching (notes,
calligraphy)

Real-time parsing enhances
pen-based interaction and
annotation systems.

Visual working memory chunks
strokes using proximity and
enclosure cues [267].

Scientific Papers
(journals, preprints)

Structured extraction supports
summarization, citation
indexing, and semantic retrieval.

Readers rely on layout cues (titles,
references) for hierarchical
comprehension [57].

directing reading order, clarifying relationships, and shaping the user’s understanding
of content.

Building on the diverse use cases outlined in Figure 1.1, we now delve deeper into
specific domains where the interplay between layout, semantics, and visual structure
defines the document’s meaning. Each of these domains presents unique computa-
tional challenges that demand tailored modeling approaches for reliable machine un-
derstanding. From the spatial logic of financial forms to the narrative flow of cultural
media and the variability of scene text in natural environments, these examples high-
light the spectrum of document modalities our systems must accommodate.

Table 1.1 captures the interplay between practical demands and human perceptual
strategies across a variety of document domains. Each domain presents unique chal-
lenges that extend beyond textual recognition, requiring systems to understand the
layout semantics that humans process almost subconsciously. The practical motiva-
tions span automation, accessibility, and archival needs, while the cognitive insights
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underscore how humans extract meaning through visual grouping, spatial reasoning,
and attention mechanisms. What this comparison reveals is that human readers con-
sistently rely on visual heuristics—such as proximity, continuity, and enclosure—to
impose structure on visual information. These perceptual rules function like an invis-
ible scaffold that organizes our attention and supports comprehension. For instance,
readers of scientific literature don’t just decode words; they navigate through sections,
tables, and references using spatial landmarks that encode hierarchy and emphasis.
Similarly, when interpreting comics or technical diagrams, readers infer sequences or
relationships not through syntax, but through spatial design and visual alignment.

From a machine learning perspective, these cognitive cues offer powerful guidance for
building document understanding models. Rather than treating layout as an auxiliary
signal, it should be recognized as a primary modality—a carrier of semantics just as
crucial as text or image features. By grounding AI systems in these human-inspired
perceptual principles, we can build more robust models that generalize better across
domains, adapt to visual variability, and align more naturally with how people read and
reason about documents. The following subsections present representative domains
that shape the design of modern document AI systems, illustrating the semantic role
of layout across both structured and creative formats.

Financial and Legal Documents: Checks, invoices, contracts, and legal agreements are
characterized by highly structured layouts where the spatial arrangement of elements
carries significant semantic knowledge. Structured understanding of these documents
is paramount for enabling automation in critical sectors such as fintech, legaltech, and
insurancetech, facilitating tasks like automated data entry, compliance checks, and
fraud detection [45, 3].

Technical Diagrams: Electrical schematics, mechanical blueprints, and network dia-
grams convey complex information primarily through visual and spatial relationships.
Here, the layout dictates semantic connections—such as component linkages or pro-
cess flows—that are not explicitly captured by text alone, demanding specialized inter-
pretation methods [171, 221].

Scene Text and Signage: Text embedded within natural environments, such as street
signs, product labels, or building facades, presents unique challenges. Reading sys-
tems must robustly detect and interpret text under demanding real-world conditions,
including varying lighting, occlusions, diverse fonts, and significant skew, requiring
sophisticated computer vision techniques [124, 185].

Cultural Media: Newspapers, comic books, and traditional literary works integrate
text, images, and sophisticated layouts to present structured narratives or informa-
tional content. Understanding these documents requires systems that can discern
reading order, panel segmentation, and the interplay between visual and textual el-
ements to reconstruct the intended story or information flow [110, 250, 5].

Historical Archives: Fragile and often handwritten manuscripts from historical col-
lections necessitate advanced document analysis for preservation and accessibility.
These documents often feature unique scripts, degraded paper, and complex, non-
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standard layouts, demanding specialized restoration techniques and layout-aware tran-
scription for accurate digitization and scholarly analysis [186, 200, 230].

Handwriting and Sketches: Informal documents, ranging from personal notes to de-
sign sketches, exhibit highly creative and often unstructured layouts. Flexible docu-
ment representations are required to capture the nuanced visual information and con-
textual relationships inherent in such free-form content [218, 177, 198].

Scientific Papers: Scientific articles exhibit unique multimodal layouts that encode
both content and meta-information such as affiliations, references, equations, and fig-
ures—each serving distinct semantic roles. Beyond their hierarchical structure, these
documents often contain cross-references (e.g., “see Fig. 2” or “as discussed in Sec-
tion 3.1”), which require the reader to resolve long-range dependencies across sec-
tions [291]. Human readers effortlessly navigate these links using layout cues like cap-
tion placement, typographic variation, and figure alignment. For machine understand-
ing, modeling such document-wide relationships remains a challenge.

1.3 Quantifying Document Layout Through Human In-
teraction

A document layout is the spatial and visual organisation of all communicative ele-
ments on a page or screen—text blocks, images, rules, whitespace, ornaments—together
with the reading paths they implicitly prescribe. In other words, layout is the “syntax”
that governs where content appears, how readers’ eyes are steered, and which relation-
ships they infer among neighbouring elements. When people skim a newspaper, follow
a flowchart, or sign a cheque, they implicitly parse this syntax: they group nearby items
(Gestalt proximity), follow aligned baselines (good continuation), and prioritise salient
headers before subsidiary details. Document AI systems must learn to exploit the same
cues. To make this notion operational, we treat layout as a set of quantifiable features
derived from patterns observed in human document interaction as illustrated in Ta-
ble 1.2. These measurable cues allow us to cast layout understanding as structured
prediction over: (i) Zones - coherent regions such as paragraphs, tables, or panels. (ii)
Relations - adjacency, containment, ordering, caption-of, etc. (iii) Reading Graph - a
directed graph whose edges approximate typical human scan-paths.

Understanding how humans interact with documents offers a grounded framework for
modeling layout as a structured and perceptual language. Document layouts are not
arbitrary. Humans rely on consistent visual cues to extract meaning, follow reading
flow, and associate semantically linked elements. These cues manifest in observable
behaviours such as eye fixations, saccadic jumps, attention to prominent visual ele-
ments, and multimodal alignment between text and images. We conceptualize these
behaviours into four layout-level attributes: grouping, reading hierarchy, salience, and
cross-modal anchoring, each of which can be quantified and modeled computation-
ally. As illustrated in Figure 1.2, these layout cues form the bridge between perceptual
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Figure 1.2: Visual cues in document layouts support downstream understanding.
Left: Human annotations reveal perceptual grouping and reading flow in an invoice.
Right: Diagram illustrating how layout cues—grouping, reading hierarchy, and cross-
modal anchoring—serve as structured signals for document intelligence tasks.

Table 1.2: Mapping observable reading behaviours to the layout cues for Document AI

Human behaviour Layout attribute Quantifiable signal

Eye–fixation clusters on logi-
cally related items

Grouping Euclidean proximity, shared bound-
ing boxes, connected components

Saccades that follow columns
or diagram edges

Reading hierarchy Ordered zone graph; path-length and
orientation statistics

Rapid detection of titles, cap-
tions, signatures

Salience Font-size / weight distribution,
colour contrast, recursion depth in
zone-tree

Integration of text with
nearby figures

Cross-modal an-
choring

Alignment offsets and relative over-
lap between text and image regions

behaviour and downstream document understanding tasks. On the left, we present a
real-world invoice annotated with human attention and interaction flows, evidencing
how people naturally group related fields like invoice metadata, sender–receiver de-
tails, and line-item amounts. On the right, we abstract these insights into a processing
pipeline: a document first emits layout cues which are then interpreted through cue-
specific detectors. These detectors responsible for identifying visual grouping, reading
order, and alignment between modalities feed into broader downstream tasks such as
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Figure 1.3: The “Layout as Language” paradigm in Document AI, illustrating how lay-
out, text, and image modalities interact to support core tasks such as information ex-
traction, spatial reasoning, question answering, and document generation.

reading flow estimation, salience prediction, and cross-modal understanding.

For example, grouping emerges through the proximity and alignment of invoice fields,
which humans perceive as logically connected blocks. Reading hierarchy is informed
by typography and spacing, allowing the user to follow a predictable flow from titles
to details. Salience drives rapid attention to prominent entities such as the amount
due, typically through bold text or isolated positioning. Finally, cross-modal anchoring
connects figures or tables with their surrounding descriptive text, a process humans
perform seamlessly but machines must learn to replicate. By grounding layout un-
derstanding in these cognitive principles and modeling them with quantifiable signals
(as outlined in Table 1.2), we enable document AI systems towards intelligent layout-
aware perception that do more than detecting bounding boxes or parsing raw text.

1.4 Modeling Documents as Structured Language

Understanding documents is inherently a multimodal and spatial task. In the pre-
ceding sections, we analyzed how humans engage with documents by relying on vi-
sual grammar—a set of perceptual cues that guide reading behavior, interpretation,
and comprehension. These layout cues, such as grouping, reading flow, salience, and
cross-modal anchoring, shape how meaning is inferred from spatial structure. The
question now becomes: how can machines learn to interpret documents with simi-
lar fluency? In this thesis, we embrace the paradigm of "Layout as Language", wherein
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the spatial organization of document elements functions analogously to linguistic syn-
tax. Just as words in a sentence derive meaning from their position and order, docu-
ment elements such as headers, tables, figures, and paragraphs derive communica-
tive power from how they are arranged, aligned, and related within a page. This view
enables a shift from isolated text recognition toward a structured, multimodal under-
standing of documents. We no longer treat layout, text, and image as disjoint channels
but rather as interacting components of a compositional system. For example, prox-
imity between a figure and caption suggests anchoring; larger and bolded text signals
hierarchy; and the vertical alignment of form fields implies grouping and semantic
equivalence. These are not just visual artifacts—they are meaningful signals for infor-
mation extraction, question answering, and document generation.

Figure 1.3 illustrates this conceptual leap from perception to modeling. It positions
layout, text, and image as cooperative modalities, each contributing to the structural
language of documents. Their interactions give rise to downstream applications that
require layout-aware reasoning. By modeling these interactions computationally, we
aim to move closer to human-like document understanding. This involves creating
machine learning systems that learn to parse, reason, and generate over structured
documents in ways that reflect human visual processing. In the following section, we
present a taxonomy of such modeling strategies, ranging from layout-only models to
fully multimodal architectures.

1.5 Modeling Document Layouts in Document AI

Building on the conceptual framing of documents as structured languages—where lay-
out, text, and images function in a compositional interplay—we now focus on the com-
putational strategies that allow machines to model such structures effectively. The goal
of layout-aware modeling in Document AI is to capture not just the semantics of textual
content, but also the spatial, visual, and contextual cues embedded in the document’s
layout. These cues often encode essential information about logical grouping, read-
ing order, semantic hierarchy, and cross-modal referencing that are indispensable for
downstream understanding tasks.

In the context of this thesis, we define modeling document layouts as the design and
implementation of learning algorithms that explicitly account for layout signals, either
independently or in combination with other modalities (text and image), to perform
structured reasoning over document content. This modeling process involves both the
representation of the input modalities (i.e., how layout features are encoded) and the
fusion strategies that align these features across modalities.
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1.5.1 A Taxonomy of Modeling Approaches

We classify the modeling space into three core streams based on the modalities in-
volved and the nature of their integration:

Layout-only Models: These approaches rely purely on spatial or geometric structures
of documents. Methods in this class include object detection over layout zones [26,
24], graph-based models over bounding boxes [211, 212, 78], or clustering/grouping
heuristics [264, 163]. They are especially effective for tasks like document layout analy-
sis and reading order prediction, where visual or structural arrangement is the primary.

Layout+Text Fusion Models: Here, layout information is paired with textual features,
often using encodings such as bounding-box coordinates, 2D positional embeddings,
or graph-based adjacency. Popular models like LayoutLM [274], StrucTexT [157], BROS [101]
or XYLayoutLM [84] fall under this category. These models are particularly suited for
tasks like Key Information Extraction (KIE) [113, 106], where context is jointly defined
by spatial and semantic features.

Multimodal Layout-Text-Image Models: These models aim to harness the full rich-
ness of document data by simultaneously incorporating layout, text, and image fea-
tures. They use fusion mechanisms typically based on transformer architectures [249]
to model the interplay between modalities. Examples include DocFormer [6, 7], Self-
Doc [152], UniDoc [82], UDOP [238], and Donut [129]. Such models enable perfor-
mance on complex tasks such as Visual Question Answering (DocVQA) [180, 240], doc-
ument editing [182], and captioned generation [83].

1.5.2 Modeling Objectives and Challenges

The primary goal of layout modeling is to learn representations that mirror the struc-
tural semantics perceived by humans. From this perspective, the modeling strategy
should aim to:

• Preserve document structure through explicit spatial encoding.

• Enable reasoning across zones, sections, or entities.

• Adapt across domains (e.g., invoices, scientific PDFs, handwritten forms).

However, this modeling paradigm introduces several key challenges:

• Spatial alignment noise due to OCR inaccuracies or image artifacts.

• Cross-modal grounding difficulties when layout and text regions do not align
neatly with visual elements.

• Data sparsity for layout-rich annotations compared to plain text datasets.
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Figure 1.4: Core Axes of the Thesis—Interpretation, Representation, and Generation
This figure illustrates the three foundational axes guiding the thesis: Interpretation,
which investigates how layout cues guide human-like understanding of documents;
Representation, which focuses on learning unified multimodal embeddings that cap-
ture the structure and semantics of layout-text-image compositions; and Generation,
which explores layout-conditioned document synthesis to enable controllable and se-
mantically grounded outputs.

• Modality imbalance, where the model over-relies on text despite layout or image
cues being decisive.

• Understanding how models leverage layout remains opaque; probing and ex-
plainability methods are still emerging.

In summary, modeling document layouts requires moving beyond surface-level ex-
traction toward a deeper, structural understanding of how humans interact with vi-
sual information. By treating layout as a compositional language, we acknowledge its
fundamental role in shaping meaning across diverse document types. Addressing the
aforementioned challenges demands not only new architectural frameworks for Doc-
ument AI models but also a rethinking of representation, grounding, and evaluation
strategies. The remainder of this thesis is organized around three core axes (interpre-
tation, representation and generation) as illustrated in Figure 1.4 which together form
a comprehensive approach to treating layout as a first-class citizen in Document AI.
This perspective sets the stage for a new generation of models that more faithfully em-
ulate human document understanding and production.
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1.6 Scope and Research Questions

This thesis investigates how documents, as structured visual languages, can be under-
stood, represented, and generated by intelligent systems. At the heart of this inquiry
is the idea that layout is not just a carrier of content but a language in itself—one
that orchestrates the interplay between text, image, and spatial organization to convey
meaning. Building on the previous sections where we explored the visual grammar of
documents and introduced the modeling taxonomy in Document AI, this thesis nar-
rows its focus to how layout-driven document modeling enables machines to perform
complex reasoning and generation tasks. The central hypothesis is that integrating lay-
out signals into modeling pipelines can significantly enhance the machine’s capacity
to mimic human-like document understanding.

Research Question 1: How can we move beyond bounding-box detection and reli-
ably segment every document element at pixel level—even when objects overlap or
are nested?

Axis : Interpretation

Objective: Build document layout parsing systems that go beyond basic object detec-
tion and instead achieve instance-level segmentation, providing finer granularity. The
goal is to preserve complex visual boundaries, manage overlaps between logical ele-
ments such as tables, images, and text, and generalize across varied document types
like scientific PDFs, invoices, magazines, and archival scans.

Contribution: We introduce a robust baseline for instance-level document segmen-
tation [26] by adapting the Mask R-CNN framework [95] specifically to the unique
challenges posed by document images. Unlike traditional document layout analysis
methods that rely on coarse bounding boxes or heuristic-driven segmentation, our
approach emphasized pixel-level precision, enabling the delineation of overlapping,
nested, and visually subtle regions such as stamps, tables, annotations, and logos. This
represents one of the first systematic efforts to benchmark fine-grained document seg-
mentation, addressing the growing need for high-resolution structure understanding
in Document AI. Experimental evaluation for the benchmark suite was carried on 2 di-
verse data domains - scientific articles [291] and historical Japanese documents [224]
with complex layouts.

Research Question 2: Can transformers capture the “layout grammar” of documents
so that models reason over long-range spatial dependencies as naturally as humans?

Axis : Interpretation

Objective: To explore how spatial layout, visual features, and text as a visual language
can be jointly modeled in a transformer framework, enabling the network to infer re-
lationships between distant parts of a document—such as columnar reading order,
grouped elements, or referencing structures (e.g., a figure caption far from the figure).

Contribution: We introduce DocSegTr [24], a novel and the first transformer-based ar-
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chitecture purpose-built for document segmentation. Unlike traditional models that
often struggle to encode fine-grained layout structures, DocSegTr incorporates a twin-
attention mechanism that jointly captures both local and global layout cues. This en-
ables the model to learn visual grouping, reading flow, and hierarchical region rela-
tionships—elements critical to interpreting the semantics of a document’s structure.
A major innovation in this work is the introduction of an inverse focal loss. Tradi-
tional loss functions often bias learning toward frequently occurring and large-sized
layout entities, which can result in poor recall for smaller component regions like sig-
natures, headers, or logos. Our introduced focal loss formulation addresses this im-
balance by explicitly up-weighting the loss contribution of such underrepresented or
small instances, significantly improving recall without sacrificing precision. Beyond
architecture and loss design, the chapter also provides an insightful interpretability
study, where we visualize the attention maps learned by the model. These visualiza-
tions reveal that DocSegTr attends to document regions in a manner that mirrors hu-
man reading behavior—moving along columns, linking related content, and attending
to salient zones like titles and captions. Just as syntactic structures in language help
disambiguate meaning, layout structures in documents guide comprehension and in-
tent. Through this lens, DocSegTr demonstrates how layout can be modeled compo-
sitionally, akin to linguistic syntax, bridging perceptual layout signals with semantic
understanding.

Research Question 3: Can advanced mask-based architectures be adapted for fine-
grained document layout segmentation across both high-resource and low-resource
settings, while preserving layout semantics and ensuring generalization to diverse real-
world domains?

Axis : Interpretation

Objective: To develop and evaluate end-to-end segmentation models that encode and
preserve document layout structure at the pixel level. This involves extending strong
object-centric detectors (like MaskDINO [144] and Swin Transformers [169, 168]) to
support fine-grained segmentation, particularly in settings with complex hierarchies
(e.g., invoices, forms, scientific papers) and in scenarios with limited annotated data
(eg. magazines, posters). Special focus is given to cross-domain generalization, ro-
bustness under annotation sparsity, and semantic alignment with layout cues such as
grouping, reading flow, and salience.

Contribution: In this thesis, this effort is presented with two complementary contri-
butions: (i) SwinDocSegmenter: We adapt a hierarchical transformer backbone (Swin)
within a document segmentation pipeline to explicitly capture multi-scale layout pat-
terns and region relationships. By customizing the segmentation heads and incorpo-
rating layout-aware augmentations, our model achieves state-of-the-art performance
on multiple document datasets. The use of transformer-based global attention mech-
anisms allows the model to learn implicit layout rules, offering interpretability and
robustness. (ii) SemiDocSeg: Building on the same architecture, we explore few-shot
and semi-supervised settings, simulating real-world scenarios where large-scale an-
notations are scarce. By introducing a hybrid training regime (pseudo-labeling + con-
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trastive learning), we show that strong performance can be achieved with minimal su-
pervision. This positions our method as both practical and scalable for deployment in
low-resource environments. Together these contributions demonstrated that layout-
aware segmentation can be achieved in both ideal and challenging settings. Moreover,
our models are shown to implicitly learn key visual grammar cues such as grouping
and reading order, thus reinforcing the key principle that layout can be modeled like a
compositional language.

Research Question 4: Can documents be effectively represented as graphs to model
both their structural layout and semantic relationships—across modalities, tasks, and
languages?

Axis : Representation

Objective: To design graph-based representations that capture textual, visual, and ge-
ometric relationships within documents, enabling semantic entity recognition and re-
lation extraction in a multilingual and task-agnostic manner.

Contribution: In this thesis, we propose a unified line of work through the Doc2Graph
framework: In Doc2Graph [78], we develop a task-agnostic graph representation model
for structured document understanding, using node and edge classifiers to jointly tackle
entity recognition and relationship extraction. In GeoContrastNet [22], we further in-
troduce a contrastive learning objective for graph neural networks (GNNs) that aligns
geometric layout features with semantic structure, enhancing layout-aware reason-
ing. In Doc2Graph-X [183], we extend this paradigm to multilingual document pro-
cessing. By integrating multilingual embeddings at both word and sentence-level, we
build robust graph representations across languages, achieving strong performance
on SER and RE tasks with minimal parameters. Finally, we also propose a transformer
model called Doc2GraphFormer, which combines these modules enhanced by graph
attention supervision. It demonstrates that graph priors—particularly hierarchical lay-
out structures—can guide multimodal attention maps during training for improved
structured understanding across tasks.These contributions establish graph-based rea-
soning as a powerful and efficient mechanism to encode “layout as language,” where
nodes and edges act as words and syntax of document structure, applicable across both
monolingual and multilingual contexts.

Research Question 5: Can layout-aware knowledge distillation preserve structural de-
pendencies in lightweight document understanding models without significant per-
formance loss?

Axis : Representation

Objective: To investigate whether knowledge from large, multimodal document mod-
els—capturing both layout and visual semantics—can be distilled effectively into com-
pact student models by leveraging structured intermediate representations (e.g., graphs
or token embeddings).

Contribution: In this thesis, we explore layout-aware knowledge distillation to build
efficient yet structure-sensitive Document AI models. In DistilDoc [248], we propose a
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multimodal distillation strategy that transfers both semantic and layout-specific cues
from a large teacher to a lightweight transformer, achieving competitive performance
with reduced size and latency. Complementing this, GraphKD [14] frames distillation
as graph alignment, where a student model learns structural dependencies by mim-
icking the teacher’s layout-informed graph representations. Finally, we investigate a
spatial-aware lightweight solution to pre-trained Large Language Models (LLMs) over
how the layout modality impacts learning across document understanding tasks. To-
gether, they show that preserving the “grammar” of layout—even in compressed mod-
els—supports the thesis vision of layout as language, enabling lightweight models to
retain meaningful document understanding.

Research Question 6: Can pixel-accurate document layout segmentation be learned
largely from unlabeled pages through self-supervised objectives that treat “layout as
language”?

Axis : Representation

Objective: To develop a pre-training method that learns robust layout-aware represen-
tations from entirely unlabeled document images. The goal is to enable downstream
fine-tuning for segmentation with minimal annotated supervision by leveraging syn-
thetic layout cues and self-distillation.

Contribution: We introduce a self-supervised framework called SelfDocSeg [174] based
on a self-labeling paradigm called Bootstrap Your Own Latent (BYOL) [81], which em-
ploys two augmented document views processed through student and teacher branches.
A novel Layout Mask Generation (LMG) module is proposed that creates layout masks
from document-specific cues such as edge detection and whitespace projection with-
out needing human annotations. These masks guide the model to focus on layout-
relevant structures during training. By treating the spatial organization of content as a
latent grammar, SelfDocSeg shows that document regions can be learned analogously
to linguistic tokens, where alignment, grouping, and flow are captured through visual
regularities. This positions layout not merely as an auxiliary input, but as a learnable
syntax—one that models can internalize to navigate and interpret the semantics of a
document, even in the absence of labels.

Research Question 7: Can document generation be conditioned on layout structure to
produce realistic and controllable synthetic documents for training and benchmarking
Document AI systems?

Axis : Generation

Objective: To develop a controllable document image synthesis framework that condi-
tions generation on explicit layout cues such as bounding boxes, class labels, or spatial
templates—allowing the creation of realistic and task-aligned synthetic documents.

Contribution: In DocSynth [27], we introduce the first end-to-end pipeline for syn-
thetic document generation using layout as a guiding modality. The framework lever-
ages a two-stage design: (i) Layout conditioning stage: Takes class-labeled layout tem-
plates and injects semantic structure into the generation pipeline. (ii) Image generation
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stage: Uses a GAN-based model to synthesize high-resolution document images, main-
taining fidelity to the conditioned layout. We demonstrate that layout-conditioned
synthesis significantly improves the quality and utility of synthetic datasets, enabling
their use for training downstream models (e.g., object detection, OCR). This work vali-
dates the hypothesis that layout can serve as a generative language, a guiding script for
creating structured, plausible visual documents.

Research Question 8: Can autoregressive generation models, guided by layout con-
straints, learn to produce visually coherent and semantically meaningful documents
from structured prompts?

Axis : Generation

Objective: To design and evaluate a layout-guided autoregressive modeling framework
that enables controllable document synthesis — generating complex, diverse, and se-
mantically grounded documents based on layout and content inputs.

Contribution: In DocSynthv2 [25] we propose a fully autoregressive modeling approach
for generating structured documents in vector format. By jointly modeling layout and
content as sequences, we enable high-resolution generation that preserves both syn-
tactic (layout) and semantic (text) elements. The creation of the PubGenNet bench-
mark further supports evaluation in this direction. SketchGPT [243] further addressed
the task of document completion in sketch-based generation, where partial layouts are
filled using autoregressive decoding. This model can reason over incomplete visual
structures, reinforcing the importance of hierarchical layout modeling and extending
generation beyond clean templates. By treating layout as a latent language and leverag-
ing sequence modeling, our models can “write” documents with both structural gram-
mar and contextual relevance.

1.7 Thesis Structure

The thesis is organized along three core modeling axes—Interpretation, Representa-
tion, and Generation—each addressing distinct but interconnected aspects of Doc-
ument AI. The structure is outlined below with a brief summary of contributions for
each chapter.

Chapter 3 – Foundation and Froniers - Provides a comprehensive overview of prior
work in document AI covering layout analysis, structured representation learning, and
document generation. It traces the evolution from heuristic pipelines to end-to-end
deep learning and self-supervised models to finally multimodal large language models.

Axis 1: Interpretation

Chapter 3 – Beyond Bounding Boxes: Fine-Grained Document Segmentation - We
introduce a pixel-level segmentation pipeline adapted from Mask R-CNN for struc-
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tured document layouts. This chapter lays the foundation for instance-level parsing
with benchmark results on complex domains like scientific PDFs and historical docu-
ments.

Chapter 4 – DocSegTr: A Transformer Approach to Layout Segmentation - A twin-
attention transformer architecture is presented for document segmentation, with in-
terpretability analysis and an inverse focal loss tailored to improve recall of small layout
entities. Attention visualizations reinforce the Layout as Language hypothesis.

Chapter 5 – Advancing Robustness in Document Layout Segmentation: From Swin-
DocSegmenter to SemiDocSeg - This chapter introduces a unified segmentation frame-
work using Swin Transformers. It addresses both high-resource (SwinDocSegmenter)
and low-resource (SemiDocSeg) settings, showing the model’s generalization and label
efficiency across diverse domains.

Axis 2: Representation

Chapter 6 – Encoding Structure as Language: Towards Graph-based Representation
of Document Layouts - Presents a task-agnostic graph representation framework (Doc2Graph),
extended to multilingual contexts and enhanced with contrastive learning (GeoCon-
trastNet). A transformer variant (Doc2GraphFormer) is also proposed, modeling doc-
uments as structured graphs.

Chapter 7 – Self-Supervised Visual Representation Learning for Document Layouts -
A self-supervised framework is presented for pixel-accurate layout segmentation with-
out labels. The Layout Mask Generation (LMG) module synthesizes training signals
from edge/whitespace cues, learning spatial grammar as latent syntax.

Axis 3: Generation

Chapter 8 – DocSynth: Layout-Guided Document Image Synthesis - Proposes a GAN-
based generation framework conditioned on layout templates. The model enables re-
alistic document synthesis aligned with spatial structure, validating the use of layout
as a guidance signal.

Chapter 9 – Towards Autoregressive Vector Document and Sketch Generation - An
autoregressive vector-based generation approach (DocSynthv2) is introduced, mod-
eling layout and text as sequences. SketchGPT further explores sketch completion,
demonstrating sequence modeling of document grammar.

Chapter 10 – Conclusion and Future Work In the concluding chapter, the thesis syn-
thesizes the core findings across interpretation, representation, and generation—each
guided by the central hypothesis that layout functions as a visual language, enabling
machines to read, represent, and synthesize documents with human-like precision
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and abstraction. To support these modeling advances and address the lack of evalu-
ation standards in real-world scenarios, this thesis also contributes a suite of bench-
mark datasets that target underexplored yet critical aspects of Document AI, especially
for multimodal reasoning over diagrams, equations, and non-standard layouts.
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Chapter 2

Foundations and Frontiers

Design is not just what it looks like and feels like.
Design is how it works.

– Steve Jobs

Understanding the language of document layouts lies at the intersection of com-

puter vision, natural language processing, and document image analysis. This

chapter surveys the current state of the art, tracing developments across three ma-

jor axes that shape the core of this thesis: Interpretation, Representation, and

Generation of document layouts. The discussion spans layout-aware pretraining

strategies, multimodal reasoning, and document synthesis, offering both concep-

tual clarity and comparative analysis for design choices. By bridging historical con-

text, methodological advances, and open challenges, this chapter sets the stage for

developing next-generation systems capable of understanding, representing, and

generating document layouts with human-like precision.

Document Artificial Intelligence (Document AI) has emerged as a vital research do-
main that aims to automate the understanding, extraction, representation, and gener-
ation of structured information from unstructured or semi-structured document for-
mats. This spans a wide spectrum of document types, including invoices, scientific
publications, administrative forms, historical manuscripts, and handwritten notes. At
its core, Document AI intersects the fields of computer vision, NLP, and machine learn-
ing to interpret the rich visual-linguistic layout of documents.

Early approaches in document understanding relied heavily on Optical Character Recog-
nition (OCR) systems followed by rule-based parsing or handcrafted heuristics [227].
However, these methods often fail to capture the implicit layout semantics and spatial
relationships inherent to structured documents, especially in noisy, scanned, or non-

19
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Figure 2.1: A Timeline of Document AI Advancements: From Rule-Based Document
Layout Analysis to Multimodal Large Language Models and Explainable Reasoning

standard formats. The limitations of OCR-centric pipelines have driven a paradigm
shift toward layout-aware models that leverage both visual and textual cues [274, 75].
The evolution of Document AI over the past decade has been marked by a series of
paradigm shifts—from rule-based layout analysis to multimodal large language mod-
els—each expanding the boundaries of what machines can interpret, represent, and
generate (Figure 2.1). This trajectory, captured in the timeline, highlights how break-
throughs in model architectures, pretraining paradigms, and large-scale benchmark-
ing have converged to form the foundation of today’s document intelligence systems.

The rise of deep learning has catalyzed rapid advancements in Document AI. Convo-
lutional Neural Networks (CNNs) and Transformer architectures are now commonly
used for layout segmentation [147], document classification [90], and key information
extraction [114]. Multimodal pre-training methods, such as DocFormer [6], Donut [129]
and LayoutLM [274] and integrate visual, textual, and positional embeddings to build
robust document representations. Beyond understanding, recent work has explored
controllable document generation [86], self-supervised learning for document repre-
sentations [174], and autoregressive modeling for sketch and layout synthesis [25]. The
field is also enriched by large-scale datasets such as PubLayNet [291], DocLayNet [197],
and BigDocs [215], which have facilitated rigorous benchmarking and model develop-
ment. In this thesis, we adopt a three-axis lens—Interpretation, Representation, and
Generation—to organize and explore the evolving landscape of Document AI. Each
axis reflects a distinct research focus, yet they are inherently interconnected in building
systems capable of reasoning about and synthesizing document layouts with human-
like understanding.
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2.1 Inherited Capabilities: Foundational Knowledge from
Vision and Language Models

Modern Document AI systems build upon pretrained vision-language backbones that
have demonstrated general capabilities across natural language understanding and vi-
sual reasoning. These inherited capabilities form the substrate upon which document-
specific skills are developed:

Language Understanding: Pretrained language models [61, 205, 191] provide founda-
tional abilities for text comprehension, semantic similarity, summarization, transla-
tion, and reasoning. These are crucial for interpreting document content beyond raw
OCR outputs, enabling contextual understanding and multilingual adaptability [222].

Visual Feature Encoding: Vision backbones like ViT [64], ResNet [96], Swin Trans-
former [169, 168], and hybrid image-text models such as CLIP [202] and BLIP [148]
capture high-level spatial and visual features. These models are increasingly adapted
to document understanding tasks by learning region-level representations, enabling
object detection [26], segmentation [13, 291], and the visual grounding of text ele-
ments [232, 174].

Multimodal Alignment with Layout Awareness: Vision-Language Models (VLMs) ex-
tend these capabilities by learning to bridge vision and language at scale. Trained on
large corpora of image-text pairs, VLMs like Flamingo [4], PaLI [40], or OFA [255] ex-
hibit strong generalization across image captioning, visual question answering, and
open-ended generation tasks. However, their application to documents introduces a
critical additional modality: layout.

Unlike natural images, documents are governed by an implicit yet structured visual
grammar — headers, paragraphs, tables, footnotes, and spatial groupings collectively
encode meaning. In this context, layout is not merely a visual feature but a core se-
mantic signal that shapes how information is structured, interpreted, and retrieved. A
unified Document AI system must therefore learn to associate textual content with its
spatial organization, leveraging layout-aware inductive biases that go beyond standard
vision-language alignment.

This motivates the emergence of a new class of models referred to as Document Foun-
dation Models — large-scale, general-purpose pretrained architectures designed to
serve as adaptable backbones for a wide range of document understanding and gener-
ation tasks. Analogous to the role of BERT in NLP or CLIP in vision-language modeling,
a Document Foundation Model is expected to encode rich, transferable document-
specific priors across modalities, languages, and tasks. For such a foundation model
to be effective, layout understanding must be a first-class design principle. It must
not only represent the visual content of documents (e.g., font, color, figure) and their
linguistic content (e.g., entity spans, semantic roles), but also the hierarchical and spa-
tial structure that binds them. This requires integrating layout signals directly into the
model architecture — via 2D positional embeddings, relative bounding-box encod-
ings, layout-aware token fusion, or region-based attention mechanisms — enabling
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Figure 2.2: Concept map of layout encoding strategies in Document AI. The first
ring lists encoding families; the outer ring gives a representative model and its typical
strength (italic) of how different encodings emphasize complementary capabilities.

the model to interpret and reason over documents as structured visual-linguistic enti-
ties.

An ideal Document Foundation Model should therefore be multimodal (vision + text),
multi-granular (from token to region to page), and multi-task (pretrained to support
both discriminative and generative objectives), with layout as a guiding axis. This
thesis explores how such layout-centric modeling can be realized in practice — not
only through task-specific architectures but also through shared design principles that
treat layout as a latent language to be decoded and composed.
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Table 2.1: Comparison of prominent Document Foundation Models: layout encoding
type, OCR reliance, pretraining objectives, and supported tasks.

Model Layout
Encoding

OCR
Dep.

Pretraining
Tasks

Tasks
Supported

LayoutLMv3 [104] 2D Positional ✓ MLM;
Image–Text
Alignment

KIE; DocVQA;
Form
Understanding

Donut [129] None (OCR-free) ✗ Visual Masking;
Sequence
Decoding

Form Extraction;
Generation; QA

DocFormer [6, 7] Text + Image +
Layout

✓ MLM;
Cross-modal
Masking

KIE; VQA;
Classification

DiT [147] Visual Layout ✗ Masked Image
Modeling

Segmentation;
Classification

Pix2Struct [140] Image Grid ✗ Image-to-Text
Translation

Captioning; QA;
Structured
Generation

StrucTexT [157] Relative Layout ✓ Field
Supervision

Entity Linking;
Field Extraction

ERNIE-Layout [196] Hierarchical
Layout

✓ Entity-level
Graph
Reasoning;
MLM

Long Document
Understanding;
Form Parsing

Doc2Graph++ [78, 22, 183] Graph-based
Layout

✓ Graph
Contrastive
Learning; Node
Classification

Task-agnostic
Document
Parsing;
Relation
Extraction

PaLI / OFA / UDOP [238] Implicit via
Image

✗ Multitask (VQA;
OCR;
Captioning)

Generalist
Multimodal
Document Tasks

2.2 Document Foundation Models: Incorporating Layout
as a First-Class Signal

The rapid expansion of Document AI has led to the development of a variety of founda-
tion models tailored for document-centric tasks. These Document Foundation Mod-
els differ from generic vision-language models in that they explicitly account for the
layout modality, integrating spatial priors, visual context, and text semantics in uni-
fied architectures. The concept map in Figure 2.2 provides a visual taxonomy of layout
encoding strategies in Document AI, grouping them into eight broad categories—2D
Positional, Relative Layout, Visual Layout, Image Grid, None (OCR-free), Hierarchical
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Layout, Graph-based Layout, and Implicit via Image—each represented by a state-of-
the-art model. The inner ring defines the encoding family, while the outer ring lists
an exemplar model alongside a typical strength or application domain, illustrating the
diversity of approaches and their complementary capabilities. The expanded compar-
ison in Table 2.1 highlights that, beyond common layout encoding strategies such as
2D positional embeddings, relative layout, visual grids, and OCR-free representations,
recent work has explored hierarchical and graph-based approaches to better capture
document structure. Hierarchical layout encoding (e.g., ERNIE-Layout [196]) mod-
els structure at multiple levels of granularity — from tokens to lines, paragraphs, and
regions — allowing the model to preserve semantic grouping and logical reading or-
der. This is particularly valuable for long or multi-page documents where information
is nested. Graph-based layout encoding (e.g., Doc2Graph [78]) represents layout ele-
ments as nodes and spatial or semantic relationships as edges, enabling relation-aware
reasoning and cross-region inference. These richer encodings complement pixel-based
or coordinate-based methods by embedding relational and hierarchical priors into the
model, aligning with the thesis goal of treating layout as a latent language and equip-
ping Document Foundation Models with deeper structural understanding. Below, we
outline the most prominent families of Document Foundation Models, focusing on
their treatment of layout and their applicability across understanding and generation
tasks.

Layout-Aware Pretrained Language Models: These models extend transformer-based
language models by incorporating visual and spatial embeddings, enabling them to
jointly process text and layout.

LayoutLMv1 [274]: The first model of the LayoutLM series from Microsoft which In-
troduced 2D positional embeddings (x, y coordinates) alongside token embeddings to
capture spatial layout.

LayoutLMv2 [273]: Adds image features (from ResNet) for multimodal understanding,
with cross-modal pretraining objectives (MLM + Image-Text Alignment).

LayoutLMv3 [104]: Utilizes a unified masked pretraining approach over image, text,
and layout tokens; demonstrates strong performance on DocVQA, CORD, and FUNSD.

LayoutXLM [275]: A multilingual extension of LayoutLMv1, supporting cross-lingual
document tasks while preserving layout sensitivity.

StrucTexT/StrucTexTv2 [157, 284]: Encodes hierarchical structure via relative layout at-
tention and introduces block-level supervision signals for better field-level extraction.

Vision-Enhanced Document Transformers: These models replace or augment text
embeddings with visual tokens and are more robust to OCR noise or visual distortions.

DocFormer [6]: Combines text and image tokens in a single transformer sequence
with layout-aware 2D positional encodings. Uses hierarchical features from textboxes,
words, and regions for improved grounding.

DocLayNet + DiT [147]: DiT (Document Image Transformer) [147] is a vision-only trans-
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former pretrained with masked image modeling on document pages, later fine-tuned
for layout segmentation and classification. It shows that layout can be learned purely
visually without OCR tokens.

LAMBERT [76]: A BERT-style model that replaces token IDs with character-level em-
beddings and relative spatial encoding, trained for key information extraction.

ERNIE-Layout [196]: Integrates text, layout, and image features through graph-based
reasoning, extending layout modeling with entity-level edge encodings.

OCR-Free Document Understanding Models: OCR-free methods directly decode doc-
uments from raw pixels without relying on explicit text recognition steps, making them
resilient to noisy or non-standard scripts.

Donut (Document Understanding Transformer) [129]: A fully visual encoder-decoder
model that skips OCR, using Swin Transformer as the visual backbone and generating
structured outputs directly via autoregressive decoding.

Pix2Struct [140]: Adapts ViT to encode rendered document images and decodes struc-
tured answers using a T5-style text decoder. Achieves strong results in form under-
standing and captioning.

FormNet / FormNetv2 [137, 138]: Enhances form understanding by modeling 2D spa-
tial relationships with graph attention over visual and structural embeddings.

Multimodal and Cross-Domain Document Foundation Models: Recent work extends
the generalist VLM paradigm to documents, training large-scale models across diverse
document types and input modalities.

PaLI (Pathways Language and Image model) [40]: Trained on multilingual document-
image pairs, PaLI is capable of document captioning, visual QA, and OCR tasks across
109 languages — handling layout implicitly via image rendering.

OFA (One For All) [255]: A unified model for vision-text tasks including table-to-text
and image captioning. OFA encodes images and structure using flattened grid tokens
and autoregressive decoding.

UDOP [238]: Unified Document Pretraining, extending Pix2Struct [140] with retrieval-
based cross-document grounding and structured answer generation.

LAPDoc / DocPrompt [136, 268]: Recent prompt-tuning based methods adapt large
vision-language models for document tasks using minimal labeled data, preserving
layout via prompt-aware encoding strategies.
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2.3 Pretraining Paradigms and Multimodal Learning for
Layout

Pretraining in Document AI has evolved from task-specific pipelines to large-scale mul-
timodal foundation models that learn from millions of image–text–layout samples.
These models leverage self-supervised and weakly supervised objectives to capture
textual semantics, visual features, and increasingly, layout structures. The choice of
pretraining paradigm is critical—it determines how well the model can transfer knowl-
edge across tasks, handle OCR noise or absence, and adapt to generation, retrieval,
and reasoning scenarios. Unlike in natural image domains, documents present a rich,
structured visual grammar: titles, paragraphs, lists, tables, figures, and annotations
follow hierarchical spatial rules that convey meaning beyond the text itself. Pretrain-
ing must therefore go beyond conventional image–text alignment and actively model
the interaction between spatial layout and semantics. Below, we categorize pretrain-
ing approaches into five broad paradigms as summarized in Table 2.2, showing their
underlying principles, representative models, and layout-specific implications.

Masked Language Modeling (MLM) with Layout-Aware Embeddings: Masked Lan-
guage Modeling, introduced by BERT [60], masks a subset of tokens and trains the
model to predict them from surrounding context. In Document AI, these tokens are
augmented with layout embeddings—absolute or relative 2D coordinates represent-
ing their positions on the page. This enables the model to disambiguate text meaning
using spatial cues (e.g., "Total" in the bottom right corner is likely a sum field). While
extremely effective for natural language understanding tasks such as question answer-
ing, sentiment classification, and semantic similarity, BERT is agnostic to where words
appear on a page. For documents, this is a critical shortcoming, as layout often carries
meaning that text alone cannot convey. RoBERTa [167] refined the same idea by op-
timizing the pretraining process: removing next-sentence prediction, increasing the
amount of training data, and using dynamic masking. This resulted in stronger text
representations but still without any notion of spatial structure.

The LayoutLM series was the first to adapt BERT’s principles to the 2D nature of docu-
ments, treating spatial coordinates as integral to token representation. LayoutLMv1 [274]
extended the BERT architecture by adding 2D positional embeddings (x–y coordinates,
width, and height) to each text token, sourced from OCR outputs. This allowed the
model to consider not just what the word says, but also where it appears. For example,
in a form, the word “Total” in the bottom-right corner can be disambiguated from “To-
tal” in a paragraph heading purely through positional information. LayoutLMv2 [273]
went a step further by incorporating visual embeddings extracted from the document
image itself using a ResNet backbone. Now, the model jointly attends to text, its posi-
tion, and the underlying visual cues—allowing it to pick up on structural features like
table borders or font styles. LayoutLMv3 [104] unified text and image token masking
into a single transformer backbone. Instead of treating visual and textual features as
separate streams, it masked both in the same embedding space, enabling richer cross-
modal interactions. This not only improves understanding but also supports gen-
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Table 2.2: Pretraining paradigms for layout-aware Document AI: core ideas, represen-
tative models, data requirements, and typical applications.

Paradigm Core Idea Models Requirements Applications

MLM
(Layout-Aware)

Mask tokens and
predict with
spatial
embeddings to
capture
text–layout
interactions.

BERT; RoBERTa;
Lay-
outLMv1/ v2/ v3;
LayoutXLM

Large
OCR-processed
corpora with
layout metadata.

Form
understanding;
key-information
extraction;
DocVQA.

MIM Mask image
patches and
reconstruct
them to learn
visual layout
structure.

ViT; BEiT; MAE;
DiT; DocFormer

Large
image-only
document
datasets.

Layout
classification;
OCR-free
DocVQA; table
structure
recognition.

Contrastive
Multimodal

Align visual and
text embeddings
by matching
paired samples.

CLIP; LiLT;
GlobalDoc

Large paired
image–text
datasets.

Document
retrieval;
multimodal
search;
captioning.

Seq2Seq
Multimodal

Encode
visual+text
inputs and
autoregressively
decode
structured text.

T5; Pix2Struct;
Donut; Dessurt;
UReader

High-quality
paired im-
age–markup/ QA
datasets.

End-to-end
DocVQA;
chart-to-text;
image-to-
markup
conversion.

Entity-Level
Supervision

Pretrain with
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parsing;
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erative capabilities in document contexts. LayoutXLM [275] extended LayoutLMv1’s
ideas into the multilingual domain, pretraining on diverse scripts and page layouts.
This made it possible to transfer knowledge across languages without retraining from
scratch for each new one—a critical capability for global enterprise document pro-
cessing. Adding layout embeddings effectively elevates positional information from
an auxiliary cue to a semantic signal. This is in lieu to the fact that in real-world doc-
uments, layout is a powerful disambiguator: (i) Identically worded fields in different
parts of a page mean different things. (ii) Tables, headers, and form structures encode
relationships not obvious in raw text. (iii) Spatial grouping helps infer reading order in
multi-column layouts. Without layout-aware modeling, even the most powerful text
encoders are blind to these cues, leading to suboptimal performance in document AI
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tasks.

Strengths: By combining token semantics with spatial embeddings, they excel in (i)
structured text extraction, accurately retrieving fields from forms, invoices, and identity
documents. (ii) Their spatial reasoning capabilities enable robust form understand-
ing, such as linking distant labels to corresponding values, and have proven highly ef-
fective in Document Visual Question Answering (DocVQA), where they can locate and
contextualize relevant regions for precise answers. (iii) Moreover, when OCR output
is reliable, these models exhibit strong cross-domain transfer, generalizing well across
diverse document types without significant fine-tuning.

Limitations: However, the architecture retains certain limitations. (i) A text-centric bias
means that performance degrades when the document’s meaning is conveyed primar-
ily through visual elements such as diagrams, charts, or pictorial layouts. (ii) The heavy
OCR dependency introduces a vulnerability: any transcription errors—such as miss-
ing tokens, misaligned bounding boxes, or segmentation artifacts—can significantly
impair downstream reasoning, especially in low-quality, noisy, or handwritten docu-
ments. (iii) Finally, despite improvements in LayoutLMv2 and LayoutLMv3, the mod-
els’ reasoning remains anchored in token-level processing, limiting their ability to cap-
ture purely visual patterns. This contrasts with OCR-free approaches such as Donut
and Pix2Struct [129, 140], which directly model raw pixels and textual sequences end-
to-end, bypassing the bottlenecks of explicit OCR.

Masked Image Modeling (MIM) for Visual Layout Comprehension: Masked Image
Modeling (MIM) extends the principles of Masked Language Modeling into the vi-
sual domain, aiming to learn general-purpose visual representations by reconstructing
missing parts of an image. In the context of natural images, methods such as BEiT [16]
and MAE [93] have demonstrated that masking large portions of an input and pre-
dicting the missing visual content fosters powerful visual encoders. Unlike supervised
image classification, MIM does not require explicit labels—making it well-suited for
large-scale pretraining across diverse domains. From a foundational perspective, the
Vision Transformer (ViT)[64] introduced a pure transformer-based architecture for vi-
sion, splitting an image into non-overlapping patches and processing them as a se-
quence of tokens. BEiT[16] enhanced this idea by introducing discrete visual tokens
derived from a separate tokenizer (e.g., a dVAE) and formulating MIM as a token-
prediction task. MAE [93] simplified the approach by directly reconstructing pixel val-
ues from a sparse set of visible patches, demonstrating that highly masked inputs (up
to 75%) can still lead to strong learned representations.

In Document AI, MIM offers unique advantages over text-centric pretraining objec-
tives. By operating directly on the page image, it captures holistic layout patterns such
as the geometric regularity of table grids, the flow of multi-column text, the align-
ment of headers and paragraphs, and the spatial co-occurrence of figures with cap-
tions. Critically, this process bypasses the need for OCR, making MIM-based mod-
els inherently robust to handwriting variations, low-quality scans, and documents in
scripts with limited OCR support. Document-specific adaptations include DiT [147],
which applies the ViT+MIM paradigm to millions of rendered documents, enabling the
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model to learn a rich “visual grammar” of page structures. DocFormer [6] and Struct-
Textv2 [284] extends this idea by integrating MIM with Masked Language Modeling
(MLM) in a multimodal transformer, jointly reconstructing both image patches and
masked text tokens. This hybrid pretraining strategy allows the model to associate vi-
sual layout with textual semantics, thereby enhancing its cross-modal reasoning capa-
bilities.

Strengths: Firstly, (i) MIM enables OCR-free representation learning, meaning that the
model does not rely on any text extraction process and can therefore operate effectively
on noisy, handwritten, or low-resource-script documents without degradation in per-
formance due to OCR errors. (ii) Secondly, MIM promotes global layout awareness by
forcing the model to reconstruct masked patches, which encourages the learning of
spatial composition, page structure, and formatting conventions across a broad vari-
ety of document types. This structural understanding is essential for downstream tasks
that depend on recognizing document organization rather than just textual content as
shown in methods like Text-DIAE [231].

Limitations: (i) A primary limitation is the lack of token-level semantics, as purely vi-
sual pretraining focuses on spatial and visual patterns without inherently capturing
the fine-grained meaning of textual content. This can lead to suboptimal performance
on tasks requiring precise semantic interpretation unless MIM is combined with text-
based objectives. (ii) Additionally, MIM exhibits domain sensitivity, where models trained
on one document distribution may misinterpret or over-generalize layout patterns when
applied to domains with markedly different formatting rules, such as transitioning
from scientific articles to retail receipts. This issue often necessitates domain-specific
fine-tuning to achieve optimal performance.

In essence, MIM equips document models with a strong layout-centric inductive bias
that complements language-based pretraining objectives, making it a powerful tool in
both OCR-free and hybrid pretraining strategies. However, its full potential is typically
realized when paired with textual grounding, ensuring that learned visual structures
are semantically meaningful rather than being limited to purely geometric similarity.

Multimodal Contrastive Objectives for Layout–Text Alignment: Multimodal contrastive
learning has emerged as a powerful paradigm for aligning representations from dif-
ferent modalities into a shared embedding space. Inspired by approaches such as
CLIP [202] in the vision–language domain, these objectives train models to maximize
similarity between matching image–text pairs while minimizing similarity with mis-
matched pairs. In the context of documents, the modalities of interest extend beyond
images and text to include layout structure, enabling models to reason jointly over spa-
tial, visual, and semantic information. At its core, the contrastive loss function encour-
ages embeddings of paired modalities—such as a document image and its correspond-
ing OCR text—to be close in the latent space, while embeddings of unrelated pairs are
pushed apart. This approach as in VLCDoc and GlobalDoc [12, 11] has proven espe-
cially effective for tasks requiring cross-modal retrieval, zero-shot classification, and
representation transfer, as it does not rely on task-specific labels and instead exploits
naturally co-occurring multimodal data.
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From a foundational perspective, CLIP [202] demonstrated that large-scale pretraining
on image–caption pairs could yield models capable of zero-shot recognition across di-
verse visual domains. ALIGN [115] extended this idea to even larger datasets, highlight-
ing the scalability of contrastive objectives. These methods rely on strong encoders
for each modality, typically a vision transformer for images and a transformer-based
language model for text, trained jointly to produce compatible embeddings. In Docu-
ment AI, multimodal contrastive objectives have been adapted to incorporate layout-
specific cues. For example, LayoutCLIP-style adaptations encode not only the docu-
ment image and text but also spatial embeddings derived from the positions of tokens.
This enriches the contrastive pairing by ensuring that matched modalities reflect not
just visual and linguistic similarity, but also geometric correspondence. Models such
as LiLT [252] and UDOP [238] leverage this principle by aligning vision, language, and
layout embeddings simultaneously, improving transferability across document tasks
and languages.

Strengths: (i) First, contrastive objectives promote cross-modal alignment, enabling
models to retrieve relevant text from a visual query or locate the appropriate document
region from a textual query with high accuracy. (ii) Second, they are label-efficient,
as they can be trained using weakly paired multimodal data—such as OCR text auto-
matically extracted from large document collections—without the need for expensive
manual annotations. (iii) Third, the learned joint embedding space facilitates zero-shot
and few-shot transfer, where models pretrained on generic multimodal data can adapt
quickly to new document understanding tasks without retraining from scratch.

Limitations: (i) One limitation is the weak grounding of fine-grained elements. Con-
trastive learning typically aligns entire modality representations (e.g., the whole page
and its text) but may fail to capture fine-grained correspondences between specific
words, regions, or layout components unless explicitly modeled. (ii) Another limita-
tion is the representation bias towards dominant modalities, where high-capacity visual
or textual encoders may dominate the shared space, overshadowing subtle but critical
layout cues. (iii) Finally, contrastive objectives are sensitive to noise in pairings, mean-
ing that OCR errors, layout parsing mistakes, or imperfect visual crops can degrade the
quality of cross-modal alignment.

In summary, multimodal contrastive pretraining offers an elegant and scalable ap-
proach to aligning vision, language, and layout information in document AI. By sit-
uating these modalities within a unified embedding space, it enables strong transfer
learning and retrieval capabilities across diverse document types. However, to fully
harness its potential for layout-aware tasks, it is essential to incorporate finer-grained
alignment strategies that explicitly model relationships between textual tokens, visual
regions, and spatial structures as shown in TILT [199].

Sequence-to-Sequence Generation for Structured Outputs: Sequence-to-sequence
(seq2seq) modeling reframes document understanding as a direct generation prob-
lem, where the model produces a structured output sequence, such as JSON, key–value
pairs, or natural language conditioned on an input document image. Unlike encoder-
only architectures that focus on representation learning, seq2seq models employ an
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encoder–decoder structure, enabling them to generate arbitrary output formats while
conditioning on multimodal inputs. This approach has gained prominence in OCR-
free Document AI, as it eliminates intermediate tokenization steps and directly learns
to map from raw pixels to structured textual outputs.

In the vision–language domain, pioneering architectures such as T5 [205] and BART [142]
established the viability of large-scale text-to-text generation by pretraining on denois-
ing objectives and fine-tuning for downstream tasks. Vision–language extensions, such
as OFA [255], expanded this paradigm by unifying multiple tasks—captioning, visual
question answering, and grounding—under a single generative interface. Document-
specific adaptations have applied seq2seq principles directly to page images. Donut [129]
dispenses with OCR entirely, using a vision transformer encoder and a transformer
decoder to translate document images directly into structured text sequences (e.g.,
JSON-formatted entity extraction results). This allows the model to learn holistic map-
pings between visual layouts and target schemas, handling complex cases like receipts,
forms, or invoices without explicit bounding-box annotations. Similarly, Pix2Struct [140]
tokenizes an input image into a sequence of patches and processes them with a trans-
former encoder, while a text decoder generates answers to visual questions or struc-
tured descriptions of the layout. These models excel in tasks where both structure
and semantics must be preserved, such as table-to-markdown conversion [170, ?],
chart description [184], or rich form extraction [137]. Beyond Pix2Struct, several re-
cent models have also extended the seq2seq paradigm in Document AI: Nougat [28]
and KOSMOS-2.5 [173] adapt LLM-based architectures for end-to-end document-to-
markdown conversion, producing spatially aware formatted text directly from PDFs or
images. On the other hand, DREAM [154] targets holistic document reconstruction,
generating sequences that jointly encode logical structure (paragraphs, tables, formu-
las) and physical layout. Document generation approaches like DocSynthv2 [25], also
a core chapter of this thesis, builds on this seq2seq paradigm with incorporation of text
style and position attributes with aligned layout properties.

Strengths: (i) First, seq2seq architectures enable end-to-end learning, mapping directly
from raw document pixels to final structured outputs without reliance on intermediate
OCR or rule-based post-processing. (ii) Second, they are inherently schema-flexible,
allowing the same model to produce outputs in arbitrary formats—natural language,
structured JSON, or markup—depending on the task specification. (iii)Third, their
generative nature supports multi-task unification, as the same model can be prompted
or fine-tuned to handle diverse document understanding tasks within a single archi-
tecture.

Limitations: (i) A key limitation is generation faithfulness—without explicit grounding
mechanisms, seq2seq models may hallucinate values or introduce subtle inconsisten-
cies in structured outputs, especially under distribution shifts. (ii) Second, they are
typically computationally intensive at inference time compared to encoder-only mod-
els, as generation is autoregressive and often requires beam search or other decoding
strategies. (iii) Finally, while these models bypass OCR, they may still struggle with fine-
grained localization—for example, distinguishing multiple identical fields in different
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parts of a page—unless aided by explicit spatial cues or pointer-based mechanisms.

In summary, sequence-to-sequence generation offers a flexible, unified, and OCR-free
approach to document understanding, capable of directly producing structured out-
puts from visual inputs. It represents a promising direction for layout-aware pretrain-
ing, particularly when coupled with grounding techniques to ensure output faithful-
ness and spatial precision. Models like Donut and Pix2Struct exemplify the potential
of this paradigm, bridging the gap between visual perception and structured reasoning
in Document AI.

Field-Level or Entity-Level Supervision: Field-level or entity-level supervision departs
from the fully self-supervised pretraining paradigm by introducing explicit, semanti-
cally meaningful labels during pretraining or intermediate finetuning. Instead of only
asking the model to predict missing tokens or image patches, we guide it toward rec-
ognizing and aligning structured components of a document such as key-value fields,
table cells, or named entities, directly during representation learning. The rationale is
straightforward: while generic pretraining can yield broad layout-aware embeddings,
some applications demand precise semantic grounding. For example, in an invoice,
the system must understand that a number in the bottom-right cell labeled “Total”
is semantically different from a number under “Quantity” in a table row. Purely self-
supervised objectives may learn some of these associations implicitly, but entity su-
pervision makes the link explicit from the start.

A canonical example is StrucTexT[157], which uses structure-aware masking—masking
both the text content and the positional cell grid—and supervising predictions at the
cell level. This forces the model to jointly reason about what the content is and where it
fits in the table’s logical structure. Similarly, DocBank[151] provides large-scale annota-
tions for document elements (titles, lists, tables, figures), enabling pretraining to cap-
ture document “part-of” hierarchies beyond token-level sequences. In the form un-
derstanding space, FormNet[137] leverages graph neural networks (GNNs) over form
fields, treating each field as a node and explicitly encoding relationships between fields
and their values. This formalizes the document not just as text or image but as a typed,
connected graph, an approach well-suited to entity supervision. This similar approach
has also been adapted to Doc2Graph [78, 183] and GeoContrastNet [22] where struc-
tured label information incorporated into GNN’s gives a huge boost in model perfor-
mance. Similarly, LayoutLMv3[104] and DocFormerv2 [7] incorporate entity annota-
tions during intermediate finetuning (e.g., FUNSD [114], SROIE [106]), showing that
even without entity-aware pretraining, injecting structured labels mid-way can signif-
icantly enhance layout–text grounding.

Strengths: (i) A primary advantage of field-level or entity-level supervision lies in its di-
rect alignment with downstream objectives. By exposing the model to structured enti-
ties during pretraining, the learned representation space is naturally shaped toward the
semantic granularity required for real-world extraction tasks. (ii) Furthermore, entities
serve as semantic anchors, binding specific visual regions to well-defined meanings
and thereby strengthening the association between spatial layout and textual seman-
tics. This explicit binding is particularly advantageous in scenarios where structural
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interpretation is essential, such as linking form fields to their corresponding values.
(iii) In addition, the paradigm demonstrates strong compatibility with structured out-
put requirements, as entity supervision inherently aligns with tasks that operate over
predefined schemas, including receipt parsing, form understanding, and identity doc-
ument processing.

Limitations: (i) Despite its advantages, entity-level supervision presents several no-
table constraints. First, the annotation cost is substantial, as creating high-quality
entity labels demands domain expertise and significant manual effort. (ii) Secondly,
the approach often exhibits reduced generality, with heavily supervised pretraining
predisposing the model toward domain-specific patterns, thereby limiting its zero-
shot transferability to novel document types. (iii) Thirdly, there is an inherent schema
rigidity: models trained with a fixed set of entity definitions may require extensive re-
training or adaptation when faced with tasks that diverge from the original annotation
schema.

From a broader perspective, field-level supervision represents a deliberate trade-off,
sacrificing some general-purpose flexibility in exchange for heightened precision in
domain-critical applications. This trade-off is particularly justified in high-stakes do-
mains such as finance, healthcare, and scientific publishing, where the cost of seman-
tic error outweighs the need for broad generalization. A key research challenge lies
in devising strategies to integrate such task-specific supervision with general-purpose
multimodal pretraining objectives—including Masked Language Modeling, Masked
Image Modeling, and contrastive learning—in order to unify universal layout under-
standing with domain-specific semantic grounding within a single foundation model.

Overall Takeaway: The pretraining paradigms surveyed in this section highlight the
multifaceted nature of layout-aware learning in Document AI. While MLM with lay-
out embeddings captures spatially informed text semantics, MIM builds global layout
awareness without dependence on OCR. Multimodal contrastive learning strengthens
alignment across visual, textual, and structural modalities, while seq2seq objectives
enable direct generation of structured outputs. Finally, field-level supervision offers
high-precision semantic grounding for domain-specific tasks. Collectively, these ap-
proaches define a continuum between general-purpose representation learning and
domain-optimized modeling. The key research frontier lies in reconciling these ap-
proaches i.e. designing foundation models that can seamlessly navigate between OCR-
free visual reasoning, layout grammar induction, and schema-constrained entity extrac-
tion, producing robust and adaptable systems capable of handling the full diversity of
real-world documents.

2.4 Layout-Aware Document Generation

Document generation is emerging as a distinct yet highly interdependent branch of
Document AI, aiming not merely to extract or represent layout information, but to syn-
thesize new document instances that adhere to realistic structural and semantic con-
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straints. Unlike generic text-to-image synthesis, layout-aware document generation
operates within a multi-modal, grammar-constrained space, where the interplay be-
tween textual content, visual appearance, and spatial arrangement defines the fidelity
and usability of the generated output.

The evolution of the document generation domain can be broadly traced to two com-
plementary research directions: (i) Layout Generation, which focuses on arranging
elements (e.g., text boxes, images, tables, graphics) on a page or canvas while respect-
ing design constraints and semantic intent; and (ii) Vector Graphic Generation, which
models the precise geometric primitives (e.g., strokes, shapes, curves) that constitute
the visual elements themselves. While the latter controls fine-grained visual appear-
ance, the former determines global structure, spatial relationships, and reading flow.
In practice, document generation pipelines often rely on a layout generator as the
structural backbone, upon which visual or textual content is rendered. This subsec-
tion reviews the progression of layout generation approaches—from early rule-driven
systems to recent diffusion-based methods—highlighting their applicability to docu-
ment AI.

Early Rule-Based Layout Synthesis: Initial research on automatic layout generation
embedded human-crafted design heuristics directly into energy functions or constraint-
solving frameworks [187, 192]. These systems operated by optimizing aesthetic and
functional criteria (e.g., alignment, spacing, balance) but lacked the capacity to learn
from data. As such, they were not robust enough to novel design styles and could not
capture subtle correlations between element categories and their preferred spatial ar-
rangements.

GAN and VAE-based Generative Models: The advent of deep generative models intro-
duced data-driven layout synthesis. LayoutGAN [146] and LayoutVAE [120] pioneered
the use of GANs and VAEs to generate scene and graphic layouts, learning distribu-
tions over element positions and sizes from large design corpora. NDN [139] mod-
eled layouts as graphs of relative spatial relationships and applied a graph neural net-
work–conditioned VAE. READ [73] used heuristics to derive relational structures be-
tween elements and trained a Recursive Neural Network (RNN) [68, 228] within a VAE
framework to capture hierarchical layout organization. CanvasVAE [277] extended this
to vector graphic documents, predicting structured canvas–element representations.
Self-attention–driven VAEs, such as VTN [8] improved diversity and perceptual realism
by better capturing global dependencies across elements.

Transformer-based Sequence Models: Inspired by the success of autoregressive se-
quence modeling in NLP, LayoutTransformer [86] and BLT [133] serialized layouts into
discrete token sequences (category, coordinates, dimensions) and leveraged transformer
architectures for structure-aware generation. This framing allowed flexible condition-
ing on partial layouts and efficient modeling of long-range spatial dependencies. Con-
ditional layout generators such as LayoutNet [293], TextLogo3K [261], and ICVT [31]
incorporated auxiliary attributes—ranging from style vectors to semantic class con-
straints—enabling controllable generation across domains (e.g., advertising, logos, pub-
lication layouts). LayoutGAN++ [126] combined transformer generators with learned
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discriminators, further enhancing layout realism.

Diffusion-based Layout Generation: More recently, diffusion models have emerged
as a state-of-the-art paradigm for structured generation. LayoutDM [108] framed lay-
out synthesis as a denoising process over discrete spatial tokens, yielding improved di-
versity and structural coherence compared to GAN/transformer baselines. LACE [37]
introduced constraint-guided diffusion, where user-defined spatial constraints (e.g.,
fixed regions, alignment masks) guide the denoising trajectory, supporting interactive
and iterative layout editing. Sequence-domain diffusion models [35] operate over seri-
alized element tokens, blending the discrete control of transformers with the stochas-
tic refinement of diffusion. To benchmark these systems, the Document Earth Mover’s
Distance (Doc-EMD) [97] metric was proposed, capturing both spatial and categorical
similarity between generated and reference layouts.

Strengths: (i) Modern generative models, particularly transformers and diffusion ap-
proaches, learn directly from large-scale layout corpora, capturing diverse spatial pat-
terns beyond human-defined rules. (ii) Diffusion-based methods enable multi-modal
control (masking, constraints) without retraining, and can sample multiple valid lay-
outs for the same condition.

Limitations: (i) GAN/transformer models may suffer from mode collapse or limited di-
versity without architectural refinements. (ii) Diffusion models incur higher inference
latency due to iterative denoising, and their latent factors are less interpretable without
explicit structuring. (iii) Evaluation remains challenging—metrics such as Doc-EMD
focus on geometry and category matching but do not fully reflect human aesthetic
judgment or functional suitability.

Towards Synthetic Document Generation: Once coherent layouts have been gener-
ated, the natural progression is to synthesize complete document images, including
textual content, visual elements, and formatting such that the generated output ad-
heres closely to a given structural blueprint. This step bridges the gap between ab-
stract spatial planning and fully realized document creation, enabling applications
such as dataset augmentation, template design, and end-to-end automated publish-
ing. One of the earliest works in this space, DocSynth [27], built on top of [288] demon-
strated layout-guided document image synthesis by conditioning a generative pipeline
on spatial layouts defined by bounding boxes and semantic labels. The model pro-
duces realistic document pages where the spatial organization matches the provided
template while still generating varied, plausible content. This approach has been par-
ticularly useful for augmenting training datasets in layout analysis tasks [71], improv-
ing both diversity and robustness of downstream models. SynthTiger [280] was an-
other approach that mainly OCR-driven for synthetic document generation, which was
adapted in the Donut [129] foundation model pipeline.

Vector Graphic Document Generation: Unlike pixel-based rendering, vector formats
such as Scalable Vector Graphics (SVG) enable resolution-independent rendering, free
of rasterization artifacts, and facilitate post-generation editing due to their explicit geo-
metric structure. This property is especially attractive for document generation, where



Foundations and Frontiers 36

precision in element placement and typography is crucial. However, modeling docu-
ments in a vector format poses significantly greater complexity compared to traditional
stroke- or path-level vector graphics generation [87, 111, 243]. In document settings,
each element may possess multi-modal attributes such as embedded text, images, and
associated metadata demanding a richer representation that integrates both geomet-
ric and semantic constraints. FlexDM [109] considered such multi-modal features to
go beyond layout generation for intelligent graphic design assistance and developed
the first unified multi-task model in this domain.

Early work in this space, such as CanvasVAE [277], tackled unconditional document-
level vector graphic generation, directly producing structured representations of can-
vases and their constituent elements. While effective in capturing global structure,
CanvasVAE is not inherently multi-task and cannot directly handle specific conditional
design operations such as targeted element filling or attribute editing. Doc2PPT [72]
explored a related setting in presentation design, generating slide layouts from longer,
multi-modal documents. However, this approach is framed primarily as a summariza-
tion and transformation task, rather than a generative completion model, and cannot
infer missing components from incomplete inputs. Building on this drawback, Doc-
Synthv2 [25] adopts an autoregressive transformer architecture that models both lay-
out and textual content as unified sequences. This formulation enables context-aware
generation where the model can complete partially specified layouts with plausible vi-
sual and textual elements while ensuring consistency between semantic content and
spatial arrangement. It further eliminates the need for intermediate rasterization dur-
ing synthesis, producing high-resolution, semantically coherent document pages di-
rectly from structural descriptions. StarVector [216] pursued a similar autoregressive
approach to develop a foundational multimodal LLM for SVG generation. It processes
both images and text instructions to produce compilable SVG code, leveraging SVG
primitives to accurately represent vector graphics. Recently, BigDocs [215] built a large-
scale structured Document Understanding dataset for devising tasks like multimodal
code generation, reasoning over graphical user interfaces (GUI), websites and docu-
ments and generating code from images.

2.5 Conclusion and Open Challenges

The trajectory of Document AI, from early rule-based systems to today’s multimodal
foundation models, reflects a field in constant re-invention, shaped by breakthroughs
in representation learning, scalable pretraining, and generative modeling. The pro-
gression outlined in Figure 2.1 underscores how each stage—interpretation, represen-
tation, and generation—has expanded the boundaries of what machines can under-
stand and create from structured and unstructured documents. Layout-aware pre-
training paradigms such as MLM, MIM, and contrastive learning have delivered pow-
erful semantic–spatial representations, while hybrid architectures now enable cross-
modal reasoning that was previously unattainable. In parallel, generative approaches
are transforming document creation, from controllable layout synthesis to full docu-
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ment rendering, opening the scopes for new opportunities in design automation, ac-
cessibility, and human–AI co-creation. Yet, despite these advances, several open chal-
lenges remain at the core of the field’s future progress:

Robustness to Imperfect Inputs: Heavy dependence on OCR pipelines or specific ren-
dering formats still makes many models vulnerable to noise, low-resolution scans,
handwriting variability, and non-standard layouts.

Generalization Across Domains and Languages: Current models often degrade sig-
nificantly when applied to unseen domains, multilingual settings, or cultural layout
variations, highlighting the need for truly universal document encoders.

Integration of Rich Visual Semantics: While layout-aware models excel at token-level
reasoning, they remain limited in understanding diagrams, charts, and dense visual
elements without explicit textual grounding.

Faithful and Controllable Generation: Generative document models must balance
creative flexibility with factual grounding and adherence to user-specified constraints,
a challenge amplified in high-stakes domains such as healthcare or finance.

Explainability and Trustworthiness: As models take on more autonomous reasoning
and generation tasks, the ability to attribute outputs to specific content and layout
cues will be critical for building trust, meeting compliance requirements, and enabling
human–AI collaboration.

Unified Pretraining for Multi-Objective Learning: Integrating interpretation, repre-
sentation, and generation capabilities into a single, general-purpose foundation model
without sacrificing task-specific precision, still remains an unsolved challenge.

Addressing these gaps will require not only architectural innovation but also richer
pretraining corpora, unified multimodal evaluation benchmarks, and principled ap-
proaches to model transparency. In this thesis, we address these challenges by ex-
ploring how the language of layouts can serve as a unifying representation, enabling
systems that do not just read or render documents, but reason about them in ways that
align with human understanding.
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Part I

Interpretation
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Chapter 3

Beyond Bounding Boxes: Fine-Grained
Document Segmentation

The details are not the details. They make the design.

– Charles Eames

Document Layout Analysis (DLA) is a fundamental task in Document Understand-

ing pipeline, facilitating the automated extraction of structural elements such as

text blocks, tables, figures, and lists. Existing Document Object Detection (DOD)

methods rely on bounding boxes to localize these elements but often lack the preci-

sion needed for parsing overlapping objects and hierarchical structures in complex

layouts. This chapter introduces instance-level segmentation for DLA, assigning

pixel-wise masks to each element for more accurate localization. We outline the

transition from Object Detection to Instance Segmentation with exhaustive exper-

imentation highlighting its impact on layout parsing.

3.1 Introduction

With the rapid proliferation of digital documents across industries, the need for intelli-
gent and automated methods for document analysis has become paramount. Manual
processing is no longer scalable due to the sheer volume of data, driving modern re-
search in document artificial intelligence (DocAI) to focus on AI-driven approaches
for extracting, structuring, and retrieving information from complex document lay-
outs [46]. Visually-rich Document Understanding (VrDU) has attracted increasing in-
terest in recent years, encompassing tasks such as document image classification (DIC) [122,

41
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Figure 3.1: Comparison of Object Detection in Natural Scenes vs. Document Object
Detection. The left image shows object detection in natural scenes, identifying objects
like people and buses using visual cues. The right image depicts DOD, segmenting
structured elements like tables and charts. Unlike natural scenes, document layouts
require hierarchical understanding, making instance segmentation essential for pre-
cise layout parsing and information extraction.

91, 112, 165], key information extraction (KIE) [158, 172, 226, 113, 233], document lay-
out analysis (DLA) [23, 197, 47, 291, 26, 13, 174, 24], and document visual question an-
swering (VQA) [180, 62, 179, 241]. DLA involves decomposing document images into
semantically meaningful regions such as text blocks, tables, figures, and titles. Unlike
DLA, which aims to segment and analyze the entire document structure, document ob-
ject detection (DOD) focuses specifically on localizing and classifying individual doc-
ument elements using bounding boxes to enable downstream tasks like information
extraction, document parsing, and content retrieval efficiently.

Current state-of-the-art (SOTA) DU models [104, 82, 274, 273] typically rely on mod-
ern optical character recognition (OCR) engines to extract text and combine it with
spatial features to predict page layout and structure. However, these multimodal ar-
chitectures face several limitations: (1) they depend heavily on Large Language Models
(LLMs) [289] pretrained on millions of samples, prioritizing OCR text quality over vi-
sual features and document structure; (2) they can be computationally expensive due
to the need to process and fuse information from multiple modalities; and (3) they
may underperform in domains with poor OCR results or low-resource languages. To
address these challenges, DLA serves as a critical preliminary step in document pro-
cessing workflows [23, 47], enhancing downstream DU tasks such as DIC, KIE, and
VQA. By imparting logical layout structure beyond the geometric layout provided by
OCR [89], DLA enables more accurate content extraction and interpretation. A recent
DU competition [247] has highlighted the need to bridge the gap between DLA and
DocVQA [181] by introducing layout-navigating or multi-region questions, further em-
phasizing the importance of robust layout understanding.

Early DLA methods primarily relied on rule-based techniques [38, 245, 70, 223],
which used heuristic rules, geometric layouts, and structural templates to segment
and classify document components. While effective for well-defined document types,
these methods lacked adaptability to diverse layouts and struggled with complex struc-
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tures, overlapping elements, and multi-column formats, making them unreliable for
real-world applications. The introduction of deep learning-based object detection ar-
chitectures for natural scene images [160, 210, 207, 145] allowed models to learn hier-
archical features and improve detection accuracy of document objects using bound-
ing boxes [220, 190]. While both tasks share similarities, document images introduce
unique challenges due to structural differences. One key distinction lies in the large
domain gap—natural images contain diverse backgrounds, lighting conditions, and
3D environments, making object context crucial for detection. In contrast, documents
exist in a 2D structured space, where elements like tables, figures, and text blocks are
arranged logically rather than spatially, requiring a deeper understanding of layout
relationships rather than just visual features. Additionally, document layouts exhibit
high inter-class variance, not in terms of visual appearance but in their structural or-
ganization. Unlike natural objects, where shape and texture differentiate categories,
document elements often share similar textual properties, making it harder for models
to distinguish between tables, paragraphs, or figures without contextual awareness.

Another fundamental challenge is that documents contain highly interdependent
elements, whereas natural scene objects are more modular and can be recognized in-
dependently. For example, a title only functions as a title if positioned correctly within
the document hierarchy, and a figure caption depends on its linked figure. Standard
object detection struggles with this hierarchical structure, requiring models that cap-
ture spatial relationships rather than treating document elements as isolated entities.
Furthermore, while natural image object detection has benefited from large-scale an-
notated datasets like MS-COCO [162] and ImageNet [59], document layout datasets
remain scarce and domain-specific, limiting generalization across different formats,
languages, and structures. Given these challenges, bounding-box-based object detec-
tion is insufficient for fine-grained document parsing, necessitating instance segmen-
tation, which provides pixel-level object boundaries to resolve overlapping regions
(e.g., figures inside tables), preserves hierarchical dependencies, and enhances struc-
tural layout understanding. Thus, this chapter proposes moving beyond object detec-
tion and adopting instance segmentation as a more precise and effective approach for
DLA.

The main contributions of this Chapter are: (1) We introduce an instance seg-
mentation approach for DLA, transitioning from bounding-box-based object detec-
tion to pixel-level segmentation for a more precise understanding of complex docu-
ment structures. (2) We establish strong baselines using our proposed Mask R-CNN-
based model on two benchmark datasets, PubLayNet [291] and the Historical Japanese
Dataset [224], demonstrating its effectiveness in segmenting diverse document lay-
outs. (3) Our framework is evaluated against state-of-the-art object detection methods,
highlighting its advantages in handling overlapping objects and hierarchical structures
in documents. (4) We conduct ablation studies to analyze the impact of instance seg-
mentation on document object detection, demonstrating its role in enhancing layout
parsing, content extraction, and document intelligence applications.
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(a) (b) (c)

Figure 3.2: Illustration of Document Layout Challenges: (a) and (b) show overlap-
ping object categories in HJDataset [224] and PubLayNet [291], where bounding-box-
based methods struggle. (c) highlights the hierarchical document structure in histori-
cal Japanese texts [224], demonstrating the need for instance segmentation to capture
layout relationships accurately.

3.2 Related Work

Automatic information extraction from digital documents requires an understanding
of spatial layouts, involving the detection of key elements such as tables, titles, figures,
and text blocks. Several approaches have been proposed, evolving from rule-based
segmentation to deep learning-based object detection and finally to instance segmen-
tation for more fine-grained document understanding.

Early rule-based methods relied on heuristic techniques such as connected compo-
nent grouping [188], white-space analysis [206], and Voronoi-based segmentation [132]
to segment document elements. These methods were effective for structured layouts
but struggled with complex multi-column layouts, handwritten content, and overlap-
ping objects. Several improvements were made using Delaunay triangulation [271] and
spatial autocorrelation [119], but these approaches still lacked generalization across
diverse document types. Machine learning-based pre-deep-learning methods [175,
10] attempted to improve segmentation by using Multi-Layer Perceptrons (MLPs) and
Support Vector Machines (SVMs) to classify document regions. However, these ap-
proaches depended on handcrafted features and assumed fixed layout structures, lim-
iting their effectiveness on documents with varying formats. The inability to model
complex structural relationships and hierarchical dependencies highlighted the need
for data-driven deep learning approaches.

The introduction of deep learning transformed DLA, allowing models to learn feature
representations directly from data. Faster R-CNN [210] became a standard two-stage
object detector, widely adopted for document object detection [220]. Other two-stage
methods such as DeepDeSRT [220] demonstrated improvements in table detection
and structure recognition, enabling OCR-free processing of document layouts. One-
stage detectors like YOLO [208] and SSD [166] were explored for faster document object
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detection, but struggled with small, dense objects and layout complexities. Addition-
ally, Fully Convolutional Networks (FCNNs) [190] were applied for pixel-wise segmen-
tation of text and figures in historical documents, improving layout parsing. Graph-
based models [211, 153] and transformer-based architectures like LayoutLM [274] fur-
ther enhanced document understanding by integrating spatial relationships and tex-
tual content. However, , bounding-box-based object detection suffered from two key
limitations: (1) Overlapping Objects – Figures inside tables, multi-column text layouts,
and nested objects are difficult to separate using only bounding boxes. (2) Hierarchical
Layout Understanding – Many document elements have structural dependencies, such
as section headings linking to body text, which bounding-box detectors fail to capture.
These limitations motivated the shift towards instance segmentation for more precise
document parsing.

Instance segmentation offers a promising approach for segmenting layouts by pro-
viding pixel-level masks, allowing for better differentiation of overlapping and struc-
tured elements. Mask R-CNN [95] introduced this approach by integrating object de-
tection with segmentation masks, enabling more detailed layout parsing. Mask Scor-
ing R-CNN [105] further refined this by incorporating confidence-based scoring, lead-
ing to more reliable segmentation outputs. The development of large-scale annotated
datasets has supported progress in document instance segmentation. PubLayNet [291]
provides bounding box and mask annotations for scientific documents, while HJDataset
[224] extends this to historical manuscripts, including hierarchical structures and read-
ing order information. However, existing research in DLA has primarily focused on
bounding-box-based object detection, leaving the potential of instance segmentation
largely unexplored. This chapter presents the first work applying instance segmenta-
tion to DLA, leveraging mask-level annotations from these datasets. By moving from
bounding-box detection to pixel-wise segmentation, we aim to improve layout pars-
ing, content extraction, and document structure understanding.

3.3 Instance-Level Segmentation Framework

This section presents our end-to-end instance-level segmentation model, inspired by
Mask R-CNN [95] and Mask Scoring R-CNN [105]. Unlike traditional bounding-box-
based object detection, our approach extends DLA to pixel-level segmentation, en-
abling precise localization of elements such as tables, figures, paragraphs, and titles.
State-of-the-art object detectors like Faster R-CNN [210] and RetinaNet [161] have demon-
strated strong performance in DOD. However, these models are limited by their re-
liance on coarse bounding-box annotations, making it difficult to distinguish overlap-
ping and nested objects. To address this limitation, we introduce a novel instance seg-
mentation framework that enhances fine-grained layout parsing.

Figure 3.3 illustrates an overview of our instance segmentation pipeline, which
consists of four core modules: (1) Feature Extraction and Selection - Extracts multi-
scale features from the document image. (2) Object Detection Head – Predicts bound-
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Figure 3.3: Proposed Instance-Level Segmentation framework: Given an input image
of a document, the model predicts the different layout elements, with object detection
on one head and instance-level segmentation on another head.

ing boxes and object categories. (3) Instance Segmentation Head – Generates pixel-
wise masks for each detected element. (4) Learning Objectives – Defines loss functions
for detection and segmentation.

3.3.1 Feature Extraction and Selection Module

Our model adopts a deep convolutional backbone for feature extraction, utilizing ResNeXt-
101 [272], an advanced variant of ResNet, due to its strong multi-path representation
capabilities. Given an input document image I ∈ RH×W ×C , the backbone extracts hi-
erarchical feature maps at different levels Fl , which are further refined using a Feature
Pyramid Network (FPN) to capture both small and large-scale layout elements.

The FPN constructs a hierarchical multi-scale representation by iterating from coarse
to fine resolution, refining feature maps through upsampling and lateral connections.
The final feature representation is obtained as:

F = fconv3x3

(
Upsample(Pl+1)+ fconv1x1(Fl )

)
, (3.1)

where F represents the final multi-scale feature map used for object detection and
segmentation. The feature maps Fl are extracted from the ResNeXt-101 backbone at
different levels l , while Pl+1 denotes the feature map at a coarser scale. The operation
Upsample(Pl+1) enhances spatial resolution, and fconv1x1(Fl ) applies a 1×1 convolu-
tion to refine features before merging. Finally, a 3× 3 convolution fconv3x3(·) is used
to smooth and finalize the feature representation. This final representation F , with a
fixed dimension of 512 channels, serves as the input to the subsequent detection and
segmentation heads, enabling robust DLA results.
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3.3.2 Region Proposal Network & Region of Interest Alignment

The Region Proposal Network (RPN) is responsible for generating candidate object re-
gions, each assigned an objectness score that determines whether the region likely
contains a document element. From the set of generated proposals, the top 1,000
are selected using Non-Maximal Suppression (NMS) to filter out redundant and over-
lapping regions. Each proposal Ri is parameterized by its bounding box coordinates
bi = (xmin, ymin, xmax, ymax) and an associated objectness score si .To ensure precise
spatial alignment of these proposals, we employ RoIAlign [95], which eliminates the
quantization errors present in RoIPooling. Given an input region proposal Ri , RoIAlign
applies bilinear interpolation to compute feature values at non-integer locations, pre-
serving fine-grained spatial information. The interpolated feature value at a sampled
point (x, y) inside the region is computed as:

Froi(x, y) =∑
i , j

wi j ·F (xi , y j ), (3.2)

where F (xi , y j ) represents the extracted feature map at the nearest integer grid
points (xi , y j ), and wi j are bilinear interpolation weights computed based on the rela-
tive distances from (x, y). This process ensures smooth feature extraction without loss
of spatial precision. By applying RoIAlign to all selected region proposals, the model
generates well-aligned feature representations that are crucial for accurate object de-
tection and instance segmentation.

3.3.3 Detection and Segmentation Heads

The object detection head is responsible for recognizing and localizing document lay-
out elements within each region of interest (RoI). It consists of a fully connected Multi-
layer Perceptron (MLP) that processes RoI features to generate two outputs: (i) a clas-
sification score for different document elements (e.g., tables, figures, paragraphs) and
(ii) bounding box coordinates to refine object localization. The classification branch
assigns a category label, while the bounding box regression branch adjusts coordinates
to better fit detected objects.
The instance segmentation head extends the detection branch by providing pixel-
level mask predictions for each identified document element. Unlike bounding boxes,
segmentation masks precisely delineate object boundaries, allowing for improved han-
dling of overlapping and structured elements. A Fully Convolutional Network (FCN) is
employed to predict class-specific binary masks for each RoI. Given an RoI-aligned
feature representation, the segmentation head produces an m ×m mask per instance,
where m = 28 in our implementation. This structured representation significantly en-
hances layout parsing by capturing the exact shape and spatial extent of different doc-
ument entities.
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3.3.4 Learning Objectives

To optimize both detection and segmentation, we employ a multi-task loss function
that jointly minimizes classification, bounding box regression, and mask prediction
errors.

The detection loss Ldet consists of two components: classification loss Lcls, which
measures the accuracy of object category predictions, and bounding box regression
loss Lreg, which refines the predicted bounding box coordinates. The overall detection
objective is formulated as:

Ldet
(
{pi }, {bi }

)= 1

Ncls

∑
i

Lcls
(
pi , p∗

i

)
+ λ

Nreg

∑
i

p∗
i ·Lreg

(
bi ,b∗

i

)
,

(3.3)

where: pi is the predicted probability that the i -th RoI belongs to a specific ob-
ject category, while p∗

i is the ground-truth label. bi = (bx ,by ,bw ,bh) represents the
predicted bounding box coordinates. b∗

i denotes the ground-truth bounding box co-
ordinates. Lcls is the binary cross-entropy loss for object classification. Lreg is the
smooth L1 loss for bounding box refinement: Ncls and Nreg are normalization factors
for classification and regression losses. λ is a balancing weight between classification
and bounding box losses.

For segmentation objective Lmask, we employ a per-pixel binary cross-entropy loss,
ensuring that each predicted mask closely matches its corresponding ground truth
mask:

Lmask =− 1

m2

∑
i , j

[
y∗

i j log yi j + (1− y∗
i j ) log(1− yi j )

]
, (3.4)

where: y∗
i j is the ground truth mask value at pixel (i , j ). yi j is the predicted mask

probability for the same pixel. m×m represents the spatial resolution of the predicted
mask. The final objective function integrates both detection and segmentation losses
to ensure a unified learning framework:

L =Ldet +αLmask. (3.5)

where α is a weighting factor to balance the contributions of detection and seg-
mentation tasks. This multi-task optimization enables the model to accurately classify
and localize document objects while refining their spatial structure through instance-
level segmentation.
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3.4 Experimental Validation

To evaluate the effectiveness of the proposed approach, we conduct extensive exper-
iments on benchmark datasets with diverse document structures. Our method is as-
sessed against state-of-the-art models, demonstrating competitive performance in both
object detection and instance segmentation. Furthermore, we perform detailed abla-
tion studies to quantify the contribution of different architectural components. The
implementation, trained models, and benchmark results are made publicly available
at: https://github.com/biswassanket/instasegdoc.

3.4.1 Evaluation Metrics

For performance evaluation, we adopt the Intersection over Union (IoU) metric to
measure the accuracy of object proposals. Following standard evaluation protocols, we
compute mean Average Precision (mAP), which averages the Average Precision (AP) at
IoU thresholds ranging from 0.5 to 0.95 in steps of 0.05. This evaluation methodology
aligns with the standard MS-COCO benchmark [162] for object detection and instance
segmentation. Additionally, we report AP@0.5 and AP@0.75 to analyze performance at
specific IoU thresholds. Model performance is evaluated both per-category and as an
overall mAP score.

3.4.2 Datasets

DLA has historically suffered from a lack of large-scale annotated datasets due to the
confidentiality of real-world document collections. However, recent efforts have led to
the release of publicly available datasets, enabling further advancements in the field.
We evaluate our approach on two large-scale datasets: PubLayNet [291] and HJDataset [224].

PubLayNet PubLayNet [291] is one of the most comprehensive datasets for DLA, in-
troduced at ICDAR 2019. It consists of over 360,000 document images sourced from
PubMed Central [214], making it comparable in scale to major computer vision datasets.
The dataset provides five annotated categories: text, title, lists, tables, and figures.
Both bounding boxes and segmentation masks are available, allowing for instance-
level evaluation. For training, we use 335,703 images, while 11,245 images are used for
validation. Due to the absence of released ground-truth for the official test set (ongoing
competition), we report results on the validation set. A breakdown of object category
distributions is presented in Table 3.1.

HJDataset HJDataset [224] consists of 2,048 historical Japanese document images con-
taining over 250,000 annotated layout elements across seven categories. Unlike mod-
ern document datasets, HJDataset provides hierarchical structure annotations and read-
ing order metadata, making it particularly useful for evaluating instance segmentation
in complex layouts. The dataset is divided into 1,433 images for training, 307 for valida-
tion, and 308 for testing. The distribution of annotated layout instances is summarized

https://github.com/biswassanket/instasegdoc
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Table 3.1: Statistics of the PubLayNet dataset used in our evaluation.

Object Category
# Instances

Train Validation

Text 2,343,356 88,625

Title 627,125 18,801

Lists 80,759 4,239

Figures 109,292 4,327

Tables 102,514 4,769

Total samples 3,263,046 120,761

in Table 3.2.

Table 3.2: Statistics of the HJDataset used in our evaluation.

Object Category
# Instances

Train Validation

Body 1,443 308

Row 7,742 1,538

Title 33,637 7,271

Bio 38,034 8,207

Name 66,515 7,257

Position 33,576 7,256

Other 103 29

Total samples 181,097 31,866

3.4.3 Performance Evaluation on PubLayNet

Qualitative Analysis The qualitative results on the PubLayNet dataset, as shown in
the Fig. 3.4, highlight the effectiveness of our instance segmentation model in parsing
complex document layouts. Several key observations can be drawn from these results:

• Precise Segmentation of Overlapping Elements: The model successfully differ-
entiates between overlapping text blocks, tables, and figures. For example, in
Fig. 3.4(c) and (d), the segmentation masks correctly capture figures embedded
within text regions, preventing misclassification. The results demonstrate the
model’s ability to capture hierarchical structures within scientific documents.
Notably, in Fig. 3.4(c), text blocks, section titles, and figure captions are distinctly
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Instance segmentation results on the PubLayNet dataset. The images
showcase the model’s ability to accurately segment diverse document elements. Each
detected element is highlighted with distinct instance masks, demonstrating the effec-
tiveness of the proposed approach in handling complex document layouts, overlap-
ping structures, and multi-column formats.

segmented semantically, indicating that the model understands their contextual
placement within the page.

• Robust Detection of Nested Tables and Figures: Tables and figures are among the
most challenging elements in DLA due to their variability in size and placement.
Fig. 3.4(b) showcases an example where the model effectively isolates a large ta-
ble spanning multiple columns, while also simultaneously segmenting the large
figure with an embedded legend. Moreover,

• Challenges with Small Objects: Instance-level segmentation enhances the pre-
cise extraction of smaller document elements. As shown in Fig. 3.4(a) and (e), in-
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Table 3.3: Results for the PubLayNet dataset for the tasks of Document Object Detec-
tion and Document Instance Segmentation.

Category
Detection Segmentation

F-RCNN [210] M-RCNN [95] Ours Ours

Text 0.910 0.916 0.918 0.906

Title 0.826 0.840 0.844 0.818

List 0.883 0.886 0.913 0.821

Table 0.954 0.960 0.971 0.970

Figure 0.937 0.949 0.951 0.948

AP 0.902 0.910 0.920 0.893

AP@0.5 - - 0.977 0.977

AP@0.75 - - 0.959 0.953

dividual paragraphs and lists are accurately segmented, maintaining their struc-
ture. The model also effectively separates figure and table captions, even when
closely spaced, as seen in (f) and (c). However, minor inaccuracies persist for
small objects like section titles and footnotes. In (a), some titles merge with text
blocks, highlighting the challenge of distinguishing closely positioned text ele-
ments.

• Multi-Column Layout Adaptability: The results also demonstrate the model’s
ability to handle multi-column layouts. In Fig. 3.4(d), the segmentation masks
properly differentiate two-column text arrangements, ensuring structural con-
sistency in complex documents.

Quantitative Analysis The results of training and evaluating our proposed instance-
level segmentation model on the PubLayNet dataset are presented in Table 3.3. The
mean Average Precision (mAP) has been computed across all object categories, in-
cluding text, lists, tables, titles, and figures. In addition, we establish a new instance
segmentation baseline, evaluating the predicted masks generated by our model—an
important contribution of this work. Our object detection results are also compared
against state-of-the-art baselines, demonstrating an overall AP of 0.92, outperforming
existing methods such as Faster R-CNN and Mask R-CNN by Zhong et al. [291]. For
instance segmentation, our model achieves an overall AP score of 0.893, setting a new
benchmark. In particular, high AP scores are obtained for object categories such as
tables, figures, lists, and text blocks, reflecting the model’s effectiveness. However, the
AP score for title detection is relatively lower, likely due to the small size of titles and
their variability across document layouts. Titles are sometimes misclassified as text
blocks, especially when minimal spacing exists between the two elements. This chal-
lenge is also reflected in instance segmentation, where the title category achieves an
AP of 0.81. Similarly, the list category records a lower segmentation AP due to false
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Figure 3.5: Instance segmentation results on the Historical Japanese dataset. The
left image shows the full-page segmentation, where overlapping and nested structures
challenge traditional methods. The right image presents a zoomed-in view, highlight-
ing the model’s ability to accurately differentiate hierarchical elements such as text
blocks, names, and positional markers with precise instance masks.

positives, where list elements are confused with text blocks.

3.4.4 Performance Evaluation on HJDataset

Qualitative Analysis The visual results in Fig. 3.5 illustrate how our model accurately
detects and segments key document elements, including titles, names, positions, and
biographies, despite the inherent challenges of dense text layouts and interleaved el-
ements. Unlike modern documents, historical manuscripts in Japanese language ex-
hibit diverse text orientations and varying font sizes. The model effectively segments
nested structures in historical documents, preserving spatial relationships and pre-
venting misclassification of smaller elements, as shown in Fig. 3.5 (right), where a
zoomed-in view highlights its ability to maintain the document’s logical hierarchy. The
model distinguishes vertical and horizontal text regions, ensuring proper segmenta-
tion despite layout variations. It also performs considerably well in overlapping and
nested text regions, separating bio sections, names, and positions even when they ap-
pear stacked within the same spatial area. While the model performs well in most
cases, some misclassifications occur in highly dense layouts, particularly where titles
and body text are tightly spaced. Additionally, name-biography relationships require
further refinement to reduce minor merging errors in densely populated sections.

Quantitative Analysis The quantitative results for document object detection and in-
stance segmentation on the HJDataset are presented in Table 3.4. Our proposed model
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Table 3.4: Results for the HJDataset for the tasks of Document Object Detection and
Document Instance Segmentation.

Category
Detection Segmentation

F-RCNN [210] M-RCNN [95] Retina [161] Ours Ours

Body 0.990 0.991 0.990 0.992 0.996

Row 0.988 0.985 0.950 0.978 0.996

Title 0.876 0.895 0.696 0.891 0.913

Bio 0.945 0.868 0.895 0.937 0.944

Name 0.659 0.715 0.726 0.698 0.681

Position 0.841 0.842 0.859 0.862 0.862

Other 0.440 0.398 0.144 0.399 0.348

AP 0.819 0.813 0.752 0.822 0.820

AP@0.5 - - - 0.892 0.890

AP@0.75 - - - 0.876 0.878

achieves the highest overall detection AP of 0.822, surpassing Faster R-CNN [210] ,
Mask R-CNN [95], and the single-stage detector RetinaNet [161]. Additionally, our in-
stance segmentation model achieves an AP of 0.820, demonstrating its effectiveness in
handling complex historical document layouts. Our model excels in detecting Body,
Row, and Title, achieving 0.992, 0.978, and 0.891 in detection AP, respectively. The seg-
mentation AP for these categories is also strong, with 0.996 for both Body and Row,
and 0.913 for Title. Detection and segmentation of Name and Position categories show
relatively lower scores (0.698 and 0.681 for Name, 0.862 for Position). This is likely
due to the smaller size and variability in their placement within historical documents.
The "Other" category, which includes less frequent or ambiguous document elements,
records the lowest performance across all models. However, our model still outper-
forms the previous baselines under overall performance.

3.4.5 Implementation Details

The model is implemented using Detectron2 [269], a PyTorch-based framework opti-
mized for object detection. All experiments are conducted on NVIDIA Titan X GPUs.
ResNeXt-101 pretrained on ImageNet [134] serves as the backbone. We show an over-
all summary of hyperparameters, with their values and description shown in Table 3.5.
To fine-tune the model, we initialized the weights from pretrained networks [?] and
trained only the head layers using our datasets [291, 224]. The training process spanned
30,000 iterations with an initial learning rate of 0.00025. To generate k=32 anchor
boxes, various anchor scales were selected to ensure comprehensive coverage of the
image. Stochastic Gradient Descent (SGD) with Nesterov Momentum was employed
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Table 3.5: Choice of training hyperparameters for the proposed DOD model

Hyperparameter Value Description

Backbone ResNeXt-101 [272] Convolutional feature extractor

Batch Size 128 Number of sampled RoIs per image

Data Augmentation Random flipping (H/V) Horizontal and vertical flipping applied

Detection Confidence 0.7 Minimum confidence threshold for detection

Learning Rate 0.00025 Initial step size for weight updates

Learning Rate Schedule Warmup Cosine Annealing Adjusts learning rate every 10,000 iterations

NMS Threshold 0.3 Non-Maximum Suppression IoU threshold

Optimizer SGD (Nesterov Momentum) Stochastic Gradient Descent with acceleration

Pretraining Dataset ImageNet [134] Pretrained weights used for initialization

as the optimizer, using a batch size of 128 in the RoI heads. The learning rate followed
a Warmup Cosine Annealing schedule, updating every 10,000 iterations. For inference,
we set a minimum confidence score of 0.7 and applied Non-Maximum Suppression
(NMS) with a threshold of 0.3. The dataloader utilized 4 worker threads for efficient
processing. After fine-tuning, the testing threshold in the RoI heads was set to 0.6, as it
yielded optimal results. Additionally, default data augmentation from the Detectron2
framework was applied, incorporating random vertical and horizontal flipping during
training.

3.4.6 Ablation Study

To evaluate the contribution of different components, we perform ablation studies on
document object detection and instance segmentation tasks.

Choice of Feature Backbones We compare ResNet-101 [96] and ResNeXt-101 [272] as
backbone architectures. The results on PubLayNet, summarized in Table 3.6, show that
ResNeXt-101 achieves better mAP, justifying its choice as our primary backbone.

Effectiveness of FPNs FPNs [160] enhance multi-scale feature learning. We analyze
their impact using Faster R-CNN and Mask R-CNN on PubLayNet. The results, pre-
sented in Table 3.7, indicate a significant improvement in mAP when FPNs are incor-
porated.

Table 3.6: Backbone network comparison in terms of mAP.

Model ResNet-101 ResNeXt-101

Faster R-CNN 0.828 0.843

Mask R-CNN 0.869 0.875
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Table 3.7: Performance analysis on PubLayNet of the DOD model with and without
FPN.

Model FPN mAP

Faster R-CNN ✗ 0.843

Faster R-CNN ✓ 0.871

Mask R-CNN ✗ 0.875

Mask R-CNN ✓ 0.904

3.5 Conclusion and Future Scope

The instance-level segmentation model developed in this chapter demonstrates strong
capabilities in detecting and segmenting diverse document layouts, particularly ex-
celling in handling overlapping structures and fine-grained elements. However, sev-
eral limitations persist. The model still struggles with small object segmentation, such
as section titles and footnotes, which can be misclassified due to their close proximity
to larger text blocks. Additionally, while CNN-based architectures effectively capture
local features, they have difficulty integrating global contextual information, leading
to occasional misinterpretations in highly structured or complex layouts. Moreover,
the reliance on bounding boxes for region proposals introduces spatial constraints,
limiting segmentation accuracy in cases of extreme overlap or non-rectangular object
structures.

To address these challenges, future research should explore more advanced archi-
tectures that integrate transformers for better global reasoning and relational model-
ing. A shift towards bounding-box-free approaches, such as direct mask prediction
using self-attention mechanisms, could further enhance instance segmentation ac-
curacy. Additionally, incorporating graph-based models could refine document lay-
out understanding by capturing hierarchical relationships between elements. These
advancements, as introduced in the next chapter on DocSegTr, leverage transformer-
based architectures to achieve more efficient and accurate document segmentation
without bounding box dependencies.



Chapter 4

DocSegTr: A Transformer Approach to
Layout Segmentation

Structure is not merely the canvas of meaning—it is meaning in disguise.

– Roland Barthes

Building upon the instance-level segmentation framework introduced in the previ-

ous chapter, this work explores a transformer-based approach to address the chal-

lenges of complex document layouts. Existing CNN-based models, while effective,

struggle with long-range dependencies, limiting their segmentation accuracy. To

overcome these challenges, we propose DocSegTr, a transformer-driven instance

segmentation model that utilizes a twin attention module for improved semantic

reasoning and computational efficiency. Our approach achieves state-of-the-art or

competitive AP scores on PubLayNet, PRImA, Historical Japanese (HJ), and Table-

Bank, demonstrating its ability to generalize across diverse document structures.

DocSegTr establishes a strong baseline for transformer-driven document segmen-

tation and layout understanding.

4.1 Introduction

The field of Intelligent Document Processing (IDP) has seen rapid advances, driven
by the increasing digitization of workflows across sectors such as finance, healthcare,
law, and insurance. Modern Robotic Process Automation (RPA) systems have enabled
a paradigm shift—transforming static documents into active agents of information
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through AI systems that do not merely scan but begin to understand. This evolution
signals a fundamental recognition: the layout of a document is not simply a structural
cue but also a carrier of meaning—much like language. In recent years, state-of-the-art
deep learning systems have tackled the problem of information extraction by combin-
ing text semantics with visual layout cues. Document Object Detection (DOD) meth-
ods reformulate this challenge by treating layout elements—like tables, paragraphs,
and titles—as spatial “objects” to be detected and labeled via bounding boxes [149].
However, this object-centric view falls short in capturing the relational and overlap-
ping nuances present in complex document layouts. As highlighted in our previous
work [26], such rigid object boundaries limit expressiveness and lead to ambiguity in
highly structured, real-world documents.

This thesis adopts a more expressive interpretation: viewing layout as a semantic gram-
mar—a visual language that requires fine-grained parsing at the instance level. In-
stance segmentation offers a powerful paradigm here, moving beyond boxes to pixel-
level masks that preserve visual syntax. Yet, common convolutional neural networks
(CNNs), while adept at capturing local patterns, often lack the capacity for global rea-
soning and long-range dependencies crucial to decoding this layout grammar. To ad-
dress these challenges, we propose a new bottom-up instance-level segmentation frame-
work for document layouts, built on the principle of dynamic instance mask gener-
ation inspired by SOLOv2 [259]. Crucially, our method bypasses bounding box de-
pendencies and instead interprets the document layout as a whole composition. We
integrate CNNs with transformer-based architectures to jointly capture both the mi-
crostructure (local features) and the macrostructure (global context) of layout language.
Transformers, with their powerful self-attention mechanisms [249], serve as global ag-
gregators of visual semantics which is key to understanding spatial hierarchies and
overlap in complex layouts [32, 6].

Moreover, we adopt the sparse twin-attention mechanism from Guo et al. [85], en-
abling efficient semantic reasoning while preserving computational efficiency. We in-
troduce a novel inverse focal loss to speed convergence and improve segmentation on
challenging datasets like PRImA, further supporting the thesis argument that recog-
nizing layout as structured language benefits from both architectural innovation and
tailored optimization strategies. Our contributions in this work are summarized as fol-
lows: (i) Unified CNN-Transformer Architecture: We present DocSegTr, a single-stage
segmentation pipeline that is bounding-box-free and OCR-independent, emphasizing
visual-semantic layout understanding. (ii) Inverse Focal Loss: A new loss function
designed for faster convergence and better generalization on sparse and complex lay-
outs. (iii) Twin-Attention Transformer Module: Adapted from SOTR, enabling scal-
able and accurate global layout parsing as demonstrated in Figure 4.1. (iv) Layout-
Aware Data Augmentation: Inspired by LayoutParser [225], our augmentations enrich
the model’s ability to generalize across domains—scientific articles, magazines, and
historical manuscripts alike.
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ResNet-FPN

ResNet-FPN+DCN

ResNet-FPN+DCN+Transformer

Figure 4.1: Attention map comparison showcasing the progressive enhancement in
layout understanding. The baseline ResNet-FPN backbone captures coarse visual
cues, which are refined with Deformable Convolutions (DCN). The addition of trans-
former layers significantly boosts contextual reasoning, allowing the model to focus
sharply on both large and small layout elements, demonstrating the importance of
global attention for document segmentation.

4.2 Related Work

Layout elements such as tables, text blocks, headers, and figures form the syntax of
the document’s visual language. Existing approaches in Document Layout Analysis
have attempted to model this structure through various lenses, from heuristic rules
to deep learning and transformer-based reasoning. Initial efforts to parse document
layouts treated layout elements as geometric primitives, relying heavily on rule-based
strategies that mimicked hand-crafted syntactic rules. These approaches broadly fell
into top-down, bottom-up, and hybrid methodologies: Bottom-up methods [9] started
from individual pixels or small components and grouped them iteratively into coher-
ent regions—analogous to constructing syntax from character-level features. Top-down
strategies [119] recursively split documents into blocks, following assumptions like Man-
hattan layouts or fixed column structures. These systems could segment text from
graphics by applying orientation-based directional analysis. Hybrid methods [244] com-
bined both cues, balancing local flexibility with structural consistency. Despite their
intuitive design, such heuristic models lacked generalizability and often struggled with
layout variability. However, they offered early insights into the grammatical roles that
different layout elements play—particularly in structured objects like tables [70], which
motivated further research into feature-aware layout modeling.
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Treating document layout components as visual objects—localized and classified us-
ing object detection techniques became popular with the emergence of deep learning.
Building upon natural image detectors like Faster R-CNN [210], Mask R-CNN [95], and
RetinaNet [161], several notable contributions followed: DeepDeSRT [220] pioneered
table structure recognition by applying object detectors to transformed document im-
ages. Fully Convolutional Networks (FCNs) [92] and frameworks like dhSegment [190]
extended detection to pixel-level classification of multiple object types, including fig-
ures and tables. Instance segmentation methods such as Mask-RCNN [26] pushed
this further by associating each object with precise pixel masks, enabling more gran-
ular understanding of the visual syntax, particularly in complex scientific or historical
documents. To consolidate these efforts, LayoutParser [225] provided a unified deep
learning toolkit for document layout analysis. At the same time, cross-domain gen-
eralization challenges led to benchmarks like PubLayNet [291] and efforts in domain
adaptation [149], underscoring the need for layout understanding systems to interpret
structure robustly across varying document types and distributions.

The introduction of transformer architectures [249] redefined how contextual depen-
dencies are modeled—ushering in a new era for document understanding where lay-
out, text, and visual appearance could be encoded jointly. Pioneering models like
LayoutLM [274] and its successors [104] leveraged positional embeddings and mul-
timodal fusion to understand the spatial arrangement and semantics of text. These
models demonstrated state-of-the-art performance in Visual Document Understand-
ing (VDU) tasks like form parsing, key-value extraction, and receipt analysis. Donut [129],
SelfDoc [152], and SegGPT [176] explored OCR-free modeling and multimodal pre-
training, further advocating for layout as a latent modality similar to language. In
particular, [176] proposed a semantic segmentation pipeline over PubLayNet with-
out traditional text inputs. While these methods have shown promising results, many
rely heavily on OCR outputs—raising concerns around privacy, robustness, and gener-
alization. In contrast, our thesis advocates for a purely visual, OCR-independent ap-
proach, where layout is learned as a compositional structure via visual features alone.

Motivated by these trends, we present the first end-to-end transformer-based segmenta-
tion framework (DocSegTr) that models document layout as a visual language, integrat-
ing both local visual cues (via CNNs) and global semantic context (via sparse attention
transformers). Our model sidesteps bounding boxes and OCR reliance, offering a lay-
out understanding pipeline that is more fluid, generalizable, and structurally aware.
We benchmark against prior instance segmentation methods [26] and unified toolkits
like LayoutParser [225], and demonstrate superior performance on datasets that chal-
lenge both layout fidelity and semantic coherence.

4.3 DocSegTr: A Layout-Aware Visual Language Parser

In line with the thesis paradigm that layout functions as a language, our proposed
framework, DocSegTr, is designed as a visual parser that decodes documents into struc-
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Figure 4.2: Overview of the proposed DocSegTr architecture for instance-level docu-
ment layout segmentation. The model follows a single-stage pipeline that combines
multi-scale local features extracted via a CNN-FPN backbone with global contextual
reasoning via transformer layers using twin attention. The dynamic convolution-based
decoder employs category and kernel heads to produce pixel-level instance masks
without relying on bounding boxes or OCR. A final fusion module integrates multi-
scale features through layerwise aggregation to generate high-resolution layout seg-
mentation outputs.

tured semantic representations. To segment layout elements at the instance level, Doc-
SegTr employs a hybrid CNN-transformer architecture that fuses local spatial encoding
with long-range contextual reasoning—two essential capabilities for understanding
layout grammar. Unlike traditional object detection approaches that rely on bound-
ing box priors, our model adopts a fully end-to-end patch-wise segmentation strategy,
operating directly on visual cues, independent of OCR. DocSegTr decomposes the doc-
ument image into interpretable patches and assigns semantic classes to each by dy-
namically generating convolutional kernels for mask prediction. This section outlines
the complete system pipeline and its constituent modules.

4.3.1 Architecture Overview

DocSegTr consists of three PRImAry modules that correspond to key linguistic compe-
tencies for layout understanding:

• Local Feature Extractor (CNN + FPN): Acts as the perceptual layer that identifies
local syntactic units such as text spans, separators, and tables.
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• Transformer Encoder with Twin Attention: Serves as the semantic aggregator,
capturing dependencies and relations between layout units over spatial scales.

• Feature Aggregator and Dynamic Decoder: Functions as the composer, blend-
ing local and global features into unified representations and predicting segmen-
tation masks via dynamically generated convolutional filters.

The high-level structure is illustrated in Figure 4.2, and its inner components are
detailed below.

4.3.2 Modeling Layout Dependencies with Twin Attention

Understanding a document’s layout language demands reasoning over both horizontal
and vertical dependencies—akin to tracking how syntax flows across rows and columns.
We integrate a twin attention mechanism (inspired by [85]) that efficiently captures this
2D semantic structure while significantly reducing computation compared to stan-
dard self-attention [249]. Twin attention operates in two steps: (i) Row-wise atten-
tion aggregates context across horizontal layout spans (e.g., paragraph continuity).
(ii) Column-wise attention captures vertical structures (e.g., headers, hierarchical sec-
tions).

These two branches are then merged through a global attention layer, enabling the
model to build a structured interpretation of layout syntax across the document. By
embedding positional cues into patch-based feature maps from the CNN+FPN back-
bone, twin attention builds a layout-aware attention map that reflects both spatial
proximity and relational importance—highlighting objects like titles, tables, and fig-
ures differently based on context (see Figure 4.1).

4.3.3 Transformer Layer: Encoding Semantic Grammar of Layout

The transformer layer is the core module responsible for building a global representa-
tion of the document. It follows a residual architecture composed of: (i) Layer Norm →
Twin Attention → Residual Connection (ii) Layer Norm → MLP → Residual Connec-
tion . These layers model inter-object dependencies at multiple scales. Unlike typical
multi-head attention layers, our twin attention adaptation is sparse and structured,
supporting flexible layout parsing across documents of varying resolutions and hierar-
chies. Over a stack of K such transformer layers, we obtain a dense feature sequence
encoding both local texture and global semantic roles, ready to be interpreted through
task-specific heads.

4.3.4 Functional Heads: Decoding Layout Semantics

DocSegTr employs two task-specific functional heads to decode layout structure: (i)
Category Head: A multi-layer perceptron that classifies each patch into its layout cat-
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Figure 4.3: Training loss comparison across models on the PRImA dataset. DocSegTr
demonstrates the fastest convergence and lowest final loss, outperforming prior base-
lines including LayoutLMv3, LayoutParser, and the Mask-RCNN-based approach by
Biswas et al., highlighting the effectiveness of its dynamic segmentation strategy and
inverse focal loss.

egory (e.g., paragraph, figure, title). It outputs a tensor of size n×n×qc , where qc is the
number of semantic classes. (ii) Kernel Head: A linear projection head that generates
dynamic convolution kernels for each patch. These kernels are later used to produce
fine-grained instance segmentation masks.

To mitigate class imbalance, especially the overrepresentation of large layout objects,
we introduce a novel inverse focal loss:

F L(pt ) =− 1

(1+pt )γ
log(pt ) (4.1)

Here, pt represents the model’s predicted confidence score for the ground-truth class,
while γ is a tunable focusing parameter that adjusts the strength of down-weighting
confident predictions. This loss emphasizes smaller objects (i.e., low-confidence re-
gions) by inversely scaling the gradient contribution from well-predicted regions. As
shown in Figure 4.3, this loss function improves convergence speed and accuracy, par-
ticularly in low-resource datasets where smaller objects (e.g., titles) are often overshad-
owed by dominant classes.



DocSegTr 64

4.3.5 Compositional Segmentation via Mask Feature Fusion

Segmenting instances in layout requires a joint representation that integrates both lo-
cal appearance and global context. We introduce the Layerwise Feature Aggregation
Module (LFAM), which fuses: (i) High-resolution positional features from CNN lay-
ers (P2–P4) (ii) Global contextual features from the P5 transformer block. These are
combined through point-wise convolution and upsampling to produce a unified h×w
mask feature map that encodes layout compositionality at multiple levels (see Fig-
ure 4.2).

4.3.6 Instance Mask Prediction with Dynamic Convolution

Each patch in the document has an associated kernel from the kernel head. To segment
instances, we apply dynamic convolution between the learned kernels and the unified
feature map:

M h×w×n×n
f = f h×w×c ∗kn×n×b (4.2)

• f = final feature map

• k = learned kernel

• b = θ2 · c = kernel size (with θ as kernel height/width, and c as the number of
channels)

• M f = output instance masks

This operation yields a spatial mask per patch, which is then refined using Matrix NMS
[103] and optimized via Dice Loss [254], producing final instance-level layout segmen-
tations. This reflects how layout instances are composed by dynamically convolving
the learned patch-specific kernels over the shared visual-language feature map.

4.4 Experimental Validation

To assess the effectiveness of DocSegTr in decoding the visual grammar of layouts, we
conducted comprehensive evaluations across four benchmark datasets, each repre-
senting distinct layout "dialects"—from dense scientific writing to complex historical
manuscripts. Our goal is to validate the model’s ability to generalize across document
types and to understand which architectural components contribute most to its ability
to parse layout as language. All experiments, ablations, and visualizations are repro-
ducible, with code available at: https://github.com/biswassanket/DocSegTr.

https://github.com/biswassanket/DocSegTr
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PubLayNet PRImA

TableBankHistorical Japanese

Figure 4.4: Qualitative results of DocSegTr on four diverse benchmark datasets.
The model successfully segments complex layout structures in scientific articles (Pub-
LayNet), magazine-style pages (PRImA), historical handwritten documents (Historical
Japanese), and table-rich documents (TableBank), demonstrating strong generaliza-
tion across layout styles, domains, and languages.

4.4.1 Benchmark Datasets and Evaluation Metrics

The lack of standardized datasets has long hindered layout segmentation research.
However, recent public benchmarks now provide the foundation for cross-domain eval-
uation. We evaluate DocSegTr on: (i) PubLayNet: Large-scale scientific articles [291]
(text, titles, figures, tables, lists). (ii) PRImA: Historical printed books and manuscripts
with complex visual syntax. [5] (iii) Historical Japanese (HJ): Vertical scripts, hierar-
chical elements, culturally specific layout cues. [224] (iv) TableBank: Table-heavy doc-
uments from Word and LaTeX sources. [150] These datasets encompass diverse struc-
tural patterns, challenging the model to capture layout as a semantic visual language
across domains.

Evaluation Metric: We adopt the standard mean Average Precision (mAP) for instance-
level segmentation, computed over IoU thresholds [0.5–0.95]. Per-class AP is also re-
ported to evaluate performance across different layout categories.

4.4.2 Qualitative Insights: Visual Layout Parsing in Practice

Figure 4.4 presents sample segmentations by DocSegTr across the four datasets: (i)
PubLayNet : Clean, double-column scientific layouts are segmented with sharp accu-
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Table 4.1: Quantitative evaluation of DocSegTr on PubLayNet and PRImA datasets
compared to Layout Parser (LP), Biswas et al. (BSW), and LayoutLMv3 (LMv3). Best
results are in bold.

PubLayNet PRImA

Object LP BSW DSTR LMv3 Object LP BSW DSTR LMv3

Text 90.1 90.6 91.1 94.5 Text 83.1 77.2 75.2 70.8

Title 78.7 81.8 75.6 90.6 Image 73.6 68.1 64.3 50.1

Lists 75.7 82.1 91.5 95.5 Table 95.4 82.4 59.4 42.5

Figures 95.9 97.1 97.9 97.9 Math 75.6 55.6 48.4 26.5

Tables 92.8 95.1 97.1 97.9 Separator 20.6 17.2 1.8 9.6

Other 39.7 22.8 3.0 17.4

AP 86.7 89.3 90.4 95.1 AP 64.7 56.2 42.5 40.3

AP@0.5 97.2 97.7 97.9 - AP@0.5 77.6 67.3 54.2 -

AP@0.75 93.8 95.3 95.8 - AP@0.75 71.6 61.9 45.8 -

racy, including correctly separating overlapping captions and figures. (ii) PRImA : Mag-
azine pages exhibit visual clutter and small objects. Although predictions are accurate,
they are slightly blurred—likely due to class imbalance and sparse samples. (iii) His-
torical Japanese : Layouts are multi-column, densely packed, and visually noisy. Doc-
SegTr succeeds in segmenting small, overlapping regions, a testament to its contextual
modeling. (iv) TableBank: Tables are large and regular, making segmentation relatively
straightforward. DocSegTr performs with high confidence and precision.

These visual analyses support the model’s claim of being capable of learning the syn-
tactic and semantic composition of layouts, from dominant to fine-grained structures.

Table 4.2: Quantitative evaluation of DocSegTr on Historical Japanese and TableBank
datasets compared to Layout Parser (LP), Biswas et al. (BSW), and LayoutLMv3 (LMv3).
Best results are in bold.

Historical Japanese TableBank

Object LP BSW DSTR LMv3 Object LP BSW DSTR LMv3

Body 99.0 99.6 99.0 99.0 Table 91.2 91.7 93.3 92.9

Row 98.8 99.6 99.1 99.0

Title 87.6 91.3 93.2 92.9

Bio 94.5 94.4 94.7 94.7

Name 65.9 68.1 70.3 67.9

Position 84.1 86.2 87.4 87.8

Other 44.0 34.8 43.7 38.7

AP 81.6 82.0 83.1 82.7 AP 91.2 91.7 93.3 92.9

AP@0.5 - 89.0 90.1 - AP@0.5 94.2 94.9 98.5 -

AP@0.75 - 87.8 88.1 - AP@0.75 92.1 92.8 94.9 -
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Table 4.3: Ablation study evaluating the impact of architectural components within the
DocSegTr framework on PRImA. Best results per section are highlighted in bold.

Model Configuration AP AP@0.5 AP@0.75

ResNet vs ResNeXt

ResNet-101-FPN 20.12 31.32 16.78

ResNeXt-101-FPN 32.59 58.62 29.73

Deformable Convolution Networks (DCN)

ResNeXt-101-FPN 32.59 58.62 29.73

ResNeXt-101-FPN (+DCN) 33.21 49.13 27.39

Importance of Transformer for Contextual Reasoning

without transformer 5.21 7.12 3.22

without self-attention heads (with transformer layers) 29.14 41.23 20.22

DocSegTr (Overall model) 40.31 59.72 29.54

4.4.3 Quantitative Results Across Layout Domains

As shown in Table 4.1 and Table 4.2 , DocSegTr was comprehensively evaluated across
four diverse layout domains (PubLayNet, PRImA, Historical Japanese, and TableBank)
demonstrating strong generalization and adaptability. It achieved near-perfect accu-
racy on structured scientific layouts (PubLayNet), particularly excelling in list, figure,
and table segmentation, showcasing the strength of transformer-based contextual rea-
soning with the utility of its twin-attention transformer decoder and multi-scale fu-
sion. In magazine-style layouts (PRImA), while figures and tables were well-segmented,
performance dropped for sparse or ambiguous classes like Separator and Others, re-
flecting limitations in handling visually cluttered designs. For densely packed and de-
graded manuscripts (Historical Japanese), DocSegTr outperformed prior models, af-
firming its robustness in parsing non-linear and high-density content. Finally, in the
table-rich TableBank dataset, the model maintained top performance, though results
suggest that text-aware models like LayoutLMv3 [104] may hold a slight edge in cap-
turing complex table structures, emphasizing a potential complementarity between
layout and textual cues.

4.4.4 Ablation Studies: Dissecting the Layout Decoder

To understand which components contribute most to layout parsing, we performed
detailed ablation studies as shown in Table 4.3 on the PRImA dataset—a setting that
stresses learning from fewer, more varied samples. (i) CNN Backbone Variants: Switch-
ing from ResNet-101 to ResNeXt-101 improves AP due to enhanced representation of
local syntax. Introducing Deformable Convolutions (DCNs) yields further gains, as
they help adapt the convolutional filters to irregular layout shapes—especially useful
in historical or handwritten documents. (ii) Transformer and Attention: Removing
the transformer entirely leads to a collapse in AP ( 5%), confirming the importance
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of global contextual reasoning in layout understanding. Adding transformer layers
without self-attention improves performance moderately, but integrating our twin-
attention mechanism significantly enhances segmentation. This setup captures hor-
izontal and vertical dependencies, which mirrors how humans understand layout by
scanning both left-to-right and top-to-bottom. (iii) Attention Map Visualization: As
illustrated in Figure 4.1, traditional backbones (ResNet-FPN) emphasize large, domi-
nant objects while missing subtle layout elements. DCNs refine boundaries but lack
semantic awareness. Only with transformers does DocSegTr accurately attend to both
large and small instances—evidence of its structured layout parsing ability. (iv) Cross-
Domain Transfer: To evaluate generalization, we directly transferred weights from
DocSegTr pretrained on PubLayNet to the smaller PRImA dataset—without fine-tuning.
Even in this zero-shot setting, the model achieves 15% mAP, demonstrating that Doc-
SegTr internalizes a generalized layout grammar that can be reused across domains.

4.4.5 Implementation Details

DocSegTr is trained using SGD with Nesterov momentum (0.9) and a warm-up sched-
ule of 1000 iterations. The initial learning rate is 0.001, reduced at 210K and 250K steps.
Models are trained for 300K iterations on 2× NVIDIA A40 GPUs (48GB) using PyTorch
and Detectron2, with a batch size of 8. Training each model takes approximately 4–5
days.

4.5 Conclusion and Future Directions

In this chapter, we proposed DocSegTr, a transformer-based instance segmentation
framework designed to parse the visual language of documents in a bounding-box-
free, OCR-independent manner. Built on a hybrid CNN-transformer architecture, Doc-
SegTr decodes document layouts into fine-grained structural elements by combining
local syntactic features with global semantic reasoning. Across multiple benchmark
datasets, it has demonstrated strong generalization and state-of-the-art segmentation
performance, especially in handling large and complex document objects.

Yet, this work also reveals some key limitations that challenge the goal of universal
layout parsing:

• Domain Sensitivity: DocSegTr, like most supervised segmentation models, ex-
hibits performance drops when applied to unseen domains with different layout
"dialects" (e.g., transitioning from scientific reports to historical or artistic con-
tent).

• Data Dependency: Training robust layout models still requires substantial anno-
tated data, which may not be available for specialized or low-resource domains.
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• Contextual Reasoning Limitations: While transformers capture high-level rela-
tionships, smaller layout components and subtle visual cues remain underrep-
resented, especially under distribution shifts or limited supervision.

These limitations highlight the need for adaptive and data-efficient layout parsing sys-
tems—models that not only understand the language of layout but can adapt to new
dialects and learn from sparse examples. The next chapter of this thesis addresses
these open challenges through two key directions: (i) SwinDocSegmenter introduces a
domain-adaptive layout segmentation model based on hierarchical transformers, ca-
pable of transferring learned layout grammars across visually divergent domains. (ii)
SemiDocSeg explores semi-supervised learning to reduce reliance on annotated data,
enabling layout understanding in low-resource settings by treating pseudo-labels as
hypotheses to refine the layout syntax. Both works build upon the architectural foun-
dations and visual grammar framework introduced in DocSegTr.
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Chapter 5

Advancing Robustness in Document
Layout Segmentation: From
SwinDocSegmenter to SemiDocSeg

What we see is not what we look at—it is what we know how to look for.

– John Berger, Ways of Seeing

This chapter presents a comprehensive advancement in document layout segmen-

tation, transitioning from the supervised SwinDocSegmenter to the semi-supervised

SemiDocSeg framework. Motivated by the limitations of purely supervised learn-

ing in handling diverse document types, we design a transformer-based segmen-

tation model that leverages co-occurrence priors and weak support queries to en-

hance performance in low-annotation regimes. SwinDocSegmenter provides a strong

supervised backbone, while SemiDocSeg introduces support-guided learning and

semantic class priors to address label scarcity and distribution imbalance. Through

this work, we highlight the importance of structural priors and semi-supervision as

a pathway toward scalable, robust, and context-aware document understanding.

5.1 Introduction

Documents are not merely containers of text and images — they follow a visual lan-
guage defined by spatial hierarchies, alignment cues, and multimodal composition.
Much like spoken or written language, document layouts follow a set of syntactic and
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grammatical rules, from heading hierarchies to caption placement, margin consis-
tency, and table structure. These visual grammars guide how we perceive and interpret
information, and understanding them is at the core of IDP systems.

In the preceding chapter, we introduced DocSegTr [24], a bottom-up instance-level
segmentation transformer that demonstrated strong performance across diverse doc-
ument layout domains. While DocSegTr offered a box-free segmentation approach
with powerful global reasoning, it showed limitations in three key aspects: (1) lack of
mutual guidance between object detection and segmentation modules; (2) difficulty in
segmenting small or low-frequency object classes; and (3) limited adaptability to new
domains without significant annotated data. These challenges become especially ap-
parent when dealing with complex magazine layouts, noisy historical scans, or layouts
from unseen domains.

To overcome these shortcomings, this chapter presents SwinDocSegmenter — a uni-
fied transformer framework that treats layout parsing as a joint reasoning problem
over visual tokens, capturing both the semantics and syntax of document structure.
By leveraging Swin Transformers [169, 168] as the backbone, the model builds hier-
archical feature maps that preserve the local and global grammatical rules of layout
— akin to parsing a sentence with both word-level and sentence-level dependencies.
The introduction of anchor-based dynamic queries allows segmentation to guide de-
tection and vice versa, mimicking how readers use spatial cues and prior knowledge to
contextualize ambiguous layout regions.

Inspired by recent advances in masked denoising [144], we introduce a contrastive de-
noising training strategy to enhance the model’s sensitivity to rare or low-frequency
layout tokens — akin to refining language models for better understanding of uncom-
mon syntactic constructs. To promote domain robustness, we adopt a hybrid bipartite
matching scheme [144] that enables zero-shot transfer from pretrained vision back-
bones (e.g., MS-COCO [162]) to layout tasks, bypassing the need for large-scale domain-
specific annotation. This capability allows the model to adapt to new visual dialects
such as historical manuscripts [224] or magazines [43, 5] without retraining from scratch.

To address scalability and reduce dependency on annotated corpora, we propose Semi-
DocSeg, a semi-supervised framework guided by class co-occurrence. Inspired by cog-
nitive models of contextual reasoning [128], we estimate the joint probabilities be-
tween frequent and rare layout elements. Cropped support examples containing both
base and novel class patterns are used as implicit prompts, allowing the model to rea-
son about the presence and position of novel tokens based on known ones — a visual
analog to zero-shot and few-shot learning. Unlike meta-learning or prompt tuning,
this approach avoids labeled support or natural language descriptions, relying instead
on layout structure itself. This strategy is well-aligned with semi-supervised learning
paradigms [18, 292], and has the dual benefit of reducing false positives and increasing
robustness to occlusion, crucial towards production-grade document parsing.

The overall contributions of this chapter can be summarized as follows: (i) We intro-
duce SwinDocSegmenter, a unified instance-level layout segmentation model combin-
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ing Swin Transformer features with anchor-based content queries, achieving stronger
task synergy between detection and segmentation. (ii) We propose a contrastive de-
noising training scheme to improve performance on rare or noisy layout elements and
enhance representation robustness. (iiI) We implement a hybrid bipartite matching
strategy for effective domain adaptation, enabling transfer from natural image pre-
training to diverse document domains. (iv) We propose SemiDocSeg, a novel semi-
supervised framework that leverages co-occurrence-aware support crops for contex-
tual layout reasoning and generalization to unseen or novel classes without needing
explicit labels.

5.2 Related Work

Transformers in Visual Document Understanding. Recent advances in Visual Docu-
ment Understanding (VDU) increasingly treat layout as a visual language—where doc-
uments encode structured information through a learned grammar of spatial, textual,
and visual cues. Transformer-based architectures, with their self-attention and po-
sitional embeddings, have become central to modeling such layout-aware represen-
tations [249]. DiT [147] achieves strong results on large-scale datasets through self-
supervised pretraining but fails to generalize to visually diverse domains like PRImA.
Similarly, StructText [157] fuses structured layout and text but struggles with seman-
tically similar content blocks. Encoder-decoder models like TILT [199] and Layout-
Transformer [278] improve joint modeling of text and layout but are highly reliant on
OCR quality and large-scale annotations. LayoutLMv3 [104] further unifies text, lay-
out, and visual features at the token level, achieving strong performance on bench-
mark tasks. However, it exhibits pretraining bias, limited domain shift adaptability,
and lacks robustness on low-resource datasets with sparse class distributions. Doc-
SegTr [24] introduces a hybrid CNN-transformer pipeline that converges well in low-
data regimes, but lacks unified reasoning across detection and segmentation. Other
joint-pretraining models like DocFormer [6], XYLayoutLM [84], and UniDoc [82] of-
fer strong baselines for VDU tasks but still underperform in layout generalization par-
ticularly in class imbalance scenarios. In contrast, our proposed SwinDocSegmenter
addresses these limitations through unified instance segmentation, enhanced query
selection, and domain-adaptive training—modeling documents as structured visual
language beyond token-level text.

Semi-Supervised Document Layout Segmentation. Despite the increasing interest in
document intelligence, semi-supervised learning (SSL) for document layout analysis
(DLA) remains underexplored. Most existing works on semi-supervised vision tasks fo-
cus on handwritten document segmentation or invoice detection [56, 156], and fail to
generalize across diverse layout domains or handle instance-level segmentation. How-
ever, for real-world scenarios where annotated layouts are scarce or evolving, semi-
supervised techniques are essential to scale layout parsing without exhaustive manual
labeling. We categorize prior semi-supervised strategies into three paradigms: weakly
supervised, zero-shot, and few-shot.
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Weakly supervised methods aim to reduce reliance on pixel-level annotations, often
leveraging pseudo labels or proposal propagation [?, ?]. Yet, multi-stage pipelines in-
volving teacher-student training or iterative refinement [262, 127] are computationally
heavy and poorly suited for high-resolution document inputs. In contrast, our work
pursues a one-stage transformer-based alternative tailored to dense and structured
layouts. Zero-shot methods attempt to segment unseen classes using semantic priors
or text descriptions [283, 260]. While effective in open-set scenarios, such approaches
often require pretrained vision-language models or external captions, making them
less viable for domain-specific documents lacking rich textual metadata. Few-shot
methods explore instance-level adaptation from limited labeled samples [69, 285]. How-
ever, many rely on episodic training, pre-specified support sets, or contrastive reweight-
ing [121, 258]. Meta-DETR [285], for example, introduces a transformer-based few-shot
segmentation model, but requires two-stage training and lacks dynamic class discov-
ery.

To address these limitations, our SemiDocSeg framework proposes a co-occurrence
guided semi-supervised strategy: we exploit object co-occurrence distributions to dy-
namically encode support instances of novel classes without explicit labeling. These
visual anchors are embedded into the segmentation transformer as additional queries,
leveraging contextual layout dependencies to improve generalization. This setup aligns
with the layout-as-language perspective (i.e. modeling documents not as static anno-
tations, but as evolving grammars of visual and spatial co-occurrence). Unlike previous
methods, our strategy supports open-vocabulary layout classes, eliminates the need
for multi-stage retraining, and enables robust adaptation to underrepresented struc-
tures. As demonstrated in our experiments, this method bridges the gap between zero-
shot flexibility and few-shot precision offering a principled, one-stage semi-supervised
alternative for structured layout parsing.

5.3 Layout-Aware Segmentation Framework

5.3.1 Supervised Baseline: SwinDocSegmenter

The proposed SwinDocSegmenter introduces a unified end-to-end transformer-based
architecture designed to interpret the visual grammar of document layouts using hier-
archical representations and semantic-aware decoding. As illustrated in Figure 5.1, the
architecture is composed of three main components: a hierarchical Swin Transformer
backbone [169], a Transformer encoder-decoder pair, and a segmentation branch guided
by class instance mapping.

Feature Extraction via Swin Transformer. The Swin Transformer encodes the input
document image into multi-scale visual tokens through local window-based self-attention
and patch hierarchy, enabling efficient modeling of both local layout structures and
global document syntax. These features are then flattened and downsampled to re-
duce memory cost before being fed into the encoder.
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Figure 5.1: SwinDocSegmenter architecture. A unified transformer-based framework
for document layout segmentation, combining Swin Transformer features with en-
hanced query selection, hybrid bipartite matching, and contrastive denoising. The
model aligns pixel embeddings and semantic queries for instance-level prediction, en-
abling domain-shift adaptability and robust visual grammar modeling.

Encoder-Decoder Design. The encoder enhances these visual embeddings using posi-
tion aware convolutional encodings. We employ a unified mixed query selection strat-
egy. The classification and detection heads predict class-wise confidences, from which
top-ranked features are selected as content queries. Anchors are initialized using box
predictions derived from segmentation masks, bridging pixel-level semantics and region-
level geometry. The decoder applies deformable attention layers [270] with Contrastive
Denoising Training (CDN) [286], handling hard negatives and ambiguous layout in-
stances via layer-wise gradient propagation. The hybrid decoder outputs are matched
to ground truth masks using a hybrid bipartite matching loss involving class, localiza-
tion, and mask similarity.

LCDN =
N∑

j=1

(
Lcls(q j ,c j )+Lreg(b j , b̂ j )+Lmask(m j ,m̂ j )

)
(5.1)

Here, q j denotes the output query embedding from the decoder for the j th instance.
c j , b j , and m j correspond to the ground truth class label, bounding box, and binary

segmentation mask respectively, while b̂ j and m̂ j denote the predicted bounding box
and mask for the same instance. The loss function is composed of three terms: the
classification loss Lcls (typically cross-entropy or focal loss), the regression loss Lreg
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(e.g., L1 or G I oU loss), and the segmentation loss Lmask (e.g., Dice loss or Binary Cross-
Entropy). The total loss is accumulated across all N matched object queries using a
bipartite matching algorithm.

Segmentation Output. A Pixel Embedding Map (PEM) is constructed by fusing high-
resolution features from the Swin backbone and encoded Transformer tokens. Final
instance segmentation is performed through a dot product between learned query em-
beddings and the PEM, enabling end-to-end learning of document instances. Eq. 5.2
details the fusion mechanism used in mask prediction.

M̂i =σ
(
Q⊤

i ·PEM
)

(5.2)

Here, Qi ∈ Rd denotes the i th decoder query embedding, and PEM ∈ Rd×H×W repre-
sents the pixel embedding map, obtained by fusing multi-scale features from both the
Swin Transformer backbone and the Transformer encoder. The function σ(·) is the
element-wise sigmoid activation used to generate pixel-wise probabilities. The output
M̂i ∈RH×W is the predicted binary mask corresponding to instance i .

Projection Heads and Contrastive Learning. The decoder performance is strength-
ened using low-level and high-level projection heads. The low-level projection head
Llow (Eq. 5.3) enforces fine-grained visual distinctions using a contrastive loss, while
the high-level projection head Lhigh (Eq. 5.4) introduces class-level prototypes for se-
mantic regularization.

Llow =− log
exp(sim(zi , z j )/τ)

N∑
k=1

exp(sim(zi , zk )/τ)

(5.3)

Here, zi and z j are the projected feature embeddings corresponding to a pair of pos-
itive instances. The function sim(·, ·) denotes the cosine similarity between embed-
dings, τ is a temperature scaling factor that controls the sharpness of the distribution,
and N is the total number of projected embeddings in the batch used for normaliza-
tion.

Lhigh =−
C∑

c=1
yc log

exp(sim(qi , pc )/τ)
C∑

k=1
exp(sim(qi , pk )/τ)

(5.4)

Here, qi is the query embedding corresponding to instance i , and pc denotes the pro-
totype embedding for class c. The indicator variable yc represents the ground-truth
label for class c, and C is the total number of classes considered in the classification
task.
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Figure 5.2: The SemiDocSeg Setup. We introduced a support set and extracted the
features with shared Swin Transformer backbone. Later on, we utilize a semantic em-
bedding network with utilizing the co-occurrence information.

The overall training objective of the SwinDocSegmenter unifies the segmentation su-
pervision with both fine-grained and semantic-level contrastive signals. This is achieved
through a composite loss function that balances instance mask prediction with two
contrastive regularization terms (λ1 and λ2 as shown in eq. 5.5 :

Ltotal =Lseg +λ1 ·Llow +λ2 ·Lhigh (5.5)

5.3.2 Semi-Supervised Extension: SemiDocSeg

To improve generalization under low-data regimes and domain shifts, we extend Swin-
DocSegmenter with a semi-supervised strategy, termed SemiDocSeg as illustrated in
Figure 5.2, that leverages a visual-semantic co-occurrence prior for query conditioning
and label propagation.

Support Set Integration. A shared Swin backbone is used to extract features from both
support and query images. A co-occurrence matrix is computed over the labeled base
dataset to identify semantic affinity between classes. This matrix guides the selection
of novel and base classes used in training, allowing high co-occurrence classes to be
transferred via pseudo-labeled support examples (see Figure 5.3).

Class-Specific Query Generation. Class-conditional queries are constructed by merg-
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Figure 5.3: Computation of Co-Occurrence Matrix. The initial class-wise count ma-
trix is transformed into a symmetric co-occurrence matrix via conditional and max
marginalization. The resulting prior encodes inter-class layout dependenciesß. Red
boxes indicate the classes have high co-occurrence with the rest

ing semantic vectors (from the support set) with the decoder’s object queries. This
allows the decoder to specialize in detecting novel instances despite the absence of
direct annotations . Semantic projections are handled by a low-level projection head
that embeds support semantics into the visual space as shown in eq. 5.6.

qc = fproj( fbackbone(xc )) ·Pc (5.6)

where xc is the support image for class c, fproj is the low-level projection, and Pc is the
co-occurrence prior vector for class c.

Modified CDN and Bipartite Matching. The CDN loss is extended to operate per class,
optimizing three separate heads: regression, classification, and contrastive. In con-
trast to the fully supervised case, here each query carries a class-specific identity, and
only matches its own class anchors. Bipartite matching (Eq. 8) is modified to consider
class-specific losses ∆C j , enforcing tighter coupling between visual instance and class
semantics as shown in eq. 5.7.

∆C j =λcls ·Lcls(y j , ŷ j )+λreg ·Lreg(b j , b̂ j )+λcon ·Lcon(z j , ẑ j ) (5.7)

where y j , b j , and z j are the class, box, and feature for the j th query; and ŷ j , b̂ j , ẑ j are
the predicted counterparts.

The final training loss aggregates across labeled and pseudo-labeled data (refer eq. 5.8:

Ltotal =L labeled
CDN +α ·L pseudo

CDN +β ·Lcontrastive (5.8)

where L CDNlabeled denotes the loss computed over fully labeled queries using the
three-head CDN objective, L CDNpseudo corresponds to the loss on pseudo-labeled
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queries propagated from the support set, and Lcontrastive enforces semantic consis-
tency between query and support embeddings. The scalars α and β act as balancing
coefficients for the semi-supervised terms.

5.4 Experimental Validation

5.4.1 Benchmark Datasets and Evaluation Metrics

To evaluate the capability of SwinDocSegmenter [13] and its semi-supervised exten-
sion SemiDocSeg [15] in interpreting the visual syntax and semantics of document lay-
outs, we perform extensive experiments across four diverse benchmarks: PRImA [43,
5], HJDataset [224], TableBank [150], and DocLayNet [197]. Each dataset reflects a dif-
ferent dialect of visual communication—from catalog-style object-centric layouts to
dense, multilingual scientific and historical formats. Our experiments aim to demon-
strate (i) how SwinDocSegmenter benefits from hierarchical vision backbones for ro-
bust segmentation under full supervision, and (ii) how SemiDocSeg successfully trans-
fers layout priors across domains and enhances generalization in low-data regimes
by modeling co-occurrence-driven class semantics. The complete codebase and pre-
trained models are available at: https://github.com/ayanban011/SwinDocSegmenter.

Evaluation: For evaluation, we adopt standard instance-level segmentation metrics
including mean Average Precision (mAP) at multiple IoU thresholds (e.g., AP@0.50,
AP@0.75), Dice coefficient, and IoU, alongside per-class accuracy and Macro F1-score
in low-data or semi-supervised scenarios. This unified evaluation strategy allows us to
quantify both spatial localization and semantic understanding, key aspects of decod-
ing the visual grammar of documents.

5.4.2 Qualitative Insights: Visual Layout Parsing in Practice

Figure 5.4 showcases the qualitative results of the proposed SwinDocSegmenter across
four distinct document layout benchmarks, each presenting unique structural and vi-
sual challenges. The visualizations confirm the model’s capacity to generalize and ac-
curately decode a wide variety of layout styles by leveraging only visual cues. In Fig-
ure 5.4(a), we observe the model’s performance on the PRImA dataset, which is com-
posed of richly designed magazine pages. Despite the artistic and cluttered nature
of these layouts, SwinDocSegmenter successfully distinguishes between visually sim-
ilar elements like furniture images and textual annotations. The segmentation masks
tightly align with object boundaries, and even smaller components such as legends
and side notes are precisely isolated—demonstrating robustness to scale and layout
density. Figure 5.4(b) illustrates outputs on the Historical Japanese (HJ) dataset, char-
acterized by vertically aligned handwritten scripts and complex page arrangements.
These historical manuscripts exhibit a highly structured yet non-standard layout with
tight interline spacing and no modern separators. SwinDocSegmenter successfully

https://github.com/ayanban011/SwinDocSegmenter
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Figure 5.4: Sample document layouts from benchmark datasets used in our study.
(a) PRImA: Scanned magazine pages with diverse furniture elements and decorative
layouts. (b) HJ: Historical Japanese books exhibiting complex multi-column structures
and dense text blocks. (c) TableBank: Academic documents featuring tabular content
in multiple languages and layouts. (d) DocLayNet: Modern digital documents with var-
ied design, including articles, advertisements, and mobile interfaces. These datasets
collectively represent diverse layout structures and domains essential for robust docu-
ment layout segmentation.

segments individual blocks of vertical text, maintaining accurate separation even in
densely populated regions. This showcases the model’s ability to adapt to culturally
and linguistically diverse layout grammars. Figure 5.4(c) focuses on TableBank, which
contains scanned and digital documents with table-centric layouts. The model ex-
hibits outstanding table boundary delineation, even in the presence of visually subtle
grid lines and varied font styles. It precisely captures table structure while avoiding
spillover into surrounding text, confirming its sensitivity to intra-document structure
variation. Finally, Figure 5.4(d) presents results on DocLayNet, a recently proposed in-
dustrial document benchmark featuring a diverse mixture of posters, forms, and multi-
column reports. The model effectively segments overlapping elements such as head-
ers, footers, captions, and images—even in visually complex or heavily decorated lay-
outs. Notably, it maintains fine-grained boundaries across small entities like footnotes
or floating buttons (e.g., mobile UI icons), demonstrating resilience to noisy back-
grounds and decorative elements. Together, these examples highlight the strong vi-
sual generalization capabilities of SwinDocSegmenter. Its ability to handle structured,
unstructured, and culturally diverse layouts using only visual features positions it as a
strong visual-only baseline for document layout understanding
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Table 5.1: Performance comparison of SwinDocSegmenter against state-of-the-art
methods on the PubLayNet and PRImA benchmarks. Bold values indicate the best re-
sult per category.

PubLayNet PRImA

Object LP DocSegTr LMv3 Swin Object LP DocSegTr LMv3 Swin

Text 90.1 91.1 94.5 94.55 Text 83.1 75.2 70.8 87.72

Title 78.7 75.6 90.6 87.15 Image 73.6 64.3 50.1 75.92

Lists 75.7 91.5 95.5 93.03 Table 95.4 59.4 42.5 49.89

Figures 95.9 97.9 97.9 97.91 Math 75.6 48.4 46.5 78.19

Tables 92.8 97.1 97.9 97.25 Separator 20.6 1.8 9.6 27.56

– – – – – Other 39.7 3.0 17.4 7.05

AP 86.7 90.4 95.1 93.72 AP 64.7 42.5 40.3 54.39

AP@0.5 97.2 97.9 – 97.94 AP@0.5 77.6 54.2 – 69.31

AP@0.75 93.8 95.8 – 96.28 AP@0.75 71.6 45.8 – 52.97

5.4.3 Quantitative Results on Supervised Benchmarks

To validate the effectiveness of SwinDocSegmenter, we conducted comprehensive eval-
uations across four benchmark datasets: PubLayNet, PRImA, Historical Japanese (HJ),
and TableBank. Each dataset reflects a distinct layout "dialect", ranging from dense
modern layouts to structured historical manuscripts. The results demonstrate that our
model achieves strong performance in segmenting visually rich layouts, despite relying
solely on visual cues and without any OCR-derived text embeddings.

As shown in Table 5.1, SwinDocSegmenter attains competitive or superior performance
compared to LayoutLMv3 [104] and LayoutParser [225], both of which incorporate tex-
tual signals during training. On PubLayNet, it matches or outperforms these methods
across most categories, particularly excelling in detecting text and list elements. While
performance for the "Title" class slightly lags behind (likely due to missing text seman-
tics), SwinDocSegmenter surpasses LayoutLMv3 in both AP@0.5 and AP@0.75, de-
spite using only visual features. It also rivals DiT [147] and UDoc [82] (well-established
multimodal baselines) without requiring large-scale pretraining. In the case of PRImA,
which features historical magazine layouts with smaller objects, LayoutLMv3 under-
performs due to weak visual generalization. SwinDocSegmenter overcomes this limi-
tation and sets a new benchmark in detecting fine-grained regions like separators and
mathematical content. The only exception lies in the "Other" category, which lacks
clear visual structure, making it inherently ambiguous without auxiliary text cues. Fur-
ther insights are evident in Table 5.2. On the Historical Japanese dataset, our model
marginally surpasses DocSegTr [24] overall but shows marked improvement in diffi-
cult semantic categories such as "Name" and "Position". On TableBank, SwinDocSeg-
menter achieves a significant leap (+5% AP) over all previous methods, establishing
itself as a strong table detector for documents with minimal layout variability.
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Table 5.2: Evaluation of SwinDocSegmenter on the Historical Japanese and TableBank
datasets. Notable improvements are observed in key semantic categories.

Historical Japanese TableBank

Object LP DocSegTr LMv3 Swin Object LP DocSegTr LMv3 Swin

Body 99.0 99.0 99.0 99.72 Table 91.2 93.3 92.9 98.04

Row 98.8 99.1 99.0 99.0 – – – – –

Title 87.6 93.2 92.9 89.5 – – – – –

Bio 94.5 94.7 94.7 86.26 – – – – –

Name 65.9 70.3 67.9 83.8 – – – – –

Position 84.1 87.4 87.8 93.0 – – – – –

Other 44.0 43.7 38.7 40.57 – – – – –

AP 81.6 83.1 82.7 84.55 AP 91.2 93.3 92.9 98.04

AP@0.5 – 90.1 – 90.78 AP@0.5 – 98.5 – 98.95

AP@0.75 – 88.1 – 88.22 AP@0.75 – 94.9 – 98.90

Table 5.3: Performance comparison on DocLayNet benchmark. MR: MaskRCNN, FR:
FasterRCNN, YV5: YOLOv5. Results are reported in terms of Average Precision (AP) per
class.

Class MR FR YV5 Ours

Caption 71.5 70.1 77.7 83.56

Footnote 71.8 73.7 77.2 64.82

Formula 63.4 63.5 66.2 62.31

List-item 80.8 81.0 86.2 82.33

Page-footer 59.3 58.9 61.1 65.11

Page-header 70.0 72.0 67.9 66.35

Picture 72.7 72.0 77.1 84.71

Section-header 69.3 68.4 74.6 66.50

Table 82.9 82.2 86.3 87.42

Text 85.8 85.4 88.1 88.23

Title 80.4 79.9 82.7 63.27

Mean AP 73.5 73.4 76.8 76.85

Finally, we introduce SwinDocSegmenter as the first Transformer-based layout seg-
mentation model evaluated on DocLayNet, a large-scale industrial dataset [197]. Re-
sults in Table 5.10 reveal that our method competes robustly against CNN-based archi-
tectures such as MaskRCNN and FasterRCNN, outperforming them on several struc-
tural components including "Caption", "Picture", "Page-footer", and "Text". These
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gains underscore SwinDocSegmenter’s visual grammar decoding capabilities, without
relying on OCR signals, making it a viable foundation for layout understanding in di-
verse document types.

5.4.4 Ablation Studies: Dissecting Model Design Choices

To rigorously evaluate the architectural and training decisions of SWINDOCSEGMENTER,
we conduct extensive ablation studies centered around five key aspects: the feature ex-
traction backbone, input image resolution, the number of decoder queries, the choice
of learning objectives, and pre-training initialization. Unless otherwise specified, all
ablations are performed on the PRImA benchmark due to its compact size and layout
complexity.

Impact of Feature Extraction Backbone. We begin by analyzing the effect of the back-
bone on instance-level segmentation performance. As shown in Table 5.4, convolu-
tional backbones such as ResNet and ResNeXt focus well on local features but lack the
global context needed for understanding larger layout regions. Vision Transformers
(ViTs) introduce self-attention but require considerable training data to reach stable
generalization. Swin Transformers offer a trade-off through hierarchical representa-
tions, with SWIN-L achieving the best performance, outperforming even ViT-B by a
margin of nearly 8

Table 5.4: Effect of Feature Extraction Backbone on PRImA. Bold indicates best perfor-
mance.

Backbone No. of Parameters AP AP@50 AP@75 APS APM APL

ResNet-50 52M 36.065 52.362 41.112 20.152 23.327 38.142

ResNet-101 102M 37.112 54.982 41.872 22.242 26.153 41.986

ResNeXt-101 104M 38.405 58.405 41.916 25.982 29.364 44.129

ViT-S 126M 40.342 59.763 42.158 29.176 33.129 48.526

ViT-B 164M 46.128 62.689 47.358 31.389 33.458 50.508

Swin-T 178M 49.349 65.956 50.317 34.128 36.909 52.049

Swin-L 223M 54.393 69.313 52.965 39.327 42.061 60.142

Impact of Input Image Resolution. Given the model’s size, input resolution plays a
significant role in training stability and layout fidelity. Table 5.5 demonstrates that
performance improves substantially with higher resolutions, as coarse features in low-
resolution inputs limit the model’s discriminative ability. However, memory constraints
prevented us from experimenting beyond 1024×1024 resolution.

Impact of Decoder Queries. The number of decoder queries in a DETR-style model
determines how many object proposals are learned. Table 5.6 reveals that using fewer
queries (e.g., 100) reduces model expressiveness, while 300 queries strikes a balance
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Table 5.5: Effect of Input Image Resolution. Bold indicates best.

Resolution AP AP@50 AP@75 APS APM APL

256×256 45.02 60.19 46.26 28.37 32.46 53.57

512×512 50.13 66.24 52.32 32.24 36.91 54.15

1024×1024 54.39 69.31 52.97 39.33 42.06 60.14

between recall and memory constraints.

Table 5.6: Effect of Number of Decoder Queries. Bold indicates best.

Queries AP AP@50 AP@75 APS APM APL

100 50.02 65.19 52.26 32.37 36.46 53.97

150 50.13 66.24 52.32 32.24 36.91 54.15

200 51.39 67.31 52.77 37.31 41.01 60.11

250 52.09 68.21 52.96 37.51 42.06 60.13

300 54.39 69.31 52.97 39.33 42.06 60.14

Impact of Loss Objectives. We also evaluate combinations of reconstruction and clas-
sification objectives. The L1 + Focal loss combination yields the best performance. The
L1 component promotes sparse and precise bounding masks, while Focal Loss down-
weights easy negatives, encouraging learning from hard examples.

Effect of Pre-training Biases. Lastly, we examine how the pre-training dataset in-
fluences model performance (Table 5.7). When pre-trained on PubLayNet [291], the
model shows strong performance for overlapping classes (e.g., Table) but struggles
with rare classes like Separator. In contrast, MS-COCO [162] pretraining yields better
generalization and balance due to its diverse query-space and task-agnostic pretrain-
ing.

Table 5.7: Pre-training Biases: PubLayNet vs. MS-COCO. Bold indicates best.

Pretraining
Overall Class-wise (PRImA)

AP AP@50 AP@75 APS APM APL Text Image Table Math Sep. Other

PubLayNet 49.36 64.43 51.45 32.94 34.07 54.21 85.55 72.51 70.68 56.05 8.55 2.83

MS-COCO 54.39 69.31 52.97 39.33 42.06 60.14 87.72 75.92 49.89 78.19 27.56 7.05

5.4.5 Evaluating Semi-Supervised Settings with SEMIDOCSEG

To understand the generalization capability of our semi-supervised setup, we begin by
visualizing the labeled training instances across two datasets. As shown in Table 5.8,
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Table 5.8: Training Instances Distribution in Semi-Supervised Setup (PRImA and Do-
cLayNet)

PRImA DocLayNet

Category #Instances Category #Instances Category #Instances Category #Instances Category #Instances Category #Instances

TextRegion 0 ImageRegion 0 TableRegion 0 Caption 0 Picture 0 Table 0

MathsRegion 27 SeparatorRegion 477 OtherRegion 34 Text 0 Footnote 5964 Formula 22367

– – – – – – List-item 170889 Page-footer 64717 Page-header 50700

– – – – – – Section-header 18003 Title 4423 – –

Total 538 Total 337,063

several class categories (e.g., TextRegion, ImageRegion, TableRegion) have no anno-
tated training samples and are only seen during testing. These novel classes are indi-
rectly learned through co-occurrence priors and support set propagation, demonstrat-
ing that our framework enables scalable semi-supervised learning without modifying
model complexity.

We evaluate the proposed SEMIDOCSEG approach under three setups:

Full Test Set Evaluation (Labeled + Unlabeled). In this setting, the model is evaluated
on the complete test set. As shown in Table 5.9, performance on PRImA drops by ap-
proximately 9% compared to the fully supervised baseline due to limited labels and
PRImA’s small training size. This illustrates the overfitting risk for large models (223M
parameters) when training on scarce annotations. However, the performance on Do-
cLayNet (Table 5.10) remains competitive, showing only 3% drop—attributed to its
abundance of weakly supervised signals through support queries and co-occurrence.

Table 5.9: Performance on PRImA Dataset under Semi-Supervised Settings

Text Image Table Maths Separator Other AP AP@50 AP@75 APS APM APL

Overall 81.2 70.5 40.6 53.3 26.1 3.7 45.9 61.6 48.8 39.0 38.7 47.9

Base – 0.1 – 45.3 10.2 0.4 9.3 15.4 7.7 1.0 2.6 10.4

Novel 70.0 50.6 12.8 – – – 25.9 38.9 26.3 26.7 26.6 29.2

Supervised-Only Evaluation (Labeled Classes Only) This setup evaluates performance
exclusively on labeled classes. As visible in both datasets, performance on PRImA
remains modest due to data scarcity (e.g., only 27–34 training instances for certain
classes). This highlights overfitting risks for large transformers and motivates future
distillation efforts. In contrast, DocLayNet performs better in this setup, validating the
value of labeled diversity.

Zero-Shot Evaluation (Unlabeled Classes Only) This evaluates model generalization
on novel/unseen classes. SEMIDOCSEG shows promising results for such classes via
layout co-occurrence priors and support guidance. However, performance on generic
labels like “Text” (DocLayNet) is reduced due to semantic overlap with other labeled
regions.

The semi-supervised evaluation demonstrates that SemiDocSeg effectively leverages
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Table 5.10: Performance evaluation of semi-supervised settings on DocLayNet dataset

Caption Footnote Formula List-item Page-footer Page-header Picture Section-header Table Text Title AP AP@50 AP@75

Overall 82.7 62.1 62.3 76.3 66.4 66.4 81.7 63.1 83.1 83.1 77.2 73.1 90.9 79.6

Base - 63.7 62.9 79.2 65.2 66.7 - 67.8 - - 80.1 74.1 90.0 80.2

Novel 38.9 - - - - - 37.3 - 44.6 3.6 31.3 38.7 35.3

support sets and co-occurrence cues to generalize across both labeled and unlabeled
layout classes, achieving competitive performance with significantly fewer annota-
tions. On the PRImA dataset, despite its limited size, the model attains an overall AP
of 45.9%, with particularly strong performance on small objects (APs = 39.0%), ad-
dressing a key challenge in document layout analysis. In the larger DocLayNet bench-
mark, the performance remains stable (AP = 73.1%, AP@50 = 90.9%), showing min-
imal drop compared to the supervised baseline. Compared to state-of-the-art few-
shot and zero-shot instance segmentation methods, SemiDocSeg achieves superior
or comparable accuracy while maintaining a more straightforward and unified train-
ing strategy. These results highlight the framework’s practical scalability and robust-
ness in low-label and high-structure document environments, paving the way for more
annotation-efficient layout understanding systems.

5.4.6 Implementation Details

We train our model using the Adam optimizer with an initial learning rate of 1×10−5,
applying a cosine annealing scheduler over 5000 cycles and a weight decay of 1×10−6.
The training is conducted for 300K iterations, with a learning rate drop by an order
of magnitude between 230K and 270K iterations. All experiments are performed on
an NVIDIA A40 GPU with 48 GB RAM, completing in 6 days using stochastic learning.
In comparison, the conventional supervised training for SwinDocSegmenter [13] typ-
ically requires approximately 2 weeks. The implementation is based on the PyTorch
and Detectron2 libraries.

5.5 Conclusion and Future Work

In this first part of the thesis, we explored the Interpretation axis of the proposed
theme “Layout as Language”, focusing on the semantic understanding of document
layouts through deep learning-based instance segmentation. We framed document
layout elements not merely as visual regions, but as meaningful units analogous to lin-
guistic constructs, whose structured relationships encode document semantics. In this
last chapter of Part-I, we began with a robust supervised model, SwinDocSegmenter,
designed to interpret complex layouts across domains with hierarchical tokenization
and query-based decoding. The extensive ablation studies demonstrated the model’s
flexibility and effectiveness across various architectural and data design choices. Rec-
ognizing the limitations posed by the scarcity of labeled data, we extended this ap-
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proach to a co-occurrence-guided semi-supervised framework, SemiDocSeg, which
introduced novel ways to leverage support sets and unlabeled classes using weak pri-
ors like layout co-occurrence. Our comparative studies showed that this model not
only generalizes well to unseen layout categories but also significantly improves the
performance on low-resource settings, outperforming several few-shot and zero-shot
baselines. The experiments across PRImA and DocLayNet revealed that layout under-
standing is not solely a matter of recognizing visual patterns, but of interpreting struc-
tural priors embedded in document design. By treating layout as a communicative
system, we showcased that structural and semantic context can serve as an implicit
form of supervision, reducing dependence on full annotations.

Future Work: Moving forward, this layout-as-language perspective opens up multiple
promising research directions:

• Structural Prompting: Exploring the integration of layout prompts or layout-
based attention cues for adaptive segmentation in evolving document types.

• Layout Reasoning: Extending interpretation to relational reasoning tasks such
as understanding logical reading order, visual discourse structures, and layout
entailment.

• Cross-modal Alignment: Bridging layout interpretation with textual or multi-
modal representations, allowing models to perform layout-conditioned compre-
hension or VQA-style tasks.

• Efficient and Compact Models: Incorporating knowledge distillation and trans-
former pruning for real-time layout interpretation in on-device or low-resource
environments.

With this, we conclude Part-I of the thesis. In the subsequent parts, we shift focus
from interpreting layout to representing and generating it — continuing our journey
of treating layout not just as a visual artifact, but as a rich language to be understood,
learned, and expressed.
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Chapter 6

Encoding Structure as Language:
Towards Graph-based Representation of
Document Layouts

The structure of information is as important as the information itself.

– Edward Tufte

This chapter explores the evolution of document layout modeling through the lens

of graph-based reasoning. We introduce Doc2GraphFormer, a lightweight hy-

brid framework that treats document structure as a language by representing it

as a multimodal graph and inferring semantic relations via transformer-based at-

tention. The model jointly addresses key tasks such as Semantic Entity Recogni-

tion (SER), Subgraph Clustering, and Relation Extraction (RE) using shared node

representations and task-specific heads. Evaluated on standard benchmarks like

FUNSD and XFUND, Doc2GraphFormer delivers state-of-the-art results while re-

maining computationally efficient, thanks to its parameter-light design.

6.1 Introduction

Understanding documents involves more than just reading text—it requires grasping
the structure, semantics, and visual organization that together convey meaning. In the
spirit of this thesis’s guiding theme, “Layout as Language,” we view document layouts
not merely as spatial arrangements, but as syntactic constructs—comparable to the
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grammar of natural language. Titles act as headlines, tables as semantic groupings,
and spatial proximity often mirrors conceptual relationships. Traditional NLP mod-
els such as BERT [60] and RoBERTa [167], while highly effective in natural language
tasks, process text in a purely sequential manner and lack awareness of spatial or vi-
sual structures, making them ill-suited for understanding documents where meaning
is often conveyed through layout, formatting, and visual cues [274, 273, 104].

Graph-based reasoning offers a natural lens to interpret this structural language. Our
line of work begins with Doc2Graph [78], a unified graph representation framework
for structured document understanding. It captures layout entities (e.g., text blocks,
images, tables) as nodes, and uses edges to encode their spatial and semantic de-
pendencies. This task-agnostic formulation supports both semantic entity recogni-
tion (SER) and relation extraction (RE) by modeling documents as structured graphs,
rather than unstructured token sequences. However, classical Graph Neural Networks
(GNNs) used in Document AI based on GraphSAGE [88] often suffer from local mes-
sage passing limitations, struggling with long-range dependencies and global layout
reasoning. To address this, we extended the paradigm with GeoContrastNet [22], which
introduces a contrastive learning objective that aligns geometric (layout) features with
high-level semantics. This technique improves spatial discrimination in graph reason-
ing, empowering the model to better group related entities that are spatially distant
but structurally connected.

Going further, Doc2Graph-X [183] expands the graph representation framework to mul-
tilingual settings. By integrating multilingual text embeddings at both word and sen-
tence levels, we build robust, language-agnostic graph models. This allows structured
document reasoning to scale across languages with minimal overhead—bridging lay-
out understanding in multilingual corporate or governmental documents. To unify
the benefits of graph-based structure and transformer-based context modeling, we
propose Doc2GraphFormer, a hybrid graph-transformer model that combines struc-
tured layout graphs with global attention mechanisms. While transformers like Lay-
outLMv3 [104] excel at modeling long-range interactions, they operate over sequen-
tial tokens and lack explicit structure. Doc2GraphFormer overcomes this by injecting
graph priors into attention layers, enabling both local precision and global coherence.
It also fuses multimodal features (text, vision, and geometry) into a unified represen-
tation, allowing rich layout-aware reasoning.

We evaluate these models on FUNSD [114], XFUND [276], and R-FUND [164], demon-
strating strong performance across SER, subgraph clustering, and entity linking tasks.
Collectively, the Doc2Graph line of research offers a compelling answer to the ques-
tion: Can layout be encoded like language? Our results affirm that layout, when repre-
sented as graphs and learned through structural priors, functions as a powerful syntax
for document understanding—cutting across modalities, tasks, and languages.
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Figure 6.1: Graph-based document processing with Doc2Graph [78] Framework. The
input document is first transformed into a fully connected graph using K-NN-based
spatial proximity. Through a two-phase multimodal message-passing scheme, the
model progressively refines entity relationships: Phase 1 contextualizes initial connec-
tions, while Phase 2 filters noise and strengthens key semantic links. The resulting
graph captures the latent layout structure as a language of entities and relations, sup-
porting accurate semantic entity recognition and relation extraction.

6.2 Related Work

Document layout understanding has long relied on the interplay between spatial struc-
ture and textual semantics. In this context, GNNs have emerged as a natural tool for
modeling documents, where layout elements are treated as nodes and their spatial or
semantic dependencies as edges. Early work in this direction focused on using GNNs
for layout-based tasks such as table detection and structure recognition [211, 201],
exploiting their ability to encode geometric cues while preserving language indepen-
dence, a critical advantage in administrative documents where textual content is of-
ten sensitive [212, 22]. For example, table extraction in invoices [211] demonstrated
how layout alone can be a sufficient modality for reliable parsing. Subsequent re-
search extended this paradigm to more general document understanding tasks. No-
tably, the FUNSD benchmark [114] inspired graph-based form understanding meth-
ods that grouped and labeled word entities using k-NN-based edge construction over
bounding boxes and word embeddings [131]. However, these early models lacked vi-
sual grounding, limiting their sensitivity to visual structure. The FUDGE framework [54]
addressed this gap by combining CNN-based visual relationship detection [52] with a
GCN backbone, leading to improved key-value extraction.

The Doc2Graph framework [78] pushed this idea further, proposing a unified, task-
agnostic GNN that simultaneously tackled semantic entity recognition (SER) and re-
lation extraction (RE) via joint node and edge classification as shown in Figure 6.1.
Yet, Doc2Graph remained restricted to monolingual settings, limiting its utility in real-
world multilingual applications. This challenge was addressed in Doc2Graph-X [183],
where multilingual embeddings were integrated to extend the graph reasoning frame-
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work across languages, enabling robust cross-lingual parsing with minimal parame-
ters. GeoContrastNet [22] further introduced a contrastive learning objective to align
semantic and geometric layouts, to strengthen layout-aware representation learning.
In parallel, hybrid architectures began to emerge. While lightweight models like GLAM [253]
framed layout analysis as a graph segmentation problem using compact GNNs, pure
transformer models such as StrucTexT[157], UDOP [238], and LiLT [252] introduced
structural and multilingual pretraining strategies to capture broader context. A recent
effort by Le et al. [164] proposed a unified pipeline for line extraction, grouping, and
linking to address multi-line entities—a common challenge in real-world forms.

Building on these foundations, this chapter introduces a graph-transformer hybrid
that explicitly models the language of layout. As illustrated in Figure 6.1, we con-
vert each document into a graph and refine its structure in a two-phase message-
passing process, guided by multimodal fusion and task-specific decoding heads. This
approach helps to bridge local graph reasoning and global self-attention to dynami-
cally learn meaningful relationships across structured documents. Our contributions
offer a lightweight yet effective solution for multilingual layout understanding, demon-
strating strong performance on FUNSD and related benchmarks.

6.3 Graph-Augmented Attention Modeling

In line with the thesis theme “Layout as Language” , we introduce Doc2GraphFormer,
a hybrid framework that combines the structural expressiveness of graph represen-
tations with the contextual power of transformer-based attention for structured doc-
ument understanding. Vanilla GNNs excel at modeling local structural dependencies
but often lack global reasoning capabilities, while transformers offer broad contextual-
ization but typically operate over sequential token inputs, ignoring explicit document
layout. Doc2GraphFormer bridges this gap by treating documents as structured graphs
and learning to attend across layout-guided entity relationships, as in Figure 6.2.

6.3.1 Multimodal Graph Representation of Documents

At the heart of this framework lies a unified graph-based representation of documents.
We define each document as an undirected graph G = (V ,E), where:

• V denotes the set of nodes, each representing a semantically meaningful en-
tity—such as a word, phrase, or layout block.

• E denotes the set of edges, capturing the structural or semantic relationships
between node pairs.

Each node feature vector hi is a multimodal representation composed of four key com-
ponents: textual embeddings ti , visual descriptors vi , layout encodings li , and geometry-



95 Encoding Structure as Language

LayoutLMv3 Doc2graph

Text

Visual

Geom

Text,

 Visual,

 Layout

Node
embeddings

Raw Node
Features

N×d_hidden
matrix 

×4 Final Layer
Normalization

In
pu

t

Pr
oj

ec
tio

n
Document input Graph representation

line logits

grouping  logits

edge  logits

En
tit

y
Re

co
gn

iti
on

Su
bg

ra
ph

Cl
us

te
rin

g
En

tit
y 

Li
nk

in
g

 Nodes × Node_classes 

Edgdes × Edge_classes 

Edgdes × Group_classes 

N×C_edges
X∈ℝ

N×C_cluster
X∈ℝ

N×C_nodes
X∈ℝ

   
Do

c2
Gr

ap
hf

or
m

er
   

Figure 6.2: Doc2GraphFormer architecture for structured document understanding.
The pipeline encodes document elements as multimodal graph nodes with features
from LayoutLMv3 [104] and Doc2Graph [78] encoders. A graph-transformer mod-
ule refines node interactions via self-attention. Task-specific heads perform Semantic
Entity Recognition, Subgraph Clustering, and Entity Linking, enabling robust layout-
aware reasoning across diverse document types.

aware features gi . The textual component ti is derived from pre-trained language mod-
els such as SBERT or LayoutLMv3, capturing the semantic context of the document
entity. The visual component vi incorporates appearance-level descriptors extracted
from region-based features, such as U-Net-derived maps or visual tokens. Spatial posi-
tioning is encoded through li , which represents the 2D coordinates of bounding boxes
and integrates contextual layout information using models like LayoutLMv3. Finally,
gi embeds relative geometric cues including distances and angular relationships us-
ing a polar coordinate formulation inspired by Doc2Graph [78]. Each node vi ∈ V is
enriched with a multimodal feature vector that integrates textual content, visual ap-
pearance, and geometric layout as in eq. 6.1:

hi = [ti ;vi ; li ;gi ] (6.1)

This multimodal graph representation forms the backbone of the Doc2GraphFormer
pipeline. By encoding nodes with rich cross-modal features and defining graph-based
structural priors, we enable robust downstream reasoning for semantic entity recog-
nition, inter-entity relationship extraction, and subgraph-level grouping—treating lay-
out not as mere metadata, but as a compositional language of structure.
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6.3.2 Graph Construction and Attention Masking

In Doc2GraphFormer, we model the document as a fully connected graph G = (V ,E),
where each node is initially connected to all other nodes. Instead of relying on static
graph construction heuristics such as k-nearest neighbors (KNN), the model dynami-
cally learns inter-entity relationships through a structure-aware self-attention mecha-
nism. This design enables the network to emphasize semantically and spatially mean-
ingful connections, while suppressing irrelevant links, guided by the learned layout-
aware attention patterns.

To encode this inductive bias, we define an adaptive attention mask:

Ai j =
{

softmax(Qi KT
j ) if (i , j ) ∈ E

0 otherwise
(6.2)

where Qi and K j are the query and key vectors of node i and j , respectively, derived
from the Graphformer’s self-attention layers. This formulation enables dynamic prun-
ing and refinement of edge relevance during training, eliminating manual connectivity
rules while preserving document layout priors.

6.3.3 Graphformer-Based Feature Processing

At the core of Doc2GraphFormer lies a Graphformer encoder that blends graph-based
structure with transformer attention. Each node embedding is iteratively updated us-
ing multi-head self-attention and position-wise feedforward transformations, allowing
the model to reason over both local structure and long-range dependencies:

h(l+1)
i = LayerNorm

(
h(l )

i +FFN
(
MultiHead(h(l )

i )
))

(6.3)

where:

• MultiHead denotes the multi-head self-attention function,

• FFN is a feedforward network shared across positions,

• LayerNorm ensures stable updates.

This hybrid formulation surpasses GNNs that rely solely on localized message passing
by enabling global layout-aware reasoning through deep attention mechanisms.

6.3.4 Task-Specific Heads

To support structured document understanding, Doc2GraphFormer includes three task-
specific prediction heads that operate on the shared graph-augmented node embed-
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dings: Semantic Entity Recognition (SER), Subgraph Clustering, and Relation Extraction
(RE).

Semantic Entity Recognition (SER). For each node vi ∈ V , we compute the predicted
entity label ŷi as shown in eq. 6.4:

ŷi = softmax(WSERhi +bSER) (6.4)

where WSER ∈Rdhidden×Cnode and bSER ∈RCnode are learnable parameters, and Cnode is the
number of entity classes. The loss function for SER is the standard cross-entropy loss
as shown in eq. 6.5:

LSER =− ∑
i∈V

yi log ŷi (6.5)

Subgraph Clustering (Entity Grouping). Structured documents often contain logically
related entities—such as multi-line key-value pairs—that are not explicitly linked but
share semantic or spatial proximity. To capture such latent relationships, our model
includes a subgraph clustering head that predicts a grouping score for each edge (i , j ) ∈
E . The edge-wise binary grouping score is computed as:

zg ,i j = ReLU

(
Wgroup1

[
hi

h j

]
+bgroup1

)
(6.6)

ĝi j =σ(Wgroup2
zg ,i j +bgroup2

) (6.7)

where Wgroup1
∈ R2dhidden×dhidden projects the concatenated node embeddings into a

hidden representation, Wgroup2
∈ Rdhidden×2 maps the hidden features to a binary clas-

sification space, and σ denotes the sigmoid activation function used to predict the
grouping probability. The binary cross-entropy loss for subgraph clustering is defined
as:

LCluster =− ∑
(i , j )∈E

[
gi j log ĝi j + (1− gi j ) log(1− ĝi j )

]
(6.8)

Relation Extraction (Entity Linking). In many structured document tasks, it is essen-
tial to explicitly identify which entities are semantically linked, such as matching a “To-
tal” label to its corresponding monetary value. For this purpose, Doc2GraphFormer in-
cludes a relation extraction head that predicts whether an edge (i , j ) represents a valid
entity relationship. The relation prediction follows a similar architecture:
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zr,i j = ReLU

(
Wrel1

[
hi

h j

]
+brel1

)
(6.9)

r̂i j =σ(Wrel2 zr,i j +brel2 ) (6.10)

where Wgroup1
∈ R2dhidden×dhidden projects the concatenated node embeddings into a

hidden representation, Wgroup2
∈ Rdhidden×2 maps the hidden features to a binary clas-

sification space, and σ denotes the sigmoid activation function used to predict the
grouping probability. The loss function for the RE task is also defined via binary cross-
entropy:

LRE =− ∑
(i , j )∈E

[
ri j log r̂i j + (1− ri j ) log(1− r̂i j )

]
(6.11)

6.3.5 Final Learning Objective

The overall optimization objective of Doc2GraphFormer jointly trains all three heads
through a multi-task loss:

Ltotal =λ1LSER +λ2LCluster +λ3LRE (6.12)

where λ1,λ2,λ3 are scalar hyperparameters used to balance the contribution of each
task to the final loss.

By integrating and combining structural entity classification, grouping, and linking in
a unified framework, Doc2GraphFormer mimics the thesis vision of treating document
layout not merely as spatial metadata but as an expressive and compositional language
for structured reasoning.

6.4 Experimental Validation

This section presents a comprehensive empirical evaluation of the Doc2GraphFormer
framework, focusing on its effectiveness in two core structured document understand-
ing tasks: Semantic Entity Recognition (SER) and Relation Extraction (RE). We bench-
mark our model against a range of state-of-the-art baselines, perform systematic abla-
tion studies to analyze the contribution of individual design components, and provide
both quantitative and qualitative analyses to validate the model’s performance.
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Table 6.1: Comparison of Doc2GraphFormer with state-of-the-art models for Se-
mantic Entity Recognition (SER) and Relation Extraction (RE). The table compares
modality usage (T = Text, V = Visual, G = Geometric), architectural design (Graph-based
vs. Transformer-based), and model size (in millions of parameters). Best results are
highlighted in bold.

Model Modalities Graph Transformer SER (↑) RE (↑) # Params (M)

BROS [101] T + V ✗ ✓ 0.8121 0.6696 138

LayoutLM [274] T + V ✗ ✓ 0.7895 0.4281 343

FUNSD Baseline [114] T + G ✓ ✗ 0.5700 0.0400 –

FUDGE [54] V + G ✓ ✗ 0.6507 0.5241 12

Doc2Graph [78] T + G + V ✓ ✗ 0.8225 0.5336 6.2

GeoContrastNet [22] G + V ✓ ✗ 0.6476 0.3245 14

Doc2GraphFormer T + G + V ✓ ✓ 0.8439 0.5548 3.62

Doc2GraphFormer + GL T + G + V ✓ ✓ 0.8617 0.5548 3.62

6.4.1 Datasets and Evaluation Metrics

To ensure a rigorous and fair evaluation, experiments are conducted on two widely
adopted benchmarks: FUNSD[114] and XFUND[276]. The FUNSD dataset comprises
English-language scanned administrative forms annotated with semantic entities and
their interrelations. XFUND extends this setting to a multilingual context, covering ad-
ditional languages including Chinese, French, Japanese, German, Italian, Spanish, and
Portuguese. Both datasets offer rich annotations at the entity and relationship levels,
making them ideal for assessing structured document parsing capabilities.

Model performance is measured using the micro-averaged F1 score, which provides a
balanced assessment of precision and recall. For SER, this metric quantifies the ac-
curacy of entity detection and classification, while for RE, it reflects the correctness
of predicted links between related entities. In all experiments, the core Graphformer
backbone remains fixed. We evaluate multiple configurations of Doc2GraphFormer by
varying the modality-specific encoders used for input features namely, Sentence-BERT
(SBERT) [209] and LayoutLMv3 [104] to assess the impact of different representation
strategies.

6.4.2 Comparison with State-of-the-Art Methods

Table 6.1 reports the comparative performance of Doc2GraphFormer against leading
transformer-based and graph-based document understanding models. Despite its ar-
chitecture with only 3.62M parameters, Doc2GraphFormer achieves competitive re-
sults across both SER and RE tasks. Specifically, it surpasses heavy-weight transformer
models such as LayoutLM [274] (343M parameters) and BROS [101] (138M parameters)
on SER and performs comparably on RE.
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(a)

(b)

Figure 6.3: Semantic Entity Recognition (SER) Performance Comparison. (a) Ground
truth annotations with labeled entities. (b) Predicted results from Doc2GraphFormer,
where green boxes indicate correctly detected entities, and red boxes highlight incor-
rect predictions. The model effectively captures structured information but struggles
with certain misclassified or missing entities, showcasing areas for improvement in
handling complex layouts.

While BROS [101] demonstrates strong SER capabilities (F1 = 0.8121) owing to its ro-
bust bidirectional textual encoding, it lacks explicit structural reasoning, which results
in weaker RE performance (F1 = 0.6696). Similarly, LayoutLM [274], though multi-
modal in design, struggles with both SER (0.7895) and RE (0.4281), likely due to its
limited incorporation of graph-based relational modeling. Graph-based approaches
such as FUDGE [54], Doc2Graph [78] demonstrate better performance on RE tasks, as
they incorporate layout structure explicitly. Among them, Doc2Graph stands out with
solid performance (SER = 0.8225, RE = 0.5336) by leveraging text, geometric, and vi-
sual cues (T+G+V). We did not include Voutharoja et al.’s method [251] in the SOTA
Table 6.1 although achieves the highest RE score (0.8540) but lacks scalability due to re-
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liance on heuristic rule-based reasoning. GeoContrastNet [22], which integrates graph
learning with U-Net-based visual modeling, underperforms on both SER (0.6476) and
RE (0.3245), primarily due to the absence of a language modeling component.

(a)

(b)

Figure 6.4: SER and RE Performance Comparison. (a) Ground truth annotations with
entity labels and relationships. (b) Predicted results, where green boxes denote correct
entities, red boxes highlight entity classifications, and blue lines represent predicted
links. The model successfully captures structured dependencies and entity relation-
ships in documents.

In contrast, Doc2GraphFormer effectively combines textual, visual, geometric, and
layout-aware information within a unified graph-transformer framework. It achieves
the highest SER score (0.8617) and a strong RE score (0.5548), demonstrating that rich
multimodal fusion and graph reasoning can be achieved with minimal parameter over-
head. Notably, our model delivers these results with over 90% fewer parameters com-
pared to LayoutLM, underscoring its efficiency and scalability.

6.4.3 Qualitative Analysis

Semantic Entity Recognition (SER). Doc2GraphFormer task results are consistent across
handling variations in script structure. As depicted in Figure 6.3, the model preserves
document layout integrity, ensuring key entities are recognized correctly even when
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embedded within complex tabular structures or very dense text regions. There are mi-
nor segmentation errors in where closely spaced characters lead to slight misclassifica-
tion of tokens. Often overlapping or dense content areas can lead to fragmented entity
detections, though overall detection remains robust.

Relation Extraction (RE). Analysis as depicted in Figure 6.4 presents the entity linking
(relation extraction) results, where the model predicts semantic relationships between
detected entities. We observe that the model correctly identifies key-value pair rela-
tionships, even in different writing directions. It can handles nested entities, linking
fields correctly within tabular structures. There are minimal false positives, ensuring
most connections are meaningful and aligned with document semantics. The edge
ambiguity in complex tables, where relationships are less explicit due to layout vari-
ations or missing contextual cues. Despite these challenges, Doc2GraphFormer con-
sistently boosts capturing document structure, leveraging graph-based reasoning to
improve both entity recognition and relation extraction.

Table 6.2: Impact of modality combinations on Semantic Entity Recognition (SER)
and Relation Extraction (RE). Each row shows the effect of including different subsets
of input modalities: Text (T), Visual (V), Layout (L), and Geometric (G).

T V L G SER (↑) RE (↑)

✗ ✗ ✗ ✓ 0.4077 0.0165

✗ ✓ ✓ ✓ 0.6589 0.0801

✓ ✗ ✓ ✓ 0.8418 0.5109

✓ ✓ ✗ ✓ 0.6991 0.1094

✓ ✓ ✓ ✗ 0.8366 0.5138

✓ ✓ ✓ ✓ 0.8439 0.5548

6.4.4 Ablation Studies

Effect of Multimodal Layout Encoding. To better understand the contribution of each
modality in the Doc2GraphFormer framework, we conducted a detailed ablation study
(Table 6.2) by selectively activating combinations of textual (T), visual (V), layout (L),
and geometric (G) features. The results reaffirm our central thesis—layout is not merely
metadata, but an expressive modality akin to language, capable of guiding structure-
aware interpretation.

When geometric features are used in isolation, performance remains minimal (0.4077
SER, 0.0165 RE), underscoring the insufficiency of spatial priors alone. Incorporating
visual and layout cues (V+L+G) considerably boosts performance (0.6589 SER, 0.0801
RE), suggesting that visual-spatial regularities help contextualize document regions.
Text features, when combined with layout and geometric encodings (T+L+G), signifi-
cantly enhance semantic entity detection (0.8418 SER) and relation prediction (0.5109
RE), demonstrating the necessity of integrating semantic content with layout-aware
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Table 6.3: Ablation study on the contribution of edge weights and attention masks
within the graph-based attention module. SER and RE represent the F1 scores for
Semantic Entity Recognition and Relation Extraction respectively.

Edge Weights Attention Mask SER RE

✗ ✓ 0.8418 0.5022

✓ ✗ 0.8396 0.5046

✓ ✓ 0.8439 0.5548

Note: ✓indicates inclusion of component; ✗indicates exclusion.

attention. Interestingly, while the combination T+V+G slightly lowers SER (0.8366), it
improves RE (0.5138), reinforcing the intuition that geometric features act as relational
syntax that supports linking semantically distant entities. Ultimately, the full multi-
modal configuration (T+V+L+G) achieves the best performance (0.8439 SER, 0.5548
RE), validating that modeling layout as a first-class representational language yields
more robust and coherent document understanding.

Impact of Graph Structure: Edge Weights vs. Attention Masks We further assess the
influence of graph connectivity mechanisms by analyzing the role of edge weights and
attention masks in guiding the message-passing process. Attention masks alone, with-
out explicit edge weighting, yield strong performance (0.8418 SER, 0.5022 RE), indi-
cating that learned attention paths already provide effective soft layout-aware reason-
ing. Introducing edge weights without attention masks slightly decreases SER (0.8396)
but modestly improves RE (0.5046), suggesting that hard-coded spatial priors con-
tribute to relational modeling even when attention is absent. The highest performance
(0.8439 SER, 0.5548 RE) is achieved when both edge weights and attention masks are
used in tandem, reflecting the synergy between learned attention flows and structure-
aware connectivity. This confirms that layout-guided graph augmentation enriches the
model’s ability to infer complex semantic and relational structures within documents.

Table 6.4: Ablation analysis of task-specific heads in the Doc2GraphFormer architec-
ture. SER and RE represent the F1 scores for Semantic Entity Recognition and Relation
Extraction respectively.

Entity Rec. Subgraph Clus. Grouping Labels Entity Link SER RE

✓ ✗ ✗ ✓ 0.8426 0.5109

✓ ✓ ✗ ✗ 0.8418 0.5022

✓ ✓ ✗ ✓ 0.8439 0.5548
✓ ✓ ✓ ✓ 0.8617 0.5548

Note: ✓= enabled; ✗= disabled. All configurations include the Graph-Transformer encoder.

Contribution of Task-Specific Heads To assess the individual and joint impact of task-
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Table 6.5: Fine-tuning F1 performance on XFUND. Results shown for Semantic Entity
Recognition (SER) and Relation Extraction (RE) after language-specific fine-tuning and
testing. SBERT outperforms in SER, while LayoutLMv3 excels in RE.

Task Fusion Strategy ZH FR

SER
SBERT 70.02 78.95

LayoutLMv3 65.39 73.75

RE
SBERT 29.18 27.83

LayoutLMv3 34.21 33.36

specific supervision in Doc2GraphFormer, we conduct a comprehensive ablation anal-
ysis as shown in Table 6.4. The experimental configurations progressively activate the
following modules: Entity Recognition, Subgraph Clustering, Grouping Labels, and En-
tity Linking. The baseline setting, which includes only Entity Recognition and En-
tity Linking, achieves competitive performance (SER: 0.8426, RE: 0.5109), underscor-
ing the effectiveness of the core graph-transformer encoder for entity-level predic-
tion and basic relationship modeling. Adding Subgraph Clustering alone does not sig-
nificantly improve results (SER: 0.8418, RE: 0.5022), suggesting that clustering with-
out explicit linking or grouping signals provides limited benefit for relational reason-
ing. In contrast, enabling Entity Linking alongside Subgraph Clustering notably im-
proves the RE score to 0.5548, while slightly enhancing SER (0.8439), indicating that
learning explicit pairwise links between entities is essential for accurate document
parsing. Finally, when all heads are jointly activated including Grouping Labels (GL),
Doc2GraphFormer achieves the highest SER score (0.8617) and sustains strong RE per-
formance (0.5548). This configuration benefits from both fine-grained intra-entity group-
ing and inter-entity linking, supporting the thesis that document layout can be treated
as a structured language, where both compositional grouping and relational semantics
are essential for holistic understanding.

Cross-Lingual Generalization on XFUND We further examine the multilingual gen-
eralization capabilities of Doc2GraphFormer on the XFUND benchmark across Chi-
nese (ZH) and French (FR), using two distinct embedding strategies—SBERT and Lay-
outLMv3. As shown in Table 6.5, SBERT achieves higher scores for Semantic Entity
Recognition in both languages (ZH: 70.02, FR: 78.95) compared to LayoutLMv3 (ZH:
65.39, FR: 73.75), indicating that its semantically rich embeddings contribute to more
accurate entity categorization in multilingual contexts.

However, for Relation Extraction, LayoutLMv3 outperforms SBERT significantly (ZH:
34.21 vs. 29.18, FR: 33.36 vs. 27.83), highlighting its advantage in modeling structural
relationships due to its multimodal encoding of text, layout, and visual features. This
trade-off underscores a critical insight: while semantically fine-tuned sentence em-
beddings aid entity classification, layout-aware multimodal features are essential for
robust relational inference. These findings reinforce the importance of adaptive fu-
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Table 6.6: Comparison of multimodal fusion strategies. F1 scores for Semantic
Entity Recognition (SER) and Relation Extraction (RE) highlight the effectiveness of
LayoutLMv3-based embeddings for document understanding.

Model SER (F1 ↑) RE (F1 ↑)

Doc2Graph [78] 0.8210 0.2929

Doc2GraphSBERT 0.8188 0.3250

LayoutLMv3 [104] 0.8439 0.5548

sion strategies when designing multilingual Document AI systems and suggest poten-
tial benefits from hybrid approaches combining SBERT’s semantic strength with Lay-
outLMv3’s spatial reasoning.

Multimodal Fusion Strategy Analysis We compare three multimodal fusion strategies
in Table 6.6, each representing different balances between semantic, spatial, and vi-
sual cues. Doc2GraphFormer with LayoutLMv3-based features achieves the highest
performance across both tasks (SER: 0.8439, RE: 0.5548), confirming that rich layout-
aware embeddings effectively capture both content and structure in document images.
Doc2GraphSBERT improves over its original variant in terms of relation prediction (RE:
0.3250 vs. 0.2929), highlighting that semantically rich sentence-level embeddings en-
hance entity linkage despite weaker spatial modeling. The original Doc2Graph model
performs competitively in SER (0.8210) due to its graph-based structure encoding but
lags in RE due to its limited contextual scope and reliance on static graph connectivity.

This comparative study affirms that transformer-based multimodal fusion, especially
with pre-trained models like LayoutLMv3, substantially benefits both entity and rela-
tion modeling, aligning with the thesis vision of interpreting layout as a latent language
that governs both content semantics and structural dependencies.

6.4.5 Implementation Details

All experiments were conducted using a single NVIDIA GPU with 24 GB of memory
(e.g., RTX 3090 or equivalent). The proposed Doc2GraphFormer model is lightweight
(∼ 3.62M parameters), allowing it to achieve competitive performance without reliance
on large-scale hardware setups. The model was implemented using the PyTorch deep
learning framework, with supporting libraries includingHuggingFace Transformers
for pre-trained textual encoders (e.g., SBERT, LayoutLMv3) and Deep Graph Library
(DGL) for graph-based operations. We used the AdamW optimizer with a linear warm-
up followed by a cosine decay schedule. Training was performed for 100 epochs with
a batch size of 16 and an initial learning rate of 5×10−5, which provided stable and re-
producible results across datasets. Notably, the compact design of Doc2GraphFormer
enables it to be trained and deployed on CPU-only environments with reasonable ef-
ficiency. This makes it a practical choice for real-world document understanding sys-
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tems operating under compute-constrained settings.

6.5 Conclusion and Future Work

In this chapter, we presented Doc2GraphFormer, a lightweight yet effective hybrid
framework that integrates graph-based reasoning with transformer-based attention
for structured document understanding. By constructing a fully connected document
graph and dynamically learning structural relationships through adaptive attention
masking, our model eliminates the reliance on heuristic-based graph construction. We
demonstrated how Doc2GraphFormer supports multiple downstream tasks—Semantic
Entity Recognition (SER), Subgraph Clustering, and Relation Extraction (RE)—within a
unified architecture, enabled by a set of shared node representations and task-specific
heads. Extensive experiments on standard benchmarks (FUNSD, XFUND) confirm
that our model achieves strong performance across both SER and RE tasks, outper-
forming several state-of-the-art approaches while maintaining a significantly lower
parameter count. Through detailed ablation studies, we analyzed the impact of multi-
modal feature combinations, graph-based attention mechanisms, and individual task
heads, thereby highlighting the interpretability and robustness of the proposed design.

Future Work. While Doc2GraphFormer provides an efficient and scalable solution for
document understanding, several avenues remain open for future exploration. These
include:

• Cross-document reasoning: Extending the model to handle multi-page or multi-
document contexts where inter-document links and global structure play a cru-
cial role.

• Graph pre-training: Incorporating pretext tasks or unsupervised objectives for
pre-training the graph structure and node embeddings on large unlabeled doc-
ument corpora.

• Knowledge-injected decoding: Augmenting the relation extraction head with ex-
ternal knowledge graphs or ontologies to guide more precise entity linking and
structured generation.

• Resource-constrained deployment: Further optimizing the architecture for de-
ployment on edge devices or integrating with low-latency inference pipelines in
real-world document processing systems.

In summary, Doc2GraphFormer bridges the gap between semantic content and
layout structure in documents through a graph-augmented transformer framework,
laying the groundwork for future models that require both accuracy and efficiency in
complex document understanding tasks.



Chapter 7

Self-Supervised Visual Representation
Learning for Document Layouts

The eye is the most refined of our senses.

It is the gateway to language, geometry, and design.

– Johannes Itten

This chapter explores the potential of self-supervised learning for document lay-

out understanding, introducing a purely vision-based framework named SelfDoc-

Seg. In contrast to approaches that rely heavily on annotated labels or multimodal

cues from optical character recognition (OCR), SelfDocSeg investigates whether

meaningful document structure can be learned directly from raw images. The

framework leverages synthetically generated layout masks to guide self-distillation

through a Bootstrap Your Own Latent (BYOL) formulation. By approximating lay-

out as a latent visual grammar—akin to how language models treat syntax, it en-

ables the encoder to establish both object localization and region-level representa-

tion. Empirical results across diverse datasets demonstrate that the learned repre-

sentations are not only data-efficient but also generalizable, outperforming several

baselines in downstream segmentation tasks.

7.1 Introduction

In the evolving landscape of intelligent document processing, the ability to interpret
and extract structural information from visually complex documents remains a critical
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challenge. Document Layout Analysis (DLA), which aims to identify and segment se-
mantically meaningful regions—such as text blocks, tables, figures, and headings—has
long served as a foundational task in document understanding systems [176, 26]. While
deep learning has driven significant advances in layout segmentation, the vast major-
ity of high-performing methods rely on large-scale annotated datasets [13] or auxiliary
cues derived from OCR systems [104], limiting their scalability in real-world scenarios
where labeled data is scarce or costly to obtain.

The rapid expansion of digital and scanned documents from diverse sources, rang-
ing from invoices and legal contracts to scientific articles and historical manuscripts,
has outpaced the availability of ground-truth annotations. This growing annotation
bottleneck has prompted increased interest in self-supervised and weakly supervised
learning paradigms [15]. However, in the domain of document segmentation, most
existing self-supervised strategies incorporate text-based priors [82, 6, 238] or lever-
age synthetic layouts [25] tied to pre-trained OCR pipelines, thereby diminishing the
independence and generality of the visual representation itself.

In this context, we explore an alternative hypothesis: can the spatial structure of doc-
ument layouts be modeled purely from visual cues, without the need for textual su-
pervision? More specifically, we ask whether layout can be treated analogously to lan-
guage—as a compositional system of spatial arrangements and alignment rules—such
that a model trained via self-distillation can internalize both the semantics and geom-
etry of document regions. To address this, we introduce SelfDocSeg, a self-supervised
framework for layout-aware representation learning. Built on the BYOL (Bootstrap
Your Own Latent) paradigm [81], our method pre-trains an image encoder using aug-
mented views of a document and synthetically generated layout masks derived from
classical image processing techniques. These layout masks serve as pseudo-labels that
guide both representation learning and object localization in a fully unsupervised fash-
ion. Unlike contrastive methods [11], SelfDocSeg does not require negative samples
and avoids dependence on OCR features, making it both lightweight and adaptable to
various document domains. (See Figure 7.1)

The main contributions of this chapter are as follows: (i) We propose SelfDocSeg, a self-
supervised, vision-only framework that learns document layout representations with-
out requiring any textual or annotated supervision. The method is built on a BYOL-
style self-distillation backbone, adapted to handle multiple layout objects per image.
(ii) We introduce a novel Layout Mask Generation pipeline, which derives approximate
structural masks from raw document images using classical image processing opera-
tions. (iii) We design a dual-objective training strategy combining spatial layout predic-
tion and representation alignment, which allows the encoder to learn both where and
what the layout objects are, in the absence of human-labeled data. (iv) We demon-
strate the generalizability of our learned representations across multiple benchmark
datasets through downstream fine-tuning, achieving competitive results compared to
supervised and multimodal self-supervised baselines, with significantly less training
data.
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Figure 7.1: Comparison of SelfDocSeg with existing pre-training methods. Vanilla
self-supervised document segmentation pipelines (left) rely heavily on multimodal
cues derived from OCR systems, including text tokens and bounding box layout in-
formation. These signals are fused with visual features to guide representation learn-
ing. In contrast, SelfDocSeg (right) avoids any textual or OCR-derived supervision and
employs classical image processing techniques to generate approximate layout masks
directly from the document image using self-distillation.

7.2 Related Work

In this section, we review relevant literature along three major axes: self-supervised
learning for visual representation, methods for document understanding, and the evo-
lution of document layout analysis techniques. These form the foundation upon which
SelfDocSeg is situated.

Self-Supervised Learning in Computer Vision. Self-supervised learning has emerged
as a powerful alternative to supervised representation learning, particularly in domains
where labeled data is limited. Early approaches such as MoCo [94] and SimCLR [39]
popularized contrastive learning by maximizing agreement between augmented views
of the same image. Subsequent models such as SwAV [33] and DINO [34] extended
these ideas to clustering-based and vision transformer frameworks. In contrast to con-
trastive methods, BYOL [81] and SimSiam [41] introduced self-distillation strategies
that eliminate the need for negative samples. More recently, masked autoencoders
(MAE) [93, 231] and BEiT [16] have shown strong performance by reconstructing masked
portions of the input, drawing inspiration from language modeling.

Despite significant success in natural images, the adaptation of these methods to ob-
ject detection—and specifically to document layout segmentation—has been limited.
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Only a handful of works such as UP-DETR [48] and DETReg [17] have extended self-
supervised learning to detection tasks. However, these approaches are primarily de-
signed for natural scenes and do not exploit the structured regularities inherent in
document layouts. Our work contributes to this gap by introducing a self-supervised
method tailored for layout-aware document representation learning, without relying
on textual priors or bounding box annotations.

Document Understanding Systems. Document understanding (DU) encompasses a
broad range of tasks, including key information extraction [113], classification [91],
question answering [180], and machine reading comprehension [236], especially over
visually rich documents (VRDs). Recent approaches have emphasized multimodal
representation learning that combines visual appearance, textual content, and spatial
layout. Models such as LayoutLMv3 [104], DocFormer [6], and UDoc [82] use OCR-
derived token embeddings alongside image patches to pre-train large transformers for
document tasks. Alternatively, methods like Donut [129] and Dessurt [53] avoid ex-
plicit OCR by leveraging synthetic document generation pipelines [27] and image-to-
sequence modeling [129]. While effective, these approaches typically require extensive
computational resources and pre-existing OCR systems, which may not generalize well
to noisy or multilingual domains. In contrast, our proposed method focuses purely
on visual signals, demonstrating that spatial layout can be internalized through self-
supervised representation learning, without reliance on OCR, text extraction, or token
classification.

Document Layout Analysis Document layout analysis (DLA) plays a central role in
structuring unstructured documents by identifying semantic regions such as headers,
paragraphs, tables, or figures. Traditionally, DLA was addressed using heuristic or rule-
based methods [70, 1]. The advent of deep learning enabled convolutional neural net-
works (CNNs) to replace handcrafted features, leading to more robust segmentation
pipelines [220, 225]. The availability of large-scale datasets like PubLayNet [291] and
DocLayNet [197] accelerated progress by allowing training of region-based detectors
like Mask R-CNN [95], RetinaNet [161], and more recently, transformer-based archi-
tectures such as DocSegTr [24] and SwinDocSegmenter [13]. However, these models
require substantial annotation efforts and often struggle with generalization in low-
resource settings or historical document domains [43]. Self-supervised approaches
remain underexplored in layout analysis. Prior works such as LayoutLMv3 [104] and
UDoc [82] leverage OCR and textual alignment for pseudo-label generation. In con-
trast, our method bypasses textual inputs entirely and demonstrates that effective doc-
ument object representations can be learned from visual structure alone.

7.3 Methodology

SelfDocSeg is a self-supervised vision-based framework for learning document lay-
out representations without requiring labeled annotations or OCR. The pipeline com-
prises: (i) Pseudo-layout mask generation using classical image processing, (ii) A BYOL-
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Figure 7.2: Layout Mask Generation Pipeline. Starting from an unlabeled document
image x, we generate a pseudo-layout mask m through a series of classical image pro-
cessing steps: grayscale conversion (xgray), thresholding (xbin), morphological erosion
(m), and inversion. The resulting mask m captures layout structure and serves as a
self-supervised signal for object localization and representation learning

inspired encoder with dual-branch architecture, (iii) Region-level representation learn-
ing via mask pooling, (iv) A layout prediction module for object localization, (v) Down-
stream fine-tuning with a supervised segmentation model. Figure 7.1 provides a con-
ceptual comparison between SelfDocSeg and multimodal pre-training methods. The
full mask generation process is visualized in Figure 7.2.

7.3.1 Problem Formulation

Let D = {x, y} be a dataset of document images x ∈I 3×H×W and layout annotations y =
{y1, . . . , yp }, where each yl contains a region mask and class label. In our pre-training
phase, we discard y and instead derive a new dataset D′ = {x,m}, where m is a pseudo-
layout mask generated from x (Section 7.3.2). The objective is to pre-train an encoder
Fθ using only x and m, such that it learns transferable layout-aware representations
for downstream segmentation tasks.

7.3.2 Layout Mask Generation

To generate m from x, we follow these image processing steps:

1. Convert x to grayscale (xgray),

2. Apply global thresholding to obtain a binary image (xbin),

3. Perform erosion to merge visual blobs (m),

4. Invert m to obtain the final layout mask m.
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Figure 7.3: SelfDocSeg Pre-training Framework. Given an input document image x,
two augmented views (v1, v2) are processed by an online and a momentum branch.
Each branch includes an encoder (Fθ, Fξ) and mask pooling (MP ) guided by the
pseudo-mask m and its object-wise splits m1, . . . ,mn . The online branch also includes
projector (Zθ) and predictor (Qθ) modules, while the momentum branch uses only Zξ.
Representations are aligned using similarity loss LSim. A layout predictor L learns to
localize regions via focal loss LDet. EMA updates transfer weights from the online to
the momentum branch.

This process produces coarse masks that approximate the layout structure without any
manual labels (Figure 7.2).

7.3.3 Self-Supervised Pre-Training

Architecture Overview. Given two augmented views v1 and v2 of a document image
x, we use: (i) An online branch with encoder Fθ , projector Zθ , and predictor Qθ, (ii) A
momentum branch with encoder Fξ and projector Zξ, updated via exponential moving
average (EMA). Feature maps from both branches are pooled using the layout mask m,
and the embeddings are aligned through self-distillation. The architecture is illustrated
in Figure 7.3.

Data Augmentation Strategy. Following SimCLR [39], we apply random: (i) Gaussian
blurring, (ii) Color jittering, (iii) Color dropping (grayscale) and (iv) Solarization. We
exclude cropping and flipping to preserve layout consistency.

Mask Pooling. Let f ∈ Rc×h×w be the feature map output by the encoder. For each
layout region mk , we compute the average pooled representation as shown in eq. 7.1:

y (k) = 1∑
i , j mk [i , j ]

∑
i , j

mk [i , j ] · f [i , j ] (7.1)

This is done independently on both branches to yield batches of region embeddings.

Representation Learning Objective. Let q be the online branch output (after pre-
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dictor), and z ′ the momentum branch output (after projector). We minimize the co-
sine distance between corresponding layout embeddings across augmented views as
in eq. 7.2:

LSim = 4−2

( 〈q1, z ′
2〉

∥q1∥2 · ∥z ′
2∥2

+ 〈q2, z ′
1〉

∥q2∥2 · ∥z ′
1∥2

)
(7.2)

Momentum Update Rule. The momentum encoder parameters ξ are updated from
the online encoder θ using exponential moving average as in eq. 7.3:

θ← optimizer(θ,∇θLtotal,η), ξ← τ ·ξ+ (1−τ) ·θ (7.3)

Layout Prediction Module. A layout predictor L receives the feature maps f and out-
puts a predicted layout mask mpred. It is trained using focal loss:

LDet =− α∑
i , j m[i , j ]

∑
i , j

[
m[i , j ](1−mpred[i , j ])γ logmpred[i , j ]

+ (1−m[i , j ])mpred[i , j ]γ log(1−mpred[i , j ])
] (7.4)

Overall Loss. The complete loss function used during pre-training is:

Ltotal =LSim +LDet (7.5)

This enables the encoder to jointly learn layout region embeddings and their spatial
positions.

7.3.4 Fine-Tuning for Document Layout Segmentation

Once pre-training is complete, the weights of the encoder Fθ are transferred to a Mask
R-CNN [95] model equipped with a Feature Pyramid Network (FPN) [160]. The de-
tector is trained on annotated document images for segmentation. The pre-trained
features improve performance, especially in low-resource settings, as detailed in the
next section.

7.4 Experimental Validation

Datasets. To train and evaluate our proposed SelfDocSeg framework, we leverage a
diverse set of document layout analysis datasets. For the self-supervised pre-training
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phase, we use only the training split (without annotations) of DocLayNet [197], which
comprises 69,375 document images drawn from six different domains and annotated
for 11 layout classes. This unlabelled data serves as the basis for extracting pseudo-
layout masks and training our encoder as described in Section 7.3. For downstream
evaluation of the pre-trained encoder, we employ four datasets: PRImA [?] (305 labeled
images), Historic Japanese [224] (2,271 documents with 259k labeled layout elements
spanning 7 categories), PubLayNet [291] (335k training, 11k validation/test samples
with 5 layout categories), and DocLayNet [197] (used here with ground-truth labels).

Implementation Details. We implement SelfDocSeg using the Lightly library built
on PyTorch Lightning and PyTorch. Models are trained on NVIDIA RTX A40 GPUs.
Pseudo-layout masks are created with OpenCV using a grayscale threshold of 239 (for
8-bit images) and a 5×5 rectangular kernel for erosion. Encoders Fθ and Fξ are based
on ResNet-50 [96], using the final residual block as the feature extractor (output chan-
nels d = 2048). The projector and predictor MLPs have dimensions 2048 → 4096 →
256. The layout predictor L is a 1×1 convolution layer. We train using LARS [281] opti-
mizer with learning rate η= 0.2, weight decay 5×10−4, cosine decay over 800 epochs,
and momentum τ= 0.99 for the target network.

For downstream segmentation, we fine-tune a Mask RCNN [95] (ResNet-50 backbone
with FPN [160]) via Detectron2 [269]. Hyperparameters include: 300k iterations, initial
learning rate 0.0025, SGD with Nesterov momentum, 64 anchor boxes, batch size 128
per RoI head, NMS threshold 0.4, test threshold 0.6.

7.4.1 Comparative Evaluation

State-of-the-Art Models. Since our contribution focuses on self-supervised pre-training,
we evaluate downstream performance after fine-tuning and compare with the follow-
ing baselines: For Self-Supervised model baselines we chose: (i) LayoutLMv3 [104]:
uses masked language/image modeling with OCR supervision and multimodal align-
ment. (ii) UDoc [82]: aligns vision-text-layout embeddings with ROI masking and con-
trastive loss. (iiI) DiT [147]: uses vision-only BEiT-style masked modeling with 42M
training samples. And for Supervised: baselines, we have: (i) DocSegTr [24]: trans-
former encoder-decoder with convolutional backbone, (ii) LayoutParser [225]: CNN-
based layout parsing with OCR assistance, (iii) Biswas et. al. [26]: modified Mask
RCNN with multi-scale features. (iv) Mask RCNN [95]: Vanilla instance segmentation
model. We also use vanilla BYOL [81] to compare.

Table 7.1 summarizes the mAP performance across datasets. SelfDocSeg outperforms
BYOL and vanilla Mask RCNN, while approaching the performance of OCR-guided
models despite using only visual cues and far fewer training images.
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Table 7.1: Comparison of document object detection performance (mAP) across
datasets using different visual (V), layout (L), and textual (T) cues during training.

Type Method V L T # Data DocLayNet PubLayNet PRImA HJ

Supervised

DocSegTr [24] ✓ ✗ ✗ – – 90.4 42.5 83.1

LayoutParser [225] ✓ ✓ ✓ – – 86.7 64.7 81.6

Biswas et al. [26] ✓ ✗ ✗ – – 89.3 56.2 82.0

Mask RCNN [95] ✓ ✗ ✗ – 72.4 88.6 56.3 80.1

Self-Sup.

LayoutLMv3Base [104] ✓ ✓ ✓ 11M – 95.1 40.3 82.7

UDoc [82] ✓ ✓ ✓ 1M – 93.9 – –

DiTBase [147] ✓ ✗ ✗ 42M – 93.5 – –

Proposed
BYOL [81] ✓ ✗ ✗ 81k 63.5 79.0 28.7 59.8

SelfDocSeg (Ours) ✓ ✗ ✗ 81k 74.3 89.2 52.1 78.8

Table 7.2: Semi-supervised fine-tuning on DocLayNet: effect of labeled data quantity.

% Annotations mAP

10% 41.3

50% 65.1

100% 74.3

7.4.2 Performance and Generalization

Our experiments show that SelfDocSeg reaches competitive mAP values compared
to models that rely on OCR or large-scale pre-training. Particularly on PRImA and
HJ datasets, SelfDocSeg performs comparably or better than supervised transformer
models, demonstrating strong generalization. In Fig. 7.4, we visualize qualitative seg-
mentation results. Figure ?? presents qualitative examples illustrating the effectiveness
of SelfDocSeg across diverse document types, including Invoice, Advertisement, Indus-
trial, and Leaflet layouts. Each row showcases documents with complex structures,
varying font styles, dense tabular content, and challenging background artifacts. De-
spite the absence of manual annotations during training, the model demonstrates pre-
cise object localization and layout segmentation. Invoices and industrial documents
show consistent detection of tables, headers, and footers. Advertisements, which often
contain low-contrast elements and minimal text, are handled effectively through ro-
bust visual representations. Leaflets, which blend textual blocks with graphic regions,
highlight the model’s ability to discern semantically meaningful sections, such as ti-
tles and captions. These visual results affirm the model’s strong generalization ability
across document domains, showcasing the benefits of self-supervised pre-training.
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AdvertisementInvoice

Industrial Leaflet

Figure 7.4: Qualitative comparison of predicted layout masks vs. ground-truth on Do-
cLayNet samples (Left: predictions, Right: GT).

Table 7.3: Ablation study: contribution of loss components in SelfDocSeg pre-training.

Loss Configuration mAP

w/o LSim 39.1

w/o LDet 69.7

LSim +LDet 74.3

7.4.3 Ablation Analysis

To evaluate the value of our pre-training, we fine-tune using subsets of annotated data.
Results in Table 7.2 show graceful degradation even with only 10% of labels, supporting
the effectiveness of visual representation learning. In Table 7.3, we analyze each loss
term’s contribution. The focal loss LDet aids object localization, while LSim encour-
ages feature alignment; both are essential for optimal downstream results. Together,
these findings confirm that SelfDocSeg can achieve robust layout understanding in a
self-supervised manner using only visual data and limited annotations during fine-
tuning.
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7.5 Conclusion and Future Work

In this chapter, we introduced SelfDocSeg, a self-supervised learning framework de-
signed to extract rich visual representations from document images without the need
for human-annotated labels. By leveraging a classical image processing pipeline to de-
rive pseudo-layout masks, SelfDocSeg facilitates region-level representation learning
that aligns well with document structure. The proposed architecture builds upon a
dual-branch BYOL-inspired setup and integrates a novel mask pooling strategy to pro-
mote spatially aware feature aggregation. Additionally, a lightweight layout prediction
module refines object-level localization using only weak supervision from generated
masks.

Through extensive experiments, we demonstrated that SelfDocSeg not only surpasses
standard visual pre-training baselines like BYOL but also provides competitive per-
formance compared to supervised counterparts on diverse benchmarks such as Do-
cLayNet, PubLayNet, PRImA, and HJ. The model shows particular promise in domains
with limited annotation budgets or highly heterogeneous layouts, validating the im-
portance of structure-aware self-supervision.

Future Directions. While SelfDocSeg makes notable progress in vision-based docu-
ment representation, several promising avenues remain for exploration:

• Multimodal Self-Supervision: Integrating weak textual or OCR-derived cues in
a contrastive or masked pretext task to enrich representations.

• Adaptive Mask Generation: Learning to generate or refine pseudo-layout masks
using data-driven feedback mechanisms instead of fixed morphological rules.

• Fine-Grained Semantics: Extending region-based pooling to token-level fea-
tures, enabling downstream tasks like entity detection or layout-to-structure con-
version.

• Cross-Domain Generalization: Adapting SelfDocSeg to unseen domains (e.g.,
historical manuscripts or handwritten forms) via domain-aware pretext tasks.

This concludes Part II: Representation of the thesis. Across this section, we explored
vision-language and self-supervised strategies to capture the structural and semantic
richness of documents. The next part will build upon these representations to tackle
document generation, where layout-aware decoding becomes central to producing
faithful, controllable document images.
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Part III

Generation
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Chapter 8

DocSynth: Layout-Guided Document
Image Synthesis

Form follows function — that has been misunderstood.

Form and function should be one, joined in a spiritual union.

– Steve Jobs

This chapter introduces DocSynth, a generative adversarial framework designed

to synthesize realistic and diverse document images conditioned solely on layout

structures. We formulate the task of document generation as a layout-to-image

synthesis problem and present a model that leverages latent object embeddings,

spatial reasoning modules, and adversarial training to generate coherent visual

documents from structured layout templates. The model is capable of handling

complex configurations, supporting layout-based content control, and enabling

variability through latent sampling. Although pioneering in its design, this chapter

also critically reflects on the inherent limitations of generating documents in pixel

space, particularly with respect to semantic coherence and scalability.

8.1 Introduction

In the broader pursuit of Document AI [46], the ability to not only interpret but also
generate structured document images opens up possibilities for layout-driven learn-
ing. While the previous parts and chapters in this thesis focused on understanding
and representing layout as structure, this chapter pivots toward generative modeling,
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Figure 8.1: Layout-to-Image Generation with DocSynth: Given an input layout com-
posed of spatial bounding boxes and class labels, DocSynth generates realistic docu-
ment images by sampling from latent distributions over both appearance and spatial
structure. Multiple diverse samples can be generated per layout.

exploring how layout itself can serve as a guiding signal for document image synthe-
sis. This shift from analysis to synthesis strengthens the thesis’s central premise: that
layout encodes semantic intent and can be leveraged for both recognition and genera-
tion tasks. Modern business workflows increasingly rely on both scanned and digitally-
born documents, encompassing a wide range of formats—from invoices and forms to
contracts and reports. Extracting information from such documents often requires not
only content recognition but also an understanding of their spatial organization. The
Office Document Architecture (ODA) framework [102] offers a foundational duality in
this regard: documents are visual images (for rendering and printing) and structured se-
mantic entities (for interpretation). Bridging these two views is precisely where layout
understanding plays a pivotal role.

However, training models that effectively learn layout-aware reasoning demands large,
diverse, and high-quality datasets—resources that are often limited due to annotation
costs and privacy concerns. While data augmentation techniques like rotation, scaling,
and cropping are widely used, they often fall short in capturing the structural com-
plexity and semantic coherence of real documents. This calls for a more principled
solution: synthetic document generation, where new samples are created in a con-
trollable, layout-consistent manner.

To this end, we introduce DocSynth, a layout-conditioned document image synthe-
sis framework that capitalizes on deep generative models to produce realistic docu-
ment images guided by a reference layout. As illustrated in Figure 8.1, the model takes
an input layout lattice composed of object categories and spatial locations and gener-
ates plausible visual renditions, thereby serving both data augmentation and analysis-
by-synthesis objectives. This capability proves especially useful in few-shot training
scenarios, where real examples are scarce, and synthetic variants can enrich down-
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stream tasks such as classification, retrieval, and segmentation. Compared to tradi-
tional rendering pipelines, which rely on heuristic composition or manually designed
templates [58], DocSynth harnesses neural rendering techniques such as Generative
Adversarial Networks (GANs) to learn complex mappings between spatial layouts and
their visual realizations. This paradigm shift from rule-based to data-driven synthe-
sis opened the broader evolution in computer vision and reinforced the importance of
layout as an actionable prior in document generation.

The contributions of this chapter are the following: (i) We propose DocSynth, a novel
layout-guided generative model that synthesizes realistic document images from refer-
ence layout templates using GANs. (ii) We demonstrate the effectiveness of DocSynth
through extensive experiments on the PubLayNet dataset [291], capturing both spa-
tial structure and semantic diversity. (iii) We frame document synthesis as a layout-
to-image generation task, introducing a new research direction in Document AI for
controllable data augmentation and low-resource learning.

8.2 Related Work

Understanding the structural and spatial organization of documents is a long-standing
challenge in Document Analysis and Recognition (DAR). Document layouts encapsu-
late both physical structure (i.e. the spatial arrangement of elements like text, tables,
or graphics) and logical semantics (i.e. the role or meaning these components convey
in context e.g., header, signature, logo). Accurate extraction of these layouts is foun-
dational for downstream tasks such as OCR [129], document classification [90], and
information extraction [114], as extensively reviewed in [23].

Generative Modeling for Image Synthesis. The advent of Generative Adversarial Net-
works (GANs) [80] has revolutionized image synthesis, enabling realistic generation
across diverse domains—from digits and faces to scenes and handwritten characters.
Notably, controlled generation—where specific aspects like object placement or layout
are imposed as conditions—has emerged as a promising direction. Early works such
as Lake et al. [135] introduced hierarchical generative models that construct characters
from strokes, demonstrating compositional learning. Similarly, Layout2Image [288]
presented a framework for generating complex scenes from a reference layout of ob-
ject positions and categories, forming a direct inspiration for our document synthesis
task.

Document Layout Generation and Design. Generative modeling for layout struc-
tures—particularly in graphics and document design—has also gained momentum.
LayoutGAN [146] introduced a GAN-based framework with a wireframe rendering layer,
generating layout designs through learned geometric priors. Zheng et al. [290] ex-
tended this by incorporating content-aware priors, enabling layout generation condi-
tioned on textual and semantic cues. These approaches, however, operate primarily on
abstract layout representations, not full-resolution document images. In response to
the limitations of CNN-based decoding, which may ignore low-dimensional geomet-
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ric regularities, READ [194] proposed a recursive architecture capable of synthesizing
structured 2D layouts with content fidelity. While effective for layout-level generation,
it does not translate to pixel-space rendering necessary for tasks like document im-
age classification or visual retrieval. On the other end, GANwriting [123] demonstrated
synthetic word-level handwritten image generation, emphasizing how learned struc-
ture can facilitate image-level realism. However, their work remains focused on local-
ized text snippets, lacking support for full-page document synthesis.

Despite these advances, existing methods remain insufficient for whole-page docu-
ment image synthesis that balances realism, layout fidelity, and semantic diversity. Doc-
ument images present unique challenges—blending structured graphical layouts with
natural language content across heterogeneous templates (e.g., invoices, resumes, re-
ports). Furthermore, the need for controllable generation—particularly from layout
specifications—is paramount for scalable data augmentation, semi-supervised learn-
ing, and retrieval tasks. In this chapter, we propose DocSynth, a layout-guided doc-
ument image generation framework that bridges this gap. By synthesizing document
images directly from spatial and categorical layout templates, DocSynth offers a mile-
stone step towards fully controllable document synthesis, establishing new avenues
for low-resource learning in Document AI.

8.3 The DocSynth Framework

This chapter introduces our layout-driven generative framework for document image
synthesis, DOCSYNTH. We begin by formally defining the problem and introducing
the key notation. Following that, we detail the proposed architecture, describe each
component of the network, outline the training and inference strategies, and conclude
with implementation-specific considerations.

8.3.1 Problem Formulation

Let us define X as a fixed-size image canvas (e.g., 128×128) and I as a document image
over this canvas. A document layout is represented as L = {(ℓi ,bboxi )}n

i=1, where each
object instance Oi belongs to a category ℓi ∈ O and is spatially defined by a bounding
box bboxi ⊂ X . We sample latent appearance features Zob j =

{
zob ji

}n
i=1 from a stan-

dard Gaussian prior N (0,1) for each object instance. The goal is to learn a generator
function G parameterized by ΘG that produces a synthetic image Ĩ from layout L and
the object-wise latent code Zob j as in eq. 8.1:

Ĩ =G(L, Zob j ;ΘG ) (8.1)

The DocSynth model is designed to address three core challenges:
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Figure 8.2: DocSynth Framework Overview: The model is trained in an adversarial
setup with both image- and object-level discriminators. Given a layout with bounding
boxes and semantic labels, the generator synthesizes document images guided by spa-
tial configuration and object appearance.

• Can the generator synthesize visually realistic images faithfully reflecting the in-
put layout L?

• Can it generate diverse yet layout-consistent images by varying Zob j ?

• Is the model robust to layout alterations, such as modifying object positions or
adding/removing elements?

8.3.2 Model Architecture and Training Strategy

Training Phase. As shown in Figure 8.2, training begins with extracting layout annota-
tions L and cropping object instances Oi from ground truth image I . The model em-
beds object category labels as vectors ei , and samples appearance latent codes from
both a prior N (0,1) and a posterior Q(zcr op

ob ji
| Oi ) predicted by an object encoder E .

Two types of synthetic outputs are produced:

1. Reconstructed image I ′ using posterior samples Z cr op
ob j .

2. Generated image Ĩ using randomly sampled Zob j .

A second object encoder E ′ regresses latent features from generated objects, enforcing
alignment between generation and prior encoding. The entire pipeline is optimized
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via adversarial learning, using two discriminators (Di mg and Dob j ) at the image and
object levels, respectively.

Inference Phase. During inference, given a user-defined layout L, the generator sam-
ples object appearance codes from N (0,1) and synthesizes novel document images
consistent with the spatial arrangement and object labels.

8.3.3 Architectural Module Description

Object Encoders. The object encoders E and E ′ extract posterior representations from
cropped real and generated object instances. Each encoder outputs the mean and
variance vectors for Gaussian sampling and consists of stacked convolutional layers
followed by fully connected layers.

Layout Encoding. Each object’s layout encoding Fi is constructed by fusing its label
embedding ei , latent code zi , and bounding box bboxi . These per-object features are
rasterized into feature maps and aggregated by a convolutional layout encoder C .

Spatial Reasoning Module. To model inter-object dependencies, a convolutional LSTM
(ConvLSTM) processes the sequence of object feature maps. It outputs a spatially co-
herent hidden state h that serves as input to the final image decoder.

Image Generator. The decoder K takes the hidden feature map h and reconstructs
either the original document image I ′ or a new variant Ĩ , depending on the sampled
latent codes.

Discriminators Two adversarial discriminators are used: Di mg evaluates full-page re-
alism, and Dob j focuses on individual object quality. The adversarial loss follows the
standard GAN objective as in eq. 8.2:

LGAN = Ex∼preal [logD(x)]+Ey∼pfake [log(1−D(y))] (8.2)

8.3.4 Learning Objectives

The total training loss is a weighted sum of six components:

LG =λ1L
img
GAN +λ2L

obj
GAN +λ3L

obj
AC +λ4LKL +λ5L

img
1 +λ6L

obj
1 (8.3)

Where:

• L
img
GAN, L

obj
GAN are adversarial losses.

• LKL ensures regularization of posterior and prior distributions.

• L
img
1 , L

obj
1 are pixel-wise reconstruction losses.

• L
obj
AC is a classification loss to enforce semantic accuracy.
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8.3.5 Implementation Details

To stabilize adversarial training, we adopt Spectral Normalization GAN (SN-GAN) [?].
Conditional Batch Normalization [?] is applied to object encoding layers. The model
is implemented in PyTorch and supports image resolutions of 64× 64 and 128× 128.
Hyperparameters are set as follows: λ1 = 0.01, λ2 = 1, λ3 = 8, λ4 = 1, λ5 = 1, and λ6 =
1. Training is conducted using the Adam optimizer [130] with a batch size of 16 over
300,000 iterations. All experiments are reproducible on a single NVIDIA GPU with 24
GB memory.

8.4 Experimental Evaluation

This chapter presents a comprehensive set of experiments designed to evaluate the ef-
fectiveness of our proposed DocSynth framework for layout-guided document image
generation. The experimental analysis comprises qualitative visualizations, quantita-
tive benchmarking using established metrics, and a series of ablation studies to assess
the contribution of individual architectural components. All experiments were imple-
mented using the PyTorch library and conducted on a single NVIDIA GPU with 24GB
of memory.

8.4.1 Datasets

To validate our approach, we conduct experiments on the PubLayNet dataset [291],
a large-scale benchmark containing structured document images derived from the
PubMed Central digital library. The dataset provides annotated bounding boxes for
five key object categories: text, title, list, table, and figure. For our evaluation,
we use the official training split comprising 335,703 images and the validation split
with 11,245 images.

8.4.2 Evaluation Metrics

To assess the fidelity and variability of the generated document images, we employ two
widely used metrics in generative modeling:

Fréchet Inception Distance (FID) The FID score [99] quantifies the distance between
feature distributions of real and generated images in the latent space of an Inception-
v3 network [235]. Lower FID values indicate better alignment with real image statistics
and more photorealistic outputs.

Diversity Score (LPIPS) To capture perceptual diversity, we use the Learned Perceptual
Image Patch Similarity (LPIPS) score [287], computed over pairs of images generated
from the same layout. Higher scores indicate greater variation in appearance while
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preserving layout structure. We use the AlexNet backbone [134] to extract features for
diversity estimation.

8.4.3 Qualitative Results

Visualizing the Synthetic Distribution. We first demonstrate the capability of our
model to generate plausible document images across diverse layout patterns. Fig-
ure 8.3 shows a 2D t-SNE [246] embedding of synthetic samples, illustrating distinct
clusters corresponding to different layout structures. These results highlight our model’s
ability to learn rich spatial priors and generate visually distinct yet structurally consis-
tent samples.

Figure 8.3: t-SNE visualization of the generated synthetic document images
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Controllable Synthesis via Layout Conditioning. A major strength of our approach
lies in its capacity for layout-conditioned controllable generation. We assess this in
two distinct scenarios:

Case 1: Diverse Styles from Fixed Layout. As shown in Figure 8.4, our model generates
multiple stylistic variants from a single reference layout while preserving the structure
and semantics of layout elements. This supports use cases like dataset augmentation
and style transfer.

Figure 8.4: Examples of diverse synthesized documents generated from the same lay-
out. The layout structure remains fixed, while the visual style varies across samples.

Case 2: Dynamic Layout Editing. In Figure 8.5, we simulate incremental editing of the
layout (adding or removing bounding boxes). The model successfully adapts the gener-
ated images in response, maintaining spatial coherence and semantic alignment. This
reflects its robustness to layout variations and capacity for layout-guided scene ma-
nipulation.

8.5 Quantitative Results

We quantitatively evaluate our generation results using FID and LPIPS-based Diversity
Score. Table 8.1 reports scores for both 128×128 and 64×64 resolutions. We observe
that generated images achieve comparable FID scores to real samples, while also at-



DocSynth 130

Figure 8.5: Examples of synthesized document images by adding or removing bound-
ing boxes. Top row: incremental addition; Bottom row: object removal.

taining higher diversity, particularly at the 64×64 resolution.

Table 8.1: Performance metrics for real and generated document images

Method FID Diversity Score

Real Images (128×128) 30.23 0.125

DocSynth (128×128) 33.75 0.197

Real Images (64×64) 25.23 0.115

DocSynth (64×64) 28.35 0.201

8.6 Ablation Studies

To understand the contribution of architectural choices, we perform controlled abla-
tion experiments focused on the spatial reasoning module of our network. Table 8.2
compares different variants: no LSTM, vanilla LSTM, and conv-LSTM with varying
kernel depths k. The results clearly demonstrate the effectiveness of the conv-LSTM
structure in preserving layout fidelity and boosting generation quality. Deeper convo-
lutional gates (up to k = 3) further improve performance by better capturing spatial
dependencies among layout objects.

8.7 Conclusions and Future Directions

This chapter presented DocSynth, one of the first comprehensive attempts at layout-
guided synthetic document image generation at scale. Through a carefully designed
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Table 8.2: Impact of spatial reasoning module on FID score

Reasoning Backbone FID

No LSTM 70.61

Vanilla LSTM 75.71

conv-LSTM (k=1) 37.69

conv-LSTM (k=2) 36.42

conv-LSTM (k=3) 33.75

generative architecture combining spatial reasoning, conditional priors, and adversar-
ial training, we demonstrated that it is indeed possible to synthesize plausible, diverse,
and structurally coherent document images purely from abstract layout representa-
tions. Our model enables controllable generation, layout-driven editing, and multi-
modal sampling—all of which open new possibilities for augmenting datasets, simu-
lating layout scenarios, and training downstream vision models in a low-cost and cus-
tomizable manner.

Despite its strengths, generating documents directly in the image space presents in-
herent limitations. Visual synthesis is heavily constrained by resolution, difficult to
scale to high-fidelity documents, and often fails to generalize across complex domains
with diverse font styles, languages, or embedded content (e.g., formulas, tables). More-
over, image-based models do not capture the underlying textual semantics or logical
structure of the document, which are essential for downstream tasks like editing, re-
trieval, or semantic search. In that sense, DocSynth is a foundational but partial step
toward document generation. It demonstrates the viability of layout-to-image synthe-
sis, but also exposes the bottlenecks of working in pixel space, where learning is lim-
ited by visual consistency and lacks interpretability. These limitations motivate a shift
in perspective—from visual realism to structural fidelity, and from rasterized pixels to
sequential token representations.

Looking ahead, we build upon the insights from this chapter—particularly the impor-
tance of layout priors and object-level semantics—to explore autoregressive models
that generate structured documents in a token space. This not only addresses the scal-
ability and fidelity issues faced by image-based methods, but also sets the stage for
unifying generation, editing, and understanding in a single language-driven frame-
work. In summary, while DocSynth marks a milestone in layout-to-image synthesis,
it also serves as a launching pad for a deeper exploration into document generation as
a language problem. By blending layout structure with language modeling, the forth-
coming chapters chart a path toward models that can understand, generate, and edit
documents in a way that is both human-aligned and machine-efficient.
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Chapter 9

Towards Autoregressive Vector
Document and Sketch Generation

The essence of intelligence is skill in extracting meaning from everyday experience.

– Herbert A. Simon

This chapter presents a paradigm shift in document generation by transitioning

from layout-to-image generation to a sequence-based autoregressive modeling.

We introduce DocSynthv2, a vectorized layout-aware generation model that for-

mulates the document structure comprising both layout and textual elements as a

sequential representation. Unlike classical GAN-based methods that operate in the

pixel space, our approach models documents as grammars of layout and content,

enabling fine-grained control and enhanced generation fidelity. Furthermore, we

extend this paradigm with SketchGPT, an autoregressive sketch completion model

that captures the compositional rules underlying document structure, offering in-

sights into layout grammar learning through next token prediction. These mod-

els demonstrate robust performance in generating coherent, diverse, and seman-

tically plausible document representations across various document types.

9.1 Introduction

With growing interest in layout-aware document modeling [108, 133, 86, 107], the need
for scalable synthetic document generation has become increasingly relevant. Previ-
ous works like DocSynth [27] and SynthTIGER [280] attempted to synthesize document
images directly in the pixel space using layout templates. While effective for rendering

133
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style-diverse documents, these approaches are limited by resolution bottlenecks and
the inability to preserve high-fidelity textual content.

To overcome these constraints, DocSynthv2 reformulates the problem as a layout-to-
sequence generation task. Each document is represented as an ordered sequence of
layout tokens, object labels, and corresponding textual snippets. By modeling this
sequence autoregressively, the system gains fine-grained control over both the struc-
ture and content generation processes. The benefits are multifold: (1) the model sup-
ports high-resolution rendering since it decouples generation from pixel space; (2) it
allows partial or constrained generation (e.g., layout completion); and (3) it integrates
naturally with language modeling techniques and text conditioning. To benchmark
this task, we introduce PubGenNet, a large-scale document generation dataset curated
for layout-text pair modeling. The dataset includes diverse domains (scientific, legal,
forms) and enables rigorous evaluation for document completion, conditional gener-
ation, and data augmentation. DocSynthv2 demonstrates state-of-the-art results on
these tasks, offering a simple yet flexible framework that can generate realistic and se-
mantically coherent document layouts.

In parallel to structured documents, hand-drawn sketches represent a fascinating form
of sequential visual communication. From architecture [55] to electronics [217] and
entertainment [20], sketches serve as expressive tools grounded in spatial-temporal
order. Unlike static images, sketches are captured as a stream of pen movements, and
thus naturally lend themselves to sequence modeling. SketchGPT proposes a unified
autoregressive generative model that treats sketches as visual sentences composed of
discrete strokes. Inspired by the success of GPT-style models in next-token predic-
tion [203, 30], our approach learns to predict the next drawing primitive conditioned
on the sequence of prior strokes. Unlike prior models like SketchRNN [87] or Sketch-
BERT [159], SketchGPT generalizes across multiple tasks—sketch generation, comple-
tion, and classification—using a single architecture.

To improve generalization and avoid overfitting, we introduce astroke-to-primitive
abstraction [2], which discretizes continuous sketch inputs into a compact lexicon
of reusable shapes. This enables efficient learning while preserving structural expres-
siveness. SketchGPT outperforms prior sketch generation models on multiple datasets
and demonstrates strong capabilities in downstream applications. The core contribu-
tions of this chapter are fourfold: (i) First, we propose DocSynthv2, an autoregressive
vector-based generation framework that models documents as unified sequences of
layout and textual tokens, enabling flexible and high-resolution document synthesis.
(ii) Second, we introduce SketchGPT, a GPT-inspired generative model that captures
the sequential structure of hand-drawn sketches through stroke-level abstraction, sup-
porting tasks such as sketch generation, completion, and classification. (iii) Third,
we curate a new benchmark dataset, PubGenNet, specifically designed for layout-text
modeling and document generation, facilitating consistent evaluation across multiple
settings. (iv) Finally, we conduct qualitative and quantitative experiments spanning
both document and sketch domains, demonstrating the broad applicability and effec-
tiveness of autoregressive approaches in structured visual content generation.
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9.2 Related Work

Document Layout Generation. The task of document layout generation has seen rapid
growth, driven by its importance in applications ranging from automated publish-
ing and report creation to responsive web design. Foundational models like Layout-
GAN [146] and LayoutVAE [120] modeled the spatial distribution of 2D objects and syn-
thesized plausible document-like layouts. Building on this, layout-conditioned gen-
eration approaches such as [290] enabled controllable synthesis by conditioning on
prompts like input categories or exemplar images. Further, READ [194] introduced re-
cursive VAE hierarchies to represent document structures, which was later extended
with graph autoencoders in LayoutGMN [195] for layout sampling under structural con-
straints. Of particular relevance to our work is the Layout Transformer [86], which
employs self-attention [249] and a next-element prediction objective to autoregres-
sively generate document layout tokens comprising class labels and bounding box co-
ordinates. Subsequent approaches such as [8] combine VAE objectives with generative
transformers to enhance the diversity and fidelity of generated layouts.

Synthetic Document Generation. Alongside layout modeling, the synthesis of full
document images from structured layouts has gained popularity in the computer vi-
sion community. Layout-conditioned image generators [288, 98, 117] aim to translate
layout maps into high-resolution images, emphasizing photorealism and object place-
ment consistency. Specifically within the document domain, DocSynth [27] was the
first to offer an end-to-end image synthesis pipeline for creating synthetic documents
using layout-to-image translation, primarily to support layout analysis tasks [197, 291].
While effective for data augmentation, such pixel-based techniques often yield low-
resolution outputs, with limited control over embedded textual content. Our proposed
DocSynthv2 addresses this limitation by shifting from raster-based to vector-based
generation, encoding both layout structure and text as unified sequences in an au-
toregressive modeling paradigm.

Sketch as a Language. Sketches, like textual language, exhibit an inherent structure,
composed of sequential strokes that mirror syntactic and semantic units [74, 178].
This analogy has inspired a class of models treating sketch generation as a form of
visual language modeling. One early example is SketchRNN [87], which introduced
a sequence-to-sequence LSTM model [100] to learn dynamic stroke trajectories for
sketch synthesis. Expanding this idea, SketchBERT [159] adapted the BERT language
model [61] to the vector sketch domain, achieving strong results on recognition and re-
trieval tasks. More recently, SketchKnitter [256] employed a denoising diffusion model
to simulate human sketching behaviors, capturing the distribution of stroke points
over time. Our approach, SketchGPT, draws from these works but extends the mod-
eling scope by leveraging GPT-style next-token prediction to unify sketch generation,
completion, and classification under a single autoregressive framework.

Sketch Abstraction via Primitives. A critical challenge in sketch modeling is handling
variability in stroke styles and densities. Inspired by theories in cognitive science [21],
recent works have proposed abstracting continuous sketches into compact, symbolic
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primitives. For instance, Alaniz et al. [2] proposed a Primitive Matching Network to
map freeform strokes to a finite set of canonical shapes using affine transformations.
This abstraction improves generalization by discretizing the input space and minimiz-
ing overfitting to fine-grained drawing variations. Our model incorporates a similar
primitive-based mapping strategy to reduce complexity and enhance training stability
in the autoregressive sketch modeling process.

Applications and Datasets. The release of large-scale sketch datasets, such as TU-
Berlin [66], Sketchy [218], and QuickDraw [118], has fueled progress in sketch under-
standing and creative generation. Early efforts in sketch recognition [219, 155] were
built on hand-crafted features, later superseded by deep learning models [229, 282]
that now rival human performance. Transformer-based generative frameworks [19,
242, 213] have emerged as state-of-the-art for sketch modeling, exploiting learned tok-
enization schemes to improve interpretability and performance across diverse sketch
tasks. Our work contributes to this evolving landscape by offering a flexible and uni-
fied transformer-based model that supports a variety of sketch-related objectives while
maintaining a lightweight and task-agnostic design.

9.3 The DocSynthv2 Framework

In this section, we detail the proposed methodology for autoregressive document gen-
eration using DocSynthv2. We begin by formalizing the representation of document
elements, followed by a comprehensive explanation of our model design and training
objectives.

9.3.1 Document Representation

Each document D is modeled as a sequence of layout elements, where each element
is characterized by a set of attributes. These include its semantic category c (e.g., para-
graph, table, figure), spatial position (x, y), size (w,h), and optional textual content t .
Inspired by prior works [86, 8, 109], we quantize the continuous attributes into discrete
tokens to enable sequence modeling with autoregressive transformers.

We define a document as a sequence of S elements as in eq. 9.1 :

D = (D1,D2, . . . ,DS ) , (9.1)

where each element Di is a tuple:

Di =
{

d k
i | k ∈ E

}
, (9.2)

and E represents the set of all attribute types. This includes discrete tokens for class
label, bounding box coordinates, style information (such as font or weight), and op-
tionally, a set of tokens for associated text content.
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GPT2 Architecture
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Figure 9.1: Overall architecture of DocSynthv2, our autoregressive framework for
structured document generation. Each document is represented as a sequential
stream of layout-text tokens, encoding hierarchical information from high-level ele-
ments (e.g., tables, paragraphs) to nested sub-elements (e.g., table cells). These tokens
include type, position (X, Y, H, W), style, and content attributes, which are processed
through a stack of GPT2-based decoder blocks with self-attention and feed-forward
layers. The model learns to predict the next token conditioned on the prior sequence,
capturing both spatial and semantic structure of the document.

To form a full input sequence for the model, we concatenate all element tokens linearly
as in eq. 9.3:

D = 〈sos〉c1 x1 y1 w1 h1 t1 . . . cS xS yS wS hS tS 〈eos〉 , (9.3)

where 〈sos〉 and 〈eos〉 are special start-of-sequence and end-of-sequence tokens, re-
spectively. For missing fields (e.g., font in non-text elements), we insert a special [NULL]
token.

9.3.2 Discrete Modeling and Sequence Learning

Each document is tokenized into a sequence of length m, with each token represented
as a latent vector θ j , where j = 1, . . . ,m. The overall generative process is formulated as
a chain of conditional probabilities using the autoregressive factorization as in eq. 9.4:

p(θ1:m) =
m∏

j=1
p(θ j | θ1: j−1), (9.4)
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This formulation enables the model to generate one token at a time, conditioned on
all previously generated tokens, capturing both syntactic and layout-dependent de-
pendencies across elements.

9.3.3 Model Architecture

The DocSynthv2 architecture is based on the GPT2 decoder stack [204], tailored to cap-
ture the layout-content interplay. It comprises a stack of N masked transformer blocks,
each containing:

• A masked multi-head self-attention (MHA) mechanism to preserve autoregres-
sive ordering.

• A position-wise feed-forward network (FFN) to enhance token representation.

• Residual connections and layer normalization to facilitate stable training.

The input to the model is a tokenized sequence of the type shown in Equation 9.3. The
model predicts the next token θ j at each timestep j using the context θ1: j−1. Dur-
ing training, the model is exposed to full ground truth sequences and optimized using
teacher forcing. At inference time, it generates new layouts auto-regressively, condi-
tioned either on a partial layout or a prompt of class tokens (e.g., starting with a Table
or Title block).

9.3.4 Learning Objectives

To train DocSynthv2, we use a combination of categorical cross-entropy losses for dis-
crete attributes and optionally, variational regularization for smoother token distribu-
tion. The training objective minimizes the negative log-likelihood over the token se-
quence as in eq. 9.5:

LNLL =−
m∑

j=1
log pθ

(
θ j | θ1: j−1

)
, (9.5)

In case of latent sampling (as explored in earlier VAE-based layout models), an addi-
tional Kullback–Leibler divergence term may be introduced:

LKL = KL(q(z |D)||p(z)), (9.6)

The final loss is a weighted combination:

L =LNLL +λLKL, (9.7)

where λ balances the reconstruction and regularization terms.
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9.3.5 Inference Strategy

During generation, given an initial sequence of visible tokens D1:T (layout prompt),
the model samples one token at a time to complete the sequence until the end-of-
sequence token is predicted or a maximum length is reached. For example, when
tasked with generating a scientific article layout with tables and paragraphs, DocSyn-
thv2 can be conditioned on the first few elements and generate plausible layout and
content token streams thereafter. Unlike pixel-space generation models [27], this sequence-
based generation yields high-resolution editable structures directly useful for down-
stream applications such as document design, editing, and structure-aware classifica-
tion.

9.4 SketchGPT: A Generative Transformer for Sketch Com-
pletion and Classification

Built upon the foundations of autoregressive GPT-like models, SketchGPT is a task-
agnostic generative transformer pre-trained on the QuickDraw dataset [87], which con-
tains multiple object categories of sketches. The model learns neural representations
of sketch data, capturing sequential dependencies among their compounding strokes.
The pre-trained representations exhibit adaptability to a wide range of downstream
sketch tasks, including sketch completion, generation, and classification. An overview
of the framework is shown in Figure 9.2.

9.4.1 Data Preprocessing and Sketch Abstraction

At its core, a sketch is represented as a sequence of time-stamped coordinate points.
The QuickDraw dataset stores these sketches using the stroke-3 format, where each
point is defined by three values: (x, y, p). Here, x and y represent coordinate offsets,
while p denotes the pen state. To ensure data uniformity, min-max normalization is
applied such that x, y ∈ [0,1].

The stroke abstraction step discretizes continuous sketch strokes into a finite dictionary
of primitive lines. Inspired by Alaniz et al. [2], each stroke is approximated by a straight-
line primitive selected from a predefined dictionary. This stroke-to-primitive mapping
is computed via cosine similarity between the orientations:

sim(si , p j ) = si ·p j

∥si∥ ·∥p j ∥
(9.8)

pi = argmax
p j ∈P

sim(si , p j ) (9.9)
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Figure 9.2: Overview of the SketchGPT framework for unified sketch understanding
and generation. Given an input sketch, each stroke is first mapped to a closest ab-
stract primitive using a stroke-to-primitive mapping function to produce a simplified
structural representation. This representation is then tokenized and passed through
an autoregressive GPT-style model. The model serves a dual purpose: for sketch clas-
sification (red path), a multi-layer perceptron (MLP) head predicts the object class; for
sketch completion (purple path), the model continues the sequence to generate plau-
sible remaining strokes. This unified architecture enables multitask learning across
sketch domains by modeling stroke sequences as visual language tokens.

To compensate for variable stroke lengths, a scaling factor aligns each primitive with
the original stroke:

T (pi , si ) =
⌈

m(si )

m(pi )

⌉
(9.10)

The sketch Si is thus represented as:

Si = {p1 ·T (p1, s1), p2 ·T (p2, s2), . . . , pn ·T (pn , sn)} (9.11)

This representation is then tokenized into a sequence using a vocabulary V including
special tokens:

T = [BOS, p1, . . . , p1,SEP, p2, . . . ,SEP, . . . , pn , . . . ,EOS] (9.12)



141 DocSynthv2/SketchGPT

9.4.2 Model Architecture

SketchGPT is based on a decoder-only transformer [204] with causal masked multi-
head self-attention. For a sketch sequence X , the masked attention operation is:

MaskedAttention(X ) = softmax

(
(X WQ )(X WK )T ⊙Mask√

dk

)
(X WV ) (9.13)

The multi-head version is expressed as:

MultiHead(X ) = Concat(head1, . . . ,headh)WO (9.14)

where headi = MaskedAttentioni (X ). These outputs are passed through an MLP,
forming a transformer block. Multiple blocks are stacked to form the model backbone.

9.4.3 Pre-Training SketchGPT

Following GPT [203], SketchGPT is pre-trained with an unsupervised next-token pre-
diction objective over the sketch token corpus:

Lpretrain = ∑
n=i

− logP (τn |τn−k , . . . ,τn−1;Θ) (9.15)

This enables the model to learn the structural and semantic patterns inherent in sketch
sequences.

9.4.4 Fine-Tuning for Downstream Tasks

After pre-training, SketchGPT is fine-tuned on specific tasks:

Sketch Completion and Generation. The model is trained to complete partial sketches
in an autoregressive manner. Conditioned on class context, it predicts missing primi-
tives. Unconditional generation is a special case starting from the [BOS] token.

Sketch Classification. Given a tokenized sketch Si = [τ1, . . . ,τn], the final activation is
passed through an MLP classifier to predict the class label yi :

Lclassification = ∑
(S,y)

− logP (y |τ1, . . . ,τn) (9.16)

These tasks demonstrate the versatility of SketchGPT in adapting a single model archi-
tecture for both generative and discriminative tasks within the sketch domain.
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Figure 9.3: Text Prediction and Document Completion Results using DocSynthv2.
The top row shows an example of text prediction for advertisement design using the
Crello dataset, where the model generates realistic and contextually consistent text in
a visually guided layout. The bottom row presents document layout and content com-
pletion on PubGenNet, where missing content is autoregressively reconstructed, pre-
serving both spatial structure and semantic flow.

9.5 Experimental Evaluation

9.5.1 Tasks in Document Generation

The primary motivations for our model are to address the key aspects of document de-
sign and generation. We have selected the evaluation tasks based on: (1) Creating a
new document or completing a partially finished one, focusing on maintaining coher-
ence, appearance, and relevance to the intended content. (2) Test the model’s ability in
layout design, specifically its understanding of spacing, alignment, and the interplay
between text and other elements.
Document Completion: This task requires the model to analyze the current layout
elements and content within the document (eg. text, title, tables, figures etc.) and log-
ically predict what elements should follow to maintain the coherence and plausible
structure of a document.

Single and Multiple Text Box Placement: This task in terms of next element predic-
tion requires the model to identify optimal locations and sizes for text boxes within a
document, based on the existing layout and design principles. It assesses the model’s
capability to seamlessly incorporate new text elements, ensuring they align with the
document’s structure and visual appeal.
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Table 9.1: Quantitative evaluation for Document Completion. Results style: best, sec-
ond best. ↑ higher is better and ↓ lower is better.

Model mIoU ↑ FID ↓ Align ↓ Over ↓
LayoutTrans [86] 0.077 14.769 0.019 0.0013

Layoutformer++ [116] 0.471 10.251 0.020 0.0022

Ours (w/o txt) 0.315 12.217 0.025 0.0019

Ours (lay+txt) 0.452 10.718 0.015 0.0013

∆ -0.019 +0.467 -0.004 0.000

Table 9.2: Quantitative evaluation for Single and Multiple Box Placement in Crello. Re-
sults style: best, second best. ↑ higher is better and ↓ lower is better.

Model Single Multiple

IoU ↑ BDE ↓ IoU ↑ BDE ↓
SmartText [143] 0.047 0.262 0.023 0.300

FlexDM (MM) [109] 0.357 0.098 0.110 0.141

FlexDM (w/o img) [109] 0.355 0.100 0.103 0.156

FlexDM (w/o txt) [109] 0.350 0.106 0.086 0.178

Ours 0.315 0.104 0.105 0.131

9.5.2 Quantitative Evaluation for DocSynthv2

Table 9.1 summarizes the performance comparison of DocSynthv2 over the existing
SOTA transformer decoder-only models. Our full model (with text attributes) gives
us boost in performance over the layout-only model, demonstrating that utilizng the
raw text can help guide models for layout generation when avaialble. Although our
model is a lightweight decoder-only architecture, it can perform on par with Layout-
Former++ [116] which is an encoder-decoder-based transformer. Our results with high
Alignment and Overlap scores also suggest that layout generation and completion mod-
els gain substantial improvement when trained on sequences integrating textual con-
tent. In Table 9.2, we summarize the performance of Single and Multiple Text Box
Placement in the Crello dataset. The results show that the model does worse for text
placement in the Single Text box condition, likely due to the weaker multimodal fea-
tures compared to [109]. However, it performs on par for IoU and outperforms for BDE
in the Multiple condition, which may be due to the raw text in our model.

9.5.3 Qualitative Evaluation for DocSynthv2

Figure 9.3 shows example of our applied for text synthesis and document completion
on the Crello and PubGenNet datasets. In the Crello Text prediction example, it can
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be seen that the text is aligned with the layout showing a plausible flyer title for the
heading section followed by an address and date in the sub text fields. For the Docu-
ment Completion Task, we have the model generate the text within in an existing Table
structure. The filled text maintains coherence across the two table columns, filling it
with Authors names and reference information on the left and text of the right. In this
example the text coherence could likely be improved by LLMs.

9.5.4 Quantitative SketchGPT Evaluation with CNN Classifier

To quantitatively assess the sketch generation quality, we employ a CNN-based eval-
uation protocol using a pre-trained ResNet34 classifier. The classifier is trained to
distinguish between seven categories from the QuickDraw dataset — bus, cat, ele-
phant, flamingo, owl, pig, and sheep. This enables us to measure the recognizability
of sketches generated by SketchGPT as compared to the baseline SketchRNN model.

For each model, we generate 1000 samples per class (7000 total), rasterize them into
images, and pass them to the CNN. The classifier achieves a validation top-1 accuracy
of 87.92%. As reported in Table 9.3, SketchGPT outperforms SketchRNN across both
top-1 and top-3 accuracy metrics, indicating its superior ability to synthesize human-
like, class-consistent sketches.

Table 9.3: CNN-based quantitative evaluation on generated sketches using Top-1 and
Top-3 classification accuracy.

Method Top-1 Accuracy (%) Top-3 Accuracy (%)

SketchRNN 44.6 79.1

SketchGPT 50.4 81.7

9.5.5 SketchGPT Human User Study

We also perform a human evaluation study with 100 participants to assess five qual-
itative properties of generated sketches: fine detail appreciation, creativity, diversity,
human-likeness, and overall preference. Participants were shown five randomly gen-
erated sketches per class for both SketchGPT and SketchRNN across the same seven
categories from QuickDraw.

Figure 9.4 summarizes the results, highlighting that SketchGPT consistently re-
ceives higher scores across all evaluation axes. Notably, the model exhibits stronger
diversity and creativity, showcasing its expressive capability in mimicking varied hu-
man sketching behavior.
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Figure 9.4: Results from the human user study comparing SketchGPT and SketchRNN
across five qualitative dimensions.

9.5.6 Qualitative Evaluation of Sketch Completion

To explore sketch completion capabilities, we input partial sketches into SketchGPT
and examine the generated completions. Figure 9.5 demonstrates the model’s capacity
to produce diverse yet coherent sketches for each incomplete input, trained on class-
specific datasets. This further reflects the model’s robustness in inferring plausible
structural continuations.

Figure 9.5: Qualitative examples of sketch completion with multiple completions per
partial input using class-specific SketchGPT models.
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9.5.7 Evaluation for Sketch Recognition

Competitors include traditional models such as HOG-SVM [65] and Ensemble [155],
as well as deep models including Sketch-a-Net [282], DSSA [229], ResNet variants [96],
SketchBERT [159], and ViT [64]. SketchGPT is evaluated both with and without a pre-
training phase.

9.5.8 Results and Discussion

As shown in Table 9.4, SketchGPT achieves strong performance, outperforming most
baselines and only slightly behind SketchBERT, which uses substantially more pre-
training data. Notably, even without pre-training, SketchGPT delivers robust results,
validating the effectiveness of its vector-based tokenization and autoregressive train-
ing.

Table 9.4: Sketch classification results (Top-1 and Top-5 accuracy) on QuickDraw.

Method Top-1 Acc. (%) Top-5 Acc. (%)

HOG-SVM [65] 52.05 74.50

Ensemble [155] 60.31 80.22

Bi-LSTM [100] 74.68 90.59

Sketch-a-Net [282] 70.64 87.93

DSSA [229] 79.47 92.41

ResNet18 [96] 79.67 91.71

ResNet34 [96] 82.02 93.48

SketchBERT [159] 88.30 97.82

ViT [64] 47.69 68.73

SketchGPT (w/o Pretrain) 81.42 91.81

SketchGPT (w/ Pretrain) 83.58 93.65

9.6 Ablation Studies

To better understand the behavior and sensitivity of SketchGPT, we conduct several
ablation studies.

9.6.1 Effect of Temperature on Generation Quality

We study how temperature scaling affects sketch generation by varying the tempera-
ture t from 0.6 to 2.0 on the sword class. As shown in Figure 9.6, low temperatures



147 DocSynthv2/SketchGPT

produce overly simplistic sketches, while very high values lead to erratic outputs. The
range between 1.0 and 1.4 offers an optimal trade-off between fidelity and diversity.

Figure 9.6: Impact of temperature parameter on the quality of generated sketches for
the "sword" class.

9.6.2 Impact of Number of Classes on Classification Accuracy

We analyze model performance when trained with increasing class counts (25, 50, 100,
and 200 classes), each with 5K samples per class. Results in Table 9.5 indicate a grad-
ual performance drop with more classes, though the degradation is modest up to 100
classes. This suggests that extending training data could mitigate losses at larger scales.

Table 9.5: Classification accuracy of SketchGPT with varying class counts.

# Classes Top-1 Acc. (%) Top-5 Acc. (%)

25 Classes 86.3 96.8

50 Classes 85.2 95.4

100 Classes 83.6 93.6

200 Classes 78.9 91.2

9.7 Conclusions and Future Directions

In this final part of the thesis, we explored the challenge of document generation with
an explicit focus on layout guidance and content conditioning. We introduced and
evaluated two distinct frameworks: DocSynthv2, which models layout and textual
content autoregressively, and SketchGPT, a vector-based generative model designed
to handle sketch-like document structures with flexibility and compositional creativity.
Through DocSynthv2, we showcased how sequence modeling can enable controllable
document synthesis tasks, such as layout completion and text generation, evaluated
over benchmarks like PubLayNet and Crello. Our experiments highlight the model’s
ability to retain structure-content alignment while producing visually diverse and se-
mantically coherent outputs. The framework also allowed us to analyze trade-offs be-
tween layout fidelity, semantic preservation, and style diversity. With SketchGPT, we
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pushed the boundaries further by treating sketches as structured sequences and apply-
ing language modeling techniques to vectorized strokes. Our empirical analysis shows
its advantage not only in sketch generation and completion, but also in classification
and stylistic variation.

Together, these contributions illustrate the power and versatility of autoregressive mod-
els when applied to layout-aware generation tasks. They emphasize that structured to-
kenization, layout semantics, and vector representation form the foundation for con-
trollable and high-quality document generation. This part of the thesis lays important
groundwork for future research at the intersection of document understanding, multi-
modal generation, and creative AI.

While the presented methods in this part demonstrate strong potential in layout-aware
document generation, several promising directions remain open for future exploration:

• Joint Multimodal Pretraining. Current approaches treat layout and content se-
quentially but independently. An exciting avenue lies in jointly pretraining mod-
els across image, layout, and text modalities using large-scale multimodal cor-
pora. Such a model could enable more nuanced and semantically grounded
generation by aligning visual, spatial, and linguistic representations.

• Sketch-Conditioned Document Generation. Leveraging sketch input as a guid-
ance signal for document synthesis such as drafting layouts or stylistic strokes
can enable more intuitive human-in-the-loop generation systems. Conditioning
DocSynthv2 type models with vectorized sketches or human-drawn wireframes
would open new creative and design applications.

• Graph-Augmented Autoregressive Models. Given the inherently structured na-
ture of documents, integrating graph-based reasoning into autoregressive mod-
els could further improve coherence, especially for hierarchical layouts (e.g., nested
tables, multi-column formats). Recent advances in graph neural networks and
relational transformers may serve as key building blocks for this integration.

• Task-Specific Adaptation. Extending the generation frameworks to task-specific
settings such as scientific poster design, invoice templating, or multi-language
form generation could help evaluate generalization under practical constraints.
Fine-tuning on low-resource document types would assess robustness and trans-
ferability.

• Human-Centric Evaluation Metrics. Beyond traditional metrics like FID or IoU,
designing human-centered evaluation frameworks including usability studies,
cognitive load assessments, or layout aesthetics scoring could offer richer in-
sights into the quality and impact of generated documents and sketches.

By pursuing these directions, we anticipate significant progress toward making doc-
ument generation systems not only more controllable and expressive, but also more
aligned with human needs, creativity, and real-world utility.



Chapter 10

Conclusion and Future Work

“There is no real ending. It’s just the place where you stop the story.”

— Frank Herbert, Dune (1965)

In this chapter, we summarize the contributions of this thesis to the field of Doc-

ument AI by exploring layout as a foundational visual language. We revisit how

the thesis navigated three core research axes—understanding, representation, and

generation/editing—and conclude by reflecting on open questions and promising

research directions.

10.1 Bridging the Axes: Layout as Visual Grammar

This thesis proposed to treat document layout not just as structural metadata, but as
a semantic language—one that carries meaning, guides visual attention, and enables
reasoning across downstream tasks. Across its trajectory, the thesis explored this idea
through three interconnected research axes:

• Understanding: Can we teach models to perceive layout like humans do i.e. de-
tecting and segmenting visual elements as coherent units?

• Representation: How can we encode layout to make it useful for other down-
stream tasks, particularly when explicit supervision is unavailable?

• Generation & Editing: Can we reverse the process—synthesize or modify layouts
while preserving their semantic and structural intent?

149
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By traversing these axes, the thesis demonstrates that layout-aware models can move
beyond mere perception—towards understanding, reasoning, and creative generation
of documents. This holistic view positions layout not only as an interpretive tool, but
also as a generative prior for richer, more context-aware document intelligence.

While the research presented here makes optimal progress across these axes, the jour-
ney towards truly layout-literate AI systems remains ongoing. Many of the methods
and findings in this thesis open the door to new opportunities, and reveal challenges
that merit further investigation. The following sections will provide an insight of the
thesis contributions summary, outline further open challenges and potential future
directions, with the aim of guiding subsequent research at the intersection of layout
understanding, representation, and generation.

10.2 Summary of Thesis Contributions

This thesis presents a unified exploration of the hypothesis that document layouts func-
tion as a latent language, capturing both spatial syntax and semantic structure. By or-
ganizing our work across three thematic axes — Interpretation, Representation, and
Generation — we contribute a diverse set of models and frameworks that collectively
advance the field of Document AI. The core contributions are summarized below:

10.2.1 Interpretation: Layout-Aware Document Segmentation

We address the challenge of layout segmentation beyond bounding-box detection, propos-
ing pixel-level, transformer-based, and semi-supervised methods that model the struc-
tural grammar of documents:

• Mask R-CNN-based segmentation tailored for complex structured layouts in sci-
entific PDFs and historical archives.

• DocSegTr, a twin-attention transformer with interpretability features and a novel
inverse focal loss, targeting better recall for small but critical layout elements.

• SwinDocSegmenter, a unified, modular Swin Transformer-based framework demon-
strating high performance and robustness across domains.

• SemiDocSeg, a semi-supervised extension that introduces co-occurrence priors
and support sets to boost generalization in low-label settings.

These models demonstrate how interpreting layout as structure improves instance-
level understanding and segmentation accuracy across diverse document types.
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10.2.2 Representation: Learning Layout Semantics through Self-Supervised
and Graph-Based Models

This axis focuses on learning document representations that capture structural and
relational information using self-supervised and graph-based approaches:

• SelfDocSeg, a vision-only self-supervised framework that leverages layout-aware
augmentations and BYOL-style contrastive learning to pre-train models without
labeled data.

• Doc2GraphFormer, a graph-augmented lightweight document transformer model
that integrates layout, visual and textual cues into a task-agnostic document un-
derstanding pipeline.

These contributions establish that document representations can be effectively learnt
by leveraging layout structure itself — even in the absence of explicit annotation —
enabling scalable and generalizable understanding.

10.2.3 Generation: Layout-Controlled Document Synthesis and Gram-
mar Modeling

In the final axis, we investigate how layout can guide generative modeling, treating it
as a prior for controllable and structured document generation:

• DocSynth, a layout-guided synthesis pipeline that disentangles layout and con-
tent for controllable document image generation.

• DocSynthv2, an autoregressive modeling approach that encodes layout and text
as sequences, enabling text completion and structured layout-text generation on
real datasets.

• SketchGPT, a sequence-based sketch generation framework modeling layout prim-
itives as tokens, supporting sketch classification and completion through transformer-
based decoding.

Together, these works push the boundary of document generation by viewing layout
as a generative grammar — where both structure and content can be modeled, edited,
and synthesized in a coherent and controllable manner.

10.3 Limitations and Future Work

While the thesis presents a coherent progression from interpreting document layouts
to generating them, each part introduces its own set of assumptions, design choices,
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and open questions. In this section, we critically reflect on the methodological deci-
sions and practical limitations across the three research axes.

10.3.1 Interpretation: Scope of Supervision and Generalization

The first part of the thesis focused on transitioning from bounding-box detection to
fine-grained, instance-level segmentation. Although the proposed models (DocSegTr,
SwinDocSegmenter, and SemiDocSeg) demonstrate strong performance on standard
benchmarks, several challenges remain:

• Domain shift and visual bias: Although domain-adaptive components improve
robustness, the models remain susceptible to degradation under distribution
shifts. Background artifacts, unconventional spatial arrangements, and atypical
element shapes—common in handwritten, historical, or visually degraded doc-
uments—still cause performance drops. This points to a need for architectures
that can disentangle true semantic structure from incidental visual noise.

• Annotation cost and scalability: High-quality pixel-level masks remain the gold
standard for supervised training, yet they are prohibitively costly at scale. The
semi-supervised extension (SemiDocSeg) mitigates this to some degree, but its
performance is sensitive to the quality and representativeness of the chosen sup-
port sets, indicating that scalability still depends on informed curation.

• Interpretability and transparency: While transformer-based architectures pro-
vide flexibility and accuracy, they largely operate as opaque systems. Attention
maps offer a partial window into model reasoning, but they do not guarantee
faithful interpretability. Without deeper semantic explainability, it is challenging
to build trust in critical domains such as legal or medical document processing.

Addressing these limitations will require coordinated efforts from the AI research com-
munity, spanning both methodological and infrastructural developments. In particu-
lar, we identify the following priorities:

• Beyond benchmark-centric evaluation: Current benchmarks reward accuracy
on well-curated, clean datasets. To foster true generalization, the community
should adopt evaluation suites that explicitly target domain shift—e.g., cross-
domain validation across printed, handwritten, historical, and design-heavy lay-
outs, with controlled degradations. RoDLA [42] is a viable approach towards this
direction.

• Reducing annotation dependency at scale: While semi-supervised and weakly
supervised methods show promise, progress will depend on leveraging large-
scale synthetic or procedurally generated datasets, along with self-supervised
pretraining objectives that are explicitly layout-aware rather than text- or image-
only. Instruction-tuned datasets for training multimodal models in this regard
can be more powerful and generalizable as shown in BigDocs [215].
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• Towards interpretable layout reasoning: Rather than treating attention maps
as a post-hoc diagnostic, future work should integrate intrinsically interpretable
mechanisms into model design—such as modular reasoning pipelines, structured
scene graphs, or symbolic-layout hybrids—to make decision pathways explicit
and auditable. DocXVQA [232] is a potential approach that could be exploited
towards having such level of grounded information for spatial, visual and textual
modalities.

• From perception to functional understanding: The community should move
beyond “where” elements are located to “why” they are arranged that way. This
requires incorporating multimodal cues (visual, textual, and structural) and ex-
plicit reading order information (eg. LayoutReader [263]) into models so that
layout understanding aligns with document intent and usage context.

• Agentic AI for structure–content extraction beyond OCR: A promising frontier
is the development of agent-based document understanding systems that can
iteratively plan, reason, and adapt their extraction strategy depending on doc-
ument complexity. Such systems would move beyond static OCR pipelines to
actively parse layout, infer hierarchical relationships, and extract structured con-
tent while validating and correcting errors in context—mirroring the way human
analysts interact with documents.

• Sustainable model deployment: Domain-adaptive training pipelines should be
designed with efficiency in mind to reduce compute costs, enabling on-device
inference, and making models more accessible to low-resource organizations
that handle specialized document types.

Taken together, these directions emphasize that progress in document layout interpre-
tation is not just a matter of incremental accuracy gains, but of building systems that
are robust, transparent, and truly useful across the diverse realities of document col-
lections in the wild.

10.3.2 Representation: Structural Biases and Transferability

Part II of this thesis introduced self-supervised and graph-based models for capturing
layout semantics without relying on manual annotations. Approaches such as SelfDoc-
Seg and Doc2GraphFormer demonstrated that rich structural priors can be learned and
transferred effectively to a variety of downstream tasks. However, several critical limi-
tations and open questions remain:

• Layout-centric bias: Current representation methods [6, 7, 284, 82] prioritize
structural regularities, sometimes at the expense of semantic or textual cues.
In scenarios where meaning is embedded in subtle language patterns, visual
style, or multimodal interplay, layout-dominant embeddings may fail to capture
essential context. Bridging this gap calls for more balanced architectures that
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can integrate visual, structural, and semantic signals without overfitting to one
modality. A good starting point in this direction could be the usage of Global-
Doc [11] framework that uses only visual and textual cues and learns a shared
embedding space for capturing "implicit" document structure. Extending this
to integrate a more balanced spatial modality can be the next potential step.

• Graph formulation sensitivity: The performance of graph-based models is tightly
coupled to the choice of node features and edge definitions. In Doc2Graph-style
systems [78, 79, 22, 183], these are often manually engineered and task-specific,
limiting adaptability and generalization. End-to-end learnable graph construc-
tion or agentic systems capable of dynamically revising the graph topology based
on task feedback could help to alleviate this issue.

• Downstream task alignment: Although the learned representations transfer well
to segmentation and classification, their utility for more complex objectives (e.g.,
entity linking, hierarchical reasoning, logical ordering) is underexplored. Repre-
sentation learning should move towards task-aware adaptation, ensuring that
embeddings capture the specific relational and semantic properties demanded
by the target application.

From a broader perspective, the community’s next steps in this space should include:

• Designing multi-view pretraining objectives that jointly optimize for structural
fidelity and semantic depth, enabling representations that work across visually
and semantically diverse document types.

• Exploring dynamic graph induction via neural or agentic approaches, where
graph structure evolves adaptively as the model processes the document, rather
than being fixed at preprocessing time.

• Investigating cross-task, cross-domain transfer benchmarks to measure how
well learned representations generalize to entirely new document genres and
task families.

• Integrating agentic AI planning loops into representation learning—where an AI
agent could, for example as in a framework like LATIN-Prompt [257], iteratively
query different parts of the document, update its graph representation, and re-
fine embeddings based on reasoning goals rather than static input.

Addressing these challenges will be essential to move from general-purpose document
embeddings toward goal-aware, task-adaptive representations that can serve as a foun-
dation for the next generation of layout-literate AI systems.

10.3.3 Generation: Grammar Modeling vs. Visual Fidelity

The final part of this thesis investigated layout-guided and autoregressive approaches
for document generation, with DocSynthv2 [25] and SketchGPT [243] demonstrating
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promising capabilities for controllable synthesis. These models illustrate how layout
can serve as both a conditioning signal and a generative prior. However, several unre-
solved tensions and methodological constraints remain:

• Sequence modeling constraints: Treating documents as linear sequences (whether
tokens, strokes, or layout primitives) imposes an ordering that may be misaligned
with inherently non-linear structures such as multi-column formats, tables, or
graph-like layouts. This can limit a model’s ability to capture parallel reading
flows or interlinked visual relationships.

• Visual vs. semantic trade-offs: Generating visually compelling layouts with high
fidelity (as in DocSynth) can conflict with preserving semantic integrity, particu-
larly when text content is synthesized alongside graphics. Conversely, focusing
on semantic accuracy may lead to visually unnatural layouts. Achieving a bal-
anced optimization of both still remains a core open challenge.

• Data and tokenization limitations: Both SketchGPT and DocSynthv2 depend on
specific datasets and handcrafted tokenization schemes. These may fail to gen-
eralize to multilingual settings, handwritten documents, or hybrid text–graphic
compositions, where tokenization rules become more ambiguous and domain-
specific.

To advance the field of layout-aware document generation, we identify several future
priorities:

• Hybrid structural representations: Develop models capable of seamlessly com-
bining sequence-based and graph-based representations [139], enabling the cap-
ture of both linear narrative flow and complex spatial relationships.

• Dual-objective training regimes: Introduce multi-task or multi-objective opti-
mization frameworks that jointly maximize visual realism and semantic faithful-
ness, potentially leveraging disentangled latent spaces for structure and content.

• Multilingual and multimodal generalization: Curate diverse training corpora
spanning multiple languages, scripts, and media types, along with adaptive tok-
enization strategies that can evolve during training.

• Agentic generation workflows: Extend document generation into iterative, agent-
driven pipelines where the system can plan, assess, and revise its own output—e.g.,
generating a draft layout, running semantic validation, and refining specific re-
gions until both structure and content meet task requirements.

• Reward models for layout-aware RL: Train reward function models that explic-
itly score generated documents on multiple axes (visual quality, structural align-
ment, semantic accuracy, and controllability) and use these signals to guide re-
inforcement learning policies. Such reward-driven optimization could enable
agentic systems to learn iterative improvement strategies, rather than relying
solely on static supervised loss functions.
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• Evaluation beyond FID and Alignment metrics: Move toward holistic evalua-
tion metrics that jointly assess visual quality, structural alignment, semantic ac-
curacy, and user-controllable attributes, allowing fairer comparison of different
generation paradigms.

By addressing these gaps, the community can move toward generative systems that
treat layout not merely as a canvas for rendering, but as an active, manipulable gram-
mar—capable of producing documents that are both visually compelling and seman-
tically coherent across a wide range of real-world scenarios.

10.4 Success Stories and Real-World Impact

Beyond academic exploration and benchmark performance, several components de-
veloped in this thesis have been integrated into real-world systems, demonstrating
their value in enterprise-grade document intelligence pipelines. These deployments
validate not only the technical soundness of the methods, but also their operational
reliability under the messy, unpredictable conditions of production environments.

Industrial Deployment of SWINDOCSEGMENTER: A key example comes from an in-
dustrial collaboration where the SwinDocSegmenter framework [13] was deployed as
the primary layout interpretation module within a large-scale, AI-powered document
processing system used for real-time information extraction and summarization. In
industrial settings, incoming documents often deviate significantly from curated re-
search datasets: contracts scanned at non-uniform angles, administrative forms con-
taining stamps and handwritten notes, archival material with degraded print quality,
and a wide variety of legacy templates. Accurate layout parsing in such contexts is
essential, as it forms the structural foundation for any downstream analysis. The de-
ployment leveraged SwinDocSegmenter for:

• Robust multi-domain segmentation: Handling both machine-printed and scanned
forms without retraining, the model demonstrated resilience to background noise,
unusual spatial arrangements, and visual artifacts.

• Seamless modular integration: Thanks to its domain-adaptive design, the model
was integrated into the existing pipeline without requiring major architectural
changes, replacing brittle rule-based systems and enabling rapid onboarding of
new document types.

• Structural blueprint for downstream AI: The segmentation maps became a struc-
tural scaffold for subsequent tasks, such as:

– Automated table extraction and normalization.

– Key–value pairing for contractual and administrative data.

– Entity detection and change tracking across document versions.
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• Operational efficiency at scale: In production, the system processed hundreds
of documents per minute under strict latency constraints, enabling near-real-
time querying and summarization of large repositories.

This industrial deployment underscores the thesis’s emphasis on domain-adaptive ar-
chitecture and robust representation learning—key factors that allowed a research model
to transition smoothly into an enterprise environment, reduce manual review work-
load, and accelerate decision-making on a large scale.

From Research to Creative Prototypes: Layout-Conditioned Generation in Action:
The generative frameworks developed in Part III of this thesis—DocSynth, DocSyn-
thv2 and SketchGPT—have inspired exploratory prototypes that illustrate how layout-
conditioned generation can move beyond the lab and into creative, interactive, and
resource-critical workflows. These demonstrations served as proof-of-concept sys-
tems, bridging the gap between theoretical modeling and real-world application.

• DocSynth for synthetic data generation: Leveraging its controllable layout-to-
document synthesis capabilities, DocSynth was applied to a prototype document
augmentation tool for creating large-scale synthetic datasets for a French Bank
Corporation. This was particularly valuable in such low-resource domains, such
as specialized forms and niche administrative templates in French, where col-
lecting annotated real data is prohibitively costly. The generated documents
maintained structural and stylistic diversity while preserving semantic plausibil-
ity—making them suitable for downstream training of OCR engines, key–value
extraction models, and form-understanding systems.

• DocSynthv2 for customizable template generation (Adobe Internship Project):
During a research internship with a big giant design industry, DocSynthv2 was
extended into an advanced layout-aware generation tool capable of creating and
modifying templates with user-specified text content. This system allowed fine-
grained control over both structural arrangement and semantic composition,
enabling rapid prototyping of document templates for marketing, publishing,
and creative design workflows. Its sequence-based modeling of layout and text
facilitated seamless adaptation to diverse template styles while preserving de-
sign coherence.

• SketchGPT for creative sketch-based prototyping (Research Demo Platform):
SketchGPT was showcased as an interactive platform for sketch-based document
creation, where users could draw rough layout strokes and receive AI-driven com-
pletions. This tool proved valuable for rapid ideation in UI/UX layout design,
educational demonstrations, and creative prototyping, lowering the entry bar-
rier for structured design generation. By combining free-form human input with
structured generative modeling, it demonstrated a human–in-the-loop approach
to layout creation.

Together, these prototypes demonstrate that modeling layout as language is not merely
a conceptual framework but a practical enabler across domains—from synthetic data
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generation for enterprise OCR systems to customizable template creation for industry
partners, and creative sketch-based design for research and education. They highlight
the adaptability of the proposed generative models to both production-driven and ex-
ploratory creative settings, reinforcing the thesis’s vision of layout-aware AI as a bridge
between document understanding and document creation.

10.5 Grand Challenge: Multimodal Reasoning in Layout
Understanding

As Document AI advances, a key unresolved frontier is the ability to reason jointly
across modalities—text, diagrams, equations, and layout—particularly in unstructured
and handwritten material. This thesis has laid the foundation for modeling layout as a
language across interpretation, representation, and generation. The natural next step
is to ask: Can machines reason with layout in the wild, as humans do when navigating
scientific notes or answering open-ended questions?

Why this is hard: Unlike clean, typeset documents where text lines, headings, and fig-
ures follow predictable formatting rules, handwritten scientific notes are inherently
irregular and often idiosyncratic to the author’s style. They exhibit:

• Non-linear writing flows: Scientific note-taking rarely follows a strict left-to-
right, top-to-bottom order. Equations may be inserted mid-sentence, diagrams
may interrupt paragraphs, and annotations can refer to distant parts of the page.
This breaks the assumptions of sequence-based reading and requires models to
dynamically re-order and link related elements.

• Domain-specific symbols and notations: From chemical structure diagrams to
Feynman diagrams in physics, shorthand in biology, or custom mathematical
symbols, these visual tokens often carry meaning that is not explicitly explained
within the note itself. Recognizing and interpreting them demands both visual
pattern recognition and domain-specific semantic grounding.

• Informal sketches and multi-domain elements: Hand-drawn flowcharts, quick
conceptual diagrams, and schematic representations frequently coexist with text.
These are often incomplete or abstract, relying on the reader’s prior knowledge
to fill in missing details—making them challenging for models trained on clean,
fully specified figures.

• Sparse or implicit layout cues: Many handwritten notes lack consistent spacing,
alignment, or clear bounding regions for different content types. Instead, se-
mantic relationships are implied through proximity, arrows, underlines, or color
cues. Such implicit structure forces models to infer relationships that are not
explicitly marked.
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Figure 10.1: Comparison of OCR and Vision-Language Model outputs on a hand-
written scientific note. The central image shows a real student-authored note with
equations and prose. Surrounding boxes show outputs from commercial OCR tools
(Amazon Textract, Google OCR), vision-language-based OCRs (OLM-OCR, Nougat,
GOT 2.0), and a human annotation. The image highlights critical failures in structure,
symbol transcription (e.g., math notations), and semantic understanding across mod-
els, underlining the need for multimodal reasoning beyond plain OCR. Figure adapted
from the NoTeS-BANK benchmark

These characteristics collectively undermine the effectiveness of current OCR- and
layout-only approaches, which typically assume a single reading order and clearly de-
fined content boundaries. Overcoming them will require systems that can jointly inter-
pret multiple modalities—visual, textual, symbolic, and spatial—while grounding their
reasoning in both the document’s visual evidence and the domain-specific context of
its content. As illustrated in Figure 10.1 on a scientific note sample, we see how it’s in-
terpretation challenges the current paradigm of layout parsing, and demand reasoning
that is not only multimodal but also grounded in visual evidence and domain-specific
context.

Curation of a New Reasoning Benchmark: To push beyond the limitations of OCR-
and layout-only methods, we are developing NOTES-BANK, a benchmark for evidence-
grounded, multimodal question answering over scientific handwritten notes. These
notes present highly irregular structures—non-linear writing flows, domain-specific
symbols, informal sketches, and sparse layout cues—that demand models capable of
joint symbolic, spatial, and semantic reasoning. NOTES-BANK introduces two tasks:
(1) Evidence-Based VQA, requiring answers to be returned with bounding-box visual
evidence, and (2) Open-Domain VQA, which combines domain classification, retrieval
of relevant notes, and cross-modal grounded answer generation. This represents a
shift toward systems that can “read like a student”—localizing, connecting, and syn-
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What is the cycle of reproduction according to
the given notes?

In the image, which implementation of the
symbol table will have the least time

complexity ?

Name the two parts or the fragment of
Spirogyra before Fragmentation in the

diagram.

What is the primary function of error detection
given in the image?

What is the difference between first and
second diagram of  molecule?

What is the cycle of reproduction according to
the given notes?

What is the reaction of HF with 
shown in the image ?

In the given parse tree, which operator has the
highest precedence ?

From which eq we got the value of n?

Figure 10.2: Illustration of diverse answer types and visual object categories within
the NOTES-BANK benchmark. The central radial chart shows the distribution of an-
notated regions across semantic categories such as text, equations, diagrams, chem-
ical structures, and flowcharts. Surrounding examples depict questions that require
grounding answers to specific visual cues, such as boxed formulae, underlined labels,
structural fragments, or parse trees. These instances emphasize the role of layout
grammar—the implicit spatial organization of symbols, annotations, and multimodal
components—in enabling human-like reasoning. Understanding such unstructured
scientific notes necessitates vision-language models that can infer semantic roles from
layout context, symbol types, and spatial alignment.

thesizing dispersed, symbol-rich content. The benchmark builds on this thesis’s vision
by treating layout as a semantic cue for evidence attribution, extending layout-aware
generation into layout-aware reasoning, and opening a new axis of retrieval-based, vi-
sually grounded reasoning that could leverage architectures such as Doc2Graph and
autoregressive layout modeling. Achieving this will require vision-language pretrain-
ing on noisy, handwritten, diagram-rich data, cross-modal fusion strategies that pre-
serve spatial anchoring, and layout-aware prompting and retrieval methods. As shown
in Figure 10.2, real-world handwritten scientific notes involve diverse object types such
as formulas, parse trees, diagrams, and equations, all situated within informal layouts.
Modeling these layouts as latent grammar is crucial for enabling grounded question
answering over unstructured visual content. Ultimately, such advancements would
enable machines to not only “read” but to “reason with layout”—unlocking intelligent
AI systems that can tutor, summarize, or collaborate with humans over visually com-
plex documents.



161 Conclusions

10.6 Epilogue

When this journey began, the challenge seemed deceptively simple: documents are
everywhere, yet machines still fail to read them with the nuance and adaptability of
humans. A contract, a handwritten note, a research paper—each communicates not
only through words, but through its spatial composition, its visual rhythm, its layout.
Over the course of this work, that intuition crystallized into three interconnected re-
search axes.

The first, Understanding, asked whether machines could learn to see documents as
we do—identifying coherent units, segmenting them with precision, and remaining
resilient to the countless variations found in the wild. With SwinDocSegmenter and
its extensions, we saw this capability deployed in real industrial pipelines, replacing
brittle heuristics with learned, domain-adaptive structure.

The second, Representation, sought to move from seeing to knowing—to encode layout
in a form that could travel across tasks and domains, enabling new applications with-
out starting from scratch. Models like SelfDocSeg and Doc2GraphFormer proved that
structure can be learned without labels, but also revealed the subtle biases and design
choices that shape what gets preserved—and what gets lost—in these representations.

The third, Generation, reversed the perspective entirely: could machines create layouts
with intent, preserving both their visual form and their semantic meaning? Through
DocSynth, DocSynthv2, and SketchGPT, this work showed that layout-aware genera-
tion could serve both pragmatic ends—like synthetic data for OCR—and creative ones,
from design prototyping to sketch-based ideation.

These ideas did not remain confined to academic benchmarks. In industry collabo-
rations, layout parsing became a production-ready enabler of large-scale document
intelligence. Generative prototypes found use in low-resource training pipelines and
creative workflows. These deployments affirmed that “layout as language” is not just
a theoretical lens—it is a practical foundation for systems operating in messy, high-
stakes environments.

And yet, the story is far from over. The next grand challenge—multimodal reason-
ing—demands systems that can think across text, diagrams, equations, and layout,
navigating handwritten notes and symbol-rich pages as a human student or researcher
might. The NOTES-BANK benchmark is a first step, inviting models to read with evi-
dence, reason across modalities, and engage in iterative, agentic understanding.

In the end, this thesis is less a conclusion than a bridge: from perception, to knowledge,
to creation—and onward to reasoning. It is a reminder that the limits of how we teach
machines to read and reason are, in a sense, the limits of the worlds they can inhabit. As
Wittgenstein once observed, “The limits of my language mean the limits of my world.”
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List of Key Contributions

Simple things should be simple, complex things should be possible.

– Alan Key

Topics

The central theme of this dissertation is the development of more effective layout-
aware document understanding systems. The core contributions revolve around mod-
eling document layout as a latent language to support both the interpretation and
generation of document structure. However, the doctoral journey also gave rise to a
number of complementary research directions within the broader field of Document
AI. These were intentionally excluded from the main narrative to maintain thematic
coherence, yet they represent valuable by-products of the research process and con-
tribute to the field in their own right. Key among these are:

• Document Image Enhancement: Development of deep learning frameworks
for restoring degraded document images through denoising, deblurring, and bi-
narization. These approaches as in DocEnTr [230] and Text-DIAE [231], often
guided by perceptual and task-specific loss functions, were designed to improve
both human readability and OCR performance under challenging acquisition
conditions.

• Scene Text Spotting: Exploration of text spotting in natural scenes and noisy,
real-world environments, including multilingual and domain-specific contexts.
A couple of works related to domain adaptive text spotting [49, 50] addressed
the combined challenges of detection and recognition in visually cluttered, low-
quality, or stylistically varied imagery.

• User-Guided Document and Scene Text Editing: Early prototypes of interac-
tive, layout-aware, and font-agnostic text editing systems for both documents
and scene images. These systems [51] sought to integrate semantic understand-
ing with visual realism, enabling fine-grained, human-in-the-loop modifications
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while preserving overall design and layout integrity. In addition, this body of
work also included the early development of DocEdit [182], a redefined docu-
ment editing framework [265] aimed at structured, layout-aware modifications
with precise semantic and visual consistency.

While peripheral to the main focus, these contributions reflect the breadth of chal-
lenges encountered when pushing toward more robust, flexible, and user-adaptive
document understanding technologies. They also illustrate the potential for cross-
pollination between core layout reasoning research and adjacent areas such as doc-
ument restoration, scene text analysis, and interactive visual editing.
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modeling for sketch generation and recognition." In International Conference
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Switzerland, 2023. (*Oral, Equal Contribution)

• Andrea Gemelli, Sanket Biswas*, Enrico Civitelli, Josep Lladós, and Simone Mari-
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nition and document enhancement." In the AAAI conference on artificial intelli-
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• Sanket Biswas*, Pau Riba, Josep Lladós, and Umapada Pal. "Docsynth: a layout
guided approach for controllable document image synthesis." In International
Conference on Document Analysis and Recognition, pp. 555-568. Cham: Springer
International Publishing, 2021.

• Nil Biescas, Carlos Boned, Josep Lladós, and Sanket Biswas*. "Geocontrast-
net: Contrastive key-value edge learning for language-agnostic document un-
derstanding." In International Conference on Document Analysis and Recogni-
tion, pp. 294-310. Cham: Springer Nature Switzerland, 2024. (*Oral)

• Jordy Van Landeghem, Sanket Biswas*, Matthew Blaschko, and Marie-Francine
Moens. "Beyond document page classification: design, datasets, and challenges."
In IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2962-
2972. 2024. (*Oral)

arXiv

• Sanket Biswas*, Ayan Banerjee, Josep Lladós, and Umapada Pal. "DocSegTr:
an instance-level end-to-end document image segmentation transformer." arXiv
preprint arXiv:2201.11438 (2022).

International Dataset Collaborations

In addition to methodological and system-level contributions, this doctoral work was
also shaped by active participation in collaborative dataset creation efforts within the
Document AI research community. These initiatives addressed gaps in existing re-
sources by providing large-scale, diverse, and task-specific datasets that enable robust
benchmarking and foster reproducible research.

• DUDE [247]: A comprehensive benchmark for document understanding in di-
verse environments, combining multiple domains, layouts, and modalities to sup-
port evaluation across a wide range of real-world scenarios. Role: Contributed to
dataset design, curated subsets for layout-rich domains, and coordinated anno-
tation guidelines and paper writing.

• BigDocs [215]: A large-scale corpus of document images designed for multi-
modal pretraining and evaluation for newly introduced document reasoning tasks,
with a focus on scaling layout-aware models to handle millions of pages across
industries and formats. Role: Contributed to dataset building strategy and con-
ducted complete literature survey for getting relevant data sources to ensure di-
versity in layout and domain coverage.
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• NOTES-BANK [193]: A benchmark for evidence-grounded, multimodal reason-
ing over handwritten scientific notes, introducing tasks such as evidence-based
VQA and open-domain VQA with visual grounding. Role: Conceived the bench-
mark design, defined task specifications, supervised data annotation workflows,
and developed evaluation protocols for multimodal reasoning.

These collaborative efforts not only provided critical resources for the experiments pre-
sented in this thesis but also enriched the broader research ecosystem—enabling new
research directions, facilitating fair comparisons, and establishing stronger baselines
for layout-aware document understanding. In particular, NOTES-BANK directly con-
nects to the grand challenge outlined in the following section, serving as a foundational
step toward multimodal reasoning systems that can navigate the rich, unstructured
landscapes of handwritten and symbol-heavy documents.

International Workshops and Competitions Organized

In addition to technical and collaborative research contributions, this doctoral work
has also involved active community-building through the organization of international
workshops and competitions in the Document AI field.

• ICDAR 2023 – DUDE Competition: Served as a primary organizer for the Doc-
ument Understanding in Diverse Environments (DUDE) competition, hosted at
the International Conference on Document Analysis and Recognition (ICDAR)
2023. The competition introduced a challenging multi-domain, multi-paged
benchmark to evaluate document understanding systems under diverse layout
and modality conditions, attracting global participation from both academia and
industry.

• ICCV 2025 - GDUG Workshop: I am currently serving as a lead organizer for
the Workshop on Graphic Design Understanding and Generation (GDUG), to be
held October 19, 2025, in Honolulu, in conjunction with ICCV 2025. The work-
shop brings together researchers, creators, and practitioners to explore how AI
can bridge the gap between generative approaches and the realities of structured
graphic design workflows where compositions are built from layers, typography,
styles, and visual grammar—rather than pixel-based painting. The discussion
will include topics such as multimodal document understanding and genera-
tion, layout modeling, typography analysis, perceptual evaluation of design, and
AI-assisted creative workflows
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