UAB

Universitat Autonoma de Barcelona

Holographic Insights into Conformal Transitions
and BSM Phenomena

Lindber Ivan Salas Escobar

ADVERTIMENT. L’accés als continguts d’aquesta tesi queda condicionat a I'acceptacié de les condicions d’us
establertes per la seguent llicencia Creative Commons: https://creativecommons.org/licenses/?lang=ca

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptacién de las condiciones de

uso establecidas por la siguiente licencia Creative Commons: -m https://creativecommons.org/licenses/?
Iang=eS @ BY _SA

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set

by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en




I

. ! n = @ EXCELENCIA
= - ‘a %E:‘Egg Universitat
. rh“ Autonoma
Institut de Fisica de Barcelona
d’Altes Energies

Holographic Insights into Conformal Transitions
and BSM Phenomena

A thesis presented for the degree of Doctor of Physics by:

Lindber Ivan Salas Escobar

Supervisors: Prof. Dr. Alex Pomarol Clotet and Prof. Dr. Mariano Quirés Carcelén

July 10, 2025






Acknowledgements

Primeramente, me gustaria expresar mi profundo agradecimiento a mis directores de tesis,
Alex y Mariano, por confiar en mi y brindarme la oportunidad de realizar este trabajo. A
Alex, en particular, le agradezco las conversaciones sobre futbol y politica que siguieron
a los largos, pero siempre enriquecedores, intercambios sobre fisica. Aquellos didlogos
hicieron que estos anos de investigacion fueran mucho mas amenos y humanos. También
agradezco sinceramente a Oriol y Eugenio, quienes colaboraron conmigo a lo largo de estos
anos y siempre estuvieron dispuestos a compartir su tiempo y conocimiento para hablar
de fisica. Quisiera, ademas, agradecer a Rafel por su ayuda constante en los ultimos
anos, que me permitié impartir clases en la universidad y llegar a culminar esta tesis.
Agradezco también a quien fue méds que un profesor, un hermano: Eduardo. Siempre
lo recordaré con carino y estaré eternamente agradecido por haberme ayudado a venir a
Barcelona y por todo lo que me ensend, tanto en la fisica como en la vida.

Mi gratitud se extiende a IFAE, por ofrecerme un entorno propicio para la realizacion
de este trabajo, y al Ministerio de Educacién, a través de la beca Severo Ochoa, por
el apoyo financiero. También quiero expresar mi aprecio a todos los companeros con
quienes comparti charlas y momentos gratos en IFAE: a Xavi, el Danni, Victor y Rudin.
En especial, quiero agradecer a todo el equipo administrativo del instituto, por la ayuda
brindada incluso antes de mi llegada a Barcelona; muy particularmente a Elisabet, Sara
y Marta, por su cercania y generosidad.

Estos ultimos anos también trajeron desafios personales, especialmente en lo referente a
mi salud. Agradezco especialmente a mi fisioterapeuta Alba, quien fue y sigue siendo
un pilar fundamental en mi rehabilitacion. De igual forma, agradezco a mi hermana
entrenadoncia Adriana y a sus ninas del futbol: gracias a ellas, recuperé la confianza
para volver a salir de casa y encontré un refugio que me ayudd enormemente a retomar
mi vida con normalidad. En este contexto, me siento especialmente agradecido con mi
director AleX, cuyo apoyo constante en esos anos dificiles super6 ampliamente su rol
académico; mas que un director, gané un amigo para toda la vida.

Quiero expresar mi mas sincero agradecimiento a mi familia. En especial a mi madre
Armida, a mi tio Wilber y a mi querido Ciro, que desde Peri me han acompanado
siempre con su amor y sus palabras de aliento. Aunque no los tenga cerca fisicamente, su
presencia ha sido constante y fundamental para encontrar la fuerza necesaria y cumplir
con este objetivo. Asimismo, mi gratitud va dirigida a todas las personas que hicieron
que mi vida en Barcelona fuera calida y llena de buenos momentos. Y, muy especialmente
a mi entrenadoncia Adriana, a Juanito el profe y a la Joselyn, por estar siempre ahi y
por las incontables historias compartidas en esta ciudad. Sus consejos, su apoyo y su
compania han hecho que Barcelona se sienta como un verdadero hogar.






Contents

Introduction

Summary and Discussion
2.1 Conformal transition from a holographic perspective . . . . . . . . . . ..
2.1.1 Discussion of paper 1: Holographic conformal transition and light
scalars ..o
2.1.2 Discussion of paper 2: Exploring the conformal transition from
above and below . . . . . ... oo
2.2 Vector-like leptons in warped extra-dimensional models . . . . . . . . ..
2.2.1 Discussion of paper 3: g, — 2 from Vector-Like Leptons in Warped
SPace . ... e

Conclusions
3.1 Conclusion of conformal transition from a holographic perspective . . . .
3.2 Conclusion of vector-like leptons in warped extra-dimensional models

Papers

4.1  Paper 1: Holographic conformal transition and light scalars . . . . . . .
4.2 Paper 2: Exploring the conformal transition from above and below . . .
4.3  Paper 3: g, — 2 from Vector-Like Leptons in Warped Space . . . . . ..

10

12
12
13

18
19
25



List of publications

This thesis is submitted for its evaluation in partial fulfillment of the requirements for
the PhD in Physics at the Universitat Autonoma de Barcelona. It is structured around a
collection of three papers, which are listed below. Following the introductory overview in
Chapter 1, Chapter 2 presents a comprehensive summary and discussion of the results,
while Chapter 3 contains the concluding remarks. The full versions of the three papers
are included in Chapter 4. The contents of the papers are structured along two distinct
lines of research.

Conformal transition from a holographic perspective

e A. Pomarol, O. Pujolas and L. Salas, Holographic conformal transition and light
scalars, JHEP 10, 202 (2019)

e A. Pomarol and L. Salas. Exploring the conformal transition from above and below,
JHEP 08, 149 (2024)

Vector-like leptons in warped extra-dimensional mod-
els.
e K. Megias, M. Quiros, and L. Salas, g, — 2 from Vector-Like Leptons in Warped
Space, JHEP 05, 016 (2017)

Other articles produced during the doctoral period but not included in this thesis are the
following;:

e E. Megias, M. Quiros and L. Salas, Lepton flavor universality limits in warped space,
Phys. Rev. D 96, no. 7, 075030 (2017)

o I. Megias, M. Quiros and L. Salas, Lepton-flavor universality violation in Rx and
Rpe from warped space, JHEP 1707, 102 (2017)



Chapter 1

Introduction

The dynamics of strongly-coupled gauge theories near the edge of the conformal win-
dow have become a central topic in high-energy theoretical physics, motivated by both
analytical studies and lattice simulations [1-10]. These QCD-like theories with a large
number of fermion flavors Ny offer an ideal framework to investigate mechanisms of mass
generation, scale separation, and the emergence of light composite states. A particularly
intriguing feature is the presence of a light scalar resonance near the transition between
the confining and conformal regimes, which may provide insight into fundamental ques-
tions such as the origin of the electroweak scale [11] and the nature of strong dynamics
beyond the Standard Model [12].

A theoretical mechanism that captures this phenomenon is the conformal transition, in
which the theory evolves from an infrared (IR) fixed point to a non-conformal confining
phase. A plausible scenario for this behavior is the merging of IR and ultraviolet (UV)
fixed points [13], expected to occur as the number of flavors N; is lowered. In the
Veneziano limit, where the ratio x = Ny/N, (with N, the number of colors) becomes
continuous, the transition takes place at a critical value x¢. For x > x4, the theory
lies inside the conformal window and displays approximate scale invariance, while for
T < Teit, it flows to a confining phase with chiral symmetry breaking.

This behavior was captured in a holographic framework in [14], where the conformal
transition was modeled via a five-dimensional weakly-coupled theory dual to a four-
dimensional strongly-coupled CFT. The central idea was to associate the loss of confor-
mality with a scalar field in the bulk whose mass squared violates the Breitenlohner-
Freedman (BF) bound [15,16]:

M3L? < —4, (1.1)

which results in a complex scaling dimension of the dual operator. According to the
AdS/CFT correspondence, the conformal dimension of a scalar operator Og is related to

the bulk mass via [17-19]:
Dim[Og] = 2+ /4 + MZL2. (1.1)

This holographic setup correctly reproduces the emergence of a light scalar in the spec-
trum: the violation of the BF bound induces an instability in the bulk, interpreted as
the spontaneous breaking of conformal symmetry.



Such a condition typically arises when the deformation of the CFT is introduced by a
nearly marginal operator. In this model, however, the deformation is induced by a double-
trace operator O, = |Og|?, with Og representing the fermion bilinear ¢g. The scaling
dimension of Oy is not protected and evolves along the renormalization group flow, being
approximately Dim[O,] = 2-Dim[Og]. As a result, the beta function associated with the
effective potential grows rapidly, and the dilaton mass is no longer naturally suppressed.
The dilaton remains the lightest scalar state in the spectrum, but its lightness is not
parametric: the theory does not exhibit a truly massless dilaton as would be expected in
a genuine spontaneous breaking of scale invariance.

Lattice simulations support this picture, showing the presence of a light scalar state with
0™t quantum numbers in theories near the conformal transition, with mass close to that
of the pion and lighter than vector mesons [1-8]. However, the model in [14] showed that
the dilaton, while the lightest state in the scalar channel, is not sufficiently separated
from the rest of the spectrum to account for the light scalar seen in numerical data.

A central goal of the comprehensive holographic analysis in [20] is to determine how
physical observables behave as the theory interpolates across the conformal transition.
Utilizing holography, the study demonstrates that the meson mass spectrum is largely
governed by the interplay between chiral and conformal symmetries and their respective
breaking mechanisms. It is found that the spin-1 meson masses and the pion decay
constant Fj evolve continuously across the transition. In contrast, the scalar mesons
fo and aqy exhibit a discontinuity in their masses, which originates from a logarithmic
violation of conformal invariance.

The analysis reveals that the mass of the dilaton interpreted as a scalar glueball in the
holographic model also varies smoothly across the transition. This continuity implies
that the lightness of the dilaton cannot be solely attributed to spontaneous breaking
of conformal symmetry on the confining side. Rather, its persistent lightness on both
sides suggests that it should not be identified with the 0** state observed in lattice
simulations. This challenges earlier interpretations and supports the view that the light
scalar originates from the strong dynamics associated with the fermion bilinear operator
Os = qq, whose scaling dimension approaches the unitarity bound near the conformal
transition.

Taken together, these analyses indicate that the progression from the earlier holographic
construction [14] to the more comprehensive framework in [20] marks a major step for-
ward in our understanding of conformal transitions. While the initial model captured
the essential holographic structure and scalar spectrum, the latter analysis clarified that
the light scalar is not a pseudo-Goldstone dilaton but rather a mesonic state arising from
fermionic dynamics. Together, these studies offer a coherent, holographically-motivated
description of the non-perturbative behavior of strongly-coupled gauge theories near con-
formality.

In a different context, although no direct signals of physics beyond the Standard Model
(BSM) have been observed at the LHC to date, persistent deviations in precision ob-
servables suggest the presence of new physics. One of the most significant anomalies
is the long-standing discrepancy between the experimental measurement and the theo-
retical prediction of the anomalous magnetic moment (AMM) of the muon [21]. This
tension, which has persisted over several decades and across independent measurements,



motivates a detailed theoretical investigation within well-motivated BSM frameworks.

In parallel, the Standard Model exhibits from the naturalness problem, commonly referred
to as the hierarchy problem, due to the instability of the electroweak scale under radiative
corrections. Among the most compelling classes of theories addressing this issue are
supersymmetric models and those based on warped extra dimensions [22], where the
electroweak scale is dynamically generated via gravitational warping from a fundamental
Planck-scale cutoff.

The framework considered here belongs to the latter class, focusing on five-dimensional
warped geometries with two branes, an ultraviolet (UV) and an infrared (IR) brane,
and a background strongly deformed with respect to AdSs; near the IR brane due to
the backreaction of a stabilizing scalar field ¢'. This deformation results in a so-called
soft-wall geometry with a naked singularity outside the physical interval [23-31]. Within
this construction, Standard Model fields propagate in the bulk, and the theory remains
consistent with electroweak and flavor precision constraints without invoking custodial
symmetries, due to the suppressed couplings between light fermions and Kaluza-Klein
(KK) excitations.

In this setting, the anomalous magnetic moment of the muon is analyzed. At tree level,
the muon magnetic moment is given by

. e -
M, = gu%‘sﬁu
with gyromagnetic ratio g, = 2. Quantum corrections induce a deviation from this value,
which is conveniently parameterized as

9u — 2

U = "5 (1.4)

The Standard Model yields a highly precise prediction for a,, incorporating contribu-
tions from QED, electroweak loops, and hadronic vacuum polarization. The most recent
estimates [32] exhibit a statistically significant deviation from the experimental measure-
ment [21], quantified as

Aay, = af® — ab™ = (2.49 £ 0.48) x 107°. (1.5)
Numerous theoretical proposals have been developed to explain this discrepancy by in-
troducing BSM effects, such as additional vector bosons, leptoquarks, or new scalar and
fermion degrees of freedom [33-38]. In the context of supersymmetry, viable contributions

to Aa, can be achieved through specific parameter configurations that enhance loop-level
effects [39)].

The present analysis is carried out within the class of warped extra-dimensional theo-
ries that simultaneously address the hierarchy problem. The soft-wall geometry outlined
in [23-31] is adopted, where the localization of fermion wavefunctions in the fifth dimen-
sion can be tuned to replicate the flavor structure of the Standard Model. This geometric
localization also determines the overlap between fermions and KK modes, which in turn
governs their contributions to loop-level observables such as a,,.

IThis scalar field ¢ corresponds to the definition given in [42]. It should not be confused with
alternative definitions in [14,20].



It is demonstrated, however, that the minimal realization of this scenario is insufficient to
account for the measured value of the muon AMM. Chirality-flipping amplitudes, which
are necessary for a nonzero Aaq,,, are suppressed by a factor of O(m,/mxk), leading to
loop contributions that fall short by at least an order of magnitude. This observation is
consistent with previous studies in Randall-Sundrum-type models [40, 41].

To remedy this deficiency, the model is extended by incorporating a set of vector-like
leptons (VLLs) propagating in the bulk [42]. These fields mix with the muon through
localized Yukawa interactions and exhibit a high degree of compositeness, enhancing their
coupling to gauge KK-modes and facilitating substantial chirality flips. The resulting loop
contributions to Aa, can saturate the experimental discrepancy while remaining compat-
ible with electroweak precision constraints, including those arising from modifications to
the Z i vertex and oblique parameters.



Chapter 2

Summary and Discussion

In our studies presented in references [14,20,42], we have investigated several novel as-
pects related to two fundamental problems in high-energy theoretical physics: the confor-
mal transition in strongly coupled gauge theories, and the anomalous magnetic moment
(AMM) of the muon. In this chapter, we present an in depth summary and discussion of
the results obtained in [14,20,42]. The summary and discussion are structured along two
main lines of research: papers [14] and [20] address the conformal transition from a holo-
graphic perspective, while paper [42] focuses on the resolution of the AMM discrepancy
via vector-like leptons in warped extra dimensional models.

2.1 Conformal transition from a holographic perspec-
tive

We present a comprehensive holographic analysis of the conformal transition in strongly-
coupled gauge theories, focusing on scenarios where this transition arises via the merging
of infrared (IR) and ultraviolet (UV) fixed points. Such transitions are expected to occur
in non-Abelian gauge theories, including QCD, when the number of fermionic flavors Ny
is sufficiently large to bring the system close to the conformal window. This work is
motivated by recent lattice simulations that report the appearance of a light 0" scalar
resonance in proximity to the lower boundary of this window, suggesting non-trivial
infrared dynamics associated with the spontaneous or explicit breaking of approximate
scale invariance.

To investigate this phenomenon, we construct five-dimensional warped geometries within
the AdS/CFT framework that capture the non-perturbative dynamics of nearly conformal
four-dimensional gauge theories. In this holographic setup, the conformal transition is
modeled through the backreaction of a bulk scalar field, dual to a gauge-invariant operator
such as ¢, whose scaling dimension approaches the Breitenlohner-Freedman (BF) bound
from above. The scalar profile induces a deformation of the AdS5 background, signaling
the loss of conformality as the dual operator acquires a complex anomalous dimension,
in line with the mechanism of fixed-point annihilation.

The spectrum of composite states is computed within this framework, revealing that the
lightest scalar mode corresponds to the dilaton (or radion), arising from the fluctuations
of the extra-dimensional volume. Although this state is generically lighter than the tower



of vector and axial-vector resonances, it is not parametrically light in the sense of being
protected by an exact Goldstone symmetry. An analytic expression for the dilaton mass
is derived, showing its sensitivity to the position of the infrared brane and the strength of
the explicit scale-breaking deformations, in particular through a nearly marginal double-
trace operator.

To elucidate the physical implications of the conformal transition, we systematically an-
alyze the behavior of several observables across the transition point. Particular attention
is devoted to the masses of spin-1 mesons, the pion decay constant F,, and the scalar
sector. We find that spin-1 states and F, vary continuously across the transition, consis-
tent with the analytic continuation of the solutions to the bulk equations of motion on
both sides of the critical point. In contrast, scalar meson masses, such as those of the f
and ag, exhibit discontinuities. This non-analytic behavior originates from logarithmic
terms in the scalar correlators, whose form changes across the transition and reflects the
distinct analytic structure on either side of the lower edge of the conformal window

Importantly, the dilaton mass is also shown to evolve smoothly across the conformal
boundary, both from the broken and unbroken sides. This behavior challenges the inter-
pretation of the light 0" scalar observed in lattice simulations as a pseudo-Goldstone
dilaton arising from spontaneous breaking of scale invariance alone. Instead, the data
suggest that this scalar is more naturally identified as a ¢g meson whose lightness stems
from the proximity of the operator dimension to the marginality point A = 2, the point
at which the dual bulk field becomes marginal and decouples from the strongly coupled
sector.

Our holographic results are in qualitative agreement with lattice computations and pro-
vide a unifying perspective on the dynamics near the conformal edge. The model captures
essential features of walking dynamics and Miransky scaling, while offering a controlled
setup in which to explore the interplay between chiral symmetry breaking and conformal
symmetry deformation. The utility of the holographic approach lies in its capacity to
compute the full spectrum and response functions in a semi-analytic fashion, allowing for
predictions that can be confronted with future numerical studies.

2.1.1 Discussion of paper 1: Holographic conformal transition
and light scalars

The five-dimensional holographic framework constructed in [14] provides a robust plat-
form to explore the dynamics of conformal symmetry breaking via a fixed-point merg-
ing mechanism. This model captures the essential features of the conformal transition
through a bulk scalar field ®, dual to the gqq operator, whose mass is tuned to approach
the Breitenlohner-Freedman (BF) bound. The spontaneous breaking of scale invariance
is realized when this bound is violated in the bulk, giving rise to a tachyonic instability
that induces a nontrivial vacuum profile for ®.

A central aspect of the model is the introduction of an IR brane at a dynamically deter-
mined position z;g, associated with the radion field. The effective IR dynamics depends
sensitively on three key parameters: the dimensionless brane-localized mass 7?; the ef-
fective quartic coupling ;\, which combines bulk and brane scalar interactions; and the
detuning parameter §A, which quantifies the deviation of the IR brane tension from the

AdS value.



The interplay between these parameters determines whether a stable minimum for the
radion potential is dynamically generated, which in turn controls whether the system
exits the conformal phase. The solutions fall into two regimes: in one limit, the chiral
symmetry breaking scale exceeds that of confinement, while in the other, the ordering
is reversed. In both cases, the spectrum consistently exhibits a light scalar mode the
dilaton whose mass remains suppressed relative to the Kaluza-Klein scale.

The parameter space analyzed in Figure 3 of [14] illustrates the structure of solutions
that lead to radion stabilization. For fixed values of the gravitational coupling 4% and
the sign of the scalar quartic coupling A = +1, only specific, precisely localized regions
allow for the spontaneous breaking of scale invariance. These regions are bounded by
loci where the radion becomes massless, signaling proximity to the conformal transition
point. The most infrared-localized stable solution is obtained in the limit m? — —2 and
SA = 0, where the geometry is closest to conformality. These findings emphasize how
sensitive the low-energy physics is to the brane-localized parameters.

Fluctuation analysis around these stabilized solutions confirms that the lightest scalar
mode corresponds to the dilaton, and that its mass remains parametrically small as the
theory approaches the critical limit. This behavior is robust throughout the allowed
range of m?, and is supported by both analytic approximations and numerical calcula-
tions. The spectrum also reveals that the mass separation between singlet and non-singlet
scalar modes originates from double-trace deformations, parametrized by Ao, which be-
come particularly relevant in the large-Np regime These deformations become particu-
larly relevant in the large-Ng regime because, as the number of flavors N increases, they
contribute at higher orders in the 1/Ng expansion, significantly influencing the spectral
structure and enhancing the mass splitting between these scalar modes.

A comparison with non-perturbative lattice QCD results for theories with many fermion
flavors further supports the model’s predictions. Lattice simulations near the conformal
window [1-8] have repeatedly observed the appearance of a light scalar resonance with
0™ quantum numbers, significantly lighter than the vector and axial-vector mesons. The
holographic construction presented in [14] successfully captures this feature without the
need for tuning associated with exact dilaton symmetry.

In particular, Figure 7 of [14] displays a direct comparison between the predicted holo-
graphic spectrum and lattice results, showing that the light scalar emerges as the lowest-
lying massive state in the theory. The relative hierarchy between the scalar, vector, and
axial-vector states aligns well with the trends found in numerical simulations. This agree-
ment provides substantial validation for the model’s assumptions about the nature of the
conformal transition and the associated infrared dynamics.

Notably, the emergence of the light scalar does not originate from spontaneous breaking of
an exact scale symmetry, but from the influence of a nearly marginal deformation induced
by a double-trace operator. Since the dimension of this operator is not protected under
renormalization group evolution, the resulting dilaton acquires a small mass, consistent
with lattice results that indicate light but massive scalar states near the edge of the
conformal window. The presence of such a mode reflects the universal behavior of theories
near conformal transitions, rather than a specific tuning of model parameters.

The holographic model presented in [14] provides a concrete, calculable realization of light
scalar dynamics in theories with near-conformal behavior. Its predictions are consistent



with lattice observations and demonstrate the power of holographic duals to capture
strongly coupled phenomena beyond the reach of perturbative techniques.

2.1.2 Discussion of paper 2: Exploring the conformal transition
from above and below

The conformal transition in QCD like theories has been investigated through a five di-
mensional holographic model that captures the merging of IR and UV fixed points. This
framework, first introduced in [14], describes a SU(Ng), xSU(Np)r gauge theory in AdSs
space coupled to a complex scalar field ®, dual to the operator ¢¢ in the 4D CFT. The
breaking of conformal and chiral symmetries is encoded in a nontrivial bulk profile ¢(z),
which depends on both the scalar potential and boundary dynamics.

A central element in controlling the transition is the bulk mass of the scalar field, written

as
4+¢€

L2

This parametrization allows one to approach the Breitenlohner-Freedman bound from
either side. For € < 0, the system remains in the conformal phase. When ¢ > 0, the
BF bound is violated, and the scalar turns on in the bulk, triggering the breaking of
conformal symmetry.

M3 =

The scalar profile ¢(z) admits analytic solutions in both regimes under suitable approxi-
mations. For positive €, the solution includes a sinusoidal dependence on the logarithm
of the holographic coordinate, while for negative €, it becomes logarithmic. These two
forms converge smoothly in the limit ¢ — 0, ensuring that the profile remains continuous
across the conformal transition when the quark mass M, is nonzero. As a result, physical
quantities related to this background such as vector and axial-vector meson masses and
the pion decay constant exhibit continuous behavior near the transition.

This is confirmed by the numerical results presented. The ratios m,, /m, and F;/m,
vary smoothly across the transition and show minimal dependence on the value of M,
as illustrated in Figure 2 of [20]. This behavior is further supported by the insensitivity
of these quantities to quark mass variation for € > 0, as shown in Figure 3 of [20].

A particularly relevant prediction of the model is the existence of a light dilaton, identified
with the radion of the 5D theory. Its mass is found to be continuous and light on both
sides of the transition and remains largely insensitive to M,. These features indicate
that the dilaton’s lightness is not related to spontaneous breaking of scale invariance, but
instead emerges from the near-critical structure of the model. This is in agreement with
the original analysis in [14].

In contrast, scalar mesons such as fy and ag, which originate from the fluctuations of the
scalar field, exhibit distinct behavior depending on the sign of €. Their correlators acquire
logarithmic corrections from scale invariance breaking, and the scalar mass spectrum
reflects this difference. For € < 0, the correlator depends on the UV scale and yields a
standard KK spectrum. For € > 0, the logarithmic structure is regulated by an emergent
IR scale, leading to discontinuities in the scalar masses, which become heavier across the
transition but tend to align with the conformal regime as M, increases.



This qualitative behavior is consistent with expectations from hyperscaling and is con-
firmed numerically. The pion, meanwhile, remains massless in the ¢ > 0 regime when
M, = 0, and acquires a mass governed by hyperscaling in the conformal phase.

When moving further into the conformal window, by increasing the scalar mass M2 from
—4/L* to —3/L? the operator dimension Dim[gq] increases from 2 to 3. The scalar
profile becomes flatter and more UV-dominated, reducing the effective chiral symmetry
breaking. This results in a decrease of mass splittings among meson chiral partners, as
illustrated by the convergence m,, — m,, and mg,, ms, — m,, which can be observed in
Figure 4 of [20].

The predictions of the model have been compared with lattice simulations of SU(3) QCD
for different flavor numbers. For Np = 8, lattice studies [1,2,4,5] suggest the theory lies
near the conformal edge, exhibiting a light scalar 0" " state. For Ny = 12, the behavior
is consistent with a conformal phase and hyperscaling [6-8]. The holographic model
reproduces key features observed in the lattice data, such as the emergence of a light
scalar near the transition and the suppression of chiral mass splittings as Ng increases.

However, a discrepancy arises in the interpretation of the lightest scalar state. In the
holographic model, the dilaton remains light throughout, but its glueball nature and
independence from M, differ from lattice observations, which favor a ¢g interpretation.
The scalar f, meson, in contrast, shows a dependence on M, that aligns more closely
with the lattice data, suggesting it is the physical 07" state observed in simulations.

This tension may reflect limitations of the IR-brane setup used in the model. More
refined holographic constructions, such as that of [43], do not predict a light dilaton,
reinforcing the idea that its appearance here may be model-dependent. This view is
further supported by the comparison shown in Figure 5 of [20], where the behavior
of the dilaton and f, as functions of M, diverge, with only the latter matching lattice
trends [44].

2.2 Vector-like leptons in warped extra-dimensional
models

The anomalous magnetic moment of the muon, a,, has long served as a sensitive probe
for physics beyond the Standard Model (BSM). Although its theoretical prediction within
the Standard Model framework is highly precise, experimental measurements exhibit a
persistent deviation, suggesting the presence of new interactions or particle content. This
discrepancy, typically quantified as Aa,, = a7} — aiM = (2.7440.76) x 1077, remains one
of the most compelling low-energy signals indicative of BSM dynamics. The fact that this
deviation appears specifically in the muon sector, and not in its electronic counterpart,
implies the existence of flavor non-universal couplings, which puts into question the flavor-

blind structure of most Standard Model extensions.

Within this context, extra-dimensional models that incorporate warped geometries pro-
vide a natural and robust framework to address both the electroweak hierarchy problem
and potential low-energy anomalies such as Aa,. A concrete realization of this idea is
explored in detail in [42], which considers five-dimensional theories with a warped back-
ground strongly deformed relative to the pure AdSs; geometry near the IR brane. The



deformation is induced by the backreaction of a stabilizing scalar field ¢, resulting in
a soft-wall metric with a naked singularity situated beyond the physical interval. This
configuration permits the localization of Standard Model fields along the extra dimension
and enables the realization of fermion hierarchies without invoking additional symmetries
or flavor structures.

It is shown that the minimal version of this class of models, with Standard Model fermions
propagating in the bulk and gauge fields acquiring KK excitations, fails to generate
a sufficiently large contribution to a,. The structure of chirality-flipping transitions is
suppressed by the small muon mass relative to the KK scale, typically yielding corrections
that fall short by an order of magnitude. Therefore, an extension of the model is necessary
to accommodate the experimental value of the muon’s magnetic moment.

In [42], this limitation is addressed by introducing a new sector of vector-like leptons
(VLLs), propagating in the bulk of the extra dimension. These VLLs couple to the muon
via localized Yukawa interactions and exhibit a high degree of compositeness, with their
profiles strongly localized toward the IR brane. This setup increases their interactions
with gauge KK-modes and facilitates chirality-changing processes, producing significant
loop-level contributions to Aa,. The mechanism arises naturally from the geometric
configuration and field content of the model.

The model is tested against several experimental and theoretical constraints. Among
the most sensitive are electroweak precision observables, including corrections to the
Zpp vertex, oblique parameters (S and 7T), and the requirement of vacuum stability
for the Higgs potential. Perturbativity of the Yukawa sector and the preservation of the
electroweak minimum further restrict the parameter space. A viable region is identified in
which the compositeness parameter satisfies ¢ < 0.37 and the lightest VLL mass exceeds
270 GeV.

This framework also provides distinctive collider signatures. Vector-like leptons can be
efficiently produced via Drell-Yan processes at the LHC with y/s = 13 TeV. Their decay
patterns, governed by mixing with muons and couplings to electroweak bosons, offer
experimentally accessible probes of the underlying structure responsible for the observed
value of Aa,,.

Warped extra-dimensional models deformed by a soft-wall geometry, when extended to
include vector-like leptons, provide a consistent and phenomenologically viable explana-
tion for the muon anomalous magnetic moment, while preserving the geometric resolution
of the hierarchy problem and satisfying all current experimental constraints.

2.2.1 Discussion of paper 3: g, — 2 from Vector-Like Leptons in
Warped Space

The warped extra-dimensional framework considered in this analysis is based on a five-
dimensional spacetime where both gauge and matter fields propagate in the bulk. The
deviation from AdSy geometry near the infrared (IR) brane, induced by the backreaction
of a scalar field ¢, enables the realization of a soft-wall structure that addresses the
electroweak hierarchy problem through geometrical suppression mechanisms.

The Higgs field is treated as a bulk scalar with a background profile exponentially localized
towards the IR brane. This configuration allows electroweak symmetry breaking to be
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triggered by a potential localized at the IR boundary. A dimensionless parameter «
governs the strength of this localization and the form of the background solution h(y),
determining the mass scale of the theory.

In the fermion sector, chiral zero modes emerge from bulk Dirac fields. Their localization,
determined by mass parameters cy, is essential for reproducing the observed fermion mass
hierarchy and for controlling the overlaps with KK modes. For the muon, the localization
is selected to balance electroweak precision constraints, in particular the Zjuu coupling,
and to enhance interaction with the new vector-like leptons (VLLs) introduced in the
model.

One of the key contributions of the original study [42] is the inclusion of bulk-propagating
VLLs, which play a central role in addressing the anomalous magnetic moment of the
muon. These new fermionic states satisfy boundary conditions that produce massive
Dirac spinors in four dimensions. Their strong IR localization implies a high degree of
compositeness in the dual 4D theory, enhancing their couplings to KK gauge bosons and
enabling sizable chirality-flipping contributions in the loop-level corrections to a,,.

The structure of these interactions is constrained by electroweak precision data, which
requires small mixing between VLLs and the physical muon. For analytical feasibility,
approximate unitary matrices Uy, g are used, along with the simplifying condition c¢; =
cr = ¢, reducing the number of free parameters while maintaining the phenomenological
consistency of the model.

Various experimental and theoretical constraints restrict the viable parameter space.
Among the most rigorous are the oblique parameters S and 7', which arise from VLL
contributions to gauge boson self-energies and impose upper bounds on the parameters a
and c. These translate into a lower limit for the VLL mass, Mz 2 230 GeV. Additional
restrictions come from the modification of the Higgs diphoton decay width I'(H — ~v),
where loop contributions from VLLs must remain within LHC bounds, excluding scenarios
with strong couplings or very light masses.

Theoretical considerations, particularly electroweak vacuum stability, impose further con-
straints. VLLs influence the renormalization group evolution of the Higgs quartic cou-
pling A, potentially driving it negative at lower scales. For moderate VLL masses (e.g.,
M ~ 500 GeV), this effect becomes significant, leading to bounds such as ¢ < 0.37 and
a < 0.36, consistent with those from oblique parameters and precision data.

Collider phenomenology provides complementary information. VLLs can be pair-produced
through Drell-Yan processes at the LHC, with cross-sections determined by their mass
and couplings. LEP2 imposes a lower limit Mz > 101.2 GeV, while LHC searches at
Vs = 8 TeV exclude masses below 168 GeV at 95% CL. Current and future runs at
Vs = 13 TeV are expected to probe the region up to Mz ~ 500 GeV, where production
remains significant.

Taken together, the constraints from precision observables, Higgs physics, vacuum stabil-
ity, and direct collider searches significantly reduce the acceptable parameter space. Nev-
ertheless, a viable region remains in which the anomalous magnetic moment of the muon
can be accommodated, provided the VLLs exhibit sufficient compositeness (¢ < 0.37)
and possess masses above approximately 270 GeV.
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Chapter 3

Conclusions

As in the previous chapter of summary and discussion, the conclusions are structured
along two main lines of research: papers [14] and [20] address the conformal transition
from a holographic perspective, while paper [42] focuses on resolving the AMM discrep-
ancy via vector-like leptons in warped extra-dimensional models.

3.1 Conclusion of conformal transition from a holo-
graphic perspective

We have presented a comprehensive holographic study of the conformal transition in
strongly coupled gauge theories, focusing on the transition arising from the merging of
IR and UV fixed points. Extending the initial results of [14] and further developed in [20],
we constructed a five-dimensional model that captures the key dynamics near the lower
edge of the conformal window in large-N. QCD-like theories.

The analysis confirm that the presence of a light scalar state commonly identified with
a dilaton naturally emerges near the conformal boundary. While initially suggested to
be associated with the spontaneous breaking of scale invariance, our extended analysis
reveals that its lightness is, instead, a consequence of the proximity of the dimension of
the operator Og ~ ¢ to the unitarity bound Dim[Og] = 2. As the conformal edge is
approached, the scalar operator decouples from the IR dynamics, resulting in a paramet-
rically suppressed mass independently of the sign of the parameter € controlling the RG
flow.

We demonstrated, both analytically and numerically, that the scalar profile ¢(z), as well
as physical quantities such as the dilaton mass, F;;, and the vector and axial-vector meson
spectra, exhibit smooth behavior across the conformal transition. The continuity of these
quantities, especially the dilaton mass, indicates that the conformal transition does not
induce discontinuous signatures in the low-energy observables, in contrast with earlier
expectations. Moreover, the hyperscaling relation m,; o Mq1 /(4=Dim(Os]) preserved for
both € > 0 (outside the conformal window) and € < 0 (inside the conformal window),
demonstrating that the scaling behavior of hadronic masses with respect to the quark
mass remains valid across the transition. This is explicitly confirmed in Figure 3 of [20],
where the mass ratios (e.g. Fr/m,, mq,/m,) remain constant as M, is varied in the e > 0
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phase, matching the analytic expectation from the € < 0 regime and further emphasizing
the universality of the spectrum near criticality.

The proposed holographic model successfully reproduces the pattern observed in recent
lattice simulations, including the appearance of a light scalar in the non-conformal regime.
However, the continuity of the dilaton mass across the conformal boundary challenges
the interpretation of this state as a true dilaton arising from spontaneous scale breaking.
Rather, our results support the identification of the light 0T* state with a scalar meson
associated to the operator ¢q, whose scaling dimension approaches its minimal allowed
value near the conformal edge. As it nears this bound, the operator effectively decouples
from the infrared dynamics of the CF'T, and the associated scalar meson becomes light,
not due to spontaneous breaking of scale invariance, but because of its proximity to the
unitarity limit where a scalar naturally tends toward masslessness.

This analysis clarifies the predictive power of holographic methods in exploring nonper-
turbative dynamics near conformal transitions and provides a coherent picture for the
nature of light scalar states in near-conformal gauge theories. Future investigations may
extend this analysis to explore finite temperature effects, baryonic states, and potential
implications for composite Higgs models and early-universe cosmology.

3.2 Conclusion of vector-like leptons in warped extra-
dimensional models

The analysis presented in [42] explores the phenomenological implications of a warped
extra-dimensional model formulated to provide a theoretical resolution to the persistent
deviation observed in the muon anomalous magnetic moment a,,. Within this framework,
vector-like leptons (VLLs) propagate in the bulk and mix with the muon via localized
Yukawa interactions. The model is formulated in a background geometry deviating from
pure AdSs near the IR brane due to the presence of a scalar field, which induces a soft-wall
structure.

One of the central results is that the anomalous magnetic moment of the muon can be ex-
plained through chirality-flipping contributions mediated by VLLs that are significantly
localized toward the IR brane, corresponding to a high degree of compositeness. These ef-
fects are consistent with current electroweak precision constraints, particularly the severe
bounds from the Zpu coupling.

The allowed parameter space, determined by the overlap of all theoretical and experi-
mental constraints including those from oblique parameters, Higgs diphoton decay width,
vacuum stability, and collider searches, is significantly constrained. However, a viable re-
gion remains, primarily where the localization parameter satisfies ¢ < 0.37 and VLL
masses exceed approximately 270 GeV.

Importantly, Figure 15 in [42] provides a comprehensive visualization of the allowed
parameter space after incorporating all theoretical and experimental constraints. This
contour plot in the (c, a) plane displays iso-curves of the VLL mass M (in solid blue) and
the effective Yukawa coupling vk Y75 (in dashed black), while also highlighting exclusion
regions arising from electroweak precision observables (gray), vacuum stability (red), and
Yukawa perturbativity bounds (brown). These results encapsulate the combined effect
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of all constraints and delineate the viable region where the model remains consistent
with the observed value of Aa,. Specifically, the overlap between the regions compatible
with the muon anomalous magnetic moment and the electroweak observables confirms
the necessity of partially composite VLLs in the mass range Mz ~ 300 to 800 GeV, for
0.2<a <05 and e <0.37.

In conclusion, this work demonstrates that warped extra-dimensional models incorporat-
ing bulk VLLs remain viable candidates for explaining the muon g — 2 anomaly while
simultaneously satisfying a set of precision observables and collider bounds.
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Chapter 4

Papers

This chapter includes the three published papers [14,20,42] that serve as the scientific
basis for the main results and conclusions of this thesis, compiled in compendium form.
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4.1 Paper 1: Holographic conformal transition and
light scalars
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1 Introduction

Theories close to being conformally invariant are of utmost interest as they can generate
large hierarchies of scales that can be useful in particle physics and cosmology. This moti-
vates the understanding of how theories behave at the critical point at which, by varying
the parameters of the theory, we pass from a conformal regime to a non-conformal one.
This is especially interesting in strongly-coupled theories as they can give rise to non-
trivial dynamics. An example is QCD where by increasing the number of flavors Ng, the
theory is expected to become conformally invariant at some critical value Np = Nf;rit.
It is unclear where this exactly happens, but lattice simulations suggest that this could

be around N& ~ 10 for N, = 3 where N, is the number of colors. For Np > Nt



QCD becomes a conformal field theory (CFT) till reaching Np = %Nc, at which the
theory reaches the Banks-Zaks fixed point, becoming IR free for Np > %NC. The region
Nl%rit < Np < %NC is called the conformal window.

Recent lattice simulations suggest that, contrary to real QCD, theories close to the
conformal transition have as the lightest resonance a 0" state (apart, of course, from the
Goldstone bosons, the pions) [1-5]. It is unclear what is the origin of the lightness of this
state. Some arguments suggest that this could be a dilaton, the Goldstone associated to the
spontaneous breaking of scale invariance. If this is the case, it would be interesting to know
whether in the large- N, limit, where N;rit /N¢ = Zerit, becomes a continuous parameter, the
dilaton mass tends to zero as we approach the critical point from below Np/N. — Zcyit.

In this article we would like to analyze the physics of conformal transitions using
holography. We will follow ref. [6] that argued that the exit of the conformal window of
large- N. QCD occurs when the IR fixed point disappears by merging with a UV fixed point.
Close to the conformal edge the theory contains a marginal operator O, whose dimension
gets a small imaginary part when conformal invariance is lost (see next section for details).
Assuming that this is the case, the AdS/CFT correspondence [7-9] can provide a simple
realization of this idea as a complex operator dimension matches to a scalar having a mass
below the Breitenlohner-Freedman (BF) bound M2 = —4/L?. When this happens, the
scalar becomes tachyonic and gets a non-zero profile that results into a departure from the
Anti-de-Sitter (AdS) geometry [6].

The presence of a marginal operator Oy in the model could suggest the presence of a
light dilaton, along the lines of refs. [10-14]. The argument goes as follows. The dilaton
potential can be written as

Vet (9a) = Aest (00) 03 (1.1)
such that, when a minimum exists, leads to a dilaton mass given by

Tes Gy o4+ 5L, (1:2)

(¢a)? o Aett 2

where ), = dAeg/dIn ¢y and Bf\eﬂ = df;/dNegt. A nonzero By, arises only from an
explicit breaking of scale invariance. When this latter comes only from' ¢ Oy € L, we expect
Brg X By, and eq. (1.2) predicts mid x 4. Therefore, a dilaton can be parametrically
light if the dimension of Oy is given by 4+ 6 with § < 1 (i.e., By < 1) being a controllable
small parameter till the end of the RG-flow. The holographic implementation of this is the
Goldberger-Wise mechanism [15], where the operator O, matches to an almost massless
scalar in 5D (protected by a shift symmetry) [10-14]. Nevertheless, we will see that this
is not the case at the conformal transition, as the marginal operator O, corresponds to
a double-trace operator whose dimension is not protected along the RG-flow. Having the
explicit breaking of conformal invariance arising from an almost marginal operator however
will have as a consequence that the dilaton is light, although not parametrically light.

We will be working with a simple weakly-coupled AdSs theory, with the extra-
dimension cut off by an IR-brane, that will contain the basic ingredients to describe the

'We remark that g is a coupling of the theory not necessarily related with the gauge coupling.



conformal transition. We will calculate the mass spectrum of resonances and show that
the lightest resonance is the dilaton (the radion of the compact extra-dimension). We will
present a simple analytical formula for the mass of the dilaton that will allow to under-
stand its lightness as a function of the change of the tachyon as we move the IR-brane.
This will show that either at small or large positions of the IR-brane, the dilaton is always
parametrically light. In between these two regions, we will see that the dilaton mass does
not have “room” to grow and as a consequence the dilaton is always kept light.

We will compare our results with lattice simulations, showing good agreement in the
pattern of masses when the conformal critical point is approached. Furthermore, we will
provide further predictions to be checked in the future by lattice simulations.

The 5D model presented here could also be useful to generate small scales and explain,
for example, the difference between the electroweak scale and the Planck scale. More-
over, the presence of a light scalar can have an important impact in the searches for new
resonances at the LHC as predicted in composite Higgs models.

There have been previous approaches using holography to understand the conformal
transition and the existence of a light dilaton [16-29]. We find however that these studies
were not exhaustive nor conclusive. Our goal is not only to provide evidence for a relatively
light dilaton, but also to explain the reasons behind this.

The article is organized as follows. In section 2 we introduce the idea of leaving the
conformal window by fixed-point merging and remark its implications. In section 3 we
present the five-dimensional model and its relation with the large N, and Np expansion.
We also discuss the tachyon solution and the stabilization of the radion. Next we present
the predictions for the resonance mass spectrum, presenting an analytical formula for the
case when the dilaton is light, as well as discussing the other scalar and vector resonance
masses. In section 4 we compare the mass spectrum calculated within our model with that
obtained from lattice simulations, and in section 5 we discuss how these models could also
be useful for explaining the smallness of the electroweak scale. Conclusions are given in
section 6. We also present two appendices. In appendix A we give the coupled system of
equations of motion for the scalar and gravitational sectors, and derive the approximate
analytical formula for the dilaton mass. In appendix B we present the 4D effective theory
of a tachyon and dilaton valid when they are the lightest states.

2 Conformal transition by fixed-point merging

There are several ways to lose an IR fixed point as we move the parameters of the theory.
Either the fixed point goes to zero, to infinity or it merges with a UV fixed point. Following
ref. [6] we will consider conformal transitions characterized by the third case, the merging
of the IR fixed point with a UV fixed point, as depicted in figure 1. In this case, the beta
function can be written as

By~ —e—(9—9:)°, (2.1)

where g is a coupling of the theory (not necessarily related to the gauge coupling in gauge
theories), and € depends on the parameters of the theory, e.g., Np. The IR and UV fixed



Figure 1. Beta function of the coupling ¢ for different values of €. For ¢ = 0, the IR and UV fixed
points merge at g..

point are respectively at
g=9g«FV—e¢. (2.2)

As we vary € from negative to positive values, we have the merging of the IR and UV fixed
points at € = 0, while for € > 0 the theory abandons conformality, i.e., the IR fixed point
is at complex coupling.

As argued in ref. [30], for € negative and close to zero, the operator O, with coupling
g must have dimension

Dim[Oy] =4+ Cilﬁgg ~ 44 2v/—e€, (2.3)

and can be considered to be responsible for the RG flow towards the IR fixed point. For
€ = 0 we have that Oy becomes marginal, and develops a complex dimension for € > 0,
signaling the end of conformality.

The above properties of this conformal transition have a straightforward holographic
interpretation using the correspondence (or duality) between strongly-coupled CFT, (in
the large N, and large 't Hooft coupling) and weakly-coupled five-dimensional Anti-de-
Sitter theories (AdSs) [7-9]. Operators in the CFT4 (O) correspond to scalars in the AdSs
(®) where dimensions and masses are related via the AdS/CFT relation [7-9]:

Dim[O] =2+ (/4 + MZL?. (2.4)

Eq. (2.4) tells us that in order to have a dual of a CFT operator with complex dimension,
the AdSs must have a scalar slightly below the BF-bound, M2 = —(4 + ¢)/L%. Eq. (2.4)
also tells us that this operator of complex dimension (O,) has, in the limit ¢ — 0, dimension
2 instead of 4. Therefore the natural identification for the O, operator discussed above
is O, = |O,|?, since in the large N, this implies Dim[Oy] = 2Dim[O,] and that gives us
eq. (2.3). In other words, O, must be a double-trace operator.?

The existence of O, in the conformal transition is only an implication from large- N,
theories, and could be not true in general. In QCD, as argued in ref. [6], O, is expected to be

2Tt has been proven in refs. [30, 31] that this is always the case for theories in the large- N, limit.



the qq operator whose dimension will go from ~ 3 when entering the conformal window (at
the Banks-Zaks fixed point) to 2 when leaving it at the other side when it becomes complex.
When the theory is close but outside the conformal window (i.e. 0 < € < 1), one can
calculate the RG flow “time” required to cross the region where g ~ g, and |34| < 1. This
gives us the IR-scale A at which the theory is expected to confine as g becomes large.

From eq. (2.1) one gets
AR ~ e_ﬁ/ﬁAUv , (2.5)

where Ayy is roughly the scale at which g < g.. Eq. (2.5) is usually referred as walking or
Miransky scaling.

3 A five-dimensional model for the conformal transition

We want to study the conformal transition described above using holography. For this
reason we will consider the simplest but at the same time most generic five-dimensional
model containing the basic ingredients needed to describe the conformal transition via
fixed-point merging. Our purpose is to generically understand the mass spectrum at the
conformal transition and the presence or not of light scalars.

Let us recapitulate the basic ingredients of the theory in the 4D side. This is a strongly-
coupled deformed CFT with a scalar operator, qiL(j};L (i, = 1,...,Np) for concreteness,
whose dimension is 2 + /—¢ with 0 < ¢ < 1. This means that the scalar qi(ﬁ% gets a
vacuum expectation value (VEV), signaling the loss of conformality. The global symmetry
of this theory is SU(Np)r ® SU(Np)r ® U(1)p that is broken by the VEV of the scalar
(qi(j@ o 1 down to the diagonal subgroup SU(Ng); ® SU(Ng)r — SU(Ng)y.3

The corresponding holographic model will consist in a SU(Np)r ® SU(Np)r ® U(1)p
gauge theory in 5D with a complex scalar ® transforming as a (Ng,N)o. This scalar plays
the role of the gg operator whose VEV is responsible for the breaking of the conformal and
gauge symmetry, and therefore its mass will be related to the dimension of the ¢g operator.
We also impose parity, defined as the interchange L <+ R. The action is given by

1
S5:/d4x/dz\/§M5 [,@2 (R+As) + Ls| | (3.1)
where, up to dimension-four operators,? the most general Lagrangian is given by
1 1 1
L5=—Tr [Lan LMY + Ry yRMN] — ZBMNBMN +5 T |Dy®)? — Vo(®), (3.2)

with Lysn, Ry n and Byyy being the field-strength of the SU(Ng), SU(Np)r and U(1)p
gauge bosons respectively, and the indices run over the five dimensions, M = {u,5}. We
parametrize the fields as ® = &, + T, P, with Tr[T,T}] = d4. The fields @5 and @, will

3The U(1) 4 is anomalous and will not be considered here.

4Following the Effective Field Theory (EFT) approach, higher-dimensional operators are supposed to be
suppressed by the cutoff scale of the model (Acutorr) estimated to be the scale at which the 5D theory becomes
strongly coupled (i.e., when loops are as important as tree-level contributions), that is Acutosr ~ 2473 M3 [32]
— see also section 3.1.



respectively transform as singlet and adjoint under the SU(Np)y . The covariant derivative
is defined as

Dy® =0y ® +igs Ly ® — igs PRy, (33)

and the potential is given by®
Vo (®) = %Mg Tr |®% + i)\l Tr |®* + iAg(Tr 1®|2)2. (3.4)
The 5D metric in conformal coordinates is defined as
ds* = a(z)Z(an:E“d:E” - sz) , (3.5)

where 7, = diag(1, —1, =1, —1) and a(z) is the warp factor. Before the scalar ® turns on,
the presence of Az leads to an AdSs geometry:
L
=, 3.6
a(z) = — (3.6)
where L? = 12/A5 is the squared AdS curvature radius.

As explained above, our important ingredient here is to consider that the conformal
breaking arises when Dim[gg] becomes imaginary. In AdS this corresponds from eq. (2.4)

to take the 5D mass of ® below the BF bound. For this purpose, we will consider

4+¢€

M3 = =

(3.7)
When € > 0 the mass of ® is below the BF bound and ® turns on in the 5D bulk, breaking
the conformal and chiral symmetry SU(Np)r, ® SU(Np)r — SU(Np)y. @ will grow as
~ 22, as expected from a dimension-two perturbation in the dual 4D theory. When the
energy-momentum tensor induced by the nonzero ® profile gets of order of the inverse 5D
Newton constant, 2, the backreaction on the metric will be important, starting to depart
then from AdS, and signaling the breaking of the conformal symmetry. This simple model,
however, does not lead to a mass gap for all bulk fields, as the extra dimension is not
ending at any z. In fact, as we will see, the tachyon ® would stabilize at the minimum
of the potential eq. (3.4) and the metric would become again AdS. As we know that in
strongly-coupled models outside the conformal window, like QCD, all resonances are heavy,
we need to implement the same in our holographic version. The simplest way is to cut off
the 5D space by an IR-brane at some point z = zg to be determined dynamically.

The presence of the IR-brane add extra parameters to the theory as ® might also have
a potential on the IR-boundary. We will limit ourselves to up to quadratic terms in ®:
- Ay

1
Th(®) = 5 + 5mi Tr[@f, (3.8)

['IR = —a4f/b(<I>)‘ 2

2IR’

and study their impact on the properties of the model. We could also add to eq. (3.8)
quartic terms but these are not expected to change significantly our predictions, since they

®We notice that one can absorb one coupling into Ms, as we will do later.



are suppressed by 1/(MsL) with respect to the bulk terms.® As it is usual in AdS/CFT,
we will be regularizing the UV-divergencies by placing a UV-boundary at z = zyy and
taking the limit zyy — 0 at the end of the calculation of physical quantities.

In this 5D model the two phases are determined, as in the strongly-coupled model
described in section 2, by the € parameter:

e For € < 0, we have ® = 0 and zg = co: AdS5 (CFTy) phase.

e For e > 0, we have ® # 0 and zig # co: non-AdS; (non-CFTy) phase.

3.1 The large N. and N power counting

By the AdS/CFT correspondence, the 5D scalar and gauge bosons are associated to the me-
son operators qq and gv,q respectively. Therefore 5D couplings from single-trace operators
must scale in this sector as 1/N.. This can be implemented by assuming

1 1672
ML N, '’

A~ g5~ N2 (3.9)

On the other hand, double-trace operators are suppressed with respect to single-trace ones:

Ag ~ ]\1[0 . (3.10)
For this reason these latter terms were neglected in previous holographic approaches to
QCD [33-35]. Nevertheless, in some physical quantities the parameter A9 is accompanied
by a factor Np, as we will see explicitly below (e.g. eq. (3.14)), and then its effect is not
suppressed for large values of Nr. Therefore it is important to keep double-trace operators
in eq. (3.2) when comparing our results to strongly-coupled theories in the large N, and
Np limit. In particular, Ao will be responsible for generating a mass splitting in the scalar
sector between the singlet (®,) and the adjoint states (®,), as observed in lattice results
with large Np [1-5].

Using the scaling eq. (3.9), one realizes that in the limit Np ~ N, 5D models are in
danger of not providing reliable calculations by the usual perturbative expansion. Indeed,
in this limit loops of vector or scalar resonances in the adjoint of SU(Np)y contribute
1 Np Np

w2 iR ~ N ~ L meaning that loops could be as important as tree-level contribu-

tions. The N enhancement of these corrections is due to the large number of fields (for

as

example,®, consists of Nz — 1 fields). Still, by extending the results to Ng/N. ~ 1, one
hopes to capture well the qualitative dynamics.

A case that is more under control arises if one can restrict only to the flavor-singlet
sector of the theory [36], which is justified when the other sectors are heavier. In this case
the Ng dependence enters only into the couplings of the flavor-singlet sector, which can be
treated perturbatively (loops are always small since the number of fields is not large) even
in the strict Veneziano limit where N is of order or even larger than N.. In fact, ref. [36]

SEven though the same is true for the two terms in eq. (3.8), these are respectively quartically and
quadratically UV sensitive so they can be sizable.



provides an example of a weakly-coupled closed string dual description of the flavor-singlet
sector of a gauge theory in the Veneziano limit.

From the AdS/CF'T dictionary, we are also able to relate the gravitational sector of the
5D theory with the glueball sector of the 4D CFT, and derive the scaling of the 5D Newton
constant with the number of colors: x2/(MsL3) ~ 167%/N?2 that using eq. (3.9) implies

2
K 1
— o~ . 3.11
L? N, ( )
From the above we can estimate the mixing between the flavor-singlet meson sector and

the glueball sector (dual respectively to the scalar and gravitational sectors in 5D) to go as

2

k*N N

2= (3.12)
L? N,

that becomes order one for Nrp ~ N.. Therefore, contrary to previous holographic models,

the impact of the gravitational sector in the singlet scalar sector cannot be neglected in

this case.

3.2 The tachyon solution

The non-zero profile for ® will be taken to be along the ¢ = |®4| direction, whose 5D
Lagrangian is given by

Lo = Nr {50007 ~V(9)| + 9262 Tr 43, (313)

where

1 1
V(p) = §M§>¢2 + Z)\¢4> A=A+ Nplo, (3.14)

being Ay = (Lys — Rar)/V/2 the axial-vector gauge bosons that will get masses from their
coupling to ¢. The IR-brane potential can be written as

Lir = —a'NpVy(9)| zagz T3

Vi(9) = P2 (3.15)

2R’

Notice that the presence of a factor N in front the Lagrangian means that the couplings
of ¢ are suppressed by an extra 1/Np with respect to those in the non-singlet sector, as
expected in strongly-coupled theories in the large N, ~ Ng limit. The equation of motion
(EOM) for ¢ from eq. (3.13) must be solved including the metric back-reaction that via
the Einstein equations (see appendix A) determines the warp factor:

; 1 F212 /A2
-~ == \/m*%(if”@)’ (3.16)

where from now on we will be using the dot notation: ¢ = 0,¢. It is important to notice
that by the field redefinition ¢ — ¢/+/|\| we could factorize || in front of the first term
of eq. (3.13) and make the EOM that determines the solution for ¢ independent of |\
(only sensitive to its sign). This redefinition introduces |A| in the interactions of ¢ with




the gauge and gravitational fields (second term of eq. (3.13) and eq. (3.16) respectively).
Nevertheless, this can be reabsorbed respectively in g2 and 42, making the solutions and
full mass spectrum of the model insensitive to |A|. Therefore, with no loss of generality, we
will consider A = +1.

We are interested to study the model close to the conformal transition. Therefore we
will work in the limit ¢ — 0. The solution for ¢ then only depends on zr, 4% and mg (and
the sign of A). At the UV-boundary we will impose ¢ = 0, otherwise we would be breaking
the chiral symmetry from UV-physics (as adding an explicit mass term to the quarks in the
dual theory).” On the other hand, at the IR-brane we must impose the boundary condition

<M5<Z>+ Vb’>
a

where we defined V) = 04V4. For the metric we must impose the junction condition [37]:

6Ms5 a
<‘waz+‘/b)

determined by the model:
=0, (3.17)

ZIR

= 0. (3.18)

2IR
3.2.1 Region ﬁzg > —2

We will start looking for solutions of the tachyon for m% > —2, where we define
mgL

~ 2
mb M5

(3.19)

In this case non-trivial solutions from eq. (3.13) fulfilling eq. (3.17) are only found if the
IR-brane is beyond some critical value, zigr > 2{. It is easy to find z{y, as this corresponds
to the critical value at which we pass from having all Kaluza-Klein (KK) states of ¢ with
positive squared masses to having 4D tachyons in the theory. Therefore at zir = 2 there
must be a 4D massless mode, ¢;(x). The wave-function of this massless mode must satisfy
the linearized bulk EOM with p? = 0. We obtain [16, 17]

o(z,2) = d)t]if) 22 sin <ﬁ1n z) : (3.20)

UV

with N a normalization constant, and where the IR-boundary condition eq. (3.17) at
2R = 21y leads to

tan(ﬁlnzﬁ{): \/€2 = +eln IR ~nw, n=12,.... (3.21)
2uv 2+ mj 2UvV

Notice that to have non-trivial solutions, the limit ¢ — 0 must be taken with zyy — 0,
such that the angle in eq. (3.20) is kept fixed. The presence of n solutions in eq. (3.21) is a
well-known feature of these configurations, and it is associated to the existence of Efimov
states. We will be considering n = 1, that will give us the global minimum, being the
other possibilities just local minima. Eq. (3.21) reproduces eq. (2.5) for Ajg ~ 1/2{z and

"Imposing a different boundary condition, such as zq5|ZUV X @|zyy, would lead to the same predictions
in the limit € — 0 (zuv — 0).
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Figure 2. 5D tachyon solutions (in units of 1/L) for /7 = —1. LEFT: limit I with zig = 1.2 2{3.
RIGHT: limit IT with zig = 20 2{3. We have taken A = 1, and #? = 1 (4) for the solid (dashed)
line, and A = —1, 42 = 4 for the dotted line.

Auy ~ 1/zyy. The origin of the logarithm in eq. (3.20), that will play an important role,
can be more easily understood by looking at the strongly-coupled dual theory; this has
an explicit breaking of the conformal symmetry due to the double-trace marginal operator
Oy = |O.|? that leads to a log-running of the couplings [38].

Depending on the position of the IR-brane with respect to 2, we can distinguish two
limiting cases that will help to understand the physics of the model. These are illustrated
in figure 2 and corresponds to

I) zir = 2. In this case ¢L < 1 for all z, meaning that the scale of confinement
~ 1/z1r is larger than the scale of chiral breaking that is of order ~ L¢(21r)/2IR.

IT) zir > 2fi. In this case ¢L reaches O(1) values at some z = 2z, < zr, and then the
scale of chiral breaking ~ 1/z, is larger than the scale of confinement ~ 1/zR.

These two cases should be considered as formal limits, since in most of the parameter
space of the model we will find that the IR-brane sits at zir ~ few X 2y, i.e., between
limits I and II, implying that naturally the scale of chiral breaking is similar to the scale
of confinement.

Let us start considering the limit I, where z1g is assumed to be just slightly above
Z{g- In this case the 4D mode ¢;(x) gets a small negative mass-squared, becoming a 4D
tachyon. We find this mass is given by

4(mi + 2)?
m? =~ —g In ZITR, where f = #. (3.22)
2R 2R my, + 6mj + 10

Eq. (3.22) is only valid for |m?| < 1/z%; that, obviously, requires a tuning in the parameter
space: either Inzr/2fz < 1 (that we will see later cannot be achieved by the radion
minimization) or § < 1 that requires mg — —2. To find a stable configuration this 4D
tachyon must have a positive quartic self-interaction, A; > 0, and this can arise either from
A or the feedback from gravity. We find

At = Aea(md) + A2ce (i), (3.23)

~10 -



where c) ,, are smooth and positive functions of fng as derived in appendix B.1. The 4D
tachyon VEV is then given by

1 /B, 2R
(pr) = Vo ln%. (3.24)
Therefore, in the limit I the z-profile of ¢ is given by eq. (3.20) with eq. (3.24) and
N = Lzre/, as we follow the normalization of ¢; of appendix B.1. This solution is
shown in the left plot of figure 2 for A = 1 and A#? = 1,4. In the limit 4% > 1, we see
from eqs. (3.20)—(3.24) that #2¢?L? stays constant and small. This means that the metric
remains always close to AdSs.

Let us now move to the limiting case II. First, let us neglect the feedback from the
metric (A2 < 1). As the IR-brane is now placed far away from g, the tachyon profile
grows o z2 till the quartic term of the potential becomes relevant. Solutions only exist if
A > 0, such that ¢(z) settles at the minimum of the 5D potential V' (¢) where it takes the

constant value ¢(z) ~ /M2/X = 2/(L)) (see right plot of figure 2).® This means, in the
dual interpretation, that the CFT flows at around 1/2fz towards another CFT in which the
global symmetry has been reduced to U(Np)y with ®4 and ®, respectively transforming
in the singlet and adjoint representation. In this new CFT, scale invariance is broken at a
much lower scale 1/2ig. Let us now consider the feedback of the metric. For large %2 the
gravitational feedback becomes important before ¢ reaches the V(¢) minimum, making ¢
to enter into a “slow-roll” condition (see appendix A for details) delaying the position z
at which ¢ gets its maximum ~ 2/(LA). In this case A < 0 is also possible as the slow-roll
condition keeps ¢(z) slowly growing till reaching the IR-brane (see right plot of figure 2).
The metric evolves from AdSs at 2z ~ z{z to another approximately AdSs space at z > z{y.

3.2.2 Region ﬁzg < =2

In this region we have that 2 + frh% is negative, and from the left-hand side of eq. (3.21),
the smallest z{ is determined by

2[R 1
In ~ — 5 (3.25)
Zuv 2 +my
that does not depend on e. This means that non-trivial solutions for ¢ exist even if € < 0.
These solutions however are supported by the IR-brane and for zjg — oo we have ¢ — 0.
Therefore as soon as the IR-brane is not stabilized for € < 0 (i.e., z;g = 00), we can also
consider this region of the parameter space for studying the conformal transition.
In this case the solution for ¢, as we vary zig, behaves in the following way. For
2 < 2R < 2f%, where 2{f; is determined by In(z{%/zuv) ~ 7/\/€, we find that ¢ takes
a nonzero value with a profile localized towards the IR-brane, ¢ ~ (z/2z1r)?, as we said.
The origin of this nonzero profile is that the IR-brane mass fn%, and not the 5D mass,
is exceedingly negative. ¢(zigr) is mostly constant in this region and it does not help to

8To satisfy the boundary condition at the IR-brane, ¢ must depart from 2/(LA) when approaching the
IR-boundary, as can be appreciated in figure 2.
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stabilize the IR-brane. On the other hand, for zir > z{};, the profile of ¢ grows to become
similar to the limit IT discussed before (see right-hand side of figure 2), indicating that ¢
behaves as a genuine 5D tachyon. This latter behavior only occurs if the 5D mass is below
the BF bound and can lead to a stable IR-brane.

3.3 Radion/dilaton stabilization

Since the position of the IR-brane zig is associated to a dynamical field, the radion (not
necessary a mass eigenstate), its value must be determined dynamically. The extremization
condition for zR is exactly the junction condition eq. (3.18) after putting on-shell all other
fields. This can be written, using eq. (3.16) and eq. (3.17), as

6Ms |1 R2L2 (V2
n V() + V =0. 2
e\ 212 <2M52 () b 0 (326)

ZIR

For our particular case, this reduces to a quadratic equation for ¢(zR):

5A2?

4 (6A — =) + #2L? Bm2¢2(zm) - 2¢4(ZIR)} =0, (3.27)

L? 12

where have introduced m? = [(1hZ + 2)? — 207 m2/3]/L%, A = X+ i#?my/3, and

. L
ON=— A4 +6 3.28
M5 4 + ? ( )
that is a measure of the detuning of the IR-brane tension away from the AdSs value. Their
values are bounded to be in the region

0<dA<6. (3.29)

The lower bound arises from demanding that for € < 0, the IR-brane is driven to zig — oo,
such that the theory is in the AdS5 (CFT,) phase. From appendix B, in particular eq. (B.4),
we see that dA is related to the self-coupling of the dilaton and §A > 0 comes from re-
quiring a positive dilaton self-coupling. On the other hand, the upper limit in eq. (3.29) is
a more basic (geometrical) requirement: to possibly solve the junction condition even for
dynamical solutions that start away from the minimum. If 6A > 6, the IR-brane tension
Ay is positive and it is easy to see that there would be no solutions where the IR-brane acts
as an IR boundary (i.e., a cutoff of the AdSs space at z = zig). Therefore these regions
must be discarded.

By playing with the parameters of the model, A = £1, #?, 7} and §A, we can find
regions where z1g is stabilized thanks to the presence of the 5D tachyon. These are shown
in figure 3 in the plane 7} — 6A for 4> = 4 and A = 1 (left plot), and A\ = —1 (right plot).
These regions are bounded from the left and the right at which, as it will be discussed later,
the radion is massless. At the left boundary one obtains the lowest value of (a stabilized)
zr- For mg > —2, this lowest value of the IR-brane position is achieved when SA = 0;
for mg — —2 we obtain the smallest zir/z{y that is given by zir = et/ szR, as can be

- 12 —



Figure 3. Region of the parameter space that leads to a stable IR-brane for 42 = 4 and A = 1
(left) and A = —1 (right). We also provide the value of the lightest scalar mass, mg, /m,.

analytically found by looking at the 4D effective theory (see appendix B). On the other
hand, as we get close to the boundary on the right of the regions in figure 3, we have
zir, — 0o (limit IT). In most of the colored regions however we have that zig ~ z,. In other
words, the model naturally predicts the scale of chiral symmetry breaking to be around
the scale of confinement.

If the radion is the lightest 4D mode in the theory, we can use eq. (3.26) to obtain its
effective potential. The radion corresponds in the dual 4D CFT to the dilaton, ¢4, whose
VEV determines the scales of the model. For this reason ¢4 at the minimum is related
with the warp factor evaluated at z = zig. Nevertheless, outside the minimum eq. (3.26)
the relation of zig with ¢4 is a more complicated function, zig = f(¢4), especially in the
basis where ¢4 is canonically normalized. Going off-shell requires not equating the l.h.s.
of eq. (3.26) to zero, and identifying this with the first derivative of the dilaton effective

potential:
Ve (dg) @3 R2LA (V)2 R2L3
= 1 —V Vi 3.30
dbg n(¢q) T\ (0)) + 6M; " o (3:30)

2r=f(¢a)

where n(¢g) > 0 is in general a complicated function of ¢4 (that cannot be zero, otherwise
we will have an extra minimum beyond eq. (3.26)) that we do not need to specify here.
By integrating eq. (3.30) over ¢4, one can obtain the dilaton effective potential Veg(dq).
For the simple case in which the backreaction is neglected and the space is just AdSs, we
have zig  1/¢4 and n(¢y) is just a constant. For this case we show the effective potential
(up to an overall constant) in figure 4. We can see that the potential has a minimum at
2IR ~ 2 — 3 zfg and goes to a constant value at large zir, where ¢ becomes constant as
it approaches the minimum of its 5D potential. For a better understanding of the dilaton
effective potential, we can analytically calculate the effective potential of the 4D tachyon

— 13 -
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Figure 4. Dilaton effective potential for A = 1, 42 = 0, §A = 0 and different values of 7i?.

and dilaton in the limit zr/2fz ~ 1. This is done in appendix B. This shows that the
origin of the existence of a minimum in Veg(¢4) can be tracked back to the log-dependence
in eq. (3.22).

3.4 Excitations around the 5D tachyon

The main interest of the article is to know whether close to the conformal transition there
is a light dilaton, as often claimed in the literature. Therefore we will start considering the
flavor-singlet 07" spectrum of the theory, to analyze later other sectors.

3.4.1 The singlet scalar sector and light dilaton

The flavor-singlet 07" spectrum is composed by the radion (the only scalar in the gravi-
tational sector) and the excitations of @4 around the background ¢(z). Since the mixing
of the dilaton with ®; is in principle sizable for Ny ~ N, (i? ~ 1), we must consider the
coupled EOM between the scalar sector and the gravitational sector. The equations for
the mass spectrum are given in appendix A.2 and must be solved numerically.

For the lightest mode S; the results are presented in figure 3 for A = £1. We have
normalized the S; mass to the one of the lightest vector resonance, m,, being this latter
the lightest state in real QCD and holographic versions [33-35]. Figure 3 shows that the
0" state is always lighter than the vector in all regions of the parameter space. At the
boundary of the regions at which IR-brane stabilization is achieved, the dilaton is massless,
but its mass is roughly below half of the p mass in most of the interior region. We have
checked that for larger 42, the value of mg, increases but not significantly.

To understand why the dilaton mass is small, it is convenient to show how its mass
varies as a function of zig for different values of 7n7. This corresponds to moving in vertical
lines in the plane of figure 3 from the bottom to the top, trading the parameter SA for zig
by means of eq. (3.27). We remark however that we will present results for a wide region
of zr, going beyond the allowed region eq. (3.29). This will help us to understand the
origin of the smallness of mg, /m,. The result is shown in figure 5 for different values of

— 14 —
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mg > —2. We see that the dilaton mass starts at zero at zig ~ 21, grows for intermediate
2IR/ %y, and tends again to zero for zr/2fy — 0o.

We can understand this behaviour analytically. Assuming that S is the radion/dilaton,
we can analytically obtain its mass by taking the derivative of eq. (3.30) evaluated at the
minimum eq. (3.26). We obtain

A a? (V! v
mid ~ 4/<;2a(zIR)L2 [24(,1 < ?\421) — V’) — 6]\25] Oz ®(21R) (3.31)
5 ZIR

where we have used that at the minimum ¢34, f(da)/n(¢a) ~ —4a(zr)/L derived in
appendix A. In our particular case eq. (3.31) reduces, after normalizing to the vector mass
eq. (3.39), to

2
Mgy

~ P(¢(21r)) Q(P(21R)) By (21R) 5 (3.32)

5 =
mp
where we have defined the dimensionless functions

#2¢?(zr) _ 8RZL?¢*(21R)

P(QS(ZIR)) = Gm% = 2771_2 A%R ’ (333)
M2=0
Q(é(em)) = AlR A6 ()27 — (1 +2)” — 4} (i — 1)] (3.34)
_ L 821R¢(ZIR)
By(21R) = o) blan) (3.35)
with

) : 527242 2 )

AIR:—%’; :\/1+’€§4¢ <4+m;§—”\§¢2> . Am>1, (3.36)
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where we have used eq. (3.16). From eq. (3.32) we can infer different regimes at which the
dilaton can be light:

e The prefactor P(¢(z1Rr)) is suppressed for #2¢?(zr) < 1/L?. Therefore in the limit
I the dilaton is always light, even when formally we take &2 > 1 (see discussion after
eq. (3.24)). Also for large values of L¢, possible in the limit IT with A < 0, we have
P — 1/(L¢)?, and consequently the dilaton mass is suppressed.

e The function Q(¢(zr)) determines the sign of mid. In the limit I we have ¢L — 0
and Aig — 1, and then @Q becomes negative. This means that the dilaton effective
potential has actually no minimum, as we already pointed out in section 3.3. As we
increase zir/z{y, @ increases till becoming zero, corresponding to the points seen in
figure 5 with mg, = 0. One can check that they are inflection points of the dilaton
potential.

e The function 3 is the main responsible for natural light dilatons in Goldberger-Wise
models [10-14]. Since moving simultaneously the UV and IR boundaries does not
change physical quantities, we can deduce

a(zIR)

CL(ZU\/>

showing that 3 is in fact sensitive to the dependence of the tachyon ¢ with variations

aZIR (b(ZIR) -

aZUV¢(ZIR) s (3.37)

of the UV boundary, and therefore to the explicit breaking of conformal invariance
(that arises due to the presence of the UV cutoff). For this reason (4 is directly
related with the beta function ), of the dilaton effective coupling of eq. (1.1). Sy
explains why the dilaton mass always goes to zero for large zr/%{z. Indeed, as we
approach the limit IT for A > 0, the 5D tachyon goes to the minimum of its potential
where it becomes constant. We then expect 3, < 1. Also in the limit IT for A < 0 the
slow-roll conditions are achieved and 4 tends to zero. Unfortunately, these regions of
a parametrically light dilaton are very small in the full parameter space of the model,
see figure 3, since stabilizing the IR-brane at large zr/2{y requires an adjustment
of the parameters of the model. In the limit I we can derive from eq. (3.20) and
eq. (3.24) that B4 ~ 1/(2In(z1r/%{y)), and using the eq. (B.5) we get 4 ~ 3 that is
nonzero but smallish in the regions considered.”

The situation is similar in regions with m; < —2 (see figure 3 or figure 8). The only main
difference is that the dilaton mass goes to zero for small values of zr/z{%, not due to
@ — 0, but because ¢(zr) tends to a constant value as explained in section 3.2.2, and
therefore 845 — 0.

We conclude that the dilaton mass is parametrically smaller than m,, at small and large
z1r (respectively corresponding to the left and right boundaries of the regions of figure 3).
At small z1R, the reason is either the existence of an inflection point in the dilaton potential

“Notice that 0.5 #(21R) # 028|sn, and then B4 does not measure the growth of the tachyon (that is
power-law ~ 2z?), but its variation as we move the IR-brane (or UV-boundary) that it is much milder
(logarithmic).
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(for the case m}? > —2) or that ¢(zr) becomes frozen and S5 — 0 (for the case m? < —2).
Also at small 5D tachyon values its log-dependence on zig gives a smallish 8, and therefore
a smallish dilaton mass. At large zig (limit II) the geometry approaches again AdSs (the
dual model flows towards another approximate CFT,) where scale invariance is partially
recovered and therefore the dilaton mass must go to zero. “Trapped” between these two
limits, the dilaton mass cannot grow much in the intermediate region and then remains
always the lightest resonance (although not parametrically lighter than the others).
Finally, we would also like to discuss the mass of the second lightest singlet scalar, Ss.
This is also obtained numerically (see appendix A.2), and the result is shown in figure 6 for
certain representative values of the parameter space. This scalar S5 is mostly the excitation
around the profile ¢(z) (up to a small mixing with the radion), a Higgs-like state. For this

reason when zjg — zfp, we expect m?gQ — M@? — 0, as appreciated in figure 6.

3.4.2 Non-singlet scalars, vector and axial-vector excitations

For the scalars in the adjoint under the SU(Np)y symmetry, ®,, the EOM is given by

[0 — a70.a%0. + a® M3 + a®(3)\ — 2NpA)¢*(2)] @4 = 0. (3.38)
As we already mentioned, there are two important difference with respect the singlet scalar
case. First, the scalars in the adjoint do not mix with the radion/dilaton. Second, the
quartic coupling in eq. (3.38) is different from the singlet case due to the presence of Ao.
This implies that the adjoint scalar masses are expected to be different from the singlet
scalar masses, with the magnitude of the mass splitting being sensitive to 42 and As.

We are also interested in the vector Vay = (L + Ra)/v2 and axial-vector
Anr = (La — Rar)/v/2 spectrum [33-35]. The vector spectrum is only indirectly sensitive
to the tachyon through its impact to the metric. Therefore, since flavor-singlet resonances
(the w in QCD) and adjoint resonances (the p in QCD) feel the same metric and have the
same boundary conditions, they get equal masses. This is an important prediction of the
5D model.”

It is useful to have an approximate analytic value for m,, since we are using this mass
to normalize the other resonance masses. This is possible in the limit in which the 5D space
is approximately AdS, that corresponds to limits I and II, as we explained in section 3.2.
In AdSs we have m, ~ —(37/4)(a/a). We find that a reasonably good approximation for
a/a in the limit of small and large zig is given by eq. (3.16) neglecting the derivative terms
and taking ¢ at z = zir.'! We then have:

3ma(zr)
~ — A . .
PET T L IR 20 (3.39)

We have checked that this value is within < 20% the exact mass of p for the regions of the
parameter space studied in this article.

00f course, mass splittings could be generated at the loop level or from higher-dimensional operators in
eq. (3.2), but these are expected to be suppressed.
1We put to zero the derivative terms to avoid the drastic change of ¢ near the IR boundary -see footnote 8.
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Figure 6. Masses of the two lightest singlet scalars, S; and Ss, lightest adjoint scalar (ag), lightest
axial-vector (a1) and Fj, normalized to the vector mass for mi = —1, A =1, Ao = =2, g2 = 1 and
/2 =1 (4) for the solid (dashed) line.

The axial-vector spectrum depends directly on the ¢ profile via eq. (3.13), being this
responsible for the mass splitting from the vector spectrum. Another important quantity
is the Goldstone decay constant Fj, that is the order parameter of the chiral breaking.
This can be calculated via holography from the axial-vector two-point correlator at zero
momentum [33-35]:

M5L 8ZA(Z)

Fr=Tl4(0) = =5 2= = o : (3.40)

UV

where A(z) is the 5D solution of the axial-vector with Dirichlet UV-boundary condition.

The results (with no approximations) are shown in figure 6 for some representative
values of the parameter space. Following the notation in QCD, we denote with ag and
a1 the adjoint scalar and axial-vector respectively. Since Fj is the only quantity that
depends on M5 (N, in the dual theory), we have fixed its value using eq. (4.4) with N, = 3.
For zir ~ 2y (limit I) where the chiral breaking is small, we see that indeed F; and
(mp—myg,)/m, are small. As we increase zir, we move towards limit IT where the breaking
of the chiral symmetry is larger, as can be appreciated by the growth of F; and Sy — ag
and p — a; mass splittings. On the other hand, the mass of a¢ strongly depends on Ay, and
we have chosen a negative value, \s = —2, that makes the mass splitting with the singlet
sector positive, as lattice simulations (see later) seem to suggest. Similarly to the singlet
scalars, we also have that mg, goes to zero as zjr — 27y, since the tachyon value goes to
zero in this limit and we recover the chiral symmetry.

Let us briefly comment on what happens for other values of the parameters of the
model. The effect of 42 in the mass spectrum is clear from figure 6 where we show the
spectrum for two different values of #2. The main effect is that as we increase &2, the profile
of ¢ becomes flatter and smaller, as appreciated in figure 2, giving a smaller breaking of
the chiral symmetry. The spectrum is mildly sensitive to the values of fnz, unless we take
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Figure 7. Masses of the two lightest singlet scalars, S; and So, lightest adjoint scalar (ag), lightest
axial-vector (a;) normalized to the lightest vector mass (m,) for constant F. ~ m,/7 as a function
of zir /2fz for A = 1. We have taken #? = 1 (4) for solid (dashed) lines. The left grey (right orange)
band corresponds to the region 0.5 < g2 < 2 for #* =1 (4). LEFT: /a7 = —1. RIGHT: mi = —1.5.

m? < —2 that we will discuss later (figure 8). Finally, g2 only affects F and m,, that will
increase as gg increases.

It is more instructive, also in part to compare later our results with lattice simulations,
to analyze the spectrum at constant F,. For this purpose, we adjust gg to fulfill, for the
different values of zir/2{z (or equivalently JA), the relation Fy ~ m,/7 as in QCD. The
results are given in figure 7 for 7 = —1 (left) and /m? = —1.5 (right). We have kept g2
in the interval 0.5 < gg < 2 and this has limited the possible values of zr /2y to the blue
and orange bands for 42 = 1 and 4 respectively.'? The main conclusions from figure 7 are
the following. The lightest resonance is always the scalar Sp, a dilaton-like state. The So,
the Higgs-like state, is also smaller or around m,, and can only be larger if we take large
values of 2ir/2¢; (that implies small values of g2 in order to keep Fy ~ m,/7). The ratio
Maq, /M, is closer to 1 than in real QCD where my, /m, ~ 1.6 or previous holographic QCD
versions [33-35]. The mass of ag is also smaller than in real QCD. As we will see in the
following, these properties are also found in lattice QCD for large Np.

The situation is only slightly modified in the region m% < —2. In figure 8 we show
the mass spectrum for mg = —3. The main differences with respect figure 7 is in the
scalar mass spectrum where we appreciate that at smaller values of zir/z{, where here
zﬁ% = ¢/ \ﬁzUv, the ag and So masses do not go to zero. The reason is the following.
As explained in section 3.2.2, for m? < —2 the profile of ¢ is always non-zero (unless
2IR < %fg ~ zuv). This implies that we do not recover the chiral symmetry in the region
of interest, zir ~ 2{}, and the Sy and ag masses never approach zero. Nevertheless, their
masses are predicted to be around the p mass.

The main lesson that we have learned on the mass spectrum of Sa, ap and aj is that
they seem to tend to be lighter in models close to the conformal transition (as compared
to real QCD that is far from the conformal critical point). What is the reason for that?

2The constraint JA < 0 has not been imposed. If we impose it, we obtain zir/zr > 3.06 (3.37) for
&% =1 (4) in the left plot of figure 7, and zrr/2fz > 1.88 (1.9) for the right plot.
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Figure 8. As in figure 7 but for 7} = —3.

As it is well-known, the dimension of a scalar operator has a minimal value determined
by its unitarity bound, in this case Dim[O,] = 1, a limit at which the scalar decouples
from the CFT [40]. Therefore it is expected that, as a scalar operator approaches this
decoupling limit, the mass of the lightest resonance associated to it becomes smaller. By
using the AdS/CFT correspondence this means, via eq. (2.4), that the lightest ® resonance
is expected to be lighter the more we approach the BF-bound. We can also understand
this “geometrically”. The wave-function of the lightest scalar grows as 22TV 4+M§>L2, that
implies that the wave-function becomes flatter and spread more into the AdS5 space as we
approach the BF-bound Mq%L2 — —4. In this limit, then, the scalar excitation becomes
less sensitive to the IR and therefore its mass is expected to be smaller (see also [41]).1

The fact that the profile of ¢ becomes flatter as we approach the BF-bound also
explains the smaller mass splitting between a; and p than in real QCD. Indeed, if we keep
F; constant, the flatter the ¢ profile, the smaller ¢(zg). Since the a; wave-function is
peaked towards the IR-brane, it is mostly sensitive to the value of ¢(zir). Therefore, as
the 5D mass of ¢ gets closer to the BF-bound, we expect mg, to be less sensitive to chiral
breaking. For the same reason we understand m,, becoming smaller as we increase zir
(see figure 7), as ¢ becomes flatter for larger zig.

4 Comparison with lattice QCD in the large Ng

Lattice results for N. = 3 QCD with Np = 8 have been reported in refs. [1-5]. At such
large value of N, it is believed that QCD is close to the conformal transition, expected to

13We could make the wave-function even flatter by quantizing differently the scalar following ref. [39]
(valid for —4 < (MsL)?> < —3). In this case we have Dim[O.] = 2 — \/4 + MZL? that means that the
scalar is the dual of an operator of dimension between 1 and 2. We will get in this case the wave-function
P2 VATMELE reaching the full decoupling from the IR (from the CFT) at Mi = —3/L? when the mode
becomes non-normalizable. Nevertheless the scalar becomes UV sensitive and it is not expected to survive
in the spectrum.
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occur around Np ~ 9. It was found [1-5]

Fx
o014, Bongs, Maooq Ma gy (4.1)
mp mp mp mp

where fj is the lightest flavor-singlet 07* state (S; in our notation).!* It is instructive
to compare them with real QCD that is supposed to be far from the conformal edge. We
have [42]

I o13, Mhooqg, Mgy Ma

mp mp mp mp

~16. (4.2)

We see that close to the conformal transition, we spectrum of eq. (4.1) shows, as compared
to real QCD eq. (4.2), lighter fy and ag scalars, and a smaller mass splitting between the
p and a; resonance. Surprisingly, the ratio of Fr/m, is quite similar to real QCD, showing
that this quantity is quite independent of Np.

Let us compare our results to the values of eq. (4.1). In order to reduce the number
of parameters, we can match the predictions of our model at the UV with those of QCD
with Ng flavors. In particular, the two-point vector-vector correlator at large momentum
p? is given in our model by [34, 35]

MsL

Iy (p?) ~ — 22 P In(p®zdy), (4.3)
5

that matching to that of QCD with Ny flavors gives

Ms;L N,
g2 12727

(4.4)

Using eq. (4.4) our predictions for the mass spectrum were presented in figures 7 and 8
for Fr = m,/7. We see that our predictions on the spectrum of resonances follow quite
close the pattern eq. (4.1). We have mq, /m, closer to one than in QCD, with the scalars
ap and S7 being lighter than the p in most of the parameter space. Indeed, in the region
1.2 <mg,/m, < 1.4, we find mq,/m, S 1 and mg, /m, S 0.3.

There are other important predictions arising from our holographic model that would
be interesting to check in future lattice simulations. For example, as we already mentioned,
the mass splittings between the adjoint and singlet vectors is zero at leading order, and
can only arise from loop effects or higher-dimensional operators that are suppressed. Also
the second singlet scalar Sy (a Higgs-like scalar) seems to be lighter than the p in the
region where 1.2 < mg, /m, < 1.4. Finding this second resonance so light would be a
clear indication that the lightest scalar S is a dilaton and not a Higgs-like state. Other
properties of the scalars, such as decay constants or couplings, that can also be calculated
in these holographic models, are left for future work.

1T attice results are presented for nonzero quark masses. We will assume here that the pattern eq. (4.1)
does not drastically change in the limit M, — 0.
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5 Models for the hierarchy problem

The model described here open new possibilities for generating small scales. Since the
IR-brane is naturally stabilized at zir ~ O(zfy), we have a way to generate exponentially
small scales. Indeed, from eq. (3.21) we have

1 1 1 1
ZIR 2R 22UV UV

The presence of a scalar with a mass just below the BF bound can also be achieved
dynamically. If the mass of ® is z-dependent, for example, M2 L? = —4 — £(z), where &(2)
slowly varies from negative to positive values as z increases, the mass of ® will cross the BF
bound at the position z = z{;, at which £(z{;y,) = 0. For example, we can consider £(z) =
eln(z/z{;y) with € < 1 (for other cases, see [43]). This z-dependent mass for ® can be easily
achieved by promoting £(z) to a scalar R with a 5D potential V = —\/eR(1 + |®|>/L?).
This scalar gets a profile R(z) = /eln(z/zyv), giving a contribution to the mass of ®
proportional to eln(z/zyv).

For M2L? = —4 — £(z) with £(z) = eln(z/z{;y), the wave-function of the massless
mode is not anymore eq. (3.20) but

62) = 282 2 ) s S 2 (52)

UV

where Jj /3 is a Bessel-function of order 1/3, and the IR-boundary condition eq. (3.17) at
2IR = #{y leads now in the limit € — 0 to

7\[1 3/2 7ICR — 71 T =1,2 (5 3)
€ln ~|n n . .
3 ZUV 12 ’ T ’

corresponding to the zeros of the Bessel function. The situation is quite similar to the case
of constant &£(z) discussed above; the only important difference worth to mention is that
in the limiting case II with A > 0, the maximal value of ¢ is not constant, as M<12> evolves
logarithmically. The theory has evolved into a deformed CFT.

We leave the implications of these scenarios for the electroweak scale for future work.
We only point out several interesting features. First, the lightness of the dilaton can
have important implications for the LHC [44-46]. Also the fact that the mass of ap is
closer to the mass of p implies smaller values for the S-parameter (this was also pointed
out in ref. [47] for M2 — —4/L? from above), favored by precision experimental data.
Furthermore, having the operator that drives symmetry breaking a dimension close to 2
helps to pass flavor constraints [48]. Also it was shown in ref. [49] that these models can
lead to a long period of supercooling in the early universe with implications in Dark Matter
and axion cosmological abundances.
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6 Conclusions

We have used holography to study strongly-coupled theories close to the conformal tran-
sition, that is the transition from the non-conformal regime to the conformal one. This
transition is expected to happen in gauge theories (such as QCD) as the number of fermions
Np increases. Recent lattice results [1-5] have shown that as we get closer to the conformal
transition, the lightest resonance is a 07 state, claimed to be a dilaton.

We have followed the idea of ref. [6] that suggested that conformality is lost when the
IR fixed point merges with a UV fixed point, as shown in figure 1. Holography tells that
this must occur by an operator O, (probably ¢g in QCD) whose dimension is equal to two
that gets a small imaginary part when leaving the conformal regime. In the gravitational
dual models this is driven by a scalar whose mass goes below the BF bound and becomes
tachyonic.

We have presented a very simple extra-dimensional model with the essential ingredients
to study the conformal transition and calculate the mass spectrum. The model consists
of a five-dimensional gravitational sector with a scalar and gauge bosons associated to the
global SU(Np)r ® SU(Np)g ® U(1)p. We have allowed for the most general Lagrangian
following the 5D EFT rules, and explained the connection between the 5D couplings and
the large N, and Np expansion. To model confinement we cut off the space by an IR-brane
that we showed to be stabilized by the presence of the tachyon.

We have calculated the mass spectrum of this 5D model, showing that indeed the dila-
ton corresponds to the lightest resonance. To understand this property, we have derived
a simple formula for the dilaton mass, eq. (3.32). This shows that the mass of the dilaton
crucially depends on f4(2r) given in eq. (3.35) that is sensitive to the variation of ¢(zr)
as we move the UV boundary (therefore sensitive to the explicit breaking of the conformal
symmetry). Either for small or large values of zr, we have shown that f4(zir) — 0 and
therefore the dilaton mass tends to zero. For small zigr this is due to either the existence of
an inflection point in the dilaton potential (for m? > —2), or that ¢(z1r) becomes constant
(for 7 < —2). Also for small ¢(z), where we can perform analytical calculations, we find a
mild log-dependence of ¢(21r) with zir (and therefore a smallish 34 (21r)) that can be traced
back to the explicit breaking of the conformal symmetry due to the double-trace marginal
operator O, = |O,|%. For large z1g, also B4(21r) — 0 as the tachyon either goes to the min-
imum of its potential and becomes constant or enter into a “slow-roll” condition, meaning
that the geometry approaches again AdSs5. In between these two limiting cases, the dilaton
can become heavier but its mass cannot grow enough to overcome m,. Therefore the dila-
ton is found to be lighter than the rest of the resonances, although it is never parametrically
lighter in most of the area of the allowed parameter space, as shown in figure 3.

We have compared our predictions with lattice results for QCD with a large Np
(eq. (4.1)) and showed that our model predicts quite similar resonance mass pattern: the
lightest state is the singlet 07", with the adjoint scalar ap mass close to m, and lighter
than in real QCD. We have also shown than the mass splitting between the vector (p) and
axial-vector (ap) is smaller close to the conformal transition. We have given a geometric
explanation for these properties. Furthermore, the 5D model proposed here also provides
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extra predictions that lattice could check in the future. For example, we find that the sec-
ond 01 state, Sy, is mostly a Higgs-like state (¢q state) with a mass around m,, similarly
as ag. The 5D model also predicts that the masses of the flavor singlet and adjoint vector
resonances are similar (as it happens also in real QCD).

There are several interesting calculations that are left for the future. For example,
it is also possible to calculate decay constants and couplings of the resonances along the
lines of refs. [34, 35]. Omne could also easily add explicit quark masses to the model to
see the impact on the spectrum, or study the model at the conformal edge but inside the
conformal window. It could also be interesting to understand what are the holographic
versions of the complex CFT described in ref. [30]. Finally, as discussed above, this type of
models can provide a new approach to the hierarchy problem with a clear impact on LHC
phenomenology as the 07" resonance is expected to be the lightest one. All these issues
clearly deserve more attention.
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A Scalar and gravity coupled equations of motion

In this appendix we present the equations of motion (EOM) of the scalar and gravitational
sector, that we use in this article in order to derive the background and mass spectrum of
the model. For this purpose it is useful to work with proper coordinates, as the metric-
scalar system of EOM simplifies. Once the results are obtained, we have rewritten them in
conformal coordinates eq. (3.5) to be presented in the main text. Conformal coordinates
allow a better interpretation of the results as 1/z determines the natural mass scale at the
position z.

A.1 Scalar-metric system
In proper coordinates {z*,y} the background metric can be written as

ds? = e_QA(y)an:U“d:U” —dy?, (A.1)
where 7, = diag(l,—1,-1,-1), 0 < y < yr with the IR-brane localized at y = yir,

and we have conveniently rewritten the warp factor as a = e~4. The 5D EOM for the
metric-scalar system, that follow from the action in eq. (3.1) in these coordinates, are
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given by

=44+ V', (A.2)
. 1 A212 /2

A= \/L2 * R12 (% - V(¢)> ’ (A3)
i ’%26L2¢2, (A.4)

where in this appendix ¢ = Oy, A= OyA. At the IR-brane we must impose the IR-
boundary conditions:

(Msé+13(0) | =0, (A.5)
(WL[M . v;<¢>) =0, (A.6)

where the second equation is the junction condition that determines the value yig where
the IR-brane is dynamically stabilized. Plugging eq. (A.3) into eq. (A.2) gives a differential
equation involving only ¢ that can be easily solved. Afterwards, we can solve eq. (A.3)
to obtain the metric warp factor A(y). We can go to conformal coordinates by using
dy/dz = e=AW),

Working with proper coordinates, the slow-roll conditions are, in analogy with inflation,

given by
52 <1 and ;8?{%} <1, (A7)

where H = A. Using eq. (A.2)eq. (A.4), the slow-roll conditions eq. (A.7) can be written
in the following equivalent form:

( /)2 ~2712 " ~2712
———— < KL and ——— < KL% (A.8
V- %) [ )

Since we work with polynomial potentials, the two slow-roll conditions eq. (A.8) reduce to

one condition when the feedback of the metric becomes important (V' > 521%4) This is

given by
i2¢% > 1/L%. (A.9)
A.2 Singlet scalar-dilaton system

If the dilaton is not a priori assumed to be light, we must solve exactly the eigenmasses
of the scalar sector considering the mixing between the singlet scalar ¢ and the dilaton,
which is of order one for Ngp ~ N.. This is done conveniently in a diagonal gauge where
the brane is straight, corresponding to a constant value of the extra coordinate yr =const.
In this gauge, the EOM reduces to eq. (3.17) of ref. [37], that we can write as

3m2
R202L2

3€2A
Dy, = A, with D=1-9, [a [e“]} : (A.10)

i2¢2r2 7
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with the IR-boundary condition:

mptn| = (Vb” + (Z-)) Byle™> b
YIR ¢

(A.11)

YIR

A.2.1 Light dilaton limit

When the dilaton becomes the lightest mode of the scalar sector, we can analytically derive
its mass, as given in eq. (3.31). Here we present the details to obtain this mass.

The physical meaning of the dilaton field is the IR scale that appears dynamically in the
theory. In the 5D model, this is incarnated geometrically by the location of the IR-brane
which is indeed dynamical. The picture is more transparent by allowing the IR position
to be z¥-dependent, i.e., that it is a 4D field. This is equivalent to using a gauge where
the IR-brane location is not straight, but rather defined by the surface y = yr(z#). On
the other hand, the variable that transforms under a scale dilatation of the z* coordinates
is not the proper coordinate y itself but the warp factor a(y). Therefore it is natural to
identify the dilaton field with the warp factor evaluated at the IR-brane location,

b= %e—Awm | (A.12)

This variable is also convenient because it is easy to extract the normalization of both the
potential and of the kinetic terms in terms of it. For instance, with this definition the
brane tension term (proportional to \/—g¢/f with gﬁf the induced metric on the brane)
is simply a quartic coupling, dA)j Below we will see that this variable is actually not
canonically normalized in general, although its kinetic term can be easily found. From the
normalization of both kinetic and potential terms then a formula for the mass will follow.

Let us start by the potential term. We can redo the argument around eq. (3.30) in
terms of gﬁd, that allows to reconstruct quite directly the derivative of the off-shell effective
potential, dVeg/ dg@d, which must be proportional to (;35’ and to the junction condition. The
overall normalization constant can be fixed by requiring that in the #? — 0 limit the
effective potential reduces to Veg = (M5 L) [, ,,(V + $%/2) + Vp, with ¢ solving the EOM
and depending parametrically on yg. This leads to

f . R2T4 V2 R2L3
Wert(0a) _ oy Ms (5 )3 \/1+HL( b —V)+KL 1 (A1)

doa K2 12 \2M2 6 M5
YR
that differs from eq. (3.30) by an overall multiplicative constant; this does not matter
much however for the mass eq. (3.31) as long as we factor out the same constant in the
kinetic term.

Next, the normalization of the dilaton kinetic term. Another advantage of using a
non-straight gauge is that all the kinetic term contributions arise only from localized terms
on the IR-brane itself. This is welcome because the dilaton is an IR mode and its properties
should arise from the IR only. Moreover, it is also convenient because it allows to identify
these kinetic term contributions in the ‘probe’ limit, where we ignore how the brane bending
sources the 5D metric. Following [50], one quickly sees that the radion/dilaton kinetic term
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arises from two sources. First, the brane tension (potential) term, via the determinant of
the induced metric on the brane,

A /_gIR — a4(yIR) 1 (ayIR)z 7 (A.14)

 a2(ym)

where (Jyr)? = n Ouyir Oyyir- Second, the Gibbons-Hawking, proportional to the ex-
trinsic curvature at the y = yir (z*) surface, generates additional terms. The relevant ones
(contributing to the quadratic kinetic part) are proportional to the derivative of the warp
factor at the brane location.

At this point we must make a slight detour, to be more precise on how several quantities
depend on yr, that is, on the dilaton. The key point is that the bulk scalar ¢ is coupled
to the IR-brane (because the IR potential V;(¢) acts effectively like a scalar charge). For
this reason, the profile of ¢ (and therefore of the metric) in the bulk actually depends on
the IR-brane location even when we allow the brane location to be off shell. To make
this dependence manifest, we can write that the field profile is a function of both the bulk
coordinate and the IR-brane location, ¢ = ¢(y,yr).'> This is indeed implied by eq. (3.20)
and eq. (3.24) in the main text. In this notation, the field evaluated on the IR-brane is
?(yIr, yir ), and the derivative with respect to yir originates from the two arguments. The
boundary condition specifies 0y¢(y, Yir)|y=yr, but the ‘full’ derivative Oy, ¢(yir, yir) is
left unspecified and it is nontrivial in a nonlinear theory. As we will see shortly this full
derivative is the one that controls the dilaton mass (it is the one that appears in eq. (3.31)).

The same qualifications apply also for the metric. After all, the ‘Friedman’ eq. (A.3)
forces dya to be an algebraic function of ¢(y, yir) and 9y¢(y, yir), so the warp factor profile
too depends parametrically on ygr, that is, we must write a = a(y, yir). Now, the extrinsic
curvature is related to ya(y, yir)|ly=yy- The dilaton variable ¢4 defined in eq. (A.12)
stands for a(yr, yir), and its derivative with respect to yir, Oy a(yir) is not the same as
Oya(y, YR ) ly=yr - To make the distinction clear in the following we will keep this notation
and show explicitly the difference. Form eq. (A.3) we have

YIR
—Ina(yr, yIR) = A(yr, yIr) = / dy 72 + 12 2

yuv

1 R2L2 <¢2<y,ym>

that differentiating with respect to yir leads to

Oy A(yir, yir) = A(yir, yir) + HZES /yIR dy ¢ay“ib4_ ‘.//(QS) O : (A.16)
wv 1+ BE (G272 - V(9))

where A(yr,yr) = (9, Ina(y, yIR))‘y:yIR and the rest of the notation should be clear.

This shows that both at small and large 42, the difference between A and Oyr A is small.

15We could also include the dependence on the UV brane location, yuy, however we will omit it here
to avoid clutter. The symmetries of the background ensure that ¢ = ¢(y — yuv, yir — yuv). This makes
manifest that the field evaluated at the IR brane, ¢(yir — yuv, ymr — yuv), is sensitive to yuv.
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Numerically, in our solutions we finds it to be less than 5%. (The same cannot be said
about the two types of derivatives acting on ¢.)

Returning to the kinetic term: after collecting all terms and using the EOM of the
background, one arrives at [50]

3% A(yr) @®(yir) (Ouyir)? - (A.17)

With the definition eq. (A.12) that implies 8u<2>d = —Oy; In a(yir) ba OuyIR, this gives

3M5 L2 A(yIR)
K2 [ayIRA(yIR)]

As discussed above, one can set A(yIR) ~ Oy n A(yr) to a good approximation, therefore

= (0uda)? . (A.18)

the kinetic term is to a good accuracy

3M5 L2 (9u0a)>

. A.19
K2 Oy A(YIR) ( )
On the other hand, differentiating eq. (A.13) we get
d2‘/:3ff((£d) 4 22 I:l (Vb/ VZ, /) 4 /:| 0 ¢(yIR)
———————= =—-NpL* M — V') +—V| AR A.20
4d3 VR it ] Al

by using the chain rule and eq. (A.12). Taking everything together, and the approximate

expression eq. (A.19) we find that the physical dilaton mass is given by

s 1%2[/4 2o 1 VZ ‘/bl/
6 ¢ M2

Mg, = —

A

where everything is evaluated at the minimum, which coincides with eq. (3.31) after the

4
_ V/> + % Vg] 8yIR¢(yIR) , (A.Ql)

change of coordinates dy = a(z)dz. As a further cross-check, let us note that this expression
agrees with eq. (2.25) of [51]. This was obtained starting directly from eq. (A.10) and
obtaining an expression for the lowest KK mass under the assumption that it is light. The
formula of [51] has two distinct limits corresponding to whether or not the light dilaton is
incarnated by the IR-brane position. It is easy to check that in the limit where the dilaton
is the displacement of the IR-brane, eq. (A.21) agrees with eq. (2.25) of [51].

Finally, we remark that using the EOM of the background we can rewrite eq. (A.17) as

— 5 Vh(0m)) @) (G (422

One immediately realizes an important implication: the positivity of the kinetic energy
restricts Vi (¢(ymr)) < 0. This is equivalent to restricting the effective tension on the IR-
brane to be negative — as it should be in order that it gives an end to the geometry at
yir. If we demand that this constraint is satisfied by all the solutions, including the one
with ¢(z) = 0 (for € < 0), then this translates into a constraint on the IR-brane tension

‘detuning parameter’,

5A <6. (A.23)

This reproduces the upper bound in (3.29), i.e., that the brane on the IR (on the ‘interior’)
side of the geometry has negative tension.
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B A tale of two scalars: the 4D effective potential of a tachyon and
a dilaton

When both 4D tachyon and dilaton masses are smaller than 1/z1r, we can easily understand
the physics of the system by just looking at the 4D effective theory for these two modes.
This is possible when working close to the critical point, zir =~ z{y (limiting case I of
section 3.2), where we can obtain the masses and quartic couplings of the model as a
perturbation of the model around zig = 2fz. We find

1

1., 1 1
FEL Ve (0 60) = 5 (0a)010] + phest + Jhadt, (B.1)

where ¢q = 1/z1r is the dilaton and ¢; the 4D tachyon. We are working here with non-
canonically normalized fields:

1

L 2 3 2
M5LNF Ekm - 2(8u¢>t) + 72 (a,u,(bd) . <B2)

Eq. (B.1) can only give a non-trivial minimum for ¢4 < p. = 1/2{; such that m?(¢q) is
negative. In this regime, this is given by

m?(¢a) = Bln(da/pe) (B.3)

where $ is given in eq. (3.22). Recall that eq. (B.1) is only valid for m?(¢4) < 1 that
requires either |In¢q/puc| < 1 or B < 1 (1 — —2). The tachyon quartic A; has a mild
dependence on 7 and is derived below (section B.1), while the dilaton quartic is given by
the detuning of the IR-brane tension:

SA

The presence of the tachyon leads to a non-trivial potential for the dilaton with a

m % _ 1 [1 + /1 +16)\t>\d/62} . (B.5)

fe 4
We see that the largest value of the dilaton is given by In (¢4)/ue. < —1/4 that implies that
the IR-brane can never be stabilized very close to the critical point zfz where the tachyon

minimum at

mass is small. At the closest value In (¢g)/p. = —1/4, one finds that the minimum is an
inflection point where the minimum coincides with a maximum (and one can check that
the dilaton mass is zero at this point). Nevertheless, demanding that the quartic couplings
are positive, to guarantee that for e < 0 the theory is conformal (¢4 — 0), one obtains
In ($a) /1e < —1/2.

We can also find the masses of the dilaton and tachyon by calculating the eigenvalues
of the matrix of second derivatives at the minimum eq. (B.5) after canonically normalizing
the fields. These give rather complicated functions of \;, A\g and 8. For 5%2/(Ag\;) < 1
they reduce to

9 20 i?

m >~y
%0 52 46/ M /g

£.2

(da)*,  m3, ~ A (2 + )\t/)\d> (a)”, (B.6)
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Figure 9. Masses of the two scalars, that play the role of S; and Ss, as a function of p./{¢4) and
normalized to (3m/4) (¢q). We have taken A\ = 1, &% = 6 and /7 = —0.5, —1.5, —1.75 for the black,
blue and red lines respectively. The solid (dashed) line indicate the lightest (heaviest) mode. The
quartic coupling A4 varies along the horizontal axis according to eq. (B.5). The vertical line marks
where Ay = 0, having Ay > 0 in the region to the right of it.

while for 82/(AgAt) > 1 these are

o KB
¢ 6 2\

With an abuse of notation, we have identified the lightest of the two modes as the dilaton,

(pa)”,  m3, ~ B (¢a). (B.7)

even though the eigenmodes corresponding to eq. (B.7) can have a sizeable mixing in the
¢q — ¢ basis. We show the full dependence on the parameters in figure 9, where we keep
At and S fixed and vary A, for various values of 7i? (that is, of \; and 3). One clearly sees
several features:

i) the solutions ‘start’ at In(u./(¢q)) = 1/4 where the dilaton is massless, correspond-
ing to the inflection point. This requires however A\; < 0 that we already said is
inapplicable.

ii) the dilaton mass is suppressed by one power of g for MxA\g ~ O(1) (eq. (B.6)). In
our model  can be small only near mg = —2. In that case the suppression reads
mid ~ (m% + 2)2. Keep in mind, however, that fnz = —2 is not protected by any

symmetry, so this is not representative of the full allowed parameter space.

iii) the shapes of the lines resemble qualitatively those of figure 5. Nevertheless, the
agreement between this and the 5D model is only expected for small m?(¢,), since
this measures how large is the tachyon VEV. A similar analysis can be done with
more general choices of Mm?(¢4) and the same qualitative behavior is observed quite
generically as long as m?(¢4) changes sign and has a moderate dependence on ¢g.
Interestingly enough, it suffices to take that m?(¢4) goes to a constant as ¢g — 0, in
order to obtain a dilaton mass with a rising-decreasing shape as in figure 5

When the dilaton is lighter than the tachyon, for example for g < 1, we can alterna-
tively integrate out the tachyon from eq. (B.1) and obtain eq. (1.1) with

2
Nar(9a) = 24 = L 10 (Ga/c) (B3)
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that tells us that the explicit breaking of scale invariance is logarithmic, as expected from
the dual theory due to the presence of the double-trace marginal operator O4. Eq. (1.1)
with eq. (B.8) leads to eq. (B.5) and to the dilaton mass of eq. (B.6). As expected the
dilaton mass is proportional to

2

Broa ((64)) = —fAt n((¢a)/ 1c) ~ B (B.9)

where in the last equality we have used eq. (B.5) with 8 < 1.

B.1 Effective quartic coupling for the tachyon

The quartic self-coupling for the 4D tachyon can be obtained readily by plugging into
the 5D potential quartic term the normalized profile of the 5D tachyon field near the
condensation point and performing the integral over z. In the limit € — 0, zuv/2{z — 0
with /€ In (zuv/2{z) finite, one obtains

3 9 + 21?2
A== b A. B.10
! <8+2(10+6m§+m§)2> (B-10)

Even without any quartic self-coupling A, the tachyon field experiences a stabilizing effect
from its coupling to the metric. This is manifest in the background equation eq. (A.2),
because the ‘friction’ term which depends on ¢ itself, see eq. (A.3). More explicitly, the
metric can be integrated out by using eq. (A.3) to obtain a closed equation for ¢

d=14

1 i2]2 qu
L? 12 2

+ = - V<<z>>> o+ V'(9).

2 one identifies a cubic term in the equation of motion

I%2L3 qéQ .
G (2 - V(¢)> .

This suggests identifying the effective quartic coupling from the 5D integral of ¢ times the

At leading order in &

previous expression with the normalized tachyon profile. This gives

A, — 72 128 + 12817 + 601 + 12/ + 1 ‘
6(10 + 61 + m;})?

(B.11)

The expressions in eq. (B.10) and eq. (B.11) define the functions cy, introduced in
eq. (3.23).
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1 Introduction

A conformal field theory (CFT) can depart from its IR fixed point in various way as we vary
the parameters of the model. Either because the IR fixed point goes to zero, to infinity or
it merges with a UV fixed point. We are interested in conformal transitions characterized
by this third case, the merging of the IR fixed point with a UV fixed point.

It has been speculated [1] that this is the case for SU(N,) gauge theories as QCD at
the lower edge of the conformal window —see figure 1. As we decrease the number of flavors
Np from the Banks-Zaks fixed point at Ngp = %Nc, where QCD enters into the conformal
window, to some critical value Np = N 1‘:’1“, QCD is expected to loose conformality by an
IR-UV fixed point merging. Interestingly, in the last years lattice simulations have been
providing abundant data on the properties of QCD at different values of Ny and quark masses
M, helping to better understand this conformal transition [2-10]. A particularly intriguing
feature is the presence of a very light 071 state when QCD is close to (but outside) the
conformal transition. It has been speculated that this state could be a dilaton, the Goldstone
associated to the spontaneous breaking of scale invariance.

We will consider CFTs in the large- N, limit. It has been argued in [11, 12] that when
these models are close to the conformal transition, they must contain a scalar operator Og
whose dimension gets close to 2, becoming imaginary when leaving the conformal window.
For QCD, where in the large- N, limit leﬂt /N¢ = it becomes a continuous parameter,
Os corresponds to the gg operator.
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Figure 1. QCD conformal window and the holographic equivalent.

We are interested in understanding how the physical quantities change as we move across
the conformal transition for nonzero quark masses.! Using holography [24-26] we will show
how the meson mass spectrum is mostly dictated by chiral and conformal invariance and the
way this is broken. We will show that spin-1 meson masses and F); are continuous across
the transition, while the masses of the scalar mesons, fy and ag, show a jump due to a
logarithmic breaking of conformal invariance.

The mass of the dilaton, corresponding to a glueball, is also found to be smooth across
the transition, implying that this must be light at both sides of the conformal window. This
implies that the lightness of the dilaton cannot only be a consequence of the spontaneous
breaking of the conformal symmetry when leaving the conformal window. We will argue that
this disfavors this state as the light 0™ scalar found in lattice simulations.

On the other hand, we will consider the possibility that the lightness of the 07" scalar
found in lattice simulations is a ¢¢ meson whose mass is small due to the fact that Dim[Og] — 2
at the conformal edge. This is the closest value to the unitary bound Dim[Og] > 1 where a
scalar is expected to become massless since the operator Og decouples from the CFT [27].
We will also understand why the breaking of the chiral symmetry is smaller as we move inside
the conformal window, as lattice simulations seem to suggest.

Although some of these properties could also be derived following 4D CFT approaches, as
for example in [28] or [29], we will see that it is much easier to derive them using holography.

Previous studies of how the meson masses change across the conformal transition in a
holographic model (with nonzero quark masses) were presented in [30]. Here, we aim to explain
the reason behind the pattern of the mass spectrum and its discontinuities across the conformal
transition, providing also a comparison with the pattern observed in lattice simulations.

2 Conformal transition by fixed-point merging

Following [1], we will consider that the conformal transition occurs when an IR fixed point
merges with a UV fixed point. For theories at large- N, it can be shown [11, 12] that close

'Effective field theories (EFTs) for a light dilaton have been widely developed [13-23]. Nevertheless, these
are limited to small M, values and cannot be used to describe the conformal transition.



to the transition the theories must have a marginal operator Oy

f(w)O5 €L, (2.1)

whose coupling f has a beta function given by

Br e+ (f = f)°. (2.2)

For € < 0 this beta function has two zeros corresponding to an IR and a UV fixed point that
merge to a single fixed point at € = 0, that disappears for ¢ > 0. This marks the conformal
transition. In QCD we expect € < T¢pit — .

Therefore, as we approach the conformal transition (¢ — 0), the theory can be in two
different phases depending on the sign of e:

o For e <0, eq. (2.2) gives us
1

S Inp/po’
and f will run towards the IR, p/pug — 0, approaching f. where the theory becomes
conformal, Sy — 0. Here pg is an arbitrary scale related with the value of f at the UV.

f(p) =~ [ (2.3)

e For € > 0, there are no possible zeros for 3. In this case, we have

ﬂm2ﬁ+¢am0ﬁm$>, (2.4)

and f(u) runs slowly when f ~ f., behaving almost as a CFT, but it blows up at some
IR scale ur determined by

HIR @
Veln— ~ —— . 2.5
" 5 (2.5)
Therefore conformality is never reached. In fact, the dimension of Oy, formally given by
d
Dim[O¢] = 4+ dﬁff ~ 4+ 2y—e, (2.6)

becomes complex for € > 0.

These two phases corresponds to the two sides of the conformal lower edge shown in figure 1.

It has also been shown in [11, 12] that for theories in the large- N, limit, Oy must be a
double-trace operator, made of the squared of a single-trace operator Og, i.e., Oy = |0s]?.
Since in the large N., Dim[O¢] = 2Dim[Og], we have from eq. (2.6)

Dim[Og] = 2 + v/—e€. (2.7)

In QCD, as argued in [1], Og is expected to be the operator made of quarks, ¢g, whose
dimension will go from ~ 3 when entering the conformal window at the upper edge to 2 at
the lower edge (see figure 1). The fact that Og reaches the lowest dimension at the conformal
transition can explain the existence of a relative light scalar meson (with respect to the
vector one, m,) [31]. Indeed, Dim[Og) gets at the edge of the conformal transition the closest
value to Dim[Og] = 1 (unitarity bound) at which the scalar operator decouples from the
CFT [27], becoming then insensitive to the CFT IR scale.



All the above properties of this conformal transition find a beautiful implementation in
holographic models by the use of the correspondence (or duality) between strongly-coupled
CFT4 (in the large N, and large tHooft coupling?) and weakly-coupled five-dimensional
Anti-de-Sitter theories (AdSs) [24-26]. Operators in the CFT4 (Og) correspond to scalar fields
in the AdSs (®) where dimensions and masses are related via the AdS/CFT relation [24-26]:

Dim[Og] =2+ (/4 + M2 L2. (2.8)

Eq. (2.8) tells us that the conformal transition must occurs when the 5D scalar mass
MZ2L? becomes smaller than —4 (see figure 1). Indeed, in this case the mass is below the
Breitenlohner-Freedman (BF) bound that determines the stability of a scalar in AdSs. For
M2 < —4/L? the scalar ® becomes tachyonic, turning on in the 5D bulk [31, 35, 36] (for
earlier work in D < 5 see [37, 38]).%

2.1 Probing the conformal phase by M;0O4

We are interested in understanding the properties of the mass spectrum at the two sides
of the conformal edge. Since the spectrum in the conformal phase is continuous, we will
perturb the theory by adding to the Lagrangian the term

AL =M,0p (M, >0), (2.9)

that explicitly breaks scale invariance. In QCD this corresponds to add a mass to the quarks,
M,qq, that not only breaks conformal invariance but also the chiral symmetry; this is also
done in lattice simulations.

A nonzero M, allows to probe the physical properties of the theory inside the conformal
window, as the mass spectrum becomes discrete and can be compared with the one at the
other side of the edge of the transition. All the masses are expected to be proportional
to Ml/(4 Dim[Og])

we then have

, referred as “hyperscaling”. At the conformal edge where Dim[Og] — 2,

where a; are constants that depend on the parameters of the model such as Np/N.. Obviously,
the ratio of masses is independent of M.

The presence of M, in the conformal theory (e < 0) brings also a logarithmic divergence
that can be easily understood from scale invariance [41]. Since dim[Og] — 2, the two-point
function in momentum space is given by

/d4:new$((’)q> )0 (0 /d4m— ~InA. (2.11)

Therefore we expect a logarithmic breaking of conformal invariance in (Og) proportional to
M,. Notice however that M, does not enter into the log, so eq. (2.10) is always guaranteed.

Tt has been recently shown [32-34] that higher spin decouple from low-energy observables, making
holography a good approach even for models where the ’tHooft coupling is not very large.
3 Alternatively, one could consider holographic models of complex CFTs, as done in [39, 40].



From outside the conformal window (e > 0), the situation is the following. If we add
eq. (2.9) and increase M, over the scale pur defined in eq. (2.5), the coupling f(u) will
not reach the regime pu ~ pr where it blows up, and f(u) ~ fi. similarly as for e < 0.
Therefore in the limit M, > ur the mass spectrum outside the conformal window must
smoothly tend to eq. (2.10).

Before moving to the holographic model, we must remark that our analysis using
holography shares many features of that in [28] based on the Schwinger-Dyson equation for
the renormalized fermion self-energy. It is also related to the approach taken in [29] where
the theory is assumed to be conformal deep in the IR.

3 A five-dimensional model for the conformal transition

A holographic model with the properties of described above was presented in [31] (for other
models, see [30, 35, 36, 42-61]). This consists in a SU(Ng)r, @ SU(Np)r gauge theory in 5D
with a complex scalar ® transforming as a (Ng,Ng).* This scalar plays the role of the ¢q
operator in 4D QCD. Imposing parity (L <> R), the action is given by

S5 — /d4x/dz\/§M5 [:2 (R + As) +£5} , (3.1)

where the Lagrangian is given by
1 1
Ls=—7Tr [Larw LMY+ Rary RMY] + 5 Tr1Du®f* = Va (@), (3.2)

with Ly;n, Rayn being the field-strength of the SU(Np)r and SU(Np)gr gauge bosons
respectively, and the indices run over the five dimensions, M = {u,5}. We parametrize the
fields as ® = &4+ T, P, with Tr[T,Tp] = d4p. The fields 5 and P, will respectively transform
as singlet and adjoint under SU(Np)y, the remaining symmetry after ® # 0 breaks the chiral
symmetry. The covariant derivative is defined as

and the potential is given by®
1.9 9 1 a1 2,2
The 5D metric in conformal coordinates is defined as

ds* = a(2)? (nudatda” — dz?), (3.5)

where 7,,, = diag(1,—1,—1,—1) and a(z) is the warp factor. Before the scalar ® turns on,
the presence of As leads to an AdSs geometry:

: (3.6)

a(z) = %

“With respect to [31], we are neglecting the U(1) g gauge sector that does not play any role in the discussion.
5We notice that one can absorb one coupling into Ms, as we will do later —see footnote 6.



where L? = 12/Aj is the squared AdS curvature radius. The 5D space will be cut off by
an IR-brane at some point z = zjg to be determined dynamically. Also a UV-boundary
at z = zyy will be needed to regularize the theory. The limit zyy — 0 will be taken in a
proper way to provide finite physical quantities [24—26].

The dimension of Og, eq. (2.7), is related by eq. (2.8) to the 5D mass of ®:

44 €
M2 = — T3 (3.7)
When € < 0 the mass of ® is above the BF bound and ® does not turn on, as we will see in
section 3.1.2. Nevertheless, for € > 0 the mass is below the BF bound and ® turns on in the 5D

bulk [31], breaking the conformal and chiral symmetry. Therefore, as in the strongly-coupled

model described in section 2, we have two phases separated by the sign of € (see figure 1):
e ¢>0 = non-AdSs (non-CFT4) phase.
e ¢<0 = AdS; (CFT4) phase.

The presence of the IR-brane add extra parameters to the theory as ® might also have a
potential on the IR-boundary. Following the EFT criteria of [31], we have

- 1
Lig = —a'Vy(D)] (@) =— + ng Tr |®%. (3.8)

2R’

3.1 The ¢(z) profile

The conformal and the chiral symmetry breaking SU(Np);, ® SU(Np)r — SU(Np)y is
trigger by a nonzero profile for ¢ = Tr|®|. From eq. (3.2), the equation of motion for ¢
is determined to be

—aiB (85 305 — a3aﬂau) b+ M2p+A¢3 =0, (3.9)

where A = \; + NpAg and the warp factor is determined by the Einstein equations [31]:

bt B (2 i), (3.10)

a2 L2 12 \2a2

with ¢ = 8,¢ and #? being the 5D gravitational strength. Notice that a nonzero 42 induces
a mixing between the singlet sector of ® and the gravitational sector. This corresponds in
the dual theory to a mixing of the gg mesons with the glueballs.

The boundary conditions are the following. At the UV-boundary we fix

Dim[M,
L¢|ZUV = ZU{/m[ q]Mq . (311)

M, plays the role of the quark mass in the dual gauge theory, eq. (2.9). Using eq. (2.8)
we can write the dimension of M, as

Dim[M,] = 4 — Dim[Og] , (3.12)

so at the conformal edge we have Dim[M,] — 2. For M, # 0, ¢ turns on independently of the
sign of €, and the conformal and chiral symmetry are broken inside the 5D bulk. For M, = 0,



the field ¢(z) gets a nonzero profile only when we are outside the conformal window (e > 0),
as we will explicitly see later. At the IR-brane we must impose the boundary condition
determined by the model. We have [31]

6Ms a

Ms |
(a“@m) =0, (‘mzaz”b)

The first one is the IR condition for ¢, while the second one is the junction condition that

=0. (3.13)

ZIR

ZIR

determines the position of the IR-brane zg.

Although we will present in the next section results with no approximations, it is
instructive to consider the case in which the profile of ¢ can be solved analytically. For
this, we will take the approximation that ¢ is small such that the quartic term can be
neglected as well as the feedback of ¢ on the metric, i.e., the 5D space is AdSs. Eq. (3.13)
reduces in this case to

. 2
¢(2R) = — m, L

$R, O(2R) = PR (3.14)

Z[RM5

where we have introduced the parameter ¢rg related to other parameters of the model (a
combination of 2%, m?, A4 and the sign of X [31]).5 We will restrict to mi > —2M;/L that
guarantees that the conformal symmetry is not broken by the IR-boundary potential.

3.1.1 Towards the conformal transition from outside (e > 0)

With the above approximations, we can solve ¢ analytically. For ¢ > 0, the two solutions
are z2FV€ that we can write as

o(z) = %22 sin (\/Eln =4 ,6’) , (3.15)

ZUV

where A and (8 are dimensionless constants to be determined by the boundary conditions.
From eq. (3.11) and eq. (3.13), we get

A
M, = I3 sin 3, (3.16)
and

UV

tan (ﬁlnzlf{—i—B) :—ﬁ\ﬁ, (3.17)
b

where M7 = 2+ m?L/Ms. In the limit € — 0, eq. (3.17) tells us that sin(y/eIn zig /2uv +
B) — y/e. Therefore expanding eq. (3.17) around z. determined by’

Veln 2y B=nx, n=1,2,..., (3.18)
FAOAY
we get
1
mIR - <. (3.19)
Ze mb

By field redefinitions we can absorb || in other parameters. Therefore, with no loss of generality, we can
consider A = £1.

"The solution for n = 1 corresponds to a global minimum, while . > 1 just gives local minima, (corresponding
to a surviving discrete conformal invariance).



Notice that the limit € — 0 must be taken with zyy — 0 according to eq. (3.18). Using
eq. (3.14) and eq. (3.19) we finally get

z

2
¢@>=~ﬂmRm§(;;> In : (3.20)

a ZIR

where a = Exp[1/m3]. It is interesting to remark that eq. (3.20) is valid for any value of M.
In the particular case M, = 0, we have from eq. (3.16) that § = 0 but A # 0, corresponding
to a spontaneous breaking of the conformal and chiral symmetry.

The above is in accordance with the discussion in section 2 where for € > 0 it was shown
that f(u) runs as eq. (2.4) and diverges at the scale pg ~ 1/z. for ug ~ Exp[—7/(2v/€)]/zuv.

3.1.2 Towards the conformal transition from inside (e < 0)

Let us now consider the solution of ¢ from the other side of the conformal edge, ¢ < 0. In
this case the two possible solutions are z2iﬁ| that in the limit e — 0 leads to z? and 2%1n z.
We can then write the most general solution as

z

22 A

<0

where A and zj are the two parameters to be fixed by the boundary conditions. Eq. (3.11) gives

A

A zuv
From the IR-brane boundary conditions we get, similarly to eq. (3.19),
1
20 my

that leads exactly to eq. (3.20). We notice however an important difference in this case with
respect to the € > 0 case. From eq. (3.22) we have that M, = 0 requires zyg — zyy, but this is
incompatible with eq. (3.23). In other words, there is no nonzero solution for ¢ when M, = 0.
As expected, the model flows to the conformal phase for M, = 0.

We can then conclude from the above analysis that approaching the conformal transition
¢ — 0 from inside the conformal window (e < 0) or outside (e > 0) gives the same profile
for ¢ (eq. (3.20)) and, as a consequence, the spontaneous conformal and chiral breaking
driven by ¢ at the IR have to be felt equally in both sides of the transition, independently
of the value of M, # 0.

4 Mass spectrum

Let us discuss here what differences we expect in the mass spectrum of the theory when we
approach the conformal edge from inside or outside the conformal window. We will back
up our arguments with the mass spectrum calculated in the holographic model with no
approximations. For the numerical analysis we will take the benchmark values

¢pr=1, A=1, Npho=-2, m

(Sl V)

=1, k=1, g5=152. (4.1)

The mass spectrum would change by varying these values, but the qualitative picture will
be the same. For other values of the parameter space see [31].
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Figure 2. Mass spectrum of mesons, normalized to m,, as a function of the 5D scalar mass or
equivalently Dim[qq] defined in eq. (2.8). The values of the model are given in eq. (4.1). We vary the
value of ¢r to keep F/m, fixed. The sky-blue line corresponds to the dilaton/radion (glueball). For
MZL? < —4 we have M, = 0, while for MZL? > —4 we have M, # 0.

4.1 Spin-1 states

It is clear that vector states, coming from the Kaluza-Klein (KK) decomposition of Vi; =
(Lar + Rar)/+/2 are not much affected by the scalar ¢(z) since they do not couple to it. They
can only notice a nonzero ¢ from the feedback of this on the metric. This clearly affects the
KK spectrum, but this is expected to be quite universal for the different type of states. For this
reason, we will use the mass of the lightest vector state, the p, to normalize the other masses.

The axial-vector Ay; = (Ly — Rar)/v/2 couple to ¢ through the covariant derivative,
and therefore a nonzero ¢ splits the masses of the KK of A,; from those of V. Since ¢
has the same profile at both sides of the conformal edge independently of M,, as shown
in eq. (3.20), we expect the masses of the axial-vectors to be smooth across the transition.
Similarly for F, defined as the axial-vector two-point correlator at zero momentum [31], we
expect this quantity to be independent of M, and smooth across the transition.

In figure 2 we show the mass of the lightest axial-vector, a1 as well as F}; normalized to
m,. We indeed see that these values are smooth across the transition. To show that these
physical quantities are also independent of M,, we plot in figure 3 the predictions of the
holographic model as a function of M, for e > 0. We remark again that this is obvious for
€ < 0 (hyperscaling —see also [62]) but not for ¢ > 0. Indeed we see in figure 3 that a; and
F; (normalized to m,) do not vary as we move M,.

4.2 The dilaton/radion

It has been claimed that approaching the conformal edge from below, the theory could have
a light scalar, the dilaton, associated to the spontaneous breaking of the conformal invariance.
This has been partly supported by lattice results [2-7] that have seen a 0T state below the
p mass for values of Ny where one expects to be outside (but close to) the conformal window.
In [31] it was shown that in holographic models the radion, that corresponds to the dilaton
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Figure 3. Mass spectrum of mesons outside the conformal window € > 0 (¢ — 0), normalized the m,,
as a function of My in units of 1/z. defined in eq. (3.18). In dashed-lines the values for e < 0. The
sky-blue line corresponds to the dilaton/radion (glueball).

in the 4D dual theory, was the lightest state of the spectrum, although not parametrically
lighter than the others (see also [35, 36, 42-61]). This state arises from the KK decomposition
of the AdS; gravitons, and therefore should be considered a glueball state (it mixes with the
mesons from ® but the mixing comes out to be small [31], always smaller than 20%).

Since we showed that the profile of ¢ is the same at both sides of the conformal transition,
we must also expect a light radion/dilaton inside the conformal window (for M, # 0) as
long as we are close to the lower edge. We find that this is indeed the case. As it can be
appreciated in figure 2 the radion/dilaton mass is smooth across the transition and is also
light inside the conformal window. The reason for this lightness can be found in [31] since
the argument given there can also be applied at the other side of the transition (for e < 0).
This surprising result shows that this light dilaton has nothing to do with the spontaneous
breaking of the conformal symmetry.

Another important property of the radion/dilaton is that its mass (normalized to m,)
is practically independent of My, since the profile of ¢, given in eq. (3.20), is the same for
any value of M,. This is shown in figure 3 by a sky-blue line.

4.3 Scalar mesons

Let us now analyze the mass spectrum of the fluctuations of ® corresponding to ¢¢g mesons.
Although they can in principle mix with the glueballs, we find that in our holographic model
this mixing is small. Let us start with the radial excitations and consider later the angular
fluctuations corresponding to the Goldstones.

4.3.1 Radial fluctuations: 01t states

To understand the dependence on the sign of €, we will first calculate the scalar-scalar
correlator on the AdSs boundary at z = zyy — 0. To obtain analytical expressions, we will
work in the approximation where the quartic couplings and the feedback on the metric are

,10,



neglected. At this level the singlet and adjoint scalars are degenerate. Following [63, 64],
we have (neglecting an overall factor)

Hs(p) = M5L 2+ 22UV

0.J = (ipz) + b(p)azyﬁ(ipz)] (4.2)

J=(ipz) + b(p)Y = (ipz)
where J, and Y,, are Bessel functions of order n and p is the Euclidean momentum, and

- - = - 4.3
20,Y /= (ipz) + myY. = (ipz) (43)

b(p) =

Z=ZIR

e € < 0: let us take the limit € — 0 from inside the conformal window with M, # 0 such
that zig is fixed at some finite value. The scalar-scalar correlator eq. (4.2) defined at
zuv — 0 simplifies to

2b(p)

Ts(0) = 5L [2+ it i) 4y
where ipzirJ1(ipzr) — My Jo(ip2R)
olp) = ipzrYi (ipzm) — miYo(ipzir) (45)
For large momentum pzig > 1, eq. (4.4) gives
1
Hs(p) = Mok |2+ S oov/) | (+6)

The origin of the logarithm is expected from the discussion in section 2. The theory
contains the marginal term f(u) Tr[OsOg] where f runs according to eq. (2.3). For
pzuyv — 0 the log-dependent term goes to zero and the theory enters into the conformal

regime.

Therefore the mass spectrum of the scalars are not sensitive to In zyy terms. Using the
fact that a scalar-scalar correlator in a large- N, theory can also be written as a sum
over infinitely narrow resonances

> FZm?
HS(p):Z B . 5 ’ (47)

we can obtain the mass spectrum by looking at the poles of eq. (4.4). Taking mg =1 we
find that the lightest resonance, that we named as in QCD fy, is given by m g, ~ 1.26/ 2R,
much lighter that the p meson mass that in the approximation that we are taking here
is m, ~ 2.4/zr. In fact, we find that my,/m, < 1 is true for any value of m? > 0.

The reason of why the lightest scalar meson is lighter than the p is tied to the fact that the
mass of M2 is taking at the conformal edge the lowest possible value (M2L? — —4) [31].
We can see this analytically by taking the limit mg,zgr > 1. We find

msiz(z’—3+ <

™
., i=1,2,- 4.8
4 2 )ZIR7 ? 9 <y ) ( )
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that shows that the lightest state mass minimizes for e = 0. As we already said, this
can also be understood from the CF'T point of view. Close to the conformal lower edge
the dimension of Og = qq takes the closest value to the unitarity bound (Dim|gq] > 1)
where a scalar is expected to become massless since Og decouples from the CFT [27].

e € > 0: let us now consider the limit € — 0 from outside the conformal window. We
recall that we have to take this limit such that eq. (3.18) is kept fixed. This leads to

2b(p) _
T+ Qb(p) (fy + ln(ipzc/2) + MII) 7

IMg(p) ~ MsL |2 + (4.9)
where Mq = quIQR/ (LcZ)Ing). Notice that it is now z. ~ zg that regulate the
logarithm and not zyv as in the € < 0 case. This means that the logarithmic breaking of
conformal invariance remains at low-energies. For large values of M, however this term
tends to zero and eq. (4.9) approaches eq. (4.4). This was expected from the discussion
in section 2: the presence of a large M, sets a mass gap to the theory much larger than
the scale z.; the IR flow “stops” when the theory is (almost) a CFT, much before the
coupling f(u) blows up. The theory in this case has to have the same behavior as that
for e < 0.

The scalar meson masses are determined by the poles of eq. (4.9). We get

/2

b(mg,) = — — . 4.10
o) = = (s 22) + 1, (410
Taking the approximation mg,zig > 1 and using eq. (3.19), we obtain
3 2 1
mg, = (i — 5)—— — ™/ . i=1,2,--. (411)
4’ 2R ¥+ 1H(mSiZIR/2) + 2 + Mq ZIR
b

Notice that the masses are sensitive to a logarithmic conformal breaking (there is no
a simple scaling with 1/zg), different from the case ¢ < 0. Nevertheless, as expected,
eq. (4.11) tends to eq. (4.8) for M, — oo.

The numerical results (with no approximations) for the masses of the lightest scalar singlet
(fo) and adjoint (ag) are shown in figure 2. The masses are different at the two sides of the
conformal transition due to the log terms discussed above. The dependence on M, for € > 0
is shown in figure 3. As M, grows, the masses tend to the values for e < 0 (hyperscaling
case), shown as dashed lines.

4.3.2 Angular fluctuations: the pions

Let us finally comment on the angular fluctuations of ®, the pions. These are the only states
sensitive to the UV-boundary condition and therefore the ones that clearly distinguish among
the two limits towards the conformal edge. As explained above, for € > 0 and M, = 0 the
model shows spontaneous chiral symmetry breaking and we expect the pions to be massless.
On the other side, € < 0, the chiral breaking is explicit (UV driven by M,) and the pions
should have a mass as large as the other mesons, following hyperscaling eq. (2.10). This is
shown in figure 3. It is interesting to remark that we find m, < my, for any value of M,
and for any value of the parameters of the model.

- 12 —
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Figure 4. Lattice results from [4, 5] for the QCD meson masses normalized to F; for different values
of Np. See [4, 5] for the values of the quark masses. For Nr = 3 we have identified my, ~ mq,.

4.4 Moving further inside the conformal window

As M2 moves from —4 to —3, corresponding to an increase of Dim[gg] from 2 to 3, we are
getting further inside the conformal window (see figure 1). We expect the scalar mesons to
become heavier since we are moving away from the unitarity bound (Dim[gg] > 1).

On the other hand, the explicit chiral breaking is dictated by M, whose dimension moves
from 2 to 1. As a consequence, the profile of ¢, that grows as

¢ ~ M, ZPmMal (4.12)

becomes flatter and spreads more into the AdSs space. To keep F/m,, constant, the flatter
the ¢ profile, the smaller ¢;g must be. This implies that the effect of ¢ on the IR (z ~ ziR)
becomes relatively weaker. Since the spectrum of resonances is determined by the fields at
z ~ 2R, we expect that they will notice less the chiral breaking driven by ¢. This is indeed
seen in figure 2 where, as Mq% moves towards —3, we have mq, — m, and mgy, — mys, — M.
This behavior is also observed in lattice simulations as we will see below.

5 Comparison with lattice simulations

There are several lattice simulations of SU(3) QCD at large values of Np. In [2, 3, 6, 7]
lattice simulations for Np = 8 were provided, while results for Ny = 12 were given in [8-10].
In [4, 5] the value of Ny was effectively made to vary from 8 to 12 by varying the quark
masses. In figure 4 we show the results of [4, 5] for Np = 3,8 and 12.

It is highly supported that QCD with Nrp = 8 flavors is outside the conformal window,
while it is inside for Ng = 12. The main indication comes from the pion mass that it is
seen to go to zero with M, for Np = 8 and shows hyperscaling for Np = 12 [4, 5], as it
can be appreciated in figure 4. Therefore we can compare our results inside and outside the
conformal window with those of lattice for Np = 8 and Ngp = 12 respectively.
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Figure 4 shows the following general features:

o The scalars are the lightest states for Np = 8 where we expect QCD to be outside (but
close) to the conformal window.

e The chiral-breaking mass splittings diminish as N increases and we move inside the
conformal window (mq, — my, Ma, — Mgy — mz).

These properties are quite close to the ones derived in our holographic model. Increasing Np
is equivalent to increasing Mc% in holographic models and figure 2 shows that chiral breaking
effects become weaker. Also the scalar fj is predicted to be light close to the conformal
transition. Nevertheless, our holographic model also predicts a light radion/dilaton that
was advocated in [31] to be associated with the lightest scalar seen in lattice simulation.
Nevertheless, the radion/dilaton is predicted to be mostly a glueball whose mass is smooth
as we cross the conformal transition (sky-blue line in figure 2). This is in contradiction with
lattice results that seem to suggest that the lightest 07" scalar is a ¢g meson, not a glueball,
since its mass tends to m;, for large Ny. The light glueball present in our holographic model
could be then a feature of the simple IR-brane setup that might be absent in more realistic
holographic models. For example, there are no light glueballs in the holographic model
of [30]. We leave this investigation for the future.

Another important feature derived from our analysis is the dependence of the meson
masses with M,, shown in figure 3. This property might offer an additional hint to the
nature of the light scalar: ¢g meson if its mass has a M, dependence (see eq. (4.11)), or
a glueball if not. In figure 5 we show our predictions for the masses of fy, m and glueball
(normalized to Fy) as a function of M, and compare them with the lattice predictions of [65].%
Unfortunately, at present lattice results are not accurate enough to clearly distinguish any
dependence with M, with the exception of m,. Figure 5 however seems to slightly favor
fo as the lattice 071 state in front of a glueball state.

6 Conclusions

We have analyzed how the physical properties of a system change when approaches a conformal
transition from both sides of the conformal edge. The derived properties seem to be generic
for large- N, models where the conformal transition occurs by the merging of an IR and a
UV fixed point. We have obtained the following features:

o The dilaton (mostly a glueball) is light at both sides of the conformal transition, showing
that has nothing to do with the spontaneous breaking of conformal invariance. This is
very different from the pion that is massless outside the conformal window but massive
inside due respectively to the spontaneous and explicit breaking of the chiral symmetry.

e The scalar meson fy (mostly a gq state) is light close to the conformal edge, being
lighter when approaching it from outside the conformal window than from inside —see

8We have fitted the lowest value of m,/Fy in [65] to our prediction in order to normalize our M, with that
in [65].
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Figure 5. Predictions for meson masses normalized to F; as a function of M, in units of 1/z. defined
in eq. (3.18). The sky-blue line corresponds to the dilaton/radion (glueball). Data points are lattice
results from [65].

figure 3. Its mass shows a dependence with M, predicted as in eq. (4.11) that can be
parametrized as

Mfy _ Afo a1
— 2o _ , 6.1
m, ap  asln %f; + M, (6.1

where a; are the hyperscaling values (eq. (2.10)) and «; are constants.
e Our model predicts m, < my, inside the conformal window.

e Spin-1 meson masses as well as F; are practically smooth across the conformal transition
and independent of M, as shown in figure 3.

e Chiral symmetry breaking effects become smaller as we move further inside the conformal
window, i.e., m4, — m, and my, — mys, — my. This is because the dimension of M,,
responsible for the chiral and conformal symmetry breaking, decreases.

Most of these generic properties seem to be followed by QCD as we increase Ng as lattice
results show in figure 4.

Models close to the conformal transition can also be useful for physics beyond the SM [31].
In particular, if this phase transition occurs in the early universe, a supercooled epoch can
generate interesting signal [66, 67]. These applications are left for the future.
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1 Introduction

In spite of the fact that, so far, LHC has found no direct evidence of new physics (NP)
beyond the Standard Model (BSM), there are several hints of lepton flavor universality NP.
Two of them are related to the muon lepton flavor, as the B — K*u*p~ anomalies [1, 2]
and the anomalous magnetic moment (AMM) of the muon [3], so one could suspect that
both of them could be related to the same kind of NP.



Moreover, as the Standard Model (SM) has a naturalness problem (the so-called hier-
archy problem) it would be rewarding to accommodate the solutions to present (or future)
experimental anomalies within theories solving the hierarchy problem. The most popular
solutions to the hierarchy problem are provided by supersymmetric theories (where the
electroweak scale is protected by supersymmetry) and by theories with a warped extra
dimension [4] (where the electroweak scale is provided by the Planck scale after warping
along the extra dimension).!

We will concentrate on the latter class of theories, i.e. in theories with a warped extra
dimension. In particular we will consider theories with two branes, an ultra-violet (UV)
and an infra-red (IR) brane, and a stabilizing field ¢ strongly deforming the AdS; metric
near the IR-brane. This strong deformation makes it possible to accommodate the SM in
the bulk, without an additional custodial gauge symmetry, consistently with all electroweak
and flavor constraints, thanks to a naked metric singularity in the extra dimension (soft-
wall metric) outside the physical interval [5-14]. We have recently shown that in this theory
one can easily accommodate the LHCb anomalies provided that the left-handed muon (and
bottom quark) has some degree of compositeness [15].

In this paper we will consider the other muon anomaly: the AMM of the muon. At

the tree level the muon predicts a magnetic moment M# = gu eﬁu with gyromagnetic

2m,
ratio g, = 2. Loop effects predict a deviation with respect to the tree level value which is

parameterized by the ratio (AMM)
-2
a, =8 "= (1.1)

The SM gives a very precise prediction of the AMM of the muon [16]. In particular a recent
update of the hadronic vacuum polarization contribution to the AMM [17] yields a value

afLM which deviates with respect to the experimental determination ay, * [3] by ~ 3.6 0, i.e.
Aay = a® — a;M = (2.74£0.76) x 1077 (1.2)

There are a number of proposals aiming to explain the experimental value of the AMM
of the muon by means of new BSM physics. Many of these proposal invoke physics unrelated
to the solution of the hierarchy problem, as introducing Z’ gauge bosons, extra fermions,
scalars, vectors, or lepto-quarks. For some recent papers see refs. [18-23] and references
therein. There are also a number of explanations of the AMM of the muon in the context of
supersymmetric theories, which essentially select the space of supersymmetric parameters
such that there can be enhanced contributions to Aa,. For a review of supersymmetric
contributions to Aa,, see ref. [24].

In this work we will consider a possible explanation of the AMM of the muon, in the
context of theories solving the hierarchy problem by means of a warped extra dimension.
We will do that in soft-wall metric models, where the SM fields can propagate in the bulk
of the extra dimensions without invoking an extra gauge custodial symmetry, as described

In particular theories with a warped extra dimension are dual to theories with a strongly coupled
sector and a composite Higgs, which are by themselves theories solving the hierarchy problem as, at the
compositeness scale, the Higgs melts into its components.



in refs. [5-14]. As these theories can accommodate the fermion flavor problem of the SM,
by means of particular values of the parameters localizing the fermions along the extra
dimension, we will adopt the particular configuration of these parameters which provide a
natural solution to the LHCb anomaly, as done in ref. [15]. This configuration will settle
a starting point for analyzing the AMM of the muon. The outline of the rest of this paper
will be as follows.

In section 2 we introduce the model of warped extra dimension we will be using
throughout this paper. We show the consistency of the model with the main electroweak
constraints, in particular the oblique observables and the Zpuu coupling. We also show
how the model can accommodate the LHCb anomalies, which motivates the choice of the
localizing (compositeness) parameters in the muon sector which will be used in the rest
of the paper. Finally we show that the minimal version of the model is unable to explain
the AMM of the muon, which motivates the introduction of vector-like leptons (VLL) with
a Yukawa mixing to the muon sector. The formalism of VLL propagating in the bulk of
the extra dimension, and their boundary conditions, is covered in section 3. We show that
masses = 1 TeV imply fermions localized toward the IR brane, i.e. fermions with a certain
degree of compositeness in the dual theory. The gauge interactions of VLL with the gauge
boson Z and the Kaluza-Klein (KK)-modes Z,,, 7, are studied in section 4. In particular
the couplings of VLL with the KK-modes are very strong in the deep IR (for VLL localized
toward the IR brane) while they are very week for VLL localized toward the UV brane.
The former behavior will partly determine the posterior explanation of the AMM of the
muon. The mixing of VLL with the muon through Yukawa interactions will be studied in
section 5. In particular the physical mass eigenstates will be found by diagonalization of
the mixed VLL-muon mass matrix, through some unitary matrices Uy, g, providing some
mixing angles between the sector of VLL and that of the muon. The gauge couplings stud-
ied in section 4 will be then modified by the presence of the mixing in the matrices Uy, g.
As the mixing between VLL and the muon sector must be small as implied by electroweak
constraints, the corresponding entries in the matrices Ur g must be small which allows
an explicit analytical approximation for Uy g as performed in section 6. This analytical
approximation will simplify all couplings and will allow a much simpler treatment and un-
derstanding of further calculations in this paper. Moreover as electroweak constraints in the
muon sector are very strong the accuracy of our analytical approximation will show up to
be an extremely efficient one. A further simplification (this time a purely instrumental one)
will be done in section 7, where we will impose a simplifying assumption: the localization
parameters of doublet (cr) and singlet (cg) VLL are equal (c¢z, = cg = ¢). This assumption
reduces the number of free parameters and allows a simplification of the matrices Up, g.
Using this particular case we will study the five-dimensional (5D) Yukawa couplings and
found to lie in the perturbative region. In section 8 we single out the strongest electroweak
constraint: the Zpu coupling, which gets modified by the mixing of the muon with VLL.
We have proven that it constrains the absolute value of the off-diagonal elements of the
unitary matrices U 21 and U}%l to be < 0.02, which justifies a posteriori the approximation
done in section 6. Using the previous constraints we have computed in section 9 the contri-
bution of VLL and the vectors Z, W, Z,,, vn, Wy, and the Higgs H, fields to the AMM of



the muon. We have shown the region in the parameter space where the value of the AMM
can be in agreement with the experimental result of eq. (1.2). In particular we have proven
that the agreement implies that VLL have a high degree of compositeness, i.e. that they
are localized toward the IR brane (in particular that ¢ < 0.42). The rest of constraints
(except for the Zfu constraint) are analyzed in section 10. We study constraints from
oblique observables, from LHC data on the H — v decay when VLL run inside the loop,
from the stability of the electroweak minimum as VLL accelerate the running of the Higgs
quartic coupling towards negative values, and finally from collider phenomenology as the
VLL can be pair produced by Drell-Yan processes at hadron colliders. All these constraints
reduce the size of the region allowed by VLL and leave a permitted region where ¢ < 0.37
and the mass of VLL is 2 270 GeV. Finally our conclusions, and some comments about
possible extensions of this work, are drawn in section 11.

2 The model

We will review in this section the main aspects of the 5D warped model proposed and
developed in refs. [5-14]. We assume the Higgs doublet to be a 5D field, so that it propa-
gates in the bulk. Splitting the degrees of freedom into Goldstone modes x(z,y), vacuum
expectation (background) value h(y) and physical fluctuations £(z,y) we can rewrite the
Higgs field as

z,y) = eX(@V) 0
Hny) = <h<y>+;§s<x,y>>' >

Electroweak symmetry breaking (EWSB) is triggered by an IR brane potential, whereas
additional mass terms are introduced for the Higgs in the bulk and at the UV brane. The
full Higgs potential is then

V(H) = M*(@)|H|” + Mo|H[*(y) + (=M H* ++[H|") 6(y — 1), (2.2)

with

M2(¢) = ak [ak _ §W(¢)] | (2.3)

where ¢ is the 5D bulk propagating field which stabilizes the size of the extra dimension
at the value y = y1, k a parameter with mass dimension related to the curvature along the
fifth dimension [5], and W (¢) the superpotential which fixes the gravitational background
metric A(y) such that

ds* = 6_2A(y)nu,,dm“d:r” +dy?. (2.4)

The dimensionless parameter « controls the localization of the Higgs wavefunction and
can thus be connected to the amount of tuning related to the hierarchy problem.? The
Higgs background h(y) has the required exponential shape

h(y) = hoe™™ (2.5)

2In fact solving the whole hierarchy problem amounts to fixing A(y;) ~ 35.



and it can be easily checked that the fine-tuning is avoided for large enough values of «, i.e.
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where Ay = A(y1), which correspond to localizing the Higgs background profile towards
the IR brane.

The SM fermions are realized in our scenario as chiral zero modes of 5D fermions. The
localization of the different fermions is determined by their 5D (Dirac) mass term. The mass
term for the 5D fermions can be conveniently chosen as My, ,(y) = Fcy, ,W($)/6 where
the upper (lower) sign applies for fields with left-handed (right-handed) zero modes [11].

In this paper we will primarily focus in the leptonic sector and, in particular, in the
second generation of leptons. We will introduce the notation for the 5D leptons as

<€> . E (2.7)

where i is a generation index, the doublets have hypercharge Y = —1/2 and the singlets
hypercharge Y = —1. In the following we will just consider the second lepton generation
(1 = 2) and will drop the generation index. We will impose boundary conditions such
that the zero mode of ¢ has only left-handed chirality ¢; and the zero mode of F only
right-handed chirality Er, where the contribution from the zero-modes is

(r(z,y) = Lo(y)pr(x) + -, Er(z,y) = Er(y)pr(z) + - (2.8)

and the ellipses indicate the contribution from the non-zero KK-modes The 5D wave func-
tions for the zero modes are given by

e(2=cu; ) A(y) e(2=Cup) Aly)

lr(y) = Egr(y) = </dyeA(l20”?1))1/2

1/2°

where ¢, provides the 5D Dirac mass of the doublet and ¢, that of the singlet.

(2.9)

In this paper we will use the superpotential formalism [25] and consider the 5D gravi-
tational background A(y) determined by the superpotential [14]

W (¢) = 6k (1 + e“0¢)b° (2.10)

where ag and by are real dimensionless parameters. This model has been analyzed thor-
oughly for different values of the superpotential parameters in refs. [14, 26]. The main fea-
ture of this kind of gravitational (soft-wall) models is that the 5D metric has a naked singu-
larity [5] outside (but near) the physical interval and their prediction for electroweak observ-
ables is greatly suppressed with respect to that of the AdSs case [6], as we will now review.



2.1 Oblique corrections from KK-modes

The S and T parameters, contributing to oblique electroweak observables, are given by the
general expressions [27]

S = 16704y (0), T = - [TTy3(0) — Tz5(0)] (2.11)

Swew
Their contribution from the gauge KK modes was already considered in refs. [14]. They
are given by the following expressions [7]

AT = 2 ﬂizkz v 1-0Q 2 2A(y)—241 g
apmAT =sw=3 oy | [ n(y)l" e Y,

2 Y1
oS =yt G | (1 - 5) (1= (y)] ANy,

apmAU ~ 0, (2.12)

where p = ke~ A1) and

o) = S0, wl) = [ e 10y, (2.13)

These expressions include the leading contributions, which are due to the tree-level mixing
of the SM gauge bosons with the massive vector KK modes.

We show in figure 1 the KK contribution to the oblique parameters, for mygx = 2 TeV
(where mg f is the mass of the first KK mode of gauge bosons in the absence of electroweak
breaking) and by = 1.5, as a function of ag.® In particular we can see from figure 1 that for
values ag ~ 0.2, their contribution is tiny: AS ~ 0.0257, AT ~ 0.0244. Therefore this small
contribution, and possibly other kind of new physics contributing to the parameters AS
and AT, as we will see in the next section, leaves room to accommodate the experimental
values [16]:

S =0.07£0.08, T =0.1+0.07, (91% correlation) . (2.14)

In this paper we will then consider, from now on, the particular set of ‘gravitational’
parameters given by:

ag = 0.2, bo = 1.5, o = o1, Al = 35, MmMKK — 2TeV. (215)

2.2 0g9zpu from KK-modes

As the new physics considered in this paper concerns the muon sector, an obvious strong
effect is on modifications of the coupling of the Z gauge boson with the physical muon.
The main correction in this theory to 6g,, ,/gu, r comes from the mixing of the Z gauge
boson with its KK-modes and from the mixing of the muon zero mode with its KK modes.
The resulting effect can be written as [11]

2
SM 2 ~ g v 5
OGurr = ~Yup g M7 p— Burr (2.16)

3For other values of mxx and the parameter by see ref. [14].
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Figure 1. Contribution to the S and T parameters from the gauge KK modes as a function of ag.
We have considered by = 1.5 and mgx = 2TeV.

where
Y1
a,UL,R = yl/o e <Qh - y) (QML,R - 1) dy,
~ Y1 a0 -1 )
Burm =Y /0 6“( iy ) (Tu = )y, (2.17)

with Y, the muon Yukawa coupling and

Y
/ =20, ) A gy
Qup = 2 , I, =
L,R /yl 6(1_20HL,R)Ady
0

It is easy to recognize that the two terms in eq. (2.16) correspond, respectively, to the

y
/ he—(Cur, +CuR)Ady
0

7 )
/ ' he—(Cur, +CuR)Ady
0

(2.18)

effects of the massive vectors and of the fermion KK modes.

For the metric we are considering in this paper with ag = 0.2 and by = 1.5, and for
the KK gauge bosons with mass my g = 2TeV, the values we obtain for 6g,, /g, r are
2 0.5, the experimental constraint

~

shown in the plot of figure 2. We can see that for c,,
1094 1/ 9ns.r| S 1072 [16] imposes c,,, 2 0.4. In the rest of this paper we will fix ¢, = 0.4,
a value consistent with the LHCb anomaly as we will see in the following.

2.3 The B — K*uTpu~ anomaly from KK-modes

We have recently shown that this theory can naturally accommodate the LHCb anomaly
if the muon has a certain degree of compositeness [15, 28]. In fact the contribution to the
Wilson coeflicient of the relevant AF = 1 operator Oy = (517,br)(fiy* 1) can be written as
X, n
V2rgr (g — gar)

ACo=— > Y a2 (2.19)

X=Zy n

where the fitted values from experimental data are ACy € [—1.67,—0.39] [29-31]. The

X Xn

couplings g;,", 9,

and gi” are provided by the overlapping of the wave functions of the
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Figure 2. Contribution to dg,, /g,, from KK modes. The horizontal dashed line corresponds to
109,, /9ur| = 1073, We have considered c,,,, = 0.5.
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Figure 3. Region in the plane (¢, ,c,, ) that accommodates ACy € [-1.67,—0.39]. We have
also indicated the bound (vertical line) from flavor physics in the botton sector corresponding to
ey, > 0.424 (see refs. [15, 28] for further details). We have considered ¢, = 0.5, ¢5, = 0.6.

corresponding fermion and the KK-gauge bosons. For the calculation of ggi we choose
¢y, = 0.44 (a value passing all the constrains in ref. [15]). Moreover for the values that we
will consider in the present paper, c¢,, = 0.4 and c,,, = 0.5, we obtain a value ACy = —0.464
which is consistent with an explanation of the LHCb anomaly and passes all the precision
tests from ref. [15]. We show in figure 3 the parameter space region in the (cp, ,c,, ) plane
that allows to fit the flavor anomalies.



2.4 Aay from muon KK-modes

The theory described in section 2 provides a framework where the (minimal) Standard
Model propagates in the warped extra dimension thus solving the Higgs hierarchy problem,
consistently with all electroweak precision data, and providing a solution to the quark and
lepton flavor problem by fermion localization in the extra dimension, consistently with
flavor data [11]. Moreover, as was shown in the previous section and in ref. [15], the
theory could accommodate some of the recently observed flavor anomalies, in particular
the B — K*u™p~ anomaly.

The other anomaly in the muon sector, as explained in section 1, is the experimental
value of the muon anomalous magnetic moment a,. The exchange of muon KK-modes
along with Z and v KK-modes, in diagrams similar to those of figure 8 (with obvious mod-
ifications), should be good candidates to explain the experimental value required for Aa,.
However because of the structure of the 5D muon sector in egs. (2.8) and (2.9) the chirality
flip in the triangular diagram contributing to Aa,, is suppressed by an O(m,,/my ) factor
leading to a too small effect unable to cope with the experimental result.* There are in the
literature similar scenarios in Randall-Sundrum models that are unable to accommodate
the experimental value of Aa, by at least one order of magnitude, see e.g. [32, 33].

As a consequence, the theory we are considering has to be enlarged to reproduce the
experimental value of the muon anomalous magnetic moment. We will provide, in the rest
of this paper, an extra sector, containing vector like leptons propagating in the bulk of the
extra dimension, which mix with the muon sector through Yukawa interactions, providing
the required sizable chirality flip in Aa,. As we will see next, the required mixing is
consistent with all present experimental and theoretical constraints in the very sensitive
muon sector.

3 Vector like leptons

We will now introduce vector-like leptons

D(.%',y) = ( > ) R($7y)—1 (3'1)
~1/2

transforming as a doublet and a singlet under SU(2)y, respectively, and with the same
hypercharge as the SM leptons. We will give them 5D Dirac masses My, r(y) depending
on the constants ¢y, and cg, and boundary conditions such that the zero modes are four-
dimensional (4D) Dirac spinors with mass eigenvalues My (cr) and Mg(cg), respectively.

In order to figure out what are the boundary conditions (BC) that we need to impose
to generate M, r # 0, we write the zero modes decomposition as

Npr(w,y) = NLr(YNLR(Z), Lrgr(®y)=LLry)LLr(T)
Rr r(z,y) = Rr,r(y)Rr,r(x) (3.2)

4We thank Giuliano Panico for a discussion on this point.



where the wave functions are normalized such that
—3A72 _ —3A p2 _
[ 8 ntwidy = [ e R plwdy = 1. (3.3)

and Np r(y) = Lz r(y) from the SU(2), invariance. Defining the new functions

~ ~

Lir(y) =e * L ry), Rrr(y)=e* Ry ry), (3.4)

the Dirac equations for L g and Ry g are written as

Mee*Lp(y) = (Mp(y) F8,)Lr r(y),
Mre*Rp 1 (y) = (Mg(y) F 9,) R r(y). (3.5)

Imposing the BC as®

(M, + 0y)Lly—0 = 0, Lily—y =0,
Lrly=0 =0, (Mg, —8,)Lgly=y =0, (3.6)
and similarly
(Mg + 8y)Ri]y—0 = 0, Rply—y, =0,
Rply—0 =0, (Mg —8,)Rg|y=y, = 0. (3.7)

it is easy to see that My # 0. The proof goes as follows: assuming M, = 0, then
from (3.5) we would have the solution

Ly p(y) = fig ge " Moy, (3.8)

where 77, p are constants determined by (3.6). The BC (M|, + Oy)EL]y:(): 0 and (Mg —
Qy)ER]y:yleO are automatically satisfied by the Dirac equation (3.5), while the BC
Li|y=y,= 0, Lg|y—o= 0 result in 7y g = 0. Thus, imposing BC such as (3.6) necessarily
guarantees M # 0 for non-trivial solutions (Z r.r(y) # 0). In the same way imposing the
BC (3.7) we have Mg # 0. In this work we conveniently choose My, r(y) = —cr, rRW (¢)/6
that results in a continuous spectrum for the 4D zero modes as we can see in figure 4.

4 Gauge interactions

In this section we will describe the gauge interactions of the charged [£(z), R(x)] and
neutral [N(z)] components of the VLL with zero and non-zero KK modes of gauge bosons.

®We thank O. Pujolas for discussions on this point.
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Figure 4. VLL mass M/ as a function of the parameter ¢y. The inserted figure corresponds to a
logarithmic plot in the regime in which M, is small. The same plot would apply of course for Mg
as a function of cg.

Neutral currents. Before EWSB the Lagrangian describing the interactions of the
charged leptons pr(z), pr(z) and the charged VLL zero modes in the doublet Lr g(x)
and the singlet Ry, p(z,y) (u(x), L(z), R(x)) with the Z gauge boson and the KK modes
of the gauge bosons (Z,,,v,), with n > 1, is given by

L= S Lx. Lx=X, (ﬂL(x) Li(x) ﬁL(x))wGif L1(z)
X=Z,ZnVn RL(IE)

o
+ X, (7ne) La() Ri()) G | Lr() (4.1)
(

where the coupling matrices Gf’ r are diagonal but not proportional to the identity

g,—jfL’R 0 0
Girn=| 0 92, O (4.2)
0 0 gigm

and we will restrict ourselves to the lightest mode n = 1, although the generalization to
higher KK modes is trivial. The couplings in (4.2) are given by

1 1
z _ 2 7z _
95 = o <—2+3W) 9ff fe=wrL,LLr
Zn sty Zn
95" = chff1 ; Ji=ur,RrR
i, = —swalf, (43)

- 11 -
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where f}fi Rt defined for f = u, L, R as

Ji / A () 12 p0)

fﬁyR = (X = Zn7'7n)> ffZLﬂ =1 (4'4)

[ 12w)]"* [ 3412 (y)

with fL(y) = £L(y), Lr(y), Re(y) and fr(y) = Er(y), Lr(y), Rr(y). We show in figure 5
the profile of fﬁzim and fg;m defined in eq. (4.4).

Charged currents. The interaction Lagrangian of the neutral leptons N7, p(z) with the

charged leptons L, r(x) and the W-gauge boson and its KK excitations is given by

where

and

w = Y Wh@) (NN (@)L (@) + g Nr(@)yLa(@)) + e (45)
n>0
N =T = . (12D (4.6)
NL.r \/5’ gNL,R \/5 NL.Rr — '

Vi / A L () L r () NE ()
Nyn = 7 . (4.7)
([ 13| [e3ALL r(y) N r(y)

Notice that by neglecting the tiny effect of electroweak symmetry breaking,

fw,(y) = f2,.(y), an approximation already used in the neutral current interaction.

- 12 —



5 Yukawa interactions

We will now introduce the 5D Yukawa couplings as®

Ly = h(y) (Yiule(z.y) Enle,y) + Vonls (@, y) Rr(a,y) (5.1)
+ YipLi(z,y)Er(z,y) + Yir(Li(z,y)Rr(z,y) + Re(z,y) Lr(z, y))) +h.c.

where the Y's are 5D Yukawa couplings with mass dimension —1 /2.
By expanding the 5D fermions in the KK components and keeping the zero modes, we
get the 4D fermion mass matrix

pr(z)
Loy = (ﬁL(x) Li(z) ﬁL(x)) M| Lrl@) | +he (5.2)
Rr(z)
where
ce 0 <R
M == CLE Mg CLR (53)
0 CRL MR

with entries given by

/ e A T (y) Kr(y)dy

cix = YyKv a0 (5.4)
|:/ €2aky—2A / 6_3AJ%(y) / 6_3AK122(y):|
for J =¢,L,R and K = E, L, R with Yr, = Yr, and v = 174 GeV.
We can now go to the mass eigenstate basis (i, £, R) — (i, £, R) defined as
pr,r(T) fir,r(x)
Lrr() | =ULr | LLr(®) |, (5.5)
Ri,r(v) Ri,r(z)

where Uy, (Ug) is the unitary transformation that diagonalizes MM (MTM), such that
the diagonalized mass matrix reads as

Ul MUR = diag(m,,, Mz, M) . (5.6)
In the same way the interaction of the fermions with the 4D Higgs field H(x) can be
written as’
== y (@)
Lag = H(@) (fi () Lu(e) Ru@)) 75 | Lalo) | +he. (5.7)
Rp(z)

SWe are assuming that VLL in eq. (3.1) have lepton number L, = 1, so they can only mix through
the Higgs with themselves and with the second generation leptons. Moreover the couplings between the
VLL and the SM leptons could have been avoided by the simple introduction of a discrete symmetry, as
in ref. [34], an assumption we are not doing in this paper. Had we introduced it, as we will see, we would
have failed to encompass the experimental value of the muon AMM.

"In the limit mj, < mrx we used &(x,y) = h(y)H(x)/v.

~13 -



where the matrix of 4D Yukawa couplings Y is given by

arp 0 or
:;Uz CLE 0 CLR UR. (5.8)
0 CRL 0

Neutral currents. From eq. (4.1) the interactions of the Z gauge boson, and the KK
bosons Z}y, vk, with the mass eigenstates can be written as

fi ()

L= >, Lx, Lx=X, (ﬁL(ﬂf) L(x) 73L($)) “ULGLUL EL($)
X=2Z,Zn,n (l‘)
I Ar(x)
+ X, (fin(@) Le(x) Ral@)) YULGEUR | Lrla) | (59)
RR<$)

where the matrices U}E RGi(RUL,R create a mixing between the muon and the VLL.
The interaction Lagrangian with mass eigenstates involving at least one light state,
[ R, then reads as

£x = X (93 B fic + g% " Lr + g% fiy" R,
X = _u~ X = l X = 5
+ 9 iRV R + 97 IRV LR+ gﬁRum"RR> +h.c. (5.10)
where the couplings with mass eigenstates are then given by
9%, = 9 Ur' ULt + g2, U UL + g%, U UG
gé = g,i(LUilUL +9£LUL Uz +9RLU Ui
g% _ g/»)l([, ULys 4 gé(L URU 4 QRL ULy

9%, = I UR UR + 92 URUR + g%, U U
gZR:gMRU U —i—gcRU U —i—gRRU U
g%R:g“RU UR + g} URUR + gn UR U (5.11)

and the corresponding vector and axial couplings are gy 4 = %(QL + gR).

Charged currents. From eq. (4.5) the interaction of the neutral lepton N (x) with the
physical (mass eigenstate) muon p(z) is given by

= " Wi @) (g N (@) yufic () + g Ni(@)yain(x) ) + hie. (5.12)
n>0
where
95, = ULRIN (5.13)

and the vector and axial couplings are given by

Gva = (UL g+ URG Y, (a) = (o¥) = U UGN gl (5.14)

— 14 —



6 Analytic expressions of U r

If the entries ¢/p, ¢y and cpp in the mass matrix (5.3) are much smaller than the other
entries (as we will see in section 8 it happens in this theory), the mass matrix M can be
expanded as follows:

0 0 0 CvE 0 C/R
M=M+6M°= |0 Mz crp |+ |coe0 0O (6.1)
0 crr, Mg 0 00

which will allow us to use a perturbative approach to find the matrices Uy, Ugr that diag-
onalize, respectively, MM and MTM. The resulting diagonalization matrices, UL g, are
then given, to first order in the small parameters, by

12 13
1 UL,R UL,R
UL,R = Ug’lR COSs 0L,R sin 9L,R (6.2)
UglR —sinfr g coslr R

where
Uf’lR _ | cos Or.r sinfrpr UER (6.3)
UE,IR N —sin GL,R COS QL,R UIIJ:,))R '
with
1o (cLrcosOp — Mpsinfy) 13 (crrsin®p + Mpcosfy,)
U, = M2 ClR, U = M2 CR
L R
My, cosbr — cppsinf M7y, sinfg + cpgr cosf
Ui _ (M, RM2 LR R)CLE7 i3 _ (Mg, RM% LR R)CLE‘ (6.4)
L R
and the angles 07, r are given by
2 M, M-
sin 29, — 2(CRLMz + cLrMr)
M2 -]
L R
. 2(cLrRM + crrLMR)
sin20p = |M% - M%] (6.5)

In this approximation the mass eigenvalues are then given by

C¢RCLE c
RL
MzMz

my = Cg +

1
S (LR

F V(Mg + Mg)? + (cLr — cre)?) (Mg — Mg)? + (cLr + CRL)Z)} (6.6)

~15 —



From eq. (5.11) the interactions of the Z gauge boson and the neutral KK bosons
Zh v with the mass eigenstates can be written as

i, = Gy, + 92, UL U + 9, UL UL
9% = Gnn T 92, URUR + g2, U Ut
gz = cosOi(gz, — g, )UL' —sinbr(gr, — g, )UL'
g5 = cosOn(gl, — g UR —sinOr(g%,, — g UR
93, =sn0r(9z, — g )UE' + cosOL(gr, — g, )UE'

oY = sinbn(g¥, — g5 UE + cosOn(gh, — g5 UR- (6.7)

Notice that
X X
gﬁL,R - g#L,R +
where the ellipsis denotes (subleading) terms which are quadratic in the small perturbations.

The interactions of the W gauge boson and the charged KK modes W,, with the mass
eigenstates in terms of the elements of U, p were already given in eq. (5.13).

7 The case ¢, = cr =c

As we have seen in the previous sections the mass eigenvalues and mixing angles in the
muon/VLL sector depend on the two real parameters ¢y, and cg, which determine the
localization along the extra dimension, respectively, of the doublet and singlet VLL. In
this section we will consider the particularly simple case where ¢y, = cg = ¢.® In this case
we will be able to write all the functions cjx in term of the function ¢y r and the parameter
c. This will be achieved by setting values for the elements Ufl, U%l in order to satisfy the
experimental bounds for 5g5L7R, as we will see in eq. (8.3).

For cp = ¢, we have M,(c) = Mg(c) = M(c) and the 5D wave functions are related
to each other as Ny r(y) = L r(y) = Rr,r(y) resulting in

cLr = cgr and O = Op = w/4. (7.1)
Equation (7.1) and the explicit form for the matrix Uy, r enable us to write

M~(C, CLR) = M(C) — CLR

L
Mﬁ(c, cLr) = M(c) + crr (7.2)
and
MsM#=Mzs — Mz)
cop = my, — 2 R(M{ +7]2\/[~)2 LURUE
R L

MM ~
c —_9 RL U31
th Mﬁ—l-MZ L

MM ~
cop = —2—F—L U 7.3
e Mz + M; B (7:3)

8The general case c;, # cr can be worked out straightforwardly.

~16 -
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Figure 6. Left panel: contour plot of M (dashed black) and Mz (solid blue) in the plane (c, a).
The labels of the contours are in TeV. Right panel: contour plot of Yukawa coupling in 5D, VkYL g
in the plane (c,a). We have considered c,, = 0.4, ¢, = 0.5.

Then setting values for the elements U3, Uf—il consistently with experimental bounds we
can write all the functions cjx in term of the parameters ¢ and the function ¢y gr. Moreover
by defining the parameter 3 as

M= — M=
B=-—R L (7.4)
Mﬁ + MZ
we get
U = puit, U = pUi. (7.5)

We will change the independent parameters from (¢, crr) to (¢, a) by introducing the
convenient parametrization

a=crr/M(c) (7.6)

and present the results for the mass eigenvalues in the plane (c,a) in the left panel of
figure 6. In the absence of a theory predicting the 5D Yukawa couplings we will consider
them as output from the different constraints. In particular, using the variable a from
eq. (7.6), implies an implicit assumption for the 5D Yukawa coupling Y.r. The required
values of Y7 are shown as contour plots in the plane (¢, a) in the right panel of figure 6.
The condition of perturbativity of the 5D theory would imply an upper bound on the 5D
Yukawa couplings such that \/E}/}L r < 47 which already excludes the upper left corner of
the parameter region in the plane (c¢,a), as we can see from the right panel of figure 6.
Nevertheless this region, as we will see, is also excluded by electroweak constraints which
in fact rule out the region VEYLR 2 4.

Gauge and Yukawa couplings, in the particular case we are considering in this section,
also take simplified values which we now describe.
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7.1 Gauge couplings

The couplings with the Z gauge boson and the neutral KK bosons Z,,~, can be written,
from eq. (6.7), as

U31
X _ YL X X X X
N1 (Bg% — %) — (tanaxgy, —g¥)]
21
gx = Ui (6. — g% ) Bltanaxg¥, — g¥)]
LR \/i ['R UR L‘,R iR
31
g)f = UiL [B(QX —gX )+ (tananX —gX )]
RL \/i [,L ML L‘,L ML
of = Ui [(gX, ~ 4 + Bltanaxgd, - o) (7.7)
RR \/§ ['R UR L‘,R LR
with o
ER f X _ Z Z
tanax = { o o (7.8)
1 i X =

where gf’fg[ denotes the SM (tree-level) Z coupling to the p, g fields.
On the other hand, the couplings with the W gauge boson and the charged KK bosons
Wh, eq. (5.13), are written as

2 2
Wn _ 31 Wy Wn _ 7721 Wy Wh Wh _ 317721 W, W,
95" =BUL 9Ny 957 =Ugr gng (gv ) - (gA ) =BUL Uk 9N, 9Ny (2 0)
(7.9)

7.2 Yukawa couplings

We can also write the 4D Yukawa couplings of the Higgs with mass eigenstates in eq. (5.8) as

MzU3! MzU3!
I R-L _L-L
1 M£~EU21 M\{§—M~ v
Y:; _ 7\%/§R _( R2 L) 0 + . (7.10)
_MpUF 0 Mg —Mp
V2 2

where the ellipsis refers to terms which are subleading (quadratic) in the small parameters
Ugl and U]2{1. As we will see below the tiny elements Y2, V2! and Y13, Y3! will generate
small (subleading) corrections to the muon anomalous magnetic moments while the diago-
nal elements Y22 and Y33 will contribute to the Higgs branching fractions of H — ~v and
will constrain the parameter space, or can be an indirect measurement of VLL if in the
future there is an excess of vy events.

8 09gzgu, from VLL

As VLL mix with the muon sector, the most important effect of the presence of VLL
is the modification of the coupling of the Z gauge boson with the physical muon. We
have singled out this constraint as it will unambiguously determine part of the theory
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parameters. In particular we will see that it determines the size of the relevant mixing
parameters U%l and U}%l.

In the presence of the mixing (5.5) the SM coupling of the Z gauge boson with muons
gffgl gets modified. In fact we have defined the coupling matrix to Z gauge bosons in
eq. (5.11). We can assume here, to leading order, that fz(y) = 1 so that the coupling

matrices can be written as
1
G% =GP 1 5GF = gZ5M |15 + diag ( 0,0, —5——
B 257, — 1
KR

1
G% = GEM 1 5G% = 7™ []13 + diag <o, —5 o)} . (8.1)
w

Going now to the mass eigenstates as in eq. (4.1)

~—

L prlz
L2 =2y (fy(e) Lo(@) Re(@)) #ULGTUL | Lot
L(z

N

8

_ fir(x)
+ 2y (fin(w) Lr(@) Ra(@)) 7" URGEUR | Lr() (8.2)

Ri(

o

&2

we can write

S, (UP)?

gfL 11— 25124, ’

Oun _ _(UR)’ 53)
Iitn 25, '

Using now the experimental bound 6gfL o/ gfL +| < 1072 [16] we obtain for the relevant
entries the upper bounds

U, UR'] < 0.02. (8:4)

Using these values we present in figure 7 the values for the Yukawa couplings }Ang (left
panel), Yir (middle panel) and Yir (right panel) from eq. (7.3). A first observation is
that the three 5D Yukawa couplings are in the perturbative regime for all values of the
parameters in the (c,a) plane. In fact \/E)/;gR, \/E)A/LR < 4 while 0.005 < \/H/}éE < 0.02.
Moreover the small values of VkY;g imply a certain degree of fine-tuning, as the mechanism
to give mass to the muon in this model is somewhat different from the usual mechanism to
give masses to fermions in Randall-Sundrum-like models (by means of different localizations
in the extra dimension and anarchic O(1) 5D Yukawa couplings). In our case the muon
mass is fixed by the first line in eq. (7.3), where the second term on the right-hand side is
typically of O(GeV), as it has to be the left-hand side term, whose small Yukawa coupling
pre-factor comes from the degree of compositeness of the muon as required in order to fit
the LHCDb anomaly. Finally the typical fine-tuning between both O(GeV) terms, to yield
the physical muon mass (~ 0.1 GeV) is then expected to be ~ 10%.
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Figure 7. Contour plot of the 5D Yukawa couplings, vkYzz (left panel) v/k|Yyg| (middle panel),
and VkYp (right panel) in the plane (c,a). We have considered ¢, = 0.4, ¢, = 0.5.

9 Aa, from VLL

Charged (£, R) and neutral (N) vector like fermions contribute to the muon anoma-
lous magnetic moment. Charged VLL make use of neutral current interactions with
Zy Zn, Yn, H, and neutral ones make use of charged current interactions with W, W,.
They will therefore provide corresponding contributions to the muon AMM.

9.1 Charged VLL

Charged vector like fermions contribute in loops to the muon AMM as shown in figure 8.

The relevant quantity for their contribution to Aa, is, in a very good approximation,’
given by [18, 35]
1
C _ X X _
Aa, = Z Aa,, Aa, = HKX (9.1)
X:Z’Z'n 77”
where )
_ My T x\2 x\2] My My
Rx = ZMmT [(gfv) — (974) } mTLFO o (9.2)
f=LR
and the function Fj(x), given by
1—(3/4)x? — (1/4)2% + 322 log x
Folz) = (3/4)x" — (1/4) g 9.3)

(1—22)3 ’

is a monotonously decreasing function such that Fy(0) = 1 and Fy(oo) = 1/4. Using the
couplings in (5.11) we can write

m? M~ M~ M Mz
Ky = 1 |gX X ZLp (2L X gy R (—R)]|. 9.4

9We are not considering subleading contributions coming from KK modes of VLL and from higher
(n > 2) KK modes.
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Figure 8. Diagrams contributing to Aag from charged VLL.

In order to find a more explicit expression for Aa,, as function of (¢, a), we first consider
the contribution of KK-modes X = Z,,,v, when gfL > gl)fL and gf:(R > gffR. In this case

we can write
X X _ }Q%IUglgi(ngR(/B —tanax)(l — Btanax)
QELQZR = D)
x x _ UﬁlUglgngfR(ﬂ +tanax)(1 4+ Stanay)
IR IRE 2

and

217731, X X
x m,Up Uy 92,92k
B 202

8mam5,

X {6(1 +tan2 ax) |:MEF0 (i{i) + MﬁFO (?fj)]

—tanax (1 + £2) [MEFO (fﬁ) — Mz F, <M75)] } : (9.6)

mx

Aa

On the other hand the contribution from the Z gauge boson is given by

m..  U3U2l M~ M~
Adll = 47r27’7‘122 L2 B(g? —gl.) [MEFO <m§> — Mgz Fy (ﬂ;;)] . (9.7)
Notice that the contribution from the Z gauge boson is important as the relative enhance-
ment (oc m%/m%) in Aa,, is not compensated by the small Standard Model couplings.
Finally the Yukawa interactions in eq. (7.10) generate an extra contribution to Aa,
mediated by the diagram of figure 8, where the line propagating gauge and KK bosons is
replaced!? by the Higgs propagator. The result is provided by the general expression [18, 35]

m2 M]%

2 2
Aaf = Z 19?5]\4]% [(YﬁLfR) + (YﬁRfL) ]FQ (m%{) (9.8)

f=LR

0Here we again neglect the tiny contribution from (n > 1) KK modes of the Higgs boson.
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Figure 9. Diagrams contributing to Aaﬁ’ from neutral VLL.

where )
xt — 623 + 322 + 22 + 62 logx
F = 9.9
2(2) = 99)
For the case ¢, = cg = ¢, using eq. (7.10) yields the result
m?2 o1 [ MZ MZ\  MZ o (MZ
Aal? (Ui + UE)] |SEF L (—R)|. 9.10
G = 3847r2v2 ( ) ( i) ]\42 2 mH * M% 2 m% (9.10)

Notice that due to the strong suppression on the values of Ugl and Ulz%l in eq. (8.4)
the Higgs contribution will be subleading, thus not contributing significantly to the g, — 2
anomaly.

9.2 Neutral VLL

Moreover the contribution of the neutral vector like fermion A in loops to the anomalous
magnetic moment of the muon Aaﬁ/ comes from the diagrams in figure 9. Similarly to the
previous section we can now write Aaﬁ/ as

1
N _ E
n>0
with )
m M M
K — :u' Wh Jég g - 9.12
Wa =50 g o <mwn> (9.12)

where M = M (c) is the mass of the neutral VLL (N) and

—1+(17/4)2% — 32* — (1/4)2% + 52t log x

F; = 9.13
1() (1—22)3 (9.13)
Using now the results in eq. (5.13) we can write
m U21U31 Wn Wn M
Ag) =3 L LD INLING grr <> (9.14)
"0 4mem Wn mw,,
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Figure 10. Contour plot of Aa,. We have considered c,, = 0.4, ¢,, = 0.5.

9.3 Numerical results

Summing up all the contributions we define the total contribution to Aa, as
Aa, = Aaﬁ + Aaﬁ[ + Aaﬁ/ (9.15)

where Aag (Aaﬁl ) is the contribution from the charged VLL (E, 7€) and the neutral gauge
bosons (Z, Z,, 7n), and their KK modes (the Higgs boson), and Aaﬁ/ the contribution
from the neutral VLL (N') and the charged gauge boson and its KK modes (W, W,). In
figure 10 we show the 95% CL allowed region in the plane (¢, a) which provides the experi-
mental value for the muon AMM Aay™® given by eq. (1.2). Notice that, as parametrically!!
Aa, o< U glUle, the allowed region in the plane (¢, a) is entirely determined by the mixing
angles between the VLL and the muon, which in turn are determined from the electroweak
bounds on the observable dgr, g in eq. (8.3).

We can see that the allowed region is localized towards the IR so that it implies a
degree of compositeness for the VLL. In particular extending the results to the limiting
region where a — 1 we can see that the allowed region from the muon AMM implies the
absolute upper bound ¢ < 0.42. However as wee will see next still there are other experi-
mental and theoretical constraints which restrict the allowed region for VLL to encompass
the muon AMM.

UExcept for the tiny (subleading) contribution from the Higgs boson in the loop which goes as
U + VR,
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10 Other constraints

In this section we will present the main constraints from electroweak observables to VLL.
First of all, VLL mix with the muon and thus are subject to strong constraints in the
measurement of the Z iy coupling, as we already have explained in section 8. Second, the
presence of VLL modify the universal (oblique) observables and thus their contribution
can be encoded in their correction to the S, T" and U observables [27]. This will con-
straint the allowed region in the (¢, a) plane. The corresponding constraints coming from
the correction to the electroweak observables from Kaluza-Klein modes of gauge bosons
and fermions were already summarized in section 2 and will be taken into account in the
present one. Moreover, the presence of VLL running in loops should contribute to the decay
rate I'(H — 77), which has been measured at LHC7 and 8 TeV, and is being measured at
LHC13TeV, and to the Higgs quartic coupling S-function triggering an instability of the
electroweak vacuum faster than in the SM. Both effects, as we will see, will further con-
straint the allowed region. Finally we will need to take into account present experimental
bounds from direct searches at LHC.

10.1 Oblique corrections

The relevant Lagrangian in the interaction basis is given by

LD ng’ [DLfy“uL + NN — iyt p — Z’y“ﬁ]

/

Q

By [viy*ve 4+ i+ NN + LAHL + 2 RA'R]

+ Wﬁ [vpy*pr + NyML 4+ he] . (10.1)

N 1Q po

It can be written in the mass eigenstate basis (1, E, ﬁ) by making the change

11~ 12~ 13 5
pr.r =Uprit.r + U RLL R+ UL RRL R,

21 ~ 2 23 5
Lrr=UirbiL.r + Ui gLrLr+ U rRL R,

Rrr=Ui'rliL.r + UE?REL,R + Uf?RﬁLR : (10.2)

After using the expressions for Uy g given in eq. (6.2), and neglecting the matrix elements
Ul and U3 from eq. (8.4), we obtain

- LR coslr.r sinfrpr ENL,R
W~ i, ~ ) ~ (10.3)
Rr.Rr —sinfr g cosfr r Rr.r
which can be used to compute eq. (2.11). For the case considered in section 7, the contri-
bution of VLL to the S and T observables can be written as [36]

AS =87 [H’(M) _3 (I'(Mp) +1I'(M3z)) + %H’(ME, Mﬁ)}

4
2m 1
wtw
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Figure 11. Bounds imposed by oblique observables (left panel) and by H — 7 (right panel). The
region allowed by the muon AMM is superimposed.

where the self-energies from fermions with masses m, and my; propagating in the loop,
I (p?; mq, mp) and dII(p?; mg, my)/dp? are defined at p? = 0, as I1(0; mq, mp) = (Mg, my)

and dH(pQ;ma,mb)/dpQ‘p = IT'(mg, mp), with

2o =

(Mg, mp) = 32;2 (2 i ) [m2 — mj — 2m}logm? + 2m; log m}
— dmgmp(m?2 — mj — m2logm? +mj logm;))

' (mg, mp) = ! ! [—ng +2m$ + 18m2m3 (m?2 — mj})

14472 (m2 —m2)3
+ 6mi(m?2 — 3m32) logm?2 — 6mg(mi — 3m?2)log m}

— 9mamb(m§ — mé — 2m(21m§ log(mg/mg))] (10.5)

and where II'(my,) = limy,, —ym, II' (Mg, myp).

We will show our results in the plane (¢, a). The region allowed by oblique parameters
consistent with the experimental data [16], eq. (2.14), at 95% CL, is given in the left panel
of figure 11, where the excluded region is shadowed, and we have superimposed (as we will
do in all the plots from here on) the region allowed by the muon AMM. We can see that
the universal (oblique) observables impose upper bounds on the parameters a and ¢, as
a < 0.42 and ¢ < 0.39. This condition imposes the mild bound on the mass of the lightest
eigenstate as My 2 230 GeV.

10.2 H — v~

The interactions of the Higgs with the VLL (7.10) generate, when the charged VLL propa-
gate in the loop, an extra contribution to the processes H — . Taking only into account
the contribution of the W boson, the top quark ¢ and other extra fermions f, and neglecting
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the off-diagonal elements in (7.10), we can write [37]

v

GraZms Y. 2
= = ]Wj;ffhm(Tf) (10.6)

D(H = ~y) = L2 "
( ¥7y) TN

Ar(tw) + NeQF Ay jo(70) + Z
f=LR

where N, = 3 is the number of colors, Q; = +2/3 is the top quark electric charge in units
of le|, 7; = 4m?/m?%, i = W,t, f, and

Ai(z) = —2® 2272+ 327 + 3227 = 1) f(=7 )], (10.7)
Ay () = 20° [z71 4+ (27t = 1) f(a )] (10.8)
with

arcsin?(y/z), 0<z<l1

f(l’):{_lnz(ﬁ+m)+iﬁ2+iﬂln(\/§+\/ﬁ), x> 1.

The observable measured by the ATLAS and CMS Collaborations at LHC is the Higgs
signal strength 1 defined as

(10.9)

o(pp — H) - BR(H — 77) |obs
o(pp — H) - BR(H — v7) |sm

= (10.10)
with a combined value for ATLAS and CMS given by 1 = 1.09 £ 0.11 [38].

The contribution of the charged VLL, £ and ﬁ, to [ is positive and its present exper-
imental value already excludes a region in the plane (¢, a) as it is shown in the right panel
of figure 11. As it is clear from figure 11, the region excluded by 1, at 95% CL, is inside
the region already excluded by oblique observables and does not restrict further the region
allowed by the muon AMM. However future measurements of the Higgs strength i could
possibly exclude additional regions in the plane (¢, a). For instance a hypothetical (much
stronger) bound as 1 < 1.01 would translate into the upper bounds ¢ < 0.15 and a < 0.11
which translate into the lower bound on the mass of the lightest VLL, Mz 2 800 GeV.

10.3 The stability of the electroweak minimum

An important (theoretical) constraint is the (in)stability of the electroweak minimum for
scales larger than the mass of VLL, and thus much larger than the electroweak scale. For
large values of the Higgs field H, the tree-level Higgs potential can be approximated by

Vo(H) = A(u)|H]* (10.11)

where p ~ |H|. This effect already appears in the SM due to the contribution of the top
quark to the renormalization group equations (RGE) of the Higgs quartic coupling A in
the 4D theory.

It is well known that in the SM, and for the measured values of the top quark and
Higgs boson masses, the electroweak vacuum becomes unstable (i.e. A < 0) at a scale
pr ~ 1019 GeV, although the tunneling lifetime from the electroweak vacuum to the false
vacuum is much larger than the age of the universe [42-45].
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Figure 12. Left panel: contour plot of y(c, a) in the plane (¢, a). Right panel: RGE evolution of A
for y(M) = 0.8 (dotted blue lines), y(M) = 1 (solid red lines) and y(M) = 1.2 (dashed green lines).
For every value of y, M = 1TeV (upper line) and M = 0.5 TeV (lower line).

In the presence of VLL with Yukawa couplings y()|,_), = aM(c)/v to the Higgs
field, see eq. (7.10), the instability problem is more acute as the quartic coupling is driven
faster to negative values. In fact VLL contribute to the SM RGE by [39, 40]

1

1
62 B\ —4y), ABy, = 52y (10.12)

ABy = 62

and for large values of the Yukawa coupling ¥, the (quartic) term y* in eq. (10.12) drives
rapidly A to negative values. Particles which are (almost) localized on the TeV brane,
such as the Higgs, the top quark or the VLL, only contribute to the running above their
mass and below the energy © = mg g, where the theory is 4D [41]. For scales p > mgx
they contribute like the bulk fields which represent their preonic constituents. From the
holographic point of view this is due to the fact that TeV brane fields are the bound states
of the near conformal field theory (CFT) at higher energy scales. In fact the running for
1 > mi i depends on the particular preonic constituents and it is thus very much model
dependent. In this paper we will just present the 4D running of the Higgs quartic coupling,
see the right panel of figure 12. The 5D running, and thus the full problem of the stability
of the electroweak minimum, is model dependent and beyond the scope of the present
paper, and it is postponed for a future work. We plot the running of A for different values
of the coupling y(u) at the scale u = M, y(M) = 0.8,1,1.2 and for different values of M,
M = 0.5,1TeV. For scales u < M, VLL are decoupled and the running is purely the SM
one. For scales 4 > M, VLL are integrated in and they contribute to 8y triggering a quick
descent of A\. As VLL are active only for u > M, the smaller the value of M, the faster A
goes to zero. In fact we can see that for M = 0.5 TeV the value of A\(mg ) gets very close
to zero for y(M) = 1.2, which puts an absolute upper bound on y(M) as y(M) < 1.2. This
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bound translates into the upper bounds ¢ < 0.37 and a < 0.36, i.e. a lower bound on the
mass of the lightest VLL as Mz 2 270 GeV. For larger values of M and/or smaller values
of y(M), A(mgkk) > 0 and the theory is safe from the 4D point of view. Contour plots of
y(M) are shown in the left plot of figure 12.

10.4 Collider phenomenology

Heavy leptons can be produced in pairs at lepton colliders and by Drell-Yan processes at
hadron colliders, and in particular at the LHC, with cross-sections o (pp — Z*/v* — £~+£~_)
which depend on the center of mass energy, the mass and the couplings of VLL to Z/~.
In our model VLL couple to electroweak gauge bosons with SM couplings. In particular
VLL could have been produced at LEP2 in the process ete™ — Z /vy — LYL settling the
lower bound M7 > 101.2 GeV [46]. More recently a search for heavy leptons decaying into
Z and muons is done by the ATLAS collaboration [47] based on pp collision data taken at
/5 = 8 TeV with an integrated luminosity of 20.3fb~!. VLL are excluded at 95% CL for
masses Mz < 168 GeV. As we will see this relevant region is already excluded by the other
constraints and after imposing that the correct value of the muon anomalous magnetic
moment is reproduced.

Stronger bounds are expected in the future based on collisions at /s = 13 TeV al-
though the production cross-section decreases very fast for larger values of the masses
of the VLL. For instance it turns out that o(pp — Z/v* — LYL™) < O(1)fb for
Mz 2 500GeV [39], and so a full-fledged collider study should be done to put bounds
on Mz based on /s = 13 TeV data. N

Once the lightest VLL, £, is produced it decays through the channels £L— uZ, vy W, i H.
The relevant couplings are given by the Lagrangian

LviL = gé RZuﬁL,RW Lrr+ gg W, oy Ly,

=, (Yi2+ Yo Y12 — Y21> ~
+ pH — L+ h.c. 10.13
i (H T (1013)
where the matrix Y is defined in eq. (7.10) and
U31 g
z _ YLz Zy_ 31
gEL - \/5 (gHL - gMR) - YL 2\/§CW,
U21 g
z _YRrR 2z Z Ny _ g
gER B \/é( HL _gMR) - _UR 2\/§CW

W g(1+a)U31 Yio Yy . (1+Q)M
4 = Uy, =
2v/2 4u

Ly, - 2
Two observations from eq. (10.14) are now in order

(U s UE) . (10.14)

e As, from eq. (8.3), |U3Y|, [UA!| < 0.02 the gauge couplings are tiny. In particular the
gauge couplings with the Z and the W are < 6 x 1073,

e The Yukawa coupling remains perturbative in the whole region where M < 2.5TeV,
for which |Y12/(2v/2)], [Y21/(2v/2)| < 0.07. In the opposite extreme, for light VLL,
say M > 250 GeV, we find |Y12/(2v/2)], |Y21/(2v/2)] = 0.007.
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Figure 13. Left panel: contour plot of I' 7 in GeV. Right panel: contour plot of 'y in GeV. The
black shaded area in the right panel is the two-body excluded region a < my /M, corresponding
to the three-body decay channel.

The decay width for the channel L — 1H is given by

2
- 2 2 2
P iy — el i) (1_ w)

64 L M%
2 2 3 2 2
g“(1—a)(1 +a) M 312 212 My
= U U 1-— 10.15

while the decay widths for the channels L — 17 and L1 — viW are given by

2
w 3 2
~ (QE> M2 m2 m2
[(Lp = v W) = L L1 W 14+2-% 10.16
(Lo =Wy =55 m%v< M2 HRSVE (10.16)
L L
2
— 92(1 —02)2(1 CL) ‘U31|2 M 1 m%/V 1+2 m%V
1287 Ll om2, (1 —a)2M?2 (1 —a)2M?2
2 2
Z Z 2
. (g~ ) + (g~ ) M2 2 2
~ L L m m
(£ = nZ) o e ) s (10.17)
Z L L
2 3 3 2 2 2
g°(1—a) 312 o112y M my my
=2 7 (lU U 1— 142——Z2 ).
2567 (WL +1UR )m%,v (1—a)2M? * (1—a)2M?2

_The total width of the lightest VLL is given by I'z = (L — pH)+T(Lp — vpW) +
(L — pZ). We show in the left panel of figure 13 the plot of I'; in the plane (c,a). Its
mean free path is given by ¢ = [1.97 /T z(GeV)] x 10~ '%um so that in all cases the decay
is extremely prompt, as the distance of the secondary decay vertex can never be resolved
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Figure 14. Branching ratios of the decays £ — iH (left panel), £, — v, W (middle panel) and
L — 1Z (right panel).

from the interaction point.'? From the partial expressions of the decay rates of L into the
different channels in egs. (10.15), (10.16) and (10.17) we can decompose the total rate as
Iz=Tz +T; where 'z (I'z )is the term of Iz proportional to (U2 (JUE?). As we
can see the ratio of contributionsto H : W : Z in I iy in the limit of large values of M, is
equal to 1:2:1 in agreement with the Goldstone Boson Equivalence Theorem. The same
happens for T’ Fno €xcept that the W channel does not exist in I’ Fno S we are assuming
only left-handed neutrinos in doublets. In figure 14 we show contour lines of the branching
ratios corresponding to the different channels £ — H (left panel), £ — v, W (middle
panel) and £ — iZ (right panel). We see that in spite of the fact that gauge couplings are
much smaller than the Yukawa couplings all the different branching ratios are of the same
order of magnitude in most of the parameter space.

The next-to-lightest VLL is the (neutral) vector-like neutrino (VLN) N with a mass
M. VLN are pair produced by Drell-Yan processes at the LHC via a Z gauge boson,
o(pp = Z — N'N). When a > myy/M it decays into the channel N' — £ W. The region
a > my /M is shown in the right panel of figure 13 from where we can see that it overlaps
with the allowed region from all previous constraints.'®> The relevant Lagrangian is

Lyin = %W“nyuf (10.18)
and the decay width is given by
2 3 2 4
~ g M 2 2 2 mw my
r =2 = l@- 14+ (1-a)?—6(1—a)]-X —2-W gy
(N = LW) 647rm12/v{< a)a”+[1+ (1 —a)*—6( a)]M2 M4}5( )

sty = (o2 ) (2 a2 ) 1019

12The distance between the displaced vertices and the interaction point which can be resolved inside the

detector is typically given by e ~ (75 — 100) um. For displaced vertices such that e < 75 um the particle
is called prompt. For displaced vertices such that 100um < ¢ < (1 — 3) m the particle decays inside the
detector and the displaced vertex can be reconstructed. For decay distances cr > 3m the particle decays
outside the detector and it is called long-lived. There are strong constraints on the mass of long-lived
charged particles [48] which do not apply to our model.

3In the region a < mw /M the vector-like neutrino N decays through N' — LW* — Lf1 f2 in a three-
body decay channel.
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The contour plot of I'ys ~ I'(N — L W) is shown in the right panel of figure 13. We can
see that its decay is also prompt.

11 Conclusions

In this paper we have assessed the capability of theories, solving the hierarchy problem
by mean of a warped extra dimension, to solve some of the flavor anomalies which appear
in the muon sector: in particular the B — K*utu~ LHCb anomaly and the anomalous
magnetic moment of the muon a,. To do that we have considered a particular geometry in
the warped dimension where the AdS5 symmetry is strongly perturbed near the IR brane,
with a naked singularity in the gravitational metric outside the physical interval (the so-
called soft-wall metric). These models, where the minimal 5D SM propagates in the bulk
of the extra dimension, have the advantage that, even in the absence of an extra gauge
custodial symmetry in the bulk, the contribution to the electroweak observables is strongly
suppressed for low values of the mass of gauge KK modes.

One possible solution to accommodate the LHCb anomaly requires the presence of
massive vector gauge bosons which are strongly coupled to muons and very weakly coupled
to electrons, thus breaking lepton universality. In the considered theory the massive vec-
tor gauge bosons are naturally identified with the KK modes of the Z and photon gauge
bosons, whose couplings with fermions depend on their degree of (compositeness) IR lo-
calization: the more composite the fermions the more strongly coupled they are to KK
modes. Thus a simple and natural solution to the LHCb anomaly is considering muons
more composite than electrons. This solution has been proven to be consistent with all
electroweak constraints by a simple choice of the localizing parameters for the muon and
the bottom quark ¢y, ¢, . In particular the adopted values in this paper are

cup =04, ¢y, =05
cp, = 0.44, cp, = 0.58.

Although this minimal theory has all the ingredients to also solve the muon AMM
problem, it fails to provide a strong enough chirality flip to cope with the experimental
value of a,,. In order to do that we have enlarged the theory with a set of vector-like leptons,
a doublet and a singlet, mixed with the muon sector through Yukawa interactions. The
VLL propagate in the bulk with localizing parameters cy, and cg for the doublet and singlet,
respectively. The use of VLL (unmixed with the muon sector) has been often proposed
in the past to increase the value of the width H — ~7 in order to cope with a possible
deviation with respect to the SM prediction [39, 40]. In our case VLL are mixed with the
muon sector, which implies strong constraints, not only from universal (oblique) observables
but also from non-oblique ones, in particular from the Znu coupling. This exercise has been
performed in this paper where we show that a region in the space of parameters (cr, cr)
is consistent with the muon AMM value and all experimental and theoretical constraints.
The original region consistent with the muon AMM is in fact restricted by all electroweak
constraints. For the particularly simple case of equal ¢;, = cg = ¢ the combined allowed
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Figure 15. Contour plot of Aa, along with bounds from oblique corrections (dashed black line)
stability bound (solid green line) and from the Higgs strength into diphotons (solid red upper
bound). We have considered ¢, = 0.4, ¢, = 0.5.

region is given by the plot in figure 15, where we have superimposed the region allowed
by electroweak precision observables (dashed black line) as well as the region allowed by
the Higgs strength into diphotons (upper red solid line) and the region allowed by the
stability of the electroweak vacuum (solid green line). As we can see the present bound
from H — 7 is superseded by the other constraints. However if in the future the Higgs
strength approaches the SM value (i = 1) it can become the strongest constraint. One
general consideration from figure 15 is that the available region implies:

e That VLL are localized toward the IR brane. In the dual theory it means that VLL
have a high degree of compositeness. In particular ¢ < 0.37.

e There is a lower bound on the mass of VLL. In particular the lightest VLL mass is
Mz 2 270 GeV.

A smoking gun for this theory would be, apart from the direct detection of a KK
mode at ~ 2TeV, the direct detection of a charged or neutral VLL. In fact VLL are
produced at the LHC by Drell-Yan production and their present bound at 95% CL, based
on the ATLAS analysis at /s = 8 TeV and an integrated luminosity of 20.3fb~!, is the
mild one My 2 168 GeV. However with increasing luminosity and center of mass energy
/s = 13 TeV we expect the bounds will rapidly improve.

The last point we want to comment is the capability of this theory to encompass dark
matter (DM) with the cosmological abundance consistent by WMAP results h2Q~0.12 [16].
In our theory (with 5D SM plus VLL) there is no candidate to DM as the lightest VLL,
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L, decays with a width oc (UPUE, U + |UE?). One could then enlarge the theory
with a new VLL’ sector (where a discrete symmetry prevents the mixing with the SM
leptons) which includes a (sterile) singlet S’(x,y) o< S’(x) (the 5D counter-part of the 4D
right-handed neutrino field), as in refs. [49, 50], mixed with the VLL’ active neutrino N’
by the 5D Lagrangian

L5 =YsD (z,y)ocH  (z,y)S (,y) (11.1)

and arrange that the lightest VLL' be a linear combination of the field A/ (member of an
SU(2)r doublet) and the 4D component of the sterile neutrino (along the lines of ref. [40]
in 4D theories). Direct searches exclude DM which is mostly A, as it has unsuppressed
couplings with the Z and thus large interaction rates with nucleons, but states which
are mostly &’ provide very small annihilation rates, and then lead to large relic densities
which rapidly overclose the universe, unless annihilation is enhanced by resonant and/or
co-annihilation effects. A thorough analysis of DM in our theory is beyond the scope of
this paper and will be postponed for future investigation.
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