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Abstract

This thesis explores the use of on-shell amplitude methods in the context of Effective Field
Theories (EFTs), focusing on their application to renormalization. We begin by reviewing
the construction of tree-level on-shell amplitudes from general principles, considering Lorentz
invariance, locality, and dimensional analysis. These techniques are then applied to construct
the amplitude structures of the Standard Model (SM) and the Standard Model Effective Field
Theory (SMEFT). In the SMEFT, we include contact interactions at orders 1/Λ and 1/Λ2,
which correspond to operators of mass dimension five and six, respectively. After that, we
explore loop amplitudes via the generalized unitarity method. We show how on-shell methods
can be used to extract the anomalous dimensions for the renormalization group mixing of
higher-dimension operators. In particular, we obtain a formula for the anomalous dimensions
at leading order, written as a product of tree-level amplitudes integrated over some phase-
space. This simplifies the calculations by avoiding explicit loop computations. We apply this
result to 1-loop and 2-loop anomalous dimensions for various SMEFT operators, including
those relevant to dipole transitions and lepton flavor violating processes. Finally, we revisit the
renormalization of EFTs by considering the angular momentum decomposition of amplitudes.
In this way, we obtain a formula for the anomalous dimensions as a sum over products of
partial-wave coefficients. Our results demonstrate the power of on-shell methods in simplifying
renormalization and provide novel tools for precision phenomenology in searches for physics
beyond the Standard Model.
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Introduction

Scattering amplitudes play a central role in particle physics, quantifying the probabilities of
specific outcomes in particle interactions. They are essential for understanding the dynamics of
fundamental forces and for linking theoretical models to experimental observations. Among the
modern approaches to scattering amplitudes, on-shell methods stand out as a powerful frame-
work. Rather than relying on the traditional Lagrangian-based formulation, these techniques
use basic amplitude properties to avoid some of its inherent complexities and redundancies.

This thesis explores applications of on-shell amplitude methods in Effective Field Theories
(EFTs) and their renormalization. The motivation for our research is both phenomenological
and theoretical. On one hand, searches for new physics Beyond the Standard Model (BSM)
require precise calculations to match the experimental data, which can be performed using
on-shell techniques. On the other hand, these methods may also reveal novel insights into the
mathematical structure of scattering amplitudes, deepening our understanding of Quantum
Field Theory (QFT).

On-shell amplitude methods

The study of scattering amplitudes has been developed since the early days of QFT. Formally,
the S-matrix was introduced to describe the dynamics of fundamental particles. The transition
probability from an initial multi-particle state |i⟩ to a final state |f⟩ is given by the matrix
element

Sfi = ⟨f |Ŝ|i⟩ , (1)

with Ŝ the S-matrix operator [4]. We define Ŝ = 1 + iT̂ , where 1 is the identity and T̂ is the
transition matrix. We can also write

Sfi = δfi + i(2π)4δ(4)(pf − pi)Mfi , (2)

where δ(4)(pf−pi) ensures energy-momentum conservation andMfi is the transition amplitude.
Within perturbation theory, the S-matrix can be expressed as an expansion in terms of the
interaction Lagrangian Lint, according to

Ŝ = T exp

(
−i
∫
d4xLint(x)

)
, (3)

with T the time-ordering operator. The scattering amplitude Mfi can be computed perturba-
tively using this expression. The usual prescription is to draw Feynman diagrams to visually
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represent the different terms in the S-matrix expansion. Each diagram can be systematically
translated into a mathematical expression by using the so-called Feynman rules. This approach
is typically taught in introductory QFT courses, but it is mostly inconvenient for processes in-
volving many particles or higher loop orders. For example, one can check [5] that the 4-gluon
tree-level amplitude involves 4 Feynman diagrams, whereas the 6-gluon one already involves
220 diagrams. The scaling is such that the 10-gluon amplitude includes more than a million
diagrams, making it computationally unwieldy.

The shortcomings of the Feynman perturbative method led to other approaches to the
study of amplitudes. In the early 60s, the S-matrix bootstrap was first proposed as a way
to use basic principles such as locality, causality and Lorentz invariance in order to derive
amplitudes directly, without referencing a Lagrangian. This program was born with the goal
to describe strong interactions and thus it was eventually overshadowed by the success of
quantum chromodynamics (QCD) in the 70s. The bootstrap program has regained interest in
recent years, using it to constrain and solve for scattering amplitudes in a variety of theories
[6, 7]. As a simple example, see the bootstrapping of 3-point tree-level amplitudes in Section
1.1 of this dissertation. For more details on amplitude bootstrap, see [8].

A significant step forward in the study of scattering amplitudes was the development of
the Parke-Taylor formula in the 80s [9]. As we have mentioned earlier, the scattering of n
gluons generally involves a large number of Feynman diagrams. It turns out that, for on-shell
gluons of definite helicity, the maximally helicity-violating (MHV) amplitude can be written
in a surprisingly compact form. The all-incoming amplitude for two gluons of helicity − and
n− 2 gluons of helicity + is given by

An(1
−, 2−, 3+, . . . , n+) = i

⟨12⟩4
⟨12⟩ ⟨23⟩ · · · ⟨n1⟩ , (4)

where the angle and square brackets are functions of the gluon momenta defined in Appendix
A. This formula reveals how the enormous complexity of Feynman diagrams gets simplified for
the case of physical on-shell amplitudes. It suggests the existence of hidden structures in gauge
theories, which are obscured in the off-shell Feynman diagram approach.

On-shell amplitude methods were further developed after the derivation of the Parke-Taylor
formula. One of the most remarkable results came in the early 2000s with the BCFW recursion
relations [10]. From the basic properties of analyticity and factorization, higher-point tree-level
amplitudes can be expressed in terms of lower-point ones. This allows us to derive all n-point
amplitudes of a theory from a few elementary building blocks. In Chapter 1 of this dissertation,
we show how to construct 4-point amplitudes from 3-point ones. Another relevant cornerstone
of on-shell amplitude methods is the treatment of loops with the generalized unitary method
[11, 12]. This procedure relates loop amplitudes to tree-level ones, greatly simplifying loop
calculations. See Chapter 3 for further details.

In recent years, on-shell amplitude methods have been applied in a variety of contexts, from
QCD calculations to formal developments in theories like supergravity. The basics of modern
amplitude methods and their most relevant applications are covered in reviews such as [13–16].
This dissertation focuses on the renormalization of EFTs, which plays an important role in the
phenomenology of BSM physics.
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The Standard Model Effective Field Theory

The Standard Model (SM) of particle physics is a QFT describing the electromagnetic, weak,
and strong interactions of elementary particles. It constitutes the main cornerstone of particle
physics and its predictions have been tested with extraordinary precision by a wide range of
experiments, such as the Large Hadron Collider (LHC). Despite these successes, the SM fails
to account for several important phenomena [17]: gravity, dark matter, dark energy, neutrino
masses and the observed matter–antimatter asymmetry. These shortcomings have motivated
the development of new theories for physics Beyond the Standard Model (BSM).

The SM can be understood as an Effective Field Theory (EFT), a low-energy approximation
of a more general framework. EFTs allow us to describe physical phenomena in terms of the
relevant degrees of freedom at low energies, without requiring a complete understanding of
the underlying high-energy theory. The Standard Model Effective Field Theory (SMEFT) is
particularly useful to describe deviations from the SM in a systematic, model-independent way
[18]. The idea is to account for the effects of new particles, above the electroweak scale, through
a series of non-renormalizable operators made of the SM fields. These operators are organized
by increasing mass dimension and suppressed by powers of the high-energy scale or cut-off Λ.
The SMEFT Lagrangian can be written as

LSMEFT = LSM +
1

Λ

∑

O5

CO5O5 +
1

Λ2

∑

O6

CO6O6 + ... , (5)

where LSM is the SM Lagrangian and On are non-renormalizable operators of mass dimension
n for n > 4, also known as higher-dimension operators. The dimensionless coefficients COn are
the so-called Wilson coefficients.

The SMEFT is a valuable tool in searches for BSM physics, since higher-dimension operators
can enter physical observables at low energies. By comparing the experimental measurements
with theoretical predictions, we can derive bounds on different Wilson coefficients and the cut-off
Λ. This is especially useful for observables that are suppressed in the SM, such as some lepton-
flavor violating muon decays (see Chapter 5). In order to understand the various SMEFT
operators contributing to a physical process, it is essential to consider the operator mixing
induced by renormalization. At the loop level, Wilson coefficients run with the renormalization
scale µ as follows,

γi ≡
d COi

d lnµ
=
∑

j

γij COj
, (6)

where γij is the so-called anomalous dimension matrix, which contains information on the
mixing of operators of the same mass dimension. Computing γij is a critical step in deriving
robust bounds on the SMEFT parameter space.

In the early 2010s, the full 1-loop anomalous dimension matrix of dimension-six operators in
the SMEFT was computed using traditional Feynman diagram techniques, see [19–25]. More
recently, there have been several efforts to apply on-shell amplitude methods to determine
anomalous dimensions in general EFTs, including [26–32]. This dissertation encompasses sev-
eral contributions made in that direction.
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This thesis is structured as follows:

� Chapter 1 explains how to build on-shell tree-level amplitudes from first principles and
factorization, focusing on 3-point and 4-point amplitudes.

� Chapter 2 provides a review of the Standard Model and the Standard Model Effective
Field Theory. It also lists the tree-level on-shell amplitudes associated with the SM inter-
actions and SMEFT interactions at orders 1/Λ and 1/Λ2, which correspond to dimension-
five and dimension-six operators.

� Chapter 3 introduces loop amplitudes and the effects of renormalization. We show how
on-shell amplitude methods can be used to obtain the anomalous dimension matrix from
a product of tree-level amplitudes integrated over a phase-space, without the need to
consider loop integrals explicitly.

� Chapters 4, 5 and 6 present some applications of the main formula derived in Chapter 3.
In Chapter 4, we explicitly compute the 1-loop anomalous dimension for the dimension-6
SMEFT dipole operator. In Chapter 5, we show examples of the calculation of 2-loop
anomalous dimensions in the context of lepton flavor violating processes. We consider
the experimental constraints on several observables and derive bounds on the energy scale
of New Physics Λ. In Chapter 6, we consider the angular momentum decomposition of
on-shell amplitudes and derive an expression for the anomalous dimensions in terms of
products of partial wave coefficients.
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Chapter 1

Building on-shell amplitudes

In this chapter we present the basics of constructing tree-level on-shell amplitudes. We show how
these amplitudes can be directly derived from first principles, without defining a Lagrangian.
Similar derivations can be found in on-shell amplitude reviews, such as [13–16, 33]. We use the
following properties:

� Locality. Tree-level amplitudes are rational functions of the external momenta, with
simple pole singularities corresponding to propagators of intermediate states. Amplitudes
must have proper factorization properties, as we discuss in Section 1.3.

� Dimensional analysis. From [14], the mass dimension of an amplitude An obeys

[An] = 4− n , (1.1)

with n the number of scattered particles. Any amplitude can be written as a coupling
constant C times some kinematic function. Once we establish the kinematic structure,
Eq. (1.1) can be used to determine the mass dimensions of the coupling constant.

� Lorentz symmetry. Amplitudes must be invariant under Lorentz transformations. They
must also be covariant under the little group, which is the subgroup of the Lorentz group
that leaves a given momentum invariant. We refer to Section 1.2 for the details.

In Section 1.1 we construct 3-point on-shell amplitudes for the scattering of particles with
spin-0, -1 and -2. In Section 1.2 we derive the general formula for the scattering of particles
with any helicity using spinor-helicity variables. In Section 1.3 we explain how to construct
4-point (and higher-point) amplitudes and the role of factorization. We summarize our main
results in Section 1.4.
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1.1 3-point amplitudes: some examples

First, we present a simple yet enlightening derivation of some bosonic 3-point amplitudes. Our
derivation is mostly based on the 2023 TASI Lectures on Scattering Amplitudes by C. Cheung
that can be watched in [34]. A given 3-point amplitude A3 is fully determined by imposing
locality, Lorentz invariance and dimensional analysis. The on-shell kinematics for massless
particles imply that

p1 + p2 + p3 = 0 , p21 = p22 = p23 = 0 =⇒ pipj = 0 , for i, j = 1, 2, 3 . (1.2)

Using Eq. (1.1), the amplitude must have dimension [A3] = 1. In general, we can write

A3 = Cd × kinematic function , (1.3)

with Cd a coupling constant of mass dimension d. We remain agnostic about the mass dimen-
sions of this constant, as long as the kinematic factor does not have negative powers of momenta.
This is because 3-point amplitudes cannot have simple poles coming from propagators.

We must also take into account that, in general, scattering amplitudes are multilinear in
the polarizations of the different particles [35]

A(1h1 , ..., nhn) = eh1µ1 ...e
hn
µnAµ1...µn , (1.4)

where the form of the polarization eh1µ1 depends on the particle spin. Spin-0 particles have no
polarization, spin-1 particles have polarization vectors, and spin-2 particles have polarization
tensors.

1.1.1 3 scalars

We begin by considering the scattering of three identical scalar particles ϕ. In this case it turns
out there is only one possible 3-point amplitude

A(1ϕ, 2ϕ, 3ϕ) = Cd=1 , (1.5)

with [Cd=1] = 1. One would naively expect to have other amplitudes with higher powers of
momenta in the kinematic function. However, the only option for scalars is to have even powers
of momenta contracted among themselves (pipj), which vanish due to Eq. (1.2).

The generalization to the case of scalars carrying flavor ϕa is straightforward,

A(1ϕa , 2ϕb , 3ϕc) = Cd=1δabc , (1.6)

where δabc is a totally symmetric flavor tensor.
We can revisit the Lagrangian formulation to gain a deeper understanding of this result.

The amplitudes in Eqs. (1.5, 1.6) arise from the following interaction Lagrangians,

L ⊃ Cd=1ϕ
3 , L ⊃ Cd=1δabc ϕ

aϕbϕc . (1.7)

We can write additional 3-scalar interaction terms with derivatives, such as (∂ϕ)2ϕ. However,
now we know that all these terms do not contribute to the 3-point amplitude, since there are
no valid amplitudes with higher powers of momenta. Indeed, at the level of the action, one
can apply integration by parts to the derivative interactions and eliminate them by using field
redefinitions of ϕ [33].
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1.1.2 3 vector bosons

We now consider the scattering of three identical spin-1 particles. The 3-vector scattering
amplitude is constructed from Lorentz-invariant products of the particle momenta pµ1 , p

µ
2 , p

µ
3

and the polarization vectors eµ1 , e
µ
2 , e

µ
3 . From Eq. (1.2), the 3-particle on-shell kinematics enforce

the conditions p2i = 0 and pipj = 0. Moreover, the fact that longitudinal polarizations are not
physical implies that piei = 0 as well. Thus, one can prove there are only six independent
vector products:

{e1e2, e2e3, e3e1, p1e2, p1e3, p2e1} . (1.8)

We want to build amplitudes made of these vector products and having the proper powers
of polarization vectors. For only one power of momenta, we obtain:

O(p1) : A(1V , 2V , 3V ) = C1(e1e3)(p1e2) + C2(e1e2)(p1e3) + C3(e2e3)(p2e1) , (1.9)

where Ci are coupling constants. Two of the Ci can be eliminated by using the Ward-Takahashi
identity [36, 37], which states that the amplitude vanishes if we replace any polarization vector
eµi by its corresponding momenta pµi . In particular,

0 = A(1V , 2V , 3V )|e1→p1 = (C1 + C2)(p1e2)(p1e3) ,

0 = A(1V , 2V , 3V )|e2→p2 = (C2 − C3)(p2e1)(p1e3) ,

0 = A(1V , 2V , 3V )|e3→p3 = (C1 + C3)(p3e1)(p1e2) ,

(1.10)

so we conclude that C1 = −C2 = −C3. This fixes the amplitude up to an overall constant,

A(1V , 2V , 3V ) = C1 [(e1e3)(p1e2)− (e1e2)(p1e3)− (e2e3)(p2e1)] . (1.11)

One can check that this amplitude is antisymmetric under the exchange of any two vector
bosons since, for example, p1e2 = −p3e2. It is convenient to make this antisymmetry explicit
in the following way,

A(1V , 2V , 3V ) = −C1

2
[e1e2(p1e3 − p2e3) + e2e3(p2e1 − p3e1) + e3e1(p3e2 − p1e2)] . (1.12)

The antisymmetry of the amplitude poses a problem, as amplitudes must be symmetric
under the exchange of identical vector bosons. This means that, by Bose-Einstein symmetry,
we must fix the coupling constant C1 to zero. Indeed, this is not a surprising result, since the
3-photon amplitude vanishes in QED by Furry’s theorem [38]. For non-identical vector bosons
carrying flavor, we can write a valid amplitude

A(1V a , 2V b , 3V c) = Cd=0fabc [e1e2(p1e3− p2e3) + e2e3(p2e1− p3e1) + e3e1(p3e2− p1e2)] , (1.13)

with fabc a totally antisymmetric constant.
Up until now we have discussed 3-vector amplitudes with one power of momenta. The next

possibility is having three powers of momenta,

O(p3) : A(1V a , 2V b , 3V c) = Cd=−2fabc(p1e2)(p2e3)(p3e1) . (1.14)
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In this case the kinematic factor is again antisymmetric under the exchange of vector bosons,
so the amplitude is only valid for non-identical particles.

We could try to build amplitudes with, for example, five powers of momenta. However, since
there are only three polarization vectors, we would have to include products of the momenta
pipj, which vanish by Eq. (1.2). We conclude that there are no allowed amplitudes for higher
powers of momenta.

Let us connect these results for the 3-vector scattering amplitude with the Lagrangian
formulation. The amplitude of O(p1) in Eq. (1.13) corresponds to a non-abelian gauge theory
such as QCD, with an interaction term given by

L ⊃ Cd=0fabc(∂
µGa,ν − ∂νGa,µ)Gb

µG
c
ν , (1.15)

where Cd=0 is the gauge coupling, Ga
µ is the gauge field and fabc is the structure constant of

the Lie algebra. It is remarkable how we have derived the presence of the structure constant
without using the notion of Lie groups.

Regarding the amplitude of O(p3) in Eq. (1.14), it corresponds to the following higher-
dimension operator in a non-renormalizable theory

L ⊃ Cd=−2fabc ∂
µGa

ν∂
νGb

ρ∂
ρGc

µ . (1.16)

There are no amplitudes with higher powers of momenta, which would come from operators
with more derivatives. This is because such operators are proportional to ∂2G and can be
eliminated using the equations of motion for Ga

µ.

1.1.3 3 spin-2 particles

Next, we consider the scattering of three particles of spin-2. In this case, the amplitude must
be proportional to the polarization tensor eµνi of each particle. The polarization tensor can
be expressed as a product of two polarization vectors eµνi = eµi e

ν
i . Then we can construct all

possible amplitudes using the vector products in Eq. (1.8). At the lowest order in momenta,

O(p2) : A(1T , 2T , 3T ) = C1(e1e2)
2(p1e3)

2 + C2(e2e3)
2(p2e1)

2 + C3(e3e1)
2(p1e2)

2

+ C4(e1e2)(e2e3)(p1e3)(p2e1) + C5(e1e2)(e3e1)(p1e2)(p1e3)

+ C6(e2e3)(e3e1)(p1e2)(p2e1) ,

(1.17)

where the Ci coefficients are determined using the Ward-Takahashi identity. We impose that
the amplitude vanishes when we replace eµi e

ν
i → 1

2
(pµi e

ν
i + eµi p

ν
i ). This leads to

0 = A(1T , 2T , 3T )|e1→p1 = (p1e2)(p1e3)
[
(C1 +

C5

2
)(e1e2)(p1e3) + (C3 +

C5

2
)(e3e1)(p1e2)

+ (C4

2
+ C6

2
)(e2e3)(p2e1)

]
,

0 = A(1T , 2T , 3T )|e2→p2 = (p2e1)(p1e3)
[
(C1 − C4

2
)(e1e2)(p1e3) + (C4

2
− C2)(e2e3)(p2e1)

+ (C5

2
− C6

2
)(e3e1)(p1e2)

]
,

0 = A(1T , 2T , 3T )|e3→p3 = (p3e2)(p2e1)
[
(C2 +

C6

2
)(e2e3)(p2e1) + (C3 +

C6

2
)(e3e1)(p1e2)

+ (C4

2
+ C5

2
)(e1e2)(p1e3)

]
,

(1.18)
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so the coefficients obey C1 = C2 = C3 = C4/2 = −C5/2 = −C6/2. The amplitude can be
written in a compact form,

A(1T , 2T , 3T ) = Cd=−1 [e1e2(p1e3 − p2e3) + e2e3(p2e1 − p3e1) + e3e1(p3e2 − p1e2)]
2 . (1.19)

For amplitudes involving four powers of momenta, we have

O(p4) : A(1T , 2T , 3T ) = C1(e3e1)(p1e3)(p2e1)(p1e2)
2 + C2(e1e2)(p2e1)(p1e2)(p1e3)

2

+ C3(e2e3)(p1e3)(p1e2)(p2e1)
2 .

(1.20)

Once more, the constants are determined by imposing the Ward-Takahashi identity,

0 = A(1T , 2T , 3T )|e1→p1 = 1
2
(C1 + C2)(p1e2)

2(p1e3)
2(p2e1) ,

0 = A(1T , 2T , 3T )|e2→p2 = 1
2
(C2 − C3)(p2e1)

2(p1e3)
2(p1e2) ,

0 = A(1T , 2T , 3T )|e3→p3 = −1
2
(C1 + C3)(p1e2)

2(p2e1)
2(p1e3) .

(1.21)

The coefficients are related by C1 = −C2 = −C3, so we obtain

A(1T , 2T , 3T ) = Cd=−3(p1e3)(p2e1)(p1e2) [(e1e2)(p1e3 − p2e3) + (e2e3)(p2e1 − p3e1)

+ (e3e1)(p3e2 − p1e2)] .
(1.22)

Finally, the last amplitude we can write corresponds to six powers of momenta,

O(p6) : A(1T , 2T , 3T ) = Cd=−5(p1e2)
2(p2e3)

2(p3e1)
2 . (1.23)

We now associate these amplitudes with their corresponding Lagrangian formulations. Eq. (1.19)
comes from the Einstein-Hilbert action,

S ⊃ Cd=−1

∫ √−g R d4x , (1.24)

where R is the Ricci scalar and g is the determinant of the metric tensor. Thus, Eq. (1.19) is
the full tree-level 3-graviton scattering amplitude in General Relativity.

The amplitude in Eq. (1.22) arises from the Gauss-Bonnet [39] modified theory of gravity,

S ⊃ Cd=−3

∫ √−g (R2 − 4RµνR
µν +RµνρσR

µνρσ)d4x , (1.25)

with Rµν the Ricci tensor and Rµνρσ the Riemann tensor.
The amplitude in Eq. (1.23) corresponds to a modified theory of gravity cubic in the Rie-

mann tensor,

S ⊃ Cd=−5

∫ √−g R3d4x . (1.26)

It is worth mentioning that the amplitude Eq. (1.19) for the scattering of 3 gravitons at
order O(p2) has the same kinematic structure as the square of the 3-vector amplitude Eq. (1.13).
This feature is an example of the broader principle of color-kinematics duality, where graviton
amplitudes can be obtained by squaring the kinematic component of gluon amplitudes. See
[40] for a review on this topic.
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1.2 General 3-point helicity amplitudes

Having examined the cases of spin-0, 1, and 2, we now consider 3-particle scattering amplitudes
in a systematic framework. We have been working with generic polarization vectors and tensors,
but these are redundant objects that obscure the amplitude structure. Instead, it is enlightening
to consider the helicity basis for the particle polarizations [13].

According to Wigner’s classification [41], particles are described as irreducible representa-
tions of the Poincaré group. Given some particle with momentum p, we define the little group
as the group of Lorentz transformations that leave p invariant. Then, particle states can be
defined by the momentum p and how they transform under the little group [42]. In the case
of massless particles in 4 dimensions, the little group is SO(2) ≃ U(1). The quantum number
associated with this group is the helicity h, defined as the projection of the particle spin onto
its direction of motion. Every massless particle can have two helicities ±h.

Helicity amplitudes describe the scattering of particles with well-defined helicities. These
amplitudes have the right transformation properties under the little group, and in many cases
they show a surprisingly simple structure. Perhaps the most famous example of this is the
Parke-Taylor formula for gluon scattering in a configuration of maximum helicity violation [9],
which we mentioned in the introduction of this thesis.

When computing on-shell helicity amplitudes, we ideally want to replace the redundant
momenta and polarization vectors by some objects that transform properly under the little
group. This goal is accomplished using spinor-helicity variables. The details and conventions
for these variables are specified in Appendix A.

After these considerations, we are ready to derive the general formula for 3-point helicity
amplitudes. Expressing the 3-particle on-shell kinematics Eq. (1.2) in terms of spinor-helicity
variables,

0 = p21 = (p2 + p3)
2 = ⟨23⟩ [32] ,

0 = p22 = (p1 + p3)
2 = ⟨13⟩ [31] ,

0 = p23 = (p1 + p2)
2 = ⟨12⟩ [21] .

(1.27)

For instance, the first line shows that either ⟨23⟩ ̸= 0 or [32] ̸= 0. This leads to two different
kinematic configurations for the 3-particle amplitude [33], as shown below.

� If ⟨23⟩ ≠ 0, then [32] = [31] = [12] = 0.

� If [23] ̸= 0, then ⟨32⟩ = ⟨31⟩ = ⟨12⟩ = 0.

This statement can be demonstrated as follows. If ⟨23⟩ ≠ 0, then [32] = 0. Since ⟨23⟩ [31] =
−⟨21⟩ [11]−⟨22⟩ [21] = 0, in this case [31] = 0 as well. Similarly, since ⟨23⟩ [21] = −⟨13⟩ [11]−
⟨33⟩ [31] = 0, we see that [21] = 0. The case [23] ̸= 0 is exactly the same but interchanging
angle and square brackets.

In the configuration where [32] = [31] = [12] = 0, the general expression for a 3-particle
amplitude is given by

A(1h1 , 2h2 , 3h3) = C ⟨12⟩a ⟨23⟩b ⟨31⟩c , (1.28)
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where C is a constant and a, b, c are fixed when we take into account little group covariance.
Under the little group, the amplitude transforms as

A(1h1 , 2h2 , 3h3) −→ th11 t
h2
2 t

h3
3 A(1h1 , 2h2 , 3h3) ,

⟨12⟩a ⟨23⟩b ⟨31⟩c −→ t
(a+c)
1 t

(a+b)
2 t

(b+c)
3 ⟨12⟩a ⟨23⟩b ⟨31⟩c ,

(1.29)

with t some parameter. Equating the little group weights, the exponents are

a = h3 − h1 − h2 , b = h1 − h2 − h3 , c = h2 − h3 − h1 . (1.30)

Then the mass dimension of the kinematic part of the amplitude is

[
⟨12⟩a ⟨23⟩b ⟨31⟩c

]
= a+ b+ c = −h1 − h2 − h3 , (1.31)

As we mentioned before, this number cannot be negative by locality, because 3-point amplitudes
do not have poles. Then, we must impose −h1 − h2 − h3 = −h ≥ 0, with h = h1 + h2 + h3
the total helicity. If this condition on the particle helicities is not satisfied, then the amplitude
cannot be written as in Eq. (1.28) and instead we have to use the configuration where ⟨32⟩ =
⟨31⟩ = ⟨12⟩ = 0. Overall, the most general expression for the 3-point amplitude is [33]

A(1h1 , 2h2 , 3h3) =

{
C ⟨12⟩h3−h1−h2 ⟨23⟩h1−h2−h3 ⟨31⟩h2−h3−h1 if h ≤ 0

C̃ [12]h1+h2−h3 [23]h2+h3−h1 [31]h3+h1−h2 if h ≥ 0
. (1.32)

This formula is valid non-perturbatively, as it relies solely on Lorentz symmetry, locality
and dimensional analysis. Using it, we can easily rederive the 3-point amplitudes for spin-0, -1
and -2.

� Spin 0: All the particles have helicity zero and the amplitude is just a constant, as we
saw in Eq. (1.5),

A(1, 2, 3) = Cd=1 . (1.33)

� Spin 1: Vector bosons have helicity h = ±1 and there are 4 non-vanishing amplitudes.
The helicities choices −−+ and + +− lead to

A(1−a , 2
−
b , 3

+
c ) = Cd=0f

abc ⟨12⟩3
⟨13⟩ ⟨32⟩ , A(1+a , 2

+
b , 3

−
c ) = Cd=0f

abc [12]3

[13] [32]
, (1.34)

which correspond to Eq. (1.13) written in terms of spinor-helicity variables. For the
helicity choices −−− and + + +, we obtain

A(1−a , 2
−
b , 3

−
c ) = Cd=−2f

abc ⟨12⟩ ⟨23⟩ ⟨31⟩ ,
A(1+a , 2

+
b , 3

+
c ) = Cd=−2f

abc [12] [23] [31] ,
(1.35)

which correspond to Eq. (1.14).
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� Spin 2: the particles have helicities h = ±2 and again there are 4 non-vanishing ampli-
tudes. Helicities −−+ and + +− correspond to Eq. (1.19) and can be written as

A(1−−, 2−−, 3++) = Cd=−1
⟨12⟩6

⟨13⟩2 ⟨32⟩2
, A(1++, 2++, 3−−) = Cd=−1

[12]6

[13]2 [32]2
. (1.36)

The other helicity choices −−− and + + + are associated to Eq. (1.23) and lead to

A(1−−, 2−−, 3−−) = Cd=−5 ⟨12⟩2 ⟨23⟩2 ⟨31⟩2 ,

A(1++, 2++, 3++) = Cd=−5 [12]
2 [23]2 [31]2 .

(1.37)

Remarkably, these are the only amplitudes we can write and Eq. (1.22) is missing. This is
because now we are working with spinor-helicity variables in 4-dimensions and Eq. (1.22)
vanishes in that case. Indeed, in 4-dimensions the Gauss-Bonnet is a total derivative [43]
and does not contribute to graviton scattering.

Notice as well how Eq. (1.36) and Eq. (1.37) are the square of the kinematic part of
Eq. (1.34) and Eq. (1.35), as expected due to color-kinematics duality.

These examples illustrate the scattering of three particles with the same spin. However, the
general expression Eq. (1.32) enables the derivation of any 3-point amplitude. In Section 2.1
we will use it to build all the 3-point amplitudes in the Standard Model.

1.3 4-point amplitudes and factorization

We now extend our discussion to on-shell amplitudes for higher-point interactions. Let us
consider the scattering of four massless particles with momenta pi. In this configuration, we
define the following kinematic variables

s ≡ s12 = (p1 + p2)
2 = (p3 + p4)

4 = ⟨12⟩ [12] = ⟨34⟩ [34] ,
t ≡ s13 = (p1 + p3)

2 = (p2 + p4)
4 = ⟨13⟩ [13] = ⟨24⟩ [24] ,

u ≡ s14 = (p1 + p4)
2 = (p2 + p3)

4 = ⟨14⟩ [14] = ⟨23⟩ [23] .
(1.38)

These are the well-known Mandelstam variables, which obey s+ t+ u = 0. It is also helpful to
remember that the mass dimension of a 4-point amplitude is [A4] = 0.

At tree level, we can construct two classes of 4-point amplitudes: contact amplitudes and
amplitudes with propagators. In general we have to consider both of these terms, and locality
fixes the 4-point amplitude structure to be the following:

A4 = Acontact
4 +As

4 +At
4 +Au

4 , (1.39)

whereAcontact
4 is the contact amplitude andAs

4, At
4, Au

4 have poles corresponding to the exchange
of a particle in the s-, t- or u- channels. We will study the two classes of amplitudes separately.
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1.3.1 Contact amplitudes

Contact amplitudes originate from 4-particle interactions and have no momentum poles. The
recipe for constructing them is to write down all possible terms with the proper little group
weights and no negative powers of momenta. This must be done on a case-by-case basis, as
there is no analog of Eq. (1.32) for n-point amplitudes with n > 3.

As an example, we consider the scattering of four identical scalar particles. The lowest-order
contact amplitude is just a constant

O(p0) : A(1, 2, 3, 4) = Cd=0 . (1.40)

This corresponds to the well-known λϕ4 theory, described by the following interaction La-
grangian

L ⊃ Cd=0 ϕ
4 . (1.41)

Higher-order contact amplitudes include terms such as

O(p2) : A(1, 2, 3, 4) = Cd=−2 (C1s12 + C2s13) , (1.42)

where Ci are dimensionless constants. This amplitude arises from an irrelevant dimension-6
operator in an effective field theory, such as

L ⊃ Cd=−2 ϕ
2(∂ϕ)2 . (1.43)

In Section 2.2 we will explore examples of contact amplitudes within the Standard Model
Effective Field Theory.

1.3.2 Factorizable amplitudes

4-point amplitudes can also be constructed by connecting two (contact) 3-point amplitudes via
a propagator. Each propagator introduces a factor 1/sij, so the amplitude has a simple pole
for sij = 0. Generally, 4-point amplitudes exhibit three simple poles at s = 0, t = 0 and u = 0.

The construction of 4-point amplitudes from 3-point amplitudes relies on factorization: in
the limit when one of the propagators is on shell, the amplitude has to factorize into the product
of two (on-shell) 3-point amplitudes. For instance, for a boson propagator in the s-channel,
factorization imposes

lim
s12→0

iA4(1, 2, 3, 4) =
∑

h

iA3(1, 2, ℓ
h)

i

s12
iA3(−ℓ−h, 3, 4) , (1.44)

where ℓ = p1 + p2 = p3 + p4 is the momentum of the internal propagator and the summation
runs over the possible polarizations of particle ℓ. Equivalently, Eq. (1.44) can be expressed as

lim
s12→0

s12A4(1, 2, 3, 4) = −
∑

h

A3(1, 2, ℓ)A3(ℓ, 3, 4) . (1.45)
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Extending this to a general internal particle, whether fermion or boson, the factorization
condition becomes

lim
s12→0

s12A4(1, 2, 3, 4) = −
∑

h

iF [ℓ] A3(1, 2, ℓ)A3(−ℓ, 3, 4) , (1.46)

where F [i1, ..., in] counts the number of fermions and antifermions in the list i1, ..., in
1. For

poles in t- and u-channels, we also have

lim
s13→0

s13A4(1, 2, 3, 4) = −
∑

h

iF [ℓ](−1)n23 A3(1, 3, ℓ)A3(−ℓ, 2, 4) , (1.47)

lim
s14→0

s14A4(1, 2, 3, 4) = −
∑

h

iF [ℓ](−1)n23(−1)n34 A3(1, 4, ℓ)A3(−ℓ, 2, 3) , (1.48)

where nij = 1 if both i and j are fermions, and nij = 0 otherwise. The (−1) factors account
for possible fermion exchanges when the particles are reordered.

Several approaches can be employed to construct factorizable 4-point amplitudes. Here, we
focus on the “ansatz” method and the momentum shift method.

The “ansatz” method

This method is based on making an ansatz for the amplitude and then verifying that it factorizes
properly. For clarity, let us consider scalar QED, which is the theory of a complex scalar ϕ
interacting with a photon γ. The 3-point amplitudes in this theory are

A(1ϕ, 2ϕ∗ , 3
−
γ ) = Cd=0

⟨23⟩ ⟨31⟩
⟨12⟩ , A(1ϕ, 2ϕ∗ , 3

+
γ ) = Cd=0

[23] [31]

[12]
. (1.49)

We want to compute the 4-point amplitude for the scattering of two scalars and two pho-
tons2. For this process, we must consider the t- and u-channels, as shown in Figure 1.1. To get
an ansatz for the amplitude, we start by imposing factorization in the t-channel. According to
Eq. (1.47),

lim
t→0

A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) =

1

t
A3(1ϕ, 3

+
γ , ℓϕ∗)A3(−ℓϕ, 2ϕ∗ , 4−γ ) , (1.50)

with ℓ = p1 + p3 = p2 + p4 the momentum of the internal scalar. Using expressions Eq. (1.49)
for the 3-point amplitudes,

lim
t→0

A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) =

1

t
C2
d=0

[ℓ3] [31]

[1ℓ]

⟨24⟩ ⟨4ℓ⟩
⟨ℓ2⟩ = −C2

d=0

⟨14⟩ ⟨24⟩
⟨13⟩ ⟨23⟩ , (1.51)

where in the last step we have used that [ℓ3] ⟨4ℓ⟩ = [13] ⟨41⟩ and [1ℓ] ⟨ℓ2⟩ = [13] ⟨32⟩. This is
a good ansatz for the amplitude, since it has the right dimensionality and little group weights.

1See Appendix A.3 for details on the origin of the iF [ℓ] factor.
2In Scalar QED this amplitude could get a contribution from the contact interaction ϕϕ∗AµA

µ. However,
one can prove that this term gives a vanishing contribution to the on-shell 4-point amplitude [14].
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+
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Figure 1.1: Feynman diagrams for the amplitude A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) in sQED at tree level.

There are two factorization channels: t and u.

The full amplitude will be Eq. (1.51) plus a term that goes to zero when t→ 0. Next, we check
the factorization in the u-channel. From Eq. (1.48),

lim
u→0

A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) =

1

u
A3(1ϕ, 4

−
γ , qϕ∗)A3(−qϕ, 2ϕ∗ , 3+γ )

=
1

u
C2
d=0

⟨q4⟩ ⟨41⟩
⟨1q⟩

[23] [3q]

[q2]
= −C2

d=0

⟨14⟩ ⟨24⟩
⟨13⟩ ⟨23⟩ ,

(1.52)

with q = p1 + p4 = p2 + p3. Again, the full amplitude includes Eq. (1.52) plus a term that
vanishes as u→ 0. By comparing Eq. (1.51) and Eq. (1.52) we conclude that the amplitude is

A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) = −C2

d=0

⟨14⟩ ⟨24⟩
⟨13⟩ ⟨23⟩ . (1.53)

In this example, deriving the full amplitude by imposing factorization was straightforward,
but that is not always true. In order to compute scattering amplitudes in a systematic way for
any number of particles, we have to use momentum shifts.

Momentum shifts

The key idea is to build higher-point amplitudes from lower-point amplitudes by means of
complex deformations of the external particle momenta. This is done using the analytical
properties of on-shell scattering amplitudes.

Let us first introduce the concept of complex momentum shifts [14]. Consider the scattering
amplitude An of n massless particles. The on-shell condition requires p2i = 0 for i = 1, ..., n, and
momentum conservation enforces

∑n
i=1 p

µ
i = 0. Consider also a set of n complex four-vectors

rµi with the following properties:

(a)
∑n

i=1 r
µ
i = 0.

(b) r2i = 0 and rirj = 0 for i, j = 1, ..., n.

(c) ripi = 0 for each i = 1, ..., n.
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We define the shifted momenta p̂µi as

p̂µi ≡ pµi + zrµi , z ∈ C . (1.54)

From properties (a), (b) and (c), it is easy to check that the shifted momenta are also on shell
(p̂2i = 0) and obey momentum conservation (

∑n
i=1 p̂

µ
i = 0). For this reason, we can consider the

scattering amplitude An in terms of the shifted momenta p̂µi instead of pµi . We define this
shifted amplitude Ân(z) as a function of the complex variable z. The original amplitude is
recovered for Ân(z = 0) = An.

The analytic structure of Ân(z) is easy to determine if An is a tree-level amplitude. In that
case, An has simple poles proportional to 1/P 2

I , where P
µ
I =

∑
i∈I p

µ
i and {pµi }i∈I is a subset of

momenta. The shifted propagators are proportional to 1/P̂ 2
I , with

P̂ 2
I =

(∑

i∈I
p̂µi

)2

= P 2
I + 2zPIRI , Rµ

I =
∑

i∈I
rµi . (1.55)

Notice that P̂ 2
I is linear in z, since the terms that should go as z2 vanish by property (b). It is

convenient to write the shifted propagator as

1

P̂ 2
I

= − zI
P 2
I (z − zI)

, with zI = − P 2
I

2PIRI

. (1.56)

From this expression, it is easy to see that the only singularities of Ân(z) in the complex plane
are simple poles for z = zI . For generic momenta, zI ̸= 0 and all the zI are different.

Now let us consider Ân(z)/z as a function of z with simple poles at z = 0 and z = zI . By
Cauchy’s theorem, the contour integral of Ân(z)/z along a circle surrounding the origin is

∮

c0

Ân(z)

z
dz = 2πi Res

z=0

(
Ân(z)

z

)
= 2πiÂn(z = 0) = 2πiAn . (1.57)

We can deform the contour c0 to pick up the other singularities of the function, as shown
in Figure 1.2. This leads to

∮

c0

Ân(z)

z
dz =

(∑

I

∮

cI

+

∮

c∞

)
Ân(z)

z
dz = −2πi

∑

zi

Res
z=zI

(
Ân(z)

z

)
− 2πiBn , (1.58)

where Bn is the residue of the pole at infinity, which is equal to the O(z0) term in the Laurent
series of Ân(z) at z = ∞. Equating Eq. (1.57) and Eq. (1.58), we obtain

An = −
∑

zi

Res
z=zI

(
Ân(z)

z

)
−Bn . (1.59)

From Eq. (1.56), the residue of Ân(z)/z at zI factorizes into two on-shell subamplitudes:

Res
z=zI

(
Ân(z)

z

)
= −ÂL(zI)

1

P 2
I

ÂR(zI) . (1.60)
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z
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×
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Figure 1.2: Contours of integration. c0 can be deformed into cI + c∞

Res
z=zI

(
Ân(z)

z

)
= AL AR

1

n

PI··
·

··
·

Figure 1.3: Diagram of the factorization of Ân at the pole z = zi.

This is depicted schematically in Figure 1.3. It looks similar to the usual Feynman diagrams,
but remarkably the internal line is now on-shell P 2

I = 0. The subamplitudes ÂL and ÂR are
both scattering amplitudes for n− 1 particles.

Combining Eq. (1.59) and Eq. (1.60), we obtain

An =
∑

zI

ÂL(zI)
1

P 2
I

ÂR(zI)−Bn , (1.61)

which is an expression for An in terms of lower-point amplitudes An−1 plus the contribution
from the pole at infinity Bn. This term has in general no expression in terms of lower-point
amplitudes, so for practical uses of Eq. (1.61) we want it to vanish. To ensure that Bn = 0,
we must use a momentum shift that satisfies Ân(z) → 0 for z → ∞. This is called a good
momentum shift.

For a good momentum shift, Eq. (1.61) leads to the so-called on-shell recursion relations
[10, 44]. The main idea is to use lower-point amplitudes as building blocks for higher-point
amplitudes. Recursion relations are a powerful tool to compute general n-point amplitudes and
have been applied to the context of gauge theories and gravity, among others [45–49]. Some
examples of momentum shifts are:

� BCFW shift: This is one of the most relevant momentum shifts. It was first proposed in
[10] and is used to obtain the BCFW recursion relations. In this shift, two of the external
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momenta –that we label as i and j– are shifted in the following way

ˆ|i⟩ = |i⟩ − z |j⟩ , |̂i] = |i] , ˆ|j⟩ = |j⟩ , ˆ|j] = |j] + z |i] . (1.62)

This is a [j, i⟩-shift.

� Risager shift: This is a three-line shift that was introduced in [50]. We choose three of
the external legs –1,2 and 3– and apply the following deformation,

ˆ|1] = |1] , ˆ|1⟩ = |1⟩+ z [23] |η⟩ ,
ˆ|2] = |2] , ˆ|2⟩ = |2⟩+ z [31] |η⟩ ,
ˆ|3] = |3] , ˆ|3⟩ = |3⟩+ z [12] |η⟩ ,

(1.63)

with |η⟩ a reference spinor that can take any value. Another option for this shift is the
complex-conjugate of Eq. (1.63).

We now use momentum shifts to rederive the amplitude Eq. (1.53) that we obtained in the
previous section. As shown in Figure 1.1, the scattering of two scalars and two gauge bosons in
scalar QED involves the t- and u-channels, so the amplitude has two simple poles for t = 0 and
u = 0. The shifted amplitude Â4(z) has two simple poles at zt and zu. For a good momentum
shift, Eq. (1.60) reduces to

A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) = Â3(1ϕ, 3

+
γ , ℓϕ∗ ; zt)

1

t
Â3(−ℓϕ, 2ϕ∗ , 4−γ ; zt)

+ Â3(1ϕ, 4
−
γ , qϕ∗ ; zu)

1

u
Â3(−qϕ, 2ϕ∗ , 3+γ ; zu) ,

(1.64)

with ℓ = p1 + p3 = p2 + p4 and q = p1 + p4 = p2 + p3. We have defined Ân(1, ..., n; zI) as the
amplitude An(1, ..., n) with shifted momenta for z = zI .

The next step is to choose a momentum shift. We will use the BCFW [4, 3⟩-shift:
ˆ|3⟩ = |3⟩ − z |4⟩ , ˆ|3] = |3] , ˆ|4⟩ = |4⟩ , ˆ|4] = |4] + z |3] . (1.65)

One can check that this is a good shift, since it has the right large-z behavior when applied to
Eq. (1.53). The shifted propagators of the amplitude are

t̂ = (p̂1 + p̂3)
2 = ˆ⟨13⟩ ˆ[13] = ⟨1| (|3⟩ − z |4⟩) [13] , (1.66)

û = (p̂1 + p̂4)
2 = ˆ⟨14⟩ ˆ[14] = ⟨14⟩ [1| (|4] + z |3]) . (1.67)

The poles of Â4(z) are the values of z where the propagators go on-shell,

0 = t̂|z=zt = ⟨1| (|3⟩ − zt |4⟩) [13] , =⇒ zt =
⟨13⟩
⟨14⟩ , (1.68)

0 = û|z=zu = ⟨14⟩ [1| (|4] + zu |3]) , =⇒ zu = − [14]

[13]
. (1.69)
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With this, the shifted subamplitudes in Eq. (1.64) are

Â3(1ϕ, 3
+
γ , ℓϕ∗ ; zt)

1

t
Â3(−ℓϕ, 2ϕ∗ , 4−γ ; zt) =

C2
d=0

t

ˆ[ℓ3] ˆ[31]

ˆ[1ℓ]

ˆ⟨24⟩ ˆ⟨4ℓ⟩
ˆ⟨ℓ2⟩

=
C2
d=0

t

⟨23⟩ ⟨41⟩ [31]
⟨32⟩ − ⟨13⟩

⟨14⟩ ⟨42⟩

= C2
d=0

⟨24⟩ ⟨14⟩2
⟨12⟩ ⟨34⟩ ⟨13⟩ .

(1.70)

Â3(1ϕ, 4
−
γ , qϕ∗ ; zu)

1

u
Â3(−qϕ, 2ϕ∗ , 3+γ ; zu) =

C2
d=0

u

ˆ⟨q4⟩ ˆ⟨41⟩
ˆ⟨1q⟩

ˆ[23] ˆ[3q]

ˆ[q2]
=
C2
d=0

u

[23] [31] ⟨41⟩
[42]− [14]

[13]
[32]

= C2
d=0

[23] [13]2

[12] [34] [14]
= −C2

d=0

⟨24⟩ ⟨14⟩
⟨23⟩ ⟨13⟩

t

s
.

(1.71)

Summing Eq. (1.70) and Eq. (1.71) leads to the 4-point amplitude

A4(1ϕ, 2ϕ∗ , 3
+
γ , 4

−
γ ) = C2

d=0

⟨14⟩ ⟨24⟩
⟨13⟩ ⟨12⟩

(⟨14⟩
⟨34⟩ −

⟨13⟩ [13]
⟨23⟩ [12]

)
= −C2

d=0

⟨14⟩ ⟨24⟩
⟨13⟩ ⟨23⟩ , (1.72)

which is equal to Eq. (1.53).
Our derivation relies on the fact that [4, 3⟩ is a good momentum shift. This can be proved

by applying the shift to Â4 in Eq. (1.53) and showing that the amplitude vanishes at large z,

lim
z→∞

Â4 = −C2
d=0 lim

z→∞

[ ⟨14⟩ ⟨24⟩
(⟨13⟩ − z ⟨14⟩) (⟨23⟩ − z ⟨24⟩)

]
= 0 . (1.73)

An example of a bad momentum shift is the BCFW [3, 4⟩-shift, since it leads to

lim
z→∞

Â4 = −C2
d=0 lim

z→∞

[
(⟨14⟩ − z ⟨13⟩) (⟨24⟩ − z ⟨23⟩)

⟨13⟩ ⟨23⟩

]
→ ∞ , (1.74)

so the pole at infinity gives a non-vanishing contribution to Eq. (1.60). Notice how the only
difference between both shifts is the helicity of the shifted particles: [−,+⟩ is a good shift but
[+,−⟩ is a bad shift.

A priori, it is a challenging task to choose a good momentum shift to build an amplitude.
To determine whether a shift is good or not, we have to study the limit of Ân(z) when z → ∞.
However, in the context of recursion relations, we do not know An beforehand. The solution is
to do a general study of the large-z behavior of amplitudes in a given theory:

� For example, N. Arkani-Hammed et al. used the background field method to study gauge
theories in [51]. They concluded that gluon amplitudes in pure Yang-Mills theory are
constructible with BCFW shifts for helicity choices [−,−⟩, [+,+⟩ and [−,+⟩, but they
are not constructible with a [+,−⟩-shift.

� More recently in [49], C. Cheung et al. also applied the background field method to study
the constructibility of amplitudes in different theories. They determined the types of
momentum shifts that are valid for a collection of theories, including gauge theories with
fermions and scalars, supersymmetric theories and the Standard Model.
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1.3.3 Generalization to n-point amplitudes

Our discussion of 4-point amplitudes is naturally generalized to n-point amplitudes with n > 4.
In general we have to consider a contact n-point interaction plus the factorizable terms for all
the possible channels,

An = Acontact
n +

∑

i

Ai
n , (1.75)

where i denotes the different factorization channels. Using momentum shifts, we can compute
the factorizable amplitudes Ai

n from the lower-point amplitudes of the theory: Am with m < n.
The resulting An amplitudes form the basis for higher-point amplitudes: AM with n < M .

Overall, we have seen how on-shell methods are powerful tools for computing general tree-
level n-point amplitudes in a recursive way. Specifying the particle contact and interactions of
a theory fixes the on-shell contact amplitudes, which approximately correspond to operators in
the Lagrangian approach. Then, these contact amplitudes serve as the fundamental building
blocks for constructing higher-point amplitudes.

1.4 Conclusions of the chapter

In this chapter, we have explored the construction of tree-level on-shell amplitudes from first
principles, bypassing the need to define a Lagrangian. In particular, we have obtained tree-level
amplitudes using locality, Lorentz symmetry and dimensional analysis.

First, we have considered theories for particles of spin-0, -1 and -2. Imposing on-shell
kinematics and the correct dependence on polarizations, we have determined all possible 3-point
amplitudes. We have identified the amplitudes associated with scalar field theory, non-abelian
gauge theory and General Relativity, together with higher-order interactions from effective field
theories.

We have introduced the spinor-helicity formalism to streamline the building of 3-point am-
plitudes for particles of any spin. Considering amplitudes of well-defined helicity, we have used
little group covariance to constrain the general structure of 3-point amplitudes, as shown in
Eq. (1.32).

Regarding higher-point amplitudes, in general we have contact terms plus factorizable con-
tributions, which contain simple poles associated with propagators. In the limit when one of
the propagators goes on shell, the amplitude factorizes into a product of lower-point subampli-
tudes. The computation of factorizable amplitudes can be systematized with the technique of
momentum shifts. This leads to recursion relations that allow us to construct general n-point
amplitudes in terms of the fundamental contact amplitudes.

In summary, on-shell amplitude methods provide a practical and efficient framework for
studying scattering processes. These methods lay the groundwork for exploring more complex
systems, including loop amplitudes in effective field theories, which we develop in subsequent
chapters.
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Chapter 2

The on-shell Standard Model and
Standard Model Effective Field Theory

In this chapter we present the on-shell scattering amplitudes associated with particle inter-
actions in the Standard Model (Section 2.1) and the Standard Model Effective Field Theory
(Section 2.2). We primarily follow the approach in [1].

2.1 The on-shell Standard Model

The Standard Model (SM) of particle physics is the theory of electroweak interactions and
quantum chromodynamics (QCD). It describes the interactions of elementary fermions and
bosons through a non-abelian gauge theory with symmetry group SU(3)c × SU(2)L × U(1)Y .
The particle content of the Standard Model is summarized in Table 2.1.

Gauge bosons (spin 1) Fermions (spin 1/2) Scalars (spin 0)

B (1,1)0 l (1,2)−1/2 H (1,2)1/2

W (1,3)0 e (1,1)−1

G (8,1)0 q (3,2)−1/2

u (3̄,1)−1

d (3̄,1)−1

Table 2.1: SM particles and their SU(3)c × SU(2)L × U(1)Y representations. We use the fol-
lowing notation: (SU(3)c representation, SU(2)L representation)U(1) hypercharge. For each fermion
there are three generations or families, i.e., l = (l(1), l(2), l(3)), with {1, 2, 3} = {e, µ, τ}.

To compute on-shell scattering amplitudes in the Standard Model, we must specify the
interactions between the particles in Table 2.1. In other words, we must define the fundamental
contact amplitudes in the theory, which are used to build any n-point amplitude. An important
caveat is that the number of contact amplitudes that can theoretically be constructed with
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SM particles is infinite. However, since the Standard Model is defined as a renormalizable
theory, the only valid amplitudes are those derived from renormalizable interactions in the
Lagrangian formalism. These are amplitudes where the coupling constant has a non-negative
mass dimension [4]. Other contact amplitudes are not included in the Standard Model and
instead they are considered in the context of the Standard Model Effective Field Theory (see
Section 2.2).

2.1.1 Contact amplitudes

In this section we list the Standard Model contact amplitudes in the massless limit. Since we
require the renormalization of the theory, there are only 3-point and 4-point amplitudes. We
begin with those involving gauge bosons. Indices a, b, ... represent the adjoint representation of
non-abelian groups, while i, j, ... denote the fundamental representation. We have:

• Three gauge bosons:

A(1V a
− , 2V a

− , 3V a
+
) =

gV√
2
fabc

⟨12⟩3
⟨13⟩ ⟨32⟩ , A(1V a

+
, 2V a

+
, 3V a

−) =
gV√
2
fabc

[12]3

[13] [32]
. (2.1)

• One fermion - one antifermion - one gauge boson:

A(1ψj , 2ψ̄i
, 3V a

−) = gV
⟨13⟩2
⟨12⟩ (T

a)ji , A(1ψj , 2ψ̄i
, 3V a

+
) = gV

[23]2

[12]
(T a)ji . (2.2)

• Two scalars - one gauge boson:

A(1Hj , 2H†
i
, 3V a

−) = gV
⟨13⟩ ⟨23⟩
⟨21⟩ (T a)ji , A(1Hj , 2H†

i
, 3V a

+
) = gV

[13] [23]

[12]
(T a)ji , (2.3)

where gV is the dimensionless gauge coupling, fabc are the structure constants and T a are the
gauge group generators, normalized so that Tr

[
T a, T b

]
= δab/2. We refer to the gauge couplings

of U(1)Y , SU(2)L and SU(3)c as, respectively, g1, g2 and g3. For SU(2)L, the structure constants
correspond to the Levi-Civita tensor ϵabc and the generators are T a = σa/2, with σa the Pauli
matrices. For SU(3)c, the structure constants are fabc and the generators are the Gell-Mann
matrices λa. For the abelian group U(1)Y we must replace (T a)ji → Yiδ

j
i , with Yi the hypercharge

of particle i.
The relative signs between Eq. (2.2) and Eq. (2.3) are fixed by requiring the proper fac-

torization of 4-point tree-level amplitudes. This is the equivalent of gauge invariance in the
Lagrangian approach (see [42]). Finally, note that the first and second amplitudes in Eq. (2.1),
Eq. (2.2) and Eq. (2.3) are related by CPT invariance.

There are also Yukawa interactions between fermions and scalars. For one family, we have

A(1e, 2li , 3H†
j
) = ye ⟨12⟩ δij , A(1ē, 2l̄i , 3Hj) = ye [12] δ

j
i , (2.4)

A(1dA , 2qiB , 3H†
j
) = yd ⟨12⟩ δijδAB , A(1d̄A , 2q̄i,B , 3Hj) = yd [12] δ

j
i δAB , (2.5)

A(1uA , 2qiB , 3Hj) = yu ⟨12⟩ ϵijδAB , A(1ūA , 2q̄i,B , 3H†
j
) = yu [12] ϵijδAB , (2.6)
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with ye, yd and yu the dimensionless Yukawa couplings, which can be taken as real for a single
fermion family as we will consider here. The generalization to three families is straightforward.
Note that we have used i, j, ... for the SU(2)L indices and A,B, ... for the SU(3)c color indices

1.
Finally, the only non-vanishing 4-point contact amplitude involves four scalars:

A(1Hk , 2Hl , 3H†
i
, 4H†

j
) = λ

(
δki δ

l
j + δliδ

k
j

)
, (2.7)

with λ the 4-scalar coupling, which has mass dimension zero.

It is worth mentioning how the helicities of SM contact amplitudes are fixed by dimensional
analysis. For example, 3-vector SM amplitudes can only beA(1V a

− , 2V a
− , 3V a

+
) andA(1V a

+
, 2V a

+
, 3V a

−),
as given by Eq. (2.1). The all-plus and all-minus helicity choices are absent in the SM and in-
stead they correspond to non-renormalizable interactions. This structure is hidden when looking
at the SM amplitude in terms of momenta and polarization vectors, which is

A(1V a , 2V b , 3V c) = Cd=0fabc [e1e2(p1e3− p2e3) + e2e3(p2e1− p3e1) + e3e1(p3e2− p1e2)] , (2.8)

as we derived in Section 1.1.2. This highlights the convenience of using the helicity basis for
on-shell amplitudes.

An important observation is the absence of a 4-vector contact amplitude. In the Yang-Mills
Lagrangian, aside from the cubic interaction V 2∂V there is a quartic term V 4 that is needed to
ensure gauge invariance. When considering on-shell amplitudes, however, the cubic term V 2∂V
already captures all the relevant information [14]. Indeed, the 3-vector on-shell amplitude is a
gauge-invariant object that can be used to compute gauge-invariant higher-point amplitudes.
Thus, there is no need to include an additional 4-vector contact interaction.

2.1.2 Factorizable amplitudes

Following 1.3.2, we can build higher-point factorizable amplitudes by imposing the correct
little-group weights and ensuring proper factorization. For example, we list some 4-point SM
amplitudes that will be used in Chapters 4, 5 and 6 of this thesis:

A(1Ga
+
, 2dA , 3qiB , 4H†

j
) = −ydg3δijλaAB

[41]2

[42] [43]
= ydg3δ

i
jλ

a
AB

⟨32⟩2
⟨12⟩ ⟨13⟩ , (2.9)

with g3 and λa the SU(3)c coupling and generators.

A(1Wa
+
, 2e, 3li , 4H†

j
) = yeg2(T

a)ij
[21] [41]

[24] [23]
= yeg2(T

a)ij
⟨23⟩ ⟨43⟩
⟨14⟩ ⟨13⟩ , (2.10)

with g2 and T a the SU(2)L coupling and generators.

A(1B+ , 2e, 3li , 4H†
j
) = yeg1δ

i
j

(
Yl
[21] [41]

[24] [23]
− Ye

[31] [41]

[34] [32]

)
, (2.11)

1To simplify the notation, we write both covariant and contravariant SU(3)c indices as subindices.
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with g1 the U(1)Y coupling.

A(1B+ , 2Hi , 3Wa
− , 4H†

j
) = g1g2YH(T

a)ij
⟨23⟩ ⟨43⟩
⟨21⟩ ⟨41⟩ . (2.12)

A(1B+ , 2li , 3Wa
− , 4l̄j) = g1g2Yl(T

a)ij
⟨23⟩2

⟨21⟩ ⟨14⟩ . (2.13)

We will also require the following 5-point amplitude

A(1Wa
+
, 2W b

+
, 3e, 4li , 5H†

j
) = yeg

2
2

(
(T aT b)ij

⟨54⟩
⟨25⟩ ⟨41⟩ − (T bT a)ij

⟨35⟩
⟨32⟩ ⟨51⟩

) ⟨34⟩
⟨12⟩ . (2.14)

By complex-conjugating the above expressions, we obtain the amplitudes for opposite he-
licities and interchanging particles with antiparticles.

Note that all amplitudes in Eq. (2.9-2.13) have total helicity h = 0. Moreover, nearly all
4-point SM amplitudes have h = 0, as was pointed out in [52]. The only exception are the
A(1e, 2li , 3uA , 4qiB) and A(1d, 2qi , 3uA , 4qiB) amplitudes for the scattering of four fermions. These
amplitude are proportional to the Yukawa couplings yeyu and ydyu and have total helicity
h = −2. In Section 3.4.1, we will use these properties to derive helicity selection rules for the
mixing of higher-dimension operators in effective field theories.

2.1.3 Lagrangian formulation

For clarity, let us see the equivalence between our on-shell amplitudes and the usual Lagrangian
formulation. The contact amplitudes in Section 2.1.1 can be obtained from the Standard Model
Lagrangian2,

LSM = −1

4
W I
µνW

µν
I − 1

4
BµνB

µν − 1

4
Ga
µνG

µν
a +

∑

ψ=LL,eR,QL,uR,dR

(
ψ̄iγµDµψ

)

+ (DµH)†DµH − λ

(
|H|2 − v2

2

)2

− ye
(
H†ēRLL + L̄LeRH

)

− yd
(
H†d̄RQL + Q̄LdRH

)
− yu

(
H̃†ūRQL + Q̄LuRH̃

)
,

(2.15)

where we have defined H̃i = ϵijH
∗
j , with ϵij the totally antisymmetric Levi-Civita tensor and

Hj the Higgs doublet. The field-strengths for the gauge fields Ga
µ,W

I
µ and Bµ are

Ga
µν = ∂µG

a
ν − ∂µG

a
ν + g3f

abcGb
µG

c
ν/
√
2 , (2.16)

W a
µν = ∂µW

a
ν − ∂µW

a
ν + g2ϵ

abcW b
µW

c
ν/
√
2 , (2.17)

Bµν = ∂µBν − ∂µBν , (2.18)

2Further details on the Standard Model Lagrangian can be found in standard textbooks on particle physics,
such as [4, 53].
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where g2, g3 are the gauge couplings, and ϵabc, fabc are the structure constants for the SU(2)L
and SU(3) gauge groups. The covariant derivative Dµ is given by

Dµ = ∂µ − i
g3√
2
λaGa

µ − i
g2√
2
T aW a

µ − i
g1√
2
YiBµ , (2.19)

where λa and T a are, respectively, the SU(3)c and SU(2)L generators and Yi denotes the hy-
percharge. The SU(N) generators are normalized so that Tr

[
T a, T b

]
= δab/2.

In Eq. (2.15), fermion interactions are expressed in terms of 4-component Dirac spinors.
For our purposes and for comparison with Table 2.1, it is convenient to use 2-component Weyl
spinors instead. Since we are considering massless fermions, we can write

LL =

(
l

0

)
, QL =

(
q

0

)
, ēR = (e, 0) , d̄R = (d, 0) , ūR = (u, 0) , (2.20)

where l, q, e, d and u are left-handed Weyl spinors with helicity h = −1/2. Additional details
on the two-component spinor notation can be found in Appendix A.2.

2.2 The on-shell Standard Model Effective Field Theory

The Standard Model can be understood as the low-energy approximation of a more complex
theory, whose characteristic energy scale Λ is well above the electroweak scale. At low energies,
one can integrate out the heavy degrees of freedom of the complete theory and generate an
Effective Field Theory (EFT). This EFT consists of an infinite tower of effective interactions
expressed in terms of the lighter degrees of freedom of the theory.

For the case of the Standard Model EFT (SMEFT), one has to consider all the possible
(non-renormalizable) interactions of the particles in Table 2.1 and write down the corresponding
contact amplitudes. It is convenient to organize the contact amplitudes in terms of the mass
dimension of their coupling constants. Couplings with negative mass dimensions come from
dimensionless constants suppressed by the energy scale Λ. The greater the negative mass
dimension, the more suppressed the interaction. To make this dependence explicit, from now
on we adopt the following notation for coupling constants Cd,

Cd −→ CΛd , (2.21)

where C is dimensionless and [Λ] = 1.
The framework of the SMEFT is particularly useful for parameterizing potential new physics

–beyond the Standard Model– in a model-independent manner. Non-renormalizable SMEFT
interactions describe deviations from the SM in a systematic way, allowing for a structured
analysis of experimental data. We will see an example of this in Chapter 5, where we use the
SMEFT to study the phenomenology of lepton flavor violation.

As discussed in Section 2.1, the Standard Model encompasses interactions with couplings
of non-negative mass dimension. In contrast, the SMEFT describes interactions among SM
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particles with couplings of negative dimension. Then, the basic building blocks of the SMEFT
are contact amplitudes with some factors of 1/Λ.

In recent years, on-shell amplitude methods have been widely applied to the study of EFTs
and in particular to the task of building a complete basis of interactions for generic theories,
including the SMEFT. Some examples include [32, 54–64]. Here we present a simplified discus-
sion, considering only the kinematic structure of the amplitudes and not their color and flavor
indices. Using the terminology from [13], these are called “color-stripped” amplitudes.

2.2.1 Contact amplitudes

In the context of the SMEFT, the largest corrections to the Standard Model are expected to be
the interactions with the least powers of 1/Λ. This discussion focuses on amplitudes at order
1/Λ and 1/Λ2, for any number of particles n and total helicity h. As explained in Section 1.3.1,
we can build contact amplitudes using dimensional analysis, locality and little group covariance.
Remember that the mass dimension of an amplitude An obeys

[An] = 4− n , (2.22)

with n the number of scattered particles. Thus, for EFT contact amplitudes at order 1/Λm,
the mass dimension of the kinematic piece of the amplitude is 4 − n + m. Knowing this, we
can write down the building blocks of the SMEFT.

Order 1/Λ

Table 2.2 summarizes the possible contact amplitudes at order 1/Λ. For each An, we express
the allowed kinematic factors in terms of angle and square spinor products. Each kinematic
factor corresponds to an amplitude with a certain helicity h. Amplitudes with n > 5 are not
present because they would have negative powers of momenta, which is ruled out by locality.
Note also that ⟨..⟩ [..] (with h = 0) is not a valid spinor structure for n = 3, since 3-point
amplitudes cannot have a mix of angle and square spinors (see Section 1.2).

[An] [kinematic factor] Possible spinor structures

n = 3 1 2 ⟨..⟩2 , [..]2 (h = ±2)

n = 4 0 1 ⟨..⟩ , [..] (h = ±1)

n = 5 −1 0 1 (h = 0)

Table 2.2: Allowed spinor structures for contact amplitudes at order 1/Λ.

Taking into account the spinor structures in Table 2.2, we can build the following amplitudes:
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• n = 3: There are two possible amplitudes with h = −2,

AV 2H(1V− , 2V− , 3H) =
CV 2H

Λ
⟨12⟩2 , (2.23)

AV ψ2(1V− , 2ψ, 3ψ) =
CV ψ2

Λ
⟨12⟩ ⟨13⟩ . (2.24)

• n = 4: There is one h = −1 amplitude,

Aψ2H2(1ψ, 2ψ, 3H , 4H) =
Cψ2H2

Λ
⟨12⟩ . (2.25)

• n = 5: There is one h = 0 amplitude,

AH5(1ϕ, 2ϕ, 3ϕ, 4ϕ, 5ϕ) =
CH5

Λ
. (2.26)

However, for the SM particles listed in Table 2.1, most of these amplitudes are forbidden due
to the SM charges. In fact, there is only one contact amplitude in the SMEFT at order 1/Λ,
up to complex-conjugation,

Aψ2H2(1ψ, 2ψ, 3H , 4H) =
Cψ2H2

Λ
⟨12⟩ , (2.27)

where ψ is a lepton. Note that this amplitude violates lepton number conservation by two units.

Order 1/Λ2

The possible amplitudes at order 1/Λ2 are shown in Table 2.3. In this case locality allows for
amplitudes up to n = 6. The structures ⟨..⟩2 [..] and ⟨..⟩ [..]2 are not present in n = 3 because
they mix square and angle spinor products.

[An] [kinematic factor] Possible spinor structure

n = 3 1 3 ⟨..⟩3 , [..]3 (h = ±3)

n = 4 0 2 ⟨..⟩2 , [..]2 (h = ±2) ; ⟨..⟩ [..] (h = 0)

n = 5 −1 1 ⟨..⟩ , [..] (h = ±1)

n = 6 −2 0 1 (h = 0)

Table 2.3: Allowed spinor structures for contact amplitudes at order 1/Λ2.

Within the SMEFT, we have the following amplitudes:

• n = 3: There is one possible amplitude,

AV 3(1V a
− , 2V b

−
, 3V c

−) =
CV 3

Λ2
fabc ⟨12⟩ ⟨23⟩ ⟨31⟩ . (2.28)
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• n = 4: There are three distinct amplitudes for h = −2,

AV 2H2(1V− , 2V− , 3H , 4H†) =
CV 2H2

Λ2
⟨12⟩2 , (2.29)

AV ψ2H(1V− , 2ψ, 3ψ, 4H†) =
CV ψ2H

Λ2
⟨12⟩ ⟨13⟩ , (2.30)

Aψ4(1ψ, 2ψ, 3ψ, 4ψ) =
(
Cψ4 ⟨12⟩ ⟨34⟩+ C ′ψ4 ⟨13⟩ ⟨24⟩

) 1

Λ2
. (2.31)

Additionally, there are three amplitudes for h = 0,

A□H4(1H , 2H , 3H† , 4H†) = (C□H4 ⟨12⟩ [12] + C ′□H4 ⟨13⟩ [13]) 1

Λ2
, (2.32)

Aψψ̄H2(1ψ, 2ψ̄, 3H , 4H†) =
Cψψ̄H2

Λ2
⟨13⟩ [23] , (2.33)

Aψ2ψ̄2(1ψ, 2ψ, 3ψ̄, 4ψ̄) =
Cψ2ψ̄2

Λ2
⟨12⟩ [34] . (2.34)

• n = 5: Only one h = −1 amplitude exists,

Aψ2H3(1ψ, 2ψ, 3H , 4H , 5H†) =
Cψ2H3

Λ2
⟨12⟩ . (2.35)

• n = 6: Only one h = 0 amplitude exists,

AH6(1H , 2H , 3H , 4H† , 5H† , 6H†) =
CH6

Λ2
. (2.36)

2.2.2 Lagrangian formulation

In the context of an EFT, contact amplitudes are directly equivalent to effective operators
in the Lagrangian approach. In this language, the effective Lagrangian can be thought of as
an expansion in effective operators of some high-energy theory with energy scale Λ. For the
SMEFT, we can write

LSMEFT = LSM +
1

Λ

∑

O5

CO5O5 +
1

Λ2

∑

O6

CO6O6 + ... , (2.37)

where On are operators of mass dimension n for n > 4, also known as higher-dimension opera-
tors. The dimensionless coefficients COn in front of the operators are called Wilson coefficients.

Amplitudes at order 1/Λ correspond to dimension-5 operators. In the SMEFT, the only
amplitude at this order is given in Eq. (2.27). It corresponds to the following interaction term:

L ⊃ Cψ2H2

Λ

(
LcL

kLiL
)
ϵijϵkmH

jHm (2.38)

which generates the Majorana neutrino masses after spontaneous symmetry breaking. We de-
fine LcL ≡ CL̄TL, where C is the charge conjugation matrix satisfying CγµC−1 = − (γµ)T .
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At the next order 1/Λ2 we find dimension-6 operators. It can be shown that there are
59 linearly independent operators of dimension 6 in the SMEFT [65], not counting hermitian
conjugations and fermion generation indices. For instance, the 3-point amplitude in Eq. (2.28)
corresponds to the following operators:

L ⊃ fabcV a,µ
ν V b,ν

ρ V c,ρ
µ , L ⊃ fabcṼ a,µ

ν V b,ν
ρ V c,ρ

µ . (2.39)

Appendix B provides a comprehensive list of all dimension-6 operators in the Warsaw basis
[65] and the exact relation between those operators and the on-shell amplitudes of the previous
section.

2.3 Conclusions of the chapter

In this chapter, we have studied the Standard Model (SM) and the Standard Model Effective
Field Theory (SMEFT) through the framework of on-shell scattering amplitudes. In particular,
we have explored how these theories are defined by their particle content (Table 2.1) and the
contact on-shell amplitudes describing particle interactions.

For the SM, we have presented the contact amplitudes corresponding to renormalizable in-
teractions, which serve as the theory’s building blocks. We have found that only certain helicity
choices are allowed for some contact amplitudes. This feature is easily observed when working
with on-shell amplitudes in the helicity basis, but is obscured in the traditional Lagrangian
approach.

For the SMEFT, we have classified contact amplitudes based on their suppression by powers
of the new physics scale Λ. We have explicitly built all color-stripped amplitudes at orders 1/Λ
and 1/Λ2, which correspond to dimension-5 and dimension-6 operators.

We have emphasized the power and efficiency of the on-shell formalism in analyzing both
SM interactions and extensions via effective field theories. This provides the foundation for the
on-shell renormalization methods discussed in Chapter 3.
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Chapter 3

SMEFT renormalization: the on-shell
way

In this chapter we apply on-shell amplitude methods to the computation of anomalous dimen-
sions in effective field theories, focusing on the SMEFT at order 1/Λ2. We include some of the
main results from [1].

Until now we have only considered tree-level scattering, so the next step is introducing loops.
Within perturbative quantum field theory, tree-level amplitudes receive radiative corrections
from loop processes. These corrections are suppressed by a factor 1/16π2 for each loop, meaning
that higher-order terms correspond to diagrams with more loops. Any loop diagram involves an
integral over the loop momentum kµ, which can diverge in the ultraviolet region, when k → ∞.
Through a process known as renormalization, these divergences are addressed by absorbing
them into redefinitions of physical parameters, so that all the observable quantities are finite.
The subject of renormalization is covered in every textbook on quantum field theory, see for
example [4, 53, 66].

A feature of renormalization is that it induces the running of coupling constants with the
energy scale. In a theory with effective operators Oi, the running of their corresponding Wilson
coefficients COi

is given by the anomalous dimension γi, defined as

γi ≡
d COi

d lnµ
=
∑

j

γij COj
, (3.1)

with µ the renormalization scale. Operators of the same dimension mix with each other, so
we can write γi as a sum of other couplings COj

times a coefficient γij, which constitutes the
anomalous dimension matrix for the mixing of Oj into Oi.

At the phenomenological level, the computation of γi in the SMEFT is essential for under-
standing which higher-dimension operators contribute to a particular physical observable. The
corresponding Wilson coefficients can be constrained by comparing the theoretical predictions
with experimental measurements. This serves as an excellent tool for searching for new physics
beyond the Standard Model. We will see some applications of this in the context of several
lepton flavor violating processes in Chapter 5.
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Figure 3.1: Diagrams for the 1-loop amplitude A(1)
Oi
. AOi

is the tree-level contact amplitude

associated with the operator Oi. A1-loop
ij is the 1-loop amplitude generated by an insertion of the

AOj
contact interaction. δAij are the counterterms.

Our discussion is organized as follows: Section 3.1 presents the basics of renormalization. In
Section 3.2, we use on-shell amplitude techniques to derive three different methods to compute
anomalous dimensions for mixings at order 1/Λ2. The effect of IR divergences is analyzed in
Section 3.3. Section 3.4 includes additional remarks regarding topics such as helicity selection
rules, mixings at order 1/Λ and 2-loop renormalizations. Finally, we conclude in Section 3.5.

3.1 Review of renormalization

Let us consider a 4-point tree-level contact amplitude AOi
corresponding to the operator Oi.

An amplitude with the same external legs can be generated at one loop, as shown in the third
diagram of Figure 3.1. One vertex corresponds to the contact interaction AOj

associated with
the operator Oj, while the other vertex corresponds to marginal interactions. We will call this

amplitude A1-loop
ij , and we are interested in the cases where dim (Oj) = dim (Oi). The full

1-loop amplitude A(1)
Oi

is equal to

A(1)
Oi

= AOi
+
∑

j

A1-loop
ij +

∑

j

δAij , (3.2)

where the summation over j is a summation over all possible AOj
that generate AOi

at one
loop. δAij is a counterterm that must be introduced to cancel the ultraviolet divergence of the
loop amplitude. This expression is depicted in Figure 3.1.

The next step is to consider the Passarino-Veltman (PV) decomposition of A1-loop
ij . Any

1-loop amplitude has a decomposition given by [67]

A1-loop =
∑

a

C
(a)
2 I

(a)
2 +

∑

b

C
(b)
3 I

(b)
3 +

∑

c

C
(c)
4 I

(c)
4 +R , (3.3)

where Im are master scalar integrals with m propagators and the coefficients Cm are rational
functions of the kinematic variables ⟨ij⟩ and [ij]. The master integrals are defined as

Im = (−1)mµ̃4−D
∫

dDℓ

i(2π)D
1

ℓ2(ℓ− P1)2(ℓ− P1 − P2)2 · · · (ℓ−
∑m−1

n=1 Pn)
2
, (3.4)
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(1-loop)

=
∑

a

C(a)
2 +

∑

b

C(b)
3 +

∑

c

C(c)
4

Figure 3.2: Passarino-Veltman decomposition of a 1-loop amplitude. Any 1-loop amplitude can
be written as a sum of master integrals I2, I3 and I4 times some coefficients. C

(a)
2 correspond

to bubbles, C
(b)
3 to triangles and C

(c)
4 to boxes.

where Pn are sums of external momenta. We have used dimensional regularization with D =
4 − 2ϵ, and µ̃ is some emerging energy scale. The first three pieces in Eq. (3.3) are called,
respectively, bubbles, triangles and boxes due to the topology of the master integrals. The last
term R corresponds to rational functions of the kinematic invariants, and it will play no role
in our discussion. A diagrammatic example of the Passarino-Veltman decomposition is shown
in Figure 3.2.

One can check that I2 is UV divergent, while I3 and I4 are UV finite. Indeed, the regularized
bubble integral is given by

I
(a)
2 =

1

16π2

[
1

ϵ
+ ln

(
µ̃2

−P 2
a

)
+ finite terms

]
, (3.5)

with Pa the sum of external momenta entering the bubble. Notice how the UV divergent
term 1/ϵ is accompanied by a logarithm of the energy scale µ̃, as is customary in dimensional
regularization.

Using the PV decomposition, the 1-loop amplitude from Eq. (3.2) can be written as

A1-loop
ij =

1

16π2

∑

a

C
(a)
2

[
1

ϵ
+ ln

(
µ̃2

−P 2
a

)
+ finite terms

]
, (3.6)

where the summation goes over all the bubble integrals with an insertion of AOj
that generate

an amplitude proportional to AOi
.

Although A1-loop
ij is UV divergent, the full physical amplitude A(1)

Oi
must be finite. For

that reason we must add a counterterm δAij that cancels the divergence of A1-loop
ij . There are

several ways to define the counterterm, but for clarity we choose δA such that A(1)
Oi

= AOi
at

momentum P 2
a = −µ2. Using this prescription, the counterterm can be written as

δAij = − 1

16π2

∑

a

C
(a)
2

[
1

ϵ
+ ln

(
µ̃2

µ2

)
+ finite terms

]
, (3.7)

with µ some arbitrary energy scale. It is convenient to choose µ ∼ µ̃, so that logarithms of µ̃/µ
are small. Finally, the renormalized amplitude is

A(1)
Oi

= AOi
+

1

16π2

∑

a

C
(a)
2 ln

(
µ2

−P 2
a

)
. (3.8)
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This amplitude must obey the Callan-Symanzik equation [68, 69],

[
µ
∂

∂µ
+
∑

λ

β
(1)
λ

∂

∂λ
+ γ

(1)
i

]
A(1)
Oi

= 0 , (3.9)

where β
(1)
λ is the 1-loop beta function for the marginal coupling λ and γi is the 1-loop anomalous

dimension associated with AOi
. At first order, the anomalous dimension is related to the

counterterm δAij by [66]

γiAOi
= −µ ∂

∂µ

∑

j

COi
δAij . (3.10)

Using our result Eq. (3.7) for the counterterm, we have

−µ ∂

∂µ
COi

δAij = −COi

8π2

∑

a

C
(a)
2 . (3.11)

Naively we could just associate this quantity to the anomalous dimension, but that would
not be accurate. First, we have to take into account a subtlety involving “massless” bubble
integrals, which are those I

(a)
2 with P 2

a = 0. Massless bubbles do not contribute to the PV
expansion because they are dimensionless and vanish. This comes from a cancellation between
IR and UV divergences in dimensional regularization when we set µ = µUV = µIR, so the
logarithm ln (µUV /µIR) is zero. The terms proportional to ln(µUV ) in massless bubbles must
be included in the calculation since they give an extra contribution to γi. To account for these
extra terms, we must compute the IR divergences of the amplitude and subtract them. Doing
that, Eq. (3.10) becomes

γ
(1)
i AOi

= −
∑

j

(
COi

8π2

∑

a

C
(a)
2 − γijIRAOi

)
. (3.12)

Equivalently, we can write

γ
(1)
i AOi

=
∑

j

γ
(1)
ij COj

AOi
, with γ

(1)
ij AOi

=
COi

COj

∑

a

C
(a)
2

8π2
− γijIR

AOi

COj

, (3.13)

where we have used the definition of the anomalous dimension matrix γij in Eq. (3.1).
The term γijIR includes the contributions from IR divergences, which are also proportional to

the tree-level amplitude. The anomalous dimension gets simplified in cases where IR divergences
are absent. For example, γijIR = 0 for the renormalization of AOi

by another amplitude AOj

with different number of particles, helicities or species. Other examples are renormalizations
where both AOi

and AOj
are 4-point contact amplitudes, since massless topologies are absent

in those theories. We will first focus on the case where γijIR = 0 and leave the discussion of IR
divergences for Section 3.3.
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3.2 Renormalization with on-shell amplitude methods

From Eq. (3.13) we see that, in cases where IR divergences are absent, the 1-loop anomalous

dimension γ
(1)
ij can be computed solely from the bubble coefficients C2. One of the most efficient

ways of obtaining these coefficients is by using the so-called generalized unitarity method [11,
12]. This method allows us to reconstruct loop amplitudes without explicitly carrying out loop
integrals by applying unitarity cuts.

3.2.1 Generalized unitarity method

Here we briefly introduce the basics of generalized unitarity. More details can be found in
[11, 12, 14]. A unitarity m-cut is the operation of “cutting” a loop amplitude by putting
m propagators on shell. As a prescription, we use the Cutkosky rule [70] of replacing the
propagator (ℓ− P )−2 by a delta function δ+((ℓ− P )2), where the + superscript indicates that
we select the positive energy solution. After putting the particles on shell, we have to integrate
over the possible four-momenta of the cut propagators. Up to normalization, the m-cut of an
amplitude A is

Cutm[A] ∼
∏

i

∫
d4ℓi δ

+((ℓi − Pi)
2) δ4(∗) Ai , (3.14)

with i = 1, ...,m. ℓi are the four-momenta of the cut propagators and Ai are the remaining
subamplitudes after the cut. δ4(∗) imposes momentum conservation at each subamplitude.

The generalized unitarity method is the procedure of building a loop amplitude from its
unitarity cuts. The advantage of this method is that, in general, cutting a loop amplitude is
easier than computing the amplitude itself. This is because the unitarity cut of an amplitude
is equal to a product of lower-loop subamplitudes, which are simpler to compute, integrated
over a phase-space. In order to see how this works, let us write down again the PV expansion
of a 1-loop amplitude,

A1-loop =
∑

a

C
(a)
2 I

(a)
2 +

∑

b

C
(b)
3 I

(b)
3 +

∑

c

C
(c)
4 I

(c)
4 +R . (3.15)

Up to rational terms, the amplitude is completely determined by its coefficients Cm, which can
be obtained from unitarity cuts. At one loop, the computation of unitarity cuts is remarkably
simple, since we only have to do a phase-space integration of a product of tree-level amplitudes.
The usual procedure for reconstructing A1-loop is the following:

� From the definition of the master integrals Im, it is trivial to see that Cutn[Im] = 0 for
n > m, since there are not enough propagators to cut. This implies that Cut4[A1-loop]

only gets contributions from boxes. Thus, we can obtain all the box coefficients C
(c)
4 by

computing all possible 4-cuts of the 1-loop amplitude.

� Next, we consider 3-cuts of the amplitude. The triangle coefficients C
(b)
3 cannot be ob-

tained as easily as C
(c)
4 , because Cut3[A1-loop] includes contributions from both box and

triangle integrals. However, since we have previously determined the box coefficients with
4-cuts, the C

(b)
3 coefficients can be unambiguously determined from all possible 3-cuts.
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� Finally, Cut2[A1-loop] gets contributions from all the integrals: bubbles, triangles and
boxes. Once we have obtained the box and triangle coefficients, we can determine all the
possible C

(a)
2 from the 2-cuts of the amplitude.

Finally, let us briefly comment on the rational terms R of the 1-loop amplitude. These
terms are not included in the generalized unitarity method, since they cannot be obtained from
any unitarity cuts. There are several ways to compute R, but they are usually quite involved
and go beyond the scope of this work. For a discussion on this topic, see [71–73]. Luckily for
us, rational terms can be altogether ignored in our analysis, since they do not contribute to the
anomalous dimensions in Eq. (3.13).

The generalized unitarity method gives us a recipe to systematically obtain the C2 coef-
ficients of a 1-loop amplitude. If we apply it to the amplitude A1-loop

ij in Eq. (3.2), we can

calculate the 1-loop anomalous dimensions γ
(1)
ij (modulo IR divergences). This is a valid pro-

cedure. However, it can be quite cumbersome to obtain all the box and triangle coefficients in
order to determine the bubble ones. Ideally, we would like to bypass the computation of C4 and
C3 to derive the C2 coefficients directly. We will present three different methods for achieving
this in the following subsections.

3.2.2 Method I: γij from amplitude 2-cuts

As we have just seen, there is generally no one-to-one correspondence between 2-cuts of a 1-loop
amplitude and the bubble coefficients C2, because 2-cuts receive additional contributions from
triangle and box integrals. However, we will show that for amplitudes at order 1/Λ2 in the
SMEFT, the bubble coefficients can be obtained directly from 2-cuts. First we present the final
expression for the 1-loop anomalous dimensions, which we will prove later. For amplitudes
without IR divergences at order 1/Λ2, Eq. (3.13) can be rewritten as [1]

γijAOi
(1, 2, ..., n) =

− 1

4π3

COi

COj

∫
dLIPS

∑

ext. legs
distrib.

∑

ℓ1,ℓ2

σℓ1ℓ2ÂOj
(..., ℓ1, ℓ2)×ASM(−ℓ2,−ℓ1, ...) , (3.16)

with no summation over i, j. In the right-hand side (RHS) we have a summation over the 2-cuts

of the amplitude A1-loop
ij . For each cut, we must identify the tree-level subamplitudes ÂOj

and

A4. ÂOj
is an m ≥ 4-point amplitude that contains the contact amplitude AOj

, of order 1/Λ2.
ASM is an m′ ≥ 4-point amplitude of order Λ0, i.e., containing only relevant and marginal cou-
plings. Clearly, n = m+m′ − 4. The dots . . . in the arguments of ÂOj

and A4 correspond to
the external legs (1, 2, ..., n), that are distributed between the two subamplitudes1. There is a
summation over the possible distributions of the external legs, which is equivalent to a summa-
tion over the possible 2-cuts of the amplitude. Notice the absence of 3-point subamplitudes in
Eq. (3.16), since they would lead to massless bubbles that vanish in dimensional regularization.
This reduces the number of 2-cuts that we must compute and simplifies the γij calculation.

1If the order of the external particles in the RHS of Eq. (3.16) is different than the order in the left-hand
side (LHS), a minus sign must be included for each pair of exchanged fermions.
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The integral in the RHS of Eq. (3.16) spans the Lorentz-Invariant Phase Space (LIPS) of
the cut momenta ℓ1 and ℓ2. It is defined as

∫
dLIPS =

∫
d4ℓ1d

4ℓ2 δ
+(ℓ21)δ

+(ℓ22)δ
(4)(∗) , (3.17)

where δ4(∗) imposes momentum conservation at both subamplitudes. The integral is normal-
ized so that

∫
dLIPS = π/2. Eq. (3.16) includes a sum

∑
ℓ1,ℓ2

over all the possible internal
states with momentum ℓ1 and ℓ2. A symmetry factor 1/2 must be included when the two
internal particles are indistinguishable. Since we are using an all-incoming notation for the
amplitudes, the internal states have negative momenta in one of the subamplitudes. They also
carry helicity and all other quantum numbers with an opposite sign. The factor σℓ1ℓ2 is defined
as σℓ1ℓ2 = iF [ℓ1,ℓ2], where F [ℓ1, ℓ2] counts the number of fermions in the list {ℓ1, ℓ2}. This term
arises from our conventions on fermion ordering, as we detail in Appendix A.3.

Eq. (3.16) has a surprisingly simple structure because the triangle and box contributions to
the 2-cut cancel out at order 1/Λ2. In Appendix C we prove this cancellation explicitly for the
cases where ni − nj ≡ ∆n < 2. The main idea is the following: we are considering processes
without IR divergences. These IR divergences can only arise from triangle and box integrals, so
they must cancel each other. This cancellation ensures that the total contribution of triangles
and boxes to the 2-cuts is also zero.

The proof of Eq. (3.16) for a generic ∆n is more complex. We will use the results of [26],
where the authors derived an expression for the anomalous dimensions in terms of unitarity
cuts of form factors. In our particular case, their expression reads

γij FOi
(1, 2, ..., n) = − 1

4π3

∫
dLIPS

∑

ext. legs
distrib.

∑

ℓ1,ℓ2

σℓ1ℓ2F̂Oj
(..., ℓ1, ℓ2)×ASM(−ℓ2,−ℓ1, ...) , (3.18)

where γij is the anomalous dimension for the mixing of the form factor FOj
into FOi

. Form
factors are matrix elements between an operator and on-shell states, defined as

FOi
(1, 2, ..., n) ≡ ⟨0|Oi|p1, p2, ...pn⟩ , (3.19)

with non-zero total momentum p1 + p2 + ...+ pn ≡ Q ̸= 0. In Eq. (3.18), F̂Oj
is a m ≥ 3-point

form factor, which contains the contact form factor FOj
. Note that, contrary to what happened

in Eq. (3.16), there are contributions from 3-point form factors. This is because, for Q ̸= 0,
these terms are not 2-cuts of massless bubbles, and thus they do not vanish.

We postpone the derivation of Eq. (3.18) to Section 3.2.4, but for the moment we will use
it to prove the validity of Eq. (3.16). In the limit Q → 0, form factors and amplitudes obey
the following relation

COi

Λ2
FOi

(1, 2, ..., n) → AOi
(1, 2, ..., n) . (3.20)

In this limit, it is easy to see that Eq. (3.18) matches Eq. (3.16), except for the presence of
2-cuts involving 3-point form factors. As we mentioned before, there are no terms with 3-point
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V 3

Λ0 V 2H−→

V 3

Λ0 V ψ2H−→

Figure 3.3: Diagrams for the 1-loop renormalization of FV 2H2 and FV ψ2H by FV 3. These are
the only mixings involving 3-point form factors at order 1/Λ2.

subamplitudes in Eq. (3.16) because they vanish. In order to prove Eq. (3.16), we have to check
that terms with 3-point form factors also vanish in Eq. (3.18). This is not generally true2, but
we are only interested in amplitudes at order 1/Λ2 in the SMEFT.

Recalling the contact amplitudes from Section 2.2.1, the only 3-point form factor at order
1/Λ2 is the one involving three vector bosons, namely FV 3 . This form factor contributes to the
renormalization of two other form factors: FV 2H2 and FV ψ2H , via the 2-cuts shown in Figure
3.3. To complete the proof of Eq. (3.16) we must show that those cuts vanish. Indeed, since
∆n = 1 for both renormalizations, we can use the result in Appendix C. The 2-cuts of boxes
and triangles cancel each other, so the overall 2-cut only picks up the bubble terms. For 3-point
factors in the limit Q → 0, this is the 2-cut of a massless bubble integral, which is zero3. We
conclude that Eq. (3.16) is correct.

Several examples of the usage of Eq. (3.16) can be found in Chapter 4. There, we compute
the 1-loop anomalous dimension for mixings of dipole amplitudes in the SMEFT.

3.2.3 Method II: γij from momentum deformation

In addition to Eq. (3.16), there is a more general procedure to compute the bubble coefficients
from 2-cuts. This method was presented in [74] and it uses the technology of momentum
deformations or shifts, which we introduced in Section 1.3.2.

The main idea is the following: the 2-cut of a 1-loop amplitude generally receives contri-
butions from bubbles, triangles and boxes. Given the definition of the master integrals In, the
terms coming from triangles and boxes have simple poles at the propagators, whereas those
coming from bubbles have no discontinuities. Thanks to this distinction, it is possible to disen-
tangle the bubble contributions by performing a complex momentum shift of the internal (cut)

2See, for example, the computation of the QCD beta function in [74].
3See Section 4.4.3 for an explicit calculation of the renormalization of FV ψ2H by FV 3 .
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particles. Consider the following BCFW shift,

|ℓ1⟩ → |ℓ1⟩+ z |ℓ2⟩ ,
|ℓ2] → |ℓ2] + z |ℓ1] ,

(3.21)

with the rest of the spinors unchanged. ℓ1, ℓ2 are the momenta of the cut particles and z is
a complex number. If we apply this deformation to Eq. (3.16), the subamplitudes become a
complex function of z. Then, we can use complex analysis to extract the bubble coefficients.
The first step is to rewrite the integrand in Eq. (3.16) using Cauchy’s integral formula,

ÂOj
(...,−ℓ1,−ℓ2)×ASM(ℓ2, ℓ1, ...) =

1

2πi

∫

c0

dz

z
ÂOj

(..., ℓ1(z), ℓ2(z))×ASM(−ℓ2(z),−ℓ1(z), ...) .
(3.22)

In the RHS, the integral is along the contour c0, which is a circle around the origin. Observe
that z = 0 in the LHS, so the momenta are unshifted. We can deform the integration contour
as we did in Figure 1.2, so that

∫
c0
dz =

∫
cI
dz +

∫
c∞
dz. The discontinuities captured by cI

are simple poles coming from triangle and box integrals. If we remove these contributions, we
are only left with the pole at infinity captured by c∞. It was shown in [74] that this term is
associated with the bubble coefficients, so finally the anomalous dimension is given by

γijAOi
(1, 2, ..., n) =

i
COi

COj

∫
dLIPS

8π4

∑

ext. legs
distrib.

∑

ℓ1,ℓ2

σℓ1ℓ2

∫

c∞

dz

z
ÂOj

(..., ℓ1(z), ℓ2(z))×ASM(−ℓ2(z),−ℓ1(z), ...) . (3.23)

One can check that performing the integral along c∞ is equivalent to extracting the constant
term in a Laurent series around ∞ for the function ÂOj

(z)×ASM(z).
Let us compare equations Eq. (3.23) and Eq. (3.16). The contour integral in Eq. (3.23)

removes the contributions of triangles and boxes to each individual 2-cut, whereas in Eq. (3.16)
those terms only cancel out in the final result. Then, using the results of Appendix C, we can
distinguish between two cases:

� Renormalizations with ∆n = 0: There are no contributions from triangles and boxes
in the 2-cuts, so Eq. (3.23) is unnecessary. Each individual 2-cut is the same in both
Eq. (3.16) and Eq. (3.23).

� Renormalizations with ∆n ≥ 1: The 2-cuts are generally contaminated by triangles
and boxes, so the computations with Eq. (3.16) and Eq. (3.23) are different. Although
Eq. (3.23) appears more complex, removing the triangles and boxes significantly simplifies
the structure of the 2-cuts. The final result, of course, has to be the same.

For an explicit calculation of the anomalous dimension matrix using this method, see Sec-
tions 4.1.2 and 4.4.2.
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3.2.4 Method III: γij from unitarity cuts of form factors

In this section we will explain the derivation of Eq. (3.18), which was used to prove Eq. (3.16).
Up until now, we have considered the renormalization scale dependence associated with the
divergences of the 1-loop amplitude, i.e., the fact that 1/ϵUV poles are always accompanied by
lnµ2 in dimensional regularization. We now present an alternative method for obtaining the
anomalous dimensions, based on the fact that the renormalization parameters are also encoded
in the logarithms of the amplitude. This comes from the observation that, by dimensional
analysis, logarithms of momenta ln sij must be balanced with logarithms of the renormalization
scale lnµ2.

This strategy was first proposed in [26] by S. Caron-Huot and M. Wildhem, who developed
a formalism to relate the anomalous dimensions with phase-space integrations of lower-point
on-shell amplitudes and form factors. Here we will derive Eq. (3.18) using their approach.
Additional details can be found in the original paper. For a slightly different derivation, see
[28].

The main idea is to consider the Callan-Symanzik equation, or Renormalization Group
Equation (RGE) that is satisfied by a form factor. Then, we can compute the anomalous
dimension associated with that form factor, which is included in the RGE. First, we restate the
definition of a form factor

FOi
(1, ..., n) ≡ ⟨0|Oi|p1, ..., pn⟩ , (3.24)

with |p1, ..., pn⟩ a multiparticle asymptotic state and Oi a higher-dimension operator. After
renormalization, form factors depend on the energy scale µ and satisfy the renormalization
group equation,

[
µ
∂

∂µ
+
∑

λ

βλ
∂

∂λ
+
∑

j

(
γij − γiIRδij

)
]
FOi

(1, ..., n;µ) = 0 , (3.25)

where γij is the anomalous dimension matrix, γiIR is the IR anomalous dimension and βλ is the
beta function of the λ coupling.

By Lorentz invariance, form factors are functions of the momentum invariants sab = 2papb
and schematically we can write FOi

(sab + iϵ). Using the Feynman prescription, we must add a
factor +iϵ to the invariants, with ϵ > 0 a small parameter. The analyticity of the form factor
implies

F ∗Oi
(sab − iϵ) = FOi

(sab + iϵ) . (3.26)

This becomes evident in perturbation theory, where the complex conjugation of FOi
involves

replacing the time-ordered propagators (sab + iϵ)−1 with anti-time-ordered propagators (sab −
iϵ)−1. Formally, it corresponds to a counter-clockwise rotation in the complex sab plane. This
operation is generated by the dilatation operator D, which is defined as

D =
n∑

a=1

pµa
∂

∂pµa
. (3.27)
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The action of eiαD on the different pa is a rotation in the complex plane with phase α.
Acting on the form factor, we have

F (p1, ..., pn) → eiαDF (p1, ..., pn) = F (p1e
iα, ..., pne

iα) . (3.28)

And clearly the sab are rotated with a phase 2α. For α = π, the invariants are rotated back
to their original values, but on the opposite side of the cut. They go precisely from sab + iϵ to
sab − iϵ. Knowing this, Eq. (3.26) can be rewritten as

e−iπDF ∗Oi
(sab + iϵ) = FOi

(sab + iϵ) . (3.29)

The next step is to relate the form factor and the S-matrix with a version of the optical
theorem. By unitarity, SS† = 1. The form factor is a small perturbation of the S-matrix
δS = iF , with F denoting the operator with matrix elements F . In terms of the form factor,
the unitarity condition is F = SF †S. The corresponding matrix elements obey

F = SF ∗ . (3.30)

Combining Eq. (3.29) and Eq. (3.30) yields

e−iπDF ∗ = SF ∗ . (3.31)

As pointed out in [26], the dilatation operator is related to the renormalization scale µ in
dimensional regularization. The form factor can only depend on dimensionless ratios sij/µ

2, so
we can replace the terms pa∂pa by derivatives of µ, leading to D ≃ −µ∂µ. Then the Callan-
Symanzik equation in Eq. (3.25) becomes

DFOi
=

[∑

λ

βλ
∂

∂λ
+
∑

j

(
γij − γiIRδij

)
]
FOi

(1, ..., n;µ) = 0 . (3.32)

This expression is further simplified when FOi
is a contact (or minimal) form factor. In that case

the β-function term vanishes because the form factor does not contain any of the λ couplings
of the theory.

Combining Eq. (3.32) and Eq. (3.31), we can finally relate the anomalous dimension γ and
the S-matrix. On the LHS of Eq. (3.31), we insert Eq. (3.32) and expand the exponential in
powers of D. We will focus on the leading non-trivial order of this expansion. On the RHS of
Eq. (3.31), we rewrite the S-matrix as S = I+iM with I the identity andM some perturbation.
For a minimal form factor, this leads to

∑

j

(
γ
(1)
ij − γ

i,(1)
IR δij

)
⟨0|Oi|p1, ...pn⟩(0) = − 1

π

∑

j

⟨0|M⊗Oj|p1, ...pn⟩(0) , (3.33)

where ⟨0|Oi|p1, ...pn⟩(0) is the tree-level form factor FOi
and γ

(1)
ij , γ

i,(1)
IR are respectively the

anomalous dimension and IR anomalous dimension at leading order. The superscript (1) refers
to the leading single lnµ2 in the form factor, which usually appears at 1-loop, but not always.
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On the RHS of Eq. (3.33), the convolution ⊗ corresponds to an insertion of a complete set of
intermediate states, followed by a phase-space integral. This is precisely a unitarity cut of the
loop form factor.

To derive Eq. (3.18) we focus on the case where the leading single lnµ2 appears at one loop,

and thus Eq. (3.33) gives us the 1-loop anomalous dimension4. The term ⟨0|M⊗Oj|p1, ...pn⟩(0)
is then a 2-cut. After inserting the particle internal states with momentum ℓ1, ℓ2, we have a
product of a tree-level subamplitude ASM and a tree-level form factor F̂Oj

integrated over a
phase space. Overall, we can write

⟨0|M⊗Oj|p1, ...pn⟩(0) =

− 1

4π2

∫
dLIPS

∑

ext. legs
distrib.

∑

ℓ1,ℓ2

σℓ1ℓ2F̂Oj
(..., ℓ1, ℓ2)×ASM(−ℓ2,−ℓ1, ...) , (3.34)

with dLIPS and σℓ1ℓ2 as defined in Section 3.2.2. Inserting this expression into Eq. (3.33) for
the case of no IR divergences, we obtain

γij FOi
(1, 2, ..., n) = − 1

4π3

∫
dLIPS

∑

ext. legs
distrib.

∑

ℓ1,ℓ2

σℓ1ℓ2F̂Oj
(..., ℓ1, ℓ2)×ASM(−ℓ2,−ℓ1, ...) , (3.35)

which is precisely Eq. (3.18) that we wanted to prove. See Chapters 4 and 5 for some examples
of this formula’s usage.

3.3 IR divergences

Here we expand our study of on-shell renormalization methods for mixings involving non-zero
IR divergences. Following [2], we consider the generalization of Eq. (3.16) in the presence of
both soft and collinear singularities. Similar analyses of 1-loop IR divergences in the context
of on-shell amplitudes can be found in [26, 28, 29, 74]. See also [75] for a 2-loop extension.

Our starting point is the Passarino-Veltmann decomposition of 1-loop amplitudes, given
by Eq. (3.3). For clarity, we consider the case where Aloop is a 4-point amplitude. From the
definition of the master integrals Im in Eq. (3.4), we see that only bubbles and triangles can
have IR divergences. The IR-divergent part of the amplitude is

AIR
loop =

∑

a

Ĉ
(a)
2 I

(a)
2 +

∑

b

Ĉ
(b)
3 I

(b)
3 . (3.36)

Subtracting these IR-divergent terms from the full amplitude Aloop, we obtain

Aloop −AIR
loop =

∑

a

[
C

(a)
2 − Ĉ

(a)
2

]
I
(a)
2 +

∑

b

[
C

(b)
3 − Ĉ

(b)
3

]
I
(b)
3 +

∑

c

C
(c)
4 I

(c)
4 +R , (3.37)

4We will discuss the computation of the 2-loop anomalous dimension in Section 3.4.5.
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Figure 3.4: Diagrams of the bubble (a) and triangle (b) topologies that contribute to AIR
loop in

gauge and gravity theories.

which is IR-finite. As we saw in Section 3.1, the 1-loop anomalous dimension can be extracted
from the UV-divergent part of the amplitude. This corresponds to a sum over the IR-finite
bubble terms, namely

γiAOi
= −2AUV

loop = − 1

8π2

∑

a

[
C

(a)
2 − Ĉ

(a)
2

]
. (3.38)

The bubble coefficients can be obtained with the generalized unitarity method. In this case,
it is enough to compute the 2-cut of Eq. (3.37),

cut(a)
[
Aloop −AIR

loop

]
= −C

(a)
2 − Ĉ

(a)
2

8π2
+ cut(a)

[∑

b

C
(b)
3 |reg I(b)3 +

∑

c

C
(c)
4 I

(c)
4

]
, (3.39)

with C3|reg = C3 − Ĉ3. The second term in the RHS is a 2-cut of triangles and boxes, which is
generally non-zero. However, as we prove in Appendix C, those terms cancel out for IR-finite
amplitudes when we sum over all possible 2-cuts5. Thus, we find

∑

a

cut(a)
[
Aloop −AIR

loop

]
= − 1

8π2

∑

a

[
C

(a)
2 − Ĉ

(a)
2

]
= γiAOi

, (3.40)

which reduces to Eq. (3.16) when AIR
loop = 0.

The explicit form of AIR
loop depends on the type of interaction. For instance, the general

expression for 1-loop amplitudes in a gauge theory can be found in [76, 77]. Considering the
PV decomposition, the bubble coefficients related to collinear IR divergences are

Ĉ
(ij)
2 = −8π2γ

(i)
coll

Ti · Tj
T 2
i

Atree + (i↔ j) , (3.41)

where the indices i, j refer to two external legs of the corresponding bubble diagram, as is
shown in Figure 3.4 (a). Ti are the gauge group generators in the appropriate representation
for particle i. Following the color-space formalism [76], we leave the color and flavor indices
implicit. Writing them explicitly, we have

Atree → Aabcd
tree and Ti → (TAi )

a′
a , (3.42)

5The proof in Appendix C can be adapted to our case by replacing C3 → C3|reg.
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where the dot product of generators is defined as Ti · Tj ≡ T A
i T

A
j . To recover Eq. (3.40), we

sum over all 2-cuts cut(ij) with i < j. Taking into account that
∑

j TjAtree = 0 due to color
and flavor conservation, we find

−
∑

i<j

cut(ij)
[
AIR

loop

]
|bubble =

1

8π2

∑

i<j

Ĉ
(ij)
2 =

∑

i

γ
(i)
collAtree = γcollAtree . (3.43)

Comparing this result to Eq. (3.16), we conclude that, for amplitudes with collinear IR
divergences, the anomalous dimension gets an additional contribution given by

∆γi
AOi

(1, 2, 3, 4)

COi

= γcoll AOi
(1, 2, 3, 4) . (3.44)

We recall that γi =
∑

j γijCOj
. The collinear correction is always diagonal in the amplitude

space, meaning that it is proportional to the tree amplitude AOi
. γcoll depends only on the

external legs, so we can write γcoll =
∑4

n=1 γ
(n)
coll. The particular expressions γ

(n)
coll for different

particles are found for instance in [28, 29].

We must also consider soft IR divergences, which are present in the triangle terms of AIR
loop.

For a gauge theory, the corresponding coefficients are

Ĉ
(ij)
3 = −g2sij Ti · Tj Atree , (3.45)

where g is the gauge coupling and i, j are two external legs of the triangle diagram in Figure
3.4 (b). As we mentioned before, the Ĉ3 coefficients do not contribute to γi when we sum over
all possible 2-cuts. Nevertheless, their presence in the individual cuts leads to divergences that
must be regulated. In particular, the 2-cut contribution is

cut(ij)
[
AIR

loop

]
|triangle = Ĉ

(ij)
3 cut[I

(ij)
3 ] =

1

4π3
g2 Ti · TjAtree

∫
dLIPS

1

s2θ′/2
. (3.46)

Alternatively, we can express the last integral as
∫
c−2θ′/2, which is equal to

∫
s−2θ′/2 if we replace

θ′ → (π − θ′). We can also express it as 2
∫
s−2θ′ by symmetrization over the interval [0, π].

Eq. (3.46) shows that, if we use Eq. (3.16) for mixings with soft IR divergences, the dLIPS
integral will not be finite. This occurs because one of the subamplitudes AL,R is singular for
some angle θ. We distinguish three different cases:

� AL,R ∼ s−2θ/2 is singular in the limit θ → 0.

� AL,R ∼ c−2θ/2 is singular in the limit θ → π. By reordering the amplitude legs, we can

always rewrite AL,R ∼ s−2θ/2. Thus, this case can be excluded from our analysis.

� AL,R ∼ s−2θ is singular for both θ → 0 and θ → π. This occurs when the two cut particles
ℓ1 and ℓ2 are identical.
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Using Eq. (3.46), the anomalous dimension in Eq. (3.16) must be corrected by adding

∆γi
AOi

(1a, 2b, 3c, 4d)

COi

= − 1

4π3

[
(T 12

soft)
a b
â b̂
AR(1

â, 2b̂, 3c, 4d)

∫
dLIPS12

1

s2θ′/2

+ (T 34
soft)

c d
ĉ d̂
AL(1

a, 2b, 3ĉ, 4d̂)

∫
dLIPS34

1

s2θ′/2

]
+ (2 ↔ 3) + (2 ↔ 4) ,

(3.47)

where dLIPSij is an integral over the phase space for the i′j′ state. We generally denote the
color and flavor of the external particles with abcd indices, and we have defined the soft operator
T ij
soft = g2 Ti · Tj. For QED, it gets simplified to T ij

soft = e2qiqj, with qi the charge of particle
i. Note that ∆γi acts as a regulator for the angular divergences in Eq. (3.16), so the overall
contribution from each cut is finite.

Finally, let us comment on the treatment of IR divergences in gravity. The PV structure of
AIR

loop is the same as in gauge theories, so our analysis holds. It suffices to make the replacement

γcoll = 0 and T ij
soft = −2sij/M

2
P [78].

3.4 Additional remarks

3.4.1 Helicity selection rules

One of the most interesting applications of Eq. (3.16) is the study of certain patterns in the
anomalous dimension matrix, which are often obscured in the traditional Feynman diagram
approach. The presence of unexpected zeroes in the anomalous dimension matrix was observed
in the first calculations of 1-loop mixings between dimension-6 operators in the SMEFT, see [19–
25, 79]. Non-renormalization theorems were derived to explain these cancellations, employing
helicity arguments [52] and supersymmetry [80]. These results were extended to higher-order
loop mixings in [30]. Further non-renormalization theorems for general EFTs were obtained
using angular momentum conservation in [81], and also for gravity in [31]6.

In this context, on-shell amplitude methods have been particularly helpful for the derivation
of helicity selection rules [52] that tell us which are the allowed renormalizations for a given
operator. The effects of these selection rules for tree-level and 1-loop amplitudes were studied
in [83]. Here we follow [1] to obtain helicity selection rules using our results from Section 3.2.

From Eq. (3.16), it trivially follows that

ni = n̂j + nSM − 4 , (3.48)

hi = ĥj + hSM , (3.49)

where ni, n̂j and nSM are respectively the number of particles in the amplitudes AOi
, ÂOj

and

ASM. The corresponding helicities are hi, ĥj and hSM. As mentioned in Section 3.2.2, the SM

6Non-renormalization theorems for the anomalous dimension matrix can be extended to non-linear mixings
in the anomalous dimension tensor. See for example [82].
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n

6 H6

5 ψ̄2H3 ψ2H3

4

V̄ 2H2

V̄ ψ̄2H

ψ̄4

H4D2

ψ2ψ̄2

ψψ̄H2D

V 2H2

V ψ2H

ψ4

3 V̄ 3 V 3

-3 -2 -1 0 1 2 3

h

Table 3.1: Contact interactions at order 1/Λ2 in the SMEFT, classified according to their
number of particles n and total helicity h. The gray area shows the interactions that can
renormalize V ψ2H according to the helicity selection rule ∆n ≥ |∆h|.

subamplitude has nSM ≥ 4. Also, since ÂOj
is in general a non-minimal amplitude, it obeys

n̂j ≥ nj. Thus, from Eq. (3.48), it follows that

∆n = ni − nj ≥ 0 , (3.50)

which tells us that COj
can only contribute to the 1-loop renormalization of COi

if AOj
has the

same number of legs or less than AOi
7. The next ingredient we need is the observation made

in [52] that most n = 4 SM amplitudes have total helicity h = 0. The n ≥ 4 amplitudes made
from those building blocks obey nSM ≥ |hSM| + 4. Combining this expression with Eqs. (3.48,
3.49) leads to the following helicity selection rule:

∆n ≥ |∆h| . (3.51)

This expression is a non-renormalization theorem that gives us some vanishing entries of the
1-loop anomalous dimension matrix. Let us see an example with SMEFT operators at order
1/Λ2. Table 3.1 shows the different classes of contact interactions, classified in terms of their
number of particles n and the helicity h. A dipole amplitude of class V ψ2H can only be
renormalized by amplitudes that obey the condition Eq. (3.51). Graphically, this corresponds
to the gray area in Table 3.1, which includes V 2ψ2, V ψ2H,ψ4 and V 3. We know that the rest
of the renormalizations are zero without the need to compute them.

The only exceptions to the selection rule Eq. (3.51) are renormalizations involving a SM
subamplitude with n = 4 and |hSM| > 0. There is just one amplitude satisfying these conditions:
the 4-fermion amplitude with h = ±2, which contains two Yukawa couplings yeyu. At order
1/Λ2 in the SMEFT this exception allows the renormalization between ψ2ψ̄2 and ψ4, and also
between ψ̄2H3 and ψ2H3.

We will apply the helicity selection rules to the calculation of anomalous dimensions in
Chapters 4 and 5.

7See [30] for an extension of this result to higher loop orders.

50



3.4.2 Mixings with several amplitudes

Eq. (3.16) can be applied to cases where the renormalized amplitude A includes several Wilson
coefficients. For example, we can have the contact amplitude AOi

plus some non-minimal

amplitude ÂOk
with an insertion of AOk

and the same external legs as AOi
. To account for

these mixings, we modify the LHS of Eq. (3.16) as follows:

γijAOi
=⇒ γijAOi

+
∑

k

γkjÂOk
. (3.52)

For the SMEFT at order 1/Λ2, the following cases arise:

� A(1V− , 2V− , 3H , 4H†) includes the contact amplitude AV 2H2 and also a non-minimal am-
plitude with an insertion of AV 3 .

� A(1ψ, 2ψ, 3H , 4H , 5H†) includes the contact amplitude Aψ2H3 and also several non-minimal
amplitudes containing AV ψ2H , Aψψ̄H2 and A□H4 .

� A(1H , 2H , 3H , 4H† , 5H† , 6H†) includes the contact amplitude AH6 plus non-minimal inter-
actions involving AV 3 , AV 2H2 and A□H4 .

Note that the different amplitudes AOi
and ÂOk

have different kinematic structures, so we
can easily disentangle the contributions to the anomalous dimensions γij and γkj. For instance,
the amplitude A(1V− , 2V− , 3H , 4H†) includes two different terms

AV 2H2(1V a
− , 2V b

−
, 3H , 4H†) =

CV 2H2

Λ2
⟨12⟩2 δab , (3.53)

ÂV 3(1V a
− , 2V b

−
, 3H , 4H†) =

CV 3fabcT c

Λ2

[⟨13⟩ ⟨42⟩ ⟨12⟩
⟨34⟩ − ⟨23⟩ ⟨14⟩ ⟨12⟩

⟨34⟩

]
. (3.54)

When applying Eq. (3.16) to the renormalization of A(1V− , 2V− , 3H , 4H†), some terms in the

RHS will have the spinor structure of AV 2H2 and other terms will have the structure of ÂV 3 .
Thus we can easily separate contributions to the different anomalous dimensions.

Another possibility is to have an amplitude A that includes several independent coefficients
COi

with the same kinematic structure but a different flavor structure. In such cases, we have
to project Eq. (3.16) onto a basis of invariant tensors under Lorentz and the global symmetries.
Then it is straightforward to identify the contribution to the anomalous dimensions of the
different coefficients.

3.4.3 Lorentz-Invariant Phase Space integration

There are several ways to perform the phase-space integration dLIPS. Here we adopt the
method described in [26], where the internal momenta are parameterized in terms of a subset
of the external momenta. The integral over the phase-space is then transformed into a solid
angle integration. The exact form of the parameterization depends on the number of internal
particles. In this work we will need the 2-particle and 3-particle cases.
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� Two internal particles. We must write the internal spinors ℓ1, ℓ2 in terms of two momenta
pa, pb that are a linear combination of the external momenta and satisfy pa+ pb = ℓ1+ ℓ2.
The parameterization is

|ℓ1⟩ = cθ |a⟩ − sθe
iϕ |b⟩ ,

|ℓ2⟩ = sθe
−iϕ |a⟩+ cθ |b⟩ ,

(3.55)

with sθ ≡ sin θ and cθ ≡ cos θ. The expressions for the square spinors |ℓ1] , |ℓ2] are
obtained by complex-conjugating Eq. (3.55). θ and ϕ are the angles that describe the
spinors ℓ1, ℓ2 in terms of a rotation of pa, pb. The dLIPS integration becomes a solid angle
integration,

2

π

∫
dLIPS ≡

∫ 2π

0

dϕ

2π

∫ π/2

0

dθ 2sθcθ . (3.56)

The simplest scenario occurs when we can directly identify pa and pb with the momenta of
external particles. For example, if we have a 4-point SM subamplitudeASM(p1, p2,−ℓ1,−ℓ2)
we can simply chose pa = p1 and pb = p2. Instead, if we have a 5-point SM amplitude
ASM(p1, p2, p3,−ℓ1,−ℓ2), we must define

pa = p1
s123

s12 + s13
, pb = p2 + p3 − p1

s23
s12 + s13

, (3.57)

with s123 = (p1 + p2 + p3)
2. One can check that this satisfies pa+pb = p1+p2+p3 = ℓ1+ℓ2.

The corresponding spinors are

|a⟩ = |1⟩
√

s123
s12 + s13

, |b⟩ = ([12] |2⟩+ [13] |3⟩)
√

1

s12 + s13
. (3.58)

� Three internal particles: This scenario corresponds to 3-cuts of 2-loop amplitudes. Again,
the internal spinors ℓ1, ℓ2, ℓ3 are expressed in terms of some pa, pb, pc made from the
external spinors with pa + pb + pc = ℓ1 + ℓ2 + ℓ3. In particular, we have

|ℓ1⟩ = cθ2 |a⟩ − eiϕcθ1sθ2 |b⟩ ,
|ℓ2⟩ = sθ2cθ3 |a⟩+ eiϕ

(
cθ1cθ2cθ3 − eiρsθ1sθ3

)
|b⟩ ,

|ℓ3⟩ = sθ2sθ3 |a⟩+ eiϕ
(
cθ1cθ2sθ3 + eiρsθ1cθ3

)
|b⟩ .

(3.59)

The corresponding phase-space integration is given by
∫
dLIPS ≡ sab

(16π2)2

∫
dµ , (3.60)

where sab = (pa + pb)
2 and we have defined

∫
dµ ≡

∫ π
2

0

2sθ1cθ1dθ1

∫ π
2

0

4s3θ2cθ2dθ2

∫ π
2

0

2sθ3cθ3dθ3

∫ 2π

0

dρ

2π

∫ 2π

0

dϕ

2π
, (3.61)

which satisfies
∫
dµ = 1. Throughout this work, we will only use this parameterization

in cases where we have a 5-point SM amplitude ASM(p1, p2,−ℓ1,−ℓ2,−ℓ3), and thus we
can choose pa = p1 and pb = p2.
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V 2H
Λ0 H5−→

V ψ2

Λ0 ψ2H2−→

Figure 3.5: Diagrams for the 1-loop renormalization of FH5 by FV 2H , and Fψ2H2 by FV ψ2. These
are the only mixings involving 3-point form factors at order 1/Λ.

3.4.4 Renormalization at order 1/Λ

Up until now, we have focused on renormalizations at order 1/Λ2, but one can prove that
Eq. (3.16) is also valid when AOi

,AOj
are amplitudes of order 1/Λ. The proof goes as follows:

we start with Eq. (3.18), which is valid for any form factor, and then we verify that it reduces
to Eq. (3.16) in the limit Q→ 0. Similarly to the 1/Λ2 case, we must ensure that there are no
additional contributions coming from the 3-point form factors in Eq. (3.18).

As listed in Section 2.2.1, there are two 3-point form factors at order 1/Λ: FV 2H and FV ψ2 .
The only possible extra terms in Eq. (3.18) come from the renormalization of FH5 by FV 2H , and
the renormalization of Fψ2H2 by FV ψ2 . The corresponding 2-cuts are illustrated in Figure 3.5.
The explicit computation of those 2-cuts leads to integrals like the ones in Figure C.2. By the
arguments in Appendix C, the absence of IR divergences implies that the total contribution of
triangles and boxes to Eq. (3.16) vanishes. This ensures the validity of Eq. (3.16) at order 1/Λ.

3.4.5 2-loop anomalous dimensions

We conclude this section with a brief discussion on the anomalous dimension matrix at higher
loop orders. Formulas Eq. (3.16) and Eq. (3.23) are based on the observation that bubble
coefficients can be derived from 2-cuts, together with Eq. (3.13) that relates the 1-loop anoma-
lous dimension to the bubble coefficients. This derivation does not have a natural extension to
higher-order mixings, since it relies on the Passarino-Veltman decomposition of 1-loop ampli-
tudes and the fact that only bubble integrals are UV divergent. There is no analog for this at
two loops.

The formalism of form factor renormalization, however, is a robust framework for studying
higher loop orders. The formula e−iπDF ∗ = SF ∗ gives an exact relation between the renor-
malization coefficients and the S-matrix. Expanding this expression yields a formula for the
anomalous dimension at various orders, expressed in terms of unitarity cuts. Let us comment
on the two classes of 2-loop anomalous dimensions that we can compute:
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� “Easy” 2-loop renormalizations. As we mentioned before, Eq. (3.33) provides the anoma-
lous dimension associated with the leading single logarithm lnµ2 in the form factor. If a
renormalization is forbidden at one loop, the leading logarithm comes at two loops and
we can use Eq. (3.33) to compute the 2-loop anomalous dimension. Now the convolution
⟨0|M⊗Oj|p1, ...pn⟩ includes three types of terms, which are diagrammatically shown in
Figure 3.6. We have 2-cuts of a 1-loop form factor and a tree-level amplitude, 2-cuts of a
tree-level form factor and a 1-loop amplitude, and 3-cuts of a tree-level form factor and
a tree-level amplitude.

(0)
SM

F (0)
i··

·

··
·

+ (1)
SM

F (0)
i··

·

··
·

+ (0)
SM

F (1)
i··

·

··
·

Figure 3.6: Diagrams illustrating the three classes of contributions to the 2-loop anomalous
dimensions.

� General 2-loop renormalizations. If there is mixing at one loop, the computation of
the 2-loop anomalous dimension becomes significantly more complex. We must expand
Eq. (3.31) at the next-to-leading order, so instead of Eq. (3.33) we have

[
∆γ

(1)
ij + δijβ

(1)
λ ∂λ

]
F

(1)
Oj

+
[
∆γ

(2)
ij + δijβ

(2)
λ ∂λ

]
F

(0)
Oj

− iπ
1

2

[
∆γ

(1)
ik + δikβ

(1)
λ ∂λ

] [
∆γ

(1)
kj + δkjβ

(1)
λ ∂λ

]
F

(0)
Oj

= − 1

π
(MFOi

)(2) ,
(3.62)

where we have defined ∆γij = γij−δijγiIR, and (MFOi
)(2) includes the 3 classes of unitarity

cuts in Figure 3.6. Now we have an expression involving both 1-loop and 2-loop terms,
so the extraction of γ

(2)
ij becomes more intricate.

We will see an example of an “easy” 2-loop computation in Chapter 5. The analysis of
general 2-loop renormalization goes beyond the scope of this work, but more details can be
found in [30].

3.5 Conclusions of the chapter

In this chapter we have studied the renormalization of effective field theories using on-shell am-
plitude methods. We have seen that the 1-loop anomalous dimensions γi for a Wilson coefficient
COi

depends only on the bubble coefficients C2 from the Passarino-Veltman decomposition of
the 1-loop amplitude, modulo IR divergences. The bubble coefficients can be obtained using
the generalized unitarity method, which allows us to reconstruct amplitudes by performing a
series of unitarity cuts on their loops. We have explained three different ways to extract the
anomalous dimensions directly from 2-cuts:
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� Method I relates γij to 2-cuts of the loop amplitude, as given by Eq. (3.16) that was
derived in our paper [1]. This expression is only valid for renormalizations where 2-cuts
receive no contributions from triangle and box integrals. As we have shown, that is
precisely the case of the SMEFT at orders 1/Λ2 and 1/Λ.

� Method II is based in the more general formula Eq. (3.23), which was obtained in [74]. The
idea is to perform a BCFW deformation of the internal cut momenta and use Cauchy’s
theorem to eliminate the simple poles associated with triangle and box integrals, leaving
only the bubble terms.

� Method III allows us to obtain the anomalous dimensions using 2-cuts of on-shell form
factors, following Eq. (3.35) from [26]. This method makes use of the fact that logarithms
of the renormalization scale lnµ2 must be accompanied by logarithms of the momenta
ln sij to ensure the correct dimensions.

It is particularly remarkable that method I gives us the anomalous dimensions from a
product of two tree-level on-shell amplitudes integrated over a phase space. This is significantly
simpler than the usual approach of computing the loop amplitude with Feynman diagrams.

The simplicity of Eq. (3.16) also allows us to derive helicity selection rules that indicate
which operator mixings are allowed or forbidden. In particular, we find that AOj

can only
renormalize AOi

if they satisfy ∆n ≥ |∆h|, with ∆n = ni−nj and ∆h = hi−hj. This selection
rule explains several unexpected zeroes in the anomalous dimension matrix.

We have primarily focused on 1-loop renormalizations, but we have discussed how to extend
this procedure to higher loop orders. Methods I and II are based on the PV decomposition of
1-loop amplitudes, which does not have an analog at higher orders. In contrast, method III
offers a natural extension to two or more loops.

Throughout this chapter, we have mostly focused on mixings with γijIR = 0. We have
presented the basic treatment of soft and collinear IR divergences in Section 3.3.

Our results highlight the power of on-shell amplitude methods in simplifying and systematiz-
ing computations in effective field theories, while also providing new insights into the structure
and properties of anomalous dimension matrices.
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Chapter 4

Applications of renormalization I:
1-loop anomalous dimension of dipole
operators

In this chapter we show an example of the computation of 1-loop anomalous dimensions in the
SMEFT using on-shell techniques. In particular, we apply methods I, II and III from Chapter 3
to the 1-loop renormalization of the SU(2)L dipole amplitude. This covers the results of [1]. A
similar computation was done in [28].

The contact on-shell amplitude associated with the dipole interaction V ψ2H at order 1/Λ2

is given by Eq. (2.30). For concreteness, we focus on the SMEFT amplitudeW a
−H

†le. Here,W a
−

is an SU(2)L gauge boson with helicity h = −1, H is the Higgs doublet and e, l are, respectively,
a lepton singlet and doublet with h = −1/2. At tree-level, the amplitude is given by

AWHle(1e, 2lj , 3Wa
− , 4H†

i
) =

CWHle

Λ2
⟨31⟩ ⟨32⟩ (T a)ji , (4.1)

where CWHle is a dimensionless Wilson coefficient and T a = σa/2, with σa the Pauli matrices.
Figure 4.1 shows the contact amplitude diagrammatically.

At the loop level, the coupling CWHle acquires an energy scale dependence that is given
by the anomalous dimension γWHle, as per Eq. (3.1). We will focus on the leading corrections
to CWHle, which come from other Wilson coefficients that mix at one loop. In principle, one
should consider all the possible 1-loop diagrams that generate an amplitude proportional to
AWHle. However, thanks to the helicity selection rule described in Section 3.4.1, we know that
mixings not obeying the condition ∆n ≥ |∆h| vanish. The remaining contributions correspond
to the classes of operators in the gray area of Table 3.1: V 2H2, V ψ2H,ψ4 and V 3. With
this information, we can compute the full 1-loop anomalous dimension for AWHle, up to self-
renormalization.

In Sections 4.1 to 4.4, we perform the explicit calculation of the 1-loop mixings of ψ4, V ψ2H,
V 2H2 and V 3 into the dipole amplitude AWHle. In Section 4.5 we compare the obtained result
with previous literature. In Section 4.6 we comment on some interesting features of the on-shell
procedure. Finally, the conclusions are presented in Section 4.7.
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e

l H†

W a
−

1

2

3

4

Figure 4.1: Diagram for the contact (or minimal) 4-point amplitude AWHle(1e, 2lj , 3Wa
− , 4H†

i
).

4.1 1-loop mixing ψ4 → V ψ2H

The first contribution we consider is the 1-loop mixing with ψ4. The contact on-shell ampli-
tude associated with ψ4 at order 1/Λ2 is given by Eq. (2.31). In the SMEFT, there are two
independent amplitudes that can generate AWHle at the 1-loop level, namely:

Aluqe(1e, 2li , 3u, 4qj) =
Cluqe
Λ2

⟨14⟩ ⟨32⟩ ϵij , (4.2)

Alequ(1e, 2li , 3u, 4qj) =
Clequ
Λ2

⟨12⟩ ⟨34⟩ ϵij . (4.3)

A third possible amplitude, A ∼ ⟨13⟩ ⟨24⟩, can be reduced to Aluqe and Alequ using the Schouten
identity. By the properties of the spinor product, it is straightforward to see that Eq. (4.3) is
antisymmetric under 1 ↔ 2, whereas the dipole amplitude Eq. (4.1) is symmetric under that
exchange. This implies that Clequ cannot contribute to the renormalization of CWHle, so we
only have to consider the mixing with Cluqe.

There is, naturally, freedom in the choice of the amplitude basis. For example, in the Warsaw
basis [65] we have the operators O(1)

lequ = (L̄jLeR)ϵjk(Q̄
k
LuR) and O(3)

lequ = (L̄jLσµνeR)ϵjk(Q̄
k
Lσ

µνuR),
which are associated to the contact amplitudes ⟨12⟩ ⟨34⟩ and (2 ⟨14⟩ ⟨32⟩ − ⟨12⟩ ⟨34⟩). However,
the choice of basis Eq. (4.2), Eq. (4.3) is a natural choice when working with on-shell amplitudes,
since ⟨14⟩ ⟨32⟩ and ⟨12⟩ ⟨34⟩ are the simplest spinor structures we can build.

Let us compute the 1-loop mixing of Cluqe into CWHle with the three different methods
described in Chapter 3.

4.1.1 Method I: γ{WHle,luqe} from amplitude 2-cuts

First, we use Eq. (3.16) that was derived in Section 3.2.2. The only contribution to the anoma-
lous dimension corresponds to the 2-cut in Figure 4.2, so we can write

γ{WHle,luqe}
Cluqe
CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPSAluqe(1e, 2l, 3

′
u, 4
′
q)×ASM(−4′q̄,−3′ū, 3Wa

− , 4H†) ,

(4.4)

57



e
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ū
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Figure 4.2: Diagram of the 2-cut relevant for the renormalization of AWHle by Alequ.

where AWHle and Aluqe are given by Eq. (4.1) and Eq. (4.2), and ASM is the Standard Model
amplitude in Eq. (2.10). The internal spinor momenta p′3, p

′
4 satisfy p

′
3+p

′
4 = p3+p4 = −p1−p2.

Expressing the amplitudes in terms of spinor-helicity variables, Eq. (4.4) becomes

γ{WHle,luqe}
⟨31⟩ ⟨32⟩ T a

Λ2
= −yug2Nc

4π3
T a
∫
dLIPS

⟨23′⟩ ⟨4′1⟩
Λ2

× ⟨34⟩ ⟨33′⟩
⟨43′⟩ ⟨3′4′⟩ . (4.5)

The next step is to perform the phase-space integration as described in Section 3.4.3. We
parameterize the internal spinors |3′⟩, |4′⟩ in terms of the external spinors |3⟩, |4⟩, leading to

|3′⟩ = cθ |3⟩ − sθe
iϕ |4⟩ ,

|4′⟩ = sθe
−iϕ |3⟩+ cθ |4⟩ .

(4.6)

The dLIPS integral corresponds to a solid angle integration, as given by Eq. (3.56). With
this replacement, the phase-space integral in the RHS of Eq. (4.5) becomes

∫
dLIPS

⟨23′⟩ ⟨4′1⟩ ⟨34⟩ ⟨33′⟩
⟨43′⟩ ⟨3′4′⟩

=
π

2

∫ 2π

0

dϕ

2π

∫ π/2

0

dθ 2sθcθ
sθe

iϕ

cθ

(
cθ ⟨23⟩ − sθe

iϕ ⟨24⟩
) (
sθe
−iϕ ⟨31⟩+ cθ ⟨41⟩

)

= −π ⟨31⟩ ⟨32⟩
∫ π/2

0

dθ s3θcθ = −π
4
⟨31⟩ ⟨32⟩ .

(4.7)

Notice how the ϕ integration projects the amplitude product to ⟨31⟩ ⟨32⟩, which is the spinor
structure of AWHle. Going back to Eq. (4.5), we can finally obtain the anomalous dimension

γ{WHle,luqe} =
yug2Nc

16π2
. (4.8)

Following Eq. (3.1), the total 1-loop anomalous dimension is γWHle =
∑

j γ{WHle,j} ·COj
, where

γ{WHle,j} represents the mixing between CWHle and COj
. Then Eq. (4.8) can also be written as

γWHle ⊃
yug2Nc

16π2
Cluqe . (4.9)

As a final remark, notice that the choice of parameterization in Eq. (4.6) is not unique.
We can interchange the spinors 3 ↔ 4 and 3′ ↔ 4′, and we can also write the internal spinors
in terms of the momenta p1, p2 instead of p3, p4. The dLIPS integral can be more or less
complicated depending on the parameterization, but the final result remains the same.
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4.1.2 Method II: γ{WHle,luqe} from momentum deformation

We can compute the anomalous dimension using the method of momentum deformation from
Section 3.2.3. Using Eq. (3.23) for the mixing of Aluqe into AWHle, we obtain:

γ{WHle,luqe}
Cluqe
CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

=
−i
8π4

∫
dLIPS

∫

C

dz

z
Aluqe(1e, 2l, 3

′
u(z), 4

′
q(z))×ASM(−4′q̄(z),−3′ū(z), 3Wa

− , 4H†) ,
(4.10)

where the internal momenta are shifted as follows:

|4′⟩ → |4′⟩+ z |3′⟩ , |3′⟩ → |3′⟩ ,
|3′] → |3′] + z |4′] , |4′] → |4′] . (4.11)

Now we must perform the contour z integral before the phase-space integration. The product
of the shifted subamplitudes in the RHS of Eq. (4.10) is

⟨23′⟩ ⟨4′1⟩ ⟨34⟩ ⟨33′⟩
⟨43′⟩ ⟨3′4′⟩ → ⟨23′⟩ (⟨4′1⟩+ z ⟨3′1⟩) ⟨34⟩ ⟨33′⟩

⟨43′⟩ ⟨3′4′⟩ . (4.12)

We have a contour integral with the following structure
∫

C

dz

z
(a+ zb) = 2πia , (4.13)

where a and b are real constants. As noted earlier, the result of the integral is the z-independent
coefficient of the Lauren series of the integrand at z = ∞ (times 2πi). Then we have

∫

C

dz

z

⟨23′⟩ (⟨4′1⟩+ z ⟨3′1⟩) ⟨34⟩ ⟨33′⟩
⟨43′⟩ ⟨3′4′⟩ = 2πi

⟨23′⟩ ⟨4′1⟩ ⟨34⟩ ⟨33′⟩
⟨43′⟩ ⟨3′4′⟩ . (4.14)

We can see how the z integration has not changed the kinematic structure of the amplitude
product. The phase integration in Eq. (4.10) matches that in Eq. (4.7), leading to the anomalous
dimension in Eq. (4.8). This is an example of how Eq. (3.23) coincides with Eq. (3.16) for
renormalizations with ∆n = 0. Indeed, the contour integration in Eq. (3.23) removes the
contributions from triangles and boxes to the 2-cuts, but in our case those contributions were
already zero.

Notice how our choice of the BCFW shift made the contour integration very simple. We
can choose the other possible BCFW shift, interchanging 3 ↔ 4 in Eq. (4.11). In that case,
instead of Eq. (4.13) we obtain the following contour integral

∫

C

dz

z

(a+ zb) (c+ zd)

(e+ zf)
= 2πi

adf + bcf − bde

f 2
. (4.15)

While it is not immediately apparent that both shift choices are equivalent, we know they must
be. Indeed, if we write a, b, c, d, e, f in terms of the corresponding spinor products and simplify
the expression using the Schouten identity, we obtain the same result as in Eq. (4.14).
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4.1.3 Method III: γ{WHle,luqe} from form factor unitarity cuts

We can also compute the anomalous dimension using form factor renormalization, as described
in Section 3.2.4. Applying Eq. (3.35) to the mixing of Fluqe and FWHle, we obtain:

γ{WHle,luqe}FWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPSFluqe(1e, 2l, 3

′
u, 4
′
q)× ASM(−4′q̄,−3′ū, 3Wa

− , 4H†) .
(4.16)

Again, the contribution comes solely from the 2-cut in Figure 4.2. Expressing the equation
in terms of spinor-helicity variables leads to

γ{WHle,luqe}
⟨31⟩ ⟨32⟩ T a

Λ2
= −yug2Nc

4π3
T a
∫
dLIPS

⟨23′⟩ ⟨4′1⟩
Λ2

× ⟨34⟩ ⟨33′⟩
⟨43′⟩ ⟨3′4′⟩ . (4.17)

This is similar to Eq. (4.5), except that now the form factors have p1+p2+p3+p4 = Q ̸= 0 and
p1+p2+p

′
3+p

′
4 = Q ̸= 01. For the phase-space integral, our previous choice of parameterization

was Eq. (4.6), which imposes momentum conservation in the SM amplitude p′3 + p′4 = p3 + p4.
However, we did not use momentum conservation in the amplitude Aluqe. This means our
computation is also valid for the form factors in Eq. (4.17)2. Proceeding as before and taking
the limit Q→ 0 at the end of the calculation yields Eq. (4.8) once more. This is a check that,
as we proved in Section 3.2.2, Eq. (3.16) and Eq. (3.35) coincide at this order.

4.2 1-loop mixing V ψ2H → V ψ2H

We now examine the mixings of WHle with other dipoles. Excluding self-renormalization, the
only SMEFT amplitude of class V ψ2H that can generate WHle at one loop is:

ABHle(1e, 2lj , 3B− , 4H†
i
) =

CBHle
Λ2

⟨31⟩ ⟨32⟩ δji . (4.18)

The calculation can be done using any of the three methods we have previously described.
In this case, method I is the most convenient one. Since ∆n = 0, there is no advantage in
using method II. Moreover, as FBHle is a 4-point form factor, method III involves essentially
the same computations as method I. For these reasons, we focus on method I. There are two
contributions to Eq. (3.16), corresponding to the 2-cuts in Figure 4.3. We can write:

γ{WHle,BHle}
CBHle
CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPSABHle(1e, 2l, 3

′
B− , 4

′
H†)×ASM(−3′B+

,−4′H , 3Wa
− , 4H†)

+
1

4π3

∫
dLIPSABHle(1e, 2

′
l, 3
′
B− , 4H†)×ASM(−3′B+

,−2′l̄, 3Wa
− , 2l) .

(4.19)

1In Eq. (4.4) we had p1 + p2 + p3 + p4 = 0 and p1 + p2 + p′3 + p′4 = 0 for the amplitudes AWHle and Aluqe.
2The choice of parameterization of the internal spinors in terms of p1, p2 is not valid in this case, since it

imposes p1 + p2 + p′3 + p′4 = 0, which is not true.
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Figure 4.3: Diagrams illustrating the two 2-cuts contributing to the renormalization of AWHle

by ABHle.

Using Eqs. (4.1, 4.18) for the 1/Λ2 amplitudes and Eqs. (2.12, 2.13) for the SM amplitudes,
we have

γ{WHle,BHle}
⟨31⟩ ⟨32⟩ T a

Λ2
=
g1g2YH
4π3

T a
∫
dLIPS

⟨3′1⟩ ⟨3′2⟩
Λ2

× ⟨4′3⟩ ⟨43⟩
⟨4′3′⟩ ⟨43′⟩

− g1g2Yl
4π3

T a
∫
dLIPS

⟨3′1⟩ ⟨3′2′⟩
Λ2

× ⟨23⟩2
⟨23′⟩ ⟨3′2′⟩ .

(4.20)

After performing the two phase-space integrations, we find:

γ{WHle,BHle} =
g1g2YH
4π2

∫ π/2

0

dθc3θsθ +
g1g2Yl
4π2

∫ π/2

0

dθsθcθ =
g1g2
16π2

(YH + 2Yl) . (4.21)

Given that the hypercharges satisfy YH = Yl + Ye, we can finally write

γ{WHle,BHle} =
g1g2
16π2

(3Yl + Ye) . (4.22)

4.3 1-loop mixing V 2H2 → V ψ2H

Next, we examine the mixings involving V ψ2H. There are two different SMEFT amplitudes of
this class that generate WHle at one loop:

AW 2H2(1Wa
− , 2Wa

− , 3Hj , 4H†
i
) =

CW 2H2

Λ2
⟨12⟩2 δji , (4.23)

AWBH2(1Wa
− , 2B− , 3Hj , 4H†

i
) =

CWBH2

Λ2
⟨12⟩2 (T a)ji . (4.24)

Again, we use method I to obtain the anomalous dimension matrix. For the mixing with
W 2H2, the only contribution to Eq. (3.16) is given by the 2-cut in Figure 4.4, which is

γ{WHle,W 2H2}
CW 2H2

CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPSAW 2H2(3Wa

− , 4H† , 1′Wa
−
, 2′H)×ASM(−1′Wa

+
,−2′H† , 1e, 2l) .

(4.25)
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Figure 4.4: Diagram of the 2-cut contributing to the renormalization of AWHle by AW 2H2.
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Figure 4.5: Diagram of the 2-cut contributing to the renormalization of AWHle by AWBH2.

Thus, the anomalous dimension is

γ{WHle,W 2H2} =
yeg2
4π3

1

⟨31⟩ ⟨32⟩

∫
dLIPS

⟨31′⟩2 ⟨2′2⟩ ⟨12⟩
⟨1′2′⟩ ⟨1′2⟩ = −yeg2

2π2

∫ π/2

0

dθ s3θcθ = −yeg2
8π2

. (4.26)

For the remaining amplitudeAWBH2 , there is again one single 2-cut contribution to Eq. (3.16),
as shown in Figure 4.5. The anomalous dimension is given by

γ{WHle,WBH2}
CWBH2

CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPSAWBH2(3Wa

− , 4H† , 1′B− , 2
′
H)×ASM(−1′B+

,−2′H† , 1e, 2l) ,

(4.27)

and finally we obtain

γ{WHle,WBH2} =
yeg1
4π3

1

⟨31⟩ ⟨32⟩

∫
dLIPS ⟨31′⟩2

(
Yl

⟨2′2⟩ ⟨12⟩
⟨1′2′⟩ ⟨1′2⟩ − Ye

⟨2′1⟩ ⟨21⟩
⟨1′2′⟩ ⟨1′1⟩

)

= −yeg1
2π2

∫ π/2

0

dθ
(
Yls

3
θcθ − Yesθc

3
θ

)
= −yeg1

8π2
(Yl − Ye) .

(4.28)

4.4 1-loop mixing V 3 → V ψ2H

The remaining mixing corresponds to amplitudes of class V 3. The only SMEFT amplitude that
can generate WHle at one loop is

AW 3(1Wa
− , 2W b

−
, 3W c

−) =
iCW 3

Λ2
⟨12⟩ ⟨23⟩ ⟨31⟩ fabc . (4.29)
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Notice that this is the first time we are encountering a ∆n = 1 mixing and a 3-point 1/Λ2

amplitude, so it is interesting to compute the anomalous dimension using the three different
methods explained in Chapter 3.

4.4.1 Method I: γ{WHle,W 3} from amplitude 2-cuts

H† H
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− W b

−

SM

H†

W a
+

e

l

(a)

+

l l̄

W a
− W b

−

SM

l

W a
+

e

H†

(b)

Figure 4.6: Diagrams of the 2-cuts that contribute to the renormalization of AWHle by AW 3.

In this case there are two contributions to the anomalous dimension, given by the 2-cuts in
Figure 4.6. Eq. (3.16) becomes

γ{WHle,W 3}
CW 3

CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPS ÂW 3(3Wa

− , 4H† , 1′H , 2
′
W b

−
)×ASM(−1′H† ,−2′W b

+
, 1e, 2l)

+
1

4π3

∫
dLIPS ÂW 3(3Wa

− , 2l, 1
′
l̄, 4
′
W b

−
)×ASM(−1′l,−4′W b

+
, 1e, 4H†) ,

(4.30)

where ÂW 3 is a non-minimal (or factorizable) amplitude that includes the AW 3 contact ampli-
tude Eq. (4.29). These amplitudes can be computed using the strategies outlined in Section
1.3.2. For example, we can use the ansatz method and impose proper factorization and crossing
a↔ b. Ultimately, we obtain

ÂW 3(3Wa
− , 4H†

i
, 1′Hj , 2′W b

−
) =

ig2CW 3fabc(T c)ji
2Λ2

[⟨31′⟩ ⟨42′⟩ ⟨32′⟩
⟨1′4⟩ − ⟨2′1′⟩ ⟨34⟩ ⟨32′⟩

⟨1′4⟩

]
, (4.31)

ÂW 3(3Wa
− , 2lj , 1

′
l̄i
, 4′W b

−
) =

ig2CW 3fabc(T c)ji
Λ2

⟨34′⟩ ⟨32⟩ ⟨24′⟩
⟨1′2⟩ . (4.32)

Using these expressions, together with Eq. (2.10) for the SM amplitudes, the RHS of
Eq. (4.30) can be written as

rT a
∫
dLIPS ⟨12⟩

[⟨32′⟩
2

( ⟨31′⟩
⟨2′1′⟩ +

⟨23⟩
⟨2′2⟩

)
+ ⟨43⟩

(⟨31′⟩
⟨41′⟩ +

⟨32⟩ ⟨1′2′⟩
⟨41′⟩ ⟨2′2⟩

)]

+ rT a
∫
dLIPS ⟨23⟩

[
⟨34′⟩

( ⟨11′⟩
⟨4′1′⟩ +

⟨41⟩
⟨4′4⟩

)
+ ⟨21⟩

(⟨31′⟩
⟨21′⟩ +

⟨34⟩ ⟨1′4′⟩
⟨21′⟩ ⟨4′4⟩

)]
,

(4.33)

63



with r = −g22yeCW3

4π3Λ2 . We have rearranged the spinor-helicity variables with the Schouten identity
and we have used that fabcT bT c = iNT a/2 for an SU(N) group. Next, we must perform the
phase-space integration. In the first line of Eq. (4.33) we parameterize |1′⟩ , |2′⟩ in terms of
|1⟩ , |2⟩. In the second line we parameterize |1′⟩ , |4′⟩ in terms of |1⟩ , |4⟩. This leads to

rT a


−1

2
⟨31⟩ ⟨32⟩+

∫
dLIPS ⟨12⟩ ⟨43⟩

⟨31⟩ sθe−iϕ − ⟨32⟩ s
2
θ

cθ

⟨41⟩ sθe−iϕ + ⟨42⟩ cθ




+ rT a


1
2
⟨31⟩ ⟨32⟩+

∫
dLIPS ⟨23⟩ ⟨21⟩

⟨31⟩ sθe−iϕ − ⟨34⟩ s
2
θ

cθ

⟨21⟩ sθe−iϕ + ⟨24⟩ cθ


 .

(4.34)

In both lines, the second term contains a polynomial of eiϕ in the denominator, which makes the
dLIPS integration more involved. The ϕ integral is equivalent to a contour integral of z = eiϕ

along a unit circle, which can be computed with Cauchy’s theorem. In our case we have

∫ 2π

0

dϕ

2π

ae−iϕ + b

ce−iϕ + d
=

1

2πi

∮
dz

z

a+ bz

c+ dz
=
a

c
+

(
b

d
− a

c

)
Θ
(
1−

∣∣∣ c
d

∣∣∣
)
, (4.35)

where we have added the contributions from the poles at z = 0 and z = −c/d. The Θ function
ensures that we only include the residue at z = −c/d when the pole falls inside the unit circle.
If c/d depends on the θ angle, the Θ function changes the integration limits of the dθ integral.
For example, one of the terms in Eq. (4.34) is

2

π

∫
dLIPS

⟨31⟩ sθe−iϕ − ⟨32⟩ s
2
θ

cθ

⟨41⟩ sθe−iϕ + ⟨42⟩ cθ
=

⟨31⟩
⟨41⟩ −

∫ arctan
√

s24
s14

0

dθ2sθcθ

(⟨32⟩ s2θ
⟨42⟩ c2θ

+
⟨31⟩
⟨41⟩

)

=
⟨31⟩
⟨41⟩ +

⟨34⟩ ⟨21⟩
⟨41⟩ ⟨42⟩

s24
s24 + s14

+
⟨32⟩
⟨42⟩ ln

(
s14

s24 + s14

)
,

(4.36)

where the integration limit θ ≤ arctan
(√

s24/s14

)
comes from the Θ

(
1−

∣∣∣ ⟨41⟩sθ⟨42⟩cθ

∣∣∣
)
function.

The remaining integral in Eq. (4.34) can be computed in a similar manner. Finally, the anoma-
lous dimension is

γ{WHle,W 3} =
g22ye
8π2

[
1

2
− s12
s24

ln

(
s14

s14 + s24

)]
− g22ye

8π2

[
1

2
+
s12
s24

ln

(
s12

s24 + s12

)]
. (4.37)

Notice that the individual 2-cuts (a) and (b) in Figure 4.6 contain logarithms, which arise
from the presence of triangles and boxes. As explained in Section 3.2.3, this is something we
expect for renormalizations with ∆n = 1 instead of ∆n = 0. Logarithms are expected to cancel
when summing over all 2-cuts in Eq. (3.16). Indeed, using the condition s12 + s14 + s24 = 0,
Eq. (4.37) becomes

γ{WHle,W 3} =
g22ye
8π2

[
1

2
− s12
s24

ln

(
s14
−s12

)]
− g22ye

8π2

[
1

2
+
s12
s24

ln

(
s12
−s14

)]
= 0 , (4.38)
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where the logarithms from (a) and (b) cancel out as expected. In this case, surprisingly, the
non-logarithmic terms also cancel and the anomalous dimension is zero.

As a final remark, the coefficients in front of the logarithms in Eq. (4.37) are related to the
box coefficients of the amplitude A1−loop

ij for the mixing AW 3 → AWHle. In Appendix C.2, we

show how those coefficients can be computed directly from 4-cuts of A1−loop
ij .

4.4.2 Method II: γ{WHle,W 3} from momentum deformation

The computation of γ{WHle,W 3} can be simplified using Eq. (3.23), which eliminates the contri-
butions from triangles and boxes in the individual cuts before the dLIPS integration. For the
2-cut (a) in Figure 4.6, we perform the following BCFW shift

|1′⟩ → |1′⟩+ z |2′⟩ , |2′⟩ → |2′⟩ ,
|2′] → |2′] + z |1′] , |1′] → |1′] . (4.39)

Next, we perform the z integration to extract the pole at infinity, yielding

∫

C

dz

z
⟨12⟩


⟨32

′⟩
2

(⟨31′⟩+ z ⟨32′⟩
⟨2′1′⟩ +

⟨23⟩
⟨2′2⟩

)
+ ⟨43⟩

(
⟨31′⟩+ z ⟨32′⟩+ ⟨32⟩⟨1′2′⟩

⟨2′2⟩

)

⟨41′⟩+ z ⟨42′⟩




= ⟨12⟩
[⟨32′⟩

2

( ⟨31′⟩
⟨2′1′⟩ +

⟨23⟩
⟨2′2⟩

)
+

⟨43⟩ ⟨32′⟩
⟨42′⟩

] (4.40)

We can proceed similarly with the other 2-cut (b). Using Eq. (3.23), the anomalous dimen-
sion is given by

γ{WHle,W 3}
CW 3

CWHle

AWHle(1e, 2l, 3Wa
− , 4H†)

= rT a
∫
dLIPS ⟨12⟩

[⟨32′⟩
2

( ⟨31′⟩
⟨2′1′⟩ +

⟨23⟩
⟨2′2⟩

)
+

⟨43⟩ ⟨32′⟩
⟨42′⟩

]

+ rT a
∫
dLIPS ⟨23⟩

[
⟨34′⟩

( ⟨11′⟩
⟨4′1′⟩ +

⟨41⟩
⟨4′4⟩

)
+

⟨21⟩ ⟨34′⟩
⟨24′⟩

]
.

(4.41)

The RHS of this expression should be compared with Eq. (4.33), derived from Eq. (3.16). The
first term of every line remains the same, whereas the second term has changed with the z
integration. Naturally, both formulas for the anomalous dimension must coincide. Indeed,
performing the phase space integration of Eq. (4.41) yields

γ{WHle,W 3} =
g22ye
8π2

[
1

2
+
s12
s14

(
1 +

s12
s24 + s14

)]
+
g22ye
8π2

[
1

2
+

s14
s24 + s12

]
= 0 , (4.42)

which is zero since s12 + s14 + s24 = 0. Notice that we obtain the same terms as in Eq. (4.38)
except for the logarithms, which have been removed with the momentum deformation. This
shows the effectiveness of Eq. (3.23) for mixings with ∆n = 1.

65



(c) W a
−

W c
−

W b
−

SM

W c
+

W b
+

e

H†

`

Figure 4.7: Diagram of the extra 2-cut that contributes to the renormalization of FWHle by FW 3.

4.4.3 Method III: γ{WHle,W 3} from form factor unitarity cuts

We can also apply form factor renormalization to the mixing W 3 → WHle. Using Eq. (3.35),
there are three contributions to the anomalous dimension. Two of them correspond to the
2-cuts (a) and (b), previously shown in Figure 4.6. However, now we must also consider the
2-cut (c) in Figure 4.7. The overall expression can be written as

γ{WHle,luqe}FWHle(1e, 2l, 3Wa
− , 4H†)

=
1

4π3

∫
dLIPS F̂W 3(3Wa

− , 4H† , 1′H , 2
′
W b

−
)× ASM(−1′H† ,−2′W b

+
, 1e, 2l)

+
1

4π3

∫
dLIPS F̂W 3(3Wa

− , 2l, 1
′
l̄, 4
′
W b

−
)× ASM(−1′l,−4′W b

+
, 1e, 4H†)

+
1

4π3

∫
dLIPSFW 3(3Wa

− , 1
′
W b

−
, 2′W c

−
)× ASM(−1′W b

+
,−2′W c

+
, 1e, 2l, 4H†) ,

(4.43)

where the last line corresponds to the 2-cut (c). This term does not appear in Eq. (4.30)
because the on-shell 3-point amplitude vanishes, but we must include it when working with
form factors. The contributions from cuts (a) and (b) have already been computed in the
previous subsection,

γ{WHle,W 3} ⊃
g22ye
8π2

{
1

2
+

⟨12⟩ ⟨43⟩
⟨14⟩ ⟨32⟩

s14
s24 + s14

+
⟨12⟩ ⟨43⟩
⟨24⟩ ⟨31⟩

[
s24

s24 + s14
+ ln

(
s14

s14 + s24

)]}

+
g22ye
8π2

{
1

2
− s24
s24 + s12

+
⟨12⟩ ⟨43⟩
⟨24⟩ ⟨31⟩

[
s24

s24 + s12
+ ln

(
s12

s24 + s12

)]}
.

(4.44)

Notice that now p1+p2+p3+p4 = Q2 ̸= 0, so we cannot simplify this expression into Eq. (4.37)
as we did before. The remaining cut (c) requires the phase-space integration of the minimal
form factor FW 3 and the 5-point SM amplitude Eq. (2.14),

∫
dLIPS ⟨31′⟩ ⟨2′3⟩ ⟨12⟩

( ⟨42⟩
⟨2′4⟩ ⟨21′⟩ +

⟨14⟩
⟨12′⟩ ⟨41′⟩

)
. (4.45)

To solve the integral, we parameterize |1′⟩ , |2′⟩ as explained in Section 3.4.3. Since we have
a 5-point SM amplitude, we define two spinors which are a linear combination of the external
|1⟩ , |2⟩ , |4⟩. Following Eq. (3.58), this is

|a⟩ = |1⟩
√

s124
s12 + s14

, |b⟩ = ([12] |2⟩+ [14] |4⟩)
√

1

s12 + s14
. (4.46)
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Then we can use Eq. (3.55) to write the internal spinors as

|1′⟩ = cθ |a⟩ − sθe
iϕ |b⟩ =

√
1

s12 + s14

[
cθ |1⟩

√
s124 − sθe

iϕ ([12] |2⟩+ [14] |4⟩)
]
,

|2′⟩ = sθe
−iϕ |a⟩+ cθ |b⟩ =

√
1

s12 + s14

[
sθe
−iϕ |1⟩√s124 + cθ ([12] |2⟩+ [14] |4⟩)

]
.

(4.47)

After performing the phase-space integration, the contribution from cut (c) is

γ{WHle,W 3} ⊃ −g
2
2ye
8π2

{
1− s24

s24 + s12
+

⟨12⟩ ⟨43⟩
⟨14⟩ ⟨32⟩

s14
s24 + s14

+
⟨12⟩ ⟨43⟩
⟨24⟩ ⟨31⟩

[
s24

s24 + s12
+

s24
s24 + s14

+ ln

(
s12s14

(s24 + s12)(s14 + s24)

)]}
.

(4.48)

The anomalous dimension is obtained by summing the three cuts, ultimately yielding
γ{WHle,W 3} = 0. Notice that the additional terms in Eq. (4.44) that we could not simplify
because Q2 ̸= 0 are exactly canceled by the cut involving the 3-point form factor. Indeed, both
Eq. (3.16) and Eq. (3.35) give the same result as expected. This is demonstrated by taking the
limit Q2 → 0 of Eq. (4.43). The contributions from (a) and (b) reduce to Eq. (4.42), while the
contribution from (c) goes smoothly to zero.

4.5 Comparison with the literature

Our results can be compared with previous computations of the 1-loop anomalous dimension
matrix for dimension-six operators in the SMEFT. A review of the existing calculations, pre-
dominantly performed using the Feynman approach, is provided in the introduction.

Throughout this chapter we have examined the renormalization of the SU(2)L dipole am-
plitude AWHle by other 1/Λ2 amplitudes. In order to relate this to previous literature, we must
establish the correspondence between our amplitude basis and some dimension-6 operator basis.
This correspondence is presented in Appendix B, where we list the on-shell amplitudes associ-
ated with SMEFT operators in the Warsaw basis [65]. In particular, our calculation should be
compared to the 1-loop anomalous dimensions of CeW , the Wilson coefficient of the dipole op-
erator OeW = L̄Lσ

aσµνeRHW
a
µν . Indeed, we find that our results successfully reproduce those

in [20, 21, 84]. This demonstrates the utility of on-shell techniques in verifying calculations
performed using other methods.

4.6 Additional observations

We have successfully computed the 1-loop anomalous dimension of the WHle dipole using on-
shell amplitude methods. At this point, it is pertinent to discuss some notable features of this
procedure:
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� We observe that, even if two mixings appear different at the level of Feynman diagrams,
they can exhibit remarkable similarity when analyzed using on-shell methods. For exam-
ple, the mixings luqe → WHle and W 2H2 → WHle are reduced to the same angular
integral,

γ{WHle,luqe} =
yug2Nc

4π2

∫ π/2

0

dθ s3θcθ =
yug2Nc

16π2
, (4.49)

γ{WHle,W 2H2} = −yeg2
2π2

∫ π/2

0

dθ s3θcθ = −yeg2
8π2

. (4.50)

This similarity arises from the helicity structure of the on-shell subamplitudes, which
remains obscured in the Feynman diagram approach.

� The mixings of the dipole with ψ4 and V 2H2 involve only a variant of the same SM ampli-
tude ASM(1V a

+
, 2H† , 3ψ, 4ψ). More broadly, let us consider the subset of 1/Λ2 amplitudes

with n = 4, h = −2, as given in Eqs. (2.29, 2.30, 2.31). The anomalous dimension matrix
for this subset is



γV ψ2H

γψ4

γV 2H2




n=4
h=−2

=



γ{V ψ2H,V ψ2H} γ{V ψ2H,ψ4} γ{V ψ2H,V 2H2}

γ{ψ4,V ψ2ϕ} γ{ψ4,ψ4} γ{ψ4,V 2H2}

γ{V 2H2,V ψ2H} γ{V 2H2,ψ4} γ{V 2H2,V 2H2}






CV ψ2H

Cψ4

CV 2H2


 . (4.51)

Using Eq. (3.16), we can check that all the non-diagonal mixings require uniquely the
Λ0 amplitude A(1V a

+
, 2H† , 3ψ, 4ψ). Similarly, for the subset of 1/Λ2 amplitudes with n =

4, h = 0 in Eqs. (2.32, 2.33, 2.34), the anomalous dimension matrix is



γ□H4

γψψ̄H2

γψ2ψ̄2



n=4
h=0

=




γ{□H4,□H4} γ{□H4,ψψ̄H2} γ{□H4,ψ2ψ̄2}
γ{ψψ̄H2,□H4} γ{ψψ̄H2,ψψ̄H2} γ{ψψ̄H2,ψ2ψ̄2}
γ{ψ2ψ̄2,□H4} γ{ψ2ψ̄2,ψψ̄H2} γ{ψ2ψ̄2,ψ2ψ̄2}






C□H4

Cψψ̄H2

Cψ2ψ̄2


 , (4.52)

where now all the non-diagonal mixings involve the Λ0 amplitude A(1H , 2H† , 3ψ, 4ψ̄). This
implies that multiple 1-loop renormalizations can be computed from a single tree-level
amplitude, enhancing efficiency.

� As a final remark, on-shell methods possess the convenient property of “recyclability”.
This property allows new calculations to build upon previous results, avoiding the need to
start from scratch. Once we compute some mixing γij it is easier to obtain the “inverse”
mixing γji because it involves the same on-shell amplitudes. As an example, let us consider
the “inverse” of Eq. (4.4), which is the contribution of the dipole AWHle to the 4-fermion
amplitudes Alequ and Aluqe. The relevant 2-cut is shown in Figure 4.8.
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Figure 4.8: Diagram of the 2-cut relevant for the renormalization of Alequ and Aluqe by AWHle.

Using Eq. (3.16), we have

γ{lequ,WHle}
CWHle

Clequ
Alequ(1e, 2l, 3u, 4q) + γ{luqe,WHle}

CWHle

Cluqe
Aluqe(1e, 2l, 3u, 4q)

=
1

4π3

∫
dLIPSAWHle(1e, 2l, 3

′
Wa

−
, 4′H†)×ASM(−3′Wa

+
,−4′H , 3u, 4q)

=
yug2
4π3

CWHle

Λ2
(T a)2

∫
dLIPS ⟨3′1⟩ ⟨3′2⟩ × ⟨34⟩ ⟨4′4⟩

⟨3′4⟩ ⟨3′4′⟩

= −3yug2
64π2

CWHle

Λ2
(⟨31⟩ ⟨42⟩+ ⟨32⟩ ⟨41⟩) ,

(4.53)

with (T a)2 = 3/4. Notice that, since AWHle is symmetric under 1 ↔ 2, it can only
renormalize a linear combination of 4-fermion amplitudes that share this symmetry. This
selection rule is obscured when working with Feynman diagrams but becomes evident in
the on-shell amplitude approach. Applying the Schouten identity to express Eq. (4.53) in
terms of the 4-fermion amplitudes Aluqe and Alequ, we derive

γ{luqe,WHle} = −2γ{lequ,WHle} =
3yug2
32π2

. (4.54)

4.7 Conclusions of the chapter

In this chapter, we have successfully applied on-shell amplitude methods to compute 1-loop
renormalizations in the SMEFT, focusing on the SU(2)L dipole amplitude AWHle. This proce-
dure offers an efficient alternative to traditional Feynman diagram loop calculations.

We have obtained the full 1-loop anomalous dimension matrix for CWHle, excluding self-
renormalization. We have computed the mixings of AWHle with interactions of classes ψ4,
V ψ2H, V 2H2 and V 3, using the three methods described in Chapter 3. The simplest one is
method I, which allows us to compute the anomalous dimension from a product of two tree-level
amplitudes integrated over a phase space. This integral can be reduced to an angular integral,
which often becomes trivial, showcasing the remarkable simplicity of the on-shell approach.

Regarding the other methods, we have demonstrated how method II of momentum defor-
mation is primarily helpful for mixings with ∆n = 1, where the individual 2-cuts of method I
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receive logarithmic contributions from triangle and box integrals. Such contributions are elimi-
nated by shifting the internal momenta into the complex plane and applying Cauchy’s theorem.
We have also seen how method III includes additional contributions from 2-cuts involving 3-
point form factors, which vanish for method I. Nevertheless, all three methods give the same
result.

We have checked that our results for the anomalous dimensions associated with AWHle

match those obtained using Feynman diagram techniques in previous studies. In particular,
we have considered the renormalization of the dipole operator OeW = L̄Lσ

aσµνeRHW
a
µν . This

validates the use of on-shell methods as a robust computational tool in the SMEFT.
Our calculation has provided several insights into the power of on-shell methods. Amplitude

symmetries and helicity structures are naturally embedded in the on-shell framework, simpli-
fying the identification of non-zero contributions to the anomalous dimensions. Mixings that
seem distinct in the Feynman diagram approach often reduce to similar angular integrals when
analyzed on-shell, highlighting structural simplifications.

The studied methods are highly efficient because, once we have computed some on-shell
amplitude, we can reuse it in related renormalizations. For example, the mixing AOi

→ AOj

requires the same amplitudes as the inverse mixing AOj
→ AOi

. Additionally, we have seen
that all 1-loop mixings between operators with the same n and h involve a single SM amplitude.

In conclusion, we have tested the advantages and versatility of on-shell amplitudes for
SMEFT renormalization calculations. The considered methods offer an efficient procedure for
computing anomalous dimensions, complementing other techniques.
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Chapter 5

Applications of renormalization II:
Lepton Flavor Violation

In this chapter we consider a phenomenological application of on-shell renormalization tech-
niques. Following [3], we analyze Lepton Flavor Violating (LFV) muon decays, which are some
of the most promising probes for new physics at the TeV scale. Using on-shell amplitude meth-
ods, we study the mixing of SMEFT higher-dimension operators into several LFV observables
up to two loops.

The chapter is organized as follows: In Section 5.1 we highlight the role of LFV processes in
searches for new physics. In Section 5.2 we perform a systematic analysis of µ → eγ, µ → eee
and µN → eN at tree level in the SMEFT and discuss the obtained energy bounds. In Section
5.3 we identify which operators contribute to the LFV processes at the 1-loop and 2-loop levels.
In Section 5.4 we use on-shell amplitude methods to obtain the relevant anomalous dimension
mixings up to two loops. We present the new energy bounds, including loop effects, in Section
5.5. As an example, we show the impact of our analysis in two different BSM models in Section
5.6. We summarize the main conclusion from this work in Section 5.7.

5.1 LFV processes as probes for BSM physics

Within the Standard Model, the number of leptons of different species Le,µ,τ is conserved in
all interactions. This symmetry is considered accidental because it is not preserved by higher-
dimension operators made of SM fields. Therefore, LFV processes are excellent tools for testing
the SM and exploring new physics.

Considering the SMEFT expansion in powers of 1/Λ (see Section 2.2.2), the total lepton
number L = Le + Lµ + Lτ is already not preserved at the first order 1/Λ. The dimension-5
operator Oψ2H2 in Eq. (2.38), which is responsible for neutrino masses, breaks lepton number
by two units ∆L = 2. The effects of this operator, however, are primarily relevant to neutrino
physics. Indeed, since neutrino masses are so small (mν < 0.8 eV [17]), the ratio between
the Wilson coefficient Cψ2H2 and the scale of new physics Λ is expected to be small as well.
Consequently, contributions of order Cψ2H2/Λ to other observables are negligible.
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At the next order 1/Λ2, dimension-6 operators generate LFV interactions involving charged
leptons. This kind of interaction is yet to be observed experimentally, despite being predicted
in the vast majority of BSM models. Here we will focus on LFV processes that violate the
relative lepton numbers Le,µ,τ while preserving the total lepton number L. These processes are
one of the most promising indirect probes for new physics [85], since they generically get sizable
contributions from BSM effects. Moreover, dimension-6 operators that preserve total lepton
number are much less suppressed than dimension-5 operators, so that they can have a larger
impact on LFV observables.

For concreteness, we consider LFV processes with ∆Le = ∆Lµ = 1. In this category, the
most competitive experimental searches are:

� µ → eγ: muon decay into an electron plus a photon. Currently the leading sensitivity
is BR(µ → eγ) ≤ 4.2 · 10−13, which comes from the MEG experiment [86]. The MEG II
[87] experiment is projected to continue the search for this decay and aims to achieve a
sensitivity of 6 · 10−14.

� µ → eee: muon decay into three electrons. The current limit was set by the SINDRUM
collaboration [88] and is given by BR(µ→ eee) ≤ 10−12. The best future prospect comes
from the Mu3e experiment [89], which has a target sensitivity of 10−16.

� µN → eN : muon-to-electron conversion in nuclei. The current bound on the conversion
rate is R(µN → eN) ≤ 7 · 10−13, as measured in the SINDRUM-II experiment [90]. This
sensitivity is expected to improve in the future Mu2e experiment [91], reaching 8 · 10−17.

These three processes are particularly interesting for BSM searches because their branching
ratios in the SM are extremely small, very far from the present and future experimental sen-
sitivities. Therefore they are very clean observables for new physics. Moreover, the searches
of all three processes are expected to improve their sensitivities in the next decade [92]. Other
processes with ∆Le = ∆Lµ = 1 include the following LFV decays:

� h→ eµ and Z → eµ, which get indirect constraints at the LHC. The current sensitivities
are BR(h→ eµ) ≤ 4.4 · 10−5 [93] and BR(Z → eµ) ≤ 2.6 · 10−7 [94].

� Meson decays such as J/ψ → µe (measured at BESIII [95]), K0
L → µe (measured at BNL

E871 [96]) and B0 → µe (measured at LHCb [97]). See [85] for an extensive list. We
will not consider these decays in our study because they are quite constrained by other
non-LFV processes.

Table 5.1 summarizes the present and future sensitivities for the LFV processes discussed
in this work. Our aim is to systematically analyze µ→ eγ, µ→ eee and µN → eN in a model-
independent way, following the EFT approach. We will characterize the BSM contributions
to the different processes using dimension-6 operators in the SMEFT. Then we will use the
experimental constraints on the processes to bound the new physics energy scale Λ.
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BR(µ→ eγ) BR(µ→ eee) R(µN → eN) BR(h→ µe) BR(Z → µe)

Current 4.2 · 10−13 [86] 1 · 10−12 [88] 7 · 10−13 [90] 4.4 · 10−5 [93] 2.6 · 10−7 [94]

Future 6.0 · 10−14 [87] 1 · 10−16 [89] 8 · 10−17 [91]

Table 5.1: Current and near future upper bounds on ∆Le = ∆Lµ = 1 processes.

Previously there have been several analyses on LFV muon decays with dimension-6 opera-
tors, see for example [98–104]1. As a novelty, in [3] we were the first to include the effects of
renormalization group 2-loop mixing into the dipole operators. This allows us to bound certain
Wilson coefficients that only enter the LFV observables at two loops. Our study is motivated
by the next generation of LFV experiments, which will reach such high precision that it requires
an EFT analysis at the 2-loop level. The calculation of anomalous dimensions up to two loops
is greatly simplified thanks to on-shell amplitude methods (see [1, 26, 28–31]). See Chapter 3
for more details on this topic.

5.2 LFV experimental constraints at tree level

As mentioned in Section 2.2, the SMEFT can be used to parameterize the effects of BSM
physics in a model-independent way. Here, we perform a systematic analysis of three LFV
processes (µ → eγ, µ → eee and µN → eN) up to two loops, using dimension-6 operators.
The goal is to understand which operators are probed by a measurement of the LFV branching
ratios. Then, using the experimental sensitivities in Table 5.1, we derive bounds on the new
physics scale Λ.

The general procedure goes as follows: for a given LFV process, we consider the correspond-
ing effective Lagrangian and identify which SMEFT operators generate the effective coefficients.
In this section we focus on the leading contributions, which come from Wilson coefficients that
appear at tree level. In Section 5.3 we will consider higher-order contributions from operators
that mix with the tree-level ones via loops.

5.2.1 Dimension-6 operator basis

The first step is to establish our choice of dimension-6 operator basis for studying the LFV
processes µ→ eγ, µ→ eee and µN → eN . Since these processes have ∆Le = ∆Lµ = 1, we are
interested in operators involving both µ and e. Such operators are classified in terms of their
particle content as follows:

• V ψ2H:

L6 ⊃
Cµe
DW√
2

yµg2
Λ2

L̄
(2)
L σaσµνe

(1)
R HW a

µν +
Cµe
DB√
2

yµg1
Λ2

L̄
(2)
L σµνe

(1)
R HBµν + (µ↔ e) + h.c. . (5.1)

1There are similar studies for LFV processes involving τ leptons, such as [105–108].
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• ψ2H3:

L6 ⊃ Cµe
y

yµ
Λ2

(
H†H

) (
L̄
(2)
L e

(1)
R H

)
+ (µ↔ e) + h.c. . (5.2)

• ψ2H2:

L6 ⊃
Cµe
L

Λ2
(H†i

↔
DµH)(L̄

(2)
L γµL

(1)
L ) +

Cµe
L3

Λ2
(H†i

↔
Da
µH)(L̄

(2)
L σaγµL

(1)
L )

+
Cµe
R

Λ2
(H†i

↔
DµH)(ē

(2)
R γµe

(1)
R ) + +(µ↔ e) .

(5.3)

• ψ2ψ̄2:

L6 ⊃
Cµeff
LL

Λ2
(L̄

(2)
L γµL

(1)
L )(F̄Lγ

µFL) +
Cµeff
LL3

Λ2
(L̄

(2)
L σaγµL

(1)
L )(F̄Lσ

aγµFL)

+
Cµeff
RR

Λ2
(ē

(2)
R γµe

(1)
R )(f̄Rγ

µfR) +
Cµeff
LR

Λ2
(L̄

(2)
L γµL

(1)
L )(f̄Rγ

µfR)

+
Cµeff
RL

Λ2
(ē

(2)
R γµe

(1)
R )(F̄LγµFL) + Cµlle

LR

yµ
Λ2

(L̄
(2)
L γµLL)(ēRγ

µe
(1)
R )

+ Cµqqe
LR

yµ
Λ2

(L̄
(2)
L γµQL)(d̄Rγ

µe
(1)
R ) + (µ↔ e) + h.c. .

(5.4)

• ψ4:

L6 ⊃ Cµeqq
LuQe

yµ
Λ2

(L̄
(2)
L uR)(ϵQ̄Le

(1)
R ) + Cµeqq

LeQu

yµ
Λ2

(L̄
(2)
L e

(1)
R )(ϵQ̄LuR) + (µ↔ e) + h.c. . (5.5)

We write explicitly the flavor indices 1 = e, 2 = µ for the lepton fields LL, eR in LFV
transitions. We also specify the fermion types in the Wilson coefficients, with ℓ, q and f
respectively referring to any lepton, quark and fermion. FL = LL, QL is a general SM left-
handed SU(2)L doublet, while fR = eR, uR, dR is a general right-handed singlet. For operators

with L̄
(2)
L e

(1)
R or L

(1)
L e

(2)
R , we have factored out a muon Yukawa coupling yµ due to the chirality

flip. Therefore we must keep yµ fixed when exchanging µ↔ e. Additionally, we have included
a gauge coupling g1, g2 in the dipoles Eq. (5.1), because we expect them to be generated by a
gauge theory even above the energy scale Λ.

Our choice of operators mostly corresponds to the Warsaw basis2, replacing O(3)
lequ by OLuQe

according to Eq. (B.1) and rewriting Oledq with the Fierz identity,

Oledq = (L̄LeR)(d̄RQL) = −1

2
(L̄LγµQL)(d̄Rγ

µeR) . (5.6)

2See [65] for the original paper. The complete basis and its corresponding on-shell amplitudes are listed in
Appendix B.
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We have also changed the operator labels to simplify our notation.
As a final remark, it is enlightening to rewrite Eq. (5.3) in the unitary gauge. We parame-

terize the Higgs doublet H as

H(x) =
1√
2
eiT

aξa(x)/v

(
0

v + h(x)

)
, (5.7)

where v is the vacuum expectation value, h(x) is the physical Higgs and ξa(x) are Goldstone
bosons. H(x) is invariant under local gauge transformations H(x) → H(x)eiT

aαa(x). In partic-
ular we can choose α(x) so that the Goldstone bosons ξa are removed from H(x). This is the
so-called unitary gauge, which corresponds to

H(x) =
1√
2

(
0

v + h(x)

)
. (5.8)

Using this gauge and writing explicitly the SU(2)L doublet LL =

(
ν

eL

)
, Eq. (5.3) becomes

−g(v + h)2

2cθW

[
Cµe
R

Λ2
Zµē

(2)
R γµe

(1)
R +

Cµe
L + Cµe

L3

Λ2

(
Zµē

(2)
L γµe

(1)
L − cθW√

2
[W+

µ ν̄
(2)γµe

(1)
L + h.c.]

)

+
Cµe
L − Cµe

L3

Λ2

(
Zµν̄

(2)γµν(1) +
cθW√
2
[W+

µ ν̄
(2)γµe

(1)
L + h.c.]

)]
+ (µ↔ e) ,

(5.9)

where θW is the Weinberg angle and we have rewritten the gauge boson fields W 1,2,3
µ and Bµ in

terms of W±
µ , Zµ and Aµ, according to

W± = 1√
2
(W 1 ∓ iW 2) , (5.10)

Zµ = cθWW
3
µ − sθWBµ , (5.11)

Aµ = cθWBµ + sθWW
3
µ . (5.12)

From Eq. (5.9) we see how the Wilson coefficients Cµe
L,L3,R generate the tree-level LFV

interactions W±µe, W±hµe, Zµe and Zhµe. However, as explained in [24], BSM theories with
custodial symmetry and L↔ R parity must have CL +CL3 = 0. This cancellation sets to zero
the Zµe and Zhµe interactions, and we are only left with LFV couplings involving neutrinos,
which are difficult to detect. This means we cannot derive strong bounds on the combination
CL + CL3 from direct measurements such as W → µν̄e,W → eν̄µ or Z → νµν̄e. Instead,
we can obtain better bounds by considering the loop effects of these operators in other LFV
observables, like µ→ eγ. We will see this in detail in Section 5.3.1.

After establishing our basis of dimension-6 operators, we proceed to study how the different
Wilson coefficients enter several LFV observables.
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5.2.2 µ→ eγ

The µ→ eγ decay arises from the following effective Lagrangian

L = −4GF√
2
mµ [dµeµ̄Lσ

µνeRFµν + deµēLσ
µνµRFµν ] + h.c. , (5.13)

where GF is the Fermi constant and dµe,eµ are the dipole coefficients. Note that we use the

fields eL,R and µL,R, which are related to e
(1,2)
R and L

(1,2)
L by

e
(1)
R = eR , e

(2)
R = µR , L

(1)
L =

(
νe

eL

)
, L

(2)
L =

(
νµ

µL

)
. (5.14)

From Eq. (5.13), we derive the branching ratio [109]

BR(µ→ eγ) = 384π2
(
|dµe|2 + |deµ|2

)
. (5.15)

The large numerical factor can be understood because µ→ eγ is a two-body process, while the
dominant channel µ → eν̄eνµ is a three-body one. The experimental constraint on this decay,
together with the projected future sensitivity, are shown in Table 5.1. Notice that the dipole
coefficients are running couplings, which should be evaluated at the muon mass in Eq. (5.15).

We are interested in the SMEFT operators contributing to this LFV muon decay, since
they can be constrained with the experimental measurements of BR(µ → eγ). The leading
contribution comes from the Wilson coefficients that generate dµe,eµ at tree level. In this case
we only have the dipoles Cµe,eµ

DW,DB from Eq. (5.1), which lead to

dµe =
v2g2sθW
2Λ2

(Cµe
DW − Cµe

DB) , (5.16)

and analogously for deµ if we interchange µ↔ e. Substituting into Eq. (5.15), the current and
future experimental bounds on BR(µ→ eγ) lead to the following constraints

1

Λ2

√
|Cµe

DW − Cµe
DB|2 + |Ceµ

DW − Ceµ
DB|2 ≲

{
1/(951 TeV)2 (current)

1/(1547 TeV)2 (future)
. (5.17)

Assuming (Cµe
DW − Cµe

DB) ∼ (Ceµ
DW − Ceµ

DB) ∼ 1, we find Λ ≳ 951 TeV for the current bounds
and Λ ≳ 1547 TeV for the future ones.

5.2.3 µ→ eee

The next LFV process we consider is the µ → eee muon decay, which is generated by the
effective Lagrangian

L =− 4GF√
2

[
g1(µ̄ReL)(ēReL) + g2(µ̄LeR)(ēLeR) + g3(µ̄RγµeR)(ēRγµeR)

+ g4(µ̄Lγ
µeL)(ēLγµeL) + g5(µ̄Rγ

µeR)(ēLγµeL) + g6(µ̄Lγ
µeL)(ēRγµeR)

]
+ h.c. ,

(5.18)
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plus the dipole terms in Eq. (5.13). The corresponding branching ratio is given by [109]

BR (µ→ eee) = 2
(
|g3|2 + |g4|2

)
+ |g5|2 + |g6|2 + 32e2

[
ln

(
m2
µ

m2
e

)
− 11

4

]
(|dµe|2 + |deµ|2)

+ 8eRe
(
d∗eµg

∗
6 + dµeg

∗
5

)
+ 16eRe

(
d∗eµg

∗
4 + dµeg

∗
3

)
+

1

8

(
|g̃1|2 + |g̃2|2

)
,

(5.19)

which has to be compared with the experimental values of Table 5.1. Let us see which
dimension-6 SMEFT operators contribute to this branching ratio at tree level. We have al-
ready seen the expression for the dipoles dµe,eµ in Eq. (5.16), whereas the gi can be written in
terms of the following Wilson coefficients

g3 = − v2

2Λ2

(
Cµeee
RR + 2s2θWC

µe
R

)
, g4 = − v2

2Λ2

(
Cµeee
LL − (1− 2s2θW ) (Cµe

L + Cµe
L3)
)
,

g5 = − v2

2Λ2

(
Cµeee
RL − (1− 2s2θW )Cµe

R

)
, g6 = − v2

2Λ2

(
Cµeee
LR + 2s2θW (Cµe

L + Cµe
L3)
)
.

(5.20)

The remaining g̃1 and g̃2 are zero in this order, since they are only generated by dimension-
8 operators. The coefficients in Eq. (5.20) receive contributions from the ψ2ψ̄2 operators
Oµeee
LL,RR,LR,RL, and also from the ψψ̄H2 operators Oµe

L,L3,R. Notice that only the combination
Cµe
L + Cµe

L3 appears, since µ → eee is induced through the Zµe coupling in the unitary gauge
(see Eq. (5.9)).

Considering the experimental sensitivity for µ→ eee, we can obtain energy bounds associ-
ated with the different operators. For simplicity, we assume that all Wilson coefficients are set
to zero except for one Ci that is fixed to 1, so there are no interference effects. The bounds on
Λ for the different operators are shown in Table 5.2.

5.2.4 µN → eN

The remaining process we cover is the µ → e conversion in nuclei. It arises from the following
Lagrangian:

L = −4GF√
2

[
guL,V (µ̄Lγ

µeL)(ūγµu) + guR,V (µ̄Rγ
µeR)(ūγµu)

+ guL,S(µ̄LeR)(ūu) + guR,S(µ̄ReL)(ūu) + (u→ d)
]
+ h.c. ,

(5.21)

defined at the nuclei scale. We must also include the dipole terms in Eq. (5.13), which can lead
to µN → eN through photon splitting into quarks. The rate for the process is given by [110]

R(µN → eN) =
2G2

F

ωcapture

(∣∣∣D dµe + g
(p)
L,V V

(p) + g
(n)
L,V V

(n) + g
(p)
L,SS

(p) + g
(n)
L,SS

(n)
∣∣∣
2

+
∣∣∣D d∗eµ + g

(p)
R,V V

(p) + g
(n)
R,V V

(n) + g
(p)
R,SS

(p) + g
(n)
R,SS

(n)
∣∣∣
2
)
,

(5.22)
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where ωcapture is the muon nuclear capture rate and D, V (p,n), S(p,n) are overlap integrals defined
in [110]. We also define the g coefficients as

g
(p)
L/R,V = 2guL/R,V + gdL/R,V , g

(n)
L/R,V = guL/R,V + 2gdL/R,V ,

g
(p)
L/R,S =

∑

q=u,d

G
(q,p)
S gqL/R,S, g

(n)
L/R,S =

∑

q=u,d

G
(q,n)
S gqL/R,S ,

(5.23)

with G
(u,p)
S ≃ G

(d,n)
S ≃ 5.1, G

(d,p)
S ≃ G

(u,n)
S ≃ 4.3 and we have neglected the contribution from

the s quark. The experimental measurement of Eq. (5.22) is shown in Table 5.1.
Proceeding as before, we write the effective couplings from Eq. (5.23) in terms of the Wilson

coefficients that enter at tree level. For the up sector, we have

guL,S =
v2

2Λ2
yµC

µeuu
LeQu , guR,S =

v2

2Λ2
yµC

eµuu
LeQu ,

guL,V = − v2

4Λ2

[
(Cµeuu

LL + Cµeuu
LR ) + 2guZ (C

µe
L + Cµe

L3)
]
,

guR,V = − v2

4Λ2

[
(Cµeuu

RL + Cµeuu
RR ) + 2guZC

µe
R

]
,

(5.24)

with guZ = (1
2
− 4

3
s2θW ). For the down sector,

gdL,S =
v2

Λ2
yµC

µdde
LR , gdR,S =

v2

Λ2
yµC

eddµ
LR ,

gdL,V = − v2

4Λ2

[
(Cµedd

LL + Cµedd
LR ) + 2gdZ (C

µe
L + Cµe

L3)
]
,

gdR,V = − v2

4Λ2

[
(Cµedd

RL + Cµedd
RR ) + 2gdZC

µe
R

]
,

(5.25)

with gdZ = (−1
2
+ 2

3
s2θW ). The operators entering µN → eN at tree level are similar to those

entering µ → eee, replacing the µeee four-fermion operators with µeuu and µedd. The only
new ingredients are the ψ4 operators Oµeuu

LeQu and Oeµuu
LeQu, which were not present in Eq. (5.20).

Table 5.2 summarizes the energy bounds obtained from Wilson coefficients that enter
R(µN → eN) at tree level, considering the current and future experimental sensitivities.

5.2.5 Discussion on tree-level LFV bounds

The tree-level energy bounds for the LFV processes µ→ eγ, µ→ eee and µN → eN are listed
in Table 5.2. For each entry, the present bounds are on the first row and the future bounds are
in parenthesis on the second row. Our aim in this subsection is to identify which bounds can
be significantly improved by considering loop mixings into the tree-level Wilson coefficients.

For current experiments, the most competitive bound is Λ ≳ 951 TeV, which comes from
the dipoles Cµe,eµ

DW,DB in µ → eγ. Renormalization effects from other Wilson coefficients Ci into
(CDW − CDB) are thus expected to provide strong constraints on Ci/Λ as well. At the 1-loop
level, these effects are of order

∆(CDW − CDB) ∼ Ci/16π
2 ⇒ Ci/Λ

2 ≲ 1/(75 TeV)2 . (5.26)
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µ→ eγ µ→ eee µN → eN h→ µe Z → µe

Cµe
DB − Cµe

DW

951 TeV

(1547 TeV)

218 TeV

(2183 TeV)

208 TeV

(1812 TeV)

Cµe
R

160 TeV

(1602 TeV)

225 TeV

(1535 TeV)

Cµe
L + Cµe

L3

164 TeV

(1642 TeV)

225 TeV

(1535 TeV)
5 TeV

Cµeee
LL(RR),LR(RL)

207,174 TeV

(2070,1740 TeV)

Cµeuu
LL,RR,LR

352 TeV

(2693 TeV)

Cµedd
LL,RR,LR

376 TeV

(2725 TeV)

Cµdde
LR

18 TeV

(164 TeV)

Cµe
y 0.3 TeV

Table 5.2: Present (future) tree-level lower bounds on Λ, coming from the different dimension-6
operators entering µ→ eγ, µ→ eee and µN → eN .

At the 2-loop level, we have

∆(CDW − CDB) ∼ Ci/
(
16π2

)2 ⇒ Ci/Λ
2 ≲ 1/(6 TeV)2 . (5.27)

The estimated bounds are sizable even for 2-loop effects, so in our study we must include
mixings into the dipoles Cµe,eµ

DW,DB up to two loops. The Wilson coefficients CDW − CDB also
enter the processes µ → eee and µN → eN at tree level, but the current energy bounds are
less competitive, around Λ ≳ 200 TeV. This is expected to change with the next generation
of LFV experiments, since the projected sensitivities lead to an improvement by one order of
magnitude on the bounds, reaching Λ ≳ 2000 TeV. Therefore we expect the bounds from
µ→ eee and µN → eN to dominate over µ→ eγ in the future.

We must also consider the energy bounds coming from four-fermion operators entering
µ → eee and µN → eN at tree level, which are in the range Λ ≳ 170 − 370 TeV. These
constraints are projected to improve around an order of magnitude in the near future, becoming
comparable to the dipole bounds. For this reason, we should consider the loop mixing of other
Wilson coefficients into Cµeee

LL,RR,LR,RL, C
µeuu
LL,RR,LR and Cµedd

LL,RR,LR. As an example, the current
bounds for 1-loop mixings with Cµeee

LL are of order

∆Cµeee
LL ∼ Ci/16π

2 ⇒ Ci/Λ
2 ≲ 1/(16 TeV)2 . (5.28)
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And we expect to reach Λ ≳ 160 TeV in the future. In Section 5.3.2 we will see that it is not
necessary to consider 2-loop effects to four-fermion operators, since all relevant mixings already
occur at the 1-loop level and no new operators enter at two loops.

Another set of operators entering our LFV processes at tree level are the fermion-scalar
operators Oµe

L,L3,R. In this case the present energy bounds are Λ ≳ 160 TeV for µ → eee and
Λ ≳ 225 TeV for µN → eN , which are again expected to improve about an order of magnitude
in future experiments. For a complete analysis, we must consider the effects of 1-loop mixing of
other Wilson coefficients into Cµe

R,L,L3. As we explained before, only the combination Cµe
L +Cµe

L3

appears at tree level, so we need to include the orthogonal combination Cµe
L −Cµe

L3 at one loop.
The corresponding bounds are approximately

∆ (Cµe
L + Cµe

L3) ∼ Ci/16π
2 ⇒ Ci/Λ

2 ≲ 1/(15 TeV)2 , (5.29)

that again will increase to Λ ≳ 120 TeV in the near future. The combination Cµe
L − Cµe

L3 can
also be probed at tree level by LFV processes involving neutrinos, but the bounds are much
worse. Notice that the Oµe

R,L,L3 operators also receive direct constraints from the decay Z → µe,
whose branching ratio is given by [100]

BR(Z → µe) =
m3
Zv

2

12πΓZΛ4

[
|Cµe

R |2 + |Cµe
L + Cµe

L3|2 +
y2µg

2
2

4

(
|Cµe

eZ |2 + |Ceµ
eZ |2
)]

, (5.30)

where we have defined CDZ =
s2θW
cθW

CDB + cθWCDW and ΓZ = 2.5GeV is the decay width of the

Z boson [17]. The experimental sensitivity for this decay is shown in Table 5.1. The associated
energy bounds for Cµe

R and Cµe
L + Cµe

L3 are roughly Λ ≳ 5 TeV, much less competitive than the
µ→ eee and µN → eN constraints.

Finally, it is worth mentioning the operator Oµe
y , which enters the Higgs decay h → µe at

tree level. The corresponding branching ratio is [100]

BR (h→ µe) =
mHm

2
µv

2

8πΓHΛ4

(∣∣Cµe
y

∣∣2 +
∣∣Ceµ

y

∣∣2
)
, (5.31)

where ΓH = 0.013 GeV is the Higgs decay width [17]. The current sensitivity for this decay
(see Table 5.1) results in a weak energy bound of Λ ≳ 0.3 TeV. According to the estimate in
Eq. (5.27), we expect stronger bounds on Cµe

y from the 2-loop mixing into µ→ eγ.
We have summarized the loop effects that are potentially relevant to study the LFV pro-

cesses µ → eγ, µ → eee and µN → eN . In the next section, we will analyze which operators
can enter the different observables via loops.

5.3 Loop mixings

In addition to operators entering LFV processes at tree level, we must also consider contribu-
tions from loop mixings. There are several effects that should be taken into account:

(i) Finite matching contributions from a new physics scale Λ.
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(ii) Renormalization Group (RG) mixing from Λ to the electroweak scale ∼ mW .

(iii) Finite threshold corrections arising from integrating out the W , Z, H bosons and the
heavy SM fermions.

(iv) RG mixing from the electroweak scale mW to mµ, which is the energy scale of the LFV
processes we are studying.

We are mainly interested in determining which higher-dimension operators give rise to the
different observables. For this reason, we will neglect altogether the contributions from (iv).
The RG mixing between mW and mµ does not add new Wilson coefficients and instead it
only modifies the energy bounds slightly. For example, using the results of [103], we expect
corrections of at most ∼ 10% in the bounds on Table 5.2. It would be interesting to include
the complete RG mixing in the calculation, but that is beyond the scope of this work.

At the loop level, the UV matching (i) and the SM IR matching (iii) give rise to finite
contributions to the tree-level coefficients. The UV corrections from (i) depend on the particular
model for physics at the Λ scale. This means they could (partially) cancel against the IR
corrections from (iii). In Section 5.6.1 we will see some examples of this cancellation. Instead
of model-dependent corrections, we will focus on the contributions from the RG running of
Wilson coefficients between Λ and the electroweak scale (ii). This type of corrections are
accompanied by logarithms ln(Λ/mW ), which cannot cancel against the finite contributions of
(i) and (iii).

We will consider the leading RG mixing of dimension-6 operators up to two loops. At one
loop, we have contributions proportional to

Ci
16π2

ln(Λ/mW ) . (5.32)

Operators that mix at two loops can be classified according to a logarithmic expansion. The
leading ones are 2-loop double-log contributions proportional to

CiCj
(16π2)2

ln2(Λ/mW ) i ̸= j , (5.33)

which arise from two-step 1-loop mixings of the type Oi
1-loop−→ Oj

1-loop−→ Ok. The next order

corresponds to direct 2-loop mixings Oi
2-loop−→ Ok, which are proportional to

Ci
(16π2)2

ln(Λ/mW ) . (5.34)

These are the three types of loop mixings that we will incorporate into our analysis. The
next step is identifying the order in which the different Wilson coefficients enter the LFV
observables.
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5.3.1 µ→ eγ

The only coefficients entering the branching ratio Eq. (5.15) at tree level are Cµe,eµ
DW,DB. As stated

earlier, we are interested in the leading RG mixing of SMEFT dimension-6 operators into the
dipole coefficients up to two loops. To identify the possible 1-loop mixings, we will use the
helicity selection rule derived in 3.4.1, which states that an operator Oj can only mix with
another operator Oi if their number of particles n and helicities h satisfy ∆n ≥ |∆h|, with
∆n = ni − nj and ∆h = hi − hj. The relevant mixings are discussed below.

� 1-loop mixing: According to the helicity selection rule, dipole operators V ψ2H are only
renormalized at one loop by operators of classes V ψ2H,ψ4, V 2H2 and V 3 (see Table 3.1).
Moreover, the LFV dipoles can only mix with LFV higher-dimension operators, since the
SM interactions preserve lepton flavor. This excludes operators of classes V 2H2 and V 3.
Regarding other dipoles V ψ2H, in Eq. (5.16) we see that only the combination Cµe

DW−Cµe
DB

contributes at tree level, so the orthogonal combination Cµe
DW +Cµe

DB appears at one loop.
Finally, we have the ψ4 operators OLeQu and OLuQe. We can check that Oµeqq

LeQu does not

mix with Oµe
DW,DB, since the leptons L̄(2)e(1) are external to the loop calculation and do

not have the dipole structure. This leaves us only with the operator Oµeqq
LuQe.

� 2-loop double log mixing: These are 1-loop mixings with the operators that generate
Cµe,eµ
DW,DB at one loop. In our case, there are no new operators that mix at one loop with

Cµe
DW+Cµe

DB and we only have to consider mixings with Oµeqq
LuQe. Using the helicity selection

rule again, the only new operator is Oµeqq
LeQu. In this case, however, there is an additional

mixing ψ2ψ̄2 → ψ4, which comes from the exception to the selection rule. Thus we also
have operators of class ψ2ψ̄2 entering dµe at this order, namely Oµeqq

LL,RR,LR,RL,LL3.

� 2-loop single log mixing: These are direct 2-loop mixings into the dipoles, including
operators of classes ψ2H3, ψ2ψ̄2 and ψψ̄H2. For ψ2H3 we have the operator Oµe

y . For

ψ2ψ̄2 we have Oµeℓℓ
LL,RR,LR,RL,LL3 where ℓ are leptons. Finally, for ψψ̄H2 we have Oµe

L,L3,R.

Tree level 1-loop 2-loop double log 2-loop single log

µ→ eγ Cµe
DB − Cµe

DW

Cµe
DB + Cµe

DW

Cµeqq
LuQe

Cµeqq
LeQu

Cµeqq
LL,RR,LR,RL,LL3

Cµe
y

Cµe
L,L3,R

Cµeℓℓ
LL,RR,LR,RL,LL3

Table 5.3: Wilson coefficients entering BR(µ→ eγ) up to two loops.

Table 5.3 summarizes the Wilson coefficients that enter the process µ → eγ at different
orders. For simplicity, we are only writing the coefficients that enter dµe, but the coefficients
for deµ can be easily obtained by interchanging µ ↔ e in the table. The flavor indices qq (ℓℓ)
indicate that the operators include any quark (lepton) species. For practical purposes, however,
we are interested in the operators that produce the strongest bounds. For example, loops with
Cµeqq
luqe have a Yukawa coupling yq, so the largest contribution comes from the coefficient Cµett

luqe.
We will comment on the obtained bounds in Section 5.5.
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5.3.2 µ→ eee

The tree-level contributions to this process include the operators Oµe,µe
DW,DB, Oµeee

LL,RR,LR,RL and
Oµe
R,L,L3. Aside from the Oµe,eµ

DB,DW mixings that we have just covered, we have:

� 1-loop mixing: From helicity selection rules, the operators of classes ψ2ψ̄2 and ψψ̄H2 that
appear in Eq. (5.20) can only mix with other LFV operators of the same classes. In our
case this includes the mixing with the combination Cµe

L − Cµe
L3, orthogonal to C

µe
L + Cµe

L3,
and also mixings with other four-fermion operators Oµeff

LL,LL3,RR,LR,RL, with f any fermion.

� 2-loop mixing: No new operators enter the gi coefficients in this order.

Table 5.4 shows the Wilson coefficients that we must consider for the process µ→ eee. See
Section 5.5 for a discussion on the obtained energy bounds.

Tree level 1-loop 2-loop double log 2-loop single log

µ→ eee

Cµe
DB − Cµe

DW

Cµe
R

Cµe
L + Cµe

L3

Cµeee
LL,RR,LR,RL

Cµe
DB + Cµe

DW

Cµe
L − Cµe

L3

Cµeqq
LuQe

Cµeff
LL,LL3,RR,LR,RL

Cµeqq
LeQu

Cµeqq
LL,LL3,RR,LR,RL

Cµe
y

Table 5.4: Wilson coefficients entering BR(µ→ eee) up to two loops.

5.3.3 µN → eN

The analysis of the loop contributions to R(µN → eN) is very similar to that of BR (µ→ eee).
The only new type of operator that appears at tree level is Oµeuu

LeQu, which mixes with Oµeuu
LuQe at

one loop. Nevertheless we will not include these operators in our study, since they also receive
significant corrections at the QCD scale [111]. Table 5.5 summarizes the contributions to the
µN → eN process. The corresponding energy bounds are presented in Section 5.5.

Tree level 1-loop 2-loop double log 2-loop single log

µN → eN

Cµe
DB − Cµe

DW

Cµe
R

Cµe
L + Cµe

L3

Cµeuu
LL,RR,LR,RL

Cµedd
LL,RR,LR,RL

Cµdde
LR

Cµe
DB + Cµe

DW

Cµe
L − Cµe

L3

Cµeqq
LuQe

Cµeff
LL,LL3,RR,LR,RL

Cµeqq
LeQu Cµe

y

Table 5.5: Wilson coefficients entering R(µN → eN) up to two loops.
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µR

eL

tR

tL

SM

t̄R

t̄L

B−

H†

Figure 5.1: Diagram of the 2-cut relevant for the renormalization of FDB by Fluqe.

5.4 RG mixings: the on-shell way

Now that we have identified which dimension-6 operators enter the different LFV processes, the
next step is to compute the anomalous dimension matrix for the corresponding mixings. This
can be done in several ways, but we will focus on the on-shell amplitude methods described in
Chapter 3. Through this subsection we apply those methods to mixings that are relevant for
LFV experiments, up to two loops.

5.4.1 1-loop mixings

The Wilson coefficients entering the different LFV processes are listed in Tables 5.3, 5.4 and
5.5. Our goal is to compute the RG mixing of those coefficients into the tree-level ones. As an
example, we calculate the mixing of Cµett

LuQe into the dipoles.

The mixing Cµett
LuQe → Cµe

DW,DB can be computed using the on-shell methods explained in
Chapter 3. We use the method of form factor renormalization in Section 3.2.4, since it is the
only one that is easily extended to 2-loop calculations. The contact form factors for the dipoles
in Eq. (5.1) are

F µe
DB(1e, 2lj , 3B− , 4H†

i
) = 2yµg1 ⟨31⟩ ⟨32⟩ δji , (5.35)

F µe
BW (1e, 2lj , 3Wa

− , 4H†
i
) = 4yµg2 ⟨31⟩ ⟨32⟩ (T a)ji . (5.36)

We are interested in the 1-loop mixing with

F µett
LuQe(1e, 2li , 3u, 4qj) = yµ ⟨14⟩ ⟨32⟩ ϵij . (5.37)

Using Eq. (3.35), the only contribution to the anomalous dimension γµe{DB,LuQe} is given by
the 2-cut in Figure 5.1. We can write

γµe{DB,LuQe}F
µe
DB(1e, 2l, 3B− , 4H†)

=
1

4π3

∫
dLIPSF µett

LuQe(1e, 2l, 3
′
u, 4
′
q)×Att

SM(−4′q̄,−3′ū, 3B− , 4H†) ,
(5.38)

where Att
SM is the SM on-shell amplitude in Eq. (2.11). In terms of spinor-helicity variables,

this expression becomes

γµe{DB,LuQe} ⟨31⟩ ⟨32⟩ =
ytNc

8π3

∫
dLIPS ⟨14′⟩ ⟨3′2⟩

(
Yq

⟨3′3⟩ ⟨43⟩
⟨3′4⟩ ⟨3′4′⟩ − Yt

⟨4′3⟩ ⟨43⟩
⟨4′4⟩ ⟨4′3′⟩

)
. (5.39)
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For the phase-space integral, we parameterize the internal spinors as explained in Section
3.4.3. In particular, we use

|3′⟩ = cθ |3⟩ − sθe
iϕ |4⟩ ,

|4′⟩ = sθe
−iϕ |3⟩+ cθ |4⟩ .

(5.40)

After performing the angular integrals, we obtain the anomalous dimension

γµe{DB,LuQe} = −ytNc

32π2
(Yq − Yt) . (5.41)

The mixing of CLuQe with the other dipole CDW was already computed in Section 4.1. The
corresponding anomalous dimension is

γµe{DW,LuQe} =
ytNc

64π2
. (5.42)

Let us summarize the mixings Cµett
LuQe → Cµe

DW,DB in the following matrix

(
γCµe

DB

γCµe
DW

)
=
Ncyt
32π2

(
−1
1
2

)
Cµett
LuQe . (5.43)

The mixings Ceµtt
LuQe → Ceµ

DW,DB are obtained in an analogous way, leading to

(
γCeµ

DB

γCeµ
DW

)
=
Ncyt
32π2

(
−1
1
2

)
Ceµtt
LuQe . (5.44)

We can repeat the same procedure with the other mixings. The relevant 1-loop anomalous
dimensions are listed in Appendix D.1.

5.4.2 2-loop mixings

To illustrate the power of on-shell amplitude methods at higher loop orders, we calculate the
2-loop mixing ψψ̄H2 → V ψ2H. As explained in Section 3.4.5, this kind of computation can be
done with the form factor renormalization method. Since we are considering the leading order
mixing for each coefficient, we can use Eq. (3.33) for the calculation. In this case, the 2-loop
anomalous dimension gets contributions from both 2-cuts and 3-cuts, as shown in Figure 3.6.

The 2-loop anomalous dimension for ψψ̄H2 → V ψ2H has several contributions proportional
to y2u, λ

4 and g2. We only consider the leading ones: those involving the top Yukawa y2t and the
quartic coupling λ4. We will see that only 3-cuts contribute to these mixings due to helicity
selection rules.
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CL,L3,R → CDW,DB - Top Yukawa y2t contributions

Contributions proportional to Ncy
2
t are expected to be the dominant ones. Let us start with

the mixing Ceµ
L → Ceµ

DB. Using Eq. (3.33), the 2-loop anomalous dimension can be obtained
from three types of unitarity cuts:

� 2-cut of a tree-level SM amplitude and a 1-loop form factor. The only potential contri-
bution is shown in Figure 5.2. The SM amplitude Atree(1e, 2

′
l, 3B− , 4

′
H) vanishes on shell

for the all-negative helicity configuration. Therefore the 2-cut is zero as well.

SM

eR

B− H

eL ēL µL

H† H†

tLtR

Figure 5.2: Diagram for the 2-cut of a tree-level SM amplitude and a 1-loop form factor. This
cut is zero because the SM amplitude with all-negative helicity vanishes.

� 2-cut of a 1-loop SM amplitude and a tree-level form factor. Figure 5.3 shows the only
potential cut of this type. The SM amplitude A1−loop(1e, 2l, 3B− , 4H) is obtained from
a sum of diagrams where the B boson is attached to the different particles in the LHS
of the cut, as can also be seen in Figure 5.3. Contributions where the B is attached
to the lepton fermion line are zero because the diagrams factorize into an all-negative
on-shell tree-level amplitude (which vanishes) and a 1-loop dressing for the Higgs boson.
For the remaining terms, the sum of diagrams can be written as ⟨12′⟩ f(3, 4′), with f a
function that only depends on the spinors 3 and 4′. However, using only ⟨34′⟩ and [4′3],
it is impossible to build a function f(3, 4′) so that A ∼ ⟨12′⟩ f(3, 4′) satisfies little group
covariance. For this reason, we conclude that the 1-loop amplitude vanishes.

SM

B−

eR

H†

eL(1-loop)

H

ēL

H†

µL

=

︷ ︸︸ ︷
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

1

3

2′

4′

+ + + + +

Figure 5.3: Diagram for the 2-cut of a 1-loop SM amplitude and a tree-level form factor. This
cut is zero because the 1-loop SM amplitude vanishes.
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� 3-cut of a tree-level SM amplitude and a tree-level form factor. The only non-vanishing
contribution to the RG mixing is given by the 3-cut in Figure 5.4. Below we perform the
explicit calculation of the anomalous dimensions.

SM

B−

eR

tR

tL

eL

t̄R

t̄L

ēL

H†

µL

Figure 5.4: Diagram for the 3-cut contributing to the mixing of F eµ
L into F eµ

DB at order y2t .

From Eq. (3.33), we have

γeµ{DB,L}F
eµ
DB(1e, 2ljµ , 3B− , 4H†

i
)

= −(−i)3Nc

(16π2)2
s13

∫
dµ F̂ eµ

L (2ljµ , 4H†
i
, xl̄e,n , yl̄t,k , zt̄)×ASM(−zt,−ylkt ,−xlne , 1e, 3B−) ,

(5.45)

with
∫
dµ as defined in Eq. (3.61). F̂ eµ

L is a non-minimal form factor and ASM is a 5-point SM
on-shell amplitude. Both of them can be computed using the method of momentum shifts in
Section 1.3.2. The form factor is

F̂ eµ
L (2ljµ , 4H†

i
, xl̄e,n , yl̄t,k , zt̄) = 2yt

⟨24⟩ [4x]
⟨zy⟩ Aj

ink , (5.46)

where Aj
ink = ϵikδ

j
n is an SU(2)L tensor. The SM amplitude is

ASM(−zt,−ylkt ,−xlne , 1e, 3B−) = iytye

(
YH

⟨1z⟩
[3x][y3]

− YµR
⟨yz⟩

[3x][31]
+ YtR

⟨1x⟩
[y3][3z]

)
Bkn , (5.47)

where Bkn = g1ϵ
kn. Now we can substitute Eq. (5.46) and Eq. (5.47) into Eq. (5.45) and

perform the phase-space integration. Following Section 3.4.3, we parameterize the internal
spinors |x⟩ , |y⟩ , |z⟩ as

|z⟩ = |1⟩ sθ2cθ3 + |3⟩ eiϕ(cθ1cθ2cθ3 − eiρsθ1sθ3) ,

|y⟩ = |1⟩ sθ2sθ3 + |3⟩ eiϕ(cθ1cθ2sθ3 + eiρsθ1cθ3) ,

|x⟩ = |1⟩ cθ2 − |3⟩ eiϕcθ1sθ2 .
(5.48)

This leads to the following angular integral

∫
dµ

⟨24⟩ [4x]
⟨zy⟩

(
YH

⟨1z⟩
[3x][y3]

− YµR
⟨yz⟩

[3x][31]
+ YtR

⟨1x⟩
[y3][3z]

)
=

⟨32⟩
[31]

(2YH + Yµ) . (5.49)
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Finally the anomalous dimension is

γeµ{DB,L} = − 2Nc

(16π2)2
y2t yeg1 (2YH + YµR) . (5.50)

We can check that this mixing is actually zero for the SM hypercharges, since 2YH + YµR = 0.

SM

B−

µL

tR

tL

µR

t̄R

t̄L

µ̄R

H†

eR

Figure 5.5: Diagram for the 3-cut contributing to the mixing of F eµ
R into F eµ

DB at order y2t .

Similarly, we can study the mixing Ceµ
R → Ceµ

DB. In this case we only have to consider the
3-cut in Figure 5.5. Then Eq. (3.33) becomes

γeµ{DB,R}F
eµ
DB(1e, 2ljµ , 3B− , 4H†

i
)

=
(−i)3Nc

(16π2)2
s23

∫
dµ F̂ eµ

R (1e, 4H†
i
, xµ̄, yl̄t,k , zt̄)×ASM(−zt,−ylkt ,−xµ, 2ljµ , 3B−) .

(5.51)

The form factor F̂ eµ
R and the on-shell amplitude ASM are given by

F̂ eµ
R (1e, 4H†

i
, xµ̄, yl̄t,k , zt̄) = −2yt

⟨14⟩ [4x]
⟨zy⟩ Aik , (5.52)

ASM(−zt,−ylkt ,−xµ, 2ljµ , 3B−) = −iytyµ
(
YH

⟨zx⟩
[23][3y]

+ Yµ
⟨zy⟩

[23][x3]
− Ye

⟨x2⟩
[3y][3z]

)
Bjk , (5.53)

where the SU(2)L tensors are Aik = ϵik and Bjk = g1ϵ
jk. Again, we parameterize the internal

spinors in terms of |2⟩ , |3⟩, replacing 1 → 2 in Eq. (5.48). The phase-space integral is then

∫
dµ

⟨14⟩ [4x]
⟨zy⟩

(
YH

⟨zx⟩
[23][3y]

+ Yµ
⟨zy⟩

[23][x3]
− Ye

⟨x2⟩
[3y][3z]

)
=

⟨13⟩
[32]

(YH − Yµ) . (5.54)

The anomalous dimension is

γeµ{DB,R} =
2Nc

(16π2)2
y2t yµg1 (YH − YµR) . (5.55)

Now it is straightforward to obtain the 2-loop anomalous dimensions for the remaining
mixings of Ceµ

L,L3,R into the dipoles Ceµ
DB,DW . Essentially, mixings of Ceµ

L,L3 involve the form
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A× B CL CL3 CR

CDB ϵikδ
j
n × g1ϵ

kn
(
2ϵknδ

j
i − ϵikδ

j
n

)
× g1ϵ

kn ϵik × g1ϵ
jk

CDW ϵikδ
j
n × g2(ϵ · T a)kn

(
2ϵknδ

j
i − ϵikδ

j
n

)
× g2(ϵ · T a)kn ϵik × g2(ϵ · T a)kj

Table 5.6: Expressions of the SU(2)L tensors A and B that appear in the 2-loop renormalization
of CDB,DW by CL,L3,R at order y2t .

factor and the amplitude in Eq. (5.46) and Eq. (5.47), whereas mixings of Ceµ
R involve Eq. (5.52)

and Eq. (5.53). The flavor structure of the amplitudes and form factors will vary depending on
the mixing. The values of the SU(2)L tensors A and B are listed in Table 5.6. Moreover, for
the renormalization of CDW we have to set the hypercharges in the amplitudes Eq. (5.47) and
Eq. (5.53) to Ye = Yµ = Yt = 0 and YH = 1.

With these considerations, we can finally obtain the anomalous dimensions matrix for the
subset of operators at order y2t ,

(
γCeµ

DB

γCeµ
DW

)
=

Ncy
2
t

(16π2)2

(
0 0 − 3ye

2yµ

1 −1 ye
2yµ

)


Ceµ
L

Ceµ
L3

Ceµ
R


 ≈ Ncy

2
t

(16π2)2

(
0 0 0

1 −1 0

)


Ceµ
L

Ceµ
L3

Ceµ
R


 , (5.56)

where in the last step we have neglected terms of order O(ye/yµ) ≈ 0. The mixings of Cµe
L,L3,R

into the dipoles Cµe
DB,DW are obtained in an analogous way, interchanging e ↔ µ in the ampli-

tudes and form factors. We find

(
γCµe

DB

γCµe
DW

)
=

Ncy
2
t

(16π2)2

(
0 0 −3

2
ye
yµ

− ye
yµ

1
2

)


Cµe
L

Cµe
L3

Cµe
R


 ≈ Ncy

2
t

(16π2)2

(
0 0 −3

2

0 0 1
2

)


Cµe
L

Cµe
L3

Cµe
R


 . (5.57)

Note that there is an accidental cancellation in the renormalization of Cµe,eµ
DB by CL and CL3. As

we have seen earlier, this entry is proportional to 2YH+Ye and vanishes for the SM hypercharges.

CL,L3,R → CDW,DB - Higgs quartic λ4 contributions

SM

B−

H†

H

H†

H

H†

H

H†

eR

µL

+

H†

H†

µL

H

µR

CR

H†

µ̄R

B−

H

eR

Figure 5.6: Diagram for the 3-cuts contributing to the mixing of F eµ
L into F eµ

DB at order λ4.
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The next mixings to consider are those proportional to the quartic Higgs coupling λ4. In
this case there are no 2-cut contributions to the anomalous dimension. Instead, the 2-loop
mixing Ceµ

L → Ceµ
DB is given by the two 3-cuts in Figure 5.6. From Eq. (3.33), we can write

γeµ{DB,L}F
eµ
DB(1e, 2ljµ , 3B− , 4H†

i
)

= − is14
(16π2)2

∫
dµ F̂ eµ

L (2ljµ , 3B− , xl̄e,m , yHl , zH†
k
)×ASM(−zHk ,−yH†

l
,−xlme , 1e, 4H†

i
)

− s34
(16π2)2

∫
dµ

2!
F̂ eµ
L (1e, 2ljµ , xH†

m
, yHl , zH†

k
)×ASM(−zHk ,−yH†

l
,−xHm , 3B− , 4H†

i
) ,

(5.58)

where the factor 1/2! in the second cut accounts for the fact that we are cutting two identical
Higgs particles. For the first cut, the non-minimal form factor is

F̂ eµ
L (3B− , 2ljµ , xl̄e,m , yHl , zH†

k
) = 2

(
YH

[zx][yx] ⟨2x⟩
[y3][z3]

Gjlmk − Ye
[zx][yx] ⟨yz⟩

[x3][32]
Gljkm

)
, (5.59)

with Gjlmk = g1δ
j
mδ

l
k. The SM amplitude is

ASM(−zHk ,−yH†
l
,−xlme , 1e, 4H†

i
) = iye

λ

2

1

[1x]
Fkm
li , (5.60)

with Fkm
li = δki δ

m
l + δmi δ

k
l . Next, we parameterize the internal spinors x, y, z in terms of 1, 4

as in Eq. (5.48) and perform the phase-space integral. The contribution of the first cut to the
anomalous dimension in Eq. (5.58) is

γeµ{DB,L} ⊃ −3yeλg1YH
(16π2)2

s14
s13

[
1− 2

s12
s13

+ 2
s212
s213

ln

(
s13 + s12
s12

)]
. (5.61)

Regarding the second cut, we have to compute the form factor

F̂ eµ
L (1e, 2ljµ , xH†

m
, yHl , zH†

k
)

= −ye
[(

2
⟨2y⟩ [yx]
[1x]

+ ⟨21⟩
)
Djl
mk +

(
2
⟨2y⟩ [yz]
[1z]

+ ⟨21⟩
)
Djl
km

]
,

(5.62)

with Djl
mk = δlkδ

j
m. We also need to know the SM amplitude

ASM(−zHk ,−yH†
l
,−xHm , 3B− , 4H†

i
)

=
λ

2
YH

(
[z4]

[z3][43]
Ckmli +

[xy]

[x3][y3]
Cmkil + Cmkli

[zy]

[z3][y3]
+ Ckmil

[x4]

[x3][43]

)
,

(5.63)

with Ckmli = g1δ
k
i δ

m
l . After the phase-space integration, the contribution from the second cut is

γeµ{DB,L} ⊃ −6yeλg1YH
(16π2)2

s12
s13

[
1

2
+
s14
s13

−
(
s14
s13

+
s214
s213

)
ln

(
s13 + s14
s14

)]
. (5.64)
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Notice that both Eq. (5.61) and Eq. (5.64) contain logarithmic terms. When we add both
cuts, however, non-local terms cancel out and the anomalous dimension is

γeµ{DB,L} =
3yeλg1YH
(16π2)2

. (5.65)

SM
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H†

H

H†

H

H†

H

H†
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+

H†

H†

eR
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H†

ēL

B−

H

µL

Figure 5.7: Diagram for the 3-cut contributing to the mixing of F eµ
R into F eµ

DB at order λ4.

Next we focus on the mixing Ceµ
R → Ceµ

DB. Figure 5.7 shows the two 3-cuts that contribute
to the anomalous dimension, which can be written as

γeµ{DB,R}F
eµ
DB(1e, 2ljµ , 3B− , 4H†

i
)

= − is13
(16π2)2

∫
dµ F̂ eµ

R (1e, 3B− , xµ̄, yHl , zH†
k
)×ASM(−zHk ,−yH†

l
,−xµ, 2ljµ , 4H†

i
)

− s34
(16π2)2

∫
dµ

2
F̂ eµ
R (1e, 2ljµ , xH†

k
, yHl , zH†

m
)×ASM(−zHm ,−yH†

l
,−xHk , 3B− , 4H†

i
) .

(5.66)

The non-minimal form factor of the first cut is given by

F̂ eµ
R (1e, 3B− , xµ̄, yHl , zH†

k
) = −2

(
YH

[zx][yx] ⟨1x⟩
[y3][z3]

+ Ye
[zx][yx] ⟨yz⟩

[x3][31]

)
Glk , (5.67)

with Glk = g1δ
l
k. The amplitude is

ASM(−zHk ,−yH†
l
,−xµ, 2ljµ , 4H†

i
) = iyµ

λ

2

1

[2x]
Fkj
li , (5.68)

with Fkj
li = δki δ

j
l + δji δ

k
l . For the second cut, the form factor is

F̂ eµ
R (1e, 2ljµ , xH†

k
, yHl , zH†

m
) = −yµ

[(
2
⟨1y⟩ [yz]
[2z]

+ ⟨12⟩
)
Dlj
km

+

(
2
⟨1y⟩ [yx]
[2x]

+ ⟨12⟩
)
Dlj
mk

]
,

(5.69)

with Dlj
km = δlkδ

j
m. The SM amplitude is given by Eq. (5.63). As happened in the Ceµ

L → Ceµ
DB

mixing, the individual cuts in Eq. (5.66) have logarithmic terms that cancel out when summing
both contributions. In the end the anomalous dimension is

γeµ{DB,R} =
(3yµλg1YH
(16π2)2

. (5.70)
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Now we can generalize our calculations for other renormalizations Ceµ
L,L3,R → Ceµ

DB,DW . For
mixings with Ceµ

L,L3 we have to use the amplitudes and form factors in Eq. (5.59), Eq. (5.60),
Eq. (5.62) and Eq. (5.63). Table 5.7 summarizes the required SU(2)L tensors: G and F for the
first cut and D and C for the second one. In the mixings with the Ceµ

DW dipole we also have to
set the hypercharges to Ye = 0, YH = 1.

G × F CL CL3

CDB g1δ
j
mδ

l
k ×

(
δki δ

m
l + δmi δ

k
l

)
g1(σ

b)jm(σ
b)lk ×

(
δki δ

m
l + δmi δ

k
l

)

CDW g2δ
j
m(T

a)lk ×
(
δki δ

m
l + δmi δ

k
l

)
g2(σ

b)jm(σ
b)ls(T

a)sk ×
(
δki δ

m
l + δmi δ

k
l

)

D × C CL CL3

CDB δlkδ
j
m × g1δ

k
i δ

m
l (σb)lk(σ

b)jm × g1δ
k
i δ

m
l

CDW δlkδ
j
m × g2(T

a)ki δ
m
l (σb)lk(σ

b)jm × g2(T
a)ki δ

m
l

Table 5.7: Expressions of the SU(2)L tensors that appear in the mixings CL,L3 → CDB,DW at
order λ2. G ×F and D×C correspond, respectively, to the first and second cuts in Figure 5.6.

For mixings with Ceµ
R , we use the amplitudes and form factors in Eq. (5.67), Eq. (5.68),

Eq. (5.69) and Eq. (5.63). The different flavor tensors for both cuts are included in Table 5.7.

G × F CR D × C CR

CDB g1δ
l
k ×

(
δki δ

j
l + δji δ

k
l

)
CDB δlkδ

j
m × g1δ

k
i δ

m
l

CDW g2(T
a)lk ×

(
δki δ

j
l + δji δ

k
l

)
CDW δlkδ

j
m × g2(T

a)ki δ
m
l

Table 5.8: Expressions of the SU(2)L tensors that appear in the mixing CR → CDB,DW at order
λ2. G × F and D × C correspond, respectively, to the first and second cuts in Figure 5.7.

Finally, the anomalous dimension matrix at order λ4 is

(
γCeµ

DB

γCeµ
DW

)
=

λ

(16π2)2

(
3 3 −3ye

yµ

1 3 ye
yµ

)


Ceµ
L

Ceµ
L3

Ceµ
R


 ≈ λ

(16π2)2

(
3 3 0

1 3 0

)


Ceµ
L

Ceµ
L3

Ceµ
R


 . (5.71)

For the other mixings Cµe
L,L3,R → Ceµe

DB,DW , we have

(
γCµe

DB

γCµe
DW

)
=

λ

(16π2)2

(
3 ye
yµ

3 ye
yµ

3
ye
yµ

3 ye
yµ

1

)


Cµe
L

Cµe
L3

Cµe
R


 ≈ λ

(16π2)2

(
0 0 3

0 0 1

)


Cµe
L

Cµe
L3

Cµe
R


 . (5.72)
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5.4.3 Finite corrections at the electroweak scale

Before finishing this section, let us compare our results for the 2-loop RG mixing CL,L3,R →
CDW,DB with some of the finite loop contributions we mentioned in Section 5.3. At the elec-
troweak scale ∼ mW , we have to integrate out the heavy particles (W and Z bosons, the Higgs
h and the top quark) and match the SM onto the EFT of light fermions and photons. This
procedure generates extra finite contributions to the dipole coefficients dµe,eµ. There are 1-loop
finite corrections proportional to the coefficients CL,L3,R that should be compared to the 2-loop
anomalous dimension for the mixing CL,L3,R → CDW,DB. These corrections come from 1-loop
diagrams that include the interactions in Eq. (5.9) and involve a Z or W boson. From [98], the
contributions to deµ are

∆deµ(mW ) =
e

16π2

5

6
Ceµ
L3

v2

Λ2
, (5.73)

for the W boson and

∆deµ(mW ) =− e

16π2

1

3
(Ceµ

L + Ceµ
L3)
[5
4
− (

1

4
− s2θW )

] v2
Λ2

,

∆dµe(mW ) = +
e

16π2

1

3
Cµe
R

[5
4
+ (

1

4
− s2θW )

] v2
Λ2

,

(5.74)

for the Z boson. Note that we have neglected terms proportional to the electron Yukawa ye.
These 1-loop corrections are larger than the 2-loop mixings we have computed. However, since
they are finite, they might be canceled against other matching contributions at the new physics
scale Λ. The total finite portion of the dipoles is therefore model-dependent. For instance, in
certain BSM theories where Ceµ

L = Ceµ
L3 ̸= 0, the sum of ∆deµ(mW ) for W and Z is roughly

zero, since s2θW ≈ 1/4. In Section 5.6 we will see some examples of BSM models that satisfy
this condition.

5.5 Energy bounds from anomalous dimension mixings

Once we know the anomalous dimensions for the mixings that contribute to an LFV observable,
we can move forward to compute energy bounds for the corresponding Wilson coefficients. As
an example, let us consider the 1-loop mixing of the operator OLuQe into BR(µ → eγ). The
anomalous dimensions for the mixings CLuQe → CDW,DB are listed in Eq. (5.43) and Eq. (5.44).
For simplicity, we assume that all Wilson coefficients Oi are zero except for OLuQe. In that case
the running couplings CDW,DB obey

∂

∂ lnµ

(
Cµe
DB

Cµe
DW

)
=
Ncyt
32π2

(
−1
1
2

)
Cµett
LuQe . (5.75)

In order to compute the RG mixing from the new physics scale Λ to the electroweak scale
∼ mW , we integrate from µ = Λ to µ = mW ,

(
Cµe
DB(mW )

Cµe
DW (mW )

)
=
Ncyt
32π2

(
−1
1
2

)
Cµett
LuQe ln

(mW

Λ

)
. (5.76)
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Using Eq. (5.16), the dipole coefficients are

(
dµe

deµ

)
=
v2gsθWNcyt

Λ2

3

128π2

(
Cµett
LuQe

Ceµtt
LuQe

)
ln
(mW

Λ

)
. (5.77)

Consequently, the branching ratio Eq. (5.15) can be expressed as

BR(µ→ eγ) = 384π2
(
|Cµett

LuQe|2 + |Ceµtt
LuQe|2

)(v2gsθWNcyt
Λ2

3

128π2
ln
(mW

Λ

))2

. (5.78)

By setting |Cµett
LuQe|2 + |Ceµtt

LuQe|2 = 1 and solving for Λ, we find a lower bound for the energy
scale of new physics. In our case we have Λ ≳ 304 TeV for the current sensitivity and Λ ≳ 510
TeV for the future one. We can proceed in the same way for the remaining loop mixings, using
the anomalous dimensions listed in Appendix D.

5.5.1 Results

Table 5.9 shows the energy bounds for the operators that contribute to LFV observables, either
at tree level or via RG mixing. For each entry, the first row shows the present bounds and the
second row shows the future bounds. We use the following color legend:

■ Black: tree-level bounds.

■ Blue: bounds for coefficients that enter the observables at one loop.

■ Red: bounds for coefficients that enter the observables at two loops.

■ Purple: bounds for coefficients that enter the observables via a two-step 1-loop mixing.

Notice that blank spaces in the table correspond to bounds that are too small to be compet-
itive against the constraints from other observables. As a reminder, we only include RG mixing
effects and have not considered finite loop contributions. Those corrections are potentially large
but also model-dependent. In Section 5.6 we show some examples of their cancellation for some
particular BSM models.

The main novelty of our analysis is the inclusion of 2-loop RG mixings into the dipoles for
µ→ eγ. As we explained in Section 5.3, there are three classes of dimension-6 operators whose
leading contribution to Cµe

DB,DW arises at two loops:

� ψψ̄H2: The most interesting bound corresponds to the combination Cµe
L − Cµe

L3, because
it is the only one that does not contribute to the other processes µ→ eee and µN → eN
at tree level. For the current experimental constraints we find Λ ≳ 24 TeV, which is
only a factor ∼ 2 smaller than the 1-loop bound coming from µN → eN . It is quite
remarkable that a bound coming from a 2-loop mixing is of the same magnitude as other
1-loop bounds. Moreover, since the three observables lead to similar constraints, the
measurement of one of them would suggest that the other two are also experimentally
accessible.
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µ → eγ µ → eee µN → eN h → µe Z → µe

Cµe
DB − Cµe

DW

951 TeV

(1547 TeV)

218 TeV

(2183 TeV)

208 TeV

(1812 TeV)

Cµe
DB + Cµe

DW

127 TeV

(214 TeV)

26 TeV

(309 TeV)

24 TeV

(253 TeV)

Cµe
R

35 TeV

(59 TeV)

160 TeV

(1602 TeV)

225 TeV

(1535 TeV)

Cµe
L + Cµe

L3

4 TeV

(7 TeV)

164 TeV

(1642 TeV)

225 TeV

(1535 TeV)
5 TeV

Cµe
L − Cµe

L3

24 TeV

(41 TeV)

35 TeV

(421 TeV)

50 TeV

(395 TeV)

Cµett
LuQe

304 TeV

(510 TeV)

63 TeV

(735 TeV)

59 TeV

(604 TeV)

Cµett
LeQu

80 TeV

(141 TeV)

14 TeV

(209 TeV)

5 TeV

(57 TeV)

Cµeee
LL(RR),LR(RL)

207,174 TeV

(2070,1740 TeV)

Cµeuu
LL,RR,LR

352 TeV

(2693 TeV)

Cµedd
LL,RR,LR

376 TeV

(2725 TeV)

Cµdde
LR

18 TeV

(164 TeV)

Cµeττ,µebb
LL(LR),RR(RL)

14,16 TeV

(174,194 TeV)

22 TeV

(200 TeV)

Cµeττ
LL3

20 TeV

(247 TeV)

55 TeV

(476 TeV)

Cµett
LL(RL),RR(LR)

122 TeV

(214 TeV)

21 TeV

(317 TeV)

22,32 TeV

(200,290 TeV)

Cµett
LL3

230 TeV

(401 TeV)

41 TeV

(592 TeV)

100 TeV

(851 TeV)

Cµe
y

4 TeV

(6 TeV)

1 TeV

(9 TeV)

1 TeV

(7 TeV)
0.3 TeV

Table 5.9: Present (future) lower bounds on Λ of SMEFT dimension-6 operators from the different LFV
processes. We have fixed the Wilson coefficient Ci = 1, turning each one by one. We show the bound in black,
blue, purple and red depending on whether the coefficients contribute to the observables at tree level, 1-loop
single log, 2-loop double log or 2-loop single log order, respectively.
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We can also consider the effects of Cµe
L +Cµe

L3 and C
µe
R . In this case, however, the bounds

are not competitive against those coming from µ→ eee and µN → eN at tree level.

� ψ2H3: The 2-loop bound for Cµe
y is Λ ≳ 4 TeV, which is ∼ 10 times greater than the tree-

level bound from h→ µe. We can actually use the constraint from µ→ eγ in Eq. (5.31)
to determine that BR(h → µe) ≲ 2 · 10−8, so we do not expect it to be measured at the
LHC in the near future.

� ψ̄2ψ2: We can also obtain bounds on the coefficients Cµℓℓe,µqqe
LR . However, since the anoma-

lous dimensions are proportional to a Yukawa coupling yℓ or yd, the constraints are very
weak and we have not included them in the table.

Let us now consider bounds coming from 1-loop mixings. This has been studied in previous
works, such as [85, 98–103]. In our case, we were able to simplify the calculations making use of
on-shell amplitude methods. According to the helicity selection rule ∆n ≥ |∆h|, the only LFV
operator that can mix with the dipoles at one loop is OLuQe. Since the mixing is proportional
to a Yukawa coupling, the largest contribution comes from Cµett

LuQe, which leads to the bound
Λ ≳ 304 TeV. Other operators can renormalize OLuQe, entering µ → eγ via two-step 1-loop
mixing. As explained in Section 3.4.1, the helicity selection rules have one exception, so ψ̄2ψ2

operators involving a yu Yukawa can mix with OLuQe. Again, the largest bounds correspond to
operators involving the top quark. They are even larger than constraints coming from direct
1-loop mixings into µ→ eee and µN → eN .

Finally, the majority of bounds for µ → eee and µN → eN arise from 1-loop mixings of
four-fermion operators (µeee, µeuu and µedd) with other four-fermion operators µeff . In this
case the mixing is not proportional to the Yukawa coupling and instead depends on the particle
hypercharges. Notice that Table 5.9 shows the bounds for operators µeff with f a 3rd-family
fermion, but we could also include bounds for the 2nd-family ones.

5.6 UV models for LFV

Until now, we have focused on studying RG mixing contributions to the different LFV observ-
ables. This analysis has the advantage of being model-independent, but in general we expect
to have additional contributions from matching the UV model. We are interested in the impact
of the RG running on the observables compared to the finite contributions from a particular
BSM scenario. We will focus on two cases: models with extra heavy fermions and models with
lepton flavor universality violation.

5.6.1 Heavy vector-like fermions

For these models we assume a new heavy vector-like fermion of mass M , which can be a:

� Singlet (S).

� State of hypercharge YE = −1 (E).
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� SU(2)L doublet (D).

These new particles couple to the SM by mixing with the SM fermions through the following
interaction Lagrangians,

∆LS = (y
(1)
S L̄

(1)
L + y

(2)
S L̄

(2)
L )SRiσ2H

∗ + h.c. ,

∆LE = (y
(1)
E L̄

(1)
L + y

(2)
E L̄

(2)
L )ERH + h.c. ,

∆LD = (y
∗(1)
D ē

(1)
R + y

∗(2)
D ē

(2)
R )DLH

† + h.c. .

(5.79)

We are interested in the contribution of these particles to the branching ratio BR(µ→ eγ).
As customary in the EFT approach, we integrate out the heavy states at the scale Λ =M and
match them with the SMEFT Wilson coefficients listed in Section 5.2.1. At tree level, we find

Ceµ
L (M) = −Ceµ

L3(M) = +1
4
y
(1)
S y

∗(2)
S , for S ,

Ceµ
L (M) = Ceµ

L3(M) = −1
4
y
(1)
E y

∗(2)
E , for E ,

Cµe
R (M) = −1

2
y
(1)
D y

∗(2)
D , for D ,

(5.80)

with Cµe
L,L3,R = (Ceµ

L,L3,R)
∗. Note that the heavy singlet S generates Ceµ

L (M) = −Ceµ
L3(M).

Following our discussion in 5.4.3, this implies that the finite contributions to deµ from matching
at the electroweak scale are approximately zero. We also find

Ceµ
y (M) = 0 , Cµe

y (M) = 0 , for S ,

Ceµ
y (M) = −y(1)E y

∗(2)
E , Cµe

y (M) = −(ye/yµ)y
(2)
E y

∗(1)
E ≈ 0 , for E ,

Cµe
y (M) = −y(1)D y

∗(2)
D , Ceµ

y (M) = −(ye/yµ)y
(2)
D y

∗(1)
D ≈ 0 , for D ,

(5.81)

plus the corresponding Hermitian conjugates (Cy)
∗.

Moving on to the next order, heavy fermions contribute to the dipole coefficients dµe,eµ at
one loop. We can extract their values from the (g − 2) contributions in [112], leading to

Ceµ
DW (M)− Ceµ

DB(M) =
1

6

y
(1)
S y

∗(2)
S

16π2
, for S ,

Ceµ
DW (M)− Ceµ

DB(M) =
1

24

y
(1)
E y

∗(2)
E

16π2
, for E ,

Cµe
DW (M)− Cµe

DB(M) = − 1

24

y
(1)
D y

∗(2)
D

16π2
, for D .

(5.82)

The remaining coefficients Cµe
DW,DB for S,E, and Ceµ

DW,DB for D are negligible as they are
proportional to O(ye/yµ) ≈ 0.

Once we have identified the contributions to the dipoles, we have to do the RG running of
the couplings from M to the electroweak scale. As we have seen in Section 5.3.1, the Wilson
coefficients in Eq. (5.80) and Eq. (5.81) mix with the dipoles at the 2-loop level. Then, at
the electroweak scale, we should match the theory to the EFT of light fermions and photons.
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Following Section 5.4.3, this matching leads to one-loop finite contributions to the dipoles
∆deµ given by Eq. (5.73) and Eq. (5.74). Those corrections are proportional to the coefficients
Cµe
L,L3,R, which in our case correspond to Eq. (5.80). As an example, for the singlet S heavy

fermion we obtain

∆deµ(mW ) = −y
(1)
S y

∗(2)
S

16π2

5

12
, (5.83)

and the dipole coefficients are given by

deµ(mW ) ≃ e

2

v2

M2

[
∆deµ(mW ) + (Ceµ

DW (M)− Ceµ
DB(M))

(
1−Ncy

2
t

ln(M/mW )

16π2

)

+

(
(−Ncy

2
t + 2λ)Ceµ

L (M) +Ncy
2
tC

eµ
L3(M)− 5

8
g′

2
Ceµ
y (M)

)
ln(M/mW )

(16π2)2

]
,

dµe(mW ) ≃ e

2

v2

M2

[
∆dµe(mW ) + (Cµe

DW (M)− Cµe
DB(M))

(
1−Ncy

2
t

ln(M/mW )

16π2

)

+

(
(−2Ncy

2
t + 2λ)Cµe

R (M)− 5

8
g′

2
Cµe
y (M)

)
ln(M/mW )

(16π2)2

]
. (5.84)

Note that, for simplicity, this analysis does not include the RG running from mW to mµ.
Substituting Eq. (5.84) into BR(µ → eγ) we can finally obtain bounds on the heavy fermion
massM . This allows us to assess the relative significance of 2-loop RG running effects compared
to 1-loop matching contributions. For example, in the singlet model, if we set y

(i)
S = 1, the

experimental bound on µ → eγ leads to M ≳ 43 TeV. In this case, the RG mixing represents
around 20% of deµ. Proceeding in the same way for the doublet D, we find that M ≳ 54 TeV,
with RG mixing contributing approximately 25% to dµe. Overall, we observe that higher values
of M correspond to a greater relative contribution from RG mixing. For low values of M , the
RG running is only relevant in some models where the finite terms cancel.

5.6.2 BSM with lepton universality violations

Other interesting UV completions are theories that feature lepton flavor universality violation.
They have been widely studied in recent years to explain some experimental tension in the
muon sector (see for example [113]). The main idea is to construct a model in which some BSM
particles couple only to SM muons and not to electrons. For example, we can have the effective
operator

1

M2
(L̄

(2)
L σaγµL

(2)
L )(Q̄

(i)
L σ

aγµQ
(i)
L ) , (5.85)

that is generated by integrating out a heavy vector boson that only couples to muons and one
quark family denoted as i. This particle breaks lepton universality, and lepton number is no
longer preserved, as the diagonalization of the SM Yukawa matrix ye leads to a violation of
muon number. In particular, the dimension-6 operator Oµett

LL3 = (L̄
(2)
L σaγµL

(1)
L )(Q̄

(3)
L σaγµQ

(3)
L ) is

98



generated with coefficient

Cµett
LL3

Λ2
=
U21
LL
U † i3QL

U i3
QL

M2
, (5.86)

where ULL
, UQL

are the left-handed rotation matrices that diagonalize, respectively, ye and
yu. If the Yukawa matrices ye,u are roughly symmetric, we can estimate U21

LL
∼
√
me/mµ and

UQL
∼ VCKM. Using the experimental constraint on Cµett

LL3 from µ→ eγ, we obtain the bounds

M ≳ 0.8 TeV , for i = 2 ; M ≳ 60 TeV , for i = 3 . (5.87)

The operator Oµµbs
LL3 = (L̄

(2)
L σaγµL

(2)
L )(Q̄

(2)
L σaγµQ

(3)
L ) is also generated from Eq. (5.85) with

the coefficient
Cµµbs
LL3

Λ2
=
U † i2QL

U i3
QL

M2
. (5.88)

Using Eq. (5.87), we can derive bounds on Cµµbs
LL3 , which contributes to the process b→ sµµ at

tree level. We find

Cµµbs
LL3

Λ2
≲

1

(4 TeV)2
, for i = 2 ,

Cµµbs
LL3

Λ2
≲

1

(290 TeV)2
, for i = 3 . (5.89)

Following [114], the experimental discrepancy in the measurement of B → Kµµ can be
explained if Cµµbs

LL3 /Λ
2 ∼ 1/(56 TeV)2. From Eq. (5.89) we see that µ → eγ constraints permit

i = 2 but exclude i = 3. This shows an interesting interplay between bounds coming from
different observables for some UV models.

5.7 Conclusions of the chapter

In this chapter we have used the SMEFT to analyze several LFV observables with ∆Lµ =
∆Le = 1 in a systematic way. We have focused on the muon decays µ → eγ, µ → eee and
µN → eN , which have the most stringent experimental bounds. The sensitivities of these three
processes are expected to improve substantially in the next decade, as summarized in Table
5.1. Given such prospects, we have aimed to analyze the LFV processes up to the 2-loop level.

We have identified the Wilson coefficients entering the LFV observables at tree level and
those that mix with them via loops. For this task, we have used helicity selection rules, which
tell us the only possible 1-loop mixings. After that, we have shown how to apply on-shell
amplitude techniques to compute the necessary anomalous dimensions. Following Chapter 3,
we have seen that some loop mixings can be obtained simply from a product of tree-level
amplitudes integrated over a phase space.

For the process µ→ eγ, helicity selection rules tell us that only the operator OLuQe can enter
the branching ratio at the 1-loop level. Then we have three classes of operators that enter at two
loops: ψ2H2, ψ2H3 and ψ̄2ψ2. While the mixings of ψ2H3 and ψ̄2ψ2 had already been computed
in [28, 84], we calculated the mixing with ψ2H2 for the first time in [3]. In particular, we
obtained the 2-loop anomalous dimension for the renormalization CL,L3,R → CDB,DW at orders
y2t and λ4, using on-shell methods. For the other two processes µ → eee and µN → eN , most
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of the relevant operators enter the branching ratios at one loop. The only 2-loop contribution
corresponds to ψ2H3, which enters the processes via 2-loop mixing with the dipole operators.

The main results of our work are summarized in Table 5.9, which shows the bounds on the
new physics scale Λ for the Wilson coefficients that enter µ → eγ, µ → eee and µN → eN ,
either at tree level or via RG mixing. Remarkably, we note the importance of some 2-loop
effects that had not been considered before. Indeed, the bound on Cµe

L − Cµe
L3 from µ → eγ

is comparable to the bounds coming from µ → eee and µN → eN , which arise via 1-loop
mixings. Additionally, the coefficient Cµe

y only enters the muon decays via 2-loop mixing into
the dipoles. The obtained bound is not quite large, but it is still better than the tree-level
bound from the Higgs decay h → eµ. Moreover, the bound on Cµe

y from µ → eγ can be used
to constrain the branching ratio BR(h → eµ). Doing that, we find that h → eµ will not be
accessible at colliders in the near future. The interplay between bounds coming from different
LFV observables is discussed in Section 5.5.

The effects of 2-loop RG mixing into the dipole coefficients dµe,eµ must be compared with
finite contributions arising at one loop. In particular, we must consider corrections from EFT
matching at the electroweak scale and from matching with some BSM theory at Λ. The sum of
these two pieces depends on the particular UV model we consider. In general it can be larger
than the 2-loop RG mixing, but one should perform a case-by-case analysis. As an example,
we have computed the full dipole contribution in a theory with additional heavy fermions.

Overall, we have seen that the next generation of LFV precision experiments requires ex-
tending the analysis of renormalization effects to higher orders. On-shell amplitude methods can
be a valuable tool for this purpose, since they are suitable for computing anomalous dimensions
and also allow us to understand patterns behind the operator mixings.
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Chapter 6

Applications of renormalization III:
Anomalous dimensions from Partial
Waves

In this chapter, we revisit our results for the 1-loop renormalization of EFTs, studying the effects
of angular momentum decomposition. As we derived in Chapter 3, anomalous dimensions can
be computed from a product of on-shell amplitudes integrated over some phase space. Building
upon that work, we consider the impact of the partial-wave expansion of amplitudes. We mostly
follow the results in [2]. Related analyses include [81, 115].

We aim to gain a deeper understanding of renormalization from angular momentum conser-
vation. By decomposing amplitudes in partial waves, we will compute the anomalous dimension
as a sum of products of partial-wave coefficients aJ . This is particularly useful for amplitudes
with a finite number of aJ , such as contact interactions in an EFT.

The discussion is organized as follows: In Section 6.1, we derive the main formula to ex-
press anomalous dimensions in terms of partial waves. For simplicity, we work with 4-point
amplitudes associated with two-to-two scattering. We extend these results to renormalizations
featuring infrared divergences, which involve a regularized version of the partial-wave coef-
ficients. In Section 6.2, we explicitly compute anomalous dimensions in several EFTs: the
SMEFT, the SO(N) nonlinear sigma model and the EFT of gravity. Finally, we present our
conclusions in Section 6.3.

6.1 Partial-wave analysis of anomalous dimensions

First, we derive a formula to calculate anomalous dimensions in terms of partial-wave coeffi-
cients. We consider an EFT with contact interactions given by AOi

. These are the building
blocks of the theory, which are classified according to an expansion in E/Λ, with Λ the UV
cut-off of the EFT. The Wilson coefficient of the amplitude, denoted as COi

, is renormalized
at the loop level, so it receives an anomalous dimension γi. Our goal is to show how angular
momentum decomposition can simplify the computation of γi.
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6.1.1 Renormalization with on-shell amplitude methods

Our starting point is formula Eq. (3.16) for the 1-loop renormalization of amplitudes, which
we derived in Section 3.2.2. That expression gives us the anomalous dimension γij for the
mixing AOj

→ AOi
in terms of 2-cuts of a loop amplitude when there are no IR divergences.

For convenience, we shall consider the full anomalous dimension γi = dCOi
/d lnµ =

∑
j γijCOj

instead of γij. If both AOi
and AOj

are 4-point amplitudes, we can write

γi
AOi

(1, 2, 3, 4)

COi

=

− 1

4π3

∫
dLIPS

∑

ℓ1,ℓ2

σℓ1ℓ2
[
AL(1, 2, ℓ̄2, ℓ̄1)AR(ℓ1, ℓ2, 3, 4)

]
+ (2 ↔ 3) + (2 ↔ 4) ,

(6.1)

where the subamplitudes AL, AR contain the contact amplitudes AOj
. We define a weight

w corresponding to the order of an amplitude A ∼ 1/Λw, so that wi = wL + wR. The three
terms in the RHS side correspond to the s-, t- and u- channels1. The summation

∑
ℓ1,ℓ2

is over
all possible internal states with momentum ℓ1, ℓ2. A bar over a state, such as 1̄, indicates the
opposite momentum sign, helicity, and other quantum numbers relative to the original state.
We define σℓ1,ℓ2 = (−i)F [ℓ1,ℓ2], with F [ℓ1, ℓ2] the number of fermions in the list {ℓ1, ℓ2}2. We
must also add a factor of 1/2 when the cut particles are identical.

Eq. (6.1) can be generalized to cases where there is more than one independent amplitude
AOi

with the same external states. In that case, we must add a summation over all possible AOi

in the LHS of Eq. (6.1). Another possibility is to have a non-minimal amplitude ÂOi
instead

of the contact one.

6.1.2 Partial-wave decomposition of amplitudes

The next step is to consider the angular-momentum decomposition of a general 4-point ampli-
tude A(1h1 , 2h2 , 3h3 , 4h4), with hi the helicity of particle i. For this purpose, it is convenient
to specify incoming and outgoing states instead of using the all-incoming notation. For in-
stance, let us consider an s-channel scattering with 1h1 , 2h2 → 3−h3 , 4−h4 . The amplitude for
this process is related to the all-incoming amplitude as follows:

A(1h1 , 2h2 → 3−h3 , 4−h4) ≡ σ34A(1h1 , 2h2 ,−4h4 ,−3h3) , (6.2)

where σ34 = (−i)F [34] as defined earlier. Let us consider the center-of-momentum frame for
1h1 , 2h2 → 3−h3 , 4−h4 . We align the z-axis with the momentum of particles 1 and 2, with p⃗1
pointing downwards. The direction of the outgoing particles can be parameterized using polar

1Note that the particle ordering is 1324 in the t-channel and 1432 in the u-channel. We must add a minus
sign for every fermion exchange compared to 1234.

2This factor comes from our parameterization of spinors with negative momenta in Eq. (A.26), see Appendix
A.3 for more details. Note that σℓ1,ℓ2 = (−i)F [ℓ1,ℓ2] and not (+i)F [ℓ1,ℓ2] because the left subamplitude is the
one with negative momenta for the internal states.
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coordinates (θ, ϕ). Thus, the scattering amplitude can be written as a function of the angles
θ, ϕ and the Mandelstam variable s:

A(1h1 , 2h2 → 3−h3 , 4−h4) = A(s, θ, ϕ) . (6.3)

Using this parameterization, the spinor-helicity variables associated with the outgoing par-
ticles 3 and 4 are:

|3⟩ = cθ/2|1⟩ − sθ/2e
−iϕ|2⟩ ,

|4⟩ = sθ/2e
iϕ|1⟩+ cθ/2|2⟩ ,

|3] = cθ/2|1]− sθ/2e
iϕ|2] ,

|4] = sθ/2e
−iϕ|1] + cθ/2|2] ,

(6.4)

which satisfies momentum conservation p1+ p2 = p3+ p4. The Mandelstam variables s, t, u can
be expressed as follows

s = ⟨12⟩ [21] , t = −⟨13⟩ [31] = −s 1− cθ
2

, u = −⟨14⟩ [41] = −s 1 + cθ
2

. (6.5)

With these considerations, we can perform a partial-wave decomposition of the scattering
amplitude A(s, θ, ϕ). It is convenient to use the formalism introduced by M. Jacob and G. C.
Wick in [116]. We consider a basis of definite angular momentum quantized along the z-axis,
so the amplitude can be written as

A(s, θ, ϕ) = eiϕ(h12−h43)
(√

s

Λ

)w∑

J

nJ d
J
h12h43

(θ) aJ , (6.6)

where nJ = 2J + 1, h12 = h1 − h2, h34 = h3 − h4 and dJh12h43(θ) are the Wigner d-functions.
We have factored out the Λ dependence of the amplitude, extracting the dimensionless ratio√
s/Λ. More details on the derivation of this formula can be found in Appendix E.
From Eq. (6.5) we find that cθ = (t − u)/s. This relation allows us to remove the θ

dependence in Eq. (6.6) and express the amplitude in a manifestly Lorentz-invariant form. We
can also invert the partial-wave decomposition in Eq. (6.6) and find an expression for the aJ

coefficients:

aJ =
1

2

(√
s

Λ

)−w ∫ π

0

dθ sθ d
J
h12h43

(θ) A(s, θ, ϕ = 0) , (6.7)

where we have used the orthogonality of the Wigner d-functions, as given by Eq. (E.6). Note
that we have assumed the existence of well-defined coefficients aJ , which is not always true. For
instance, in Section 6.1.4, we will see that aJ are singular for mixings with soft IR divergences.

Thus far, we have considered scattering in the s-channel, but we can proceed analogously for
the t- and u- channels. For the t-channel amplitude A(1h1 , 3h3 → 2−h2 , 4−h4), the partial-wave
decomposition is

A(t, θ′, ϕ′) = eiϕ
′(h13−h42)

(√
t

Λ

)w∑

J

nJ d
J
h12h43

(θ′) aJ , (6.8)
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where the polar angles (θ′, ϕ′) correspond the direction of the outgoing particles 2,4. The
relation between θ′ and the Mandelstam variables is given by cθ′ = (s − u)/t. Similarly, the
u-channel amplitude A(1h1 , 4h4 → 2−h2 , 3−h3) can be written as

A(u, θ′′, ϕ′′) = eiϕ
′′(h13−h42)

(√
u

Λ

)w∑

J

nJ d
J
h12h43

(θ′′) aJ , (6.9)

with (θ′′, ϕ′′) the polar coordinates for the outgoing 2,3 and cθ′′ = (t− s)/u.
For all channels, the partial-wave coefficients aJ completely characterize the amplitude

A(1h1 , 2h2 , 3h3 , 4h4). We can choose one channel or another depending on the problem under
consideration.

6.1.3 Partial-wave decomposition of the anomalous dimensions

At this stage, we are ready to carry out a partial-wave decomposition of the subamplitudes
AL,AR in Eq. (6.1). We start by considering the s-channel terms, which can be expressed as

σℓ1ℓ2AL(1, 2, ℓ̄2, ℓ̄1)AR(ℓ1, ℓ2, 3, 4) = AL(1, 2 → ℓ1, ℓ2)σ
−1
34 AR(ℓ1, ℓ2 → 4̄, 3̄) , (6.10)

where we have rewritten the all-incoming amplitudes according to Eq. (6.2). It is convenient
to define polar coordinates for both subamplitudes. For AL(1, 2 → ℓ1, ℓ2), the direction of
ℓ1, ℓ2 is described by the polar angles (θ′, ϕ′). For AR(ℓ1, ℓ2 → 4̄, 3̄), the direction of 4̄, 3̄ is
given by (θ, ϕ). Using Eq. (6.6) for the partial-wave decomposition of AL and Eq. (E.3) for the
decomposition of AR, Eq. (6.10) leads to

AL(1, 2 → ℓ1, ℓ2)σ
−1
34 AR(ℓ1, ℓ2 → 4̄, 3̄) =

(√
s

Λ

)wL+wR

eiϕ
′(h12−h′12)

∑

J ′

nJ ′dJ
′
h12h′12

(θ′)aJ
′
L

× σ−134

∑

J,M

nJe
iϕ(M−h34)dJMh34

(θ) e−iϕ
′(M−h′12)dJMh′12

(θ′)aJR ,
(6.11)

where aJL,R are the partial-wave coefficients for AL,R. With this parameterization, the dLIPS
integral for the internal spinors ℓ1, ℓ2 in Eq. (6.1) corresponds to an angular integration over

the (θ′, ϕ′) coordinates. Specifically, we have
∫
dLIPS = 1

8

∫ π
0
dθ′sθ′

∫ 2π

0
dϕ′. Performing the

phase-space integration of Eq. (6.11), we obtain

∫
dLIPS AL(1, 2 → ℓ1, ℓ2)σ

−1
34 AR(ℓ1, ℓ2 → 4̄, 3̄) =

π

2
σ−134 eiϕ(h12−h34)

(√
s

Λ

)wL+wR∑

J

nJ d
J
h12h34

(θ) aJLa
J
R ,

(6.12)

where again we have used the orthogonality of the Wigner d-functions.
We can proceed in the same way for the second and third terms in the RHS of Eq. (6.1),

performing the angular momentum decomposition in the t- and u- channels. Doing that, the
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anomalous dimenion is finally given by

γi
AOi

COi

= −σ
−1
34

8π2
eiϕ(h12−h34)

(√
s

Λ

)wi∑

J

nJ d
J
h12h34

(θ)
∑

ℓ1,ℓ2

aJLa
J
R + (s↔ t) + (s↔ u) . (6.13)

This expression is particularly helpful when there is a finite number of non-zero aJL,R co-
efficients. For instance, that is the case when AOi

is a contact 4-point amplitude, as the
incoming states can only be in a few J configurations. We distinguish two different types of
renormalizations:

� If either AL or AR are contact subamplitudes, their partial-wave decompositions contain
a finite number of aJ . Therefore, the J summation in Eq. (6.13) only includes a finite
number of terms and the anomalous dimension γi can be obtained easily.

� If both AL are AR non-contact subamplitudes, the summation over J in Eq. (6.13) be-
comes infinite, making the expression less practical. In that case, there must be a non-
trivial cancellation between the different channels, making the overall contribution to the
anomalous dimension finite. See Section 6.2.1 for an example of this type of mixing within
the SMEFT.

We can also identify some cases where Eq. (6.13) is further simplified:

� If only one kinematic channel contributes to Eq. (6.13), we can expand the amplitude
AOi

into partial waves in the same channel. For example, if there are only s-channel
contributions, we can write

γi
aJi
COi

= − 1

8π2

∑

ℓ1,ℓ2

aJLa
J
R , (6.14)

where aJ are partial-wave coefficients in the s-channel. If several amplitudes AOi
con-

tribute to the LHS of Eq. (6.13), we must add a summation over the i indices in the LHS
of Eq. (6.14). This leads to a system of equations for the different γi.

� Another interesting scenario occurs when the contributions from different channels in
Eq. (6.13) are proportional to a single amplitude AOi

. In general, the RHS of Eq. (6.13)
is only proportional to AOi

after summing the three kinematic channels, but that is not
always true. If the different channel contributions are parametrically independent from
each other, the anomalous dimension satisfies

γi = γsi + γti + γui , (6.15)

with γs,t,ui the contribution from the s-, t- and u- channels. For the s-channel, we have

γsi
AOi

COi

= − 1

8π2
σ−134 eiϕ(h12−h34)

(√
s

Λ

)wL+wR∑

J

nJ d
J
h12h34

(θ)
∑

ℓ1,ℓ2

aJLa
J
R . (6.16)
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Performing a partial-wave expansion of AOi
in the s-channel as well, we obtain

γsi = −COi

8π2

∑

ℓ1,ℓ2

aJLa
J
R

aJi
. (6.17)

In order to compute the other contributions γti and γ
u
i , we can proceed in the same manner

for the t- and u- channels.

In Section 6.2, we will show examples of these simplifications when applying Eq. (6.13) to
several EFTs. For the case of the SMEFT, we will demonstrate that several mixings between
SMEFT amplitudes at order 1/Λ2 include partial waves in a single channel, so Eq. (6.14) is
valid. For the nonlinear sigma model and gravity, we will see that contributions from different
kinematic channels are related by crossing symmetry, so only the s-channel computation is
necessary.

6.1.4 IR divergences

Following Section 3.3, we can extend Eq. (6.1) for renormalizations with both collinear and soft
IR divergences. For the collinear case, we must add the following term to Eq. (6.1),

∆γOi

AOi
(1, 2, 3, 4)

COi

= γcollAOi
(1, 2, 3, 4) . (6.18)

The coefficients γcoll depend only on the external legs, so we can write γcoll =
∑4

n=1 γ
(n)
coll. The

explicit form of γ
(n)
coll for different particles can be found in [28, 29].

The treatment of soft IR divergences requires a more detailed approach. These contributions
are associated with angular singularities of the subamplitudes AL,R, so the dLIPS integral is
not finite. As explained in Section 3.3, θ → 0 divergences in Eq. (6.1) must be regulated by
adding

∆γi
AOi

(1a, 2b, 3c, 4d)

COi

= − 1

4π3

[
(T 12

soft)
a b
â b̂
AR(1

â, 2b̂, 3c, 4d)

∫
dLIPS12

1

s2θ′/2

+ (T 34
soft)

c d
ĉ d̂
AL(1

a, 2b, 3ĉ, 4d̂)

∫
dLIPS34

1

s2θ′/2

]
+ (2 ↔ 3) + (2 ↔ 4) ,

(6.19)

where the dLIPSij integral is over the phase space of the i′j′ particle pair. The soft operator
T ij
soft acts on the color or flavor indices a, b, c, d, and its explicit form depends on the theory we

consider. For instance, the QED operator is given by T ij
soft = e2qiqj, where qi is the charge of

particle i. Similarly, the gravity operator is T ij
soft = −2sij/M

2
P , with MP the Planck mass.

When the subamplitudes AL,R have angular singularities, Eq. (6.7) leads to logarithmically
divergent partial-wave coefficients aJ ∼ limϵ→0

∫ π
ϵ
dθ/θ ∼ ln ϵ. Including the additional terms

in Eq. (6.19), we define the regularized coefficients as

aJ |reg =
1

2

(√
s

Λ

)−w ∫ π

0

dθ sθ

(
dJh12h43(θ)A(1ah1 , 2

b
h2

→ 3c−h3 , 4
d
−h4)|θ,ϕ=0 +

(Tsoft)
a b
c d

s2θ/2

)
. (6.20)
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Now we can generalize Eq. (6.13) for renormalizations with soft IR divergences: we must
simply replace the partial-wave coefficients aJ with their regularized version aJ |reg. Let us
prove this statement. We consider a mixing where the subamplitude AL has divergent plane-
wave coefficients, whereas AR has all aJ finite, as is the case when AR represents a contact
amplitude. The anomalous dimension is given by Eq. (6.1) plus the regulator in Eq. (6.19).
For each individual cut, the dLIPS integral can be written as
∫
dLIPS

(
σℓ1ℓ2 AL(1, 2, ℓ̄2, ℓ̄1)AR(ℓ1, ℓ2, 3, 4) +

Tsoft

s2θ′/2
AR(1, 2, 3, 4)

)
σ34

=
π

4
eiϕ(h12−h34)

(√
s

Λ

)wR∑

J

nJ d
J
h12h34

(θ) aJR

∫ π

0

dθ′sθ′

(
dJh12h′12(θ

′)AL(s, θ
′, 0) +

Tsoft

s2θ′/2

)

=
π

2
eiϕ(h12−h34)

(√
s

Λ

)wR+wL∑

J

nJ d
J
h12h34

(θ) aJR a
J
L|reg ,

(6.21)

where the color/flavor indices are implicit. Indeed, we recover the result in Eq. (6.13), replacing
the divergent aJL by the regularized aJL|reg. We will see some examples of renormalizations with
IR divergences in Sections 6.2.1 and 6.2.3.

Finally, we consider the scenario where AL or AR diverge for both θ → 0 and θ → π. In
this case, the integral

∫
s−2θ′/2 must be replaced with 2

∫
s−2θ′ in both Eq. (6.19) and Eq. (6.20).

This ensures that the integrands are well-behaved. Moreover, Eq. (6.20) has to be computed
only for even J since aJ = 0 for odd J3.

6.2 Applications

6.2.1 SMEFT renormalization with partial-waves

As a first application, we revisit the renormalization of 1/Λ2 amplitudes in the SMEFT, includ-
ing the cases discussed in Chapter 4. We are interested in computing the anomalous dimensions
matrix using the method of partial-wave decomposition in Eq. (6.13), which can provide new
insights into the mixing structure. We start by considering all 1/Λ2 SMEFT amplitudes with
n = 4 and total helicity h = −2, namely:

AWHle(1e, 2lj , 3Wa
− , 4H†

i
) =

CWHle

Λ2
⟨31⟩ ⟨32⟩ (T a)ji ,

AW 2H2(1Wa
− , 2Hj , 3W b

−
, 4H†

i
) =

CW 2H2

Λ2
⟨13⟩2 δabδji ,

Alequ,0(1e, 2li , 3u, 4qj) =
Clequ,0
Λ2

⟨12⟩ ⟨34⟩ ϵij ,

Alequ,1(1e, 2li , 3u, 4qj) =
Clequ,1
Λ2

1

2
(⟨23⟩ ⟨41⟩+ ⟨13⟩ ⟨42⟩) ϵij .

(6.22)

3Note that A is even in [0, π], whereas the product sθ dJ00(θ) is odd for odd J . Therefore, the coefficient aJ

computed with Eq. (6.7) vanishes. Since the amplitude A diverges for both θ → 0 and θ → π, we must compute∫ π−ϵ
ϵ

dθ sθA(θ)dJ00(θ) and then take the limit ϵ → 0.
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J = 0 J = 1

ASM(1ψ̄R
, 2ψ̄Li

, 3Wa
− , 4Hj) 0 1√

2
× yψg2 (T

a)ji

AI=0
SM (1H , 2H† , 3H† , 4H) −3

8
−3

2
× g22

AWHle(1e, 2lj , 3Wa
− , 4H†

i
) 0 1

3
√
2

×CWHle(T
a)ji

Aeluq,0(1e, 2li , 3u, 4qj) 1 0 ×Celuq,0 ϵ
ij

Aeluq,1(1e, 2li , 3u, 4qj) 0 1
6

×Celuq,1 ϵ
ij

AW 2H2(1Wa
− , 2Hj , 3W b

−
, 4H†

i
) 0 1

3
×CW 2H2δabδ

j
i

AB2H2(1B− , 2B− , 3Hj , 4H†
i
) 1 0 ×CB2H2δji

Table 6.1: Partial-wave coefficients aJ in the s-channel for the different SM and SMEFT am-
plitudes discussed in the text, up to J = 1. For AI=0

SM , we give the regularized coefficient aJ |reg.

Note that we are using mostly the same amplitude basis as in Chapter 4, replacing the
four-fermion amplitude Aluqe in Eq. (4.2) by Alequ,1. This basis is convenient because Alequ,0

and Alequ,1 have only one non-vanishing partial-wave coefficient aJ . This is related to their
symmetry properties under the exchange 1 ↔ 2.

We focus on the renormalization between amplitudes in Eq. (6.22) with different number of
fermions nF . The corresponding anomalous dimensions, which arise from very different Feyn-
man diagrams, showcase a similar structure in the on-shell approach. Indeed, from Eq. (6.1)
we see that all those mixings must involve the same type of SM amplitude:

ASM(1ē, 2l̄i , 3Wa
− , 4Hj) = yψ g2 (T a)ji

⟨13⟩ ⟨43⟩
⟨14⟩ ⟨12⟩ , (6.23)

or its complex conjugate. The fermions ψL and ψR are, respectively, the SU(2)L doublet and
singlet leptons l and e. We can also have the same amplitude for the up-type quark fields q, u,
replacing Hj → H†j and (T a)ji → (T a)j

′
i ϵj′j in Eq. (6.23).

In Section 4.6, we already pointed out that only one SM amplitude is involved in all non-
diagonal mixings between amplitudes of classes V ψ2H, V 2H2 and ψ4. Now we can analyze
this behavior using angular momentum decomposition. The first step is to notice that all
renormalizations between amplitudes in Eq. (6.22) with different nF include solely the s-channel.
The only exception is the renormalization of AW 2H2 by AWHle, which gets contributions from
both the s- and t- channels. However, the t-channel terms can be easily obtained from the
s-channel ones by interchanging the external W bosons. Using Eq. (6.7), we compute the
partial-wave coefficients for Eq. (6.23) in the s-channel, leading to

aJ=0
SM = 0 , aJ≥1SM = yψg2(T

a)ji
1

2

∫ π

0

dθsθ d
J
0,1(θ)

sθ/2
cθ/2

=
yψg2(T

a)ji√
J(J + 1)

. (6.24)

Similarly, the aJ coefficients for the 1/Λ2 amplitudes in Eq. (6.22) are listed in Table 6.1.
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Given Eq. (6.13), we see that amplitudes ¡only mix when they have partial waves for the
same J . This constitutes an angular momentum selection rule that was first discussed in [81].
Since Alequ,0 only has a J = 0 component, it cannot mix with AWHle, AW 2H2 and Alequ,1, which
solely include J = 1. The other amplitudes mix among themselves through the J = 1 partial
wave, so all the mixings involve aJ=1

SM . Using Eq. (6.14), the anomalous dimensions satisfy


γWHle C

−1
WHle a

1
WHle

γlequ,1 C
−1
lequ,1 a

1
lequ,1

γW 2H2 C−1W 2H2 a
1
W 2H2


 = − ã

J=1
SM

8π2




× −Ncyu ye

−yu × 0

ye 0 ×






a1WHle

a1eluq,1

a1W 2H2


+ crossing , (6.25)

with aJSM ≡ yψã
J
SM. We are not including diagonal entries since they involve different SM

amplitudes. The “crossing” term adds the t-channel contribution to the mixing AWHle →
AW 2H2 . It can be easily obtained by interchanging the W bosons in AW 2H2 . Remarkably,
all non-trivial information about the anomalous dimensions is encoded in the partial-wave
coefficients aJ . The matrix in the RHS of Eq. (6.25) includes only color factors, different
Yukawa couplings and signs from fermion permutations. Substituting the values of aJ from
Table 6.1, we finally obtain



γWHle

γlequ,1

γW 2H2


 =

g2
16π2




× Ncyu −2ye
3
2
yu × 0

−1
2
ye 0 ×






CWHle

Clequ,1

CW 2H2


 . (6.26)

These results coincide with previous calculations of the anomalous dimension matrix, such as
[20, 21]. We also obtained the same γWHle values in Chapter 4.

The property that several 1-loop mixings involve the same SM amplitude is not exclusive
to the subset AWHle, AW 2H2 , Alequ,1. This generally occurs for 1/Λ2 amplitudes with equal
n and h, but different number of fermions nF . As noted in Section 4.6, another example are
the n = 4, h = 0 amplitudes A□H4 , Aψψ̄H2 and Aψ2ψ̄2 . In that case, the non-diagonal mixings
involve the J = 1 partial wave of the SM amplitude A(1H , 2H† , 3ψ, 4ψ̄).

As a final remark, we note that not all mixings are suited for the partial-wave approach.
In cases where Eq. (6.13) contains an infinite number of J terms, it is more efficient to use
the standard formula Eq. (6.1). An example of this is the renormalization of AWHle by AW 3

that we computed in Section 4.4. In that case, we have a non-minimal amplitude ÂW 3 that is
expanded into an infinite number of aJ coefficients. The RHS of Eq. (6.13) includes an infinite
sum over J corresponding to a logarithm. When summing the contributions from all channels,
the different logarithms cancel and we are only left with a term proportional to AWHle. This
cancellation is more easily observed if we directly use Eq. (6.1).

Self-renormalization of AB2H2

As an example of SMEFT renormalization with non-zero IR divergences, we consider the self-
renormalization of

AB2H2(1B− , 2B− , 3Hj , 4H†
i
) =

CB2H2

Λ2
⟨12⟩2 δji . (6.27)
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For concreteness, we focus on the terms proportional to g2, which only involve the s-channel.
From Eq. (6.1), the anomalous dimension gets contributions from a 2-cut involving the subam-
plitudes

AB2H2(1B− , 2B− ,−3′Hk ,−4′
H†

l

)×ASM(4
′
Hl , 3

′
H†

k

, 3Hj , 4H†
i
) . (6.28)

At one loop, the SM amplitude can only generate AB2H2 through the flavor structure δji δ
l
k,

which corresponds to SUL isospin I = 0. Thus, we only need to consider the I = 0 projection
of the amplitude,

AI=0
SM (4′H , 3

′
H† , 3H , 4H†) =

3

4
g22

(
1

2
+
u

t

)
. (6.29)

The relevant partial-wave coefficients for AB2H2 and AI=0
SM are listed in Table 6.1. Since AB2H2

only has a J = 0 component, its renormalization must involve the J = 0 partial wave of AI=0
SM .

Following Eq. (6.4), we rewrite Eq. (6.29) in polar coordinates and find that it is singular for
θ → 0. For this reason, we must consider the regularized partial-wave coefficients defined in
Eq. (6.20). The I = 0 projection of the soft operator is

T I=0
soft = −3

4
g22 . (6.30)

Substituting Eq. (6.29) and Eq. (6.30) into Eq. (6.20), the regularized coefficients are

aJ=0
SM |reg = −3g22/8 , aJ≥1SM |reg = 2HJT

I=0
soft , (6.31)

with HJ the J-th harmonic number. The anomalous dimension is given by Eq. (6.14) plus the
contributions from collinear IR divergences in Eq. (6.18),

γB2H2 = − 1

8π2
aJ=0
SM |reg CB2H2 + γcollCB2H2 . (6.32)

From [28, 29], the collinear coefficient is γcoll = 2γHcoll = −3g22/16π
2, so we finally obtain

γB2H2 = − 9

64π2
g22 CB2H2 . (6.33)

This result agrees with the self-renormalization of CB2H2 that was computed in [21].

Up to this point, we have focused on the SMEFT, but the partial-wave decomposition
approach is also helpful for other EFTs. To showcase the power of Eq. (6.13), we consider the
renormalization of theories with pions and gravitons.

6.2.2 Nonlinear sigma models

A nonlinear sigma model is a scalar field theory where the scalar field maps a Minkowski
spacetime into some nonlinear manifold. Within the context of low-energy QCD, these models
were first introduced in [117] to describe the dynamics of Goldstone bosons associated with
chiral symmetry breaking. The general framework for nonlinear sigma models was developed
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in [118, 119] by Callan, Coleman, Wess and Zumino. This formalism provides a systematic way
to construct Lagrangians for theories with spontaneous symmetry breaking.

We can also define the nonlinear sigma model from its interactions. In that sense, we define
it as an EFT of real scalars transforming under a given symmetry group, whose corresponding
scattering amplitudes satisfy Adler’s zero condition [120]. This means the amplitudes must
vanish in the soft limit, when some external momenta go to zero.

Here we consider the nonlinear sigma model with unbroken group SO(N), which is a theory of
scalars in the fundamental representation of SO(N). The coset associated with the spontaneous
symmetry breaking is SO(N+1)/SO(N). In general, it was proven in [74, 121] that one can
extract information about the coset structure from the double soft limit of the amplitudes.
This corresponds to taking two of the external momenta to zero simultaneously.

The nonlinear sigma model includes an infinite number of tree-level amplitudes that can be
classified in a power expansion of E/Λ. We focus on 4-point amplitudes with positive powers
of momenta, which automatically satisfy Adler’s zero condition. Starting at order E2/Λ2, these
amplitudes are obtained by imposing SO(N) invariance. After that, we can construct higher-
point interactions by requiring factorization. 4-point amplitudes can be considered “building
blocks” of the theory, in the sense that they satisfy Adler’s zero condition on their own. In con-
trast, higher-point amplitudes require additional contact interactions to satisfy that condition,
as was proved in [122–124]4.

We start by constructing the 4-point amplitudes that act as building blocks of the EFT.
Considering a theory with N scalars in the fundamental representation of SO(N), a general
4-point amplitude can be written as5

A(1i, 2j, 3k, 4l) = fs(t, u)δs + ft(u, s)δt + fu(s, t)δu , (6.34)

where fs,t,u denote generic functions of the Mandelstam variables s, t, u and i, j, k, l are flavor
indices for the scalars. We define the flavor SO(N) tensors as

δs = δijδkl , δt = δikδjl , δu = δilδjk . (6.35)

By imposing crossing invariance in Eq. (6.34), we find that fs,t,u must satisfy fs = ft = fu ≡
f , where f(t, u) is symmetric under t ↔ u. Therefore, the problem of finding all independent
amplitudes at order (E/Λ)w corresponds to finding all linearly independent functions f(t, u)
that are polynomials of degree w/2 in the momenta and are symmetric in t and u. A possible
basis for the f functions at order w is the following:

fwr(t, u) ≡ Pr

(
t− u

s

)
sw/2 (w = 2, 4, ...) , (6.36)

with Pr(x) the Legendre polynomial of degree r. The variable r takes values r = 0, 2, ..., w/2
if w/2 is even and r = 0, 2, ..., w/2 − 1 if it is odd. To justify that Eq. (6.36) forms a basis,

44-point amplitudes are not the only building blocks of the nonlinear sigma model. At order E6/Λ6 and
higher, there are n > 4-point amplitudes that satisfy Adler’s zero condition by themselves [123, 124]. We do
not consider those terms in our analysis.

5For SO(4) there is an additional term for the flavor structure ϵijkl, which we do not include here.

111



we consider the functions f̃wr(t, u) = tr/2u(w−r)/2 + t(w−r)/2ur/2 for the same range of r. f̃wr is
clearly a basis since it includes all polynomials of degree w/2 in t, u, and is symmetric under

those variables. We also see that f̃wr includes the same number of functions as fwr. Given that
the Legendre polynomials are linearly independent, we conclude that fwr also forms a basis.

Using the fwr functions, we can write a general expression for 4-point amplitudes in the
SO(N) nonlinear sigma model:

Awr(1
i, 2j, 3k, 4l) =

Cwr
Fw
π

[fwr(t, u)δs + fwr(u, s)δt + fwr(s, t)δu] , (6.37)

with Cwr the Wilson coefficients. The pion decay constant Fπ, which is defined by fixing
C20 = 1, plays the role of the Λ scale. Let us see some examples of amplitudes on this basis.
At O(E2), we only have

A20(1
i, 2j, 3k, 4l) =

1

F 2
π

(sδs + tδt + uδu) . (6.38)

At order O(E4), there are two amplitudes:

A40(1
i, 2j, 3k, 4l) =

C40

F 4
π

(
s2δs + t2δt + u2δu

)
,

A42(1
i, 2j, 3k, 4l) =

C42

2F 4
π

(
(t− u)2 − s2

)
δs + crossing .

(6.39)

It is convenient to rewrite Eq. (6.37) in the isospin flavor basis, namely

Awr =
2∑

I=0

AI
wr ∆I , (6.40)

where the flavor structures ∆I are

∆0 ≡
δs
N

, ∆1 ≡
1

2
(δt − δu) , ∆2 ≡

1

2

(
δt + δu −

2

N
δs

)
. (6.41)

For N = 3, AI
wr are amplitudes with definite isospin I. For a general N , AI

wr corresponds
to a specific flavor configuration for the initial and final states. In particular, I = 0, 1, 2 are the
singlet, antisymmetric and traceless symmetric configurations, respectively. The isospin flavor
tensors are orthogonal, satisfying

∑

i′j′

(∆I)iji′j′(∆I′)i′j′kl = δII′(∆I)ijkl . (6.42)

Once we have expanded the amplitude Awr in terms of isospin, we can apply Eq. (6.6) for
the partial-wave decomposition. We find

Awr =

(
s

F 2
π

)w/2∑

IJ

nJ PJ(cθ) a
IJ
wr ∆I , (6.43)
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where we have rewritten the Wigner d-functions in terms of Legendre polynomials, using
dJ00(θ) = PJ(cθ). The partial-wave coefficients aIJwr are obtained by inverting this expression,
leading to

aIJwr =
1

2

(
s

F 2
π

)−w/2 ∫ π

0

dθ sθ PJ(cθ) AI
wr . (6.44)

Substituting AI
wr from Eq. (6.37) and Eq. (6.40), we obtain

aIJwr = Cwr

(
2κJwr +

N

nJ
δ0I δrJ

)
, (6.45)

if the product I ·J is an even number, and aIJwr = 0 otherwise. The κJwr functions are defined as

κJwr ≡
(−1)w/2+J [(w/2)!]2

(w/2− J)!(w/2 + J + 1)!
4F3

(
−r, 1 + r,−1− J − w

2
, J − w

2
; 1,−w

2
,−w

2
; 1
)
, (6.46)

where 4F3 is a generalized hypergeometric function6. We can check that aIJwr = 0 for J > w/2,
so there is a finite number of partial waves contributing to the amplitude Awr.

After establishing the basis of 4-point amplitudes, the next step is to consider renormaliza-
tion. We denote by γwr the 1-loop anomalous dimensions of Awr. There are no IR divergences
in this case, so we can use Eq. (6.1). The computation of γwr involves a summation over all
relevant cuts involving subamplitudes AwLrL and AwRrR . For concreteness, the contribution
from each individual cut is ∆γwr(wR, rR, wL, rL), so the total anomalous dimension is

γwr =
∑

wR,rR,wL,rL

∆γwr(wR, rR, wL, rL) , (6.47)

where the summation is over all wR,L satisfying w = wR+wL, and all rR,L in the ranges specified
under Eq. (6.36). To simplify the notation, from now on we suppress the (wR, rR, wL, rL)
dependence on ∆γwr.

Performing the partial-wave decomposition of the amplitudes as in Eq. (6.13), we find

∑

r

∆γwr
Awr

Cwr
= −

(
s

F 2
π

)w/2∑

IJ

nJ∆I

16π2
aIJwLrL

aIJwRrR
PJ

(
t− u

s

)
+ (s↔ t) + (s↔ u) , (6.48)

where the first term corresponds to the s-channel and the other contributions can be obtained
by crossing. Since we are considering the isospin basis, the flavor structures ∆I also change
under crossing. The summation over r in the LHS of Eq. (6.48) appears because, in general,
a cut involving AwLrL and AwRrR contributes to the anomalous dimensions of all Awr with
w = wR + wL and any r.

6Alternatively, we can write κJwr =
∑r
k=0

(−1)w/2+J−k(r+k)![(w/2−k)!]2
[k!]2(r−k)!(w/2+J+1−k)!(w/2−J−k)! .
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Now we can solve for ∆γwr. Choosing the particle flavors so that δs = 1 and δt = δu = 0,
and then acting with

∫ π
0
dθsθ Pr(cθ) on both sides of Eq. (6.48), we obtain

∆γwr = −CwLrLCwRrR

16π2

(
N

nr
δrLrδrRr + 2δrLrκ

r
wRrR

+ 2δrRr κ
r
wLrL

+ 4
min(

wL
2
,
wR
2

)∑

J=0

nJnrκ
J
wLrL

κJwRrR
κrwJ

)
,

(6.49)

where nr = 2r+1. Notice that the only N -dependent contribution arises from renormalizations
with rL = rR = r. This greatly simplifies the calculation of the anomalous dimension in the
large-N limit.

Let us see some examples of the computation of γwr. For the two O(E4) amplitudes in
Eq. (6.39), the only possible renormalization involves the O(E2) subamplitude in Eq. (6.38).
Substituting wR = wL = 2 and rR = rL = 0 in Eq. (6.49), the total anomalous dimensions are

γ40 =
17
9
−N

16π2
, γ42 = − 1

72π2
. (6.50)

At the next order, there are two O(E6) amplitudes: A60 and A62. Their renormalization
involves one subamplitude at O(E4) and the other at O(E2). We must consider two different
cuts: one with wL = 2, wR = 4, rL = 0, rR = 0, 2 and the other one with wL = 4, wR = 2,
rL = 0, 2, rR = 0. Summing all the contributions yields

γ60 = C40

11
36

−N

8π2
− C42

325

288π2
,

γ62 = −C40
5

288π2
− C42

65

288π2
.

(6.51)

We can compare these results to previous calculations in chiral perturbation theory. For
N = 3, the nonlinear sigma model coset satisfies SO(4)/SO(3) ∼ SU(2) × SU(2)/SU(2), so we
can use the ππ scattering analysis in [125]. Indeed, rewriting their pion amplitudes in our basis
Eq. (6.37), the obtained anomalous dimensions agree with our computation.

It is interesting to relate our amplitude analysis of the SO(N) nonlinear sigma model with
the Lagrangian description. As discussed in [123, 124], the SO(N+1)-invariant operators of
the theory can be expanded in the number of fields, leading to a series of contact interactions.
These interactions are equivalent to a set of amplitudes that satisfy Adler’s zero condition.
Indeed, there is a direct correspondence between our 4-point amplitudes Awr and some contact
operators in the Lagrangian approach. Thus, our renormalization results for the amplitudes
are equivalent to the anomalous dimension matrix for the corresponding operators.
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6.2.3 Gravity

As a final application, we consider Eq. (6.13) in the context of general EFTs for spin-2 particles
(gravitons). On-shell methods are especially convenient for these theories, as they greatly
simplify the lengthy calculations from the Lagrangian approach. We start by determining the
graviton contact amplitudes, which can be classified in a E/Λ expansion. As explained in
Section 1.1.3, there are two possible 3-point amplitudes. At order O(E2), we have

AGR(1−−, 2−−, 3++) =
1

MP

(
⟨12⟩3

⟨13⟩ ⟨23⟩

)2

, (6.52)

where the Planck mass MP plays the role of the Λ scale. This amplitude corresponds to the
theory of General Relativity (GR) and can be used to construct higher-point interactions. For
example, the tree-level 4-point amplitude in GR is given by

AGR+− ≡ AGR(1++, 2++, 3−−, 4−−) =
1

M2
P

[12]4 ⟨34⟩4
stu

. (6.53)

This amplitude is obtained by requiring the right little group weights and factorization into a
product of 3-point subamplitudes AGR. Beyond tree level, a different 4-point GR amplitude
can be generated at one loop. As shown in [126], it corresponds to

AGR−− ≡ AGR(1−−, 2−−, 3−−, 4−−) =
⟨12⟩4 ⟨34⟩4
16π2M4

P

r

s2
+crossing =

rT 2

16π2M4
P

(s2+t2+u2) , (6.54)

where r = (NF −NB)/240 and NF,B counts the number of fermions and bosons inside the loop.

We have also defined the kinematic factor T ≡ ⟨12⟩⟨34⟩
[12][34]

.

In addition to Eq. (6.52), we can consider higher-order contact amplitudes, which are as-
sociated with modified theories of gravity. At order O(E6), we have the following 3-point
interaction:

AR3(1−−, 2−−, 3−−) =
CR3

M5
P

⟨12⟩2 ⟨23⟩2 ⟨31⟩2 , (6.55)

with CR3 a massless constant. This term arises from a higher-dimension operator cubic in the
Riemann tensor. Moreover, we must consider contact amplitudes for the scattering of n > 3
particles. For instance, there are two 4-point amplitudes at order O(E8), namely

AR4(1−−, 2−−, 3−−, 4−−) =
CR4

M8
P

⟨12⟩4 ⟨34⟩4 + crossing =
CR4T 2

M8
P

(s4 + t4 + u4) , (6.56)

A′R4(1−−, 2−−, 3++, 4++) =
C ′R4

M8
P

⟨12⟩4 [34]4 . (6.57)

Let us see some examples of the calculation of anomalous dimensions for graviton amplitudes
via Eq. (6.13). First, we consider the renormalization of the non-minimal 4-point amplitude

ÂR3(1−−, 2−−, 3−−, 4−−) =
CR3

M6
P

T 2stu , (6.58)
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J = 0 J = 2 J = 4

AGR+− 0 −6 −25
3

AGR−−
5
3

1
15

0 × r
16π2

ÂR3
1
6

− 1
30

0 ×CR3

AR4
7
5

4
35

1
315

×CR4

Table 6.2: Partial-wave coefficients aJ in the s-channel for the different 4-graviton amplitudes
defined in the text. For the GR amplitude AGR+− , we include the regularized coefficients aJ |reg
up to J = 4.

which includes the contact amplitude AR3 in Eq. (6.55). One can check that none of the 3-

point or 4-point graviton amplitudes can renormalize ÂR3 at one loop. As stated in [126], the
leading contribution arises at two loops. The formula Eq. (6.13), which was derived for 1-loop
mixings, is also valid in this case7. The anomalous dimension γR3 is given by a 2-cut involving
the tree-level amplitude AGR+− in Eq. (6.53) and the 1-loop amplitude AGR−− in Eq. (6.54).
Since there are IR divergences, we must consider the regularized partial-wave coefficients as
explained in Section 6.1.4. Overall, Eq. (6.13) can be written as8

γR3ÂR3 = −CR3

8π2

(
s

M2
P

)3∑

J

nJ a
J
GR−−a

J
GR+−|reg PJ

(
t− u

s

)
+ crossing , (6.59)

where aJGR+−|reg are the regularized coefficients in Eq. (6.20). The soft operator is Tsoft =

−2s/M2
P and we must replace

∫
s−2θ/2 → 2

∫
s−2θ because the internal particles are identical.

From Eq. (6.53), this coefficient is given by

aJGR+−|reg = −4HJ , (6.60)

with HJ the J-th harmonic number. The partial-wave coefficients aJGR−− and aJGR+−|reg for
various values of J are listed in Table 6.2. We see that they are only simultaneously non-zero
for J = 2, so the anomalous dimension is

γR3ÂR3 =
CR3

4π2

r

16π2

s3

M6
P

P2

(
t− u

s

)
+ crossing . (6.61)

The RHS of this expression must be proportional ÂR3 when we sum over the different
channels. However, it is more convenient to project both sides of Eq. (6.61) into a specific
kinematic configuration such as t = u = −s/2. Then, we find that the anomalous dimension is

γR3 =
r

16π4

(
P2(0)−

1

4
P2(3)

)
= − 60r

(4π)4
. (6.62)

7One can re-derive Eq. (6.13) for this particular 2-loop mixing. The starting point is Eq. (3.33) for the 2-loop
renormalization of form factors, which reduces to Eq. (6.1) in the limit Q → 0.

8Note that there are two identical contributions corresponding to different helicity choices for the internal
gravitons. This is compensated by the 1/2 symmetrical factor for cutting identical particles.
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This result agrees with the previous calculation in [126]. The use of partial waves allows us
to understand the momentum dependence in Eq. (6.61), which is determined by the fact that
only J = 2 states contribute to γR3 .

We can proceed in a similar manner to compute the anomalous dimension of CR4 . In that
case, we must consider the 2-cut involving the tree-level amplitudes ÂR3 and AGR−− . Again,
the renormalization only involves the J = 2 partial waves, so we can write

γR4AR4 = −CR4

5

8π2

(
s

M2
P

)4

aJ=2
R̂3 aJ=2

GR+−|reg P2

(
t− u

s

)
+ crossing . (6.63)

Using the partial-wave coefficients in Table 6.2, we find

γR4 = −CR3

8π2
. (6.64)

Finally, the anomalous dimension of C ′R4 is γ′R4 = 0 because A′R4 is not renormalized by
other amplitudes at one loop.

6.3 Conclusions of the chapter

In this chapter, we have employed angular momentum analysis to study the renormalization
of several EFTs. By performing a partial-wave decomposition of scattering amplitudes, we
have shown that the anomalous dimensions can be expressed as a sum of products of partial-
wave coefficients (see Eq. (6.13)). This sum is finite for mixings involving contact interactions,
making the calculation remarkably simple. Our results are naturally extended to include IR
divergences, provided that the partial-wave coefficients are regularized as shown in Eq. (6.20).

The use of partial-wave decomposition provides valuable insights into the structure of the
anomalous dimension matrix. Some renormalizations only happen through specific angular
momenta J , which leads to selection rules such as those in [81]. Moreover, mixings that appear
very different at the level of Feynman diagrams may turn out to be quite similar if they involve
the same partial-wave coefficients aJ .

We have presented applications of our formula for different EFTs:

� SMEFT: We have observed that only one SM partial wave is involved in mixings between
1/Λ2 amplitudes with equal n, h and different nF . We have seen this explicitly for AWHle,
Alequ,1 and AW 2H2 .

� SO(N) nonlinear sigma model: We have obtained a general expression for the anomalous
dimensions of 4-point amplitudes at all orders in E/Λ.

� EFT of gravity: We have considered the renormalization ofAR3 , AR4 andA′R4 , which arise
in modified theories of gravity. Compared to previous calculations [126], the simplicity of
the on-shell approach is unmatched.
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Beyond angular momentum, decomposing amplitudes according to other conserved quan-
tum numbers can provide additional insights. We have explored this for the case of isospin,
both within the SMEFT and nonlinear sigma models. The isospin decomposition introduces
additional selection rules because the subamplitudes AL,R in Eq. (6.1) must have the same
isospin as the renormalized amplitude AOi

.
A possible extension of this work would be to generalize Eq. (6.13) to include higher-point

amplitudes and higher loop orders. There are no fundamental obstacles to do this, given that
our derivation relies on angular momentum conservation and the expression of γi in terms of
unitarity cuts.

In summary, the angular momentum analysis presented here provides an efficient tool to
study the 1-loop renormalization of EFTs. Thanks to the partial-wave decomposition of am-
plitudes, we can reveal underlying symmetries that govern operator mixing. This method
simplifies practical calculations and offers a deeper perspective on the universal properties of
anomalous dimensions.
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Appendix A

Conventions and notation

A.1 Spinor-helicity variables

In this appendix we present our conventions for spinor-helicity variables. We mainly follow
[127]. Given a massless particle with momentum pµ, we define the associated spinors |p⟩α and
|p]α̇, namely “angle” and “square” spinors. |p⟩α is a left-handed two-component spinor, which
transforms under the (1

2
, 0) representation of the Lorentz group. |p]α̇ is a right-handed two-

component spinor that transforms under (0, 1
2
). The momenta written in terms of these spinors

are
pαα̇ = |p⟩α[p|α̇ , (A.1)

which is a two-by-two matrix given by

pαα̇ = pµσ
µ
αα̇ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
. (A.2)

An object like pαα̇, with dotted and undotted spinor indices αα̇, is known as a bi-spinor. The
sigma matrix σµαα̇ = (I, σ⃗) is made from the 2×2 identity matrix I and the three Pauli matrices
σ⃗ = (σ1, σ2, σ3), with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.3)

Similarly, we define σ̄µ,α̇α = (I,−σ⃗). The 2 × 2 sigma matrices are related to the Weyl
representation of the 4× 4 gamma matrices as follows,

γµ =

(
0 σµαα̇

σ̄µ,α̇α 0

)
. (A.4)

The spinor indices of |p⟩ and |p] can be raised and lowered with the antisymmetric tensor
ϵ, whose non-vanishing components are

ϵ12 = −ϵ21 = ϵ21 = −ϵ12 = 1 . (A.5)
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Spinors with raised and lowered indices are related by

|p⟩α = ϵαβ⟨p|β, ⟨p|α = ϵαβ|p⟩β, [p|α̇ = ϵα̇β̇|p]β̇, |p]α̇ = ϵα̇β̇[p|β̇ . (A.6)

Note that ⟨p|α is a left-handed spinor and transforms under (1
2
, 0), just like |p⟩α. In an analogous

way, |p]α̇ is a right-handed spinor that transforms under (0, 1
2
). We can combine spinor products

to make objects that transform like Lorentz scalars, vectors and tensors. This is done through
the contraction of spinor indices. We choose to contract descending undotted indices α

α and
ascending dotted indices α̇

α̇. For example, the contraction of two spinors is given by

⟨pq⟩ ≡ ⟨p|α|q⟩α and [pq] ≡ [p|α̇|q]α̇ , (A.7)

that we call respectively “angle” and “square” brackets. These are the main building blocks of
on-shell scattering amplitudes. We can also contract spinors with the sigma matrices σµαα̇ and
σ̄µ,α̇α,

⟨i|σµ|j] ≡ ⟨i|ασµαα̇|j]α̇ and [i|σ̄µ|j⟩ ≡
[
i|α̇σ̄µ,α̇α|j

〉
α
. (A.8)

Let us list a few properties of the spinor-helicity variables:

� Spinor products are totally antisymmetric, ⟨ij⟩ = −⟨ji⟩ and [ij] = − [ji]. In particular
this implies that [ii] = ⟨ii⟩ = 0.

� Schouten identity: since spinors have two components, one can write any spinor |i⟩ as a
linear combination of two linearly independent spinors |j⟩ and |k⟩ [14]. Then we have

|i⟩ = A|j⟩+B|k⟩ . (A.9)

The coefficients A and B can be obtained by contracting |i⟩ with both ⟨j| and ⟨k|. We
find that A = ⟨ki⟩ / ⟨kj⟩ and B = ⟨ji⟩ / ⟨jk⟩. Substituting the values of A and B into
Eq. (A.9) and contracting |i⟩ with a generic spinor ⟨l|, we find

⟨ij⟩ ⟨kl⟩+ ⟨il⟩ ⟨jk⟩+ ⟨ik⟩ ⟨lj⟩ = 0 , (A.10)

which is known as the Schouten identity.

� Fierz identities: given the definition of the sigma matrices, one can check the following
relations

σµαα̇σ̄
β̇β
µ = 2δβαδ

β̇
α̇ , σµαα̇σµββ̇ = 2ϵαβϵα̇β̇ , σ̄µα̇ασµββ̇ = 2ϵαβϵα̇β̇ . (A.11)

They can be used to derive the so-called Fierz identities, namely

⟨i|σµ|j] ⟨k|σµ|l] = −2 ⟨ik⟩ [jl] , (A.12)

[i|σ̄µ|j⟩ [k|σ̄µ|l⟩ = −2 [ik] ⟨jl⟩ , (A.13)

⟨i|σµ|j] [k|σ̄µ|l⟩ = −2 ⟨il⟩ [jk] . (A.14)

From these identities, we obtain the expression for the Mandelstam variables sij in terms
of spinor products,

sij ≡ (pi + pj)
2 = 2pi · pj = ⟨ij⟩ [ji] . (A.15)
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In general there is a one-to-one correspondence between any four-vector V µ and the associ-
ated bi-spinor Vαα̇,

Vαα̇ = Vµσ
µ
αα̇ , Vµ =

1

2
σ̄µ,α̇αVαα̇ . (A.16)

Using these expressions for the momenta bi-spinor pαα̇ = |p⟩α[p|α̇, the four-momentum pµ

can be written as

pµi =
1

2
[i|σ̄µ|i⟩ . (A.17)

A.2 Two-component spinor notation

The framework of on-shell amplitudes, which involves particles of well-defined helicity, is not
suited for the four-component spinor notation. Instead of four-component Dirac spinors, it
is more natural to use two-component Weyl spinors, since they transform as irreducible rep-
resentations of the Lorentz group. Once we know the expression of an operator in terms of
two-component spinors, it is straightforward to compute the associated contact on-shell ampli-
tude. Therefore, we must know how to relate Lagrangian operators written in terms of Dirac
and Weyl spinors. A generic Dirac spinor ψ can be written in terms of Weyl spinors as

ψ =

(
ψL,α

ψ α̇
R

)
, (A.18)

with ψL,α a left-handed two-component spinor and ψ α̇
R a right-handed one. The adjoint Dirac

spinor ψ̄ is then

ψ̄ = ψ†γ0 =
(
ψ̄L,α̇, ψ̄

α
R

)
(
0 I
I 0

)
=
(
ψ̄ α
R , ψ̄L,α̇

)
, (A.19)

where now ψ̄L,α̇ is a right-handed Weyl spinor and ψ̄ α
R is a left-handed one. We denote the

complex-conjugate of a Weyl spinor as ψ̄L,R ≡ ψ†L,R.
Dirac spinors can be used together with the gamma matrices γµ to build objects with a well-

defined Lorentz structure. These are the so-called covariant bilinears, which have the following
expressions in terms of both Dirac and Weyl spinors

Scalar : ψ̄ψ = ψ̄ α
R ψL,α + ψ̄L,α̇ψ

α̇
R ,

Pseudoscalar : ψ̄γ5ψ = −ψ̄ α
R ψL,α + ψ̄L,α̇ψ

α̇
R ,

Vector : ψ̄γµψ = ψ̄ α
R σ

µ
αα̇ψ

α̇
R + ψ̄L,α̇σ̄

µ,α̇αψL,α ,

Axial Vector : ψ̄γµγ5ψ = ψ̄ α
R σ

µ
αα̇ψ

α̇
R − ψ̄L,α̇σ̄

µ,α̇αψL,α ,

Tensor : ψ̄σ̃µνψ = ψ̄ α
R (σµν)βαψL,β + ψ̄L,α̇(σ̄

µν)α̇
β̇
ψ β̇
R ,

where we have written γµ in terms of σµ as in Eq. (A.4). The pseudoscalar and axial vector
terms involve the matrix γ5 = iγ0γ1γ2γ3, which has the form

γ5 =

(
−I 0

0 I

)
, (A.20)
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since we are using the Weyl representation of the gamma matrices. Finally, the tensor bilinear
contains the gamma matrix commutator

σ̃µν =
i

2
[γµ, γν ] =

(
(σµν)βα 0

0 (σ̄µν)α̇
β̇

)
, (A.21)

where σµν and σ̄µν are 2× 2 matrices given by

(σµν)βα ≡ i

2

(
σµαγ̇σ̄

νγ̇β − σναγ̇σ̄
µγ̇β
)
, (A.22)

(σ̄µν)α̇
β̇

≡ i

2

(
σ̄µα̇γσν

γβ̇
− σ̄να̇γσµ

γβ̇

)
. (A.23)

Interaction Lagrangians with fermion fields contain some combination of the covariant bilin-
ears, plus potentially scalar and vector fields. If we are using two-component spinor notation,
any vector boson V µ can be related to a bi-spinor Vαα̇, as given by Eq. (A.16).

A.3 On-shell amplitudes

We consider amplitudes with all states massless and incoming. Outgoing states are related to
incoming states with opposite momentum and helicity, interchanging particle ↔ antiparticle.
The wave functions for fermions are given by

u∓(p) = P∓

(
|p⟩α
|p]α̇

)
, v̄∓(p) =

(
⟨p|α [p|α̇

)
P∓ , (A.24)

respectively for incoming fermions and antifermions of helicity h = ∓1/2 and momentum pµ,
with P∓ = (1 ± γ5)/2. The polarization vectors of gauge bosons can be written in terms of
spinor-helicity variables, namely

ϵ+µ =
⟨q|σµ|p]√
2 ⟨qp⟩

, ϵ−µ = −⟨p|σµ|q]√
2[qp]

, (A.25)

for an incoming gauge boson of momentum pµ and helicity h = ±1. We have introduced an
arbitrary reference momentum q ̸= p [13].

Following the conventions in [5], spinors with negative momenta can be related to spinors
with positive momenta as follows

|−p⟩α = i |p⟩α , | − p]α̇ = i|p]α̇ , (A.26)

which of course leads to |−p⟩ [−p| = −p. This convention fixes the factorization of amplitudes
that we explained in Section 1.3.2. For instance, if we have a 4-point amplitude with a pole in
the s-channel (see Figure A.1), it factorizes as

lim
s12→0

s12A(1, 2, 3, 4) = iF [ℓ] iAL(1, 2, ℓ) iAR(−ℓ, 3, 4) , (A.27)
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Figure A.1: Diagram of the factorization of a 4-point amplitude A(1, 2, 3, 4) with a pole in the
s-channel into two 3-point subamplitudes.

where ℓ = p3 + p4 and F [i1...in] counts the number of fermions or antifermions in the list
{i1, ..., in}. Similarly, we can write down the factorization of the amplitude in other channels.
If there is a pole in the t-channel, we have

lim
s13→0

s13A(1, 2, 3, 4) = iF [ℓ](−1)n23 iAL(1, 3, ℓ) iAR(−ℓ, 2, 4) . (A.28)

where n23 = 1 if both particles 2 and 3 are fermions or antifermions, and n23 = 0 otherwise. The
factor (−1)n23 adds a negative sign for fermion exchanges, since we have reordered the particles
in the RHS of the expression. We can proceed in the same manner for the factorization in the
u-channel.

Let us now focus on the factor iF [ℓ] in Eq. (A.27). When we consider the factorization of an
amplitude with an internal fermion, one of the subamplitudes includes a factor u∓(ℓ) whereas
the other one includes v̄±(−ℓ). Summing over the possible helicities of the internal fermion
leads to

u+(ℓ)v̄−(−ℓ) + u−(ℓ)v̄+(−ℓ) = i
∑

h

uh(ℓ)ūh(ℓ) = i/ℓ , (A.29)

where we have used the Dirac slash notation /ℓ = ℓµγµ, with γµ the gamma matrices. Factor-
ization gives rise to an extra i compared to the original amplitude, where there is only a factor
/ℓ from the fermion propagator. This is compensated with the additional i in iF [ℓ] when ℓ is
a fermion1. For the factorization of amplitudes with an internal vector boson, we obtain the
following sum over polarizations

ϵ+µ (ℓ)ϵ
−
ν (−ℓ) + ϵ−µ (ℓ)ϵ

+
ν (−ℓ) =

∑

h

ϵhµ(ℓ)(ϵ
h
ν(ℓ))

∗ . (A.30)

This is precisely the sum over vector polarizations in the propagator of the full amplitude, so
there is no need for an additional i factor.

Notice that in Eq. (A.27) the sign of the internal momenta is fixed as shown in Figure

A.1. If the momenta has the opposite sign, the factor iF [ℓ] must be replaced by (−i)F [ℓ], so the
amplitude factorization is given by

lim
s12→0

s12A(1, 2, 3, 4) = (−i)F [ℓ] iAL(1, 2,−ℓ) iAR(ℓ, 3, 4) . (A.31)

1In principle we have i2 = −1, but there is an extra minus sign coming from our choice of fermion ordering
in Eq. (A.27).
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This can be easily understood with an explicit example. Let us consider the 4-point ampli-
tude A(1e, 2H† , 3ē, 4H) in a Yukawa theory Ly = −yeH†el+h.c., where e and l are Weyl spinors
of helicity h = −1/2¡. Using Eq. (A.27) and the method of amplitude factorization in Section
1.3.2, the full amplitude can be written as a product of two 3-point subamplitudes,

A(1e, 2H† , 3ē, 4H) =
i

s12
iAL(1e, 2H† , ℓ) iAR(−ℓ, 3ē, 4H) , (A.32)

where ℓ = p3 + p4. Writing the subamplitudes in terms of spinor-helicity variables, we obtain

A(1e, 2H† , 3ē, 4H) = −iy
2
e ⟨1ℓ⟩ [−ℓ3]

s12
= −i

2y2e ⟨1ℓ⟩ [ℓ3]
s12

= y2e
⟨14⟩
⟨34⟩ . (A.33)

On the contrary, if we define the internal momentum with an opposite sign, ℓ = −(p3+ p4),

we must use the factor (−i)F [ℓ] to obtain the same result,

A(1e, 2H† , 3ē, 4H) =
(−i)
s12

iAL(1e, 2H† ,−ℓ) iAR(ℓ, 3ē, 4H)

=
iy2e ⟨1−ℓ⟩ [ℓ3]

s12
=
i2y2e ⟨1ℓ⟩ [ℓ3]

s12
= y2e

⟨14⟩
⟨34⟩ .

(A.34)

Finally, our convention Eq. (A.26) for negative momentum spinors also fixes the expression
for unitary cuts of loop amplitudes (see Section 3.2.2). Similarly to Eq. (A.27), we must add
a factor i for each internal fermion line that goes on shell. For example, the 2-cut of the loop
amplitude in Figure A.2 is given by

A(1, 2, ..., i, i+1, ..., n) →
∫
dLIPS iF [ℓ1,ℓ2]AL(1, 2, ..., i, ℓ1, ℓ2)AR(−ℓ2,−ℓ1, i+1, ..., n) , (A.35)

where the states in the RHS of the equation are ordered following the red dotted line in Figure
A.2. This expression can be easily generalized for n > 2 unitary cuts.

Figure A.2: Diagram of the 2-cut of a loop amplitude A(1, 2, ..., i, i + 1, ..., n). The red dotted
line indicates our choice of fermion ordering in Eq. (A.35).
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Appendix B

SMEFT dimension-six operators

The SMEFT includes 59 independent dimension-six operators made from the SM fields and
consistent with the SM gauge symmetries. These operators are associated with contact on-shell
amplitudes of order 1/Λ2, belonging to the classes that we listed in Section 2.2.1. To compare
our results for the anomalous dimension matrix with the previous literature, we must know the
correspondence between dimension-six operators and 1/Λ2 on-shell amplitudes.

Here we consider the Warsaw basis [65], which is one of the most commonly used SMEFT
bases. We will write down the different operators Oi in terms of Dirac spinors, classified
according to their particle content. Then we will compute the contact on-shell amplitudes
originated by each operator. In some cases there will be two possible amplitudes for an operator,
corresponding to different helicity choices.

For a slightly different 1/Λ2 SMEFT amplitude basis, see [56].

B.1 Vector boson operators: V 3

OG : fabcGµ,a
ν Gν,b

ρ G
ρ,c
µ

A(1Ga
− , 2Gb

−
, 3Gc

−) = i(3!/
√
2) ⟨12⟩ ⟨23⟩ ⟨31⟩ fabc

A(1Ga
+
, 2Gb

+
, 3Gc

+
) = −i(3!/

√
2) [12] [23] [31] fabc

OG̃ : fabcG̃µ,a
ν G̃nu,b

ρ G̃ρ,c
µ

A(1Ga
− , 2Gb

−
, 3Gc

−) = −(3!/
√
2) ⟨12⟩ ⟨23⟩ ⟨31⟩ fabc

A(1Ga
+
, 2Gb

+
, 3Gc

+
) = −(3!/

√
2) [12] [23] [31] fabc

OW : ϵabcW a,µ
ν W b,ν

ρ W c,ρ
µ

A(1Wa
− , 2W b

−
, 3W c

−) = i(3!/
√
2) ⟨12⟩ ⟨23⟩ ⟨31⟩ ϵabc

A(1Wa
+
, 2W b

+
, 3W c

+
) = −i(3!/

√
2) [12] [23] [31] ϵabc

OW̃ : ϵabcW̃ a,µ
ν W̃ b,ν

ρ W̃ c,ρ
µ

A(1Wa
− , 2W b

−
, 3W c

−) = −(3!/
√
2) ⟨12⟩ ⟨23⟩ ⟨31⟩ ϵabc

A(1Wa
+
, 2W b

+
, 3W c

+
) = −(3!/

√
2) [12] [23] [31] ϵabc

Where the dual field-strength tensor is defined as G̃µν = ϵµντδGτδ, with ϵµντδ the totally an-
tisymmetric Levi-Civita tensor. The SU(3)c and SU(2)L structure constants are, respectively,
fabc and ϵabc.
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B.2 Scalar operators: H6 and H4

OH : |H|6 A(1Hi , 2Hj , 3Hk , 4H†
l
, 5H†

m
, 6H†

n
) = T ijk

lmn

O□H : |H|2□|H|2 A(1Hi , 2Hj , 3H†
k
, 4H†

l
) = −2δikδ

j
l s13 − 2δilδ

j
ks14

ODH : (H†DµH)∗(H†DµH) A(1Hi , 2Hj , 3H†
k
, 4H†

l
) = δikδ

j
l s14 + δilδ

j
ks13

Where we have defined the fully symmetric tensor T ijk
lmn = δilδ

j
mδ

k
n+ δ

i
lδ
j
mδ

k
n+ δ

i
lδ
j
mδ

k
n+ i↔ j.

B.3 Scalar - vector boson operators: H2V 2

OHG : |H|2 Ga
µνG

a,µν
A(1Ga

− , 2Gb
−
, 3Hi , 4H†

j
) = −2 ⟨12⟩2 δabδij

A(1Ga
+
, 2Gb

+
, 3Hi , 4H†

j
) = −2 [12]2 δabδij

OHG̃ : |H|2 G̃a
µνG

a,µν
A(1Ga

− , 2Gb
−
, 3Hi , 4H†

j
) = −2i ⟨12⟩2 δabδij

A(1Ga
+
, 2Gb

+
, 3Hi , 4H†

j
) = 2i [12]2 δabδij

OHW : |H|2 W a
µνW

a,µν
A(1Wa

− , 2W b
−
, 3Hi , 4H†

j
) = −2 ⟨12⟩2 δabδij

A(1Wa
+
, 2W b

+
, 3Hi , 4H†

j
) = −2 [12]2 δabδij

OHW̃ : |H|2 W̃ a
µνW

a,µν
A(1Wa

− , 2W b
−
, 3Hi , 4H†

j
) = −2i ⟨12⟩2 δabδij

A(1Wa
+
, 2W b

+
, 3Hi , 4H†

j
) = 2i [12]2 δabδij

OHB : |H|2 BµνB
µν

A(1B− , 2B− , 3Hi , 4H†
j
) = −2 ⟨12⟩2 δij

A(1B+ , 2B+ , 3Hi , 4H†
j
) = −2 [12]2 δij

OHB̃ : |H|2 B̃µνB
µν

A(1B− , 2B− , 3Hi , 4H†
j
) = −2i ⟨12⟩2 δij

A(1B+ , 2B+ , 3Hi , 4H†
j
) = 2i [12]2 δij

OHWB : (H†σaH) W a
µνB

µν
A(1Wa

− , 2B− , 3Hi , 4H†
j
) = −⟨12⟩2 (σa)ij

A(1Wa
+
, 2B+ , 3Hi , 4H†

j
) = − [12]2 (σa)ij

OHW̃B : (H†σaH) W̃ a
µνB

µν
A(1Wa

− , 2B− , 3Hi , 4H†
j
) = −i ⟨12⟩2 (σa)ij

A(1Wa
+
, 2B+ , 3Hi , 4H†

j
) = i [12]2 (σa)ij
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B.4 Dipole operators: V ψ2H

OeW : (L̄Lσ
µνeR)σ

aHW a
µν + h.c.

A(1e, 2li , 3Wa
− , 4H†

j
) = 2

√
2 ⟨31⟩ ⟨32⟩ (σa)ij

A(1ē, 2l̄i , 3Wa
+
, 4Hj) = 2

√
2 [31] [32] (σa)ji

OeB : (L̄Lσ
µνeR)HBµν + h.c.

A(1e, 2li , 3B− , 4H†
j
) = 2

√
2 ⟨31⟩ ⟨32⟩ δij

A(1ē, 2l̄i , 3B+ , 4Hj) = 2
√
2 [31] [32] δji

OuG : (Q̄Lσ
µνλauR)H̃G

a
µν + h.c.

A(1uA , 2qiB , 3G
a
− , 4Hj) = 2

√
2 ⟨31⟩ ⟨32⟩ ϵjiλaBA

A(1ūA , 2q̄i,B , 3Ga
+
, 4H†

j
) = 2

√
2 [31] [32] ϵjiλ

a
BA

OuW : (Q̄Lσ
µνuR)σ

aH̃W a
µν + h.c.

A(1uA , 2qiB , 3W
a
− , 4Hj) = 2

√
2 ⟨31⟩ ⟨32⟩ ϵjk(σa)ikδAB

A(1ūA , 2q̄i,B , 3Wa
+
, 4H†

j
) = 2

√
2 [31] [32] ϵjk(σ

a)ki δAB

OuB : (Q̄Lσ
µνuR)H̃Bµν + h.c.

A(1uA , 2qiB , 3B− , 4Hj) = 2
√
2 ⟨31⟩ ⟨32⟩ ϵjiδAB

A(1ūA , 2q̄i,B , 3B+ , 4H†
j
) = 2

√
2 [31] [32] ϵjiδAB

OdG : (Q̄Lσ
µνλadR)HG

a
µν + h.c.

A(1dA , 2qiB , 3G
a
− , 4H†

j
) = 2

√
2 ⟨31⟩ ⟨32⟩ δjiλaBA

A(1d̄A , 2q̄i,B , 3Ga
+
, 4Hj) = 2

√
2 [31] [32] δjiλ

a
BA

OdW : (Q̄Lσ
µνdR)σ

aHW a
µν + h.c.

A(1dA , 2qiB , 3W
a
− , 4H†

j
) = 2

√
2 ⟨31⟩ ⟨32⟩ (σa)ijδAB

A(1d̄A , 2q̄i,B , 3Wa
+
, 4Hj) = 2

√
2 [31] [32] (σa)jiδAB

OdB : (Q̄Lσ
µνdR)HBµν + h.c.

A(1dA , 2qiB , 3B− , 4H†
j
) = 2

√
2 ⟨31⟩ ⟨32⟩ δijδAB

A(1d̄A , 2q̄i,B , 3B+ , 4Hj) = 2
√
2 [31] [32] δji δAB

B.5 Scalar - fermion operators

B.5.1 H3ψ2

OeH : H†ēRLL|H|2 + h.c.
A(1e, 2li , 3H†

j
, 4Hk , 5H†

l
) = −⟨12⟩ T ik

jl

A(1ē, 2l̄i , 3Hj , 4H†
k
, 5Hl) = − [12] T jl

ik

OuH : H̃†ūRQL|H|2 + h.c.
A(1uA , 2qiB , 3Hj , 4Hk , 5H†

l
) = −⟨12⟩ ϵinT jk

nl δAB

A(1ūA , 2q̄i,B , 3H†
j
, 4H†

k
, 5Hl) = − [12] ϵinT nl

jk δAB

OdH : H†d̄RQL|H|2 + h.c.
A(1dA , 2qiB , 3H†

j
, 4Hk , 5H†

l
) = −⟨12⟩ T ik

jl δAB

A(1d̄A , 2q̄i,B , 3Hj , 4H†
k
, 5Hl) = − [12] T jl

ik δAB

With T ik
jl = δijδ

k
l + δilδ

k
j .
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B.5.2 H2ψ2

OHL1 : (H
†i
←→
DµH)(L̄Lγ

µLL) + h.c. A(1li , 2l̄j , 3Hk , 4H†
l
) = 2 ⟨13⟩ [32] δijδkl

OHL3 : (H
†i
←→
Da
µH)(L̄Lσ

aγµLL) + h.c. A(1li , 2l̄j , 3Hk , 4H†
l
) = 2 ⟨13⟩ [32] (σa)ij(σa)kl

OHe : (H
†i
←→
DµH)(ēRγ

µeR) + h.c. A(1e, 2ē, 3Hi , 4H†
j
) = 2 ⟨13⟩ [32] δij

OHQ1 : (H
†i
←→
DµH)(Q̄Lγ

µQL) + h.c. A(1qiA , 2q̄j,B , 3Hk , 4H†
l
) = 2 ⟨13⟩ [32] δijδkl δAB

OHQ3 : (H
†i
←→
Da
µH)(Q̄Lσ

aγµQL) + h.c. A(1qiA , 2q̄j,B , 3Hk , 4H†
l
) = 2 ⟨13⟩ [32] (σa)ij(σa)kl δAB

OHu : (H
†i
←→
DµH)(ūRγ

µuR) + h.c. A(1uA , 2ūB , 3Hi , 4H†
j
) = 2 ⟨13⟩ [32] δijδAB

OHd : (H
†i
←→
DµH)(d̄Rγ

µdR) + h.c. A(1dA , 2d̄B , 3Hi , 4H†
j
) = 2 ⟨13⟩ [32] δijδAB

OHud : (H̃
†iDµH)(ūRγ

µdR) + h.c.
A(1uA , 2d̄B , 3Hi , 4Hj) = 2 ⟨13⟩ [32] ϵijδAB
A(1ūA , 2dB , 3H†

i
, 4H†

j
) = −2 ⟨23⟩ [31] ϵijδAB

B.6 Four fermion operators

B.6.1 ψ̄2ψ2 : R̄RR̄R

Oee : (ēRγµeR)(ēRγ
µeR) A(1e, 2e, 3ē, 4ē) = 2 ⟨12⟩ [34]

Oeu : (ēRγµeR)(ūRγ
µuR) A(1e, 2uA , 3ē, 4ūB) = 2 ⟨12⟩ [34] δAB

Oed : (ēRγµeR)(d̄Rγ
µdR) A(1e, 2dA , 3ē, 4d̄B) = 2 ⟨12⟩ [34] δAB

Ouu : (ūRγµuR)(ūRγ
µuR) A(1uA , 2uB , 3ūC , 4ūD) = 2 ⟨12⟩ [34] TAC,BD

Odd : (d̄RγµdR)(d̄Rγ
µdR) A(1dA , 2dB , 3d̄C , 4d̄D) = 2 ⟨12⟩ [34] TAC,BD

O(1)
ud : (ūRγµuR)(d̄Rγ

µdR) A(1uA , 2dB , 3ūC , 4d̄D) = 2 ⟨12⟩ [34] TAC,BD
O(8)
ud : (ūRγµλ

auR)(d̄Rγ
µλadR) A(1uA , 2dB , 3ūC , 4d̄D) = 2 ⟨12⟩ [34] T̃AC,BD

Defining TAC,BD = δACδBD + δADδBC and T̃AC,BD = λaACλ
a
BD + λaADλ

a
BC .

B.6.2 ψ̄2ψ2 : L̄LL̄L

Oll : (L̄LγµLL)(L̄Lγ
µLL) A(1li , 2lj , 3l̄k , 4l̄n) = 2 ⟨12⟩ [34] T ij

kn

O(1)
lq : (L̄LγµLL)(Q̄Lγ

µQL) A(1li , 2qjA
, 3l̄k , 4q̄n,B

) = 2 ⟨12⟩ [34] δikδjnδAB
O(3)
lq : (L̄Lγµσ

aLL)(Q̄Lγ
µσaQL) A(1li , 2qjA

, 3l̄k , 4q̄n,B
) = 2 ⟨12⟩ [34] (σa)ik(σa)jnδAB

O(1)
qq : (Q̄LγµQL)(Q̄Lγ

µQL) A(1qiA , 2qjB
, 3q̄k,C , 4q̄n,D

) = 2 ⟨12⟩ [34] T ij
knTAC,BD

O(3)
qq : (Q̄Lγµσ

aQL)(Q̄Lγ
µσaQL) A(1qiA , 2qjB

, 3q̄k,C , 4q̄n,D
) = 2 ⟨12⟩ [34] T̃ ij

knTAC,BD

With T̃ ij
kn = (σa)ik(σ

a)jn + (σa)jk(σ
a)in.

128



B.6.3 ψ̄2ψ2 : L̄LR̄R and L̄RR̄L

Ole : (L̄LγµLL)(ēRγ
µeR) A(1li , 2e, 3l̄j , 4ē) = 2 ⟨12⟩ [34] δij

Olu : (L̄LγµLL)(ūRγ
µuR) A(1li , 2uA , 3l̄j , 4ūB) = 2 ⟨12⟩ [34] δijδAB

Old : (L̄LγµLL)(d̄Rγ
µdR) A(1li , 2dA , 3l̄j , 4d̄B) = 2 ⟨12⟩ [34] δijδAB

Oqe : (Q̄LγµQL)(ēRγ
µeR) A(1qiA , 2e, 3q̄j,B , 4ē) = 2 ⟨12⟩ [34] δijδAB

O(1)
qu : (Q̄LγµQL)(ūRγ

µuR) A(1qiA , 2uB , 3q̄j,C , 4ūD) = 2 ⟨12⟩ [34] δijTAC,BD
O(8)
qu : (q̄Rγµλ

aqR)(ūRγ
µλauR) A(1qiA , 2uB , 3q̄j,C , 4ūD) = 2 ⟨12⟩ [34] δijT̃AC,BD

O(1)
qd : (Q̄LγµQL)(d̄Rγ

µdR) A(1qiA , 2dB , 3q̄j,C , 4d̄D) = 2 ⟨12⟩ [34] δijTAC,BD
O(8)
qd : (q̄Rγµλ

aqR)(d̄Rγ
µλadR) A(1qiA , 2dB , 3q̄j,C , 4d̄D) = 2 ⟨12⟩ [34] δijT̃AC,BD

Oledq : (L̄LeR)(d̄RQL)
A(1li , 2e, 3d̄A , 4q̄j,B) = ⟨12⟩ [34] δijδAB
A(1l̄i , 2ē, 3dA , 4qjB

) = [12] ⟨34⟩ δijδAB

B.6.4 ψ4 : L̄RL̄R

O(1)
lequ : (L̄LeR)(ϵQ̄LuR)

A(1li , 2e, 3qjB
, 4dA) = ⟨12⟩ ⟨34⟩ ϵijδAB

A(1l̄i , 2ē, 3q̄j,B , 4d̄A) = [12] [34] ϵijδAB

O(3)
lequ : (L̄LσµνeR)(ϵQ̄Lσ

µνuR)
A(1li , 2e, 3qjB

, 4dA) = (2 ⟨14⟩ ⟨32⟩ − ⟨12⟩ ⟨34⟩) ϵijδAB
A(1l̄i , 2ē, 3q̄j,B , 4d̄A) = (2 [14] [32]− [12] [34]) ϵijδAB

O(1)
quqd : (Q̄LuR)(ϵQ̄LdR)

A(1qiA , 2uB , 3qjC
, 4dD) = ⟨12⟩ ⟨34⟩ ϵijTAC,BD

A(1q̄i,A , 2ūB , 3q̄j,C , 4d̄D) = [12] [34] ϵijTAC,BD

O(8)
quqd : (Q̄Lλ

auR)(ϵQ̄Lλ
adR)

A(1qiA , 2uB , 3qjC
, 4dD) = ⟨12⟩ ⟨34⟩ ϵijT̃AC,BD

A(1q̄i,A , 2ūB , 3q̄j,C , 4d̄D) = [12] [34] ϵijT̃AC,BD

Since the amplitude associated with O(3)
lequ involves two different spinor structures, it is

convenient to replace

O(3)
lequ = (L̄LσµνeR)(ϵQ̄Lσ

µνuR) → Oluqe = (L̄LuR)(ϵQ̄LeR) =
1

2

(
O(3)
lequ +O(1)

lequ

)
, (B.1)

where the product of σµν matrices is given by

(σµν)βα(σµν)
τ
γ = 2δταδ

β
γ − δβαδ

τ
γ . (B.2)

The new operator Oluqe generates the following on-shell amplitudes

A(1li , 2e, 3qjB
, 4dA) = ⟨14⟩ ⟨32⟩ ϵijδAB , A(1l̄i , 2ē, 3q̄j,B , 4d̄A) = [14] [32] ϵijδAB . (B.3)
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Appendix C

Cancellation of IR divergences and
absence of triangle and box
contributions in the sum over 2-cuts

In this appendix we prove the validity of Eq. (3.16) at order 1/Λ2 for mixings with ∆n =
ni − nj = 0 and 1. We show how the absence of IR divergences implies that triangle and
box contributions cancel in the sum over 2-cuts in Eq. (3.16). This result is only valid for
renormalizations with γIR = 0.

C.1 Case ∆n = 0

Let us consider the 1-loop mixing between two amplitudes AOi
,AOj

with the same number of
legs. It is easy to see that the PV decomposition of the relevant 1-loop amplitudes only contains
bubbles and triangles. Box integrals are trivially absent because there are not enough external
legs to build them. The triangle integrals correspond to the diagram Figure C.1. From [128],
the master integral I3 in dimensional regularization is given by

I
(IJ)
3 =

α(ϵ)µ2ϵ

ϵ2
(−sIJ)−1−ϵ , (C.1)

where I, J, . . . are the external particles and we have defined

α(ϵ) =
Γ(1 + ϵ)Γ2(1− ϵ)

Γ(1− 2ϵ)(4π)
D
2

=
1

16π2
+O(ϵ) . (C.2)

The triangle amplitude is UV convergent and the 1/ϵ2 pole in Eq. (C.1) corresponds to an
IR divergence. Expanding for small ϵ, we find

α(ϵ)−1I(IJ)3 = − 1

sIJ

(
1

ϵ2
− 1

ϵ
ln

(−sIJ
µ2

))
+O(ϵ0) . (C.3)
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I

J

··
·

nj

Figure C.1: Triangle integral for the 1-loop mixing of AOi
and AOj

with ∆n = 0.

We know that the IR divergence of the full amplitude is zero by assumption. Bubble
integrals are IR convergent, so the sum of triangle IR divergences must vanish. Imposing the
cancellation of the 1/ϵ and 1/ϵ2 poles, we obtain the following conditions

∑

I,J

C
(IJ)
3

sIJ
= 0 ,

∑

I,J

C
(IJ)
3

sIJ
ln(−sIJ) = 0 . (C.4)

For ni = nj ≥ 5, the second condition can only be satisfied if C
(IJ)
3 = 0 for all I, J . This

is because the logarithms are transcendental functions and thus cannot cancel with the C3

coefficients, which are rational functions of the kinematic variables. We conclude that there are
no triangle terms in the PV expansion for this kind of mixing.

Let us see what happens in the cases ni = 3, 4. For ni = 3 all the sIJ are zero, so the
triangle integrals are all scaleless and vanish. For ni = 4, some of the sIJ are trivially equal:
s12 = s34, s13 = s24 and s14 = s23. The second condition in Eq. (C.4) then allows the solutions

C
(12)
3 = −C(34)

3 , C
(13)
3 = −C(24)

3 and C
(14)
3 = −C(23)

3 . This means we can have nontrivial triangle
configurations, but they cancel in pairs,

C
(12)
3 I

(12)
3 + C

(34)
3 I

(34)
3 = 0 ,

C
(13)
3 I

(13)
3 + C

(24)
3 I

(24)
3 = 0 ,

C
(14)
3 I

(14)
3 + C

(23)
3 I

(23)
3 = 0 .

(C.5)

In the end the sum of triangle terms in the PV expansion must vanish to cancel the IR
divergences. Overall, for any mixing with ni = nJ we are left with only bubble terms, so no
triangle or box coefficients contribute to the 2-cuts in Eq. (3.16).

C.2 Case ∆n = 1

Mixings with ∆n = 1 may include the triangle and box diagrams shown in Figure C.2, where
we have only included the topologies associated with IR divergent integrals. (a) corresponds to
the triangle integral in Eq. (C.1). Following [128], (b) and (c) are associated with the triangle
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Figure C.2: IR divergent triangle and box integrals for the 1-loop mixing of AOi
and AOj

with
∆n = 1.

integrals

I
(IJ |K)
3 =

α(ϵ)µ2ϵ

ϵ2
(−sIJ)−ϵ − (−sIJK)−ϵ
(−sIJ)− (−sIJK)

,

I
(I|JK)
3 = I

(IJ |K)
3 (I ↔ K) ,

(C.6)

whereas (d) leads to the box integral

I
(IJK)
4 =

α(ϵ)µ2ϵ

ϵ2
2

sIJsJK

[
(−sIJ)−ϵ + (−sJK)−ϵ − (−sIJK)−ϵ

]
− 1

16π2
F

(IJK)
4 , (C.7)

with F4 given by

F
(IJK)
4 =

2

sIJsJK

[
Li2

(
1− sIJK

sIJ

)
+ Li2

(
1− sIJK

sJK

)
+

1

2
ln2

(
sIJ
sJK

)
+
π2

6

]
+O(ϵ). (C.8)

Expanding these integrals for ϵ → 0, we can see that they have 1/ϵ and 1/ϵ2 poles, which
correspond to IR divergences. Imposing the cancellation of the total IR divergences fixes some
relations on the coefficients C3 and C4. In this case we do not necessarily have all vanishing
coefficients. On the contrary, there can be some nontrivial cancellations between the different
triangles and boxes, so the total IR divergence is zero. In particular we have the combination

sIJsJKI
(IJK)
4 + sIJI

(IJ)
3 + sJKI

(JK)
3 +(sIJ − sIJK)I

(IJ |K)
3 +(sJK − sIJK)I

(I|JK)
3 ∝ sIJsJKF

(IJK)
4 ,
(C.9)
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Figure C.3: Diagram of the possible 2-cuts of the box integral IIJK4 .

where the ϵ poles cancel. With this combination of triangles and boxes, the total loop amplitude
becomes

A1−loop =
∑

a

C
(a)
2 I

(a)
2 − 1

16π2

∑

c

C
(c)
4 F

(c)
4 , (C.10)

which remarkably includes finite contributions from boxes. In order to prove Eq. (3.16), we
need to check that these terms do not contribute to the sum over 2-cuts.

The 2-cut of the amplitude can be computed with the Cutkosky rule, as mentioned in
Section 3.2.1. We replace the loop propagators ℓ−2 and (ℓ − P )−2 with the delta functions
δ+(ℓ2) and δ+(ℓ2 − P ). We choose our normalization so the 2-cut of the I2 master integral is

Cut2[I
(a)
2 ] = − 1

8π2
. (C.11)

The sum over all possible 2-cuts of the 1-loop amplitude is
∑

2-cuts

Cut2[A1-loop] = γiAOi
− 1

16π2

∑

c

C
(c)
4

∑

2-cuts

Cut2[F
(c)
4 ] , (C.12)

where we have used Eq. (3.12) to relate γi to the bubble coefficients.
Now we must check that the second term in Eq. (C.12) vanishes. Considering diagram

(d) of Figure C.2, there are three possible nonzero 2-cuts of the box integral (see Figure C.3).
Applying the Cutkosky rule to the combination in Eq. (C.9), we find

Cut
(IJ)
2 [F

(IJK)
4 ] = 4

sIJsJK
ln
(
sIJK−sIJ

sJK

)
, (C.13)

Cut
(JK)
2 [F

(IJK)
4 ] = 4

sIJsJK
ln
(
sIJK−sJK

sIJ

)
, (C.14)

Cut
(IJK)
2 [F

(IJK)
4 ] = 4

sIJsJK
ln
(

sIJsJK

(sIJK−sJK)(sIJK−sIJ )

)
. (C.15)

Now it is easy to see that all three cuts add up to zero, so we have proven Eq. (3.16) for
mixings with ∆n = 1. We remark that the individual cuts in Eqs. (C.13)–(C.15) need not be
zero. We may find logarithms of the momenta in the different cuts, but they must cancel in
the total sum. Note as well that Eq. (C.15) vanishes for ni = 4, since sIJK = 0. In that case
we only have to consider two 2-cuts.

As a final remark, we refer back to Section 4.4 in the main text, where we calculate the
anomalous dimension for the ∆n = 1 renormalization W 3 → WHle. There, we find loga-
rithms in the individual 2-cuts which add up to zero. It is interesting to explore an alternative
computation of the logarithm coefficients through a 4-cut. We devote the following section to
that.
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Figure C.4: 4-cut of the 1-loop amplitude for the mixing W 3 → WHle.

Box contributions from quadruple cuts

The 1-loop amplitude for a ∆n = 1 mixing gets contributions from box integrals, as can be
seen in Eq. (C.10). 2-cuts of A1-loop include logarithms of the momenta, accompanied by some
coefficient C4. Here we show how the box coefficient can also be computed directly from the
4-cut of the integral. For concreteness, we focus on the renormalization W 3 → WHle, which
was covered in Section 4.4. In this case there are two individual 2-cuts, both of which give rise
to logarithms, as is shown in Eq. (4.37).

From [74], the box coefficient can be obtained from a 4-cut of the 1-loop integral (see Figure
C.4). The C4 can then be related to a product of 3-point tree-level amplitudes,

C4 =
1

2
A1(p1, ℓ

+
41,−ℓ−12)A2(p2, ℓ

−
12,−ℓ+23)A3(p3, ℓ

+
23,−ℓ−34)A4(p4, ℓ

−
34,−ℓ+41) + (− ↔ +) , (C.16)

with ℓ±ij the momentum going from vertex i to vertex j. The two terms in this expression
correspond to the different possible helicities of the cut particles. For this reason, the two ℓ±ij
are related by complex-conjugation: ℓ−ij = (ℓ+ij)

∗. Following [129], the internal momenta can be
written as

ℓ+12 =
⟨23⟩
⟨31⟩|2]⟨1| , ℓ−12 =

[23]

[31]
|1]⟨2| , (C.17)

and the other ℓ±ij are obtained from cyclic permutations of (1234). These momenta satisfy
the on-shell condition (ℓ±ij)

2 = 0 and momentum conservation in the 3-point subamplitudes in
Eq. (C.16).

In the case of the 1-loop mixing AW 3 → AWHle, the only possible 4-cut is shown in Figure
C.4. The 3-point amplitudes in Eq. (C.16) are given by

A1 = iye ⟨1ℓ12⟩ , A3 =
iCW 3

Λ2
⟨ℓ233⟩ ⟨3ℓ34⟩ ⟨ℓ34ℓ23⟩ fabc ,

A2 = g2
[ℓ12ℓ23]

2

[ℓ212]
(T b)kj , A4 = g2

[4ℓ34] [ℓ41ℓ34]

[ℓ414]
(T c)ik ,

(C.18)

where we have used Eqs. (2.4, 2.2, 2.3) for the SM amplitudes, and Eq. (2.28) for the 1/Λ2

amplitude. The product of the four amplitudes can be written as

A1A2A3A4 = i
g22yeCW 3

Λ2
s12⟨23⟩⟨12⟩[2|ℓ23|3⟩(T a)ij . (C.19)
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Substituting in Eq. (C.16), we find

C4 = −g
2
2yeCW 3

2Λ2
(T a)ij⟨31⟩⟨32⟩

s212s23
s13

= −g
2
2yeCW 3

2

s212s23
s13

AWHle . (C.20)

Now let us consider the 2-cut (a) in Figure 4.6. Using our notation for this appendix, it

corresponds to Cut
(12)
2 [F

(123)
4 ]. Then we can write

Cut(12)[A1-loop] = −C
(12)
2

8π2
− C4

4π2s12s23
ln

(−s12
s23

)
. (C.21)

Substituting the value of C4 from Eq. (C.20), we find that the coefficient in front of the

logarithm is
g22ye
8π2

s12
s24

. As we wanted to prove, this agrees with Eq. (4.37).
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Appendix D

Anomalous dimensions for LFV
observables

In this appendix we present the anomalous dimensions for the Wilson coefficients that enter
the LFV observables µ → eγ, µ → eee and µN → eN at tree level. We are only interested in
the leading order operator mixings up to two loops, which are necessary to obtain bounds on
the energy scale of new physics (see Chapter 5).

D.1 One loop

The complete 1-loop anomalous dimension matrix for dimension-six operators in the SMEFT
was computed a while ago (see refs. [19–21]). In recent years, it has been revisited with on-shell
methods in [28, 29] and in particular [1] that we cover in Chapter 4.

µ→ eγ

At tree level, only the combination CDW −CDB enters into µ→ eγ. It mixes at one loop with
the orthogonal combination of dipole coefficients CDW + CDB. Taking into account that

d

d lnµ
CDW =

1

16π2

[(
g2
(
−11

12
+

1

4
t2θW

)
+Ncy

2
t

)
CDW − 1

2
g2tθWCDB

]
, (D.1)

d

d lnµ
CDB =

1

16π2

[
−3

2
g2tθWCDW +

(
g2
(
−9

4
+

151

12
t2θW

)
+Ncy

2
t

)
CDB

]
, (D.2)

the anomalous dimension is

d

d lnµ
(CDW − CDB) =

g2

16π2

[
2

3
+

1

2
tθW − 37

6
t2θW

]
(CDW + CDB) . (D.3)

Additionally, the dipole coefficients are renormalized by the four-fermion operator OLuQe.
The calculation for this mixing is detailed in sections 4.1 and 5.4.1, leading to

d

d lnµ

(
CDB

CDW

)
=
yuNc

16π2

(
5/12

−1/4

)
CLuQe . (D.4)
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We must also consider the coefficients that mix with the dipoles at the two-loop level with
a double log. For this, we need to know the 1-loop anomalous dimensions for OLuQe, which is

d

d lnµ
Cµeqq
LuQe =− g2

16π2

(
3 + 5t2θW

)
Cµeqq
LeQu

+
4yu
16π2

(
Cµeuu
RR +

ye
yµ
Cµeqq
LL −3

ye
yµ
Cµeqq
LL3 +

ye
yµ
Cµeuu
LR +Cµeqq

RL

)
,

(D.5)

d

d lnµ
Ceµqq
LuQe =− g2

16π2

(
3 + 5t2θW

)
Ceµqq
LeQu

+
4yu
16π2

(
ye
yµ
Ceµuu
RR + Ceµqq

LL − 3Ceµqq
LL3 + Ceµuu

LR +
ye
yµ
Ceµqq
RL

)
,

(D.6)

Notice that the terms proportional to a Yukawa coupling correspond to the exception to
the helicity selection rule ∆n ≥ |∆h|, which allows the mixing ψ̄2ψ2 → ψ4.

µ→ eee

Aside from the dipoles, we have to consider the anomalous dimension matrix for Oµe
L,L3,R and

Oµeee
LL,RR,LR,RL. From Eq. (5.20), we see that CL,L3 only appear in the combination CL + CL3.

Defining
CL± = CL ± CL3 , (D.7)

we are interested in the mixing of CL− into CL+. We have

d

d lnµ
Cµe
L =

g2

16π2

4

3
t2θWY

2
HC

µe
L ,

d

d lnµ
Cµe
L3 = − g2

16π2

17

3
Cµe
L3 , (D.8)

which leads to
d

d lnµ
CL+ =

g2

16π2

[17
6

+
2

3
t2θWY

2
H

]
CL− . (D.9)

Regarding the four-fermion operators, their 1-loop mixings are given by

d

d lnµ
Cµeee
LL =

g2

16π2

{
4

3
YLL

t2θW

[
Nc

(
2YQL

Cµeqq
LL + YuRC

µeuu
LR + YdRC

µedd
LR

)
+ YHC

µe
L

]

+
2NcC

µeqq
LL3

3
+
Cµe
L3

3

}
,

d

d lnµ
Cµeee
RR =

g2

16π2

4

3
YeRt

2
θW

[
Nc

(
2YQL

Cµeqq
RL + YuRC

µeuu
RR + YdRC

µedd
RR

)]
,

d

d lnµ
Cµeee
LR =

g2

16π2

4

3
YeRt

2
θW

[
Nc

(
2YQL

Cµeqq
LL + YuRC

µeuu
LR + YdRC

µedd
LR

)
+ YHC

µe
L

]
,

d

d lnµ
Cµeee
RL =

g2

16π2

4

3
YLL

t2θW

[
Nc

(
2YQL

Cµeqq
RL + YuRC

µeuu
RR + YdRC

µedd
RR

)]
, (D.10)
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where q, u, d belong to the 2nd and 3rd family. For the 1st family, the coefficients are already
constrained at tree level by µN → eN . In order to go from CL,L3 to CL+,L− we use the projection
CL → CL−/2 and CL3 → −CL−/2. The mixing with four-fermion coefficients Cµeττ

LL,LL3,RR,LR,RL

instead of Cµeqq
LL,LL3,RR,LR,RL is obtained by replacing q, d → τ , Nc → 1, YQL

→ YLL
, YdR → YeR

and YuR → 0.

µN → eN

The anomalous dimension for the four-fermion coefficients Cµeuu
LL,RR,LR,RL is obtained by replacing

YLL
→ YQL

and YeR → YuR in Eq. (D.10). Similarly, for the mixings with Cµedd
LL,RR,LR,RL we must

replace YLL
→ YQL

and YeR → YdR in that same equation.

D.2 Two loops

In our analysis, we also consider the contribution of LFV operators of classes ψ2H3, ψ2ψ̄2 and
ψψ̄H2 to the 2-loop anomalous dimension of the dipoles. The 2-loop mixing Cy → CDW,DB was
computed in [28, 84] and is equal to

d

d lnµ

(
CeB

CeW

)
=

g3

(16π2)2
· 3
4

(
tWYH + 4t3WY

2
H(YL + Ye)

1
2
+ 2

3
t2WYH(YL + Ye)

)
Cye . (D.11)

The mixings Cµℓℓe
LR → CDW,DB and Cµqqe

LR → CDW,DB were computed in [84], leading to

d

d lnµ

(
CeB

CeW

)
=

ydg
3

(16π2)2
Nc

4

(
3tWYQ + 4t3W (YL + Ye)(Y

2
Q + Y 2

d )
1
2
+ 2t2W (YL + Ye)YQ

)
Cled̄q , (D.12)

d

d lnµ

(
CeB

CeW

)
=

yeg
3

(16π2)2
· 1
4

(
3tWYL + 4t3W (YL + Ye)(Y

2
L + Y 2

e )
1
2
+ 2t2W (YL + Ye)YL

)
Cleēν . (D.13)

Finally, we have computed the mixing CL,L3,R → CDW,DB in Section 5.4.2 (see the original
paper [3]). The anomalous dimensions at orders y2t and λ4 are summarized in Eq. (5.56),
Eq. (5.57), Eq. (5.71) and Eq. (5.72).
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Appendix E

Partial-wave decomposition of
amplitudes

In this Appendix we obtain the general formula for the partial-wave decomposition of 4-point
amplitudes, following the derivation in [116]. We start considering the scattering process 1, 2 →
3, 4 in the center-of-momentum frame. The direction of the incoming particles 1,2 is defined
by the polar angles (ψ, ω), while the direction of the outgoing pair 3,4 is defined by (θ, ϕ). The
corresponding scattering amplitude can be written as

A(s, θ, ϕ;ψ, ω) ≡ ⟨θϕ;h3h4|T |ψω;h1h2⟩
=

∑

JJ ′MM ′

⟨θϕ;h3h4|J ′M ′;h3h4⟩ ⟨J ′M ′;h3h4|T |JM ;h1h2⟩ ⟨JM ;h1h2|ψω;h1h2⟩ , (E.1)

where T is related to the S-matrix by S = 1+ iT . We have inserted two complete sets of states,
which satisfy I =

∑
J,M |JM⟩⟨JM | by the completeness of the angular momentum basis. The

matrix element is given by

⟨J ′M ′;h3h4|T |JM ;h1h2⟩ = δMM ′ δJJ ′

(√
s

Λ

)w
aJ , (E.2)

where aJ is a partial-wave coefficient with angular momentum J . Using this definition, Eq. (E.1)
becomes

A(s, θ, ϕ;ψ, ω) =

(√
s

Λ

)w∑

JM

nJ e
iϕ(M−h34)dJMh34

(θ) e−iω(M−h12)dJMh12
(ψ) aJ , (E.3)

where nJ = 2J + 1 and dJMh(θ) are the Wigner d-functions, defined as

dJMh12
(θ) =

eiϕ(M−h12)√
nJ

⟨JM ;h1h2|θϕ;h1h2⟩ . (E.4)
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Alternatively, we can write

dJMM ′(θ) =
[
(J +M)! (J −M)! (J +M ′)! (J −M ′)!

]1/2

×
∑

S

[
(−1)M

′−M+S c 2J+M−M ′−2S
θ/2 s M ′−M+2S

θ/2

(J +M − S)!S! (M ′ −M + S)! (J −M ′ − S)!

]
,

(E.5)

where the summation includes all values of S that make the factorial arguments non-negative.
The Wigner d-functions are orthogonal, satisfying the condition

∫ π

0

dθ sθ d
J
MM ′(θ)dJ

′
MM ′(θ) =

2δJJ ′

nJ
. (E.6)

Finally, we observe that Eq. (E.3) gets simplified by choosing a frame such that ψ = ω = 0,
leading to

A(s, θ, ϕ) = eiϕ(h12−h34)
(√

s

Λ

)w∑

J

nJ d
J
h12h34

(θ) aJ , (E.7)

where we have used that dJMM ′(0) = δMM ′ .
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[23] J. Elias-Miró, J. R. Espinosa, E. Masso, and A. Pomarol, JHEP 08, 033 (2013),
arXiv: 1302.5661.

[24] J. Elias-Miro, J. R. Espinosa, E. Masso, and A. Pomarol, JHEP 11, 066 (2013),
arXiv: 1308.1879.
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