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Abstract

This thesis explores the use of on-shell amplitude methods in the context of Effective Field
Theories (EFTs), focusing on their application to renormalization. We begin by reviewing
the construction of tree-level on-shell amplitudes from general principles, considering Lorentz
invariance, locality, and dimensional analysis. These techniques are then applied to construct
the amplitude structures of the Standard Model (SM) and the Standard Model Effective Field
Theory (SMEFT). In the SMEFT, we include contact interactions at orders 1/A and 1/A?%
which correspond to operators of mass dimension five and six, respectively. After that, we
explore loop amplitudes via the generalized unitarity method. We show how on-shell methods
can be used to extract the anomalous dimensions for the renormalization group mixing of
higher-dimension operators. In particular, we obtain a formula for the anomalous dimensions
at leading order, written as a product of tree-level amplitudes integrated over some phase-
space. This simplifies the calculations by avoiding explicit loop computations. We apply this
result to 1-loop and 2-loop anomalous dimensions for various SMEFT operators, including
those relevant to dipole transitions and lepton flavor violating processes. Finally, we revisit the
renormalization of EFTs by considering the angular momentum decomposition of amplitudes.
In this way, we obtain a formula for the anomalous dimensions as a sum over products of
partial-wave coefficients. Our results demonstrate the power of on-shell methods in simplifying
renormalization and provide novel tools for precision phenomenology in searches for physics
beyond the Standard Model.
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Introduction

Scattering amplitudes play a central role in particle physics, quantifying the probabilities of
specific outcomes in particle interactions. They are essential for understanding the dynamics of
fundamental forces and for linking theoretical models to experimental observations. Among the
modern approaches to scattering amplitudes, on-shell methods stand out as a powerful frame-
work. Rather than relying on the traditional Lagrangian-based formulation, these techniques
use basic amplitude properties to avoid some of its inherent complexities and redundancies.

This thesis explores applications of on-shell amplitude methods in Effective Field Theories
(EFTs) and their renormalization. The motivation for our research is both phenomenological
and theoretical. On one hand, searches for new physics Beyond the Standard Model (BSM)
require precise calculations to match the experimental data, which can be performed using
on-shell techniques. On the other hand, these methods may also reveal novel insights into the
mathematical structure of scattering amplitudes, deepening our understanding of Quantum
Field Theory (QFT).

On-shell amplitude methods

The study of scattering amplitudes has been developed since the early days of QFT. Formally,
the S-matrix was introduced to describe the dynamics of fundamental particles. The transition
probability from an initial multi-particle state |i) to a final state |f) is given by the matrix
element )

Spi = (fI512) (1)
with S the S-matrix operator [4]. We define S = 1 + T, where 1 is the identity and 7" is the
transition matrix. We can also write

Spi =85 +1i(2m) '8 (py — pi)Myi | @)

where 5§ (ps—p;) ensures energy-momentum conservation and M y; is the transition amplitude.
Within perturbation theory, the S-matrix can be expressed as an expansion in terms of the
interaction Lagrangian L;,;, according to

S = Texp (—i / d4xﬁim(x)) | (3)

with 7 the time-ordering operator. The scattering amplitude M; can be computed perturba-
tively using this expression. The usual prescription is to draw Feynman diagrams to visually



represent the different terms in the S-matrix expansion. Each diagram can be systematically
translated into a mathematical expression by using the so-called Feynman rules. This approach
is typically taught in introductory QFT courses, but it is mostly inconvenient for processes in-
volving many particles or higher loop orders. For example, one can check [5] that the 4-gluon
tree-level amplitude involves 4 Feynman diagrams, whereas the 6-gluon one already involves
220 diagrams. The scaling is such that the 10-gluon amplitude includes more than a million
diagrams, making it computationally unwieldy.

The shortcomings of the Feynman perturbative method led to other approaches to the
study of amplitudes. In the early 60s, the S-matrix bootstrap was first proposed as a way
to use basic principles such as locality, causality and Lorentz invariance in order to derive
amplitudes directly, without referencing a Lagrangian. This program was born with the goal
to describe strong interactions and thus it was eventually overshadowed by the success of
quantum chromodynamics (QCD) in the 70s. The bootstrap program has regained interest in
recent years, using it to constrain and solve for scattering amplitudes in a variety of theories
[6, 7]. As a simple example, see the bootstrapping of 3-point tree-level amplitudes in Section
1.1 of this dissertation. For more details on amplitude bootstrap, see [8].

A significant step forward in the study of scattering amplitudes was the development of
the Parke-Taylor formula in the 80s [9]. As we have mentioned earlier, the scattering of n
gluons generally involves a large number of Feynman diagrams. It turns out that, for on-shell
gluons of definite helicity, the maximally helicity-violating (MHV) amplitude can be written
in a surprisingly compact form. The all-incoming amplitude for two gluons of helicity — and
n — 2 gluons of helicity + is given by

(12)*
(12) (23) -~ (nl) ’

A, (17,2737 ... nt) =i (4)
where the angle and square brackets are functions of the gluon momenta defined in Appendix
A. This formula reveals how the enormous complexity of Feynman diagrams gets simplified for
the case of physical on-shell amplitudes. It suggests the existence of hidden structures in gauge
theories, which are obscured in the off-shell Feynman diagram approach.

On-shell amplitude methods were further developed after the derivation of the Parke-Taylor
formula. One of the most remarkable results came in the early 2000s with the BCFW recursion
relations [10]. From the basic properties of analyticity and factorization, higher-point tree-level
amplitudes can be expressed in terms of lower-point ones. This allows us to derive all n-point
amplitudes of a theory from a few elementary building blocks. In Chapter 1 of this dissertation,
we show how to construct 4-point amplitudes from 3-point ones. Another relevant cornerstone
of on-shell amplitude methods is the treatment of loops with the generalized unitary method
[11, 12]. This procedure relates loop amplitudes to tree-level ones, greatly simplifying loop
calculations. See Chapter 3 for further details.

In recent years, on-shell amplitude methods have been applied in a variety of contexts, from
QCD calculations to formal developments in theories like supergravity. The basics of modern
amplitude methods and their most relevant applications are covered in reviews such as [13-16].
This dissertation focuses on the renormalization of EFTs, which plays an important role in the
phenomenology of BSM physics.



The Standard Model Effective Field Theory

The Standard Model (SM) of particle physics is a QFT describing the electromagnetic, weak,
and strong interactions of elementary particles. It constitutes the main cornerstone of particle
physics and its predictions have been tested with extraordinary precision by a wide range of
experiments, such as the Large Hadron Collider (LHC). Despite these successes, the SM fails
to account for several important phenomena [17]: gravity, dark matter, dark energy, neutrino
masses and the observed matter—-antimatter asymmetry. These shortcomings have motivated
the development of new theories for physics Beyond the Standard Model (BSM).

The SM can be understood as an Effective Field Theory (EFT), a low-energy approximation
of a more general framework. EFTs allow us to describe physical phenomena in terms of the
relevant degrees of freedom at low energies, without requiring a complete understanding of
the underlying high-energy theory. The Standard Model Effective Field Theory (SMEFT) is
particularly useful to describe deviations from the SM in a systematic, model-independent way
[18]. The idea is to account for the effects of new particles, above the electroweak scale, through
a series of non-renormalizable operators made of the SM fields. These operators are organized
by increasing mass dimension and suppressed by powers of the high-energy scale or cut-off A.
The SMEFT Lagrangian can be written as

1 1
ESMEFT:£SM+K;O@5(’)5+F;COGO6+..., (5)

where Lgy is the SM Lagrangian and O,, are non-renormalizable operators of mass dimension
n for n > 4, also known as higher-dimension operators. The dimensionless coefficients Cp, are
the so-called Wilson coefficients.

The SMEFT is a valuable tool in searches for BSM physics, since higher-dimension operators
can enter physical observables at low energies. By comparing the experimental measurements
with theoretical predictions, we can derive bounds on different Wilson coefficients and the cut-off
A. This is especially useful for observables that are suppressed in the SM, such as some lepton-
flavor violating muon decays (see Chapter 5). In order to understand the various SMEFT
operators contributing to a physical process, it is essential to consider the operator mixing
induced by renormalization. At the loop level, Wilson coefficients run with the renormalization

scale u as follows,
_dCo,
Vi = dlnu - E Yij CO]- ) (6)

j
where 7;; is the so-called anomalous dimension matrix, which contains information on the
mixing of operators of the same mass dimension. Computing ;; is a critical step in deriving
robust bounds on the SMEFT parameter space.

In the early 2010s, the full 1-loop anomalous dimension matrix of dimension-six operators in
the SMEFT was computed using traditional Feynman diagram techniques, see [19-25]. More
recently, there have been several efforts to apply on-shell amplitude methods to determine
anomalous dimensions in general EFTs, including [26-32]. This dissertation encompasses sev-
eral contributions made in that direction.



This thesis is structured as follows:

e Chapter 1 explains how to build on-shell tree-level amplitudes from first principles and
factorization, focusing on 3-point and 4-point amplitudes.

e Chapter 2 provides a review of the Standard Model and the Standard Model Effective
Field Theory. It also lists the tree-level on-shell amplitudes associated with the SM inter-
actions and SMEFT interactions at orders 1/A and 1/A?% which correspond to dimension-
five and dimension-six operators.

e Chapter 3 introduces loop amplitudes and the effects of renormalization. We show how
on-shell amplitude methods can be used to obtain the anomalous dimension matrix from
a product of tree-level amplitudes integrated over a phase-space, without the need to
consider loop integrals explicitly.

e Chapters 4, 5 and 6 present some applications of the main formula derived in Chapter 3.
In Chapter 4, we explicitly compute the 1-loop anomalous dimension for the dimension-6
SMEFT dipole operator. In Chapter 5, we show examples of the calculation of 2-loop
anomalous dimensions in the context of lepton flavor violating processes. We consider
the experimental constraints on several observables and derive bounds on the energy scale
of New Physics A. In Chapter 6, we consider the angular momentum decomposition of
on-shell amplitudes and derive an expression for the anomalous dimensions in terms of
products of partial wave coefficients.



Chapter 1

Building on-shell amplitudes

In this chapter we present the basics of constructing tree-level on-shell amplitudes. We show how
these amplitudes can be directly derived from first principles, without defining a Lagrangian.
Similar derivations can be found in on-shell amplitude reviews, such as [13-16, 33]. We use the
following properties:

e Locality. Tree-level amplitudes are rational functions of the external momenta, with
simple pole singularities corresponding to propagators of intermediate states. Amplitudes
must have proper factorization properties, as we discuss in Section 1.3.

e Dimensional analysis. From [14], the mass dimension of an amplitude 4,, obeys
A, =4—n, (1.1)

with n the number of scattered particles. Any amplitude can be written as a coupling
constant C' times some kinematic function. Once we establish the kinematic structure,
Eq. (1.1) can be used to determine the mass dimensions of the coupling constant.

e Lorentz symmetry. Amplitudes must be invariant under Lorentz transformations. They
must also be covariant under the little group, which is the subgroup of the Lorentz group
that leaves a given momentum invariant. We refer to Section 1.2 for the details.

In Section 1.1 we construct 3-point on-shell amplitudes for the scattering of particles with
spin-0, -1 and -2. In Section 1.2 we derive the general formula for the scattering of particles
with any helicity using spinor-helicity variables. In Section 1.3 we explain how to construct
4-point (and higher-point) amplitudes and the role of factorization. We summarize our main
results in Section 1.4.
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1.1 3-point amplitudes: some examples

First, we present a simple yet enlightening derivation of some bosonic 3-point amplitudes. Our
derivation is mostly based on the 2023 TASI Lectures on Scattering Amplitudes by C. Cheung
that can be watched in [34]. A given 3-point amplitude A3 is fully determined by imposing
locality, Lorentz invariance and dimensional analysis. The on-shell kinematics for massless
particles imply that

PL+p+p3=0,pl=ps=p3=0 = pp; =0 fori,j=123. (1.2)
Using Eq. (1.1), the amplitude must have dimension [A3] = 1. In general, we can write
Az = Cy x kinematic function , (1.3)

with C,; a coupling constant of mass dimension d. We remain agnostic about the mass dimen-
sions of this constant, as long as the kinematic factor does not have negative powers of momenta.
This is because 3-point amplitudes cannot have simple poles coming from propagators.

We must also take into account that, in general, scattering amplitudes are multilinear in
the polarizations of the different particles [35]

AP nln) = eh eZZA“l“'“" : (1.4)

e
where the form of the polarization 621 depends on the particle spin. Spin-0 particles have no
polarization, spin-1 particles have polarization vectors, and spin-2 particles have polarization
tensors.

1.1.1 3 scalars

We begin by considering the scattering of three identical scalar particles ¢. In this case it turns
out there is only one possible 3-point amplitude

A1y, 24,34) = Ca=1 (1.5)

with [Cy=1] = 1. One would naively expect to have other amplitudes with higher powers of
momenta in the kinematic function. However, the only option for scalars is to have even powers
of momenta contracted among themselves (p;p;), which vanish due to Eq. (1.2).

The generalization to the case of scalars carrying flavor ¢ is straightforward,

A(1¢a, 2¢b, 3¢C) — Odzl(;abc B (16)

where 04 is a totally symmetric flavor tensor.
We can revisit the Lagrangian formulation to gain a deeper understanding of this result.
The amplitudes in Egs. (1.5, 1.6) arise from the following interaction Lagrangians,

£ D) Cd:1¢3 5 £ > Cd:l(sabc ¢a¢b¢c . (17)

We can write additional 3-scalar interaction terms with derivatives, such as (9¢)*¢. However,
now we know that all these terms do not contribute to the 3-point amplitude, since there are
no valid amplitudes with higher powers of momenta. Indeed, at the level of the action, one
can apply integration by parts to the derivative interactions and eliminate them by using field
redefinitions of ¢ [33].
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1.1.2 3 vector bosons

We now consider the scattering of three identical spin-1 particles. The 3-vector scattering
amplitude is constructed from Lorentz-invariant products of the particle momenta pf, ph, pf§
and the polarization vectors e/, €4, 5. From Eq. (1.2), the 3-particle on-shell kinematics enforce
the conditions p? = 0 and p;p; = 0. Moreover, the fact that longitudinal polarizations are not
physical implies that p;e; = 0 as well. Thus, one can prove there are only six independent
vector products:

{61627 €2€3, €3€1, P1€2, P1€3, p2€1} . (1-8)

We want to build amplitudes made of these vector products and having the proper powers
of polarization vectors. For only one power of momenta, we obtain:

O(p') : A(ly,2v,3v) = Ci(eres)(piez) + Ca(erez)(pres) + Cs(ezes)(paer) (1.9)

where C; are coupling constants. Two of the C; can be eliminated by using the Ward-Takahashi
identity [36, 37], which states that the amplitude vanishes if we replace any polarization vector
el by its corresponding momenta p{’. In particular,

0= A(1V7 2y, 3V)|€1Hp1 = (Cl + Cz)(P1€2)(p1€3) )
0=A(1y,2v,3v)|esmp, = (C2 — Cs5)(p2e1)(pres) , (1.10)
O - A(1V7 2V7 3V)|63—>p3 - (Cl + C3>(p361)(p162> )

so we conclude that ¢} = —Cy = —(C5. This fixes the amplitude up to an overall constant,

A(ly,2y,3v) = Ci [(ere3)(prez) — (ere2)(pres) — (eze3)(p2e1)] - (1.11)

One can check that this amplitude is antisymmetric under the exchange of any two vector
bosons since, for example, pjes = —pses. It is convenient to make this antisymmetry explicit
in the following way,

C
A(ly,2v,3v) = —71 lerea(pres — poe3) + ezes(paer — pser) + eser(psea — prea)] . (1.12)

The antisymmetry of the amplitude poses a problem, as amplitudes must be symmetric
under the exchange of identical vector bosons. This means that, by Bose-Einstein symmetry,
we must fix the coupling constant C} to zero. Indeed, this is not a surprising result, since the
3-photon amplitude vanishes in QED by Furry’s theorem [38]. For non-identical vector bosons
carrying flavor, we can write a valid amplitude

A(Lya, 2y, 3ye) = Ca—o fabe [€162(p1€3— Paes) + eaes(pre1 — pser) + ezer(psea— pre2)] , (1.13)

with fu. a totally antisymmetric constant.
Up until now we have discussed 3-vector amplitudes with one power of momenta. The next
possibility is having three powers of momenta,

O(p3) : A(lVa, 2vb, 3Vc) = C’d:_gfabc(pleg)(pgeg)(pgel) . (114)
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In this case the kinematic factor is again antisymmetric under the exchange of vector bosons,
so the amplitude is only valid for non-identical particles.

We could try to build amplitudes with, for example, five powers of momenta. However, since
there are only three polarization vectors, we would have to include products of the momenta
pip;, which vanish by Eq. (1.2). We conclude that there are no allowed amplitudes for higher
powers of momenta.

Let us connect these results for the 3-vector scattering amplitude with the Lagrangian
formulation. The amplitude of O(p') in Eq. (1.13) corresponds to a non-abelian gauge theory
such as QCD, with an interaction term given by

LD Cop fape(O"G¥" — 8”G“’“)GZG§ : (1.15)

where Cj—o is the gauge coupling, G, is the gauge field and fu. is the structure constant of
the Lie algebra. It is remarkable how we have derived the presence of the structure constant
without using the notion of Lie groups.

Regarding the amplitude of O(p3) in Eq. (1.14), it corresponds to the following higher-
dimension operator in a non-renormalizable theory

LD Cue s fupe PG GIC, . (1.16)

There are no amplitudes with higher powers of momenta, which would come from operators
with more derivatives. This is because such operators are proportional to 9?°G and can be
eliminated using the equations of motion for GY,.

1.1.3 3 spin-2 particles

Next, we consider the scattering of three particles of spin-2. In this case, the amplitude must
be proportional to the polarization tensor e of each particle. The polarization tensor can
be expressed as a product of two polarization vectors e/ = el'e’. Then we can construct all
possible amplitudes using the vector products in Eq. (1.8). At the lowest order in momenta,

O(PQ) : A(lr,27,37) = 01(6162)2(]?163)2 + 02(6263)2(]7261)2 + 03(6361)2(]9162)2
+ Cy(erez)(ezes)(pres)(peer) + Cs(eres)(eser)(prez) (pres) (1.17)
+ Cs(eaes)(eser)(prez) (p2e1)

where the C; coefficients are determined using the Ward-Takahashi identity. We impose that
the amplitude vanishes when we replace el'e? — 1(pl'el + ef'pY). This leads to

0= A(17, 27, 37)|ep = (pre2)(pres) [(Cr + 5)(erez) (pres) +
+ (% + Cﬁ )(eze3)(p2er)|
0= A(17,27,37)|eypy = (P261)(pre3) [(Ch — )(6162)(]3163) + (£ — Cy)(eaes) (paer)

(C3 + )(6361)(]7162)

)]

(

+ (£ — &) (eser)(pre2)]
(

)]

(1.18)

0=A(17,27,37)|esps = (P32)(P2€1) [(02 + & )(6263)(1?261) + (C3 + 76)(6361)(]9162)
+ (S 4+ Z)(erea) (pres

)

13



so the coefficients obey C) = Cy = O3 = C4/2 = —C5/2 = —Cs/2. The amplitude can be
written in a compact form,
A(17,27,37) = Ca_y [erea(pres — paes) + eaes(paer — pser) + eser(psea — prea)]” . (1.19)
For amplitudes involving four powers of momenta, we have

O(p*) : A(1r,27,31) = Ci(eser) (pres) (p2er) (pre2)” + Ca(erez)(paer) (prez) (pres)’

+ 03(6263)<p1€3)(p162)(p2@1)2 ' (1.20)

Once more, the constants are determined by imposing the Ward-Takahashi identity,

0= A(lz, 27, 3T)|e1—>p1 =3(Ch + C’z)(p162)2(p163)2(p261) ,
0= A(lTa 27, 3T)’€2H;D2 = (02 - CS)(29261)2(19163)2(P1€2) ) (121)
0= A(1l7,27,37)|esmps = —3(C1 + C3)(pre2)®(p2er)*(pres) -

The coefficients are related by C; = —Cy = —Cj, so we obtain

1
2
1
2

A(lr,27,37) = Ca=—3(p1€3)(p2e1) (pr€2) [(e1e2) (pres — paes) + (e2e3)(p2e1 — paer)

1.22
+ (ese1)(psea — pre2)] - (1.22)

Finally, the last amplitude we can write corresponds to six powers of momenta,
O(p°) : A(ly,27,37) = Caz_s5(p1e2)*(paes)?(pzer)? - (1.23)

We now associate these amplitudes with their corresponding Lagrangian formulations. Eq. (1.

comes from the Einstein-Hilbert action,

S D Cyy / v—g Rd'z , (1.24)

where R is the Ricci scalar and g is the determinant of the metric tensor. Thus, Eq. (1.19) is
the full tree-level 3-graviton scattering amplitude in General Relativity.
The amplitude in Eq. (1.22) arises from the Gauss-Bonnet [39] modified theory of gravity,

S D Cy=—3 / V=9 (R — 4R, R" + R0 R*")d'z (1.25)

with R, the Ricci tensor and R,,,, the Riemann tensor.
The amplitude in Eq. (1.23) corresponds to a modified theory of gravity cubic in the Rie-
mann tensor,

S D Cy_s / V—g R¥d'z . (1.26)

It is worth mentioning that the amplitude Eq. (1.19) for the scattering of 3 gravitons at
order O(p?) has the same kinematic structure as the square of the 3-vector amplitude Eq. (1.13).
This feature is an example of the broader principle of color-kinematics duality, where graviton
amplitudes can be obtained by squaring the kinematic component of gluon amplitudes. See
[40] for a review on this topic.
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1.2 General 3-point helicity amplitudes

Having examined the cases of spin-0, 1, and 2, we now consider 3-particle scattering amplitudes
in a systematic framework. We have been working with generic polarization vectors and tensors,
but these are redundant objects that obscure the amplitude structure. Instead, it is enlightening
to consider the helicity basis for the particle polarizations [13].

According to Wigner’s classification [41], particles are described as irreducible representa-
tions of the Poincaré group. Given some particle with momentum p, we define the little group
as the group of Lorentz transformations that leave p invariant. Then, particle states can be
defined by the momentum p and how they transform under the little group [42]. In the case
of massless particles in 4 dimensions, the little group is SO(2) ~ U(1). The quantum number
associated with this group is the helicity h, defined as the projection of the particle spin onto
its direction of motion. Every massless particle can have two helicities +h.

Helicity amplitudes describe the scattering of particles with well-defined helicities. These
amplitudes have the right transformation properties under the little group, and in many cases
they show a surprisingly simple structure. Perhaps the most famous example of this is the
Parke-Taylor formula for gluon scattering in a configuration of maximum helicity violation [9],
which we mentioned in the introduction of this thesis.

When computing on-shell helicity amplitudes, we ideally want to replace the redundant
momenta and polarization vectors by some objects that transform properly under the little
group. This goal is accomplished using spinor-helicity variables. The details and conventions
for these variables are specified in Appendix A.

After these considerations, we are ready to derive the general formula for 3-point helicity
amplitudes. Expressing the 3-particle on-shell kinematics Eq. (1.2) in terms of spinor-helicity
variables,

2

0= p1 (p2 + ps3) (

0= pz (p1 +ps)* = ( 1] (1.27)

0= p3 (p1 +P2)2 (12) [21] .
3) #0
tu

4
de

2

or [32] # 0. This leads to two different
[33], as shown below.

For instance, the first line shows that either (2
kinematic configurations for the 3-particle ampli

o If (23) £ 0, then [32] = [31] = [12] = 0.
o If [23] # 0, then (32) = (31) = (12) = 0.

This statement can be demonstrated as follows. If (23) # 0, then [32] = 0. Since (23) [31] =
—(21) [11] = (22) [21] = 0, in this case [31] = 0 as well. Similarly, since (23) [21] = — (13) [11] —
(33) [31] = 0, we see that [21] = 0. The case [23] # 0 is exactly the same but interchanging
angle and square brackets.

In the configuration where [32] = [31] = [12] = 0, the general expression for a 3-particle
amplitude is given by

A1 2he 3hsy — ¢ (12)* (23)° (31)° | (1.28)
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where C' is a constant and a, b, ¢ are fixed when we take into account little group covariance.
Under the little group, the amplitude transforms as

A(1h 22 3hs)y oy ghagheghs A(1M oh2 ghsy

(12)% (23)" (31)¢ — 4L (12) (23) (31)° (1:29)
with ¢ some parameter. Equating the little group weights, the exponents are
a=hs—hy —hy, b=hy —hy — hs, ¢c=hy—hs—hy. (1.30)
Then the mass dimension of the kinematic part of the amplitude is
(12)* (23)" <31)C] —a+btc=—h —hy—hs, (1.31)

As we mentioned before, this number cannot be negative by locality, because 3-point amplitudes
do not have poles. Then, we must impose —h; — ho — hg = —h > 0, with h = hy + hy + h3
the total helicity. If this condition on the particle helicities is not satisfied, then the amplitude
cannot be written as in Eq. (1.28) and instead we have to use the configuration where (32) =
(31) = (12) = 0. Overall, the most general expression for the 3-point amplitude is [33]

C (12)s=M=he (ggyh—ha=hs (g1yhe=ha=h ¢ < )

C~1 [12]h1+h2—h3 [23]h2+h3—h1 [31]h3+h1—h2 i h >0 (132)

A(1h 2h2 3hs) :{
This formula is valid non-perturbatively, as it relies solely on Lorentz symmetry, locality

and dimensional analysis. Using it, we can easily rederive the 3-point amplitudes for spin-0, -1
and -2.

e Spin 0: All the particles have helicity zero and the amplitude is just a constant, as we
saw in Eq. (1.5),
A(1,2,3) = Cy—q - (1.33)

e Spin 1: Vector bosons have helicity h = £1 and there are 4 non-vanishing amplitudes.
The helicities choices — — 4+ and + + — lead to

(12)°
(13) (32) ’

12)
[13][32] ’

A(1;,2,,37) = Camo f A(1F,25,37) = Camo f (1.34)

which correspond to Eq. (1.13) written in terms of spinor-helicity variables. For the
helicity choices — — — and + + +, we obtain

A(15,2,,37) = Ca o f* (12) (23) (31) ,

(1.35)
A(1F,2),35) = Camo f™ [12] 23] [31] ,

which correspond to Eq. (1.14).
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e Spin 2: the particles have helicities h = +2 and again there are 4 non-vanishing ampli-
tudes. Helicities — — + and + + — correspond to Eq. (1.19) and can be written as

—— o—— q++ (12)° ++ ot+ q—— [12)°
./4(]_ ,2 ,3 ) — Cd:—lﬁ 5 ./4(1 ,2 ,3 ) — Cd:—lﬁ . (136)
(13)7 (32) [13]7 [32]
The other helicity choices — — — and + + + are associated to Eq. (1.23) and lead to
A(177,277,377) = Cue_s (12)%(23)% (31)° |
( )= s (12)° (23 31) e

AT, 20 375) = O 5 [127 [23]7 [31)7 .

Remarkably, these are the only amplitudes we can write and Eq. (1.22) is missing. This is
because now we are working with spinor-helicity variables in 4-dimensions and Eq. (1.22)
vanishes in that case. Indeed, in 4-dimensions the Gauss-Bonnet is a total derivative [43]
and does not contribute to graviton scattering.

Notice as well how Eq. (1.36) and Eq. (1.37) are the square of the kinematic part of
Eq. (1.34) and Eq. (1.35), as expected due to color-kinematics duality.

These examples illustrate the scattering of three particles with the same spin. However, the
general expression Eq. (1.32) enables the derivation of any 3-point amplitude. In Section 2.1
we will use it to build all the 3-point amplitudes in the Standard Model.

1.3 4-point amplitudes and factorization

We now extend our discussion to on-shell amplitudes for higher-point interactions. Let us
consider the scattering of four massless particles with momenta p;. In this configuration, we
define the following kinematic variables

s=s12=(p1+p2)” = (ps+pa)* = (12) [12] = (34) [34] ,
t=s13=(p1+ps)® = (D2 +pa)* = (13) [13] = (24) [24] , (1.38)
u= s = (p1+pa)* = (2 +p3)" = (14) [14] = (23) [23] .
These are the well-known Mandelstam variables, which obey s+t +u = 0. It is also helpful to
remember that the mass dimension of a 4-point amplitude is [A4] = 0.
At tree level, we can construct two classes of 4-point amplitudes: contact amplitudes and

amplitudes with propagators. In general we have to consider both of these terms, and locality
fixes the 4-point amplitude structure to be the following:

Ay = Amtact 4 As 4 AL 4 Y (1.39)

where A2 is the contact amplitude and A3, A}, A% have poles corresponding to the exchange
of a particle in the s-, t- or u- channels. We will study the two classes of amplitudes separately.
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1.3.1 Contact amplitudes

Contact amplitudes originate from 4-particle interactions and have no momentum poles. The
recipe for constructing them is to write down all possible terms with the proper little group
weights and no negative powers of momenta. This must be done on a case-by-case basis, as
there is no analog of Eq. (1.32) for n-point amplitudes with n > 3.

As an example, we consider the scattering of four identical scalar particles. The lowest-order
contact amplitude is just a constant

Op") : A(1,2,3,4) = Cyg . (1.40)

This corresponds to the well-known A¢?* theory, described by the following interaction La-
grangian

LD Chg ¢* . (1.41)

Higher-order contact amplitudes include terms such as
O(p2) . ./4(]_, 2, 3, 4) = Cd:_g (Clslg + 02813) s (142)

where C; are dimensionless constants. This amplitude arises from an irrelevant dimension-6
operator in an effective field theory, such as

LD Cy_y $*(00) . (1.43)

In Section 2.2 we will explore examples of contact amplitudes within the Standard Model
Effective Field Theory.

1.3.2 Factorizable amplitudes

4-point amplitudes can also be constructed by connecting two (contact) 3-point amplitudes via
a propagator. Each propagator introduces a factor 1/s;;, so the amplitude has a simple pole
for s;; = 0. Generally, 4-point amplitudes exhibit three simple poles at s =0, t = 0 and u = 0.

The construction of 4-point amplitudes from 3-point amplitudes relies on factorization: in
the limit when one of the propagators is on shell, the amplitude has to factorize into the product
of two (on-shell) 3-point amplitudes. For instance, for a boson propagator in the s-channel,
factorization imposes

li A4(1,2.3.4) = w12£hi' —¢" 3.4 1.44
512130 ZA4(777) ;ZA3<77 )512 ZAZ’)( a7)7 ( )

where ¢ = p; + ps = ps + p4 is the momentum of the internal propagator and the summation
runs over the possible polarizations of particle £. Equivalently, Eq. (1.44) can be expressed as

lim s15A4(1,2,3,4) = — > As(1,2,0)A5(4,3,4) . (1.45)
h

S12—>
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Extending this to a general internal particle, whether fermion or boson, the factorization
condition becomes

lim s1244(1,2,3,4) Zz As(1,2,0)As(—2,3,4) , (1.46)

where Fliy, ...,4,] counts the number of fermions and antifermions in the list 4y, ...,4,". For
poles in ¢- and u-channels, we also have

Jim s15A44(1,2,3,4) = ZZFW )23 Ag(1,3,0).As(—£,2,4) (1.47)
lim  s14.44(1,2,3,4) = ZZFM 2 (—1)" As (1,4, 0)As(—¢(,2,3) (1.48)

$14—0

where n;; = 1 if both ¢ and j are fermions, and n;; = 0 otherwise. The (—1) factors account
for possible fermion exchanges when the particles are reordered.

Several approaches can be employed to construct factorizable 4-point amplitudes. Here, we
focus on the “ansatz” method and the momentum shift method.

The “ansatz” method

This method is based on making an ansatz for the amplitude and then verifying that it factorizes
properly. For clarity, let us consider scalar QED, which is the theory of a complex scalar ¢
interacting with a photon ~y. The 3-point amplitudes in this theory are

(23) (31)

23] [31]
(12) - '

A(lg,24-,37) = Cao 1)

A(1¢, 2¢* ) Cd 0

(1.49)

We want to compute the 4-point amplitude for the scattering of two scalars and two pho-
tons?. For this process, we must consider the t- and u-channels, as shown in Figure 1.1. To get

an ansatz for the amplitude, we start by imposing factorization in the ¢-channel. According to
Eq. (1.47),

) Dy Ty

}1_{% A4(1¢72¢* 37,4 )_ _A3(1¢73'J;7€¢*>A3(_£¢72¢>*74;) ) (150)

with £ = p; + p3 = p2 + ps the momentum of the internal scalar. Using expressions Eq. (1.49)
for the 3-point amplitudes,

(3] [31] (24) (40) __ » (14)(24)

ey ey (Y

li A1, 2,37, 47) = Ol

) Ey o Ty

where in the last step we have used that [¢3] (4¢) = [13] (41) and [14] (¢2) = [13](32). This is
a good ansatz for the amplitude, since it has the right dimensionality and little group weights.

1See Appendix A.3 for details on the origin of the i¥'1¥ factor.
2In Scalar QED this amplitude could get a contribution from the contact interaction ¢¢*A4, A*. However,
one can prove that this term gives a vanishing contribution to the on-shell 4-point amplitude [14].
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2¢ 7 4¢ 2¢ ————— AN Sw 2¢ ————— NAAAN 3¢
t-channel u-channel

Figure 1.1: Feynman diagrams for the amplitude A4(1¢,2¢*,3j,4;) in sSQED at tree level.
There are two factorization channels: t and .

The full amplitude will be Eq. (1.51) plus a term that goes to zero when ¢t — 0. Next, we check
the factorization in the u-channel. From Eq. (1.48),

. _ 1 _
}ng(l) Au(1g,24-,35,47) = EA3(1¢,47,q¢*)A3(—q¢,2¢*,3;“)
1 » {q4)(41) [23] [3q]

_ _CZ_ — _ 2_
u =0 (lg)  [g2] =0

with ¢ = p; + ps = p2 + p3. Again, the full amplitude includes Eq. (1.52) plus a term that
vanishes as u — 0. By comparing Eq. (1.51) and Eq. (1.52) we conclude that the amplitude is

(14) (24) (1.52)

(13) (23) ~

(14) (24)

A4<1¢,2¢* 3+ 4_) - —ngom .

) Sy Ty (153)

In this example, deriving the full amplitude by imposing factorization was straightforward,
but that is not always true. In order to compute scattering amplitudes in a systematic way for
any number of particles, we have to use momentum shifts.

Momentum shifts

The key idea is to build higher-point amplitudes from lower-point amplitudes by means of
complex deformations of the external particle momenta. This is done using the analytical
properties of on-shell scattering amplitudes.

Let us first introduce the concept of complex momentum shifts [14]. Consider the scattering
amplitude A, of n massless particles. The on-shell condition requires p? = 0 fori = 1,...,n, and
momentum conservation enforces . pi' = 0. Consider also a set of n complex four-vectors
r# with the following properties:

(a) >0, ri=0.
(b) 7}'2 =0and ryr; =0fori,j=1,.. n.

(¢) mp; =0 foreachi=1,..,n.
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We define the shifted momenta p!" as
P =pl + 2t zeC. (1.54)

From properties (a), (b) and (c), it is easy to check that the shifted momenta are also on shell
(p? = 0) and obey momentum conservation (>_;_, p' = 0). For this reason, we can consider the
scattering amplitude A, in terms of the shifted momenta p! instead of p!. We define this
shifted amplitude fln(z) as a function of the complex variable z. The original amplitude is
recovered for A,(z = 0) = A,.

The analytic structure of fin(z) is easy to determine if A, is a tree-level amplitude. In that
case, A, has simple poles proportional to 1/PF, where P{' = ., p! and {p!'},_; is a subset of

momenta. The shifted propagators are proportional to 1/ Pf, with

2
= (Zﬁ?) =P} +2:PR;,  Ri=>) 1. (1.55)

il i€l

Notice that ]512 is linear in z, since the terms that should go as z? vanish by property (b). It is
convenient to write the shifted propagator as

1 27 . P12
= with zy = — . 1.56
P Piz—ar)’ T ToPR, (1.56)

From this expression, it is easy to see that the only singularities of fin(z) in the complex plane
are simple poles for z = z;. For generic momenta, z; # 0 and all the z; are different.

Now let us consider A, (z)/z as a function of z with simple poles at z = 0 and z = z;. By
Cauchy’s theorem, the contour integral of An(z)/ z along a circle surrounding the origin is

j{ A d = 27 Reg (A—(Z)) = 2miA, (2 = 0) = 2miA, . (1.57)

z

We can deform the contour ¢y to pick up the other singularities of the function, as shown
in Figure 1.2. This leads to

§ A - (z f jgm) Ay, — Y R (An;

where B,, is the residue of the pole at infinity, which is equal to the O(2°) term in the Laurent
series of A, (z) at z = co. Equating Eq. (1.57) and Eq. (1.58), we obtain

—§E<Z

From Eq. (1.56), the residue of A, (z)/z at z; factorizes into two on-shell subamplitudes:

Z)> —omiB,,  (1.58)

) ~ B, . (1.59)

Res (A"—(Z)> = —AL(zI)%flR(zI) : (1.60)

2=z z bi
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n

Figure 1.3: Diagram of the factorization of A, at the pole z = z;.

This is depicted schematically in Figure 1.3. It looks similar to the usual Feynman diagrams,
but remarkably the internal line is now on-shell P? = 0. The subamplitudes flL and /lR are
both scattering amplitudes for n — 1 particles.

Combining Eq. (1.59) and Eq. (1.60), we obtain

o 1 -
A, = ZAL@,)F?AR(Z,) — B, , (1.61)

which is an expression for A, in terms of lower-point amplitudes A,,_; plus the contribution
from the pole at infinity B,,. This term has in general no expression in terms of lower-point
amplitudes, so for practical uses of Eq. (1.61) we want it to vanish. To ensure that B, = 0,
we must use a momentum shift that satisfies .,Zln(z) — 0 for z — oco. This is called a good
momentum shift.

For a good momentum shift, Eq. (1.61) leads to the so-called on-shell recursion relations
[10, 44]. The main idea is to use lower-point amplitudes as building blocks for higher-point
amplitudes. Recursion relations are a powerful tool to compute general n-point amplitudes and
have been applied to the context of gauge theories and gravity, among others [45-49]. Some
examples of momentum shifts are:

e BCFW shift: This is one of the most relevant momentum shifts. It was first proposed in
[10] and is used to obtain the BCFW recursion relations. In this shift, two of the external
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momenta —that we label as ¢ and j— are shifted in the following way
By =)=z =1, =5, l=Ul+=zl]. (1.62)
This is a [j, 7)-shift.

e Risager shift: This is a three-line shift that was introduced in [50]. We choose three of
the external legs —1,2 and 3— and apply the following deformation,

=11, [1)=1)+=[23]n)
2=12] ., 12)=12) +=[31]n) , (1.63)
3] =13] . 13)=13) +2[12]n) ,

with |n) a reference spinor that can take any value. Another option for this shift is the
complex-conjugate of Eq. (1.63).

We now use momentum shifts to rederive the amplitude Eq. (1.53) that we obtained in the
previous section. As shown in Figure 1.1, the scattering of two scalars and two gauge bosons in
scalar QED involves the ¢- and u-channels, so the amplitude has two simple poles for t = 0 and
u = 0. The shifted amplitude fl4(z) has two simple poles at z; and z,. For a good momentum
shift, Eq. (1.60) reduces to

_ ; L _
A4(1¢7 2¢>*7 3’4;’ 4—y) = A3(1¢7 3’4;’ €¢*; Zt)¥A3<_€¢a 2¢*7 4—\/ 3 Zt)

(1.64)

~

_ 1.
+-’43(1¢74fy7Q¢*;ZU)E-A?)(_Q(]%Z(?*:S#;ZU) ;

with £ = p; + p3 = ps +ps and ¢ = p; + ps = pa + p3. We have defined fln(l, ., n; zy) as the
amplitude A, (1,...,n) with shifted momenta for z = z;.
The next step is to choose a momentum shift. We will use the BCFW [4, 3)-shift:

3)=13)—214),  Bl=1, =4, [4=4+z23. (1.65)

One can check that this is a good shift, since it has the right large-z behavior when applied to
Eq. (1.53). The shifted propagators of the amplitude are

t = (p1+ps)* = (13)[13] = (1] (|3) — 2]4)) [13] , (1.66)
i = (pr + pa)* = (14)[14] = (14) 1] (|4] + 2 3]) - (1.67)
The poles of fl4(z) are the values of z where the propagators go on-shell,
o ~ (13)
0="tle, = (1 (I3) =z |4) [13] , = 2z = [y (1.68)
0= ilomey = (L) (1 (4] + 2 [3]) , = 2= —% | (1.69)
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With this, the shifted subamplitudes in Eq. (1.64) are

A 1. 2 103][31] (24) (4. 2 41) [31
A3(1¢,3$,€¢*;zt);Ag(—€¢,2¢*,4;;zt) _ G [3][31] (24){46)  Cgy (23) {41) [31]

toog o (2) t(32) - 53 (42) (1.70)
_ o2 (24) (14)*
- (12) (34) (13)
e L C3o (q4)(41) [23[3q] _ C3, [23)[31] (41)
As(1g, 47, 4o 2u) = As(—qs, 26+, 375 20) = =0 -~ = 14
(1g,45, 40 )u (=G, 24 ) « (g g2 u [42]“%E%[32] )
e 233, (24) (14) ¢
= Cizo [12] [34] [14] ~Clizo (23)(13) s
Summing Eq. (1.70) and Eq. (1.71) leads to the 4-point amplitude
by e (14)(24) ((14)  (A3)[A3]\ ., (14) (24)
Ao 20854) = G (G~ ) = oty 07

which is equal to Eq. (1.53).
Our derivation relies on the fact that [4,3) is a good momentum shift. This can be proved
by applying the shift to A4 in Eq. (1.53) and showing that the amplitude vanishes at large z,

N . 14) (24)
lim Ay = —C?_, lim [ < ] =0. 1.73
A Av=—Cano 00 | 03y =2 (1)) (23) — = 24)) (173)
An example of a bad momentum shift is the BCFW [3, 4)-shift, since it leads to
i o g | (14) — 2(13)) ((24) — 2(23))
;LIgOA4 =—-Ci ;Lrglo { 13) (23) — 00, (1.74)

so the pole at infinity gives a non-vanishing contribution to Eq. (1.60). Notice how the only
difference between both shifts is the helicity of the shifted particles: [—, +) is a good shift but
[+, —) is a bad shift.

A priori, it is a challenging task to choose a good momentum shift to build an amplitude.
To determine whether a shift is good or not, we have to study the limit of A, (z) when z — co.
However, in the context of recursion relations, we do not know A,, beforehand. The solution is
to do a general study of the large-z behavior of amplitudes in a given theory:

e For example, N. Arkani-Hammed et al. used the background field method to study gauge
theories in [51]. They concluded that gluon amplitudes in pure Yang-Mills theory are
constructible with BCFW shifts for helicity choices [—, =), [+, +) and [—, +), but they
are not constructible with a [+, —)-shift.

e More recently in [49], C. Cheung et al. also applied the background field method to study
the constructibility of amplitudes in different theories. They determined the types of
momentum shifts that are valid for a collection of theories, including gauge theories with
fermions and scalars, supersymmetric theories and the Standard Model.
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1.3.3 Generalization to n-point amplitudes

Our discussion of 4-point amplitudes is naturally generalized to n-point amplitudes with n > 4.
In general we have to consider a contact n-point interaction plus the factorizable terms for all
the possible channels,

An :‘A(T:lontact_}_Z:‘Aj17 (175)

where 7 denotes the different factorization channels. Using momentum shifts, we can compute
the factorizable amplitudes A from the lower-point amplitudes of the theory: A,, with m < n.
The resulting A,, amplitudes form the basis for higher-point amplitudes: A; with n < M.

Overall, we have seen how on-shell methods are powerful tools for computing general tree-
level n-point amplitudes in a recursive way. Specifying the particle contact and interactions of
a theory fixes the on-shell contact amplitudes, which approximately correspond to operators in
the Lagrangian approach. Then, these contact amplitudes serve as the fundamental building
blocks for constructing higher-point amplitudes.

1.4 Conclusions of the chapter

In this chapter, we have explored the construction of tree-level on-shell amplitudes from first
principles, bypassing the need to define a Lagrangian. In particular, we have obtained tree-level
amplitudes using locality, Lorentz symmetry and dimensional analysis.

First, we have considered theories for particles of spin-0, -1 and -2. Imposing on-shell
kinematics and the correct dependence on polarizations, we have determined all possible 3-point
amplitudes. We have identified the amplitudes associated with scalar field theory, non-abelian
gauge theory and General Relativity, together with higher-order interactions from effective field
theories.

We have introduced the spinor-helicity formalism to streamline the building of 3-point am-
plitudes for particles of any spin. Considering amplitudes of well-defined helicity, we have used
little group covariance to constrain the general structure of 3-point amplitudes, as shown in
Eq. (1.32).

Regarding higher-point amplitudes, in general we have contact terms plus factorizable con-
tributions, which contain simple poles associated with propagators. In the limit when one of
the propagators goes on shell, the amplitude factorizes into a product of lower-point subampli-
tudes. The computation of factorizable amplitudes can be systematized with the technique of
momentum shifts. This leads to recursion relations that allow us to construct general n-point
amplitudes in terms of the fundamental contact amplitudes.

In summary, on-shell amplitude methods provide a practical and efficient framework for
studying scattering processes. These methods lay the groundwork for exploring more complex
systems, including loop amplitudes in effective field theories, which we develop in subsequent
chapters.
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Chapter 2

The on-shell Standard Model and
Standard Model Effective Field Theory

In this chapter we present the on-shell scattering amplitudes associated with particle inter-
actions in the Standard Model (Section 2.1) and the Standard Model Effective Field Theory
(Section 2.2). We primarily follow the approach in [1].

2.1 The on-shell Standard Model

The Standard Model (SM) of particle physics is the theory of electroweak interactions and
quantum chromodynamics (QCD). It describes the interactions of elementary fermions and
bosons through a non-abelian gauge theory with symmetry group SU(3). x SU(2); x U(1)y.
The particle content of the Standard Model is summarized in Table 2.1.

Gauge bosons (spin 1) Fermions (spin 1/2) Scalars (spin 0)
B (1,1)o [ (1,2) 12 H | (1,2)1)
W (1,3) e (1,1),
G (8,1)o q (3,2)_12

u (3,1)_4

d (3,1)_4

Table 2.1: SM particles and their SU(3). x SU(2), x U(1)y representations. We use the fol-
lowing notation: (SU(3). representation, SU(2), representation)yi) nypercharge- FOr €ach fermion
there are three generations or families, i.e., [ = (I, 1 1®)) with {1,2,3} = {e, u, 7}

To compute on-shell scattering amplitudes in the Standard Model, we must specify the
interactions between the particles in Table 2.1. In other words, we must define the fundamental
contact amplitudes in the theory, which are used to build any n-point amplitude. An important
caveat is that the number of contact amplitudes that can theoretically be constructed with
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SM particles is infinite. However, since the Standard Model is defined as a renormalizable
theory, the only valid amplitudes are those derived from renormalizable interactions in the
Lagrangian formalism. These are amplitudes where the coupling constant has a non-negative
mass dimension [4]. Other contact amplitudes are not included in the Standard Model and
instead they are considered in the context of the Standard Model Effective Field Theory (see
Section 2.2).

2.1.1 Contact amplitudes

In this section we list the Standard Model contact amplitudes in the massless limit. Since we
require the renormalization of the theory, there are only 3-point and 4-point amplitudes. We
begin with those involving gauge bosons. Indices a, b, ... represent the adjoint representation of
non-abelian groups, while 7, j, ... denote the fundamental representation. We have:

e Three gauge bosons:

A(1a2a3a):g—vfabcﬂ A(1a2a3a):g_vf“bcﬂ (2.1)
e One fermion - one antifermion - one gauge boson:
<13>2 a\J [23]2 a\J
A(Lyi, 24, 3va) = gv 12) (T*); . A(lys,25,3ve) = gv[l—Q](T )i - (2:2)
e T'wo scalars - one gauge boson:
(13) (23) ' ay [13] (23] ayj
AL, 2, 3va) = QVW(T )i Allmi, 241, 3ve) = gv 12 (T3 (2.3)

where gy is the dimensionless gauge coupling, f%¢ are the structure constants and T are the
gauge group generators, normalized so that Tr [T orT b] = §% /2. We refer to the gauge couplings
of U(1)y, SU(2), and SU(3). as, respectively, g1, g2 and g3. For SU(2)., the structure constants
correspond to the Levi-Civita tensor € and the generators are T¢ = ¢%/2, with ¢ the Pauli
matrices. For SU(3),, the structure constants are f2 and the generators are the Gell-Mann
matrices A. For the abelian group U(1)y we must replace (T%)] — Y;67, with Y; the hypercharge
of particle i.

The relative signs between Eq. (2.2) and Eq. (2.3) are fixed by requiring the proper fac-
torization of 4-point tree-level amplitudes. This is the equivalent of gauge invariance in the
Lagrangian approach (see [42]). Finally, note that the first and second amplitudes in Eq. (2.1),
Eq. (2.2) and Eq. (2.3) are related by CPT invariance.

There are also Yukawa interactions between fermions and scalars. For one family, we have

A(Le, 20, 3p51) = ye (12) 65 A(le 2, 3) = v [12] 6] | (24)
ALy 245, 351) = ya (12) 55045 , A(lg,,24,5:3m) = ya[12] 6104 . (25)
A(1UA7 2qu’ 3Hj) = Yu <12> 6ij(SAB ) A(lﬂm 2%,37 BHJ) = Yu [12] 6Z'J'(SAB ) (2'6)
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with y., yq and ¥, the dimensionless Yukawa couplings, which can be taken as real for a single

fermion family as we will consider here. The generalization to three families is straightforward.

Note that we have used i, j, ... for the SU(2), indices and A, B, ... for the SU(3), color indices'.
Finally, the only non-vanishing 4-point contact amplitude involves four scalars:

AL 200,31, 4y1) = A (070% + 610%) (2.7)
with A\ the 4-scalar coupling, which has mass dimension zero.

It is worth mentioning how the helicities of SM contact amplitudes are fixed by dimensional
analysis. For example, 3-vector SM amplitudes can only be A(1ye, 2y, 3yg) and A(1ye, 2ve, 3ye),
as given by Eq. (2.1). The all-plus and all-minus helicity choices are absent in the SM and in-
stead they correspond to non-renormalizable interactions. This structure is hidden when looking
at the SM amplitude in terms of momenta and polarization vectors, which is

A(lya,2ys,3ye) = Ca—o fave [e162(D163— D2e3) + eae3(p2er — pser) + eser(psea— prea)] , (2.8)

as we derived in Section 1.1.2. This highlights the convenience of using the helicity basis for
on-shell amplitudes.

An important observation is the absence of a 4-vector contact amplitude. In the Yang-Mills
Lagrangian, aside from the cubic interaction V20V there is a quartic term V4 that is needed to
ensure gauge invariance. When considering on-shell amplitudes, however, the cubic term V29V
already captures all the relevant information [14]. Indeed, the 3-vector on-shell amplitude is a
gauge-invariant object that can be used to compute gauge-invariant higher-point amplitudes.
Thus, there is no need to include an additional 4-vector contact interaction.

2.1.2 Factorizable amplitudes

Following 1.3.2, we can build higher-point factorizable amplitudes by imposing the correct
little-group weights and ensuring proper factorization. For example, we list some 4-point SM
amplitudes that will be used in Chapters 4, 5 and 6 of this thesis:

61’)\0, [41]2 6Z A\ <32>2
A(10172dA,3qu74HJT) = —Y4939; ABM = Yag39; ABW ) (2.9)
with g3 and A* the SU(3). coupling and generators.
- [21] [41] - (23) (43)
lwea, 2, 35,4 = T ——— = T): ———r 2.1
A( W+7 6731 Y H;) 9692( )] [24] [23] yeQZ( )J <14> <13> 9 ( O)
with g2 and T the SU(2);, coupling and generators.
(VRUM B4
1g.,2.,3;,4 = ‘Y —-Y. 2.11

!To simplify the notation, we write both covariant and contravariant SU(3).. indices as subindices.
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with g; the U(1)y coupling.

A(13+,2Hi,3Wg,4HJT) = 192Yu(T"); ﬁ (2.12)
a\i <23>2
A(lp, 2, 3Wfa4l’j) = g192Y1(T )j M (2.13)
We will also require the following 5-point amplitude
- (b4) - (35) (34)
Lyya, 2 4y =yegs | (T°T" i 54 T : 2.14
A( W W_I,"_7367 l ’5H;> Yelo (( )] <25> <41> ( )] <32> <51>) <12> ( )

By complex-conjugating the above expressions, we obtain the amplitudes for opposite he-
licities and interchanging particles with antiparticles.

Note that all amplitudes in Eq. (2.9-2.13) have total helicity h = 0. Moreover, nearly all
4-point SM amplitudes have h = 0, as was pointed out in [52]. The only exception are the
A(Le, 2, 3uA74q3-3) and A(14, 24, 30, 4qu) amplitudes for the scattering of four fermions. These
amplitude are proportional to the Yukawa couplings .y, and y4y, and have total helicity
h = —2. In Section 3.4.1, we will use these properties to derive helicity selection rules for the
mixing of higher-dimension operators in effective field theories.

2.1.3 Lagrangian formulation

For clarity, let us see the equivalence between our on-shell amplitudes and the usual Lagrangian
formulation. The contact amplitudes in Section 2.1.1 can be obtained from the Standard Model
Lagrangian?,

Lou = —swiwm —Ltp pw_Lge cmw Diy" D
SM__Z pr NI _Z pv - a T Z (%Z)W ;ﬂ/’)

4 H
Y=Lp,er,QL,uR,dR

v?\’ . 2.15
+ (D, H) D*H — ) (\H|2 — 5) —ye (H'egLy + LrerH) (2.15)

—ya (H'drQp + QrdrH) — yu, (ﬁTﬂRQL + QLURI:[> :

where we have defined I:IZ- = e;H ;‘, with €;; the totally antisymmetric Levi-Civita tensor and
Hj the Higgs doublet. The field-strengths for the gauge fields G;, WJ and B, are

Go, = 0,G%— 0,Go + g3 fGLGE V2 (2.16)
We, = 9,We—0,Wi+ goe™WEWe/V2 (2.17)
B,u,z/ - a,uBu - ayBu y (218)

2Further details on the Standard Model Lagrangian can be found in standard textbooks on particle physics,
such as [4, 53].
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where go, g3 are the gauge couplings, and €%¢, f%¢ are the structure constants for the SU(2),

and SU(3) gauge groups. The covariant derivative D,, is given by

. ara 92 arira 91
D, =8, — Z%)\ G — Z%T we — Z%YZBM , (2.19)
where A\* and T® are, respectively, the SU(3). and SU(2), generators and Y; denotes the hy-
percharge. The SU(N) generators are normalized so that Tr [T, T?] = §%/2.

In Eq. (2.15), fermion interactions are expressed in terms of 4-component Dirac spinors.
For our purposes and for comparison with Table 2.1, it is convenient to use 2-component Weyl
spinors instead. Since we are considering massless fermions, we can write

= ! . er = (€ g = up = (u
LL— (0) 9 QL— <O> ) R ( 70) ) dR (d7 0) ’ R ( 70) ) (220)

where [, q,e,d and u are left-handed Weyl spinors with helicity h = —1/2. Additional details
on the two-component spinor notation can be found in Appendix A.2.

2.2 The on-shell Standard Model Effective Field Theory

The Standard Model can be understood as the low-energy approximation of a more complex
theory, whose characteristic energy scale A is well above the electroweak scale. At low energies,
one can integrate out the heavy degrees of freedom of the complete theory and generate an
Effective Field Theory (EFT). This EFT consists of an infinite tower of effective interactions
expressed in terms of the lighter degrees of freedom of the theory.

For the case of the Standard Model EFT (SMEFT), one has to consider all the possible
(non-renormalizable) interactions of the particles in Table 2.1 and write down the corresponding
contact amplitudes. It is convenient to organize the contact amplitudes in terms of the mass
dimension of their coupling constants. Couplings with negative mass dimensions come from
dimensionless constants suppressed by the energy scale A. The greater the negative mass
dimension, the more suppressed the interaction. To make this dependence explicit, from now
on we adopt the following notation for coupling constants Cy,

Cqy — CA?, (2.21)

where C'is dimensionless and [A] = 1.

The framework of the SMEFT is particularly useful for parameterizing potential new physics
—~beyond the Standard Model- in a model-independent manner. Non-renormalizable SMEFT
interactions describe deviations from the SM in a systematic way, allowing for a structured
analysis of experimental data. We will see an example of this in Chapter 5, where we use the
SMEFT to study the phenomenology of lepton flavor violation.

As discussed in Section 2.1, the Standard Model encompasses interactions with couplings
of non-negative mass dimension. In contrast, the SMEFT describes interactions among SM
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particles with couplings of negative dimension. Then, the basic building blocks of the SMEFT
are contact amplitudes with some factors of 1/A.

In recent years, on-shell amplitude methods have been widely applied to the study of EFTs
and in particular to the task of building a complete basis of interactions for generic theories,
including the SMEFT. Some examples include [32, 54-64]. Here we present a simplified discus-
sion, considering only the kinematic structure of the amplitudes and not their color and flavor
indices. Using the terminology from [13], these are called “color-stripped” amplitudes.

2.2.1 Contact amplitudes

In the context of the SMEFT, the largest corrections to the Standard Model are expected to be
the interactions with the least powers of 1/A. This discussion focuses on amplitudes at order
1/A and 1/A?, for any number of particles n and total helicity h. As explained in Section 1.3.1,
we can build contact amplitudes using dimensional analysis, locality and little group covariance.
Remember that the mass dimension of an amplitude A, obeys

A =4—n, (2.22)

with n the number of scattered particles. Thus, for EFT contact amplitudes at order 1/A™,
the mass dimension of the kinematic piece of the amplitude is 4 — n + m. Knowing this, we
can write down the building blocks of the SMEFT.

Order 1/A

Table 2.2 summarizes the possible contact amplitudes at order 1/A. For each A, we express
the allowed kinematic factors in terms of angle and square spinor products. Each kinematic
factor corresponds to an amplitude with a certain helicity h. Amplitudes with n > 5 are not
present because they would have negative powers of momenta, which is ruled out by locality.
Note also that (..)[..] (with A = 0) is not a valid spinor structure for n = 3, since 3-point
amplitudes cannot have a mix of angle and square spinors (see Section 1.2).

[A,] | [kinematic factor]| | Possible spinor structures
n=3| 1 2 (L] (h==+2)
n=4| 0 1 (), [.] (h==1)
n=>5| —1 0 1 (h=0)

Table 2.2: Allowed spinor structures for contact amplitudes at order 1/A.

Taking into account the spinor structures in Table 2.2, we can build the following amplitudes:
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e n = 3: There are two possible amplitudes with h = —2,

Cvep

Aveg(ly_,2v_,3u) = A (12)* (2.23)
Avg(ly 20.3,) = 9 19) (13 (2.24)
e n = 4: There is one h = —1 amplitude,
Ay (Ly, 20,311, 4n) = Cﬁ” (12) . (2.25)
e n = 5: There is one h = 0 amplitude,
Aps (1,20, 35,49, 5) = Cus (2.26)

A

However, for the SM particles listed in Table 2.1, most of these amplitudes are forbidden due
to the SM charges. In fact, there is only one contact amplitude in the SMEFT at order 1/A,
up to complex-conjugation,

C¢2H2

-/41/)2H2(1¢721Z173H74H) = <12> ) (227)

where v is a lepton. Note that this amplitude violates lepton number conservation by two units.

Order 1/A?

The possible amplitudes at order 1/A? are shown in Table 2.3. In this case locality allows for
amplitudes up to n = 6. The structures (..)*[..] and (..) [..]* are not present in n = 3 because
they mix square and angle spinor products.

[A,] | [kinematic factor] Possible spinor structure
n=3| 1 3 (D% L) (h=+3)
n=4/| 0 2 (L) (h=%x2); ()] (h=0)
n=>5| —1 1 (), [] (h=%£1)
n=6| —2 0 1 (h=0)

Table 2.3: Allowed spinor structures for contact amplitudes at order 1/A2.
Within the SMEFT, we have the following amplitudes:

e n = 3: There is one possible amplitude,

Cys

Avs(lye, 20, 3ye) = S5 (12) (23) (31) (2.28)
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e n = 4: There are three distinct amplitudes for h = —2,

Avemz(lv_, 2y, 3m,4p1) = C\//:2H2 (12)* (2.29)
Aven(ly 20,3 4m) = 2 1) (13) (2.30)
Apa(ly,24,34,44) = (Cya (12) (34) 4+ Cla (13) (24)) é : (2.31)

Additionally, there are three amplitudes for h = 0,
Acrs (L, 20, 31, 4mt) = (Coms (12) [12] + Chypga (13) [13]) % ; (2.32)
g (L. 253, 4ar) = 2902 (13) 23] (239
Agege(Ly, 24, 35,45) = % (12) [34] . (2.34)

e n =>5: Only one h = —1 amplitude exists,

Agerrs (L, 20,30, 45, Bygt) = % (12) . (2.35)

e n = 6: Only one h = 0 amplitude exists,

Aps(Le, 20,30, 451, 551, 651) = (2.36)

A2
2.2.2 Lagrangian formulation

In the context of an EFT, contact amplitudes are directly equivalent to effective operators
in the Lagrangian approach. In this language, the effective Lagrangian can be thought of as

an expansion in effective operators of some high-energy theory with energy scale A. For the
SMEFT, we can write

1 1
Lovmrr = Loy + 1 OZ Co.O5 + = OZ CoeOs + ..., (2.37)

where O,, are operators of mass dimension n for n > 4, also known as higher-dimension opera-
tors. The dimensionless coefficients C»_ in front of the operators are called Wilson coefficients.

Amplitudes at order 1/A correspond to dimension-5 operators. In the SMEFT, the only
amplitude at this order is given in Eq. (2.27). It corresponds to the following interaction term:

C¢2H2
A

which generates the Majorana neutrino masses after spontaneous symmetry breaking. We de-
fine L§ = CLT, where C is the charge conjugation matrix satisfying Cy#C~! = — (y)".

LD

(LS*LY) eijenm H H™ (2.38)
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At the next order 1/A? we find dimension-6 operators. It can be shown that there are
59 linearly independent operators of dimension 6 in the SMEFT [65], not counting hermitian
conjugations and fermion generation indices. For instance, the 3-point amplitude in Eq. (2.28)
corresponds to the following operators:

LD frVEVIVer LD fUYERyer. (2.39)

Appendix B provides a comprehensive list of all dimension-6 operators in the Warsaw basis
[65] and the exact relation between those operators and the on-shell amplitudes of the previous
section.

2.3 Conclusions of the chapter

In this chapter, we have studied the Standard Model (SM) and the Standard Model Effective
Field Theory (SMEFT) through the framework of on-shell scattering amplitudes. In particular,
we have explored how these theories are defined by their particle content (Table 2.1) and the
contact on-shell amplitudes describing particle interactions.

For the SM, we have presented the contact amplitudes corresponding to renormalizable in-
teractions, which serve as the theory’s building blocks. We have found that only certain helicity
choices are allowed for some contact amplitudes. This feature is easily observed when working
with on-shell amplitudes in the helicity basis, but is obscured in the traditional Lagrangian
approach.

For the SMEFT, we have classified contact amplitudes based on their suppression by powers
of the new physics scale A. We have explicitly built all color-stripped amplitudes at orders 1/A
and 1/A?, which correspond to dimension-5 and dimension-6 operators.

We have emphasized the power and efficiency of the on-shell formalism in analyzing both
SM interactions and extensions via effective field theories. This provides the foundation for the
on-shell renormalization methods discussed in Chapter 3.
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Chapter 3

SMEFT renormalization: the on-shell
way

In this chapter we apply on-shell amplitude methods to the computation of anomalous dimen-
sions in effective field theories, focusing on the SMEFT at order 1/A%. We include some of the
main results from [1].

Until now we have only considered tree-level scattering, so the next step is introducing loops.
Within perturbative quantum field theory, tree-level amplitudes receive radiative corrections
from loop processes. These corrections are suppressed by a factor 1/1672 for each loop, meaning
that higher-order terms correspond to diagrams with more loops. Any loop diagram involves an
integral over the loop momentum £*, which can diverge in the ultraviolet region, when & — oo.
Through a process known as renormalization, these divergences are addressed by absorbing
them into redefinitions of physical parameters, so that all the observable quantities are finite.
The subject of renormalization is covered in every textbook on quantum field theory, see for
example [4, 53, 66].

A feature of renormalization is that it induces the running of coupling constants with the
energy scale. In a theory with effective operators O;, the running of their corresponding Wilson
coefficients C, is given by the anomalous dimension +;, defined as

d Co,
Yi = dlnu Z’Y’L] OO] P (31)

with p the renormalization scale. Operators of the same dimension mix with each other, so
we can write ; as a sum of other couplings Co, times a coefficient v;;, which constitutes the
anomalous dimension matrix for the mixing of O; into O;.

At the phenomenological level, the computation of 7; in the SMEFT is essential for under-
standing which higher-dimension operators contribute to a particular physical observable. The
corresponding Wilson coefficients can be constrained by comparing the theoretical predictions
with experimental measurements. This serves as an excellent tool for searching for new physics
beyond the Standard Model. We will see some applications of this in the context of several
lepton flavor violating processes in Chapter 5.
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AV = A e TAT YA

Figure 3.1: Diagrams for the 1-loop amplitude A83 Ao, is the tree-level contact amplitude

associated with the operator O;. Ai]j'lwp 1s the 1-loop amplitude generated by an insertion of the
Aoj contact interaction. (5Aij are the counterterms.

Our discussion is organized as follows: Section 3.1 presents the basics of renormalization. In
Section 3.2, we use on-shell amplitude techniques to derive three different methods to compute
anomalous dimensions for mixings at order 1/A% The effect of IR divergences is analyzed in
Section 3.3. Section 3.4 includes additional remarks regarding topics such as helicity selection
rules, mixings at order 1/A and 2-loop renormalizations. Finally, we conclude in Section 3.5.

3.1 Review of renormalization

Let us consider a 4-point tree-level contact amplitude Ap, corresponding to the operator O;.
An amplitude with the same external legs can be generated at one loop, as shown in the third
diagram of Figure 3.1. One vertex corresponds to the contact interaction Ap, associated with
the operator O;, while the other vertex corresponds to marginal interactions. We will call this
amplitude ,4;1001’, and we are interested in the cases where dim (O;) = dim (0O;). The full

1-loop amplitude AS’ is equal to
-’483 = Ao, + Z A;}IOOP + Z 0A;; , (3.2)
J J

where the summation over j is a summation over all possible Ao, that generate Ao, at one
loop. 6.4;; is a counterterm that must be introduced to cancel the ultraviolet divergence of the
loop amplitude. This expression is depicted in Figure 3.1.

The next step is to consider the Passarino-Veltman (PV) decomposition of AZlOOp. Any
1-loop amplitude has a decomposition given by [67]

Al-loop _ Z C«éa) Iz(a) + Z C?Eb) I?Eb) + Z Cic) [zEC) + R , (33)
a b ¢

where [, are master scalar integrals with m propagators and the coefficients ), are rational
functions of the kinematic variables (ij) and [ij]. The master integrals are defined as

m ~4—D dDg 1
In = (=00 / i2m)P 20— P> (0= Pr— Py (0= S0 Pa)?

n=1

(3.4)

36



s _ Zcéa) + ch(,b) + Zcic)
a b c

(1-loop)

Figure 3.2: Passarino-Veltman decomposition of a 1-loop amplitude. Any 1-loop amplitude can
be written as a sum of master integrals I, I3 and Iy times some coefficients. Céa) correspond

to bubbles, Céb) to triangles and C’ic) to bozes.

where P, are sums of external momenta. We have used dimensional regularization with D =
4 — 2¢, and [ is some emerging energy scale. The first three pieces in Eq. (3.3) are called,
respectively, bubbles, triangles and boxes due to the topology of the master integrals. The last
term R corresponds to rational functions of the kinematic invariants, and it will play no role
in our discussion. A diagrammatic example of the Passarino-Veltman decomposition is shown
in Figure 3.2.

One can check that I is UV divergent, while I3 and I, are UV finite. Indeed, the regularized
bubble integral is given by

@_ 1 [1 25 '
I = 162 E+ln "y + finite terms| , (3.5)

with P, the sum of external momenta entering the bubble. Notice how the UV divergent
term 1/e is accompanied by a logarithm of the energy scale fi, as is customary in dimensional

regularization.
Using the PV decomposition, the 1-loop amplitude from Eq. (3.2) can be written as

~2

1 1
Agmop = o5 Z Cé“) {Z +1In (—MPQ) + finite terms} , (3.6)

where the summation goes over all the bubble integrals with an insertion of Ao, that generate
an amplitude proportional to Ap,.

Although AZIOOP is UV divergent, the full physical amplitude AS) must be finite. For
that reason we must add a counterterm 0.4;; that cancels the divergence of AZ-IOOP. There are

several ways to define the counterterm, but for clarity we choose 0.4 such that Agl) = Ap, at

momentum P? = —y%. Using this prescription, the counterterm can be written as
1 o [1 i ,
SA;; = ~T62 202( ) {E +1In (E) + finite terms} , (3.7)

a

with p some arbitrary energy scale. It is convenient to choose p ~ fi, so that logarithms of i/
are small. Finally, the renormalized amplitude is

2
1 _ 1 (a) L
Ao, = Ao + 15 ZG:CQ In (_—P2> . (3.8)
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This amplitude must obey the Callan-Symanzik equation [68, 69],
0 W9 W] 40 _
M@ + ;@ ax T Ao, =0, (3.9)

where 6&1) is the 1-loop beta function for the marginal coupling A and ~; is the 1-loop anomalous
dimension associated with Ap,. At first order, the anomalous dimension is related to the
counterterm d.A;; by [66]

0
YiAo, = 1y, ; Co,0A; - (3.10)
Using our result Eq. (3.7) for the counterterm, we have
0 Co, (@)

a

Naively we could just associate this quantity to the anomalous dimension, but that would
not be accurate. First, we have to take into account a subtlety involving “massless” bubble
integrals, which are those IQ(G) with P? = 0. Massless bubbles do not contribute to the PV
expansion because they are dimensionless and vanish. This comes from a cancellation between
IR and UV divergences in dimensional regularization when we set u = pyy = g, so the
logarithm In (ugy/pr) is zero. The terms proportional to In(uyy) in massless bubbles must
be included in the calculation since they give an extra contribution to 7;. To account for these
extra terms, we must compute the IR divergences of the amplitude and subtract them. Doing
that, Eq. (3.10) becomes

OO,’ a ]
Ao == <W ;c; ) IJRAOZ.) . (3.12)

J

Equivalently, we can write

(a)
D Ao, =Y A i Mg _ Co T Cy" iAo,
Y A(’)i = j Yij C(’)J-AOl- y with Yij .A(f)z. = C_O] - W —"YIROOj ; (313)

where we have used the definition of the anomalous dimension matrix v;; in Eq. (3.1).

The term 71% includes the contributions from IR divergences, which are also proportional to
the tree-level amplitude. The anomalous dimension gets simplified in cases where IR divergences
are absent. For example, 'yf{{ = 0 for the renormalization of Ao, by another amplitude Ao,
with different number of particles, helicities or species. Other examples are renormalizations
where both Ap, and Ap, are 4-point contact amplitudes, since massless topologies are absent
in those theories. We will first focus on the case where ’yliﬂ = 0 and leave the discussion of IR
divergences for Section 3.3.
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3.2 Renormalization with on-shell amplitude methods

From Eq. (3.13) we see that, in cases where IR divergences are absent, the 1-loop anomalous
dimension fyi(jl) can be computed solely from the bubble coefficients Cy. One of the most efficient
ways of obtaining these coefficients is by using the so-called generalized unitarity method [11,
12]. This method allows us to reconstruct loop amplitudes without explicitly carrying out loop

integrals by applying unitarity cuts.

3.2.1 Generalized unitarity method

Here we briefly introduce the basics of generalized unitarity. More details can be found in
[11, 12, 14]. A unitarity m-cut is the operation of “cutting” a loop amplitude by putting
m propagators on shell. As a prescription, we use the Cutkosky rule [70] of replacing the
propagator (¢ — P)~2 by a delta function §7((¢ — P)?), where the + superscript indicates that
we select the positive energy solution. After putting the particles on shell, we have to integrate
over the possible four-momenta of the cut propagators. Up to normalization, the m-cut of an
amplitude A is

CutiA] ~ / 40, 5 (0 — PY?) 64(x) A, | (3.14)

with ¢« = 1,...,m. ¢; are the four-momenta of the cut propagators and A; are the remaining
subamplitudes after the cut. §%(x) imposes momentum conservation at each subamplitude.

The generalized unitarity method is the procedure of building a loop amplitude from its
unitarity cuts. The advantage of this method is that, in general, cutting a loop amplitude is
easier than computing the amplitude itself. This is because the unitarity cut of an amplitude
is equal to a product of lower-loop subamplitudes, which are simpler to compute, integrated
over a phase-space. In order to see how this works, let us write down again the PV expansion
of a 1-loop amplitude,

RS SRS SRR s 19
a b c

Up to rational terms, the amplitude is completely determined by its coefficients C,,, which can
be obtained from unitarity cuts. At one loop, the computation of unitarity cuts is remarkably
simple, since we only have to do a phase-space integration of a product of tree-level amplitudes.
The usual procedure for reconstructing A'°°P is the following:

e From the definition of the master integrals I,,, it is trivial to see that Cut,|[I,,] = 0 for
n > m, since there are not enough propagators to cut. This implies that Cuty[.A1°P]

only gets contributions from boxes. Thus, we can obtain all the box coefficients Qic) by
computing all possible 4-cuts of the 1-loop amplitude.

e Next, we consider 3-cuts of the amplitude. The triangle coefficients C:gb) cannot be ob-

tained as easily as C’ZEC), because Cutz[A*°P] includes contributions from both box and
triangle integrals. However, since we have previously determined the box coefficients with
4-cuts, the C’éb) coefficients can be unambiguously determined from all possible 3-cuts.
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e Finally, Cuty[A1°°P] gets contributions from all the integrals: bubbles, triangles and
boxes. Once we have obtained the box and triangle coefficients, we can determine all the
. (a) i .
possible C5 ™ from the 2-cuts of the amplitude.

Finally, let us briefly comment on the rational terms R of the 1-loop amplitude. These
terms are not included in the generalized unitarity method, since they cannot be obtained from
any unitarity cuts. There are several ways to compute R, but they are usually quite involved
and go beyond the scope of this work. For a discussion on this topic, see [71-73|. Luckily for
us, rational terms can be altogether ignored in our analysis, since they do not contribute to the
anomalous dimensions in Eq. (3.13).

The generalized unitarity method gives us a recipe to systematically obtain the C5 coef-
ficients of a 1-loop amplitude. If we apply it to the amplitude AZIQOD in Eq. (3.2), we can
calculate the 1-loop anomalous dimensions 72-(‘1) (modulo IR divergences). This is a valid pro-
cedure. However, it can be quite cumbersome to obtain all the box and triangle coefficients in
order to determine the bubble ones. Ideally, we would like to bypass the computation of C; and
C3 to derive the Cy coefficients directly. We will present three different methods for achieving

this in the following subsections.

3.2.2 Method I: v;; from amplitude 2-cuts

As we have just seen, there is generally no one-to-one correspondence between 2-cuts of a 1-loop
amplitude and the bubble coefficients C5, because 2-cuts receive additional contributions from
triangle and box integrals. However, we will show that for amplitudes at order 1/A? in the
SMEFT, the bubble coefficients can be obtained directly from 2-cuts. First we present the final
expression for the 1-loop anomalous dimensions, which we will prove later. For amplitudes
without IR divergences at order 1/A?, Eq. (3.13) can be rewritten as [1]

%‘j.Aoi(l,Q,...,n) =
1 Co, ~
_TﬁC_Z/dLIPSZ S ot Ao, (o by bs) X Asu(—Lle, —1,..),  (3:16)

ext.legs f1 o
distrib.

with no summation over i, j. In the right-hand side (RHS) we have a summation over the 2-cuts
of the amplitude A};IOOP. For each cut, we must identify the tree-level subamplitudes Ao, and

Ay ./zl\oj is an m > 4-point amplitude that contains the contact amplitude Ap,, of order 1/A%.
Agy is an m’ > 4-point amplitude of order A°, i.e., containing only relevant and marginal cou-
plings. Clearly, n = m +m’ — 4. The dots ... in the arguments of Ao, and A4 correspond to
the external legs (1,2,...,n), that are distributed between the two subamplitudes'. There is a
summation over the possible distributions of the external legs, which is equivalent to a summa-
tion over the possible 2-cuts of the amplitude. Notice the absence of 3-point subamplitudes in
Eq. (3.16), since they would lead to massless bubbles that vanish in dimensional regularization.
This reduces the number of 2-cuts that we must compute and simplifies the v;; calculation.

f the order of the external particles in the RHS of Eq. (3.16) is different than the order in the left-hand
side (LHS), a minus sign must be included for each pair of exchanged fermions.
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The integral in the RHS of Eq. (3.16) spans the Lorentz-Invariant Phase Space (LIPS) of
the cut momenta ¢; and ¢5. It is defined as

/ dLIPS = / A4y dly 5T (26T (2)6W (%) (3.17)

where §%(*) imposes momentum conservation at both subamplitudes. The integral is normal-
ized so that [dLIPS = m/2. Eq. (3.16) includes a sum »_, , over all the possible internal
states with momentum ¢; and f5. A symmetry factor 1/2 must be included when the two
internal particles are indistinguishable. Since we are using an all-incoming notation for the
amplitudes, the internal states have negative momenta in one of the subamplitudes. They also
carry helicity and all other quantum numbers with an opposite sign. The factor oy, ¢, is defined
as ag,4, = 1'% where F[0y, (5] counts the number of fermions in the list {£;, ¢,}. This term
arises from our conventions on fermion ordering, as we detail in Appendix A.3.

Eq. (3.16) has a surprisingly simple structure because the triangle and box contributions to
the 2-cut cancel out at order 1/A% In Appendix C we prove this cancellation explicitly for the
cases where n, —n; = An < 2. The main idea is the following: we are considering processes
without IR divergences. These IR divergences can only arise from triangle and box integrals, so
they must cancel each other. This cancellation ensures that the total contribution of triangles
and boxes to the 2-cuts is also zero.

The proof of Eq. (3.16) for a generic An is more complex. We will use the results of [26],
where the authors derived an expression for the anomalous dimensions in terms of unitarity
cuts of form factors. In our particular case, their expression reads

1 ~
Yij FO¢(1727-"7n) = _ﬁ dLIPSZ ZUZMQFO]'(“':gl;gQ) X ASM<_€27_€17"') ) (318)
ext.legs (1 (o
distrib.
where 7;; is the anomalous dimension for the mixing of the form factor Fp, into Fp,. Form
factors are matrix elements between an operator and on-shell states, defined as

FO«;(LQ’-'-?n) = <O|Oi|plap2a'-'pn> ’ (319)

with non-zero total momentum p; +ps + ... + p, = Q # 0. In Eq. (3.18), F\@j is a m > 3-point
form factor, which contains the contact form factor Fpp,. Note that, contrary to what happened
in Eq. (3.16), there are contributions from 3-point form factors. This is because, for @ # 0,
these terms are not 2-cuts of massless bubbles, and thus they do not vanish.

We postpone the derivation of Eq. (3.18) to Section 3.2.4, but for the moment we will use
it to prove the validity of Eq. (3.16). In the limit @ — 0, form factors and amplitudes obey
the following relation

LFo.(1,2,...,n) = Ao, (1,2, ....n) . (3.20)

In this limit, it is easy to see that Eq. (3.18) matches Eq. (3.16), except for the presence of
2-cuts involving 3-point form factors. As we mentioned before, there are no terms with 3-point
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Figure 3.3: Diagrams for the 1-loop renormalization of Fy2p2 and Fyyey by Fys. These are
the only mizings involving 3-point form factors at order 1/A2.

subamplitudes in Eq. (3.16) because they vanish. In order to prove Eq. (3.16), we have to check
that terms with 3-point form factors also vanish in Eq. (3.18). This is not generally true?, but
we are only interested in amplitudes at order 1/A? in the SMEFT.

Recalling the contact amplitudes from Section 2.2.1, the only 3-point form factor at order
1/A? is the one involving three vector bosons, namely Fys. This form factor contributes to the
renormalization of two other form factors: Fy2p2 and Fye2p, via the 2-cuts shown in Figure
3.3. To complete the proof of Eq. (3.16) we must show that those cuts vanish. Indeed, since
An = 1 for both renormalizations, we can use the result in Appendix C. The 2-cuts of boxes
and triangles cancel each other, so the overall 2-cut only picks up the bubble terms. For 3-point
factors in the limit Q — 0, this is the 2-cut of a massless bubble integral, which is zero®. We
conclude that Eq. (3.16) is correct.

Several examples of the usage of Eq. (3.16) can be found in Chapter 4. There, we compute
the 1-loop anomalous dimension for mixings of dipole amplitudes in the SMEFT.

3.2.3 Method II: v;; from momentum deformation

In addition to Eq. (3.16), there is a more general procedure to compute the bubble coefficients
from 2-cuts. This method was presented in [74] and it uses the technology of momentum
deformations or shifts, which we introduced in Section 1.3.2.

The main idea is the following: the 2-cut of a 1-loop amplitude generally receives contri-
butions from bubbles, triangles and boxes. Given the definition of the master integrals I,,, the
terms coming from triangles and boxes have simple poles at the propagators, whereas those
coming from bubbles have no discontinuities. Thanks to this distinction, it is possible to disen-
tangle the bubble contributions by performing a complex momentum shift of the internal (cut)

2See, for example, the computation of the QCD beta function in [74].
3See Section 4.4.3 for an explicit calculation of the renormalization of Fyy2g by Fys.
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particles. Consider the following BCFW shift,

[0) = |6) + 2 |bs)

6] = [€2] + 2 |64] (3.21)

with the rest of the spinors unchanged. ¢,/ are the momenta of the cut particles and z is
a complex number. If we apply this deformation to Eq. (3.16), the subamplitudes become a
complex function of z. Then, we can use complex analysis to extract the bubble coefficients.
The first step is to rewrite the integrand in Eq. (3.16) using Cauchy’s integral formula,

«‘Toj(m, —ly, —ly) X Asm(lo, by, ...) =

L, dzﬁ@ (o l1(2), La(2)) x Asm(—La(2), —t1(2),...) . (3.22)

271 z

In the RHS, the integral is along the contour ¢, which is a circle around the origin. Observe
that z = 0 in the LHS, so the momenta are unshifted. We can deform the integration contour
as we did in Figure 1.2, so that [ dz = fCI dz + [,_dz. The discontinuities captured by c;
are simple poles coming from triangle and box integrals. If we remove these contributions, we
are only left with the pole at infinity captured by c,. It was shown in [74] that this term is
associated with the bubble coefficients, so finally the anomalous dimension is given by

’}/ZJ.A@ 1 2
/ dLIPS Z S / 92 Fo, (oo 01(2), 62(2)) X Asra(—bo(2), — £ (2), ..y . (3:23)

8t~ =
ext. legs f1 fo
distrib.

One can check that performing the integral along c. is equivalent to extracting the constant
term in a Laurent series around oo for the function Ao, (2) X Asm(2).

Let us compare equations Eq. (3.23) and Eq. (3.16). The contour integral in Eq. (3.23)
removes the contributions of triangles and boxes to each individual 2-cut, whereas in Eq. (3.16)
those terms only cancel out in the final result. Then, using the results of Appendix C, we can
distinguish between two cases:

e Renormalizations with An = 0: There are no contributions from triangles and boxes
in the 2-cuts, so Eq. (3.23) is unnecessary. Each individual 2-cut is the same in both
Eq. (3.16) and Eq. (3.23).

e Renormalizations with An > 1: The 2-cuts are generally contaminated by triangles
and boxes, so the computations with Eq. (3.16) and Eq. (3.23) are different. Although
Eq. (3.23) appears more complex, removing the triangles and boxes significantly simplifies
the structure of the 2-cuts. The final result, of course, has to be the same.

For an explicit calculation of the anomalous dimension matrix using this method, see Sec-
tions 4.1.2 and 4.4.2.
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3.2.4 Method III: v;; from unitarity cuts of form factors

In this section we will explain the derivation of Eq. (3.18), which was used to prove Eq. (3.16).
Up until now, we have considered the renormalization scale dependence associated with the
divergences of the 1-loop amplitude, i.e., the fact that 1/e;y poles are always accompanied by
In 42 in dimensional regularization. We now present an alternative method for obtaining the
anomalous dimensions, based on the fact that the renormalization parameters are also encoded
in the logarithms of the amplitude. This comes from the observation that, by dimensional
analysis, logarithms of momenta In s;; must be balanced with logarithms of the renormalization
scale In p2.

This strategy was first proposed in [26] by S. Caron-Huot and M. Wildhem, who developed
a formalism to relate the anomalous dimensions with phase-space integrations of lower-point
on-shell amplitudes and form factors. Here we will derive Eq. (3.18) using their approach.
Additional details can be found in the original paper. For a slightly different derivation, see
[28].

The main idea is to consider the Callan-Symanzik equation, or Renormalization Group
Equation (RGE) that is satisfied by a form factor. Then, we can compute the anomalous
dimension associated with that form factor, which is included in the RGE. First, we restate the
definition of a form factor

Fo,(1,.n) = (01Op1, o) (3.24)

with |py, ..., pn) a multiparticle asymptotic state and O; a higher-dimension operator. After
renormalization, form factors depend on the energy scale p and satisfy the renormalization
group equation,

0 %, A
Pop ™+ Zmﬁ + > (1 = ris) | Fo(Ly-enip) =0, (3.25)
A J

where 7;; is the anomalous dimension matrix, 7y is the IR anomalous dimension and 3, is the
beta function of the A coupling.

By Lorentz invariance, form factors are functions of the momentum invariants s.;, = 2p.ps
and schematically we can write Fo,(Sq + i€). Using the Feynman prescription, we must add a
factor +ie to the invariants, with ¢ > 0 a small parameter. The analyticity of the form factor
implies

Fa(sab — 26) = FOi(Sab + ZE) . (326)
This becomes evident in perturbation theory, where the complex conjugation of Fp, involves
replacing the time-ordered propagators (s, + i€)~' with anti-time-ordered propagators (s., —
ie)~'. Formally, it corresponds to a counter-clockwise rotation in the complex s,; plane. This
operation is generated by the dilatation operator D, which is defined as

L
D=S"p2 3.97
;pa e (3.27)
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The action of ¢’” on the different p, is a rotation in the complex plane with phase a.
Acting on the form factor, we have

F(pi,.opn) —  €“PE(py,....pn) = F(pre™, ..., pne®) . (3.28)

And clearly the s, are rotated with a phase 2a. For a = 7, the invariants are rotated back
to their original values, but on the opposite side of the cut. They go precisely from s, + i€ to
Sqp — 1€. Knowing this, Eq. (3.26) can be rewritten as

e TP EY (Sap + i€) = Fo,(Sap + i€) - (3.29)

The next step is to relate the form factor and the S-matrix with a version of the optical
theorem. By unitarity, SST = 1. The form factor is a small perturbation of the S-matrix
0S =i F, with F denoting the operator with matrix elements F. In terms of the form factor,
the unitarity condition is 7 = SF'S. The corresponding matrix elements obey

F=SF*. (3.30)
Combining Eq. (3.29) and Eq. (3.30) yields
e P = SF* (3.31)

As pointed out in [26], the dilatation operator is related to the renormalization scale p in
dimensional regularization. The form factor can only depend on dimensionless ratios s;;/u?, so
we can replace the terms p,0,, by derivatives of p, leading to D ~ —pd,. Then the Callan-
Symanzik equation in Eq. (3.25) becomes

0 ‘
DFo, = ZﬁAﬁ + Z (vij — Nrdi) | Fo,(1,...,nip) =0 (3.32)
A J

This expression is further simplified when Fp, is a contact (or minimal) form factor. In that case
the S-function term vanishes because the form factor does not contain any of the A couplings
of the theory.

Combining Eq. (3.32) and Eq. (3.31), we can finally relate the anomalous dimension v and
the S-matrix. On the LHS of Eq. (3.31), we insert Eq. (3.32) and expand the exponential in
powers of D. We will focus on the leading non-trivial order of this expansion. On the RHS of
Eq. (3.31), we rewrite the S-matrix as S = [+iM with I the identity and M some perturbation.
For a minimal form factor, this leads to

i 1
>~ (05 =265 ) 010ip1,-p)® = == 3~ OIM & Osfpr, ) (3.33)

J

where (0|O;|p1,...pn)"" is the tree-level form factor Fp, and ”yfjl ),”yf”(l) are respectively the
anomalous dimension and IR anomalous dimension at leading order. The superscript (1) refers

to the leading single In y? in the form factor, which usually appears at 1-loop, but not always.

>(0)
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On the RHS of Eq. (3.33), the convolution ® corresponds to an insertion of a complete set of
intermediate states, followed by a phase-space integral. This is precisely a unitarity cut of the
loop form factor.

To derive Eq. (3.18) we focus on the case where the leading single In y? appears at one loop,
and thus Eq. (3.33) gives us the 1-loop anomalous dimension*. The term (0|]M ® O;|p1, o) ®
is then a 2-cut. After inserting the particle internal states with momentum /1, £, we have a
product of a tree-level subamplitude Agy and a tree-level form factor Fp, integrated over a
phase space. Overall, we can write

(0IM @ O)lpy, ...pn)” =
1 ~
B 4_7T2 dLIPSC);C:gS ;@: UflﬁzFOj("" gla €2) X ASM<_€27 _617 ) ) (334)
distrib, 12

with dLIPS and oy, as defined in Section 3.2.2. Inserting this expression into Eq. (3.33) for
the case of no IR divergences, we obtain

1 ~
Y Fo (1,2, ) = = dLIPS Y~ > 00,0, Fo, (- b1, b)) X Asu(—la, —L1,...) ,  (3.35)

ext.legs f1 0o
distrib.

which is precisely Eq. (3.18) that we wanted to prove. See Chapters 4 and 5 for some examples
of this formula’s usage.

3.3 IR divergences

Here we expand our study of on-shell renormalization methods for mixings involving non-zero
IR divergences. Following [2], we consider the generalization of Eq. (3.16) in the presence of
both soft and collinear singularities. Similar analyses of 1-loop IR divergences in the context
of on-shell amplitudes can be found in [26, 28, 29, 74]. See also [75] for a 2-loop extension.

Our starting point is the Passarino-Veltmann decomposition of 1-loop amplitudes, given
by Eq. (3.3). For clarity, we consider the case where Ao, is a 4-point amplitude. From the
definition of the master integrals I,,, in Eq. (3.4), we see that only bubbles and triangles can
have IR divergences. The IR-divergent part of the amplitude is

~(a) r(a ~(b) 7(b
AR =N"C0RY + Y eV (3.36)
a b
Subtracting these IR-divergent terms from the full amplitude Ajyqp, We obtain

Ay — AL, = 3 [0 — 0] 10+ Y [0 - 69 19+ Y010 1R, 3
b c

a

4We will discuss the computation of the 2-loop anomalous dimension in Section 3.4.5.
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(a) (b)

Figure 3.4: Diagrams of the bubble (a) and triangle (b) topologies that contribute to Aloop m
gauge and gravity theories.

which is IR-finite. As we saw in Section 3.1, the 1-loop anomalous dimension can be extracted
from the UV-divergent part of the amplitude. This corresponds to a sum over the IR-finite
bubble terms, namely

Yiho, = —2ALY%, = LZ[(;;@_ ) (3.38)

872

The bubble coefficients can be obtained with the generalized unitarity method. In this case,
it is enough to compute the 2-cut of Eq. (3.37),

Reiles

2 C2

) + cut®

U‘t(a) [AlOOP Aloop] = ) (339)

b) (c
reg
|2 Gk B 43

with Csreg = C3 — C’g. The second term in the RHS is a 2-cut of triangles and boxes, which is
generally non-zero. However, as we prove in Appendix C, those terms cancel out for IR-finite
amplitudes when we sum over all possible 2-cuts®. Thus, we find

1 a ~(a
D et [y — Al = =55 D0 G - O] = vido (3.40)
which reduces to Eq. (3.16) when A}Y =
The explicit form of A, depends on the type of interaction. For instance, the general
expression for 1-loop amplitudes in a gauge theory can be found in [76, 77]. Considering the
PV decomposition, the bubble coefficients related to collinear IR divergences are

T, -T;
J.Atree + (i< 7), (3.41)

o9 = sl
where the indices i, refer to two external legs of the corresponding bubble diagram, as is
shown in Figure 3.4 (a). T; are the gauge group generators in the appropriate representation
for particle i. Following the color-space formalism [76], we leave the color and flavor indices
implicit. Writing them explicitly, we have

Airee — A% and T, — (T, (3.42)

tree

®The proof in Appendix C can be adapted to our case by replacing C3 — C3req-
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where the dot product of generators is defined as T; - T; = TiAT]A. To recover Eq. (3.40), we

sum over all 2-cuts cut™ with ¢ < j. Taking into account that > ; T Atree = 0 due to color
and flavor conservation, we find

. 1 A (37 i
= > eut®™ LA e = 55 D O = Dl Auee = YA - (3.43)

i<j i<j
Comparing this result to Eq. (3.16), we conclude that, for amplitudes with collinear IR
divergences, the anomalous dimension gets an additional contribution given by

AOZ-(L 27 37 4)
Co.

3

A = Yot Ao, (1,2,3,4) . (3.44)
We recall that v = > ;75Co;. The collinear correction is always diagonal in the amplitude
space, meaning that it is proportional to the tree amplitude Ap,. ~con depends only on the

external legs, so we can write Yeon = Zizl 7521)1. The particular expressions %(j}fl for different
particles are found for instance in [28, 29].

We must also consider soft IR divergences, which are present in the triangle terms of A%, .
For a gauge theory, the corresponding coefficients are
C{D = — s, To - T Asreo (3.45)

where ¢ is the gauge coupling and 7, 7 are two external legs of the triangle diagram in Figure
3.4 (b). As we mentioned before, the C5 coefficients do not contribute to 4; when we sum over
all possible 2-cuts. Nevertheless, their presence in the individual cuts leads to divergences that
must be regulated. In particular, the 2-cut contribution is

(3.46)

loop 2 :

- oy g 1
cut®@ [AIR ] |triangle = O:’EU)CUt[I?E”)] = —gT- TjAtree/dLIPS
473 Sg//2

Alternatively, we can express the last integral as [ 09_//22, which is equal to [ 39_,/22 if we replace

0 — (m — ). We can also express it as 2 [ s,,* by symmetrization over the interval [0, ).

Eq. (3.46) shows that, if we use Eq. (3.16) for mixings with soft IR divergences, the dLIPS
integral will not be finite. This occurs because one of the subamplitudes Ay g is singular for
some angle #. We distinguish three different cases:

o App~ 55/22 is singular in the limit 6 — 0.

o Ay p ~ 09_/22 is singular in the limit § — w. By reordering the amplitude legs, we can
always rewrite Ay g ~ 5;/22. Thus, this case can be excluded from our analysis.

e Ay p ~ s, is singular for both §# — 0 and 6 — 7. This occurs when the two cut particles
¢y and ¢5 are identical.
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Using Eq. (3.46), the anomalous dimension in Eq. (3.16) must be corrected by adding

(19,20, 3¢, 44 1 i ob 1
A% AOZ( T ) = (12102&)?13./41%(15;721)’30745{) /dLIP812 2
C@i 4 ab 80’/2

(3.47)

. 1
+ (T24)58 AL(19,2°, 35, 4%) /dLIP834 — | +2e3)+24),

soft/ ¢
Sg/2

where dLIPS;; is an integral over the phase space for the i'j' state. We generally denote the
color and flavor of the external particles with abed indices, and we have defined the soft operator
T = ¢g* T, - T;. For QED, it gets simplified to T, = €?¢;q;, with ¢; the charge of particle
i. Note that Ay, acts as a regulator for the angular divergences in Eq. (3.16), so the overall

contribution from each cut is finite.

Finally, let us comment on the treatment of IR divergences in gravity. The PV structure of

A}}fop is the same as in gauge theories, so our analysis holds. It suffices to make the replacement

Yeoll = 0 and Eic)jft = —28”/]\/[123 [78]

3.4 Additional remarks

3.4.1 Helicity selection rules

One of the most interesting applications of Eq. (3.16) is the study of certain patterns in the
anomalous dimension matrix, which are often obscured in the traditional Feynman diagram
approach. The presence of unexpected zeroes in the anomalous dimension matrix was observed
in the first calculations of 1-loop mixings between dimension-6 operators in the SMEFT, see [19-
25, 79]. Non-renormalization theorems were derived to explain these cancellations, employing
helicity arguments [52] and supersymmetry [80]. These results were extended to higher-order
loop mixings in [30]. Further non-renormalization theorems for general EFTs were obtained
using angular momentum conservation in [81], and also for gravity in [31]°.

In this context, on-shell amplitude methods have been particularly helpful for the derivation
of helicity selection rules [52] that tell us which are the allowed renormalizations for a given
operator. The effects of these selection rules for tree-level and 1-loop amplitudes were studied
in [83]. Here we follow [1] to obtain helicity selection rules using our results from Section 3.2.

From Eq. (3.16), it trivially follows that

n;, = ﬁj + nsMm — 4 s (348)

o~

where n;,n; and ngy are respectively the number of particles in the amplitudes Ap,), A@j and
Agm. The corresponding helicities are h;, h; and hgy. As mentioned in Section 3.2.2, the SM

6Non-renormalization theorems for the anomalous dimension matrix can be extended to non-linear mixings
in the anomalous dimension tensor. See for example [82].
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6 HS
7722H3 77b2]_[3
n V?HQ H4D2 VZHZ
4 Vl/_J2H #)21/_}2 V¢2H
Pt VY H?D P
3|V3 %
-3 -2 -1 0 1 2 3

Table 3.1: Contact interactions at order 1/A? in the SMEFT, classified according to their
number of particles n and total helicity h. The gray area shows the interactions that can
renormalize V)2 H according to the helicity selection rule An > |Ah].

subamplitude has ngy > 4. Also, since ﬁ@j is in general a non-minimal amplitude, it obeys
n; > n;. Thus, from Eq. (3.48), it follows that

An=n;—n; >0, (3.50)

which tells us that Cp, can only contribute to the 1-loop renormalization of Cop, if A@j has the
same number of legs or less than Ap,”. The next ingredient we need is the observation made
in [52] that most n = 4 SM amplitudes have total helicity h = 0. The n > 4 amplitudes made
from those building blocks obey ngy > |hsm| + 4. Combining this expression with Eqgs. (3.48,
3.49) leads to the following helicity selection rule:

An > |Ah| . (3.51)

This expression is a non-renormalization theorem that gives us some vanishing entries of the
1-loop anomalous dimension matrix. Let us see an example with SMEFT operators at order
1/A?. Table 3.1 shows the different classes of contact interactions, classified in terms of their
number of particles n and the helicity h. A dipole amplitude of class V?H can only be
renormalized by amplitudes that obey the condition Eq. (3.51). Graphically, this corresponds
to the gray area in Table 3.1, which includes V2%, V2 H,+* and V3. We know that the rest
of the renormalizations are zero without the need to compute them.

The only exceptions to the selection rule Eq. (3.51) are renormalizations involving a SM
subamplitude with n = 4 and |hgy| > 0. There is just one amplitude satisfying these conditions:
the 4-fermion amplitude with h = +2, which contains two Yukawa couplings y.y,. At order
1/A? in the SMEFT this exception allows the renormalization between v?? and 1*, and also
between 12 H? and 9> H?.

We will apply the helicity selection rules to the calculation of anomalous dimensions in
Chapters 4 and 5.

"See [30] for an extension of this result to higher loop orders.
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3.4.2 Mixings with several amplitudes

Eq. (3.16) can be applied to cases where the renormalized amplitude .4 includes several Wilson
coefficients. For example, we can have the contact amplitude Ap, plus some non-minimal
amplitude ﬁ@k with an insertion of Ap, and the same external legs as Ap,. To account for
these mixings, we modify the LHS of Eq. (3.16) as follows:

YijAo, = iAo, + ZijA\Ok . (3.52)
k

For the SMEFT at order 1/A?, the following cases arise:

e A(ly_,2y_,3y,4pt) includes the contact amplitude Ayz2p2 and also a non-minimal am-
plitude with an insertion of Ays.

o A(1y,2y,3u,4m,5yt) includes the contact amplitude Ay 253 and also several non-minimal
amplitudes containing Avyep, Aygpz and Aggs.

o A(1y,2y,3u,451,551,651) includes the contact amplitude Age plus non-minimal inter-
actions involving Ays, Ay2p2 and Aqps.

Note that the different amplitudes Ap, and ﬁ@k have different kinematic structures, so we
can easily disentangle the contributions to the anomalous dimensions «;; and v;;. For instance,
the amplitude A(1ly_,2y_, 3y, 45+) includes two different terms

Cyopp
Avegz(Lve, 20,30, 451) = % (12)2 57 (3.53)

~ Clys f2eTe [(13) (42) (12 23) (14) (12

Avs(Lye, 20,85, 4gr) = ST >§34i< ) _ | >§34i< o ey

When applying Eq. (3.16) to the renormalization of A(1y_,2y_,3g,45t), some terms in the
RHS will have the spinor structure of Ay2g2 and other terms will have the structure of ./Zl\v3.
Thus we can easily separate contributions to the different anomalous dimensions.

Another possibility is to have an amplitude A that includes several independent coefficients
Co, with the same kinematic structure but a different flavor structure. In such cases, we have
to project Eq. (3.16) onto a basis of invariant tensors under Lorentz and the global symmetries.
Then it is straightforward to identify the contribution to the anomalous dimensions of the
different coefficients.

3.4.3 Lorentz-Invariant Phase Space integration

There are several ways to perform the phase-space integration dLIPS. Here we adopt the
method described in [26], where the internal momenta are parameterized in terms of a subset
of the external momenta. The integral over the phase-space is then transformed into a solid
angle integration. The exact form of the parameterization depends on the number of internal
particles. In this work we will need the 2-particle and 3-particle cases.
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e Two internal particles. We must write the internal spinors ¢, /5 in terms of two momenta
Da, Pp that are a linear combination of the external momenta and satisfy p, + p, = €1 + 5.
The parameterization is

1) = co la) — spe™ [b) .
03) = s9e7 |a) 4+ cq D),
with sy = sinf and ¢y = cosf. The expressions for the square spinors |¢;],|ls] are

obtained by complex-conjugating Eq. (3.55). 6 and ¢ are the angles that describe the
spinors {1, {5 in terms of a rotation of p,, p,. The dLIPS integration becomes a solid angle

integration,
2 2w d w/2
—/dLIPS E/ —(b/ df 2sgcy . (3.56)
T o 2m Jo

The simplest scenario occurs when we can directly identify p, and p, with the momenta of
external particles. For example, if we have a 4-point SM subamplitude Agsy (p1, p2, —01, —{2)
we can simply chose p, = p; and p, = po. Instead, if we have a 5-point SM amplitude
Asn(p1, p2, p3, —l1, —ls), we must define

(3.55)

5123 So3
Po=D1—, Po=p2+pP3—p1— , 3.97
S12 + S13 S12 + S13 ( )

with s193 = (p1 + p2 + p3)2. One can check that this satisfies p,+py, = p1+pa+p3 = £1+4s.
The corresponding spinors are

=1 [ =R IR (659)

e Three internal particles: This scenario corresponds to 3-cuts of 2-loop amplitudes. Again,
the internal spinors ¢q, /s, 5 are expressed in terms of some p,, py, p. made from the
external spinors with p, + py + p. = €1 + {5 + ¢5. In particular, we have

|€1> = Co, |Cl> - ewct% 56, ‘b> )
|0s) = s,Co, |a) + €' (co, co,co, — €750, 50,) b) (3.59)
|€3> = 560,505 |a> + eifﬁ (091092893 + 6ip391603) |b> :

The corresponding phase-space integration is given by

Sa
/ dLIPS = (167:2 » / du (3.60)

where s, = (pg + pb)2 and we have defined

s s s 2w d 2 d
/du = /2 2391091d91/2 4322092d92/2 23930930&93/ p/ (b (3.61)
0 0 0

which satisfies [ du = 1. Throughout this work, we will only use this parameterization
in cases where we have a 5-point SM amplitude Agsy(p1, p2, —¢1, —lo, —¥3), and thus we
can choose p, = p1 and p, = po.
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Vp?

Figure 3.5: Diagrams for the 1-loop renormalization of Fys by Fy2p, and Fyzp2 by Fyy2. These
are the only mizings involving 3-point form factors at order 1/A.

3.4.4 Renormalization at order 1/A

Up until now, we have focused on renormalizations at order 1/A?, but one can prove that
Eq. (3.16) is also valid when Ap,, Ao, are amplitudes of order 1/A. The proof goes as follows:
we start with Eq. (3.18), which is valid for any form factor, and then we verify that it reduces
to Eq. (3.16) in the limit @ — 0. Similarly to the 1/A? case, we must ensure that there are no
additional contributions coming from the 3-point form factors in Eq. (3.18).

As listed in Section 2.2.1, there are two 3-point form factors at order 1/A: Fy2p and Fyye.
The only possible extra terms in Eq. (3.18) come from the renormalization of Fys by Fy2p, and
the renormalization of Fy2p2 by Fyy2. The corresponding 2-cuts are illustrated in Figure 3.5.
The explicit computation of those 2-cuts leads to integrals like the ones in Figure C.2. By the
arguments in Appendix C, the absence of IR divergences implies that the total contribution of
triangles and boxes to Eq. (3.16) vanishes. This ensures the validity of Eq. (3.16) at order 1/A.

3.4.5 2-loop anomalous dimensions

We conclude this section with a brief discussion on the anomalous dimension matrix at higher
loop orders. Formulas Eq. (3.16) and Eq. (3.23) are based on the observation that bubble
coefficients can be derived from 2-cuts, together with Eq. (3.13) that relates the 1-loop anoma-
lous dimension to the bubble coefficients. This derivation does not have a natural extension to
higher-order mixings, since it relies on the Passarino-Veltman decomposition of 1-loop ampli-
tudes and the fact that only bubble integrals are UV divergent. There is no analog for this at
two loops.

The formalism of form factor renormalization, however, is a robust framework for studying
higher loop orders. The formula e=™PF* = SF* gives an exact relation between the renor-
malization coefficients and the S-matrix. Expanding this expression yields a formula for the
anomalous dimension at various orders, expressed in terms of unitarity cuts. Let us comment
on the two classes of 2-loop anomalous dimensions that we can compute:
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e “Easy” 2-loop renormalizations. As we mentioned before, Eq. (3.33) provides the anoma-
lous dimension associated with the leading single logarithm In g2 in the form factor. If a
renormalization is forbidden at one loop, the leading logarithm comes at two loops and
we can use Eq. (3.33) to compute the 2-loop anomalous dimension. Now the convolution
(0JM ® Oj|p1, ...pn) includes three types of terms, which are diagrammatically shown in
Figure 3.6. We have 2-cuts of a 1-loop form factor and a tree-level amplitude, 2-cuts of a
tree-level form factor and a 1-loop amplitude, and 3-cuts of a tree-level form factor and
a tree-level amplitude.

RE R R

Figure 3.6: Diagrams illustrating the three classes of contributions to the 2-loop anomalous
dimensions.

e General 2-loop renormalizations. If there is mixing at one loop, the computation of
the 2-loop anomalous dimension becomes significantly more complex. We must expand
Eq. (3.31) at the next-to-leading order, so instead of Eq. (3.33) we have

(89D + 05805 FS) + | a4 + 6,800, FS)
1w (1) (1) Wy ] po _ 1 2) (3.62)
— i3 |8 +6u80n] | Anf]) + 88000 FS) = ——(MFp)®

where we have defined Av;; = v;;—0;;7g, and (M Fp,)® includes the 3 classes of unitarity
cuts in Figure 3.6. Now we have an expression involving both 1-loop and 2-loop terms,
so the extraction of ’71(32 ) becomes more intricate.

We will see an example of an “easy” 2-loop computation in Chapter 5. The analysis of
general 2-loop renormalization goes beyond the scope of this work, but more details can be
found in [30].

3.5 Conclusions of the chapter

In this chapter we have studied the renormalization of effective field theories using on-shell am-
plitude methods. We have seen that the 1-loop anomalous dimensions ~; for a Wilson coefficient
Co, depends only on the bubble coefficients Cy from the Passarino-Veltman decomposition of
the 1-loop amplitude, modulo IR divergences. The bubble coefficients can be obtained using
the generalized unitarity method, which allows us to reconstruct amplitudes by performing a
series of unitarity cuts on their loops. We have explained three different ways to extract the
anomalous dimensions directly from 2-cuts:
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e Method I relates 7;; to 2-cuts of the loop amplitude, as given by Eq. (3.16) that was
derived in our paper [1]. This expression is only valid for renormalizations where 2-cuts
receive no contributions from triangle and box integrals. As we have shown, that is
precisely the case of the SMEFT at orders 1/A% and 1/A.

e Method II is based in the more general formula Eq. (3.23), which was obtained in [74]. The
idea is to perform a BCFW deformation of the internal cut momenta and use Cauchy’s
theorem to eliminate the simple poles associated with triangle and box integrals, leaving
only the bubble terms.

e Method III allows us to obtain the anomalous dimensions using 2-cuts of on-shell form
factors, following Eq. (3.35) from [26]. This method makes use of the fact that logarithms
of the renormalization scale In g? must be accompanied by logarithms of the momenta
In s;; to ensure the correct dimensions.

It is particularly remarkable that method I gives us the anomalous dimensions from a
product of two tree-level on-shell amplitudes integrated over a phase space. This is significantly
simpler than the usual approach of computing the loop amplitude with Feynman diagrams.

The simplicity of Eq. (3.16) also allows us to derive helicity selection rules that indicate
which operator mixings are allowed or forbidden. In particular, we find that Ap, can only
renormalize Ao, if they satisfy An > |Ah|, with An = n; —n; and Ah = h; —h;. This selection
rule explains several unexpected zeroes in the anomalous dimension matrix.

We have primarily focused on 1-loop renormalizations, but we have discussed how to extend
this procedure to higher loop orders. Methods I and II are based on the PV decomposition of
1-loop amplitudes, which does not have an analog at higher orders. In contrast, method III
offers a natural extension to two or more loops.

Throughout this chapter, we have mostly focused on mixings with %’%’{ = 0. We have
presented the basic treatment of soft and collinear IR divergences in Section 3.3.

Our results highlight the power of on-shell amplitude methods in simplifying and systematiz-
ing computations in effective field theories, while also providing new insights into the structure
and properties of anomalous dimension matrices.
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Chapter 4

Applications of renormalization I:
1-loop anomalous dimension of dipole
operators

In this chapter we show an example of the computation of 1-loop anomalous dimensions in the
SMEFT using on-shell techniques. In particular, we apply methods I, IT and III from Chapter 3
to the 1-loop renormalization of the SU(2), dipole amplitude. This covers the results of [1]. A
similar computation was done in [28].

The contact on-shell amplitude associated with the dipole interaction V?H at order 1/A?
is given by Eq. (2.30). For concreteness, we focus on the SMEFT amplitude W®H'le. Here, W¢
is an SU(2),, gauge boson with helicity h = —1, H is the Higgs doublet and e, [ are, respectively,
a lepton singlet and doublet with h = —1/2. At tree-level, the amplitude is given by

Awrie(le, 2, 3we, 4y1) = O‘Xfle (31) (32) (T); , (4.1)
where Cyy e is a dimensionless Wilson coefficient and 7% = ¢%/2, with ¢® the Pauli matrices.
Figure 4.1 shows the contact amplitude diagrammatically.

At the loop level, the coupling Cy g acquires an energy scale dependence that is given
by the anomalous dimension vy g, as per Eq. (3.1). We will focus on the leading corrections
to Cw e, which come from other Wilson coefficients that mix at one loop. In principle, one
should consider all the possible 1-loop diagrams that generate an amplitude proportional to
Aw .. However, thanks to the helicity selection rule described in Section 3.4.1, we know that
mixings not obeying the condition An > |Ah| vanish. The remaining contributions correspond
to the classes of operators in the gray area of Table 3.1: V2H? V?H, ¢* and V3. With
this information, we can compute the full 1-loop anomalous dimension for Ay ., up to self-
renormalization.

In Sections 4.1 to 4.4, we perform the explicit calculation of the 1-loop mixings of ¥*, V4> H,
V2H? and V? into the dipole amplitude Ay .. In Section 4.5 we compare the obtained result
with previous literature. In Section 4.6 we comment on some interesting features of the on-shell
procedure. Finally, the conclusions are presented in Section 4.7.
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Figure 4.1: Diagram for the contact (or minimal) 4-point amplitude Aw pe(1e, 25, 3wa, 441).

4.1 1-loop mixing ¢* — Vy*H

The first contribution we consider is the 1-loop mixing with ¥*. The contact on-shell ampli-
tude associated with 1* at order 1/A? is given by Eq. (2.31). In the SMEFT, there are two
independent amplitudes that can generate Ay ;. at the 1-loop level, namely:

C’LLC X

Aige(Le, 201, 30, 4gi) = /l\; (14) (32) € | (4.2)
, N Olequ ij

Ategu(Le, 2,31, 4p) = =5 (12) (34) € (4.3)

A third possible amplitude, A ~ (13) (24), can be reduced to Ajyqe and Ajeq, using the Schouten
identity. By the properties of the spinor product, it is straightforward to see that Eq. (4.3) is
antisymmetric under 1 <+ 2, whereas the dipole amplitude Eq. (4.1) is symmetric under that
exchange. This implies that Cj.q, cannot contribute to the renormalization of Cyy e, so we
only have to consider the mixing with Cjyge.

There is, naturally, freedom in the choice of the amplitude ba81s For example, in the Warsaw
basis [65] we have the operators Olequ (L er)en(Qug) and Olequ (L3,0mer)en(QF o ug),
which are associated to the contact amplitudes (12) (34) and (2 (14) (32) — (12) (34)). However,
the choice of basis Eq. (4.2), Eq. (4.3) is a natural choice when working with on-shell amplitudes,
since (14) (32) and (12) (34) are the simplest spinor structures we can build.

Let us compute the 1-loop mixing of Cjuge into Cy e with the three different methods
described in Chapter 3.

4.1.1 Method I: vywmicugey from amplitude 2-cuts

First, we use Eq. (3.16) that was derived in Section 3.2.2. The only contribution to the anoma-
lous dimension corresponds to the 2-cut in Figure 4.2, so we can write

Clug
VW Hleluge} ~4 Cor AWHI6<]~67 2, 3W“ 4HT)

1
s

(4.4)
/dLIPSAluqe(le,Ql,?);, q) X ASM( s 7_3;273WE74HT) ,
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l ¢ q “Hi
Figure 4.2: Diagram of the 2-cut relevant for the renormalization of Awmie by Ajequ-

where Aw ge and Aj,ge are given by Eq. (4.1) and Eq. (4.2), and Agy is the Standard Model
amplitude in Eq. (2.10). The internal spinor momenta pj, p/, satisfy ps+p) = p3+ps = —p1 —p2.
Expressing the amplitudes in terms of spinor-helicity variables, Eq. (4.4) becomes

(31) (32) T* YugaNe (23) (4'1) _ (34) (33)
WL 2 YuP2eqa [ g pp .
O HeJuge} ™\ 473 ST Xy 3y

The next step is to perform the phase-space integration as described in Section 3.4.3. We
parameterize the internal spinors |3'), |4') in terms of the external spinors |3), |4), leading to

[3) = co [3) — sec™ |4)
14") = sge " [3) + ¢ |4) .

The dLIPS integral corresponds to a solid angle integration, as given by Eq. (3.56). With
this replacement, the phase-space integral in the RHS of Eq. (4.5) becomes

(23') (4'1) (34) (33')
/dLIPS (43 (34)

(4.5)

(4.6)

2 d /2 ip ) .
_T / D077 49 250c0 2% (04 (23) — 50 (24)) (s0e7% (31) + ¢ (41))  (4.7)
2 0 2 0 Co

7

w/2
= —7 (31) (32) / df spco = 1 (31) (32) .
0
Notice how the ¢ integration projects the amplitude product to (31) (32), which is the spinor
structure of Aw gi.. Going back to Eq. (4.5), we can finally obtain the anomalous dimension

yu.QQNc
1672

Following Eq. (3.1), the total 1-loop anomalous dimension is Yy ge = i YwHie y - Co;, where
Y{w Hie,j} Tepresents the mixing between Cyy e and Cp,. Then Eq. (4.8) can also be written as

Y{W Hle,luge} = (48)

YW Hie 2 C’luqe . (49)

As a final remark, notice that the choice of parameterization in Eq. (4.6) is not unique.
We can interchange the spinors 3 <+ 4 and 3’ <> 4’, and we can also write the internal spinors
in terms of the momenta pq,ps instead of p3,ps. The dLIPS integral can be more or less
complicated depending on the parameterization, but the final result remains the same.
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4.1.2 Method II: vy hieugey from momentum deformation

We can compute the anomalous dimension using the method of momentum deformation from
Section 3.2.3. Using Eq. (3.23) for the mixing of Aj,ge into Aw g, we obtain:

Clu
V{W Hie,luge} Cvi/—qe/lwme(le, 2y, 3wa,4pt)

y Hle (4.10)

dz
— S dLIPS/C?Aluqe(le,Ql,?);(z),él;(z)) X ASM(—%(Z),—3%(2),3W3,4HT) ,
where the internal momenta are shifted as follows:

) ) +203) 3 180 o
3] = 37+ 247 , 4] — |4] . '

Now we must perform the contour z integral before the phase-space integration. The product
of the shifted subamplitudes in the RHS of Eq. (4.10) is

(23") (4'1) (34) (33") o (23") ((41) + =z (3'1)) (34) (33') '

4.12
(43" (3'4") (43") (3'4") (4.12)
We have a contour integral with the following structure
d
/ 2 (a + 2b) = 2ria | (4.13)
c <

where a and b are real constants. As noted earlier, the result of the integral is the z-independent
coefficient of the Lauren series of the integrand at z = oo (times 27i). Then we have

d> (23) (1) + 2 (3'1)) (34) (33)) . (23') (41) (34) (33')
/C =z (43') (374') Ty 3y (4.14)

We can see how the z integration has not changed the kinematic structure of the amplitude
product. The phase integration in Eq. (4.10) matches that in Eq. (4.7), leading to the anomalous
dimension in Eq. (4.8). This is an example of how Eq. (3.23) coincides with Eq. (3.16) for
renormalizations with An = 0. Indeed, the contour integration in Eq. (3.23) removes the
contributions from triangles and boxes to the 2-cuts, but in our case those contributions were
already zero.

Notice how our choice of the BCFW shift made the contour integration very simple. We
can choose the other possible BCFW shift, interchanging 3 <> 4 in Eq. (4.11). In that case,
instead of Eq. (4.13) we obtain the following contour integral

/dz(a+zb) (c+ zd) o adf + bef — bde
JE— = 27117 .
cz (etzf) f?

While it is not immediately apparent that both shift choices are equivalent, we know they must

be. Indeed, if we write a, b, c,d, e, f in terms of the corresponding spinor products and simplify
the expression using the Schouten identity, we obtain the same result as in Eq. (4.14).

(4.15)
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4.1.3 Method III: vwpie ugey from form factor unitarity cuts

We can also compute the anomalous dimension using form factor renormalization, as described
in Section 3.2.4. Applying Eq. (3.35) to the mixing of Fj,. and Fy pe, we obtain:

YVw Hie,tugey Fw mie(1e, 20, 3we , 4pt)
/ (4.16)
dLIPS Fiye (10,2, 3

u) q

4 T3 ) X ASM( 4z 7_3;1a3Wf74HT) :

Again, the contribution comes solely from the 2-cut in Figure 4.2. Expressing the equation
in terms of spinor-helicity variables leads to

(31) (32) T* _ yugaNe / (23) (1) ~ (34) 33)
= — T | dLIP . 4.1
Y{W Hle,luge} A2 A3 S A2 X <43/> <3/4/> ( 7)

This is similar to Eq. (4.5), except that now the form factors have p; +ps+ps+ps = @ # 0 and
p1+p2+ps+p) = Q # 0'. For the phase-space integral, our previous choice of parameterization
was Eq. (4.6), which imposes momentum conservation in the SM amplitude pf + p; = ps + pa4.
However, we did not use momentum conservation in the amplitude A;,4. This means our
computation is also valid for the form factors in Eq. (4.17)%. Proceeding as before and taking
the limit @@ — 0 at the end of the calculation yields Eq. (4.8) once more. This is a check that,
as we proved in Section 3.2.2, Eq. (3.16) and Eq. (3.35) coincide at this order.

4.2 1-loop mixing Vy*H — Vy*H

We now examine the mixings of W Hle with other dipoles. Excluding self-renormalization, the
only SMEFT amplitude of class V?H that can generate W Hle at one loop is:

Apie(le, 205,35, 4y1) = Cigle (31) (32) 87 . (4.18)
The calculation can be done using any of the three methods we have previously described.
In this case, method I is the most convenient one. Since An = 0, there is no advantage in
using method II. Moreover, as Fgyje is a 4-point form factor, method III involves essentially
the same computations as method I. For these reasons, we focus on method I. There are two
contributions to Eq. (3.16), corresponding to the 2-cuts in Figure 4.3. We can write:

CBHie
V{W Hle, BHle}c,f/—HI;AWHle(lm 21, 3w, 4yt)
1
=13 dLIPS Apmic(1e, 21,3, 4p1) X Asm(—=35,, =4, 3we, 4gt)  (4.19)
1
+ — 471'3 /dLIPSABHle(le,Q 4HT) X ASM( B+7_22_7 3W372l) .

Tn Eq. (4.4) we had py + p2 + p3 + ps = 0 and py + p2 + ps + p)y = 0 for the amplitudes Aw ge and Apyge.
2The choice of parameterization of the internal spinors in terms of pq,ps is not valid in this case, since it
imposes p; + pa + ps + py = 0, which is not true.
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Figure 4.3: Diagrams illustrating the two 2-cuts contributing to the renormalization of Aw mie
by Amie-

Using Eqgs. (4.1, 4.18) for the 1/A? amplitudes and Eqgs. (2.12, 2.13) for the SM amplitudes,
we have

(31) (32) T glggYH /dLIPS (3'1) (3'2) " (4'3) (43)

Y{W Hle,BHle} A2 A3 A2 (437 (43) w20
9192Y /dLIPS (31) (32') % <23>2 .
T4m3 A2 (23 (32)
After performing the two phase-space integrations, we find:
9192Yn 3 9192Yl /W/2 9192

e.BHle dfc, db = Y 2Y; 4.21
VW Hie,BHIe} = 5 / ), 5060 = 163 > (Y +2Y)) . (4.21)

Given that the hypercharges satisfy Yy = Y, + Y., we can finally write
Ywie e = S0 (3Y; + Y,) (4.22)

1672

4.3 1-loop mixing V?H? — V*H

Next, we examine the mixings involving V¢?H. There are two different SMEFT amplitudes of
this class that generate W Hle at one loop:

CW2H2

Awzirz(Lwa, 2w, 3p5,4y1) = v (12)* 67 (4.23)
. CwBn2 2 /rrang
AWBH2(1WE723773H7'74HJ) — T <12> (T )Z . (424)

Again, we use method I to obtain the anomalous dimension matrix. For the mixing with
W2H?, the only contribution to Eq. (3.16) is given by the 2-cut in Figure 4.4, which is

CW2H2

VAW Hie, W2 H?} Awre(Le, 20, 3wa, 4p1)

CwHie
1

s

(4.25)
/dLIPS Awzpr Bwe, dut, Lyya, 2) X Asm(=Lwa, =21, 1e,20) -
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Figure 4.4: Diagram of the 2-cut contributing to the renormalization of Aw mie by Awzpe.

-

Figure 4.5: Diagram of the 2-cut contributing to the renormalization of Aw e by Awpnz.

T\

Thus, the anomalous dimension is

Yol (31)*(2'2) (12)  yego // X Vel
VW HIeW2H?) = 7y 178 (31 (32) <32>/alLIPS Ay o df syco = (4.26)

For the remaining amplitude Ay g2, there is again one single 2-cut contribution to Eq. (3.16),
as shown in Figure 4.5. The anomalous dimension is given by

C
Y{W Hle,W BH?} CWBH2 Awrie(Le, 20, 3wa, 4p1)
Wbllle (4.27)
=13 dLIPS Awpp2 (3wa, 4gt, 1, 2) X Asm(—1p, , =241, 1e, 21)
and finally we obtain
Yegr 1 ne (v (2'2) (12) (2'1) (21)
T [ aups 3192 (v _y.
ooy = 5 ey [ AP 07 (Yol ey (128)

/2
_yegl/ db (Yisjeo — Yesocy) = e Y, -Y,) .
0

272 72

4.4 1-loop mixing V3 — Vy?H
The remaining mixing corresponds to amplitudes of class V3. The only SMEFT amplitude that
can generate W Hle at one loop is

lCWS
A2

Aws (Lwe, 2, 3we ) = (12) (23) (31) f*< . (4.29)
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Notice that this is the first time we are encountering a An = 1 mixing and a 3-point 1/A?
amplitude, so it is interesting to compute the anomalous dimension using the three different
methods explained in Chapter 3.

4.4.1 Method I: vywgews from amplitude 2-cuts

Figure 4.6: Diagrams of the 2-cuts that contribute to the renormalization of Aw e by Aws.

In this case there are two contributions to the anomalous dimension, given by the 2-cuts in
Figure 4.6. Eq. (3.16) becomes

Cyys
VW HIeW?) W;l Awmie(1e, 21, 3wa, 4pt)
1
47‘(‘3 dLIPS AWS (SWG 4H7L7 ]‘H’ 2 ) X ASM( ]'HJ” — Wb’ ]-67 2l) (430)

* 4_7'1'3/dLIPSAW3(3WG721’1/ 4 ) X ASM( 12’ - Wb71674HT) )

where Ay is a non-minimal (or factorizable) amplitude that includes the Ay-s contact ampli-
tude Eq. (4.29). These amplitudes can be computed using the strategies outlined in Section
1.3.2. For example, we can use the ansatz method and impose proper factorization and crossing
a <+ b. Ultimately, we obtain

igaCus f*(T°)] [(31) (42') (32') (') (34) (32)
AW3(3WQ,4HT Vigis 2y ) = oA ) — ) ;

(4.31)

igaCyys f2(TC)] (34') (32) (24')
A2 (1'2)
Using these expressions, together with Eq. (2.10) for the SM amplitudes, the RHS of
Eq. (4.30) can be written as

s 00 B85 23 (3 0
o e [ (40 ) . (3 B8
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(4.32)

Aws(3wa, 20,1 44) =

(4.33)




2
with r = -2 24?’:5\@3 . We have rearranged the spinor-helicity variables with the Schouten identity

and we have used that fo°TT¢ = iNT*/2 for an SU(N) group. Next, we must perform the
phase-space integration. In the first line of Eq. (4.33) we parameterize [1),]2') in terms of
|1),|2). In the second line we parameterize |1’) ,[4") in terms of |1),]4). This leads to

T _%<31> (32) + / ALIPS (12) (43) i o

, (4.34)
(31) spe™™® — (34) 22
(21) spe™i® + (24) cg

S}

47" %(31> (32) + / dLIPS (23) (21)

In both lines, the second term contains a polynomial of €’® in the denominator, which makes the
dLIPS integration more involved. The ¢ integral is equivalent to a contour integral of z = €%
along a unit circle, which can be computed with Cauchy’s theorem. In our case we have

/%dqbaeid’—i—b 1 dz a+bzia+ b_a @(1_
0o 2mce @ +d 2mi) z cH+dz ¢ d c

C

d

) , (4.35)

where we have added the contributions from the poles at z = 0 and z = —c/d. The O function
ensures that we only include the residue at z = —¢/d when the pole falls inside the unit circle.
If ¢/d depends on the 6 angle, the © function changes the integration limits of the df integral.
For example, one of the terms in Eq. (4.34) is

. 52 5
2 (31) sge™'? — (32) 2 (31)  [aretany/ o (32) 2 (31)
— dLIPS — = — d928969 TIon 2 + —
. [Ty soe + @2 cy @) Jy @) g
(31) N (34) (21)  s94 n (32) ln( S14 )
<41> <41> <42> Soq + S14 <42> Soq + S14 ’
where the integration limit § < arctan <\/324 / 514> comes from the © (1 — ‘gi;izz > function.

The remaining integral in Eq. (4.34) can be computed in a similar manner. Finally, the anoma-
lous dimension is

2 2
93Ye |1 S12 S14 93Ye |1 s12 S12

. = ———1In — —+ —=In[ —— | |. 4.37

’V{WHZ W2 87’(’2 |:2 So4 (814 -+ 824):| 87T2 |:2 + S24 <824 + 812>:| ( )

Notice that the individual 2-cuts (a) and (b) in Figure 4.6 contain logarithms, which arise

from the presence of triangles and boxes. As explained in Section 3.2.3, this is something we

expect for renormalizations with An = 1 instead of An = 0. Logarithms are expected to cancel

when summing over all 2-cuts in Eq. (3.16). Indeed, using the condition s15 + s14 + S24 = 0,
Eq. (4.37) becomes

2 2
9oYe |1 512 S14 9oYe |1 s12 S12
e = - ——1 — -+ —1 =0, 4.38
P)/{WHl W 87‘(’2 |:2 So4 H<_812):| 871'2 |:2 + So4 n<—514):| ( )
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where the logarithms from (a) and (b) cancel out as expected. In this case, surprisingly, the
non-logarithmic terms also cancel and the anomalous dimension is zero.
As a final remark, the coefficients in front of the logarithms in Eq. (4.37) are related to the

box coefficients of the amplitude Aijfb‘)p for the mixing Ays — Awpge. In Appendix C.2, we
1—loop

show how those coefficients can be computed directly from 4-cuts of A;;

4.4.2 Method II: vy pe,ws) from momentum deformation

The computation of vy e wsy can be simplified using Eq. (3.23), which eliminates the contri-
butions from triangles and boxes in the individual cuts before the dLIPS integration. For the
2-cut (a) in Figure 4.6, we perform the following BCFW shift

V) > 1) +212), [2) = 12) (4.39)
12] = 2] + 2|1 , 1] — [1] . .
Next, we perform the z integration to extract the pole at infinity, yielding
/ L1z (B2 (B2 207) | 128)) ) ((31) + 2 (32) + 2521
c Z 2 (2'17) (2'2) (41') + 2 (42') o)

B <32’> <31'> <23> <43) <32’>
‘“2)[ 2 (<2,1,>+<2,2>)+ (12 }

We can proceed similarly with the other 2-cut (b). Using Eq. (3.23), the anomalous dimen-
sion is given by

Chvs

V{W Hie, W3} Com Awrie(Le, 20, 3wa, 4p1)

e / dLIPS (12) [

(32) (<31’> N <23>> L 143) <32/>} (4.41)

2 \(21) " (22) (42')

+rTe / dLIPS (23) {(34’) (<<f1>> + éﬁé) + %} .

The RHS of this expression should be compared with Eq. (4.33), derived from Eq. (3.16). The
first term of every line remains the same, whereas the second term has changed with the z
integration. Naturally, both formulas for the anomalous dimension must coincide. Indeed,
performing the phase space integration of Eq. (4.41) yields

2 2

9a¥e |1 512 512 92Ye |1 S14
e = -+ — |1+ —— + -+ =0, 4.42
Y{W Hle, W3} {72 {2 S14 < So4 + 814>:| {72 [2 Soyq + 512] ( )

which is zero since s15 + s14 + s24 = 0. Notice that we obtain the same terms as in Eq. (4.38)
except for the logarithms, which have been removed with the momentum deformation. This
shows the effectiveness of Eq. (3.23) for mixings with An = 1.
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(c) we - gt

Figure 4.7: Diagram of the extra 2-cut that contributes to the renormalization of Fyy e by Fys.

4.4.3 Method III: vy ws from form factor unitarity cuts

We can also apply form factor renormalization to the mixing W3 — W Hle. Using Eq. (3.35),
there are three contributions to the anomalous dimension. Two of them correspond to the
2-cuts (a) and (b), previously shown in Figure 4.6. However, now we must also consider the
2-cut (c) in Figure 4.7. The overall expression can be written as

’Y{WHze,zuqe}FWHle(le, 21, 3we, 4HT)

1
47_(3 dLIPS FW5 <3Wa 4HT7 1Ha Wb) X ASM( Hh Wb’ 167 2l>
1 R , . (4.43)
+R dLIPSFw3(3WE,2l,1 4 ) X ASM( 11,— vale74HT)
4 3 dLIPS FW3 (3W€L 1Wb 3 2Wc) X ASM( Wb ; 2/‘/[/c 167 2[, 4HT> ;

where the last line corresponds to the 2-cut (c). This term does not appear in Eq. (4.30)
because the on-shell 3-point amplitude vanishes, but we must include it when working with
form factors. The contributions from cuts (a) and (b) have already been computed in the
previous subsection,

v > g8§7§/2 {1 L (12)(43) s 212> (43) [ 524 +1n(L)” "

2 (14) (32) soq +s14 (24) (31) [ S2a + 514 S14 + S24

2y, (1 5 43 s s
+921/2 {__ 24 +< 2) (43) { 24 —i—ln( 12 )}} '
8 2 S24 + S12 <24> <31> S94 + S12 S94 + S12

Notice that now p; +ps+p3+ps = Q # 0, so we cannot simplify this expression into Eq. (4.37)
as we did before. The remaining cut (c) requires the phase-space integration of the minimal
form factor Fys and the 5-point SM amplitude Eq. (2.14),

/ dLIPS (31) (2'3) (12) ( (22@ o+ <12<,;‘2u,>> | (4.45)

To solve the integral, we parameterize |1’) , |2') as explained in Section 3.4.3. Since we have
a 5-point SM amplitude, we define two spinors which are a linear combination of the external
11),]2),]4). Following Eq. (3.58), this is

o) = 1) /=2 ) = (122 + (4] 4) [ (4.46)
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Then we can use Eq. (3.55) to write the internal spinors as

1) = cale) = s0e™ ) = | - [calL) Vot = sue'® (12][2) + [14]4))]

(4.47)
) 1 )
12') = spe™ Ja) + co |b) = | [ ———— [s0¢7"" |1) /5124 + co ([12] [2) + [14] [4))]
S12 + S14
After performing the phase-space integration, the contribution from cut (c) is
2
95Ye Sa4 (12) (43)  s14
e D — 1—

THWHeW) 2 g { oo+ 51 | (14) (32) 591 + 512 (4.48)

+<12> (43) [ S S: +ln( 512514 )}} ‘
(24) (31) | s2a + 812 Soa + 514 (524 + 812)(514 + S24)

The anomalous dimension is obtained by summing the three cuts, ultimately yielding
Yiwaiewsy = 0. Notice that the additional terms in Eq. (4.44) that we could not simplify
because Q% # 0 are exactly canceled by the cut involving the 3-point form factor. Indeed, both
Eq. (3.16) and Eq. (3.35) give the same result as expected. This is demonstrated by taking the

limit Q* — 0 of Eq. (4.43). The contributions from (a) and (b) reduce to Eq. (4.42), while the
contribution from (c) goes smoothly to zero.

4.5 Comparison with the literature

Our results can be compared with previous computations of the 1-loop anomalous dimension
matrix for dimension-six operators in the SMEFT. A review of the existing calculations, pre-
dominantly performed using the Feynman approach, is provided in the introduction.

Throughout this chapter we have examined the renormalization of the SU(2), dipole am-
plitude Ay . by other 1/A% amplitudes. In order to relate this to previous literature, we must
establish the correspondence between our amplitude basis and some dimension-6 operator basis.
This correspondence is presented in Appendix B, where we list the on-shell amplitudes associ-
ated with SMEFT operators in the Warsaw basis [65]. In particular, our calculation should be
compared to the 1-loop anomalous dimensions of C.y,, the Wilson coefficient of the dipole op-
erator Ou = Lro®c"epH W, Indeed, we find that our results successfully reproduce those
in [20, 21, 84]. This demonstrates the utility of on-shell techniques in verifying calculations
performed using other methods.

4.6 Additional observations

We have successfully computed the 1-loop anomalous dimension of the W Hle dipole using on-
shell amplitude methods. At this point, it is pertinent to discuss some notable features of this
procedure:
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e We observe that, even if two mixings appear different at the level of Feynman diagrams,
they can exhibit remarkable similarity when analyzed using on-shell methods. For exam-
ple, the mixings luge — W Hle and W2H? — W Hle are reduced to the same angular
integral,

w/2
yuQQNc yug2Nc
Y{W Hle,luge} = A2 do 3209 = 1672 (449)
_ YeG2 W/c2[0 3. _  YeG2 450
VW HIeW?H2} = ~ 5 5 ; Spcp = — o2 (4.50)

This similarity arises from the helicity structure of the on-shell subamplitudes, which
remains obscured in the Feynman diagram approach.

e The mixings of the dipole with 1* and V2H? involve only a variant of the same SM ampli-
tude ASM(lvﬁ, 2511, 3y, 4y). More broadly, let us consider the subset of 1/A? amplitudes
with n =4, h = —2, as given in Eqgs. (2.29, 2.30, 2.31). The anomalous dimension matrix
for this subset is

TVy2H Vv vy HY Yveraety Vveerver?y | [ Cvezs
Tyt = Yiwtverel V{4 V{4 V2H?) (o . (4.51)
Tv2H? hn_:42 Y{(v2H2,Vy2H} V{VZH24%} V{V2H2V2H2} Cyzpe

Using Eq. (3.16), we can check that all the non-diagonal mixings require uniquely the
A amplitude A(lvs, 21, 3y, 4y). Similarly, for the subset of 1/A? amplitudes with n =
4. h =0 in Egs. (2.32, 2.33, 2.34), the anomalous dimension matrix is

Yo+ Homtoay - omwga?}  {omt g2} Cops
Vb H? = | Weomomy Wesmwiny Vesmzgege} | | Coinz | (4.52)

Vap2ep2 Zié 'Y{w21;27|:|H4} 7{¢2&2,¢¢H2} fy{wQ,J}gﬂbng)z} C¢2¢2

where now all the non-diagonal mixings involve the A amplitude A(1g, 251, 34, 45). This
implies that multiple 1-loop renormalizations can be computed from a single tree-level
amplitude, enhancing efficiency.

e As a final remark, on-shell methods possess the convenient property of “recyclability”.
This property allows new calculations to build upon previous results, avoiding the need to
start from scratch. Once we compute some mixing ;; it is easier to obtain the “inverse”
mixing vy;; because it involves the same on-shell amplitudes. As an example, let us consider
the “inverse” of Eq. (4.4), which is the contribution of the dipole Ay g to the 4-fermion
amplitudes Ajeq, and Ajyge. The relevant 2-cut is shown in Figure 4.8.
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Figure 4.8: Diagram of the 2-cut relevant for the renormalization of Ajeqn and Apuge by Aw Hie-

Using Eq. (3.16), we have

Cw Hie

C
Wile Alequ(leu 217 3u7 4 ) + 7{luqe WHile} —~ C

V{ilequ,WHle} —~ C Aluqe(ley 2l7 Sua 4 )

lequ luge

= 4—7T3/dLIPSAWHle(1@a2l7 %/5,4}{]») X ASM<_ Q/Vi7_4/H73ua4q>

(34) (4'4)
(3'4) (3'4')

(4.53)

Yug2 CwHie g I\ ot
— 47; V/Vé“ (T )Q/dLIPS (3'1) (3'2) x

3Yug2 CwHie
B G (31) (a2) + (32) a))

with (T%)? = 3/4. Notice that, since Aw g is symmetric under 1 <+ 2, it can only
renormalize a linear combination of 4-fermion amplitudes that share this symmetry. This
selection rule is obscured when working with Feynman diagrams but becomes evident in
the on-shell amplitude approach. Applying the Schouten identity to express Eq. (4.53) in
terms of the 4-fermion amplitudes Ajqe and Ajeqy, we derive

3yu92
V{luge,W Hle} = _27{lequ,WHle} = m . (454)

4.7 Conclusions of the chapter

In this chapter, we have successfully applied on-shell amplitude methods to compute 1-loop
renormalizations in the SMEFT, focusing on the SU(2), dipole amplitude Ay g.. This proce-
dure offers an efficient alternative to traditional Feynman diagram loop calculations.

We have obtained the full 1-loop anomalous dimension matrix for Cy g, excluding self-
renormalization. We have computed the mixings of A e with interactions of classes 1?,
Vp?H, V2H? and V3, using the three methods described in Chapter 3. The simplest one is
method I, which allows us to compute the anomalous dimension from a product of two tree-level
amplitudes integrated over a phase space. This integral can be reduced to an angular integral,
which often becomes trivial, showcasing the remarkable simplicity of the on-shell approach.

Regarding the other methods, we have demonstrated how method II of momentum defor-
mation is primarily helpful for mixings with An = 1, where the individual 2-cuts of method I
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receive logarithmic contributions from triangle and box integrals. Such contributions are elimi-
nated by shifting the internal momenta into the complex plane and applying Cauchy’s theorem.
We have also seen how method III includes additional contributions from 2-cuts involving 3-
point form factors, which vanish for method I. Nevertheless, all three methods give the same
result.

We have checked that our results for the anomalous dimensions associated with Aw gie
match those obtained using Feynman diagram techniques in previous studies. In particular,
we have considered the renormalization of the dipole operator Q. = Lio%*erH le‘u. This
validates the use of on-shell methods as a robust computational tool in the SMEFT.

Our calculation has provided several insights into the power of on-shell methods. Amplitude
symmetries and helicity structures are naturally embedded in the on-shell framework, simpli-
fying the identification of non-zero contributions to the anomalous dimensions. Mixings that
seem distinct in the Feynman diagram approach often reduce to similar angular integrals when
analyzed on-shell, highlighting structural simplifications.

The studied methods are highly efficient because, once we have computed some on-shell
amplitude, we can reuse it in related renormalizations. For example, the mixing Ap, — Ao,
requires the same amplitudes as the inverse mixing Ao, — Ao,. Additionally, we have seen
that all 1-loop mixings between operators with the same n and h involve a single SM amplitude.

In conclusion, we have tested the advantages and versatility of on-shell amplitudes for
SMEFT renormalization calculations. The considered methods offer an efficient procedure for
computing anomalous dimensions, complementing other techniques.
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Chapter 5

Applications of renormalization II:
Lepton Flavor Violation

In this chapter we consider a phenomenological application of on-shell renormalization tech-
niques. Following [3], we analyze Lepton Flavor Violating (LF'V) muon decays, which are some
of the most promising probes for new physics at the TeV scale. Using on-shell amplitude meth-
ods, we study the mixing of SMEFT higher-dimension operators into several LF'V observables
up to two loops.

The chapter is organized as follows: In Section 5.1 we highlight the role of LE'V processes in
searches for new physics. In Section 5.2 we perform a systematic analysis of u — ey, u — eee
and uN — eN at tree level in the SMEFT and discuss the obtained energy bounds. In Section
5.3 we identify which operators contribute to the LF'V processes at the 1-loop and 2-loop levels.
In Section 5.4 we use on-shell amplitude methods to obtain the relevant anomalous dimension
mixings up to two loops. We present the new energy bounds, including loop effects, in Section
5.5. As an example, we show the impact of our analysis in two different BSM models in Section
5.6. We summarize the main conclusion from this work in Section 5.7.

5.1 LFYV processes as probes for BSM physics

Within the Standard Model, the number of leptons of different species L., , is conserved in
all interactions. This symmetry is considered accidental because it is not preserved by higher-
dimension operators made of SM fields. Therefore, LF'V processes are excellent tools for testing
the SM and exploring new physics.

Considering the SMEFT expansion in powers of 1/A (see Section 2.2.2), the total lepton
number L = L, + L, + L, is already not preserved at the first order 1/A. The dimension-5
operator Oyzp2 in Eq. (2.38), which is responsible for neutrino masses, breaks lepton number
by two units AL = 2. The effects of this operator, however, are primarily relevant to neutrino
physics. Indeed, since neutrino masses are so small (m, < 0.8 eV [17]), the ratio between
the Wilson coefficient Cy2p2 and the scale of new physics A is expected to be small as well.
Consequently, contributions of order Cy2p2/A to other observables are negligible.
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At the next order 1/A%, dimension-6 operators generate LFV interactions involving charged
leptons. This kind of interaction is yet to be observed experimentally, despite being predicted
in the vast majority of BSM models. Here we will focus on LFV processes that violate the
relative lepton numbers L., - while preserving the total lepton number L. These processes are
one of the most promising indirect probes for new physics [85], since they generically get sizable
contributions from BSM effects. Moreover, dimension-6 operators that preserve total lepton
number are much less suppressed than dimension-5 operators, so that they can have a larger
impact on LFV observables.

For concreteness, we consider LE'V processes with AL, = AL, = 1. In this category, the
most competitive experimental searches are:

e 1 — e7y: muon decay into an electron plus a photon. Currently the leading sensitivity
is BR(p — ey) < 4.2-107' which comes from the MEG experiment [86]. The MEG II
[87] experiment is projected to continue the search for this decay and aims to achieve a
sensitivity of 6 - 10714,

e 1 — eee: muon decay into three electrons. The current limit was set by the SINDRUM
collaboration [88] and is given by BR(u — eee) < 107!2. The best future prospect comes
from the Mu3e experiment [89], which has a target sensitivity of 10716,

e uN — eN: muon-to-electron conversion in nuclei. The current bound on the conversion
rate is R(uN — eN) < 7-107'3 as measured in the SINDRUM-IT experiment [90]. This
sensitivity is expected to improve in the future Mu2e experiment [91], reaching 8 - 10717

These three processes are particularly interesting for BSM searches because their branching
ratios in the SM are extremely small, very far from the present and future experimental sen-
sitivities. Therefore they are very clean observables for new physics. Moreover, the searches
of all three processes are expected to improve their sensitivities in the next decade [92]. Other
processes with AL, = AL, = 1 include the following LF'V decays:

e h — ep and Z — ey, which get indirect constraints at the LHC. The current sensitivities
are BR(h — ep) < 4.4-107° [93] and BR(Z — ep) < 2.6 - 1077 [94].

e Meson decays such as J/1 — pe (measured at BESIII [95]), K? — pe (measured at BNL
E871 [96]) and B° — pe (measured at LHCb [97]). See [85] for an extensive list. We
will not consider these decays in our study because they are quite constrained by other
non-LFV processes.

Table 5.1 summarizes the present and future sensitivities for the LF'V processes discussed
in this work. Our aim is to systematically analyze u — ey, u — eee and uN — eN in a model-
independent way, following the EFT approach. We will characterize the BSM contributions
to the different processes using dimension-6 operators in the SMEFT. Then we will use the
experimental constraints on the processes to bound the new physics energy scale A.

72



BR(p — evy) | BR(u — eee) | R(uN — eN) | BR(h — pe) | BR(Z — pe)
Current | 4.2-1071 [86] | 1-10712 [88] | 7-107!3 [90] | 4.4-1075 [93] | 2.6 - 1077 [94]
Future | 6.0-107 [87] | 1-107'6 [39] | 8107 [91]

Table 5.1: Current and near future upper bounds on AL, = AL, = 1 processes.

Previously there have been several analyses on LFV muon decays with dimension-6 opera-
tors, see for example [98-104]'. As a novelty, in [3] we were the first to include the effects of
renormalization group 2-loop mixing into the dipole operators. This allows us to bound certain
Wilson coefficients that only enter the LF'V observables at two loops. Our study is motivated
by the next generation of LF'V experiments, which will reach such high precision that it requires
an EFT analysis at the 2-loop level. The calculation of anomalous dimensions up to two loops
is greatly simplified thanks to on-shell amplitude methods (see [1, 26, 28-31]). See Chapter 3
for more details on this topic.

5.2 LFYV experimental constraints at tree level

As mentioned in Section 2.2, the SMEFT can be used to parameterize the effects of BSM
physics in a model-independent way. Here, we perform a systematic analysis of three LFV
processes (u — ey, i — eee and uN — eN) up to two loops, using dimension-6 operators.
The goal is to understand which operators are probed by a measurement of the LFV branching
ratios. Then, using the experimental sensitivities in Table 5.1, we derive bounds on the new
physics scale A.

The general procedure goes as follows: for a given LF'V process, we consider the correspond-
ing effective Lagrangian and identify which SMEFT operators generate the effective coefficients.
In this section we focus on the leading contributions, which come from Wilson coefficients that
appear at tree level. In Section 5.3 we will consider higher-order contributions from operators
that mix with the tree-level ones via loops.

5.2.1 Dimension-6 operator basis

The first step is to establish our choice of dimension-6 operator basis for studying the LFV
processes it — e, pt — eee and uN — eN. Since these processes have AL, = AL, = 1, we are
interested in operators involving both p and e. Such operators are classified in terms of their
particle content as follows:

o Vi2H:

(Ol _ o _
pw Y92 Lg)aaa“”e%)HWSV + LB Yudn L(Q)a“”eg)HBW + (up<<re)+he . (51)

V2 A V2

!There are similar studies for LEV processes involving 7 leptons, such as [105-108].

Ls D
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e (@ e ) (T fr) + R (L L) (T f) 6.4
Cre’ o)y 7 ulle Y (7 (2) u (D) |
+ T(GR TR )(FL%FL) Crr A2 (L ’YMLL)(GRV er’)
+ e (1,Q0) (A e) + (5 €) + e
o )t
e y T e y
LoD Cpitge 5 (LY ur) (€Quey) + Cpe, 35 (L eR))(eQuup) + (i > €) +he. . (55)

We write explicitly the flavor indices 1 = e,2 = p for the lepton fields Ly, eg in LFV
transitions. We also specify the fermion types in the Wilson coefficients, with ¢,¢ and f
respectively referring to any lepton, quark and fermion. Fp = L, @ is a general SM left-
handed SU( )L doublet while fr = eg,ug,dg is a general right-handed singlet. For operators
with L(2 e R or L(1 e R , we have factored out a muon Yukawa coupling y, due to the chirality
flip. Therefore we must keep y, fixed when exchanging i <+ e. Additionally, we have included
a gauge coupling g1, g» in the dipoles Eq. (5.1), because we expect them to be generated by a
gauge theory even above the energy scale A.

Our choice of operators mostly corresponds to the Warsaw basis?, replacing Ol(jgu by Oruge
according to Eq. (B.1) and rewriting Oj.4, with the Fierz identity,

Oty = (Lren)(@nQr) = —5 (L1, Qu) (dnr'en) (56)

2See [65] for the original paper. The complete basis and its corresponding on-shell amplitudes are listed in
Appendix B.
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We have also changed the operator labels to simplify our notation.
As a final remark, it is enlightening to rewrite Eq. (5.3) in the unitary gauge. We parame-
terize the Higgs doublet H as

2) = L i) 0
Hz) V2 (wh@)) ’ (57

where v is the vacuum expectation value, h(x) is the physical Higgs and {%(z) are Goldstone
bosons. H(x) is invariant under local gauge transformations H(x) — H(x)e™***@). In partic-
ular we can choose a(x) so that the Goldstone bosons £* are removed from H(x). This is the
so-called unitary gauge, which corresponds to

1 0
H(z) = 7 (U ) h(;;;)) . (5.8)

Using this gauge and writing explicitly the SU(2), doublet L, = (V ), Eq. (5.3) becomes

€L
glo+m* | Cx Cre + Ol _ Co _
— (269 ) AI; Zueg)”y“eg)Jr L o L3 Zue(Lz)'Yue(Ll)—TV;[WJV(Q)’Y“B(;)Jrh.C.]
w
(5.9)
M VA —(2) o1, (1) CG_W W+,(2) u (1) L
+ A2 pmY +\/§[ LU e +hel | | +(pere),

where 0y is the Weinberg angle and we have rewritten the gauge boson fields W}}’w and B, in
terms of Wui, Z, and A, according to

W= = S(WHFaWw?), (5.10)
Zﬂ == CQWW3 - SQWBH 3 (511)
Ay = oy B+ se, W) (5.12)

From Eq. (5.9) we see how the Wilson coefficients C7°;  generate the tree-level LFV
interactions W*ue, Whpue, Zue and Zhue. However, as explained in [24], BSM theories with
custodial symmetry and L <> R parity must have C, + C3 = 0. This cancellation sets to zero
the Zue and Zhpe interactions, and we are only left with LF'V couplings involving neutrinos,
which are difficult to detect. This means we cannot derive strong bounds on the combination
Cr, + Cr3 from direct measurements such as W — uv,, W — ev, or Z — v,,. Instead,
we can obtain better bounds by considering the loop effects of these operators in other LEV
observables, like y — ey. We will see this in detail in Section 5.3.1.

After establishing our basis of dimension-6 operators, we proceed to study how the different
Wilson coefficients enter several LE'V observables.
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5.2.2 u—ey

The p — ey decay arises from the following effective Lagrangian
4G F
V2

where G is the Fermi constant and d,. ., are the dipole coefficients. Note that we use the

L=— my [dpefin o erFy + deyero™ nrF,) +he. | (5.13)

fields ey, g and py, g, which are related to 6%’2) and L(Ll’2) by

O en D Lsu(”e), Lf)=<”“>. (5.14)

€r K
From Eq. (5.13), we derive the branching ratio [109]
BR(p — ev) = 3847 (|dye|” + |dep|?) (5.15)

The large numerical factor can be understood because u — ey is a two-body process, while the
dominant channel y — ev,v, is a three-body one. The experimental constraint on this decay,
together with the projected future sensitivity, are shown in Table 5.1. Notice that the dipole
coefficients are running couplings, which should be evaluated at the muon mass in Eq. (5.15).

We are interested in the SMEFT operators contributing to this LFV muon decay, since
they can be constrained with the experimental measurements of BR(u — e7). The leading
contribution comes from the Wilson coefficients that generate d.., at tree level. In this case
we only have the dipoles Cyi/pp from Eq. (5.1), which lead to

2
VG256,

Gue = 5

(Cow = Cbp) (5.16)

and analogously for d., if we interchange p <+ e. Substituting into Eq. (5.15), the current and
future experimental bounds on BR(u — e7v) lead to the following constraints

1/(951 TeV)?  (current)

1/(1547 TeV)?  (future) (5.17)

1 € € €, €,
F\/w’g)w - CgBP + |CDMW - CDMB|2 5 {

Assuming (Chyy, — Chg) ~ (Coy — Chy) ~ 1, we find A 2 951 TeV for the current bounds
and A 2 1547 TeV for the future ones.

5.2.3 p — ece

The next LEFV process we consider is the y — eee muon decay, which is generated by the
effective Lagrangian

4G R B B B B B B
L=——=gi(ftrer)(€Rrer 2\MLER)\ELER 3\MRVUER)\ERVUER
75 19 (firer)(€rer) + go(fier)(€rer) + gs(LrYuer) (ERVuER) (5.15)

+ ga(pyer)(€pvuer) + gs(firy"er)(€Lyuer) + gﬁ(ﬁm“@L)(éR%eR)] +h.e.,
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plus the dipole terms in Eq. (5.13). The corresponding branching ratio is given by [109]

m2\ 11
BR (1 — eee) = 2 (|gs|* + [gal’) + 195” + |g6]* + 32¢* [ln<m—;) } (Iduel” + |deul”) )
e 19

+8eRe (d} g6 + dyuegs) + 16eRe (d}, g5 + dyegs) + +3 (|g1|2 + 1317

which has to be compared with the experimental values of Table 5.1. Let us see which
dimension-6 SMEFT operators contribute to this branching ratio at tree level. We have al-
ready seen the expression for the dipoles d,. ., in Eq. (5.16), whereas the g; can be written in
terms of the following Wilson coefficients

v? v?

—os (Ol + 253,00 ) = = (Cl — (L= 293, (Cl + 1) )

v? v?

g5 =~z (Ol = (1= 265,)C8) g6 = — 5 (Cli" + 253, (C + Cl5) )

g3 =
(5.20)

The remaining g; and g, are zero in this order, since they are only generated by dimension-
8 operators. The coefficients in Eq. (5.20) receive contributions from the )?)? operators
O r.orrrs and also from the ¢ H? operators O} 4 . Notice that only the combination
C° + C¥'5 appears, since u — eee is induced through the Zpue coupling in the unitary gauge
(see Eq. (5.9)).

Considering the experimental sensitivity for 1 — eee, we can obtain energy bounds associ-
ated with the different operators. For simplicity, we assume that all Wilson coefficients are set
to zero except for one C; that is fixed to 1, so there are no interference effects. The bounds on
A for the different operators are shown in Table 5.2.

5.2.4 uN —eN

The remaining process we cover is the y — e conversion in nuclei. It arises from the following
Lagrangian:

4G
£ = =—=F gk er) @) + giey (i en)(@y,)
V2 (5.21)

+ gt s(nen) (@) + ghs(finer)(@u) + (u— d)] +he.

defined at the nuclei scale. We must also include the dipole terms in Eq. (5.13), which can lead
to ulN — eN through photon splitting into quarks. The rate for the process is given by [110]

2)7

262,

W capture

R(uN — eN) =

(‘Ddue_i_gva(p (L)V()+g()5(p)+gL)S

(5.22)
+ ‘D ds, + g V@) 4 g v 4 gD g®) gl g
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where Wegpture is the muon nuclear capture rate and D, yen)  gen)
n [110]. We also define the g coefficients as

(p)
gL/RV

(p) (
ng/RS Z Gg ) gL/R,S’

q=u,d

with G wP) ng,n) ~ 5.1, ng,p)

29r/py + gL/R v

are overlap integrals defined

g(Ln/)RV 9r/pv + 29%/12\/ ;
n 5.23
gL/RS ZGq L/RS7 ( )
q=u,d

~ G’g"") ~ 4.3 and we have neglected the contribution from

the s quark. The experimental measurement of Eq. (5.22) is shown in Table 5.1.
Proceeding as before, we write the effective couplings from Eq. (5.23) in terms of the Wilson
coefficients that enter at tree level. For the up sector, we have

2
Ghs = graChit
2

?}2

gqu,s = W@/uCZﬁ& ’

Giv = gz | (O + Cl) + 295 (O + €19 | (5:24)
oy =~ [(Cpe+ ) +2g508]

with g% = (3 — 353 ). For the down sector,
o= SuCHE | s = S Ci
iy =~ [(cm - oy +2gt (cp + ot (5.25)
iy =~ [(Ct - ity + 28]

with ¢¢ = (=3 + %sgw). The operators entering uN — eN at tree level are similar to those
entering u — eee, replacing the peee four-fermion operators with peuu and pedd. The only
new ingredients are the ¢* operators Of¢/,, and O, which were not present in Eq. (5.20).
Table 5.2 summarizes the energy bounds obtained from Wilson coefficients that enter
R(uN — eN) at tree level, considering the current and future experimental sensitivities.

5.2.5 Discussion on tree-level LFV bounds

The tree-level energy bounds for the LF'V processes u — ey,  — eee and uN — eN are listed
in Table 5.2. For each entry, the present bounds are on the first row and the future bounds are
in parenthesis on the second row. Our aim in this subsection is to identify which bounds can
be significantly improved by considering loop mixings into the tree-level Wilson coefficients.

For current experiments, the most competitive bound is A 2 951 TeV, which comes from
the dipoles Cpy/pp in 1t — ey. Renormalization effects from other Wilson coefficients C; into
(Cpw — Cpp) are thus expected to provide strong constraints on C;/A as well. At the 1-loop
level, these effects are of order

A(Cpw — Cpp) ~ C;/167* = Ci/A* < 1/(75 TeV)? (5.26)
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[ — ey L — eee uN —eN h—pue Z — ue
cne e 951 TeV 218 TeV 208 TeV
PETPW (1547 TeV) (2183 TeV) (1812 TeV)
o 160 TeV 225 TeV
(1602 TeV) (1535 TeV)
o 4 e 164 TeV 225 TeV ey
(1642 TeV) (1535 TeV)
cnee 207,174 TeV
LLRE), LE(RL) (2070,1740 TeV)
Ui 202 Tev
U (2693 TeV)
. oo ey
U (2725 TeV)
(e 18 TeV
(164 TeV)
Cne 0.3 TeV

Table 5.2: Present (future) tree-level lower bounds on A, coming from the different dimension-6
operators entering u — ey, p — eee and ulN — eN.

At the 2-loop level, we have
A(Cpw — Cpp) ~ C;/(16x%)° = Ci/A? < 1/(6 TeV)? . (5.27)

The estimated bounds are sizable even for 2-loop effects, so in our study we must include
mixings into the dipoles C’fﬁ,"i’g 5 up to two loops. The Wilson coefficients Cpw — Cpp also
enter the processes u — eece and uN — eN at tree level, but the current energy bounds are
less competitive, around A = 200 TeV. This is expected to change with the next generation
of LFV experiments, since the projected sensitivities lead to an improvement by one order of
magnitude on the bounds, reaching A = 2000 TeV. Therefore we expect the bounds from
i — eee and uN — eN to dominate over y — ey in the future.

We must also consider the energy bounds coming from four-fermion operators entering
i — eee and uN — eN at tree level, which are in the range A 2 170 — 370 TeV. These
constraints are projected to improve around an order of magnitude in the near future, becoming
comparable to the dipole bounds. For this reason, we should consider the loop mixing of other
Wilson coefficients into C77"%r 1k rry Crr rror and C’LLZ%RLR. As an example, the current
bounds for 1-loop mixings with C77° are of order

ACHT ~ C; /1672 = Ci/A* <1/(16 TeV)? . (5.28)
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And we expect to reach A 2 160 TeV in the future. In Section 5.3.2 we will see that it is not
necessary to consider 2-loop effects to four-fermion operators, since all relevant mixings already
occur at the 1-loop level and no new operators enter at two loops.

Another set of operators entering our LFV processes at tree level are the fermion-scalar
operators O 4 . In this case the present energy bounds are A 2 160 TeV for 1 — eee and
A = 225 TeV for uN — eN, which are again expected to improve about an order of magnitude
in future experiments. For a complete analysis, we must consider the effects of 1-loop mixing of
other Wilson coefficients into C%"; ;5. As we explained before, only the combination C7° + C7g
appears at tree level, so we need to include the orthogonal combination C}° — C’5 at one loop.
The corresponding bounds are approximately

A(CF+C) ~ Cy/167° = Ci/A* <1/(15 TeV)? | (5.29)

that again will increase to A 2 120 TeV in the near future. The combination C}° — CY5 can
also be probed at tree level by LF'V processes involving neutrinos, but the bounds are much
worse. Notice that the O?{L, 1.3 operators also receive direct constraints from the decay Z — e,
whose branching ratio is given by [100]

3 .2
myv

127TrzA4

2.2
BR(Z — jie) = P + |Cpe + Ot + 2 (osP + e 2)} . (530)

82
where we have defined Cpy; = C:W Cpp + ¢p,, Cpw and I'y = 2.5 GeV is the decay width of the
w
Z boson [17]. The experimental sensitivity for this decay is shown in Table 5.1. The associated

energy bounds for C%° and C}° + C}; are roughly A 2 5 TeV, much less competitive than the
i — eee and uN — eN constraints.

Finally, it is worth mentioning the operator O}, which enters the Higgs decay h — pe at
tree level. The corresponding branching ratio is [100]

m Hmiv2

(& 2 € 2

(lewe|® + [cg?) (5.31)
where I'; = 0.013 GeV is the Higgs decay width [17]. The current sensitivity for this decay
(see Table 5.1) results in a weak energy bound of A 2 0.3 TeV. According to the estimate in
Eq. (5.27), we expect stronger bounds on Cle from the 2-loop mixing into u — e7.

We have summarized the loop effects that are potentially relevant to study the LFV pro-
cesses (1 — ey, p — eee and uN — eN. In the next section, we will analyze which operators
can enter the different observables via loops.

5.3 Loop mixings

In addition to operators entering LFV processes at tree level, we must also consider contribu-
tions from loop mixings. There are several effects that should be taken into account:

(7) Finite matching contributions from a new physics scale A.
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(77) Renormalization Group (RG) mixing from A to the electroweak scale ~ myy.

(77i) Finite threshold corrections arising from integrating out the W, Z, H bosons and the
heavy SM fermions.

(iv) RG mixing from the electroweak scale my, to m,,, which is the energy scale of the LFV
processes we are studying.

We are mainly interested in determining which higher-dimension operators give rise to the
different observables. For this reason, we will neglect altogether the contributions from (iv).
The RG mixing between my, and m, does not add new Wilson coefficients and instead it
only modifies the energy bounds slightly. For example, using the results of [103], we expect
corrections of at most ~ 10% in the bounds on Table 5.2. It would be interesting to include
the complete RG mixing in the calculation, but that is beyond the scope of this work.

At the loop level, the UV matching (i) and the SM IR matching (éii) give rise to finite
contributions to the tree-level coefficients. The UV corrections from (i) depend on the particular
model for physics at the A scale. This means they could (partially) cancel against the IR
corrections from (7i7). In Section 5.6.1 we will see some examples of this cancellation. Instead
of model-dependent, corrections, we will focus on the contributions from the RG running of
Wilson coefficients between A and the electroweak scale (i7). This type of corrections are
accompanied by logarithms In(A/my,), which cannot cancel against the finite contributions of
(1) and (7i1).

We will consider the leading RG mixing of dimension-6 operators up to two loops. At one
loop, we have contributions proportional to

C;
1672

In(A/mwy) . (5.32)

Operators that mix at two loops can be classified according to a logarithmic expansion. The
leading ones are 2-loop double-log contributions proportional to

CiC;

(1672 )2 In*(A/mw) i#7, (5.33)

which arise from two-step 1-loop mixings of the type O; oop O; loop Og. The next order

corresponds to direct 2-loop mixings O; Zlocp Oy, which are proportional to
G

Ton7)? In(A/mw) . (5.34)

These are the three types of loop mixings that we will incorporate into our analysis. The
next step is identifying the order in which the different Wilson coefficients enter the LFV
observables.
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5.3.1 pu—ey

The only coefficients entering the branching ratio Eq. (5.15) at tree level are Cyi', 5. As stated
earlier, we are interested in the leading RG mixing of SMEFT dimension-6 operators into the
dipole coefficients up to two loops. To identify the possible 1-loop mixings, we will use the
helicity selection rule derived in 3.4.1, which states that an operator O; can only mix with
another operator O; if their number of particles n and helicities h satisfy An > |Ah|, with
An =n; —n; and Ah = h; — h;. The relevant mixings are discussed below.

e 1-loop mixing: According to the helicity selection rule, dipole operators V?H are only
renormalized at one loop by operators of classes V2 H, y* VZH? and V3 (see Table 3.1).
Moreover, the LFV dipoles can only mix with LF'V higher-dimension operators, since the
SM interactions preserve lepton flavor. This excludes operators of classes V2H? and V3.
Regarding other dipoles V> H, in Eq. (5.16) we see that only the combination Chy, —Chy
contributes at tree level, so the orthogonal combination Cfy;, + Cy; appears at one loop.
Finally, we have the ¢* operators Or.q, and Op,qg.. We can check that szgu does not

mix with O, g, since the leptons L®e() are external to the loop calculation and do
peqq

not have the dipole structure. This leaves us only with the operator OF ¢,
e 2-loop double log mixing: These are 1-loop mixings with the operators that generate
Chw'pe at one loop. In our case, there are no new operators that mix at one loop with

Cpw +Cpp and we only have to consider mixings with 07 . Using the helicity selection

rule again, the only new operator is ng‘gu. In this case, however, there is an additional
mixing ¥?1)> — 9*, which comes from the exception to the selection rule. Thus we also

27,2 : ~ peqq
have operators of class ¢*¢* entering d,. at this order, namely O7 sz 1 g rr 13-

e 2-loop single log mixing: These are direct 2-loop mixings into the dipoles, including
operators of classes ¥?H?, 1*y* and ¢y H?. For > H® we have the operator O}¢. For
*)? we have OZGL{ZRR’ Lr.rL.LLs Where € are leptons. Finally, for ¢¢H? we have O}/, 5.

Tree level 1-loop 2-loop double log | 2-loop single log
che

pe pe peqq

e C,ue . O,ue CDB + C(DI/V CLeQu Cue

1% 2 DB DW Oueqq C,ueqq L,L3,R
LuQe LL,RR,LR,RL,LL3

Cuefﬁ
LL,RR,LR,RL,LL3

Table 5.3: Wilson coefficients entering BR(u — e7) up to two loops.

Table 5.3 summarizes the Wilson coefficients that enter the process u — ey at different
orders. For simplicity, we are only writing the coefficients that enter d,., but the coefficients
for d., can be easily obtained by interchanging u <+ e in the table. The flavor indices ¢q (¢/)
indicate that the operators include any quark (lepton) species. For practical purposes, however,
we are interested in the operators that produce the strongest bounds. For example, loops with
C#°% have a Yukawa coupling v,, so the largest contribution comes from the coefficient C/

luge luge*
We will comment on the obtained bounds in Section 5.5.
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5.3.2 pu — ece

. . . . pe,pe peee

The tree-level contributions to this process include the operators Opy pp, Orr rr.r.R a0d
€ . e,e L .

O 1.1 Aside from the O3, mixings that we have just covered, we have:

e 1-loop mixing: From helicity selection rules, the operators of classes 1?1/ and yn) H? that
appear in Eq. (5.20) can only mix with other LFV operators of the same classes. In our
case this includes the mixing with the combination C}“ — C5, orthogonal to C} + C'5,

and also mixings with other four-fermion operators ngf ! L3.RR.LR.RL, With [ any fermion.
e 2-loop mixing: No new operators enter the g; coefficients in this order.

Table 5.4 shows the Wilson coefficients that we must consider for the process u — eee. See
Section 5.5 for a discussion on the obtained energy bounds.

Tree level 1-loop 2-loop double log | 2-loop single log
e pe e e

Cps —Cow | Cpp + Cow
e pe pe peqq

1L — eee CR CYL - CLB CLeQu Che

Le Jie Leqq 1eqq Y

Cr +C1s Cruqe CLL.LL3.RR,LE,RL

(kece (jMEff
LL,RR,LR,RL LL,LL3,RR,LR,RL

Table 5.4: Wilson coefficients entering BR(u — eee) up to two loops.

5.3.3 uN —eN

The analysis of the loop contributions to R(uN — eN) is very similar to that of BR (1 — eee).
The only new type of operator that appears at tree level is Of ), , which mixes with 077, at
one loop. Nevertheless we will not include these operators in our study, since they also receive

significant corrections at the QCD scale [111]. Table 5.5 summarizes the contributions to the

N — eN process. The corresponding energy bounds are presented in Section 5.5.

Tree level

1-loop

2-loop double log

2-loop single log

e e
C(DB - C(DI/V

pe
CR

pedd
C(LL,RR,LR,RL
udde
CLR

Cpp + Cpw

Oueff
LL,LL3,RR,LR,RL

chep e | ke — o
L L3 L L3 neqq e
uN — eN e Cveas CLeQu Cy
LL,RR,LR,RL LuQe

Table 5.5: Wilson coefficients entering R(u/N — eN) up to two loops.
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1R lRr tr B~

€L tp 1 S HT
Figure 5.1: Diagram of the 2-cut relevant for the renormalization of Fpp by Fiuge-

5.4 RG mixings: the on-shell way

Now that we have identified which dimension-6 operators enter the different LE'V processes, the
next step is to compute the anomalous dimension matrix for the corresponding mixings. This
can be done in several ways, but we will focus on the on-shell amplitude methods described in
Chapter 3. Through this subsection we apply those methods to mixings that are relevant for
LFV experiments, up to two loops.

5.4.1 1-loop mixings

The Wilson coefficients entering the different LF'V processes are listed in Tables 5.3, 5.4 and
5.5. Our goal is to compute the RG mixing of those coefficients into the tree-level ones. As an
example, we calculate the mixing of C’g%e into the dipoles.

The mixing Cl55), — Clyy pp can be computed using the on-shell methods explained in
Chapter 3. We use the method of form factor renormalization in Section 3.2.4, since it is the
only one that is easily extended to 2-loop calculations. The contact form factors for the dipoles
in Eq. (5.1) are

Fho(le, 21,35 ,4,1) = 2y,01 (31) (32) 67 (5.35)
Fiiiy (Le, 2, 3we, A1) = 4y,g2 (31) (32) (T)] . (5.36)

We are interested in the 1-loop mixing with
Flnge(Les 20,30, 4;) = y, (14) (32) € - (5.37)

Using Eq. (3.35), the only contribution to the anomalous dimension fyf{‘g B.LuQe} is given by
the 2-cut in Figure 5.1. We can write

V?Ze)B,LuQe}FgeB(lw 217 3B_ ) 4HT)
1 pett 1o tt / ’ (5.38)
=13 dLIPS FLuQe(le= 2,3y, 4,) X Agn (=45, =35, 3., 4m1)
where A%, is the SM on-shell amplitude in Eq. (2.11). In terms of spinor-helicity variables,
this expression becomes

i g (31) (32 = % [ auips (1) (32 (Y"<<3%f>><<zﬁf>> 4;&3&3) - 639

w3
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For the phase-space integral, we parameterize the internal spinors as explained in Section
3.4.3. In particular, we use

[3) = co |3) — sec™ |4)

: 5.40
|4/> = 89€_Z¢ |3> + ¢ |4> . ( )
After performing the angular integrals, we obtain the anomalous dimension
ue . yth
NDB,LuQe} = T 392 (Y, —-Yi) . (5.41)

The mixing of Cr,g. with the other dipole Cpy was already computed in Section 4.1. The
corresponding anomalous dimension is

e yth
’Y?DI/V,LuQe} = o2 (5.42)
Let us summarize the mixings C’L‘Ztg)e — Chw.pp in the following matrix
Yok Ncyt -1 uett
( DEB> - o ( . ) cpett (5.43)
Ters, 2
The mixings C76,, — Ciy. pp are obtained in an analogous way, leading to
Yoer o Ncyt -1 eptt
() -8 (s
rYCD‘uW 2

We can repeat the same procedure with the other mixings. The relevant 1-loop anomalous
dimensions are listed in Appendix D.1.

5.4.2 2-loop mixings

To illustrate the power of on-shell amplitude methods at higher loop orders, we calculate the
2-loop mixing Y H? — Vip?H. As explained in Section 3.4.5, this kind of computation can be
done with the form factor renormalization method. Since we are considering the leading order
mixing for each coefficient, we can use Eq. (3.33) for the calculation. In this case, the 2-loop
anomalous dimension gets contributions from both 2-cuts and 3-cuts, as shown in Figure 3.6.

The 2-loop anomalous dimension for Y1) H?> — V> H has several contributions proportional
to y2, \* and ¢g2. We only consider the leading ones: those involving the top Yukawa y? and the
quartic coupling A\*. We will see that only 3-cuts contribute to these mixings due to helicity
selection rules.
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Cr1sr — Cpwpp - Top Yukawa y? contributions

Contributions proportional to N.y? are expected to be the dominant ones. Let us start with
the mixing C7* — Cpy. Using Eq. (3.33), the 2-loop anomalous dimension can be obtained
from three types of unitarity cuts:

e 2-cut of a tree-level SM amplitude and a 1-loop form factor. The only potential contri-
bution is shown in Figure 5.2. The SM amplitude A™°(1,,2],3p5_,4%) vanishes on shell
for the all-negative helicity configuration. Therefore the 2-cut is zero as well.

KL

Figure 5.2: Diagram for the 2-cut of a tree-level SM amplitude and a 1-loop form factor. This
cut is zero because the SM amplitude with all-negative helicity vanishes.

e 2-cut of a 1-loop SM amplitude and a tree-level form factor. Figure 5.3 shows the only
potential cut of this type. The SM amplitude A*~1°°P(1,,2;, 35 ,4y) is obtained from
a sum of diagrams where the B boson is attached to the different particles in the LHS
of the cut, as can also be seen in Figure 5.3. Contributions where the B is attached
to the lepton fermion line are zero because the diagrams factorize into an all-negative
on-shell tree-level amplitude (which vanishes) and a 1-loop dressing for the Higgs boson.
For the remaining terms, the sum of diagrams can be written as (12’) f(3,4'), with f a
function that only depends on the spinors 3 and 4. However, using only (34') and [4'3],
it is impossible to build a function f(3,4") so that A ~ (12') f(3,4’) satisfies little group
covariance. For this reason, we conclude that the 1-loop amplitude vanishes.

W0 G e A R

! !
| |
! ! ! !
1 1 1 1

Figure 5.3: Diagram for the 2-cut of a 1-loop SM amplitude and a tree-level form factor. This
cut is zero because the 1-loop SM amplitude vanishes.
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e 3-cut of a tree-level SM amplitude and a tree-level form factor. The only non-vanishing
contribution to the RG mixing is given by the 3-cut in Figure 5.4. Below we perform the
explicit calculation of the anomalous dimensions.

B_ tR -ER > //
tL EL \\ /

€R € : er @ K

Figure 5.4: Diagram for the 3-cut contributing to the mizing of F* into Fjly at order y?.

From Eq. (3.33), we have
VE%B,L}FBMB(lm 21{” 3B_, 4Hj)
(_i)ch
==V 5 S
(1672)2 7"

- (5.45)
/d,LL FLH<2[{L7 4—]—[:7 IZe,n7 yl}y;ﬂ Zf) X ASM(_Ztv _ylf7 —Zn, 167 337) )

with [ du as defined in Eq. (3.61). F " is a non-minimal form factor and Agy is a 5-point SM
on-shell amplitude. Both of them can be computed using the method of momentum shifts in
Section 1.3.2. The form factor is

.y 24) [4x] .
Fr g Aty i Vi 20) = 2%% ke (5.46)

where A7 = ¢;.07 is an SU(2), tensor. The SM amplitude is

_ (1z) (yz) (1z) n
Asna(=2t, =Y, —Tip, 1o, 35 ) = isYe (YH 313 Yin 34]31] + Y, ) [3z]> B (5.47)

where B = g¢"". Now we can substitute Eq. (5.46) and Eq. (5.47) into Eq. (5.45) and
perform the phase-space integration. Following Section 3.4.3, we parameterize the internal
spinors |x), |y), |z) as

|Z> = |]‘> 862693 + |3 (691062693 - 6i0891393) 9
‘y> = ’1> 56,505 + ‘3 (091092893 + eipselces) ’ (548)

|.T> = ’1> Cop — |3> €i¢c91592 :

) el
)eié
This leads to the following angular integral

@[] (. (1) (v2) (1) \ _ (32)
[ <YH[3wHy31 Yun ] Ve [y3][32]) @Yy +Y,) . (549)
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Finally the anomalous dimension is

2N,

B} = ~Tor )2.% Yedr 2V + V) - (5.50)

We can check that this mixing is actually zero for the SM hypercharges, since 2Yy +Y,,,, = 0.

B_ tR {R > ) HT
tr t L 2

KL HR HUR o €R

Figure 5.5: Diagram for the 3-cut contributing to the mizing of Fy' into Ffjy at order y?.

Similarly, we can study the mixing Cn" — C75. In this case we only have to consider the
3-cut in Figure 5.5. Then Eq. (3.33) becomes

PYE%B R}Fle)MB(llE’? 21j ) 3B_ ’ 4HT>

(=)’ Ne ~ (5.51)
- (167T )2 23 d/'L F <1e74HT xl}“7ylt k’ ) X ASM(_Zt) _ylf7_x;t) 2&2]{733,) .
The form factor ﬁf{‘ and the on-shell amplitude Agy are given by
Se 14) |4x
FR”(1874H:7‘rﬂ7th,k7zf) - _Qyt%:;]-/llk ] (5.52)

[23](3y] "[23][23] " [3y][32]

where the SU(2);, tensors are Ay = e and B* = g;e/*. Again, we parameterize the internal
spinors in terms of |2) ,|3), replacing 1 — 2 in Eq. (5.48). The phase-space integral is then

/ U o) (YH PRIEGRI ) Ye[3y][3z]) = g Y =Y (5.54)

The anomalous dimension is

Ga) L, ) @)

ASM(_Zt7 _ylfv —Zpy, 2li> 3B7) = _iytyu (YH ) B]k s (553)

2N,

VpB.R) = (167T2)2ytyy91 (Vi = Yo, - (5.55)

Now it is straightforward to obtain the 2-loop anomalous dimensions for the remaining
mixings of C7';; » into the dipoles C7p by, Essentially, mixings of C7";; involve the form
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.AXB CL CL3 CR

j k j j k ik
Cbs €107 X g1e™™ (2€kn5i — eikéfl) X gre™ €ix X gr€

Cow | €0l X go(e - T*)*n (26;%55 — €¢k5fl) X g€ - T | e X go(e- Tk

Table 5.6: Expressions of the SU(2),, tensors .4 and B that appear in the 2-loop renormalization
of CDB,DW by CL,LS,R at order th

factor and the amplitude in Eq. (5.46) and Eq. (5.47), whereas mixings of C;" involve Eq. (5.52)
and Eq. (5.53). The flavor structure of the amplitudes and form factors will vary depending on
the mixing. The values of the SU(2) tensors A and B are listed in Table 5.6. Moreover, for
the renormalization of Cpy we have to set the hypercharges in the amplitudes Eq. (5.47) and
Eq. (553)to Y, =Y, =Y, =0and Yy = 1.

With these considerations, we can finally obtain the anomalous dimensions matrix for the
subset of operators at order y?,

N2 [0 0 =3 cr’ Na2 [0 0 0 '
R 2 ) | oot | < o (5.56)
Yoen (167w2)2 \ 1 —1 e L3 16722 \1 _1 0 3|
Cow 2yu C;# C;”

where in the last step we have neglected terms of order O(y./y,) ~ 0. The mixings of C7; »
into the dipoles Cg;, pw are obtained in an analogous way, interchanging e <+ y in the ampli-
tudes and form factors. We find

2 3 o ) 5 cre
ey | - Nt (000 =) || o N (0.0 =) Lo | g
Yore (1672)2 \ %= _3e 1 L3 (16722 \g o 1 L3 | - ‘
Cow Yu Yu 2 Cue 2 Cue
R R

Note that there is an accidental cancellation in the renormalization of Cl53" by Cf, and Cps. As

we have seen earlier, this entry is proportional to 2Yy+Y, and vanishes for the SM hypercharges.

Cr.s.r — Cpwpp - Higgs quartic \* contributions

B- CH L oH €R Hf------ oo H

S H Hi------ KL 1227 KR

Figure 5.6: Diagram for the 3-cuts contributing to the mizing of F;" into Fry at order \*.
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The next mixings to consider are those proportional to the quartic Higgs coupling A*. In
this case there are no 2-cut contributions to the anomalous dimension. Instead, the 2-loop

mixing C7" — C}% is given by the two 3-cuts in Figure 5.6. From Eq. (3.33), we can write

’YE%B,L}FEMB(lev 21{;7 3B_, 4HJ)
/d'u Fif (2350 Bty Yats 2gp) X Asmi(= 2, =Ygt =T, Lo, 4yt (5.58)

sy
(1672)2
534 dit e
- W/a Lu(16721zaxHjn>yHlazH£) X ASM(—ZHM—yHlT>—$Hm,3B_a4H§) )
where the factor 1/2! in the second cut accounts for the fact that we are cutting two identical
Higgs particles. For the first cut, the non-minimal form factor is
= 21) zallyx] (y2) o1
Fe' (35,2, 11 o (v, eyl 22) gir J 5.59
I ( B_, luaxl&mayHlaZH;) ( H [y3][23] gmk [1:3}[32] gk;m ) ( )
with G7', = 167 6L. The SM amplitude is
A L, d,p1) = iy 5.60
sm(—2mt, “Yufs Tl de Hj) = Z’yegm i o (5.60)

with FFm = §k6m + §7m5F. Next, we parameterize the internal spinors z,y, z in terms of 1,4
as in Eq. (5.48) and perform the phase-space integral. The contribution of the first cut to the

anomalous dimension in Eq. (5.58) is

3Y A1 Y 2
YeAg1YH S14 {1—22+2%1n (813+812>] . (5.61)
513 S13 S12

e ~ eI H
W{DB’L} (1671'2)2 513

Regarding the second cut, we have to compute the form factor

ﬁz”(le, 2lfL’ Tyt Y, ZHIZ)
(2y) lya] ! (2y) ly2] i (5.62)
— —y, | (229298 | 91y ) Do oAV WEL o1y ) it | |
| (2208 1 ) o+ (2204 ) o,
with D’ = 6167 . We also need to know the SM amplitude
ASM(_ZHka _yHlT’ —THm, 33_74}[3)
A 4 4 (5.63)
2 [23][43] [23][y3] [23][y3] [3][43]
with CE™ = g,0F§™. After the phase-space integration, the contribution from the second cut is
0YeAg1 Yy 512 F 4o (E + 8_54) In (—813 i 514)] . (5.64)
2 si3 $13 i3 S14

en _ _Jer g7 i mla
YipB,L} - (1672)2 515
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Notice that both Eq. (5.61) and Eq. (5.64) contain logarithmic terms. When we add both
cuts, however, non-local terms cancel out and the anomalous dimension is

ep 3ye )\gl YH
YipB,L} = (1672)2

B_ H | Hf-—--- e Ht------ coo-- H

ot SH P g en er

(5.65)

Figure 5.7: Diagram for the 3-cut contributing to the mizing of Fy' into Ffly at order \*.

Next we focus on the mixing Cj* — Cp55. Figure 5.7 shows the two 3-cuts that contribute
to the anomalous dimension, which can be written as

Z.Slg e
= _(16 2)2 /dlu’ FR#(1673377Iﬁ7yH17 ZHZ) X ASM(_ZHka _yth _'T,LL72[Z74HJ) (566)
du Sep
167T2 Y F 1 QZJaxHIi?yHla ZHjn) X ASM(_ZH’“7 _yHlT’ _kaa3Bfa4HlT) :

The non-minimal form factor of the first cut is given by

5 lz) [zx][y=] (yz)
F(1,, 35 .12 _ oy, iyl Y, L 5.67
R ( ) B_7'r,u7yHl7Zle> ( H [y?)][zg] + [133”31] gk ) ( )
with G! = ¢,6,. The amplitude is
|
Asmi(=2m0; =Ygty =T 2, 4y1) = W3 o] ]Ez ; (5.68)

with F/ = 6867 + 676F. For the second cut, the form factor is

~ ly) lyz ;
FRM(16721£7$H};’yHZ>ZHJn) = —Yu |:(2< [;i] ] + <12>) chjm

+ (2% + (12)) Dﬁflk} ,

with DY =667 . The SM amplitude is given by Eq. (5.63). As happened in the C* — ¢,
mixing, the individual cuts in Eq. (5.66) have logarithmic terms that cancel out when summing
both contributions. In the end the anomalous dimension is
ep _ (3yu)‘91YH
HpBRY T T (1672)2

(5.69)

(5.70)
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Now we can generalize our calculations for other renormalizations C}'}; , — Cpp pyy. For
mixings with C7";; we have to use the amplitudes and form factors in Eq. (5.59), Eq. (5.60),
Eq. (5.62) and Eq. (5.63). Table 5.7 summarizes the required SU(2),, tensors: G and F for the
first cut and D and C for the second one. In the mixings with the C;, dipole we also have to
set the hypercharges to Y, =0,Yy = 1.

gxF|Cp Crs

Cpp | 105,0, % (507" +0707) | g1(0”)h (o) x (8F 67" + 67"0F)
Cow | 9205, (T) X (8£67" + 0707) | ga(0” 1 (0)s(T)} x (07" + 67°0F)
DxC | (Cp Crs

Cpp | 603, X 106" (0")k (@), X gr0F0}"

Cow | 0,09, X go(T°); 7" (0")i(0")3 X g2(T )70}

Table 5.7: Expressions of the SU(2),, tensors that appear in the mixings Cy, 3 — Cpppw at
order A2. G x F and D x C correspond, respectively, to the first and second cuts in Figure 5.6.

For mixings with C%', we use the amplitudes and form factors in Eq. (5.67), Eq. (5.68),
Eq. (5.69) and Eq. (5.63). The different flavor tensors for both cuts are included in Table 5.7.

gxf\cR HDxc\OR
Cpp | q10% x (856 + 576F) Cpp | 6L67, x gy0k6m
Cow | g2(T)}, x (656] + 616F) || Cpw | 6487, x go(T) ko™

Table 5.8: Expressions of the SU(2), tensors that appear in the mixing Cr — Cpp pw at order
A2. G x F and D x C correspond, respectively, to the first and second cuts in Figure 5.7.

Finally, the anomalous dimension matrix at order \* is

Oeu CSH

o A 3 3 3 L A 330 L
o) = e (3 ) | 8] ~ wpe e
’)/CEDMW 1 3 E C’;ﬂ 1 30 OE“

.. pne epe
For the other mixings C7 75 p = Cpp py,, we have

cre Cie
A 3% 3w 3\ [ F A (00 3 -
Teps | — el ~ ——o crel (5.72)
Yeme (1672)2 \ 2= 3% 1 (16722 \o0 0 1
DW Yu Yu C’}/:‘ie C’}’%e
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5.4.3 Finite corrections at the electroweak scale

Before finishing this section, let us compare our results for the 2-loop RG mixing Cp, 13 r —
Cpw,pp with some of the finite loop contributions we mentioned in Section 5.3. At the elec-
troweak scale ~ my,, we have to integrate out the heavy particles (/W and Z bosons, the Higgs
h and the top quark) and match the SM onto the EFT of light fermions and photons. This
procedure generates extra finite contributions to the dipole coefficients d, ¢,. There are 1-loop
finite corrections proportional to the coefficients C7, 13 r that should be compared to the 2-loop
anomalous dimension for the mixing Cr, 13 — Cpw.pp. These corrections come from 1-loop
diagrams that include the interactions in Eq. (5.9) and involve a Z or W boson. From [98], the
contributions to d., are

e 5 .0
Adeu(mw) = 765 cCLs73 - (5.73)
for the W boson and
e 1, . eus [D 1 9 v?
Adgu(mw) = = =2 (€ + O [F = (G = 58] 33 » -
e 1 _,.[d 1, 10° '
Bdye(mw) =+ 155305 [Z G- SW} A2

for the Z boson. Note that we have neglected terms proportional to the electron Yukawa y.
These 1-loop corrections are larger than the 2-loop mixings we have computed. However, since
they are finite, they might be canceled against other matching contributions at the new physics
scale A. The total finite portion of the dipoles is therefore model-dependent. For instance, in
certain BSM theories where C7" = C% # 0, the sum of Ad,,(mw) for W and Z is roughly
zero, since szw ~ 1/4. In Section 5.6 we will see some examples of BSM models that satisfy
this condition.

5.5 Energy bounds from anomalous dimension mixings

Once we know the anomalous dimensions for the mixings that contribute to an LFV observable,
we can move forward to compute energy bounds for the corresponding Wilson coefficients. As
an example, let us consider the 1-loop mixing of the operator Op,q. into BR(x — ev). The
anomalous dimensions for the mixings Cr,g. — Cpw,pp are listed in Eq. (5.43) and Eq. (5.44).
For simplicity, we assume that all Wilson coefficients O; are zero except for O, q.. In that case
the running couplings Cpw,pp obey

9 Chs Neyr [—1 tt
= = cres. . 5.75
dlnp (C}‘fw 32?2 % Lu@e (5:75)

In order to compute the RG mixing from the new physics scale A to the electroweak scale
~ my, we integrate from u = A to u = myy,

Ch N, -1
oot ) S () ertn (M) (5.76)
Cpow (mw) T 2
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Using Eq. (5.16), the dipole coefficients are

d 9 pett
pe) _ 0 98w Neyr 3 CLuqe In (m_W> . (5.77)
Ao A2 128w \ ot A

Consequently, the branching ratio Eq. (5.15) can be expressed as

‘ ‘ 2950w Ny 3 ’
BR(u — e) = 3847° (|CLuq.l” + 1CLug.l*) (U o G ln (Wj\W)> . (5.78)

By setting |Clop.|* + [CTabe|* = 1 and solving for A, we find a lower bound for the energy
scale of new physics. In our case we have A = 304 TeV for the current sensitivity and A = 510
TeV for the future one. We can proceed in the same way for the remaining loop mixings, using
the anomalous dimensions listed in Appendix D.

5.5.1 Results

Table 5.9 shows the energy bounds for the operators that contribute to LF'V observables, either
at tree level or via RG mixing. For each entry, the first row shows the present bounds and the
second row shows the future bounds. We use the following color legend:

B Black: tree-level bounds.

B Blue: bounds for coefficients that enter the observables at one loop.

B Red: bounds for coefficients that enter the observables at two loops.

B Purple: bounds for coefficients that enter the observables via a two-step 1-loop mixing.

Notice that blank spaces in the table correspond to bounds that are too small to be compet-
itive against the constraints from other observables. As a reminder, we only include RG mixing
effects and have not considered finite loop contributions. Those corrections are potentially large
but also model-dependent. In Section 5.6 we show some examples of their cancellation for some
particular BSM models.

The main novelty of our analysis is the inclusion of 2-loop RG mixings into the dipoles for
i — ey. As we explained in Section 5.3, there are three classes of dimension-6 operators whose
leading contribution to C'yp by arises at two loops:

e ) H?: The most interesting bound corresponds to the combination C1¢ — C¥5, because
it is the only one that does not contribute to the other processes 1 — eee and ulN — eN
at tree level. For the current experimental constraints we find A = 24 TeV, which is
only a factor ~ 2 smaller than the 1-loop bound coming from u/N — eN. It is quite
remarkable that a bound coming from a 2-loop mixing is of the same magnitude as other
1-loop bounds. Moreover, since the three observables lead to similar constraints, the
measurement, of one of them would suggest that the other two are also experimentally
accessible.
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w— ey w— eee uN — eN h—ue Z — pe
e e 951 TeV 218 TeV 208 TeV
C’DB - C’DW
(1547 TeV) (2183 TeV) (1812 TeV)
e e 127 TeV 26 TeV 24 TeV
CDB + CDW
(214 TeV) (309 TeV) (253 TeV)
ce 35 TeV 160 TeV 225 TeV
r (59 TeV) (1602 TeV) (1535 TeV)
4 TeV 164 TeV 225 TeV
che 4 one ¢ ¢ ¢ 5 TeV
(7 TeV) (1642 TeV) (1535 TeV)
e e 24 TeV 35 TeV 50 TeV
O —CLs .
(41 TeV) (421 TeV) (395 TeV)
et 304 TeV 63 TeV 59 TeV
LuQe (510 TeV) (735 TeV) (604 TeV)
et 80 TeV 14 TeV 5 TeV
LeQu (141 TeV) (209 TeV) (57 TeV)
Chces 207,174 TeV
LL(RR),LR(RL) (2070,1740 TeV)
Ceu 352 TeV
LERILE (2693 TeV)
Cuedd 376 TeV
LR R LE (2725 TeV)
e 18 TeV
LR (164 TeV)
C[LETT“LLBbb 14716 TeV 22 TeV
LL(LR),RR(RL) (174,194 TeV) (200 TeV)
pert 20 TeV 55 TeV
C’LLS
(247 TeV) (476 TeV)
cett 122 TeV 21 TeV 22,32 TeV
LL(RL).RR(LR) (914 TeV) (317 TeV) (200,290 TeV)
cett 230 TeV 41 TeV 100 TeV
LLs (401 TeV) (592 TeV) (851 TeV)
4 TeV 1 TeV 1 TeV
e : : : 0.3 TeV
(6 TeV) (9 TeV) (7 TeV)

Table 5.9: Present (future) lower bounds on A of SMEFT dimension-6 operators from the different LFV
processes. We have fixed the Wilson coefficient C; = 1, turning each one by one. We show the bound in black,
blue, purple and red depending on whether the coefficients contribute to the observables at tree level, 1-loop
single log, 2-loop double log or 2-loop single log order, respectively.
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We can also consider the effects of C7° + C%5 and C%°. In this case, however, the bounds
are not competitive against those coming from p — eee and uN — eN at tree level.

e )2 H3: The 2-loop bound for Cheis A 2 4 TeV, which is ~ 10 times greater than the tree-
level bound from h — pe. We can actually use the constraint from u — ey in Eq. (5.31)
to determine that BR(h — pe) < 21078, so we do not expect it to be measured at the
LHC in the near future.

e )?1)%: We can also obtain bounds on the coefficients C¥' 5%, However, since the anoma-

lous dimensions are proportional to a Yukawa coupling ¥y, or y4, the constraints are very
weak and we have not included them in the table.

Let us now consider bounds coming from 1-loop mixings. This has been studied in previous
works, such as [85, 98-103]. In our case, we were able to simplify the calculations making use of
on-shell amplitude methods. According to the helicity selection rule An > |Ah|, the only LEV
operator that can mix with the dipoles at one loop is Oryqe. Since the mixing is proportional
to a Yukawa coupling, the largest contribution comes from C’gztée, which leads to the bound
A 2 304 TeV. Other operators can renormalize Op,q., entering y — ey via two-step 1-loop
mixing. As explained in Section 3.4.1, the helicity selection rules have one exception, so )?1)?
operators involving a y,, Yukawa can mix with Op,q.. Again, the largest bounds correspond to
operators involving the top quark. They are even larger than constraints coming from direct
1-loop mixings into p — eee and uN — eN.

Finally, the majority of bounds for u — eee and uN — eN arise from 1-loop mixings of
four-fermion operators (ueee, peuu and pedd) with other four-fermion operators pef f. In this
case the mixing is not proportional to the Yukawa coupling and instead depends on the particle
hypercharges. Notice that Table 5.9 shows the bounds for operators pef f with f a 3rd-family
fermion, but we could also include bounds for the 2nd-family ones.

5.6 UV models for LFV

Until now, we have focused on studying RG mixing contributions to the different LF'V observ-
ables. This analysis has the advantage of being model-independent, but in general we expect
to have additional contributions from matching the UV model. We are interested in the impact
of the RG running on the observables compared to the finite contributions from a particular
BSM scenario. We will focus on two cases: models with extra heavy fermions and models with
lepton flavor universality violation.

5.6.1 Heavy vector-like fermions

For these models we assume a new heavy vector-like fermion of mass M, which can be a:
e Singlet (5).

e State of hypercharge Yy = —1 (F).
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e SU(2), doublet (D).

These new particles couple to the SM by mixing with the SM fermions through the following
interaction Lagrangians,
ALg = (yg)l_/(Ll) + ygg)E(LQ))SRiagH* +h.c.,
ALp =LY + yPLPYVERH + hec. | (5.79)
ALp = (4! *(1) (1)+y() ())D H +he. .
We are interested in the contribution of these particles to the branching ratio BR(u — ey).

As customary in the EFT approach, we integrate out the heavy states at the scale A = M and
match them with the SMEFT Wilson coefficients listed in Section 5.2.1. At tree level, we find

O (M) = =Cs(M) = +3ygys® , for S,
CP(M) = C(M) = =3y)y,® , for B, (5.80)
Cl (M) = =3y v , for D,

with C7%3p = (Cr'13z)". Note that the heavy singlet S generates C7"(M) = —C75(M).

Following our discussion in 5.4.3, this implies that the finite contributions to d., from matching
at the electroweak scale are approximately zero. We also find

CH(M)=0, Cr(M)=0, for S,
CoH(M) = —yYyn? . Cr(M) = —(ye/y)ye v =0,  for B, (5.81)
Cre(M) = —yyn? , CHM) = —(y/y )y yn) =0,  for D,

plus the corresponding Hermitian conjugates (C,)*.
Moving on to the next order, heavy fermions contribute to the dipole coefficients d,. ., at
one loop. We can extract their values from the (¢ — 2) contributions in [112], leading to

(1), *(2)

_ Llys'ys
ot (M) — Ot (M 25 75 for S
1 y(l)y*( ) (5.82)
eu o e X
Chw (M) —Cphp(M) = 21 16.2 for £,
e e 1 yg)yz()
Chw (M) — Chp(M) = 51 1602 for D .

The remaining coefficients Cpy, pp for S, B, and Cpy, pp for D are negligible as they are
proportional to O(y./y,) =~ 0.

Once we have identified the contributions to the dipoles, we have to do the RG running of
the couplings from M to the electroweak scale. As we have seen in Section 5.3.1, the Wilson
coefficients in Eq. (5.80) and Eq. (5.81) mix with the dipoles at the 2-loop level. Then, at
the electroweak scale, we should match the theory to the EFT of light fermions and photons.
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Following Section 5.4.3, this matching leads to one-loop finite contributions to the dipoles
Ad,,, given by Eq. (5.73) and Eq. (5.74). Those corrections are proportional to the coefficients
C’L"eLg’ r» Which in our case correspond to Eq. (5.80). As an example, for the singlet S heavy
fermion we obtain

ys'ys” 5
Ady (my) = —525 -2 (5.83)

and the dipole coefficients are given by

6U2

ey (mw) 372

BBYVE 1672

Ady) + (€ (1) = €800 (1= Mgt 2

(N +2) G + Naf ) — 39 %] >

1)2

5 [ Adue(mw) + (Cliy (M) = Cliy(M) (1 _ N2 M)

1672

| o

d#e (mw) ~

+ ((—21\70%2 +2)) CE (M) — 29/2056(]\4)) %] . (5.84)

Note that, for simplicity, this analysis does not include the RG running from my to m,,.
Substituting Eq. (5.84) into BR(u — e7y) we can finally obtain bounds on the heavy fermion
mass M. This allows us to assess the relative significance of 2-loop RG running effects compared
to 1-loop matching contributions. For example, in the singlet model, if we set yg) = 1, the
experimental bound on pu — ey leads to M 2 43 TeV. In this case, the RG mixing represents
around 20% of d.,. Proceeding in the same way for the doublet D, we find that M 2 54 TeV,
with RG mixing contributing approximately 25% to d,.. Overall, we observe that higher values
of M correspond to a greater relative contribution from RG mixing. For low values of M, the

RG running is only relevant in some models where the finite terms cancel.

5.6.2 BSM with lepton universality violations

Other interesting UV completions are theories that feature lepton flavor universality violation.
They have been widely studied in recent years to explain some experimental tension in the
muon sector (see for example [113]). The main idea is to construct a model in which some BSM
particles couple only to SM muons and not to electrons. For example, we can have the effective
operator
7(2 a 2 ~(2 a 7

W(L(L)U LRV o 7,QY) (5.85)
that is generated by integrating out a heavy vector boson that only couples to muons and one
quark family denoted as i. This particle breaks lepton universality, and lepton number is no
longer preserved, as the diagonalization of the SM Yukawa matrix y. leads to a violation of

muon number. In particular, the dimension-6 operator O%5% = (fjf)a“%L(Ll))(Qf’)a‘W“Qf)) is
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generated with coefficient
tt 21 77t 137743
ClLﬁB _ ULLUQL UCZ?L
Az M? ’
where Uy, , Ug, are the left-handed rotation matrices that diagonalize, respectively, y. and
Y. 1f the Yukawa matrices y., are roughly symmetric, we can estimate UE ~ y/me/m, and

Ug, ~ Vekwm. Using the experimental constraint on C’ﬁtg from y — ey, we obtain the bounds

(5.86)

M zZ08TeV, fori=2; M =z 60 TeV , fori=3. (5.87)

The operator (’)Z’i%s = (E(LQ)U“%L(LQ))(Q(LQ)U‘W“Q%)’)) is also generated from Eq. (5.85) with
the coefficient , R
0%33 _ U L UZL

A2 M2

Using Eq. (5.87), we can derive bounds on Cﬁ‘igs, which contributes to the process b — suu at

tree level. We find

(5.88)

ppbs ppbs
Clis < 1 CLrs < L

for i =2 fori=3. 5.89
A2 Y (ATevE T A2 (200 Tevy2 ! (589)

Following [114], the experimental discrepancy in the measurement of B — Kpuu can be
explained if %% /A? ~ 1/(56 TeV)2. From Eq. (5.89) we see that y — ey constraints permit
t = 2 but exclude ¢ = 3. This shows an interesting interplay between bounds coming from
different observables for some UV models.

5.7 Conclusions of the chapter

In this chapter we have used the SMEFT to analyze several LE'V observables with AL, =
AL, = 1 in a systematic way. We have focused on the muon decays yu — ey, p — eee and
N — eN, which have the most stringent experimental bounds. The sensitivities of these three
processes are expected to improve substantially in the next decade, as summarized in Table
5.1. Given such prospects, we have aimed to analyze the LFV processes up to the 2-loop level.

We have identified the Wilson coefficients entering the LFV observables at tree level and
those that mix with them via loops. For this task, we have used helicity selection rules, which
tell us the only possible 1-loop mixings. After that, we have shown how to apply on-shell
amplitude techniques to compute the necessary anomalous dimensions. Following Chapter 3,
we have seen that some loop mixings can be obtained simply from a product of tree-level
amplitudes integrated over a phase space.

For the process u — e, helicity selection rules tell us that only the operator Op,q. can enter
the branching ratio at the 1-loop level. Then we have three classes of operators that enter at two
loops: 2 H? ?H? and v*1)%2. While the mixings of 1/2H? and 1)?1? had already been computed
in [28, 84], we calculated the mixing with {2 H? for the first time in [3]. In particular, we
obtained the 2-loop anomalous dimension for the renormalization Cf, .3 r — Cpp,pw at orders
y? and \*, using on-shell methods. For the other two processes u — eee and uN — eN, most
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of the relevant operators enter the branching ratios at one loop. The only 2-loop contribution
corresponds to 12 H?3, which enters the processes via 2-loop mixing with the dipole operators.

The main results of our work are summarized in Table 5.9, which shows the bounds on the
new physics scale A for the Wilson coefficients that enter p — ey, u — eee and uN — eN,
either at tree level or via RG mixing. Remarkably, we note the importance of some 2-loop
effects that had not been considered before. Indeed, the bound on C}° — CY5 from p — ey
is comparable to the bounds coming from y — eee and uN — eN, which arise via 1-loop
mixings. Additionally, the coefficient C'* only enters the muon decays via 2-loop mixing into
the dipoles. The obtained bound is not quite large, but it is still better than the tree-level
bound from the Higgs decay h — ep. Moreover, the bound on C¢ from p — ey can be used
to constrain the branching ratio BR(h — ep). Doing that, we find that h — ep will not be
accessible at colliders in the near future. The interplay between bounds coming from different
LFV observables is discussed in Section 5.5.

The effects of 2-loop RG mixing into the dipole coefficients d, ., must be compared with
finite contributions arising at one loop. In particular, we must consider corrections from EFT
matching at the electroweak scale and from matching with some BSM theory at A. The sum of
these two pieces depends on the particular UV model we consider. In general it can be larger
than the 2-loop RG mixing, but one should perform a case-by-case analysis. As an example,
we have computed the full dipole contribution in a theory with additional heavy fermions.

Overall, we have seen that the next generation of LFV precision experiments requires ex-
tending the analysis of renormalization effects to higher orders. On-shell amplitude methods can
be a valuable tool for this purpose, since they are suitable for computing anomalous dimensions
and also allow us to understand patterns behind the operator mixings.
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Chapter 6

Applications of renormalization III:
Anomalous dimensions from Partial
Waves

In this chapter, we revisit our results for the 1-loop renormalization of EFTs, studying the effects
of angular momentum decomposition. As we derived in Chapter 3, anomalous dimensions can
be computed from a product of on-shell amplitudes integrated over some phase space. Building
upon that work, we consider the impact of the partial-wave expansion of amplitudes. We mostly
follow the results in [2]. Related analyses include [81, 115].

We aim to gain a deeper understanding of renormalization from angular momentum conser-
vation. By decomposing amplitudes in partial waves, we will compute the anomalous dimension
as a sum of products of partial-wave coefficients a’. This is particularly useful for amplitudes
with a finite number of a’, such as contact interactions in an EFT.

The discussion is organized as follows: In Section 6.1, we derive the main formula to ex-
press anomalous dimensions in terms of partial waves. For simplicity, we work with 4-point
amplitudes associated with two-to-two scattering. We extend these results to renormalizations
featuring infrared divergences, which involve a regularized version of the partial-wave coef-
ficients. In Section 6.2, we explicitly compute anomalous dimensions in several EFTs: the
SMEFT, the SO(N) nonlinear sigma model and the EFT of gravity. Finally, we present our
conclusions in Section 6.3.

6.1 Partial-wave analysis of anomalous dimensions

First, we derive a formula to calculate anomalous dimensions in terms of partial-wave coeffi-
cients. We consider an EFT with contact interactions given by Ap,. These are the building
blocks of the theory, which are classified according to an expansion in E/A, with A the UV
cut-off of the EFT. The Wilson coefficient of the amplitude, denoted as Cp,, is renormalized
at the loop level, so it receives an anomalous dimension ;. Our goal is to show how angular
momentum decomposition can simplify the computation of ;.
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6.1.1 Renormalization with on-shell amplitude methods

Our starting point is formula Eq. (3.16) for the 1-loop renormalization of amplitudes, which
we derived in Section 3.2.2. That expression gives us the anomalous dimension ~;; for the
mixing Ao, — Ao, in terms of 2-cuts of a loop amplitude when there are no IR divergences.
For convenience, we shall consider the full anomalous dimension 7; = dCop,/dInu =" ; 7iiCo,
instead of 7;;. If both Ap, and Ao, are 4-point amplitudes, we can write

Ao, (1,2,3,4)
T e,
- (6.1)
1 o .
- dLIPS;aelgz [AL(1,2, 00, ) AR(br, £2,3,4)] + (24 3) + (2 > 4) ,

where the subamplitudes Ap, Ag contain the contact amplitudes Ap,. We define a weight
w corresponding to the order of an amplitude A ~ 1/A%] so that w; = wy + wg. The three
terms in the RHS side correspond to the s-, t- and u- channels'. The summation > 0.4, 1S OVET
all possible internal states with momentum /1, /5. A bar over a state, such as 1, indicates the
opposite momentum sign, helicity, and other quantum numbers relative to the original state.
We define oy, 5, = (—i)F1%] with F[(;, (5] the number of fermions in the list {f;,¢y}2. We
must also add a factor of 1/2 when the cut particles are identical.

Eq. (6.1) can be generalized to cases where there is more than one independent amplitude
Ap, with the same external states. In that case, we must add a summation over all possible Ao,
in the LHS of Eq. (6.1). Another possibility is to have a non-minimal amplitude j@i instead
of the contact one.

6.1.2 Partial-wave decomposition of amplitudes

The next step is to consider the angular-momentum decomposition of a general 4-point ampli-
tude A(1p,, 2p,, 3ns, 4n, ), with h; the helicity of particle i. For this purpose, it is convenient
to specify incoming and outgoing states instead of using the all-incoming notation. For in-
stance, let us consider an s-channel scattering with 1;,,2,, — 3_5,,4_5,. The amplitude for
this process is related to the all-incoming amplitude as follows:

A(1h17 2h2 — 3—h37 4—h4) = 034A(1h1a 2}127 _4h47 _3h3> ) (62)

where o34 = (—i)B4 as defined earlier. Let us consider the center-of-momentum frame for

Lhy,2p, — 3_phs,4-p,. We align the z-axis with the momentum of particles 1 and 2, with p)
pointing downwards. The direction of the outgoing particles can be parameterized using polar

!Note that the particle ordering is 1324 in the ¢-channel and 1432 in the u-channel. We must add a minus
sign for every fermion exchange compared to 1234.

2This factor comes from our parameterization of spinors with negative momenta in Eq. (A.26), see Appendix
A.3 for more details. Note that o, », = (—4)"1%] and not (+4)"+-%2] because the left subamplitude is the
one with negative momenta for the internal states.
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coordinates (0, ¢). Thus, the scattering amplitude can be written as a function of the angles
0, » and the Mandelstam variable s:

A(lhla 2h2 — 3—h3a 4—h4) = A(Sa 07 ¢) . (63)

Using this parameterization, the spinor-helicity variables associated with the outgoing par-
ticles 3 and 4 are:

13) = coyall) — sgr2¢7[2) | 13] = co/2|1] — s92¢*(2]

’ | (6.4)
|4) = s9/2"|1) + copal2) [4] = sg/2e7|1] + copa|2] |

which satisfies momentum conservation p; + ps = p3 + ps. The Mandelstam variables s, ¢, u can
be expressed as follows

1—69
2 9

1+cy

s=(12)[21] , t=—(13)[31] = —s :

u=—(14)[41] = —s (6.5)

With these considerations, we can perform a partial-wave decomposition of the scattering
amplitude A(s, 0, ¢). It is convenient to use the formalism introduced by M. Jacob and G. C.
Wick in [116]. We consider a basis of definite angular momentum quantized along the z-axis,

so the amplitude can be written as
i¢(h1a—h V)" Z J J
A(S,@, qb) =€ ¢(h12—has) ( A ) ~ ny dh12h43 (0> a (66)

where n; = 2J 4+ 1, hio = hy — ho, hyy = hy — hy and d,{12h43(9) are the Wigner d-functions.
We have factored out the A dependence of the amplitude, extracting the dimensionless ratio
V/s/A. More details on the derivation of this formula can be found in Appendix E.

From Eq. (6.5) we find that ¢ = (¢ — u)/s. This relation allows us to remove the 6
dependence in Eq. (6.6) and express the amplitude in a manifestly Lorentz-invariant form. We
can also invert the partial-wave decomposition in Eq. (6.6) and find an expression for the a’
coefficients:

1 o
o =1 (%) /0 08 sy &, (8) A(s,6,6 =0) , (6.7)

where we have used the orthogonality of the Wigner d-functions, as given by Eq. (E.6). Note
that we have assumed the existence of well-defined coefficients a”’, which is not always true. For
instance, in Section 6.1.4, we will see that a”’ are singular for mixings with soft IR divergences.

Thus far, we have considered scattering in the s-channel, but we can proceed analogously for
the t- and u- channels. For the t-channel amplitude A(1,, 34, — 2_p,,4-1,), the partial-wave
decomposition is

/ol i¢' (h13—ha2 t B /
At 0, ¢f) = et ’(%) 21 iy (0) @ (6.8)
J
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where the polar angles (', ¢’) correspond the direction of the outgoing particles 2,4. The
relation between 6" and the Mandelstam variables is given by ¢y = (s — w)/t. Similarly, the
u-channel amplitude A(1p,,4n, — 2_p,,3_p,) can be written as

"oon i¢" (h13—ha2 u “ 1"
Alu, 0", ") = "m0 >(%> Do o, (67) a” (6.9
J

with (6", ¢") the polar coordinates for the outgoing 2,3 and co» = (t — s)/u.

For all channels, the partial-wave coefficients a’ completely characterize the amplitude
A(1py, 2ny, 3ny, 4n,). We can choose one channel or another depending on the problem under
consideration.

6.1.3 Partial-wave decomposition of the anomalous dimensions

At this stage, we are ready to carry out a partial-wave decomposition of the subamplitudes
A, Ar in Eq. (6.1). We start by considering the s-channel terms, which can be expressed as

O'gngAL(l, 2, ZQ, El)AR<£1, 62, 3, 4) = AL(]_, 2 — 61, 62)0'3_41./43(617 EQ — Zl, ?)) , (610)

where we have rewritten the all-incoming amplitudes according to Eq. (6.2). It is convenient
to define polar coordinates for both subamplitudes. For Ap(1,2 — /1, /5), the direction of
(1,05 is described by the polar angles (¢, ¢'). For Agr({1,ls — 4,3), the direction of 4,3 is
given by (0, ¢). Using Eq. (6.6) for the partial-wave decomposition of A;, and Eq. (E.3) for the
decomposition of Ag, Eq. (6.10) leads to

wWrL+WR
AL(1,2 = by, )05, Ap(ly, 0, — 4,3) = (\/TE) ¢! (hz=hiy) ZnJ/di;Zh’m(e/)ai/
J/

-1 ip(M—h J —i¢/ (M —h/ J J
xogi 3 nge M0 (6) OO d (@ )a,
J,M

(6.11)

where ai r are the partial-wave coeflicients for Ay z. With this parameterization, the dLIPS
integral for the internal spinors {1, ¢s in Eq. (6.1) corresponds to an angular integration over
the (¢',¢') coordinates. Specifically, we have [dLIPS = £ [ df'sq Ozﬂ d¢'. Performing the
phase-space integration of Eq. (6.11), we obtain

/dLIPS AL(1,2 = 0y, )05t An(ly, £y — 1,3) =

wr,+WwR (612)
Gt et () S 9) ok
J

where again we have used the orthogonality of the Wigner d-functions.
We can proceed in the same way for the second and third terms in the RHS of Eq. (6.1),
performing the angular momentum decomposition in the ¢- and u- channels. Doing that, the

104



anomalous dimenion is finally given by

Aoi _ 0-3:41 i¢(h12—h34) \/E Y J J T
o~ Bn? € V) D i, ()Y afag (s 1)+ (s o u) . (6.13)
' J

2
£1,02

This expression is particularly helpful when there is a finite number of non-zero ai R CO-
efficients. For instance, that is the case when Ap, is a contact 4-point amplitude, as the
incoming states can only be in a few J configurations. We distinguish two different types of
renormalizations:

o [f either A, or Ag are contact subamplitudes, their partial-wave decompositions contain
a finite number of a’. Therefore, the J summation in Eq. (6.13) only includes a finite
number of terms and the anomalous dimension 7; can be obtained easily.

e If both A, are Ag non-contact subamplitudes, the summation over J in Eq. (6.13) be-
comes infinite, making the expression less practical. In that case, there must be a non-
trivial cancellation between the different channels, making the overall contribution to the
anomalous dimension finite. See Section 6.2.1 for an example of this type of mixing within
the SMEFT.

We can also identify some cases where Eq. (6.13) is further simplified:

e If only one kinematic channel contributes to Eq. (6.13), we can expand the amplitude
Ap, into partial waves in the same channel. For example, if there are only s-channel
contributions, we can write

a;'] 1 J J (6 14)
; =—— apay , .
i C@. 872 LTR
‘ 01,82
where a’ are partial-wave coefficients in the s-channel. If several amplitudes Ao, con-

tribute to the LHS of Eq. (6.13), we must add a summation over the i indices in the LHS
of Eq. (6.14). This leads to a system of equations for the different ~;.

e Another interesting scenario occurs when the contributions from different channels in
Eq. (6.13) are proportional to a single amplitude Ap,. In general, the RHS of Eq. (6.13)
is only proportional to Ap, after summing the three kinematic channels, but that is not
always true. If the different channel contributions are parametrically independent from
each other, the anomalous dimension satisfies

%=+ (6.15)
with ~; "% the contribution from the s-, t- and u- channels. For the s-channel, we have
sAo, L 1 ig(hia—hsa) Vs L J J,J
1,42
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Performing a partial-wave expansion of Ap, in the s-channel as well, we obtain

Co. ala’
e LR (6.17)

72 a;

01,02 v

In order to compute the other contributions 7/ and 4, we can proceed in the same manner
for the t- and u- channels.

In Section 6.2, we will show examples of these simplifications when applying Eq. (6.13) to
several EFTs. For the case of the SMEFT, we will demonstrate that several mixings between
SMEFT amplitudes at order 1/A? include partial waves in a single channel, so Eq. (6.14) is
valid. For the nonlinear sigma model and gravity, we will see that contributions from different
kinematic channels are related by crossing symmetry, so only the s-channel computation is
necessary.

6.1.4 IR divergences

Following Section 3.3, we can extend Eq. (6.1) for renormalizations with both collinear and soft
IR divergences. For the collinear case, we must add the following term to Eq. (6.1),
(1,2,3,4
A’}/OiAOZ(C: 737 )
O.

k3

= YeoAo,(1,2,3,4) . (6.18)

The coefficients %ou depend only on the external legs, so we can write .o = Zi 1 %on The

explicit form of 7 for different particles can be found in [28, 29].

The treatment of soft IR divergences requires a more detailed approach. These contributions
are associated with angular singularities of the subamplitudes Ay g, so the dLIPS integral is
not finite. As explained in Section 3.3, § — 0 divergences in Eq. (6.1) must be regulated by
adding

1 1
=~ [(T22)2 Ap(1%, 2%, 3¢, 4%) / dLIPS;y ——
47 6,/2

Ao, (1%, 2”, 3¢, 4d)
Co.

k3

A~y;

(6.19)

¢ 1d 1
+ (Iéoft) AL<1a>2b73674d> /dLIPSg4 5

+(2<3)+(2<4),
Sg/2

where the dLIPS;; integral is over the phase space of the i’j' particle pair. The soft operator

wat acts on the color or flavor indices a, b, ¢, d, and its explicit form depends on the theory we

consider. For instance, the QED operator is given by ngft e%q;qj, where ¢; is the charge of

particle ¢. Similarly, the gravity operator is T th —2s;;/M3, with Mp the Planck mass.

When the subamplitudes Ay, p have angular singularities, Eq. (6.7) leads to logarithmically

divergent partial-wave coefficients a”’ ~ lim,_, f€ " df/0 ~ lne. Including the additional terms
in Eq. (6.19), we define the regularized coefficients as
1 A

aJ|reg - 5 (%) /0 df s (di{12h43 (0)“’4( his 2 2 7 3C—h3’ 4C£h4)

0.6= o+—(TS°ft)ab> . (6.20)

30/2
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Now we can generalize Eq. (6.13) for renormalizations with soft IR divergences: we must
simply replace the partial-wave coefficients a’ with their regularized version a”|e. Let us
prove this statement. We consider a mixing where the subamplitude A, has divergent plane-
wave coefficients, whereas Ag has all a’ finite, as is the case when Apr represents a contact
amplitude. The anomalous dimension is given by Eq. (6.1) plus the regulator in Eq. (6.19).
For each individual cut, the dLIPS integral can be written as

sz T,
/dLIPS (U&Zg AL<1a27£27£1>AR(€1a€27374) + 2 ftAR(1,2,3,4)> 034

Sg/2

T s\ " N T,
= Z€Z¢(h12*h34) (%) ZTLJ d}{12h34 (9) G{%/O‘ d(9/89/ <di12h/12 (9/)AL(S, 9/, O) -+ 5 ft) (621)
J

Sg//2
WRtwWL,
T it(hio—h \/E J J J
_ §€zd>( 12—h34) <T) EJ anh12h34<9) CLRaL|reg )

where the color/flavor indices are implicit. Indeed, we recover the result in Eq. (6.13), replacing
the divergent af by the regularized aj |,os. We will see some examples of renormalizations with
IR divergences in Sections 6.2.1 and 6.2.3.

Finally, we consider the scenario where Ay or Ag diverge for both § — 0 and § — 7. In
this case, the integral [ 39_,/22 must be replaced with 2 [ s, in both Eq. (6.19) and Eq. (6.20).
This ensures that the integrands are well-behaved. Moreover, Eq. (6.20) has to be computed
only for even J since a’ = 0 for odd J?.

6.2 Applications

6.2.1 SMEFT renormalization with partial-waves

As a first application, we revisit the renormalization of 1/A? amplitudes in the SMEFT, includ-
ing the cases discussed in Chapter 4. We are interested in computing the anomalous dimensions
matrix using the method of partial-wave decomposition in Eq. (6.13), which can provide new
insights into the mixing structure. We start by considering all 1/A? SMEFT amplitudes with
n = 4 and total helicity h = —2, namely:

CwHie Iy
AWHle(1e72zj,3Wga4Hj) = % (31) (32) ()],
C .
AW2H2(1WE72Hj73WE74HT) = %<13>25ab55 )
o ) (6.22)
Alequ,o(lea 2li7 3u7 4qj) = Aqg : <12> <34> €’ )

Ce U 1 i
Alequ,l(lea 2li> 3ua 4qj) = lAq2 x 5 (<23> <41> + <13> <42>) €’ .

3Note that A is even in [0, 7], whereas the product sy dgy(6) is odd for odd J. Therefore, the coefficient a”’
computed with Eq. (6.7) vanishes. Since the amplitude .4 diverges for both § — 0 and § — 7, we must compute
J77°df sg A(0)d]y(0) and then take the limit ¢ — 0.
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J=0|J=1
Asmi (155 25, 3w, i) 0 | J5 | Xywee (T
Aéﬁo(1H72HTa3HT,4H> —% —% X g5
Aw e (1e, 24, 3WE74H;‘) 0 ﬁ x Oy i1 (T%)]
Aelqu(le, 200, 3w, 4qj) 1 0 X Celug,0 €
Aectug(Le, 27,30, 445) 0 5 X Celug1 €7
Awzrz(Lwe, 205, 3y, 4y1) 0 : X Cyy2 1720007
Apz2(1p_, 25,3, 4y1) 1 0 x Cpep26]

Table 6.1: Partial-wave coefficients a” in the s-channel for the different SM and SMEFT am-
plitudes discussed in the text, up to J = 1. For ALY, we give the regularized coefficient a”|,eq.

Note that we are using mostly the same amplitude basis as in Chapter 4, replacing the
four-fermion amplitude Ajyqe in Eq. (4.2) by Ajeqy1. This basis is convenient because Ajequo
and Ajeq,1 have only one non-vanishing partial-wave coefficient a’. This is related to their
symmetry properties under the exchange 1 < 2.

We focus on the renormalization between amplitudes in Eq. (6.22) with different number of
fermions ng. The corresponding anomalous dimensions, which arise from very different Feyn-
man diagrams, showcase a similar structure in the on-shell approach. Indeed, from Eq. (6.1)
we see that all those mixings must involve the same type of SM amplitude:

(13) (43)

1e, 21 o, 4pi) = Taj—’
Asm(1z, 2;;, 3we, 4ui) = yy g2 ( )Z<14> (12)

(6.23)
or its complex conjugate. The fermions vy, and g are, respectively, the SU(2), doublet and
singlet leptons [ and e. We can also have the same amplitude for the up-type quark fields ¢, u,
replacing H’/ — H]T and (T7)) — (T“)g’ej/j in Eq. (6.23).

In Section 4.6, we already pointed out that only one SM amplitude is involved in all non-
diagonal mixings between amplitudes of classes Vy?H, V2H? and 1*. Now we can analyze
this behavior using angular momentum decomposition. The first step is to notice that all
renormalizations between amplitudes in Eq. (6.22) with different ng include solely the s-channel.
The only exception is the renormalization of Ay2g2 by Aw gie, which gets contributions from
both the s- and ¢- channels. However, the t-channel terms can be easily obtained from the
s-channel ones by interchanging the external W bosons. Using Eq. (6.7), we compute the
partial-wave coefficients for Eq. (6.23) in the s-channel, leading to

_ 17 so;2 Yuga(T)]
al =0, alst = T‘”-—/ dfsy d? (0 — i 6.24
SM SM waQ( )i 2/, 0 0,1( )c9/2 T+ 1) ( )

Similarly, the a; coefficients for the 1/A% amplitudes in Eq. (6.22) are listed in Table 6.1.
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Given Eq. (6.13), we see that amplitudes jonly mix when they have partial waves for the
same J. This constitutes an angular momentum selection rule that was first discussed in [81].
Since Ajequ0 only has a J = 0 component, it cannot mix with Ay e, Awz2pg2 and Ajeqy 1, which
solely include J = 1. The other amplitudes mix among themselves through the J = 1 partial
wave, so all the mixings involve afy;'. Using Eq. (6.14), the anomalous dimensions satisfy

-1 1 1
YW Hle CWHle Aw Hie GI=1 X =Ny Ye Ay Hie
Viequ,1 Clequ,l Aequ,1 - {72 —Yu X 0 elug,1 + crossing (625)
-1 1 1
Tw2H? CW2H2 Q2 pr2 Ye 0 X Ayr2 g2
with afy; = yyady,. We are not including diagonal entries since they involve different SM

amplitudes. The “crossing” term adds the ¢-channel contribution to the mixing A g —
Awzpz2. It can be easily obtained by interchanging the W bosons in Ay2p2. Remarkably,
all non-trivial information about the anomalous dimensions is encoded in the partial-wave
coefficients a’. The matrix in the RHS of Eq. (6.25) includes only color factors, different
Yukawa couplings and signs from fermion permutations. Substituting the values of a’ from
Table 6.1, we finally obtain

YW Hie X Neyu —2ye Cw Hie

g2
Viequ,1 = 167T2 %yu X 0 Clequ,l . (626)
Yw2h? —3% 0 X Cw2p2

These results coincide with previous calculations of the anomalous dimension matrix, such as
[20, 21]. We also obtained the same 7y g values in Chapter 4.

The property that several 1-loop mixings involve the same SM amplitude is not exclusive
to the subset Aw e, Aw2g2, Ajequ1. This generally occurs for 1/A? amplitudes with equal
n and h, but different number of fermions np. As noted in Section 4.6, another example are
the n = 4,h = 0 amplitudes Agg1, Aygppz and Ayzg2. In that case, the non-diagonal mixings
involve the J = 1 partial wave of the SM amplitude A(1g, 24+, 3y, 44)-

As a final remark, we note that not all mixings are suited for the partial-wave approach.
In cases where Eq. (6.13) contains an infinite number of J terms, it is more efficient to use
the standard formula Eq. (6.1). An example of this is the renormalization of Aw g by Ay
that we computed in Section 4.4. In that case, we have a non-minimal amplitude fTW:s that is
expanded into an infinite number of a” coefficients. The RHS of Eq. (6.13) includes an infinite
sum over J corresponding to a logarithm. When summing the contributions from all channels,
the different logarithms cancel and we are only left with a term proportional to Ay g.. This
cancellation is more easily observed if we directly use Eq. (6.1).

Self-renormalization of Ag2je2

As an example of SMEFT renormalization with non-zero IR divergences, we consider the self-

renormalization of
CB2H2

A2

AB2H2<1B—723_>3Hj74HT) = <12>2 55 : (627)
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For concreteness, we focus on the terms proportional to g, which only involve the s-channel.
From Eq. (6.1), the anomalous dimension gets contributions from a 2-cut involving the subam-
plitudes

AB2H2(1B,,2B,7 — Hk7 4’ ) X -ASM( ;I“ HT73H],4HT> . (628)

At one loop, the SM amplitude can only generate Apgz2p2 through the flavor structure 55 ot
which corresponds to SUy, isospin I = 0. Thus, we only need to consider the I = 0 projection
of the amplitude,

3 1 u
A (4}17 HT73H74HT) g% <_+_> . (629)

The relevant partial-wave coefficients for Ap2p2 and ALY are listed in Table 6.1. Since Apz e
only has a J = 0 component, its renormalization must involve the J = 0 partial wave of ALY’
Following Eq. (6.4), we rewrite Eq. (6.29) in polar coordinates and find that it is singular for
0 — 0. For this reason, we must consider the regularized partial-wave coefficients defined in
Eq. (6.20). The I = 0 projection of the soft operator is

3
T’ = =7 9 - (6.30)

Substituting Eq. (6.29) and Eq. (6.30) into Eq. (6.20), the regularized coefficients are
agrt heg = —393/8 abS71\>/[1’reg =2H, Ty (6.31)

with H; the J-th harmonic number. The anomalous dimension is given by Eq. (6.14) plus the
contributions from collinear IR divergences in Eq. (6.18),

1

TBH? = T adit |vee C2arz + Yeot Opep2 - (6.32)
From [28, 29], the collinear coefficient is yeon = 277, = =395 /1672, so we finally obtain
9
YB2H2 — 64 YD) 92 CB2H2 . (633)

This result agrees with the self-renormalization of C'z2p2 that was computed in [21].

Up to this point, we have focused on the SMEFT, but the partial-wave decomposition
approach is also helpful for other EFTs. To showcase the power of Eq. (6.13), we consider the
renormalization of theories with pions and gravitons.

6.2.2 Nonlinear sigma models

A nonlinear sigma model is a scalar field theory where the scalar field maps a Minkowski
spacetime into some nonlinear manifold. Within the context of low-energy QCD, these models
were first introduced in [117] to describe the dynamics of Goldstone bosons associated with
chiral symmetry breaking. The general framework for nonlinear sigma models was developed
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in [118, 119] by Callan, Coleman, Wess and Zumino. This formalism provides a systematic way
to construct Lagrangians for theories with spontaneous symmetry breaking.

We can also define the nonlinear sigma model from its interactions. In that sense, we define
it as an EFT of real scalars transforming under a given symmetry group, whose corresponding
scattering amplitudes satisfy Adler’s zero condition [120]. This means the amplitudes must
vanish in the soft limit, when some external momenta go to zero.

Here we consider the nonlinear sigma model with unbroken group SO(N), which is a theory of
scalars in the fundamental representation of SO(N). The coset associated with the spontaneous
symmetry breaking is SO(N+1)/SO(N). In general, it was proven in [74, 121] that one can
extract information about the coset structure from the double soft limit of the amplitudes.
This corresponds to taking two of the external momenta to zero simultaneously.

The nonlinear sigma model includes an infinite number of tree-level amplitudes that can be
classified in a power expansion of E/A. We focus on 4-point amplitudes with positive powers
of momenta, which automatically satisfy Adler’s zero condition. Starting at order £?/A?, these
amplitudes are obtained by imposing SO(N) invariance. After that, we can construct higher-
point interactions by requiring factorization. 4-point amplitudes can be considered “building
blocks” of the theory, in the sense that they satisfy Adler’s zero condition on their own. In con-
trast, higher-point amplitudes require additional contact interactions to satisfy that condition,
as was proved in [122-124]*.

We start by constructing the 4-point amplitudes that act as building blocks of the EFT.
Considering a theory with N scalars in the fundamental representation of SO(N), a general
4-point amplitude can be written as®

A(1%,27, 3% 4N = fo(t,u)0s + filu, 8)0; + fu(s,t)0y , (6.34)

where f;,, denote generic functions of the Mandelstam variables s,¢,u and i, j, k, [ are flavor
indices for the scalars. We define the flavor SO(N) tensors as

0s = 0ij0k , Op = Owlji ,  Ou = 00y - (6.35)

By imposing crossing invariance in Eq. (6.34), we find that f;, must satisfy f; = fi = fu =
f, where f(t,u) is symmetric under ¢ <> u. Therefore, the problem of finding all independent
amplitudes at order (E/A)" corresponds to finding all linearly independent functions f(¢,u)
that are polynomials of degree w/2 in the momenta and are symmetric in ¢ and u. A possible
basis for the f functions at order w is the following:

Furlt,u) = P, (t - “) s (w=2.4,..), (6.36)

S

with P,(z) the Legendre polynomial of degree r. The variable r takes values r = 0,2, ...,w/2
if w/2 is even and r = 0,2,...,w/2 — 1 if it is odd. To justify that Eq. (6.36) forms a basis,

44-point amplitudes are not the only building blocks of the nonlinear sigma model. At order E°/A® and
higher, there are n > 4-point amplitudes that satisfy Adler’s zero condition by themselves [123, 124]. We do
not consider those terms in our analysis.

SFor SO(4) there is an additional term for the flavor structure €ijkl, which we do not include here.
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we consider the functions ﬁur(t, w) = t7/2qW=)/2 4 (w=n)/247/2 for the same range of r. ﬁw is
clearly a basis since it includes all polynomials of degree w/2 in t,u, and is symmetric under
those variables. We also see that ﬁur includes the same number of functions as f,,. Given that
the Legendre polynomials are linearly independent, we conclude that f,, also forms a basis.

Using the f,, functions, we can write a general expression for 4-point amplitudes in the
SO(N) nonlinear sigma model:

er
Fw

™

Awr(lia 237 3k7 41) = [fwr(ta u>55 + fwr(u7 S)5t + f’u}?"<87 t)éu] ) (6'37)

with (', the Wilson coefficients. The pion decay constant F), which is defined by fixing
Cy = 1, plays the role of the A scale. Let us see some examples of amplitudes on this basis.
At O(E?), we only have

. 1
Ag(1%,27, 3% 41 = = (505 + 16 +udy,) . (6.38)

At order O(E*), there are two amplitudes:

o C
Ago(18,27, 38 41y = Z20 (25, + 126, + u?5,) |

= 24
Cﬂ (6.39)
Agp(18,27 3% 4" = 2—;31 ((t— u)? — %) 65+ crossing .
It is convenient to rewrite Eq. (6.37) in the isospin flavor basis, namely
2
A =Y AL A, (6.40)
1=0
where the flavor structures A; are
s 1 1 2
AO = N s Al = 5 (51? — 6u> s AQ = 5 (6t + 5u - N(Ss) . (641)

For N = 3, AL are amplitudes with definite isospin I. For a general N, Al corresponds
to a specific flavor configuration for the initial and final states. In particular, I = 0, 1,2 are the
singlet, antisymmetric and traceless symmetric configurations, respectively. The isospin flavor
tensors are orthogonal, satisfying

> (A (Ar)uga = 010 (Ar)iju - (6.42)

ilj/

Once we have expanded the amplitude A, in terms of isospin, we can apply Eq. (6.6) for
the partial-wave decomposition. We find

w/2
S
Awr = (ﬁ) E ny PJ(Ce) a{u{” A[ ) (643)
u 1J
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where we have rewritten the Wigner d-functions in terms of Legendre polynomials, using
dj,(0) = Pj(cp). The partial-wave coefficients al/ are obtained by inverting this expression,
leading to

—w/2 s
1 /(s
1 _ I
Ay = 5 (F_ﬁ) /0 do Sg PJ(CG) Awr . (644)
Substituting AL = from Eq. (6.37) and Eq. (6.40), we obtain

N
a’llljt?]" = er (2/{‘;17)7‘ + _501 671]) 9 (645)

ny

if the product I -J is an even number, and a/ = 0 otherwise. The «; functions are defined as

o (=D)*/*[(w/2)!]?
wr = Cw/2 — (w/2 + J +1)!

wow
27 2

w w
F(- Tpr—1—J-2 g-%q
41’3 ’l", +’l“, 2 2

: 1) . (6.46)
where 4 F3 is a generalized hypergeometric function®. We can check that al/ = 0 for J > w/2,
so there is a finite number of partial waves contributing to the amplitude A, .

After establishing the basis of 4-point amplitudes, the next step is to consider renormaliza-
tion. We denote by 7, the 1-loop anomalous dimensions of A,,.. There are no IR divergences
in this case, so we can use Eq. (6.1). The computation of ,, involves a summation over all
relevant cuts involving subamplitudes A,,,,, and A, ,,,. For concreteness, the contribution
from each individual cut is Av,,.(wg, TR, wr,7L), so the total anomalous dimension is

Ywr = Z A’Vwr(’wR,TRwa,'f’L) ) (6-47)

WR,TR,;WL,TL

where the summation is over all wg 1, satisfying w = wr+wyz, and all g 1, in the ranges specified
under Eq. (6.36). To simplify the notation, from now on we suppress the (wg,Tr, wr, L)
dependence on A,

Performing the partial-wave decomposition of the amplitudes as in Eq. (6.13), we find

; A%UTC'_ = — <F_7%) ; 62 Uy vy Ouoprrn 7 (T) + (s t)+ (s u), (6.48)

wr

where the first term corresponds to the s-channel and the other contributions can be obtained
by crossing. Since we are considering the isospin basis, the flavor structures A; also change
under crossing. The summation over r in the LHS of Eq. (6.48) appears because, in general,
a cut involving A,,,, and A contributes to the anomalous dimensions of all A,, with
w = wg + wy, and any 7.

WRTR

. . _ w/24+J—k r 1(w _ | 2
6 Alternatively, we can write k= Y} _, [kl]z((rl_)k)!(w/2+gif1';[f()!(/j/gl€_)j_k)!-
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Now we can solve for A~,,. Choosing the particle flavors so that J, = 1 and é; = 9, = 0,
and then acting with fO7r dfsg P,(cg) on both sides of Eq. (6.48), we obtain

Cw r Cw r N r r
AVur = _W (n_r(sr”&‘m + 257’L7”‘1wm3 + 25’“1%7“ Rwpry
min(E, ") (6.49)
+4 Z anrfﬁzvaeri)Rmnva> :
J=0

where n, = 2r+1. Notice that the only N-dependent contribution arises from renormalizations
with r;, = rg = r. This greatly simplifies the calculation of the anomalous dimension in the
large-N limit.

Let us see some examples of the computation of 7,,. For the two O(FE*) amplitudes in
Eq. (6.39), the only possible renormalization involves the O(FE?) subamplitude in Eq. (6.38).
Substituting wg = wy, = 2 and rg = r;, = 0 in Eq. (6.49), the total anomalous dimensions are

r_ N 1

o - _ _
1672 ° 2T Toop

Va0 = (6.50)

At the next order, there are two O(FE%) amplitudes: Agy and Agz. Their renormalization
involves one subamplitude at O(E*) and the other at O(FE?). We must consider two different
cuts: one with wy, = 2, wg = 4, r, = 0, rg = 0,2 and the other one with w;, = 4, wg = 2,
rp = 0,2, rg = 0. Summing all the contributions yields

N 325
Yoo = Cap 22 —Cp ——,
82 28872 (6.51)
c 5 65
Vo2 = —Cu4o

28872 M2 988p2

We can compare these results to previous calculations in chiral perturbation theory. For
N = 3, the nonlinear sigma model coset satisfies SO(4)/SO(3) ~ SU(2) x SU(2)/SU(2), so we
can use the 77 scattering analysis in [125]. Indeed, rewriting their pion amplitudes in our basis
Eq. (6.37), the obtained anomalous dimensions agree with our computation.

It is interesting to relate our amplitude analysis of the SO(N) nonlinear sigma model with
the Lagrangian description. As discussed in [123, 124], the SO(N+1)-invariant operators of
the theory can be expanded in the number of fields, leading to a series of contact interactions.
These interactions are equivalent to a set of amplitudes that satisfy Adler’s zero condition.
Indeed, there is a direct correspondence between our 4-point amplitudes A, and some contact
operators in the Lagrangian approach. Thus, our renormalization results for the amplitudes
are equivalent to the anomalous dimension matrix for the corresponding operators.
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6.2.3 Gravity

As a final application, we consider Eq. (6.13) in the context of general EFTs for spin-2 particles
(gravitons). On-shell methods are especially convenient for these theories, as they greatly
simplify the lengthy calculations from the Lagrangian approach. We start by determining the
graviton contact amplitudes, which can be classified in a F/A expansion. As explained in
Section 1.1.3, there are two possible 3-point amplitudes. At order O(E?), we have

Acr(1__,2__.3,.) = A;P <<1<31>2<>23>> ’ (6.52)

where the Planck mass Mp plays the role of the A scale. This amplitude corresponds to the
theory of General Relativity (GR) and can be used to construct higher-point interactions. For
example, the tree-level 4-point amplitude in GR is given by

1 [12]* (34)*

AGR+— = AGR(1++> 2++7 3*77 477) - W St
P

(6.53)
This amplitude is obtained by requiring the right little group weights and factorization into a
product of 3-point subamplitudes Agr. Beyond tree level, a different 4-point GR amplitude
can be generated at one loop. As shown in [126], it corresponds to

(12)* (34)* r rT?

_2 +CI'OSSng = m

= 1__,2__,3__,4__)=
AGR__ AGR( ) ) ) ) 167T2M24) S

(s> +t*+u?), (6.54)

where r = (Np — Np)/240 and Np g counts the number of fermions and bosons inside the loop.

We have also defined the kinematic factor 7 = <[1122§ Sﬁ.

In addition to Eq. (6.52), we can consider higher-order contact amplitudes, which are as-
sociated with modified theories of gravity. At order O(ES), we have the following 3-point
interaction: o

Ap(l__2. 3 )==%

P

with Cgs a massless constant. This term arises from a higher-dimension operator cubic in the
Riemann tensor. Moreover, we must consider contact amplitudes for the scattering of n > 3

particles. For instance, there are two 4-point amplitudes at order O(E®), namely

o CR4 CYR47_A2

(12)* (23)* (31)* | (6.55)

Ape(1--,2__,3__4_ )= i (12)* (34)* + crossing = A (s* +t* +ut) (6.56)
/
;?4(1**7 2**5 3++7 4++> = FR; <12>4 [34]4 . (657)

P
Let us see some examples of the calculation of anomalous dimensions for graviton amplitudes
via Eq. (6.13). First, we consider the renormalization of the non-minimal 4-point amplitude

Aps(1__,2__3__ 4 )= 7%y, (6.58)
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J=0|J=2]J=14

Acr, 0 -6 | -2
Acr__ 2 & 0 X Toy
Aps : — 0 X Cgs
Apa I = sz | X Crs

Table 6.2: Partial-wave coefficients @’ in the s-channel for the different 4-graviton amplitudes
defined in the text. For the GR amplitude Agr, , we include the regularized coefficients a”|
up to J = 4.

reg

which includes the contact amplitude Ags in Eq. (6.55). One can check that none of the 3-
point or 4-point graviton amplitudes can renormalize A\Rs at one loop. As stated in [126], the
leading contribution arises at two loops. The formula Eq. (6.13), which was derived for 1-loop
mixings, is also valid in this case”. The anomalous dimension vgs is given by a 2-cut involving
the tree-level amplitude Agg,  in Eq. (6.53) and the 1-loop amplitude Agr__ in Eq. (6.54).
Since there are IR divergences, we must consider the regularized partial-wave coefficients as
explained in Section 6.1.4. Overall, Eq. (6.13) can be written as®

-~ OR3 S 3 t—u .
YR Ags = ] (m) an aéR__aéR+_|reg Py (T) + crossing , (6.59)
J

where aémf\reg are the regularized coefficients in Eq. (6.20). The soft operator is Ty =
—2s/M} and we must replace [ 35/22 — 2 [ s,” because the internal particles are identical.
From Eq. (6.53), this coefficient is given by

a(J;R+,|reg =—4H,, (6.60)

with H; the J-th harmonic number. The partial-wave coefficients aly  and OLéRJrJreg for
various values of J are listed in Table 6.2. We see that they are only simultaneously non-zero
for J = 2, so the anomalous dimension is

~ Cps r 83 t—u ,
Yr3Apgs = 12 1672 MG P, ( . ) + crossing . (6.61)

The RHS of this expression must be proportional A\Rs when we sum over the different
channels. However, it is more convenient to project both sides of Eq. (6.61) into a specific

kinematic configuration such as t = u = —s/2. Then, we find that the anomalous dimension is
r 1 60r
= Py(0) — =P, = .62
= 1o (100) = 122)) =~ o (6.62)

"One can re-derive Eq. (6.13) for this particular 2-loop mixing. The starting point is Eq. (3.33) for the 2-loop
renormalization of form factors, which reduces to Eq. (6.1) in the limit @ — 0.

8Note that there are two identical contributions corresponding to different helicity choices for the internal
gravitons. This is compensated by the 1/2 symmetrical factor for cutting identical particles.
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This result agrees with the previous calculation in [126]. The use of partial waves allows us
to understand the momentum dependence in Eq. (6.61), which is determined by the fact that
only J = 2 states contribute to ygs.

We can proceed in a similar manner to compute the anomalous dimension of Cgs. In that
case, we must consider the 2-cut involving the tree-level amplitudes Ags and Agr__. Again,
the renormalization only involves the J = 2 partial waves, so we can write

) s \' . _ t—u i
YraAps = —034@ <M123> a}%gQ aé}ijreg P (T) + crossing . (6.63)
Using the partial-wave coefficients in Table 6.2, we find

Chps

S 8m2

YRt = (6.64)
Finally, the anomalous dimension of C'; is 7 = 0 because A%, is not renormalized by
other amplitudes at one loop.

6.3 Conclusions of the chapter

In this chapter, we have employed angular momentum analysis to study the renormalization
of several EFTs. By performing a partial-wave decomposition of scattering amplitudes, we
have shown that the anomalous dimensions can be expressed as a sum of products of partial-
wave coefficients (see Eq. (6.13)). This sum is finite for mixings involving contact interactions,
making the calculation remarkably simple. Our results are naturally extended to include IR
divergences, provided that the partial-wave coefficients are regularized as shown in Eq. (6.20).

The use of partial-wave decomposition provides valuable insights into the structure of the
anomalous dimension matrix. Some renormalizations only happen through specific angular
momenta J, which leads to selection rules such as those in [81]. Moreover, mixings that appear
very different at the level of Feynman diagrams may turn out to be quite similar if they involve
the same partial-wave coefficients a”’.

We have presented applications of our formula for different EFT's:

e SMEFT: We have observed that only one SM partial wave is involved in mixings between
1/A? amplitudes with equal n, h and different np. We have seen this explicitly for Ay e,
Alequ,l and AW2H2-

e SO(N) nonlinear sigma model: We have obtained a general expression for the anomalous
dimensions of 4-point amplitudes at all orders in E/A.

e EFT of gravity: We have considered the renormalization of Ags, Ags and A',,, which arise
in modified theories of gravity. Compared to previous calculations [126], the simplicity of
the on-shell approach is unmatched.
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Beyond angular momentum, decomposing amplitudes according to other conserved quan-
tum numbers can provide additional insights. We have explored this for the case of isospin,
both within the SMEFT and nonlinear sigma models. The isospin decomposition introduces
additional selection rules because the subamplitudes Af g in Eq. (6.1) must have the same
isospin as the renormalized amplitude Ap, .

A possible extension of this work would be to generalize Eq. (6.13) to include higher-point
amplitudes and higher loop orders. There are no fundamental obstacles to do this, given that
our derivation relies on angular momentum conservation and the expression of ~; in terms of
unitarity cuts.

In summary, the angular momentum analysis presented here provides an efficient tool to
study the 1-loop renormalization of EFTs. Thanks to the partial-wave decomposition of am-
plitudes, we can reveal underlying symmetries that govern operator mixing. This method
simplifies practical calculations and offers a deeper perspective on the universal properties of
anomalous dimensions.
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Appendix A

Conventions and notation

A.1 Spinor-helicity variables

In this appendix we present our conventions for spinor-helicity variables. We mainly follow
[127]. Given a massless particle with momentum p*, we define the associated spinors |p), and
Ipla, namely “angle” and “square” spinors. |p), is a left-handed two-component spinor, which
transforms under the (%,0) representation of the Lorentz group. |[pls is a right-handed two-
component spinor that transforms under (0, 3). The momenta written in terms of these spinors
are

Paa = ’p>a[p|d 5 (Al)

which is a two-by-two matrix given by

Do = Pt = Po+Dps p1—ip2 (A.2)
ac = Pulas — ) . .
P1+11p2 po—DP3

An object like p,q, with dotted and undotted spinor indices ay, is known as a bi-spinor. The
sigma matrix ot = (I, ) is made from the 2 x 2 identity matrix I and the three Pauli matrices
7 = (o!,0?% 03%), with

01:<0 1) , 02:(9 _i> ) 03:(1 0> : (A.3)
10 v 0 0 -1

Similarly, we define 6% = (I, —&). The 2 x 2 sigma matrices are related to the Weyl
representation of the 4 x 4 gamma matrices as follows,

0 o,
e ) o] A4

The spinor indices of |p) and |p| can be raised and lowered with the antisymmetric tensor
¢, whose non-vanishing components are

612 == —621 — €21 =— —€12 = 1. (A5)
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Spinors with raised and lowered indices are related by

Pha = €as(pl®, (0l = Ips,  [pla = €gslp)’s ) = e¥[pl - (A.6)

Note that (p|® is a left-handed spinor and transforms under (3, 0), just like [p),. In an analogous
way, |p]® is a right-handed spinor that transforms under (0, %) We can combine spinor products
to make objects that transform like Lorentz scalars, vectors and tensors. This is done through
the contraction of spinor indices. We choose to contract descending undotted indices ¢, and
ascending dotted indices 4%. For example, the contraction of two spinors is given by

(pg) = (I*le), ~ and  [pg] = [plalg]®, (A7)

that we call respectively “angle” and “square” brackets. These are the main building blocks of
on-shell scattering amplitudes. We can also contract spinors with the sigma matrices o’ and

5.#,0'@,
(ilo"|j] = (i|*ohsli]”  and  [ia"]j) = [i]a6" ), - (A.8)
Let us list a few properties of the spinor-helicity variables:
e Spinor products are totally antisymmetric, (ij) = — (ji) and [ij] = — [ji]. In particular
this implies that [77] = (i7) = 0.

e Schouten identity: since spinors have two components, one can write any spinor |i) as a
linear combination of two linearly independent spinors |j) and |k) [14]. Then we have

i) = A|j) + Blk) . (A.9)

The coefficients A and B can be obtained by contracting |i) with both (j| and (k|. We
find that A = (ki) / (kj) and B = (ji) / (jk). Substituting the values of A and B into
Eq. (A.9) and contracting |7) with a generic spinor (I|, we find

(i) (KU) + (il) (Gk) + (k) (1j) =0, (A.10)
which is known as the Schouten identity.

e Fierz identities: given the definition of the sigma matrices, one can check the following
relations

ot 50 = 25857 Ona0uss = 2€ap€ap » 5‘“5“"‘0“53 = 2e™BedP (A.11)

ad” @ a“da aa” uf

They can be used to derive the so-called Fierz identities, namely

(ilo*|5] (klo"|1) = =2 Gik) [51] (A.12)
[ilo"]7) [Klo"[l) = =2 [ik] (1) (A.13)
(ilo*|5] [Klo"|l) = =2 (il) [jk] - (A.14)

From these identities, we obtain the expression for the Mandelstam variables s;; in terms
of spinor products,

sij = (pi +p;)° = 2p;i - pj = (i) [ji] - (A.15)
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In general there is a one-to-one correspondence between any four-vector V# and the associ-

ated bi-spinor V4,
1 .
Vi =y, V= Lo (216

ad )

Using these expressions for the momenta bi-spinor p,s = [p)a[pla, the four-momentum p*

can be written as

"

pi = 5 [ilo"]i) (A.17)

N | —

A.2 Two-component spinor notation

The framework of on-shell amplitudes, which involves particles of well-defined helicity, is not
suited for the four-component spinor notation. Instead of four-component Dirac spinors, it
is more natural to use two-component Weyl spinors, since they transform as irreducible rep-
resentations of the Lorentz group. Once we know the expression of an operator in terms of
two-component spinors, it is straightforward to compute the associated contact on-shell ampli-
tude. Therefore, we must know how to relate Lagrangian operators written in terms of Dirac
and Weyl spinors. A generic Dirac spinor ¢ can be written in terms of Weyl spinors as

¢L «
— ) A18
0 ( %a) (A.18)

with ¢y, o a left-handed two-component spinor and ¥ a right-handed one. The adjoint Dirac
spinor % is then

_ _ _ 0 I _ _
=91 = (Yra ¥g) <]I O) = (Vg vra) (A.19)

where now 9 4 is a right-handed Weyl spinor and 1, is a left-handed one. We denote the
complex-conjugate of a Weyl spinor as 1) LR= Q/JL R

Dirac spinors can be used together with the gamma matrices v* to build objects with a well-
defined Lorentz structure. These are the so-called covariant bilinears, which have the following
expressions in terms of both Dirac and Weyl spinors

Scalar : Y = b o + @ZJL,MDRd ;
Pseudoscalar : 9y’ = =y o + Vpatbg
Vector : ¢y*yp = &Ra05a¢Rd + %,J“’d“w,a )
Axial Vector : "~y = @/;RO‘UZQ@/JRO" — @/;L,a5“’da¢L7a ;
Tensor : Yoy = @RQ(UW)ng,B + @EL,@(C?W)E%%’B )
where we have written 7 in terms of o* as in Eq. (A.4). The pseudoscalar and axial vector
terms involve the matrix v° = i7%y'y243, which has the form

o (‘011 3) , (A.20)
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since we are using the Weyl representation of the gamma matrices. Finally, the tensor bilinear
contains the gamma matrix commutator

o (@) 0
T = —[yt Y] = |, A21
500" 7"] ( 0 (Uw)g> (A.21)

where ¥ and " are 2 X 2 matrices given by

(c")8 = % (oh,a""" — ol 5" | (A.22)
FHE = E (*HQW v GVay S H )
(6")5 = 5 (00— "ol ) (A.23)

Interaction Lagrangians with fermion fields contain some combination of the covariant bilin-
ears, plus potentially scalar and vector fields. If we are using two-component spinor notation,
any vector boson V* can be related to a bi-spinor V., as given by Eq. (A.16).

A.3 On-shell amplitudes

We consider amplitudes with all states massless and incoming. Outgoing states are related to
incoming states with opposite momentum and helicity, interchanging particle <+ antiparticle.
The wave functions for fermions are given by

uz(p) = Px ( P, > o ox(p) = (" [pla) Pr (A.24)

]

respectively for incoming fermions and antifermions of helicity A = F1/2 and momentum p*,
with Py = (1 £ 5)/2. The polarization vectors of gauge bosons can be written in terms of
spinor-helicity variables, namely

V2 (gp) : V2[qp]

for an incoming gauge boson of momentum p* and helicity h = £1. We have introduced an
arbitrary reference momentum ¢ # p [13].

Following the conventions in [5], spinors with negative momenta can be related to spinors
with positive momenta as follows

l—p)o =ilp)e . 1= =ilp)*, (A.26)

which of course leads to |—p) [—p| = —p. This convention fixes the factorization of amplitudes
that we explained in Section 1.3.2. For instance, if we have a 4-point amplitude with a pole in
the s-channel (see Figure A.1), it factorizes as

" (q o,lp] ~__{plould] (A.25)

lim s12.4(1,2,3,4) = "% i A,(1,2,0) iAr(—1,3,4) , (A.27)

s12—0
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2 4

Figure A.1: Diagram of the factorization of a 4-point amplitude A(1,2,3,4) with a pole in the
s-channel into two 3-point subamplitudes.

where ¢ = ps + py and Fi;...i,] counts the number of fermions or antifermions in the list
{i1, ..., i, }. Similarly, we can write down the factorization of the amplitude in other channels.
If there is a pole in the t-channel, we have

lim s15A(1,2,3,4) = (1) 5 AL (1,3, 0) iAr(—(,2,4) . (A.28)
S513—

where ny3 = 1 if both particles 2 and 3 are fermions or antifermions, and ny3 = 0 otherwise. The
factor (—1)"2* adds a negative sign for fermion exchanges, since we have reordered the particles
in the RHS of the expression. We can proceed in the same manner for the factorization in the
u-channel.

Let us now focus on the factor i1 in Eq. (A.27). When we consider the factorization of an
amplitude with an internal fermion, one of the subamplitudes includes a factor us(¢) whereas
the other one includes v4(—¢). Summing over the possible helicities of the internal fermion

leads to
w (07 (=0) +u_ (07 (~0) =i 3 w(O)an(0) = if | (A.29)

where we have used the Dirac slash notation { = ¢#v,, with v, the gamma matrices. Factor-
ization gives rise to an extra ¢ compared to the original amplitude, where there is only a factor
¢ from the fermion propagator. This is compensated with the additional i in 71} when ¢ is
a fermion®. For the factorization of amplitudes with an internal vector boson, we obtain the
following sum over polarizations

(O, (=0 + 6, (e (=0) =D _eu(D)(el(0)" . (A.30)

This is precisely the sum over vector polarizations in the propagator of the full amplitude, so
there is no need for an additional ¢ factor.

Notice that in Eq. (A.27) the sign of the internal momenta is fixed as shown in Figure
A.1. If the momenta has the opposite sign, the factor i[9 must be replaced by (—i)FM, so the
amplitude factorization is given by

lim s12.A4(1,2,3,4) = (=)W iAL(1,2,—0) iAR(¢,3,4) . (A.31)

812—)0

2:

In principle we have i —1, but there is an extra minus sign coming from our choice of fermion ordering

in Eq. (A.27).
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This can be easily understood with an explicit example. Let us consider the 4-point ampli-
tude A(1,, 251, 3¢, 45) in a Yukawa theory £, = —y.Hel +h.c., where e and [ are Weyl spinors
of helicity h = —1/2;j. Using Eq. (A.27) and the method of amplitude factorization in Section
1.3.2, the full amplitude can be written as a product of two 3-point subamplitudes,

A(187 2HT7 357 4H) = L iAL<167 2HT7£) ZAR(_€7 357 4H) ) (A32)

S12

where ¢ = p3 + py. Writing the subamplitudes in terms of spinor-helicity variables, we obtain

Ciye (W) [-3] Py (L) [63] 5 (14)

A(le, 251,3z,4) = = =Y . A.33
( i H) 512 S12 Y <34> ( )
On the contrary, if we define the internal momentum with an opposite sign, £ = —(p3 + p4),
we must use the factor (—i)"™ to obtain the same result,
A(187 2HT7 357 4H) - (_Z) iAL(leu 2HJH _6) ZAR(€7 357 4H)

12 s (A.34)

_ iy (=013 iy, (1) [63] y2<14>

S12 512 € <34>

Finally, our convention Eq. (A.26) for negative momentum spinors also fixes the expression
for unitary cuts of loop amplitudes (see Section 3.2.2). Similarly to Eq. (A.27), we must add
a factor ¢ for each internal fermion line that goes on shell. For example, the 2-cut of the loop
amplitude in Figure A.2 is given by

A(1,2, ... 0,041, ..., n) —>/dLIPS TR AL (1,2, 0,00, 00) Ap(—La, —€y,i+1,....n) , (A.35)

where the states in the RHS of the equation are ordered following the red dotted line in Figure
A.2. This expression can be easily generalized for n > 2 unitary cuts.

N o ==

-

- . - -

Figure A.2: Diagram of the 2-cut of a loop amplitude A(1,2,....3,i+ 1,...,n). The red dotted
line indicates our choice of fermion ordering in Eq. (A.35).
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Appendix B

SMEFT dimension-six operators

The SMEFT includes 59 independent dimension-six operators made from the SM fields and
consistent with the SM gauge symmetries. These operators are associated with contact on-shell
amplitudes of order 1/A% belonging to the classes that we listed in Section 2.2.1. To compare
our results for the anomalous dimension matrix with the previous literature, we must know the
correspondence between dimension-six operators and 1/A? on-shell amplitudes.

Here we consider the Warsaw basis [65], which is one of the most commonly used SMEFT
bases. We will write down the different operators O; in terms of Dirac spinors, classified
according to their particle content. Then we will compute the contact on-shell amplitudes
originated by each operator. In some cases there will be two possible amplitudes for an operator,
corresponding to different helicity choices.

For a slightly different 1/A% SMEFT amplitude basis, see [56].

B.1 Vector boson operators: V3

A(lge, 20, 3¢ ) = i(31/v/2) (12) (23) (31) fabe

)
O - achu,aGu,pr,c
61 [TCGG Lo, 26, 3s ) = —i(3!/V/2) [12] [23] [31] fo**
)
) =

p

=

—(31/v/2) (12) (23) (31) f*

~ ~ ~ lga,2 3qe
Oé . fach;;,aGZu,bGﬁ,c G2, 2G5 9GS

p

—(31/v/2) [12] 28] [31] f**
i(31/VZ) (12) (23) (31) e
—i(31/v/2) [12] 28] [31] e

—(31/v/2) (12) (23) (31) e
—(31/v/2) [12] 23] [31] e

p

O - eeqympybwryes | W 2wt Swe
: v p I3

p

P

—_~ — — 1W(z 2 b SWC
__ . cabc a,ynlb,u{)[fc,p w2
O 1 e WHHW W

(
(
(
(les, 261, 30s
(
(
(
(

)
Live, 20, 3w
)
)

p

1Wa 2wb 3WC
Where the dual field-strength tensor is defined as é;w = ™G 5, with ¢ the totally an-

tisymmetric Levi-Civita tensor. The SU(3). and SU(2), structure constants are, respectively,
fabc and eabc‘
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B.2 Scalar operators: H° and H*

OH: |H’6 A(1H272HJ73HIC’4HZT’5Hjn76H;rL): l?’VJLZ
Opy : |HI’O|H? ALy, 203,31, 4yyt) = —20167 515 — 20i6] 514

Opy : (H'DPH)*(H'D,H)

Where we have defined the fully symmetric tensor 7,75 = §i67 6% + 616 6% + 6:67 6% 41 ¢ 7.

A(lH% 257, 3H};’ 4H;V)

mn

= 5;’{(5{314 + 5;5%813

B.3 Scalar - vector boson operators: H?V/?

OHG . |_E[|2 Ga Ga,;u/ A(lGa 2Gb 3H7' ;) — < > 6ab61
“ Alley, 2g8 3, 4pry) = —2 [12]? §ab5
Oy : [H[* Go, G Alon 260, Bis dyr) = —2i (12)* 605,
G 124 A(l QGb 3Hl ): [ ] 5@[)61"
OHW . |H‘2 We Wamv A(lwa 2Wb 3[{17 HJT) = < > 5ab51
I .A(lWa 2Wb i, H]T) —_9 [12] 5ab5;
O, [HP W paw | AW ZweBadgy) = =20 2)* 505
w pv A(lwa 2Wb 3H’L HT) — [ ]2 5ab5i_
OHB . ‘H‘Q B BMV A(]- 2B ,3H@, H ) = < > 67,
: L
A(lB+7 28+, 3H1 Hj) = -9 [12] 51
- A(lg ,25 ,3yi — _9 5
Ou5: |H? B, B"™ ( B_» OHi, HJT) i(1 >
A(lB+72B+,3Hv 4Hj> = [ ]
lwa, 25 , 35 _ :
OHWB : (HTO-(IH) W;LIVBMV A( wea B_ O, ;) < > (O_ )'J
.A(l a,2p,,3pi,4 ]T): 1 ] (0¢ );
2 a\t
O (g W | A2 B0y ) = =1 U270,
A(lWa 23+73Hz JT) = [ ] ( )J
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B.4 Dipole operators:

Oy : (I)LU“”eR)U‘IHWﬁV +h.c.

(
A( L 3w
_ 1o, 2,35 ,4,1) = 2¢/2 (31) (32) ¢!
Ocp : (Lo er)HB,, + h.c. Al 2B ) V2 (31)¢ -
A(léu 21 733+74H3> = 2\/5[31] [32] 53
_ - A(Luy, 20, 3¢a, 4m) = 2v/2 (31) (32) €P)g
OuG:(QLUNV/\QUR)HGZV‘l_h.C. ( a7 002 ) \/_< ) (32) €' X
A(lﬁm 2171',37 3G‘fp 4HT) = 2\/§ [31] [32] EJl)‘BA
_ - ALy, 20, 3we, 4 ) = 24/2(31) (32) €% (09)E 5
Our + (Quorur) o WS, + . | * a2y S ) V2(31) (32) (o >k AB
A(lﬁA72¢7i,373W174H;):2\/5[31] [32]6 ( )5AB
_ ~ ALy, 20,35, 4m5) = 2v/2(31) (32) €645
Oupi mup)HB,, + h.c. 15
5 (Qro*ur) HB, +he ALy 24,35, 4y1) = 2V2[31] [32]6125/43
_ La,, 20 ,3ce,4,1) = 2v/2 (31) (32
OdG:(QLU“”)\“dR)HGZU+h.c. AlLa,, a5 VG HT) \/—< ) (32) 67
A(1,,24, 5+ 364, 4H])_2\/_[31] 32] 67
_ Loy, 20, 3wea,4,.1) = 2v/2(31) (32 )
Oaw : (Qro*dr)o*HW, + h.c. Alla,, ap oW HJT> V2(31) (32) (o )7 AB
A(lg,, 24,5, 3we, 4m5) = 2v/2[31][32] (6)]dap
_ Loy, 200,35 ,4.1) = 2v/2(31) (32) §i6
Oup : (Qro*dr)HB,, + h.c. Al 26, 35 HT) V2(31) (32) 005
A(lg,, 2%8,3&,4[{])_2\/’[31] 32] 0764

B.5 Scalar - fermion operators

B.5.1

H3¢2
A(Le, 25,3 1, dpgr, 5 ypt) = — (12) TF
OeH . HTéRLL’H’2 —|—h(j ( 4 HT Hks ) < > ?ll
“’4(1 2l 73H7a4HT75Hl) = — [12} zi}
7 "4 ]-u ) 73 374 ) = —(12) ¢ ]k(s
Ourr + HlupQ|HI? + hec. (Luas 2q3,, 3115, 4 HT) (12) nll AB
Allas: 2q,5, HT’4HT Sm) = —[12] €inTji0an
7 A(Lay, 24,3515 4pe, 5 — (12) Tk
Ourr » H'drQ|H|” + hec. (Lo, 2, HI»HE Hf) (12) Jl‘l AB
A(la, ‘1113731L1]7415rT 5m) = —[12] Tj; 0an

With TF = 6167 + 6]
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B.5.2 H?%*)?
Oupr : (HYD,H)(LA"Ly) + h.c. A(Ls, 21, Bpge, 4g1) = 2(13) [32] 530
Oprs s (HTiD2H)(Lpo®y* L) +hec. | A(L; 21, 3a0, 4pgr) = 2(13) [32) (0°)i(07)
Ope : (H'iD, H)(égy"er) + h.c. A(Le, 2,351, HT) 2 (13) [32]
Ong : (H'D,H)(Qry"Qr) +he. | A(ly 24, 5. 3un, 4yr) = 2(13) [32) 616} bap
Onqs : (HYDYH)(Qro*y*Qr) +hic. | A(l s 20,80 3 A1) = 2(13) [32] (0); (o)
O : (H'iD, H) gy ur) + h.c. AL 203110, A1) = 2 (13) [32] 3idan
Opa : (H'iD, H)(dgy"dg) + h.c. ALy, 225 3u, 4pp1) = 2(13) [32] 3.6 ap
_ A(Luy, 24,35, 45) = 2(13) [32] €96
Oua : (H'iD,H)(ugy"dg) + h.c. ( 31ty 411) (1) [32] €904
A<1u,472d37 HT 4HT) = 2 <23> [31] Eij5AB
B.6 Four fermion operators
B.6.1 zEszQ - RRRR
Oee : (ervuer)(€rrter) A(1e, 2., 3z,4z) = 2 (12) [34]
Oeu : (éR’}/ueR)<’L_LR’)/MUR) A<1€72uA73574’ ) =2 <12> [34] 6AB
Oed (éR'yﬂeR)(fR’y“dR) A(1672d,473674d5) = 2<12> [34] 5AB
Ouu : (_RVMUR)(_R’Y#UR) A(lum upg UC’ D) =2 <12> [34] DC,BD
Oua : (dryudr)(dry*dR) A(Lay,245,34..44,) = 2(12) [34] Tac,Bp
0%« (aryuur)(dry*dr) | ALy 245, 300 4a,) = 2 (12) [34] Tac.pp
0% (arr A ur) (dry* A dr) | A(Luy, 24 3acs 4ay) = 2(12) [34] Tac,sp
Defining Tac.sp = 64c08D + 6apdpe and Tac.sp = NaeA%p + A% p A%,
B.6.2 ¢*)?: LLLL
Ou = (LpvuLr) (L Ly) ALy, 20,34, 43,) = 2(12) [34] T,
O+ (L7,L1)(Qrr" Q1) A(ly,2 31, 4q,.,) = 2(12) [34] 0167045
O (Liyuo® L) (Quy o Qr) | ALy, 2., 3,44, ) = 2(12) [34] (0°)i(0*)i0as
ok (Qry,.Qr)(Qry" QL) ALy, 2 ¢ Sacr 4g ) =2(12) B4 T2 Tac,sp
0%+ (Qr1.0°QL)(Q1y"0"Q1) ALy, 245 3q000 40,.0) = 2(12) [34] T2 Tac, 5D

With 7,7 =
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B.6.3 zZQ@DQ - LLRR and LRRL
Oie = (LryuLr)(ery*er) ALy, 26, 37, 4¢) = 2(12) [34] 0
Ow ¢ (Lpy,Lr)(agy*ug) A(Lii5 20,0, 37,5 4ap) = 2(12) [34] 02045
Old (I/L'YMLL)(dR'YMdR) A(lli 2dA,3[.,4JB) = 2 <12> [34] 5;-5143
Oqe . (QL’}/#QL>(6R’}/’MGR) A(l 7. 2 3 B74 ) = 2 <12> [34] (5;-(5,43
O (QurwQu)(@ry ur) | Ay, 2us, 35,00 4up) = 2 (12) [34] 61 Tac,mp
O+ (@ryA\ar) @ry"Aur) | ALy, 2us. 30,0 40,) = 2(12) [34] 6: Tacp
0% (QuuQu)(dry*dr) | Ally, zw, po04ap) = 2(12) [34) 01 Tacmp
Oéi) : (GrYuAqR) (dry*NedR) | A1 g+ 2dps 3g,00 4ay,) = 2(12) [34] 05Tac.Bp
- - A(llz,Qe,Bd ,45.3) = (12) [34] 5up
Oiedq = (L d AT J
ledq ( L€R)( RQL) A(ll},2573dm4qf§) _ [12] <34> 515143
B.6.4 ¢*: LRLR
_ . A1, 26,35 ,4a,) = (12) (34) €5
O (Ler)(eQrur) L a) = {12) (3 205
A(ll , 2, 311] 374J ) [12] [34] EZJ(SAB
_ _ A1¢26,3j,4A 12) (34)) €95
0O« (Loamen)cQuangy | A0 2034020 = (214 (32) = (12) (34))
A1y, 26,3, 5, 4aq,) = (2[14] [32] — [12] [34]) €;50a5
ALy 205,84 34) €97
O+ (Quun)(Qudn) (Lgi, dp) = (12) (34) €’ Tac,p
A(ltii,m 2UB7 3Qj,c74 D) = [12] [34] 6137;\0 BD
ALy 20,3, 4a, ij
Otgi)qd (QrA\ug)(eQLA\*dR) (14, o, dap) = (12) (34) € 7240,317
A(lqi,A’ 217»37 3!?;‘,0’4(5[)) = [12] [34] GianaBD

Since the amplitude associated with Ol(i;u

convenient to replace

0(3) = (ZLUuyeR)(EQLU’uVUR) —

lequ

involves two different spinor structures, it is

(0. +0.) . B

DN | —

Oluqe = (ELUR)(EQLGR) =

where the product of o matrices is given by

(0")a (o)} = 26707

— 0507 . (B.2)

The new operator Oy, generates the following on-shell amplitudes

AL, 20,3, ,40,) =

(14) (32) €75 45 ,

A7, 26,3, 55 44,) = [14] 32 €048 . (B.3)
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Appendix C

Cancellation of IR divergences and
absence of triangle and box
contributions in the sum over 2-cuts

In this appendix we prove the validity of Eq. (3.16) at order 1/A? for mixings with An =
n; —n; = 0 and 1. We show how the absence of IR divergences implies that triangle and
box contributions cancel in the sum over 2-cuts in Eq. (3.16). This result is only valid for
renormalizations with yg = 0.

C.1 Case An=0

Let us consider the 1-loop mixing between two amplitudes Ap,, Ao, with the same number of
legs. It is easy to see that the PV decomposition of the relevant 1-loop amplitudes only contains
bubbles and triangles. Box integrals are trivially absent because there are not enough external
legs to build them. The triangle integrals correspond to the diagram Figure C.1. From [128],
the master integral I3 in dimensional regularization is given by

ale 2e
1" = (22’“‘ (=)™ (C.1)

where I, .J, ... are the external particles and we have defined

L(1+el%(1—¢) 1
5=t
(1 — 2¢)(4m) 2 167

ale) = O(e) . (C.2)

The triangle amplitude is UV convergent and the 1/€? pole in Eq. (C.1) corresponds to an
IR divergence. Expanding for small €, we find

ale) 1 — L (l Ly (‘”’)) +O() . (C.3)

e € 2
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J

Figure C.1: Triangle integral for the 1-loop mizing of Ao, and Ao, with An = 0.

We know that the IR divergence of the full amplitude is zero by assumption. Bubble
integrals are IR convergent, so the sum of triangle IR divergences must vanish. Imposing the
cancellation of the 1/e and 1/€* poles, we obtain the following conditions

O(IJ) C(IJ)
Z 3 =0 R Z 3 1H<—S]J) =0. <C4)
1.7 S1J 1.7 S1J

For n, = n; > 5, the second condition can only be satisfied if C’él‘]) = 0 for all I, .J. This
is because the logarithms are transcendental functions and thus cannot cancel with the C
coefficients, which are rational functions of the kinematic variables. We conclude that there are
no triangle terms in the PV expansion for this kind of mixing.

Let us see what happens in the cases n; = 3,4. For n; = 3 all the s;; are zero, so the
triangle integrals are all scaleless and vanish. For n; = 4, some of the s;; are trivially equal:
S12 = S34, S13 = S24 and S14 = S93. The second condition in Eq. (C.4) then allows the solutions
c? = ¢ o = 0(24) nd Cj (1) — 0(23 This means we can have nontrivial triangle

3 3 V3 g

configurations, but they cancel in pairs,

0(12)1 (12) 0(34 —0,
I L PV — ¢ (C.5)
0(14)1 (14) 0(23 0.

In the end the sum of triangle terms in the PV expansion must vanish to cancel the IR
divergences. Overall, for any mixing with n; = n; we are left with only bubble terms, so no
triangle or box coefficients contribute to the 2-cuts in Eq. (3.16).

C.2 Case An=1

Mixings with An = 1 may include the triangle and box diagrams shown in Figure C.2, where
we have only included the topologies associated with IR divergent integrals. (a) corresponds to
the triangle integral in Eq. (C.1). Following [128], (b) and (c) are associated with the triangle
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(b) (c) (d)

Figure C.2: IR divergent triangle and box integrals for the 1-loop mizing of Ao, and Ao, with

An =1.

integrals
JUIIK) a(e)p* (—=s17) " = (=s1x) "
3 - 2 . _(_ )
€ (=s15) = (—51K) (C.6)
[él\JK) _ [?()IJ|K)([ oK),
whereas (d) leads to the box integral
ale)u? 2 1
LEIJK) _ () [<_SU)7€ + (—syK) " — (_SUK)%] pUIE) ’ (C.7)

€2 SIJSIK 1671'2 1

with Fj given by

2
FiIJK) _ 2 {Lh <1 B SIJK> 4 Li, <1 B SIJK) n %1112 (S]_J) + %} +0(e). (C.8)

SIJSJK S1J SJK SJK

Expanding these integrals for ¢ — 0, we can see that they have 1/e and 1/€? poles, which
correspond to IR divergences. Imposing the cancellation of the total IR divergences fixes some
relations on the coefficients C'3 and ). In this case we do not necessarily have all vanishing
coefficients. On the contrary, there can be some nontrivial cancellations between the different
triangles and boxes, so the total IR divergence is zero. In particular we have the combination
stasrly ) sl s I+ (s1g = spa) I+ (s — sraw) Y o< spps g EY

(C.9)
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IJK
[4 .

Figure C.3: Diagram of the possible 2-cuts of the box integral

where the € poles cancel. With this combination of triangles and boxes, the total loop amplitude

becomes 1
1—loop __ (a) 7(a) (c) (c)

which remarkably includes finite contributions from boxes. In order to prove Eq. (3.16), we
need to check that these terms do not contribute to the sum over 2-cuts.

The 2-cut of the amplitude can be computed with the Cutkosky rule, as mentioned in
Section 3.2.1. We replace the loop propagators £~2 and (¢ — P)~? with the delta functions
5T (£?) and 67 (¢* — P). We choose our normalization so the 2-cut of the I, master integral is

(@ _ _ 1
Cuto[[,"] = T8 (C.11)
The sum over all possible 2-cuts of the 1-loop amplitude is
1
1-loop] __ () ©
2§S Cllt2[A p] - 71-’4(91 - 1671'2 ; C4 2;5 CUtQ[F4 ] , (012)

where we have used Eq. (3.12) to relate ~; to the bubble coefficients.

Now we must check that the second term in Eq. (C.12) vanishes. Considering diagram
(d) of Figure C.2, there are three possible nonzero 2-cuts of the box integral (see Figure C.3).
Applying the Cutkosky rule to the combination in Eq. (C.9), we find

Cutg]) [FZL(IJK)] = SI.IiJK in (SIJ;{J;:”> ’ (Clg)

Cutf/ F ) = o (s (€14
(IJK) -(IJK)] 4 18

Cut, [F4 ]  S175JK In <(SIJK*3JI£<])(‘;II<JK*SIJ)> ’ (0.15)

Now it is easy to see that all three cuts add up to zero, so we have proven Eq. (3.16) for
mixings with An = 1. We remark that the individual cuts in Egs. (C.13)—(C.15) need not be
zero. We may find logarithms of the momenta in the different cuts, but they must cancel in
the total sum. Note as well that Eq. (C.15) vanishes for n; = 4, since s;;x = 0. In that case
we only have to consider two 2-cuts.

As a final remark, we refer back to Section 4.4 in the main text, where we calculate the
anomalous dimension for the An = 1 renormalization W3 — W Hle. There, we find loga-
rithms in the individual 2-cuts which add up to zero. It is interesting to explore an alternative
computation of the logarithm coefficients through a 4-cut. We devote the following section to
that.
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l 2 3 Wwe

Figure C.4: J-cut of the 1-loop amplitude for the mizing W3 — W Hle.

Box contributions from quadruple cuts

The 1-loop amplitude for a An = 1 mixing gets contributions from box integrals, as can be
seen in Eq. (C.10). 2-cuts of AP include logarithms of the momenta, accompanied by some
coefficient Cy. Here we show how the box coefficient can also be computed directly from the
4-cut of the integral. For concreteness, we focus on the renormalization W3 — W Hle, which
was covered in Section 4.4. In this case there are two individual 2-cuts, both of which give rise
to logarithms, as is shown in Eq. (4.37).

From [74], the box coefficient can be obtained from a 4-cut of the 1-loop integral (see Figure
C.4). The Cy can then be related to a product of 3-point tree-level amplitudes,

1
Cy = §A1(p1,éip —05,) As(pa, Uy —5) As(ps, €85, —03,) As(pa, U3, —C5) + (— < +) , (C.16)

with E;'; the momentum going from vertex i to vertex 5. The two terms in this expression
correspond to the different possible helicities of the cut particles. For this reason, the two ﬁj-tj
are related by complex-conjugation: (;; = (ﬁ:;)* Following [129], the internal momenta can be
written as

L _ (23) __[23]
by = @|2J<1|7 by = ﬁll]@\ : (C.17)

and the other EZ:-S are obtained from cyclic permutations of (1234). These momenta satisfy
the on-shell condition (65)2 = 0 and momentum conservation in the 3-point subamplitudes in
Eq. (C.16).

In the case of the 1-loop mixing Ays — Aw g, the only possible 4-cut is shown in Figure
C.4. The 3-point amplitudes in Eq. (C.16) are given by

Cyys
Ai = iye (1412) Az = ! AVQV (€233) (3l34) (L34l03) fabc )
C.18)
(ol 403, (€3] (
Az = Ty Av=g— Tk,

where we have used Egs. (2.4, 2.2, 2.3) for the SM amplitudes, and Eq. (2.28) for the 1/A?
amplitude. The product of the four amplitudes can be written as

2. Cys
ArAs Az Ay = @MTWSHQ:»<12>[2|e2313>(Ta)ij . (C.19)
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Substituting in Eq. (C.16), we find

2 2 2 2
95YeCys 812523 93YeCys 579523
4 2A2 ( ) J< >< > S13 9 S13

AWHle . (020)

Now let us consider the 2-cut (a) in Figure 4.6. Using our notation for this appendix, it
corresponds to Cutgw) [F, 4(123)]. Then we can write

(12) _
Cut(12) [ A11o0p] __G Cs ln( 512) : (C.21)

2 47T2812823 S923

Substituting the value of Cy from Eq. (C.20), we find that the coefficient in front of the

logarithm is %iﬁ. As we wanted to prove, this agrees with Eq. (4.37).
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Appendix D

Anomalous dimensions for LFV
observables

In this appendix we present the anomalous dimensions for the Wilson coefficients that enter
the LF'V observables © — ey, u — eee and u/N — eN at tree level. We are only interested in
the leading order operator mixings up to two loops, which are necessary to obtain bounds on
the energy scale of new physics (see Chapter 5).

D.1 One loop

The complete 1-loop anomalous dimension matrix for dimension-six operators in the SMEFT
was computed a while ago (see refs. [19-21]). In recent years, it has been revisited with on-shell
methods in [28, 29] and in particular [1] that we cover in Chapter 4.

L— ey

At tree level, only the combination Cpy — Cppg enters into u — e7. It mixes at one loop with
the orthogonal combination of dipole coefficients Cpy + Cpp. Taking into account that

d 1 of 11 1, ) 1,
B it Ne — 59t : D.1
dln,uODW 1672 |:<g < 192 + 4 QW) + yt) C’DVV 29 GWODB ( )
d 1 3 9 151
dln,u DB — 167T2 |:_§g2t6WCDW + (92 (_Z —+ Etgﬂ/) + Ncyz) ODB:| s (DQ)
the anomalous dimension is
d 2 12 1 37
dlnp(CDW —Cpp) = 1(gj7r2 {g + §t9w - EtZW} (Cpw + Cbg). (D.3)

Additionally, the dipole coefficients are renormalized by the four-fermion operator Opqe.
The calculation for this mixing is detailed in sections 4.1 and 5.4.1, leading to

d [ C N, [ 5/12
be) o e / Cruce (D.4)
Ap\ Cpy )~ 1672 \ 174
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We must also consider the coefficients that mix with the dipoles at the two-loop level with
a double log. For this, we need to know the 1-loop anomalous dimensions for Or,q., which is

d e 92 2 e
dlnucfu(ge = - 1672 (3 + 5t9W)C£ququ
4y Y Y Y. (D-5)
+ g (o Eecpp—steopm o o) |
d q°
epqq 3+ 5¢2 ) Creraa
dl LuQe 1672 ( Ow LeQu
a om (D.6)

4yu ye epuu € e epuu ye €
+ qob (Lo + o - somm + o+ o)

Notice that the terms proportional to a Yukawa coupling correspond to the exception to
the helicity selection rule An > |Ah|, which allows the mixing %1% — %,

[ — eee

Aside from the dipoles, we have to consider the anomalous dimension matrix for OZ?L& r and
Ol rrorrr- From Eq. (5.20), we see that Cp, 13 only appear in the combination Cf, + Cps.
Defining

Cre =CrxCp3, (D.7)

we are interested in the mixing of C';_ into Cr,. We have

d g* 4 d g* 17
o = —t3 YAOH® re=————0" D.8
dlnp b 16723 0w HTL dlnp =3 1672 3 537 (D-8)
which leads to J > 17 o
9 2 12

— O = —[— =tz Y7|CL_ . D.9
dlnp " 167216 * 30w T H L (D-9)

Regarding the four-fermion operators, their 1-loop mixings are given by

d eee g2 4 2
dln u% - 167r2{§YLLt‘9W
INCH 03} |

Ne (20, CE + Yur Gl + Yan CL) + Yu e

d eee g2 4 i e eun edd
T O = gy Venlhe | Ne (DVau ORI+ Y O + Y, O

Y

d 2y
Ol = o S Yenth, | Ve (Vo CH + YurClR™ + Yau Ol ) + YuCle

dlnp BR 16723~ " 0w ’
d peee 92 4 2 neqq peuy nedd
dlnluCRL = T2 3 Letow | Ve <2YQLCRL +Yup,Crr + YarCpp ) > (D.10)
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where ¢, u, d belong to the 2nd and 3rd family. For the 1st family, the coefficients are already
constrained at tree level by u/N — eN. In order to go from C7, 13 to Cr4 r— we use the projection
Cp — Cp_/2 and Cr3 — —Cp_ /2. The mixing with four-fermion coefficients CgZT’ng’RRLR,RL
instead of C77"7 14 pp g .rr 1S Obtained by replacing ¢,d — 7, N. — 1, Yo, — Y1, Ya, = Yo,

and Y,, — 0.

uN — eN

The anomalous dimension for the four-fermion coefficients C7}"r  r r; is obtained by replacing
Y, — Yo, and Yo, — Y, in Eq. (D.10). Similarly, for the mixings with C”LLGL%RLR’RL we must
replace Y7, — Yy, and Y., — Yy, in that same equation.

D.2 Two loops

In our analysis, we also consider the contribution of LFV operators of classes ¢>H?, ¢*)* and
Y H? to the 2-loop anomalous dimension of the dipoles. The 2-loop mixing C, — Cpw.pp was
computed in [28, 84] and is equal to

d CeB . g3 3 tWyH + 4t%/Y[?{(YL + Y;) C
dlnp \ Cow 5+ 2 Yu(Yo +Y0) ye

T6rTE 1 (D.11)

The mixings Cgﬁﬁe — Cpw,pp and C1'Y° — Cpw,pp were computed in [84], leading to

_d (Cen\ _ yag® Ne (BtwYo+4ty (Yo +Y)(YG+YP)) D)
dlnp \ Cuy (1672)% 4 L4922 (V, + Y.)Yo ledg > :
d_(Cen) _ _weg® 1 (3tw¥y +4t (Yo + Y)VP+Y7)) . (D.13)

Finally, we have computed the mixing Cy, 13 r = Cpw,pp in Section 5.4.2 (see the original
paper [3]). The anomalous dimensions at orders y? and A\* are summarized in Eq. (5.56),
Eq. (5.57), Eq. (5.71) and Eq. (5.72).
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Appendix E

Partial-wave decomposition of
amplitudes

In this Appendix we obtain the general formula for the partial-wave decomposition of 4-point
amplitudes, following the derivation in [116]. We start considering the scattering process 1,2 —
3,4 in the center-of-momentum frame. The direction of the incoming particles 1,2 is defined
by the polar angles (¢, w), while the direction of the outgoing pair 3,4 is defined by (6, ¢). The
corresponding scattering amplitude can be written as

"4(87 07 ¢7 wa (,d) = <0¢7 h3h4|T|¢w; h1h2>

= Z (O hahy|J M'; hahg) (J'M'; hahy|T|JM; hihg) (JM; hihs|tw; hihs) (E.1)
JJ' MM’

where 7 is related to the S-matrix by S = 1+1¢7. We have inserted two complete sets of states,
which satisfy [ =3, [JM)(JM| by the completeness of the angular momentum basis. The
matrix element is given by

<J/M/,h3h4‘T|JM, h1h2> :6MM’ (SJJ/ (\/Tg) G,J N (EZ)
where a” is a partial-wave coefficient with angular momentum J. Using this definition, Eq. (E.1)
becomes
s\" o M (M
Al b.00.0) = () Toms 00l (0) 0N )0 (B
JM

where ny = 2J + 1 and dy;, () are the Wigner d-functions, defined as

ei(M—h12)

d}{ﬂm (9) -
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Alternatively, we can write

Ao (8) = [(J+ MLT = M)+ MO (T = M) "

(—1)M'-M+S CQ%JFM—M _28 39% _M+25 (E.5)
x>
5

(J+M =SSN (M =M+ S (J—M =8|’

where the summation includes all values of S that make the factorial arguments non-negative.
The Wigner d-functions are orthogonal, satisfying the condition

205y

/ d sg dipp(0)ddsa (0) = . (E.6)
0 ny

Finally, we observe that Eq. (E.3) gets simplified by choosing a frame such that ) = w = 0,
leading to

A(s,@,gb) — i9(hia—haa) (%) an di12h34(9> a’ : (E?)
J

where we have used that dy;,,(0) = darar
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