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RESUMEN

Las pandemias virales representan uno de los mayores desafios contemporaneos para la
medicina intensiva, al provocar un aumento subito de pacientes con neumonias graves que
tensiona las UCI y exige respuestas clinicas rapidas en contextos de elevada incertidumbre.
Esta presion asistencial y la variabilidad en la respuesta de los pacientes evidencian la
necesidad de mejorar el abordaje inicial, optimizando tanto el diagnostico como el
tratamiento empirico desde el ingreso. La presente tesis tiene como objetivo profundizar
en ese abordaje inicial mediante la identificacion de factores de riesgo clinicos,
microbiologicos y fisiopatologicos que condicionan la evolucion, asi como en la
evaluacion del impacto de las decisiones terapéuticas adoptadas en las primeras 24 horas.
Al integrar datos de pacientes criticos con influenza A(HIN1)pdm09 y SARS-CoV-2, este
trabajo se alinea con los principios de la medicina de precision, y persigue ofrecer
herramientas para estratificar el riesgo desde el primer momento, identificar precozmente
a los pacientes con peor prondstico, adecuar las intervenciones a las caracteristicas
individuales y formular estrategias dindmicas que mejoren los resultados clinicos y

faciliten la toma de decisiones durante futuras emergencias sanitarias.
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ABSTRACT

Viral pandemics represent one of the greatest contemporary challenges for critical care
medicine, as they lead to a sudden surge of patients with severe pneumonia that
overwhelms ICUs and demands rapid clinical responses under conditions of high
uncertainty. This healthcare pressure and the variability in patients’ responses highlight the
need to improve the initial management by optimizing both diagnostic processes and
empirical treatments from the moment of admission. The present thesis aims to enhance
this early approach by identifying clinical, microbiological, and pathophysiological risk
factors that influence patient outcomes, and by evaluating the impact of key therapeutic
decisions made within the first 24 hours. By integrating data from critically ill patients with
influenza A(HIN1)pdm09 and SARS-CoV-2, this work aligns with the principles of
precision medicine and seeks to provide tools for early risk stratification, timely
identification of patients with worse prognosis, personalized interventions tailored to
individual characteristics, and the development of dynamic strategies to improve clinical

outcomes and support decision-making in future public health emergencies.
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1. Introduccion

1.1 Generalidades

Desde el Neolitico, el ser humano ha convivido con epidemias que, en muchas ocasiones,
han definido el rumbo de su historia. La sedentarizacion, el desarrollo de la agricultura y
la domesticacion animal incrementaron la densidad poblacional y facilitaron el contacto
entre humanos y animales, propiciando la aparicion de brotes epidémicos locales que, con
el tiempo, evolucionaron hasta convertirse en fendmenos interregionales y globales (1).
Pandemias como la peste negra en el siglo XIV, la viruela tras la llegada a América o las
sucesivas oleadas gripales de los siglos XIX y XX ilustran no solo pérdidas demograficas
masivas, sino también profundas transformaciones sociales, politicas y culturales. La Tabla

1 recoge las pandemias mas relevantes de la historia documentada (2,3).

Tabla 1. Principales pandemias en la historia de la humanidad

Mortalidad
Estimada (nimero
de personas
fallecidas)

Nombre de Ia Periodo Historico

Pandemia

Microorganismo
Responsable

Lugar de Origen

Peste de Atenas Probable fiebre 430 a.C. Atenas, Grecia ~100,000
tifoidea o ébola
Plaga de Justiniano = Yersinia pestis 541-542 d.C. Imperio Bizantino ~25-50 millones
Peste Negra Yersinia pestis 1347-1351 Asia Central ~75-200 millones
Viruela en América | Variola virus Siglo XVI América ~50-100 millones
Gripe Espaiiola Influenza A (HIN1) = 1918-1919 Estados Unidos ~50 millones
Poliomielitis Poliovirus 1940-1960 Europa/Estados ~3000/afio (EEUU
(brotes epidémicos) Unidos antes de la vacuna))
Gripe Asiatica Influenza A (H2N2) | 1957-1958 China ~1-2 millones
Gripe de Hong Influenza A (H3N2) & 1968-1969 Hong Kong ~1 milléon
Kong
VIH/SIDA Virus de la Desde 1981 Africa Central ~36 millones
inmunodeficiencia
humana
Gripe A | Influenza A | 2009-2010 México ~200,000
(HIN1)pdmo09 (HIN1)pdmO09
COVID-19 SARS-CoV-2 Desde 2019 Wuhan, China >7 millones (OMS

2023)

La medicina moderna no dispuso de herramientas eficaces para afrontar estas crisis hasta
el siglo XIX, cuando los descubrimientos de Pasteur y Koch y el nacimiento de la

microbiologia permitieron comprender los mecanismos de transmision y los agentes
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etiologicos. En el siglo XX, la introduccidon de vacunas, antibioticos y sistemas de salud
publica supuso un punto de inflexion, reduciendo drésticamente la mortalidad de muchas
enfermedades infecciosas. Sin embargo, fendémenos contemporaneos como la
globalizacion, el cambio climatico y la presion humana sobre ecosistemas naturales han
favorecido la aparicion de nuevos patogenos con capacidad de transmision eficiente entre

humanos (1,2).

En las ultimas décadas, los virus respiratorios han ganado protagonismo como agentes
emergentes. Epidemias previas por SARS-CoV-1 en 2003, MERS-CoV en 2012 y distintos
subtipos de influenza aviar (H5SN1, H7N9) pusieron de manifiesto la facilidad con la que
los virus zoonoéticos pueden adaptarse al ser humano y propagarse rapidamente (3—8). Entre
ellos, dos pandemias recientes han tenido un impacto global extraordinario: la gripe
A(HIN1)pdm09 de 2009 y la COVID-19 causada por el SARS-CoV-2, emergida a finales
de 2019 (3-8).

Aunque ambos virus difieren en su estructura genética, mecanismos de transmision y
comportamiento epidemioldgico, comparten rasgos clinicos fundamentales: transmision
por via respiratoria (incluyendo gotas y aerosoles), potencial para inducir neumonia viral
grave y SDRA, y una elevada tasa de ingreso en unidades de cuidados intensivos. Estas
unidades se convirtieron no solo en escenarios de asistencia intensiva, sino también en

focos de generacion de conocimiento clinico durante ambas crisis sanitarias (9,10).
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1.2. Infeccion por virus de la gripe A(HIN1)pdmO09

1.2.1. Fisiopatologia

El virus influenza A(HIN1)pdmO9 es un ortomixovirus con genoma de ARN segmentado
en ocho fragmentos, que codifican proteinas estructurales (hemaglutinina [HA],
neuraminidasa [NA], M1/M2, nucleoproteina [NP]) y no estructurales (NS1, NS2). La HA
permite la union del virus a los residuos de acido sidlico en la superficie del epitelio
respiratorio, facilitando la endocitosis. Tras la liberacion del genoma viral en el ntcleo, se
inician los procesos de transcripcion y replicacion. La NA favorece la diseminacion del
virus al escindir los enlaces del acido sialico y evitar la agregacion de los nuevos viriones

(2,9,10).

Este ciclo viral causa dafo directo al epitelio respiratorio y desencadena una intensa
respuesta inmunitaria innata. Las células presentadoras de antigeno, como los macréfagos
y las células dendriticas, secretan interferones tipo I, TNF-a, IL-6 e IL-1p, atrayendo
neutrofilos y linfocitos T CD8* al lugar de la infeccion. Si esta respuesta se desregula,
puede provocar dafo alveolar difuso, caracterizado histolégicamente por exudados
fibrinosos, formacion de membranas hialinas y edema intersticial, configurando el cuadro

clinico-patologico del sindrome de distrés respiratorio agudo (SDRA) (2,10).

1.2.2. Clinica, neumonia y SDRA

La infeccion suele iniciarse tras 1-3 dias de incubacion con fiebre alta, tos seca, odinofagia,
cefalea, mialgias y malestar general. En algunos pacientes, especialmente aquellos con
comorbilidades como obesidad, EPOC o cardiopatia, la infeccion progresa rapidamente a
una neumonia viral primaria, con disnea progresiva, taquipnea e hipoxemia refractaria al

oxigeno suplementario (2,9,10).

La radiografia y la tomografia computarizada (TC) de torax suelen mostrar infiltrados
pulmonares bilaterales, parcheados o difusos. El diagndstico de SDRA se establece seglin
los criterios de Berlin, que requieren una PaO./FiO: < 300 mmHg con PEEP > 5 cmH-O,
presencia de infiltrados pulmonares bilaterales y ausencia de causa cardiogénica (11).

Este cuadro aparece precozmente y se asocia a dafio alveolar difuso, disminucion de la
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distensibilidad pulmonar, elevada mortalidad y necesidad frecuente de ventilacion

mecanica invasiva (12).

La aspergilosis pulmonar invasiva asociada a gripe (IAPA) es una complicacion emergente
en pacientes con neumonia grave causada por el virus influenza A(HIN1)pdm09
ingresados en UCI, incluso en ausencia de inmunosupresion clésica. Su incidencia se
estima entre el 14 % y el 19 % en pacientes sometidos a ventilacion mecénica, y suele
manifestarse precozmente, durante los primeros 2—3 dias tras la intubacion. Se asocia a una
mortalidad elevada, superior al 50 %. El diagndstico requiere la combinacion de hallazgos
clinico-radiolégicos y microbiologicos, que incluyen el cultivo de Aspergillus spp., la
deteccion de galactomanano en suero o en lavado broncoalveolar (LBA) y la PCR fungica.
La positividad del galactomanano en suero es frecuente, lo que permite un diagnodstico mas

temprano y favorece el inicio precoz del tratamiento antiflingico en pacientes de alto riesgo

(13).
1.2.3. Tratamiento

El tratamiento de la gripe A(HIN1)pdmO09 grave se basa en tres pilares: soporte de 6rganos,

terapia antiviral especifica y tratamiento de la coinfeccion bacteriana.

El soporte respiratorio se adapta a la gravedad del cuadro. En pacientes con hipoxemia
moderada, puede iniciarse oxigenoterapia de alto flujo o ventilacion no invasiva. Si la
hipoxemia se agrava o el trabajo respiratorio aumenta, se indica ventilacion mecéanica
invasiva con estrategia de proteccion pulmonar (volumen corriente de 4-8 mL/kg de peso
ideal, presion meseta < 30 cmH-O y PEEP individualizada), relajacion neuromuscular y
pronacion en caso de PaO2/FiO2 < 150 mmHg. En situaciones de hipoxemia refractaria,
puede considerarse el uso de ECMO en centros especializados (11). El resto del soporte
organico (hemodindmico, renal, metabdlico) debe individualizarse segun la evolucion

clinica (14).

La terapia antiviral recomendada para los pacientes con neumonia grave es la
administracion de inhibidores de la neuraminidasa, siendo el oseltamivir (75 mg cada 12

horas durante 5 dias) el farmaco de eleccion. Aunque su eficacia es mayor si se inicia en
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las primeras 48 horas desde el comienzo de los sintomas, en pacientes criticos se
recomienda su uso incluso mas alla de ese periodo (12,15,16). En caso de sospecha de
coinfeccidn bacteriana, basada en la clinica, los hallazgos radiologicos o los biomarcadores
inflamatorios, se debe iniciar una antibioterapia empirica ajustada a las guias locales y a la
epidemiologia del centro. Posteriormente, el tratamiento debe optimizarse conforme a la
evolucion clinica, los niveles de procalcitonina y los resultados microbiologicos,
idealmente en el marco de un programa de optimizaciéon del uso de antimicrobianos

(PROA) (17,18).

1.2.4. Prevencion

La medida maés eficaz para prevenir la gripe A(HIN1)pdm09 es la vacunacion estacional,
con una efectividad promedio del 60-70 % en la reduccion de casos, hospitalizaciones y
muertes (12,19). Tras la pandemia de 2009, la cepa A(HIN1)pdmO9 se incorpord de forma
permanente en las vacunas trivalentes y tetravalentes. Estas vacunas estdn especialmente
recomendadas en grupos de riesgo, como las personas mayores de 65 afios, los pacientes
con enfermedades cronicas, las mujeres embarazadas y el personal sanitario (20). De forma
complementaria, las medidas no farmacologicas como la higiene de manos, el uso de
mascarillas y la ventilacion de espacios cerrados, han demostrado ser eficaces para reducir
la transmision del virus y prevenir brotes, especialmente en entornos vulnerables o durante

periodos de alta circulacion viral (12).

1.3. Infeccion por SARS-CoV-2

1.3.1. Fisiopatologia

El SARS-CoV-2 es un betacoronavirus de ARN monocatenario positivo de
aproximadamente 30 kb que codifica cuatro proteinas estructurales (Spike, Envelope,
Membrana y Nucleocapside) y varias proteinas no estructurales. La entrada viral se
produce cuando la glicoproteina Spike (S) se une al receptor ACE2, ampliamente
expresado en el epitelio alveolar, las células endoteliales, los miocitos cardiacos, las

nefronas y los enterocitos. La activacion de la proteasa celular TMPRSS2 facilita la
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escision de la proteina S, permitiendo la fusion de la membrana viral con la célula huésped

y la liberacion del genoma viral en el citosol.

Una vez dentro de la célula, el virus se replica y desencadena una respuesta inmunitaria
bifasica. En la primera fase, la replicacion viral directa induce citopatia y estimula la
inmunidad innata, con liberacion de interferones tipo I, TNF-a, IL-6 e IL-1p por parte de
macrofagos y células dendriticas. Esta sefializacion promueve la activacion y el

reclutamiento de neutrofilos y linfocitos T CDS8".

En los casos graves, esta respuesta inmunitaria se desregula, dando lugar a una segunda
fase caracterizada por una hiperinflamacion sistémica o “tormenta de citoquinas”. Esta se
manifiesta por concentraciones elevadas de IL-6, TNF-q, IL-1p, ferritina y dimero D, entre
otros marcadores. El proceso inflamatorio favorece el dafo endotelial, el estado
protrombdtico y la lesion alveolar difusa, con formacion de membranas hialinas y edema
intersticial, lo que puede desembocar en un sindrome de distrés respiratorio agudo (SDRA)

y disfuncion multiorgénica (1,5,21).

1.3.2. Clinica, neumonia y SDRA

La COVID-19 suele comenzar tras un periodo de incubaciéon de 2 a 7 dias con sintomas
inespecificos como fiebre, tos seca, astenia, mialgias, cefalea y, en algunos casos, anosmia
o ageusia. En un subgrupo de pacientes, particularmente varones de edad avanzada o con
comorbilidades como obesidad, EPOC o enfermedad cardiovascular, la infeccion progresa
rapidamente a una neumonia viral primaria, caracterizada por disnea progresiva, taquipnea

e hipoxemia persistente a pesar del oxigeno suplementario (6,9,22,23).

Las pruebas de imagen, como la radiografia o la tomografia computarizada (TC) de torax,
muestran opacidades en vidrio deslustrado bilaterales, difusas o parcheadas. El
diagnostico de SDRA se establece segtin los criterios de Berlin, que requieren una
Pa02/Fi02 <300 mmHg con PEEP > 5 cmH:O, presencia de infiltrados pulmonares

bilaterales y ausencia de causa cardiogénica (11).

El SDRA suele aparecer entre los dias 7 y 10 de evolucion clinica. A diferencia del
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SDRA clasico, algunos pacientes presentan un fenotipo atipico (fenotipo L), con
hipoxemia severa y buena compliancia pulmonar, lo que ha motivado el desarrollo de
estrategias ventilatorias adaptadas. En fases avanzadas, predomina el fenotipo H,
caracterizado por baja distensibilidad, consolidaciones extensas y elevada mortalidad,

que requiere frecuentemente ventilacion mecanica invasiva (11,24).

La aspergilosis pulmonar invasiva asociada a COVID-19 (CAPA) es una complicacion
emergente en pacientes con neumonia grave por SARS-CoV-2 ingresados en UCI,
especialmente en aquellos que requieren ventilacion mecanica prolongada o tratamiento
immunomodulador. Su incidencia oscila entre el 5 % y el 15 %, pudiendo alcanzar hasta el
30 % en cohortes con cribado sistematico. La CAPA suele desarrollarse entre los dias 7 y
10 tras la intubacion y se asocia a una mortalidad elevada, estimada entre el 45 %y el 70 %.
El diagnostico es complejo debido a la baja sensibilidad del galactomanano sérico, lo que
obliga a integrar los hallazgos clinicos y radiologicos con el cultivo, el galactomanano o la
PCR en lavado broncoalveolar. La sospecha precoz de CAPA es esencial ante un
empeoramiento clinico no explicado o la aparicion de nuevos infiltrados pulmonares
durante la evolucion del SDRA, ya que su identificacion temprana permite iniciar un

tratamiento antifungico adecuado y mejorar el pronostico (13).

1.3.3. Tratamiento

El abordaje terapéutico de la COVID-19 ha evolucionado significativamente desde el inicio
de la pandemia. Durante la fase viral, el antiviral remdesivir ha demostrado un beneficio
modesto al reducir el tiempo de recuperacion en pacientes que requieren oxigenoterapia,

pero no ventilaciéon mecénica invasiva.

En la fase inflamatoria, la dexametasona a dosis bajas (6 mg diarios durante 10 dias) ha
evidenciado una reduccion significativa de la mortalidad en pacientes con necesidad de
oxigeno suplementario o ventilaciéon mecanica (25), segun el estudio RECOVERY (26).
Asimismo, immunomoduladores como tocilizumab (anticuerpo anti-IL-6R) y baricitinib
(inhibidor de JAK1/2) han mostrado beneficios en pacientes con inflamacion sistémica
persistente y deterioro respiratorio progresivo (23).

El soporte ventilatorio debe adaptarse al fenotipo clinico del SDRA, empleando
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estrategias de ventilacion protectora, sesiones prolongadas de decubito prono y, en casos
de hipoxemia refractaria, oxigenacion por membrana extracorporea (ECMO) en centros
especializados (11,14). El uso de antibioticos debe reservarse exclusivamente para
pacientes con sospecha clinica o confirmacién microbiologica de coinfeccion bacteriana,
de acuerdo con las recomendaciones de los programas de optimizacion del uso de

antimicrobianos (PROA) (17,27).

1.3.4. Prevencion

La vacunacion frente al SARS-CoV-2 constituye la principal herramienta preventiva frente
ala COVID-19. Las vacunas de ARNm y vector viral han demostrado una elevada eficacia
para prevenir la enfermedad sintomatica y, especialmente, para reducir el riesgo de formas
graves y hospitalizacion, con tasas de efectividad que superan el 90 % tras la pauta

completa en los estudios iniciales.

La vacunacion esta especialmente indicada en personas mayores de 60 afios, pacientes con
comorbilidades (enfermedades cardiovasculares, respiratorias, obesidad, diabetes,
inmunodepresion) y profesionales sanitarios. De forma complementaria, las medidas no
farmacologicas como el uso de mascarilla en espacios cerrados, el distanciamiento fisico,
la higiene de manos y la ventilacion adecuada, han demostrado ser eficaces para reducir la

transmision viral en diferentes contextos epidemiologicos (23).

1.4. Factores de riesgo y mortalidad en la neumonia grave por virus pandémicos

La neumonia grave causada por virus pandémicos es una de las principales causas de
ingreso en las Unidades de Cuidados Intensivos (UCI) durante los periodos epidémicos,
generando una elevada morbimortalidad y una gran presion asistencial (4,28-30). En este
contexto, la identificacion precoz de los factores de riesgo asociados a una evolucion
desfavorable resulta fundamental para optimizar el manejo clinico, priorizar recursos y

aplicar estrategias terapéuticas adecuadas desde las fases iniciales (31-33).

Sin embargo, los factores de riesgo descritos pueden variar segun el agente viral, las

caracteristicas del paciente y el tipo de andlisis utilizado. Esta heterogeneidad plantea dudas
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sobre cuales son los verdaderos determinantes de mortalidad (34-41). En los siguientes
apartados se revisan los principales factores de riesgo identificados en pacientes criticos
con infeccion por influenza A(HIN1) pdm09 o SARS-CoV-2, incluyendo los hallazgos

mas recientes obtenidos mediante técnicas de aprendizaje automatico.

1.4.1 Gripe A(H1N1) pdm09

Durante la pandemia de gripe A(HIN1)pdmO09 en 2009, la mayoria de los ingresos en UCI
correspondieron a adultos jovenes previamente sanos, en contraste con lo observado
habitualmente en la gripe estacional. Los principales factores de riesgo descritos para una
evolucion desfavorable fueron el embarazo, la obesidad, la enfermedad respiratoria crénica

(asma o EPOC), la diabetes, la inmunosupresion y las enfermedades cardiovasculares

(26,32,42-45).

La mortalidad en UCI oscilo entre el 25 % y el 40 %, siendo especialmente elevada en
pacientes con sindrome de distrés respiratorio agudo (SDRA), coinfeccidon bacteriana o
disfuncién multiorgénica. Diversos estudios han identificado la coinfeccion como un
predictor independiente de mortalidad, lo que destaca la importancia de su diagndstico

precoz y de un tratamiento adecuado (29,43,46,47).

Aunque la mayoria de los estudios iniciales utilizaron modelos estadisticos clésicos,
analisis posteriores aplicaron técnicas de aprendizaje automatico, como arboles de decision
y Random Forest, para identificar factores de riesgo. Sin embargo, su rendimiento
predictivo ha sido limitado y no han demostrado mejoras consistentes frente a la regresion

logistica. (29,39,40,47,48).

1.4.2 SARS-CoV-2 (COVID-19)

En el caso del SARS-CoV-2, los factores de riesgo asociados a una evolucién clinica
desfavorable han sido ampliamente caracterizados y se han mantenido relativamente
consistentes a lo largo de las sucesivas olas pandémicas. Entre los principales destacan la
edad avanzada, la obesidad, la hipertension arterial, la diabetes mellitus, la enfermedad

renal cronica, las enfermedades cardiovasculares, la inmunosupresion y el sexo masculino
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(6,49). A nivel biologico, diversos biomarcadores inflamatorios y de dafio tisular, como la
linfopenia, el dimero D, la ferritina, la interleucina-6 (IL-6), la procalcitonina y la
troponina, han demostrado una asociacioén independiente con una mayor probabilidad de

complicaciones y mortalidad en pacientes con COVID-19 grave (38,49-51).

La mortalidad en UCI de estos pacientes ha oscilado entre el 30 % y el 45 %, siendo
especialmente elevada en aquellos que desarrollan sindrome de distrés respiratorio agudo
(SDRA), shock séptico o disfuncion multiorganica (35,52). A diferencia de lo observado
en la pandemia por gripe A(HIN1)pdm09, donde la coinfeccion bacteriana se identificod
como un factor prondstico relevante, los estudios disponibles sobre COVID-19 no han
demostrado una asociacion consistente entre la presencia de coinfeccion o sobreinfeccion
bacteriana y un aumento del riesgo de muerte. En los andlisis multivariantes, estas variables
no se han incluido como predictores independientes de mortalidad, lo que sugiere que
podrian reflejar la gravedad clinica o complicaciones evolutivas mas que actuar como

determinantes causales directos (35,47).

La elevada heterogeneidad clinica observada en pacientes con COVID-19 grave ha
impulsado el uso de herramientas analiticas mas sofisticadas para mejorar la estratificacion
prondstica. En este sentido, los modelos de aprendizaje automatico (machine learning) han
cobrado protagonismo al permitir la identificacion de relaciones no lineales, interacciones
complejas entre variables y patrones clinicos latentes que no emergen con los analisis
tradicionales. Modelos como Random Forest, redes neuronales o SVM han mostrado
rendimientos similares o superiores a la regresion logistica multivariable, especialmente
cuando se dispone de grandes volumenes de datos clinicos, demograficos y analiticos

recogidos al ingreso (33,36,39).

Un ejemplo destacado lo constituye un estudio multicéntrico espafiol que aplico técnicas
de agrupamiento no supervisado para identificar fenotipos clinicos al ingreso en UCI (35).
Los autores detectaron tres perfiles de pacientes con neumonia grave por COVID-19, cada
uno con diferente riesgo de mortalidad, lo que respalda el valor afiadido de los modelos no

lineales en la identificacion de subgrupos clinicos con distinto prondstico. Este enfoque no
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solo mejora la capacidad predictiva, sino que aporta una vision mas personalizada del

riesgo, ajustada a las caracteristicas fisiopatoldgicas de cada paciente.

En este contexto, el presente trabajo se propone comparar los factores de riesgo de
mortalidad identificados mediante un modelo estadistico tradicional (regresion logistica) y
un modelo de aprendizaje automatico (Random Forest), utilizando una amplia cohorte
nacional de pacientes criticos con infeccion por SARS-CoV-2 o gripe A(HIN1)pdmO09.
Este enfoque comparativo permite explorar si el tipo de modelo influye en los
determinantes pronosticos detectados y si la combinacion de ambos métodos puede
contribuir a una estratificacion del riesgo mas precisa y clinicamente 1til en escenarios de

alta complejidad asistencial.

Tabla 2. Factores de riesgo de mortalidad en neumonia grave por Influenzavirus y SARS
COV-2

Factor de riesgo

Gripe A

(HIN1)pdm09

Gripe estacional

SARS-CoV-2
(COVID-19)

Comentario
relevancia clinica

Edad avanzada

Sexo masculino

Embarazo / puerperio

Obesidad (IMC >30)

Diabetes mellitus

Hipertension arterial

Enf. respiratoria cronica
(EPOC/asma)

Cardiopatia / IAM previo

Enfermedad renal cronica

Insuficiencia renal aguda
(AKI)

Inmunosupresion

Menor
relevancia (<65
anos)

1 Riesgo
significativo

T Asociacién

1 Riesgo

1 Riesgo
T Riesgo
Datos limitados

T Mortalidad
asociada

1 Riesgo

T Alta relevancia (>65
afos)

Moderado (mas
complicaciones que
mortalidad)

T Asociacion

1 Riesgo

Variable segun series

1 Riesgo

T Riesgo

Datos limitados

1 Mortalidad asociada

1 Riesgo

1 Alta relevancia (>60—
65 afos)

T OR~1,3-1,5

Evidencia limitada

T Asociacién

1 Riesgo

1 Asociacion
independiente

Tendencia no
consistente

T Riesgo

T Asociacion clara

T Mortalidad asociada

T Riesgo

Mas determinante en
gripe estacional y
COVID-19
Predominio claro en
COVID-19

Relevante sobre todo
en HIN1

Determinante mayor
comun

Determinante mayor
comun

Mas relevante en
COVID-19

Predominante en
influenzas

Determinante mayor
comun

Mayor relevancia en
COVID-19

Marcador de
disfuncion organica
grave

Determinante mayor
comun
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SDRA al ingreso t  Mortalidad = T Mortalidad asociada T Mortalidad asociada | Indicador de
asociada gravedad respiratoria
Shock séptico / fracaso = T  Mortalidad = T Mortalidad asociada T Mortalidad asociada | Indicador de

multiorgénico asociada disfuncion
multiorganica,

1.5. Coinfeccion bacteriana, tratamiento antibidtico y aparicion de bacterias
multirresistentes en neumonias por virus pandémicos

En pacientes criticos con neumonia grave causada por virus pandémicos, como la gripe
AHIN1)pdm09 y el SARS-CoV-2, uno de los principales desafios clinicos consiste en
diferenciar entre infeccion viral aislada y coinfeccion bacteriana (29,47). Esta distincion
resulta fundamental, ya que condiciona decisiones clave sobre el inicio, la duracion y la
adecuacion del tratamiento antibidtico empirico. El uso indiscriminado de antimicrobianos
en pacientes sin infeccion bacteriana confirmada se asocia a un mayor riesgo de toxicidad,
aparicion de resistencias y desarrollo de bacterias multirresistentes (BMR) (14,53,54). En
este contexto, los programas de optimizacion del uso de antimicrobianos (PROA)
constituyen una herramienta esencial para racionalizar el uso antibidtico en unidades de

cuidados intensivos (UCI) (17,55).

1.5.1. Caracteristicas de la coinfeccion bacteriana en gripe y COVID-19

La coinfeccion bacteriana es mas frecuente en la gripe A(HIN1)pdm09 que en la COVID-
19 (29,47,56). En la gripe, su prevalencia al ingreso en UCI se sitiia entre el 16% y el 35%,
y se asocia con una mayor gravedad clinica, necesidad de ventilacion mecanica y
mortalidad. Su fisiopatologia incluye la destruccion del epitelio respiratorio, la disbiosis
del microbioma y la colonizacion por patdgenos tipicos como Streptococcus pneumoniae,

Staphylococcus aureus o Haemophilus influenzae (16,47,57,58).

En contraste, en pacientes con COVID-19 la coinfeccion bacteriana precoz es infrecuente
(<5 %), aunque no exenta de impacto clinico (29,31,58,59). La estancia prolongada en
UCI, la ventilacién mecanica invasiva y el uso de corticoides o immunomoduladores
favorecen infecciones bacterianas secundarias tardias, como la neumonia asociada a la

ventilacion mecanica (NAVM), la traqueobronquitis asociada (TAVM) y las bacteriemias
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(57,58). Estas infecciones se caracterizan por una alta prevalencia de BMR como

Klebsiella pneumoniae productora de carbapenemasa, Pseudomonas aeruginosa y

Acinetobacter baumannii (56,58,60-62).

Tabla 3. Coinfeccion bacteriana en neumonia grave por Influenzavirus y SARS COV-2

Aspecto

SARS-CoV-2 (COVID-19)

Implicacion clinica

Prevalencia de coinfeccion al

ingreso (<48 h)

Momento habitual de
aparicion

Patogenos comunitarios
frecuentes

Patogenos nosocomiales /

MDR

Biomarcadores al ingreso

Antibiotico
ingreso

empirico  al

Impacto en mortalidad

Diagnoéstico  rapido  (PCR
multiplex, panel respiratorio)

Gripe A(HINI) /
Estacional

16-35%

Coinfecciéon  temprana,

concomitante a la
neumonia viral

Streptococcus
pneumoniae,
Staphylococcus  aureus,
Haemophilus influenzae

Gramnegativos
hospitalarios ocasionales

PCT >0,29 ng/mL sugiere
coinfeccion; PCT <0,25
ng/mL tiene VPN =92%
para descartarla

Recomendado (B-
lactdmico + macrolido)
por alta prevalencia de
coinfeccion

Coinfeccién incrementa
riesgo (HR ~2-3)

Util  pero
penetracion

con  menor

3-20%

Coinfeccion temprana
infrecuente; predominan
infecciones secundarias
tardias (NAVM,

bacteriemias) tras >7 dias en
UCI

Mismos patogenos clasicos,
pero muy baja prevalencia
(=5%)

Alta carga de MDR:
Klebsiella pneumoniae KPC,
Acinetobacter  baumannii,
Pseudomonas  aeruginosa;

MDR en UCI =27%

PCT y CRP con AUC baja
(0,57-0,60), pero valores
bajos mantienen VPN >97%;
combinacion CRP >97 mg/L
+ PCT >0,12 ng/mL aumenta
probabilidad

Muy extendido (~70-75%
reciben antibidtico pese a
<5% de coinfeccion)

No es predictor
independiente tras ajustar por
gravedad

Ampliamente adoptado;
facilita suspension de
antibidticos si negativo

En gripe es mas
frecuente; en COVID la

mayoria reciben
antibidtico empirico sin
confirmacion.

En gripe requiere
vigilancia

microbioldgica precoz;
en COVID, foco en

prevencion de NAVM.
En gripe debe
sospecharse

coinfeccion Dbacteriana
clasica; en COVID es
menos probable.

Fundamental implantar
PROA y medidas de
aislamiento de contacto

en COVID-19.
En gripe ayudan a
decidir  inicio/retirada

de antibidtico; en
COVID orientan sobre
todo la desescalada.

En gripe se justifica su
uso precoz; en COVID
conviene confirmacion
microbiologica antes de
mantenerlo.

En gripe respalda inicio
precoz de tratamiento;
en COVID su beneficio
es dudoso.

Herramienta clave para
optimizar el tratamiento
y reducir resistencias.

NAVM: neumonia asociada a ventilacion mecanica; MDR: patdgenos multirresistentes; BMR: bacterias
multirresistentes; PROA: Programas de Optimizacion del Uso de Antimicrobianos; PCT: procalcitonina;
CRP: proteina C reactiva; VPN: valor predictivo negativo.
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1.5.2. Técnicas microbiolagicas rapidas

El diagnostico etiologico de la coinfeccion bacteriana se basa clasicamente en cultivos de
muestras respiratorias y hemocultivos. Sin embargo, estas técnicas presentan importantes
limitaciones, como la baja sensibilidad, el retraso en la obtencion de resultados y la

dificultad de interpretacion en pacientes colonizados o en tratamiento antibidtico previo.

La incorporacion de técnicas de biologia molecular, como los paneles multiplex de PCR,
ha revolucionado el diagnostico microbioldgico rapido (63). Estas pruebas permiten la
deteccion simultanea de multiples patdgenos virales y bacterianos, asi como de genes de
resistencia, a partir de una unica muestra clinica y en pocas horas. Su uso ha demostrado
un alto rendimiento diagnostico y facilita decisiones clinicas mas seguras respecto al inicio,
la desescalada o la suspension del tratamiento antibidtico. Aunque su implantacion ha sido
mas frecuente durante la pandemia de COVID-19, también han mostrado utilidad en el

contexto de la gripe (12,14,23,64,65).

1.5.3. Uso de biomarcadores: procalcitonina (PCT) y proteina C reactiva (PCR)

Los biomarcadores inflamatorios como la procalcitonina (PCT) y la proteina C reactiva
(PCR) constituyen herramientas valiosas para diferenciar infeccion viral aislada de
coinfeccion bacteriana. La PCT se eleva en respuesta a infecciones bacterianas, pero suele
permanecer baja en infecciones viricas. En gripe, valores <0,25 ng/mL presentan alto valor
predictivo negativo; en COVID-19, aunque su rendimiento es menor, sigue siendo Util para
apoyar decisiones de suspension antibidtica en pacientes con baja sospecha clinica (18,66—

68).

La PCR, aunque menos especifica, también se eleva en infecciones bacterianas, y su
interpretacion combinada con la PCT, los hallazgos clinicos y los resultados
microbioldgicos aumenta la capacidad de discriminacion. Ademads, la monitorizacion
seriada de la PCT permite evaluar la respuesta al tratamiento y optimizar la duracion del

mismo (31,67,69,70).
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1.5.4. Tratamiento antibiotico empirico: una practica extendida, pero controvertida

A pesar de la baja prevalencia documentada de coinfeccion bacteriana en pacientes con
neumonia viral grave, tanto en la pandemia de gripe A(HINI1)pdm09 como en la de
COVID-19, el uso de antibioticos empiricos al ingreso en UCI ha sido una practica
ampliamente adoptada. Esta estrategia ha estado respaldada por recomendaciones iniciales
de diversas sociedades cientificas y autoridades de salud publica, en un contexto de elevada

incertidumbre diagndstica y alta mortalidad viral (12,14,22,23,29,56,70).

Iniciar tratamiento antibidtico en el momento de la intubacién puede parecer una decision
prudente en pacientes criticos, donde diferenciar una neumonia virica pura de una
coinfeccidn bacteriana no es inmediato. Sin embargo, esta practica empirica choca con los
principios de la optimizacién antimicrobiana, que promueven un uso dirigido y ajustado
del tratamiento antibidtico, basado en criterios clinicos, microbioldgicos y biomarcadores

objetivos (14,31,64,65,71).

La literatura cientifica actual ofrece resultados contradictorios sobre los beneficios del
tratamiento antibidtico empirico (EAT) en pacientes criticos con neumonia viral. Algunos
estudios han sugerido que su uso precoz podria estar asociado con una menor incidencia
de complicaciones respiratorias o incluso con una reduccion de la mortalidad, incluso en
ausencia de coinfeccion bacteriana documentada (72). En cambio, otros trabajos
encuentran un beneficio clinico solo en aquellos pacientes con coinfeccion confirmada, sin
observar mejoras significativas en quienes no presentan infeccion bacteriana concomitante
(31,56). Por otro lado, existe evidencia que plantea que ni siquiera en pacientes
coinfectados el uso de antibidticos modifica el prondstico, y que su administracion se
asocia a un mayor riesgo de neumonia asociada a la ventilacion mecanica (NAVM),

prolongacién de la estancia y aparicion de bacterias multirresistentes (29,56,61,62).

Esta incertidumbre pone de relieve la necesidad de estudios especificos que evaluen de
forma comparativa y ajustada el impacto real del TAE en pacientes con neumonia viral
grave, distinguiendo entre aquellos con y sin coinfeccion. Disponer de esta evidencia
permitiria mejorar las decisiones clinicas, ajustar las recomendaciones terapéuticas y

reforzar una estrategia mas segura y sostenible en el manejo de estos pacientes en UCI.
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1.5.5. Bacterias multirresistentes y programas PROA

El sobreuso de antibidticos en pacientes con neumonia viral grave ha contribuido a la
emergencia de BMR, especialmente en las UCI durante la pandemia por SARS-CoV-2. En
este contexto, diversos informes, como el registro ENVIN-COVID en Espafia, han
documentado un aumento de infecciones nosocomiales por Klebsiella pneumoniae
productora de carbapenemasa, Pseudomonas aeruginosa y Acinetobacter baumannii,

asociadas a un peor prondstico y mayores dificultades terapéuticas (73).

Frente a este escenario, los programas de optimizacion del uso de antimicrobianos (PROA)

ofrecen un enfoque estructurado basado en cinco ejes principales:

e Indicacion adecuada basada en criterios clinicos, factores de riesgo, diagndstico
microbiologico rapido y biomarcadores (17)

e Desescalada precoz a las 48—72 h tres obtener cultivos definitivos, evolucion clinica
y de biomarcadores (31)

e Optimizacion de la posologia y via de administracion (66)

e Duracion limitada del tratamiento, generalmente 5 dias sin coinfeccion bacteriana
documentada y 7-10 dias en neumonia bacteriana confirmada (64).

e Suspension precoz cuando la evolucion clinica y los biomarcadores lo permitan

(66).

Aunque los PROA no constituyen el objetivo principal de esta tesis, su aplicacion es clave
para evitar el uso innecesario de antibioticos, reducir la aparicion de resistencias y mejorar

los resultados clinicos en pacientes criticos con neumonia viral.
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2. Hipotesis

Hipotesis 1:

La identificacion de los factores de riesgo asociados a la mortalidad en pacientes con
neumonia grave por virus pandémicos ingresados en UCI mediante modelos avanzados
de aprendizaje automatico ofrece resultados divergentes respecto a los obtenidos

mediante regresion logistica.

Hipatesis 2:

La administracion empirica de antibidticos (EAT) en pacientes con neumonia grave por
virus pandémicos ingresados en UCI sin evidencia microbioldgica de coinfeccion
bacteriana, no se asocia con una menor incidencia de neumonia asociada a la ventilacion
mecéanica (NAVM) ni con una reduccion de la mortalidad en UCI.

Se postula que el uso de antibidticos en ausencia de infeccion bacteriana documentada no
aporta beneficios clinicos relevantes y puede favorecer la aparicion de bacterias

multirresistentes y otras complicaciones nosocomiales.

2.1. Justificacion

Las infecciones respiratorias causadas por virus pandémicos, como el virus Influenza
A(HINT) pdm09 y el SARS-CoV-2, representan una amenaza recurrente para la salud
publica global y un desafio importante para los sistemas sanitarios. En su forma grave,
estas infecciones pueden evolucionar rapidamente hacia neumonia viral y sindrome de
distrés respiratorio agudo (SDRA), generando una elevada demanda de recursos
asistenciales en las unidades de cuidados intensivos (UCI). Durante las pandemias de 2009
y 2020, estas patologias no solo duplicaron o triplicaron la ocupacion habitual de las UCI,
sino que también pusieron en evidencia importantes lagunas en la capacidad predictiva y

en la toma de decisiones clinicas en escenarios de alta incertidumbre.

Frente a esta complejidad, resulta esencial mejorar la estratificacion pronostica de los
pacientes criticos mediante modelos analiticos robustos. La aplicacion de técnicas de
aprendizaje automatico (machine learning), como el algoritmo Random Forest, permite

detectar interacciones no lineales y patrones clinicos que podrian pasar desapercibidos con
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métodos estadisticos cldsicos como la regresion logistica. Sin embargo, la utilidad real de
estos enfoques en la practica clinica sigue siendo motivo de debate: japortan informacion
nueva o refuerzan conocimientos ya establecidos? Comparar de forma sistematica ambas
metodologias en grandes cohortes de pacientes con neumonia grave por virus pandémicos
puede ayudar a identificar qué factores de riesgo son verdaderamente determinantes,
independientemente del enfoque analitico utilizado, y cuales dependen del modelo

aplicado.

En paralelo, las pandemias han reavivado la preocupacion por el uso indiscriminado de
antibioticos en pacientes con neumonia viral. Aunque la coinfeccidon bacteriana al ingreso
es poco frecuente, especialmente en la COVID-19 (<5%), la mayoria de los pacientes
hospitalizados reciben TAE. Esta practica conlleva riesgos significativos: toxicidad,
prolongaciéon de la estancia, desarrollo de resistencias, aparicion de infecciones
nosocomiales como la neumonia asociada a ventilacion mecanica (NAVM) y aumento de
costes. Diversos estudios y guias clinicas, incluyendo las recomendaciones de los
programas PROA, insisten en la necesidad de una prescripcion mas racional, apoyada en
técnicas de diagndstico microbiologico rapido y en el uso de biomarcadores como la
procalcitonina o la proteina C reactiva. Aun asi, persiste una considerable incertidumbre
sobre el impacto real de esta estrategia en la morbimortalidad de los pacientes sin

coinfeccion documentada.

Ambos ejes, la mejora en la prediccion del riesgo de mortalidad y la evaluacion critica del
tratamiento antibiotico empirico, convergen en una misma necesidad: avanzar hacia una
medicina intensiva mas precisa, que integre datos clinicos, microbioldgicos y analiticos
con herramientas metodoldgicas solidas. Profundizar en estas cuestiones, mediante el
analisis de bases de datos multicéntricas y el contraste entre enfoques analiticos diversos,
puede contribuir a optimizar tanto los modelos de decision clinica como el uso de recursos

en situaciones de alta presion asistencial como las epidemias estacionales y las pandemias.
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3. Objetivos

Objetivo principal

1. Evaluar los determinantes prondsticos al ingreso en pacientes con neumonia grave
por virus pandémicos (influenza A HIN1 y SARS-CoV-2), con el fin de mejorar la

estratificacion del riesgo y apoyar la toma de decisiones en medicina intensiva.

Objetivos secundarios

1. Comparar la capacidad predictiva de modelos estadisticos clasicos (regresion
logistica multivariable) con modelos de aprendizaje automatico (Random Forest) y

explorar si su andlisis combinado mejora la capacidad prondstica.

2. Analizar el impacto del tratamiento antibiotico empirico (EAT) sobre la neumonia
asociada a ventilacion mecanica (NAVM) y la mortalidad en pacientes con
neumonia grave por virus pandémicos en relacion a la presencia o ausencia de

coinfeccion bacteriana documentada.
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Abstract

Background/Objectives: The SARS-CoV-2 and influenza A (HIN1)pdm(09 pandemics have
resulted in high numbers of ICU admissions, with high mortality. Identifying risk factors
for ICU mortality at the time of admission can help optimize clinical decision making.
However, the risk factors identified may differ, depending on the type of analysis used.
Our aim is to compare the risk factors and performance of a linear model (multivariable
logistic regression, GLM) with a non-linear model (random forest, RF) in a large national
cohort. Methods: A retrospective analysis was performed on a multicenter database
including 8902 critically ill patients with influenza A (HIN1)pdm09 or COVID-19 admitted
to 184 Spanish ICUs. Demographic, clinical, laboratory, and microbiological data from the
first 24 h were used. Prediction models were built using GLM and RE. The performance
of the GLM was evaluated by area under the ROC curve (AUC), precision, sensitivity,
and specificity, while the RF by out-of-bag (OOB) error and accuracy. In addition, in
the RE the im-portance of the variables in terms of accuracy reduction (AR) and Gini
index reduction (GI) was determined. Results: Overall mortality in the ICU was 25.8%.
Model performance was similar, with AUC = 76% for GLM, and AUC = 75.6% for RF.
GLM identified 17 independent risk factors, while RF identified 19 for AR and 23 for GIL.
Thirteen variables were found to be important in both models. Laboratory variables such as
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procalcitonin, white blood cells, lactate, or D-dimer levels were not significant in GLM but
were significant in RE. On the contrary, acute kidney injury and the presence of Acinetobacter
spp. were important variables in the GLM but not in the RE. Conclusions: Although
the performance of linear and non-linear models was similar, different risk factors were
determined, depending on the model used. This alerts clinicians to the limitations and
usefulness of studies limited to a single type of model.

Keywords: ICU mortality; pandemic viruses; mortality risk factors; random forest;
generalized linear model

1. Introduction

Pandemics have historically been one of the greatest threats to public health, causing
high mortality and exerting a significant impact on healthcare systems and society in
general. Two recent pandemics have been particularly devastating: the influenza A (HINT1)
virus, which emerged in 2009, and SARS-CoV-2, first identified in 2019. Both caused
millions of deaths worldwide [1-4] and challenged the response capacities of healthcare
systems, the pharmaceutical industry, and governments. They also exhibited ethical,
economic, and social consequences that are still being felt today [5,6].

Despite the knowledge and advances in biomedicine, there are still limitations in the
ability to predict the outcome of patients critically ill with pandemic viral infections. Early
identification of patients at increased risk of mortality is essential to optimize intensive
care unit (ICU) resources and improve clinical outcomes. Several authors [7-11] have
identified a large number of risk factors associated with mortality in patients critically
ill with influenza A (HIN1) and SARS-CoV-2 that differ or overlap, depending on the
population studied, the country, or the method of analysis used. Traditionally, statistical
models such as logistic regression have been used to quantify the association between
confounding variables and the dependent variable in a linear fashion. However, this
approach displays limitations in detecting non-linear relationships (perhaps the most
common in medicine) and the complex interaction between multiple variables, which limits
its predictive power in clinical scenarios with high-dimensional data [12].

In this context, new machine learning techniques have emerged as promising tools for
predicting complex clinical outcomes. Among these, random forest, one of the most widely
used techniques today, has shown significant advantages in identifying complex patterns
in the data, without the need for parametric assumptions. This algorithm, based on the
combination of multiple decision trees, offers greater predictive accuracy and robustness to
the collinearity and heterogeneity of clinical data than those of linear models [13,14].

Our hypothesis is that different risk factors can be identified by applying different
models of analysis. To test our hypothesis, the aim of our study is to identify risk factors
associated with mortality in patients with severe pneumonia due to influenza A (HIN1) and
SARS-CoV-2 infection by comparing the predictive ability of traditional logistic regression
models with advanced machine learning techniques, specifically random forest. Our study
aims to alert clinicians to the limitations of classical models and the need for more complex
or multiple analyses to identify true risk factors and thus optimize decision making in the
management of ICU patients.
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2. Materials and Methods
2.1. Design

We conducted a secondary analysis of two prospective, multicenter cohort studies.
The first dataset came from the GETGAG registry, a voluntary registry established by the
Spanish Society of Intensive Care Medicine (SEMICYUC) in 2009 during the influenza
A(HINT)pdm09 pandemic. A total of 184 Spanish ICUs contributed data between June 2009
and June 2019 [15]. The Ethics Committee of Joan XXIII University Hospital (CEI no. 11809)
and the ethics committees of all participating centers approved the study protocol. We did
not obtain informed consent from patients because the study was observational, and all
data were anonymized. The second dataset comes from the COVID-19 registry, a voluntary
initiative created by SEMICYUC in 2020 during the SARS-CoV-2 pandemic. Seventy-
four Spanish ICUs contributed data between 1 July 2020 and 31 December 2021 [15]. We
retrospectively registered the study on ClinicalTrials.gov (NCT04948242) on 30 June 2021.
The institution’s Internal Review Committee (Research Ethics Committee on Medicinal
Products (CEIm) at the Pere Virgili Health Research Institute (IISPV), IRB# CEIM /066 /2020)
waived the requirement for informed consent. Local researchers maintained contact with
the study team, and each participating hospital obtained approval from its local ethics
committee. We conducted the study in accordance with the principles of the Declaration
of Helsinki and the European Clinical Trials Directive 2001/20/EC on Good Clinical
Practice [16].

We presented the results following the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [17].

2.2. Study Population

We included a total of 8902 consecutive patients who required ICU admission due
to respiratory infections caused by influenza A (HIN1)pdm09, seasonal influenza A or B
(n=13702), or SARS-CoV-2 (n = 5200) during the respective study periods. We confirmed the
presence of each virus by performing real-time polymerase chain reaction (rt-PCR) in each
hospital, according to Infectious Diseases Society of America (IDSA) recommendations
for influenza [18] and World Health Organization (WHO) recommendations for SARS
CoV-2[19]. We monitored each patient until confirmed ICU discharge or death, whichever
occurred first.

2.3. Definitions

We considered co-infection in patients who presented with lower respiratory tract
infection symptoms and radiographic evidence of pulmonary infiltrates unexplained by
other causes [20]. We confirmed coinfection through laboratory testing based on the
criteria established by the Centers for Disease Control and Prevention (CDC) [20,21]. Only
respiratory infection microbiologically confirmed with a respiratory specimen or serology
obtained within 2 days of ICU admission was considered community-acquired coinfection.
The diagnosis of coinfection was considered “definitive” if respiratory pathogens were
isolated from blood or pleural fluid and if serological tests confirmed a four-fold increase
of atypical pathogens, including Chlamydia spp., Coxiella burnetti, and Moraxella catarrhalis.
Only patients with confirmed microbiologic diagnosis were included in the present analysis.

We diagnosed acute kidney injury (AKI) based on the Acute Kidney Injury Network
(AKIN) criteria, as defined in the international KDIGO guidelines [22].

We defined appropriate empiric antibiotic treatment (AEAT) as the administration
of antibiotics at ICU admission before microbiological results were available, followed by
adjustment according to pathogen susceptibility once results became known. The attending
physician at each center determined whether treatment met these criteria.
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We defined inappropriate empiric antibiotic treatment (IEAT) as antibiotic therapy
started at ICU admission that was not adjusted to the pathogen’s susceptibility once
microbiological results became available. This definition also included the administration
of antibiotics to patients without documented bacterial co-infection.

We defined GAP-UCI as the time elapsed between the diagnosis of the pandemic viral
infection and ICU admission.

We defined GAP-Diagnosis as the time between the onset of clinical symptoms and
the microbiological confirmation of the pandemic viral infection.

2.4. Study Variables

We collected demographic data, comorbidities, and clinical and laboratory findings
within the first 24 h after ICU admission. We also recorded whether patients required
invasive mechanical ventilation and whether they presented with shock upon arrival. We
assessed disease severity using the Acute Physiology and Chronic Health Evaluation II
(APACHE II) score [23] and the level of organ dysfunction using the SOFA score [24]. The
variables included in the study are detailed in Table 1.

Table 1. Baseline characteristics of the 8902 patients included in the analysis, categorized by ICU
outcome and variable cut-off.

Whole Population

Survival

Non-Survival

Variable (n = 8902) (n = 6608) (n =2294) p-Value
General
Age, median (Q1-Q3) years 60 (49-70) 58 (48-68) 67 (57-74) <0.001
Age cut-off > 58 years, n (%) 5177(58.1) 3473 (52.6) 1704 (74.3) <0.001
Male sex, n (%) 5855 (65.8) 4248 (64,3) 1607 (70.1) <0.001
APACHE 11, median (Q1-Q3) 14 (10-19) 13 (10-17) 17 (13-22) <0.001
APACHE II cut-off > 13, n (%) 5309 (59.6) 3536 (53.5) 1773 (77.3) <0.001
SOFA score, median (Q1-Q3) 5(3-7) 4(3-7) 6(4-9) <0.001
SOFA cut-off > 4, n (%) 6274 (70.5) 4299 (65.1) 1975 (86.1) <0.001
GAP UCT, median (Q1-Q3) 1(1-3) 1(1-3) 2(04) <0.001
GAP UCI cut-off > 1 day, n (%) 6804 (76.4) 5085 (77.0) 1719 (74.9) 0.053
GAP diagnosis, median (Q1-Q3) 4(1-7) 3(1-7) 4(1-7) 0.012
GAP diagnosis cut-off > 3 days, n (%) 5413 (60.8) 3943 (59.7) 1470 (64.1) <0.001
> 2 fields with infiltrations in chest X-ray, n (%) 5343 (60.0) 3775 (57.1) 1568 (68.4) <0.001
Antiviral vaccine, n (%) 1333 (14.9) 885 (13.4) 448 (19.5) <0.001
Shock at ICU admission, n (%) 3549 (39.9) 2286 (34.6) 1263 (55.1) <0.001
Laboratory

White blood cells count, median (Q1-Q3) x 10° 8.6 (5.7-12.5) 85(5.7-12.1) 9.0 (5.8-13.7) <0.001
White blood cells count cut-off < 8.5 x 10, n (%) 4405 (49.5) 3351 (50.7) 1054 (45.9) <0.001
Lactate dehydrogenase, median (Q1-Q3) U/L 542 (403-687) 524 (378-665) 590 (458-749) <0.001
Lactate dehydrogenase cut-off > 500 U/L, n (%) 5157 (57.9) 3593 (54.4) 1564 (68.2) <0.001
C-reactive protein, median (Q1-Q3) mg /dL 19.6 (9.8-34.7) 19.0(9.5-34.4) 21.1(10.4-35.4) 0.001

C-reactive protein cut-off >20 mg/dL, n (%) 4387 (49.3) 3184 (48.2) 1203 (52.4) <0.001
Procalcitonin, median (Q1-Q3) ng/mL 0.88 (0.20-5.67) 0.83 (0.20-5.08) 1.04 (0.23-8.20) <0.001
Procalcitonin cut-off >0.80 ng/mL, n (%) 4606 (51.7) 3350 (50.7) 1256 (54.8) 0.001

Lactate, median (Q1-Q3) mmol/L 2.0(1.4-33) 2.0(13-32) 22 (14-38) <0.001
Lactate cut-off > 2 mmol /L, n (%) 4660 (52.3) 3369 (51.0) 1291 (56.3) <0.001
Creatinine, median (Q1-Q3) mg/dL 0.89 (0.7-1.2) 0.85 (0.68-1.12) 1.01 (0.75-1.50) <0.001
Creatinine cut-off >0.85 mg/dL, n (%) 4841 (54.4) 3330 (50.4) 1511 (659) <0.001
D-dimer, median (Q1-Q3) ng/mL 3071 (971-6604) 2716 (900-6000) 4180 (1200-8680) <0.001
D-dimer cut-off > 2700 ng/mL, n (%) 4663 (52.4) 3314 (50.2) 1349 (58.8) <0.001
creatine phosphokinase, median (Q1-Q3) U/L 216 (100-420) 210 (97-414) 234 (111-442) 0.001

Creatine phosphokinase cut-off > 200 U/L, n (%) 4707 (52.9) 3433 (52.0) 1274 (55.5) 0.003
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3 Whole Population Survival Non-Survival
Variable (n = 8902) (n = 6608) (n =2294) p-Value
Comorbidities
Diabetes mellitus, n (%) 1196 (13.4) 756 (11.4) 440 (19.2) <0.001
Asthma, n (%) 698 (7.7) 556 (8.4) 142 (6.2) 0.001
COPD, n (%) 1281 (14.4) 936 (14.2) 345 (15.0) 032
Chronic heart disease, n (%) 623 (7.0) 418 (6.3) 205 (8.9) <0.001
Chronic liver disease, n (%) 595 (6.7) 357 (5.4) 238 (10.4) <0.001
Pregnancy, n (%) 480 (54) 399 (6.0) 81(3.5) <0.001
Obesity, n (%) 3046 (34.2) 2256 (34.1) 790 (34.4) 0.81
Human immunodeficiency virus, n (%) 144 (16) 107 (1.6) 37 (1.6) 1.00
Hematologic disease, n (%) 436 (4.8) 237 (3.6) 199 (8.7) <0.001
Immunosuppression, n (%) 711 (8.0) 401 (6.0) 310(13.5) <0.001
Treatment
Steroids, n (%) 5275 (59.2) 3746 (56.7) 1529 (66.7) <0.001
Antibiotics (AB) at ICU admission, n (%) 7410 (83.2) 5428 (82.1) 1982 (86.4) <0.001
Appropriate empiric AB treatment, n (%) 951 ((10.7) 671(10.2) 280(12.2) 0.007
High flow nasal cannula at admission, n (%) 1438 (16.1) 1138 (17.2) 300 (13.1) <0.001
Invasive mechanical ventilation, n (%) 4252 (47.8) 2751 (41.6) 1501 (65.4) <0.001
Most common aetiology of coinfection
Coinfection, n (%) 1211 (100) 810 (12.3) 401 (17.5) <0.001
Methicillin-sensitive S. aureus (MSSA), n (%) 172 (14.2) 111(13.7) 61(15.2) 047
Pseudomonas aeruginosa, n (%) 143 (11.8) 82 (10.1) 61(15.2) 0.01
Kiebsiella spp. N (%) 85 (7.0) 60 (74) 25(6.2) 045
Aspergillus spp., n (%) 78 (6.5) 33(4.0) 45(11.2) <0.001
E. coli, n (%) 69 (5.7) 43(5.3) 26 (6.3) 040
Methicillin-resistant S. aurens (MRSA). n (%) 56 (4.6) 33(4.0) 23(57) 0.19
Acinetobacter spp., n (%) 17 (1.4) 4(0.5) 13(3.2) <0.001
Outcomes
ICU LOS, median (Q1-Q3) days 13 (6-23) 12 (6-23) 14 (7-24) 0.03
Acute kidney injury, n (%) 1435 (16.1) 855(12.9) 580 (25.3) <0.001

APACHE II: Acute Physiology and Chronic Health Evaluation; SOFA: sequential organ failure assessment; GAP-
UCT: time from diagnosis to ICU admission; GAP-Diagnosis: time from symptoms onset to diagnosis; ICU:
intensive care unit; LOS: length of stay.

2.5. Missing Data Management

We excluded continuous variables with more than 30% missing data from the database.
For variables with fewer missing values, we applied imputation using the missForest
package in R/CRAN. This method was used to impute missing values for D-dimer (18%),
lactate dehydrogenase (15%), procalcitonin (15%), creatinine (14%), SOFA score (14%),
APACHE II score (10%), and C-reactive protein (5%). Categorical data, including ICU
mortality, were complete for all patients.

2.6. Analysis Plan and Statistical Analysis

Firstly, we calculated the crude ICU mortality rate for the overall population and
compared patient characteristics based on outcomes. We expressed qualitative variables as
percentages and summarized quantitative variables as medians with interquartile ranges
(Q1-Q3). To assess differences between groups, we applied the Chi-square and Fisher’s
exact tests for categorical variables and the Student’s t-test or Mann-Whitney U-test for
quantitative variables.

Secondly, we applied a binary logistic regression model to identify variables inde-
pendently associated with all-cause ICU mortality. We incorporated into the generalized
linear model (GLM) all variables that were statistically significant (p <0.05) in the bivariate
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analyses. We developed the mortality prediction model using only variables available at
the time of ICU admission. To improve model performance, we categorized continuous
variables, defining cut-off points based on the median values observed in surviving patients.
We expressed the results as odds ratios (OR) with 95% confidence intervals.

To validate the model internally, we randomly divided the population into a devel-
opment set (training data) containing 70% of patients and a validation set (testing data)
with the remaining 30%. We assessed model performance by calculating accuracy, preci-
sion, sensitivity, specificity, and the area under the ROC curve (AUC). We also examined
collinearity among explanatory variables using variance inflation factors (VIF).

In addition, we performed k-fold cross-validation with k = 10. This approach involved
splitting the original dataset into a training set and a validation set. We further divided the
training data into ten subsets. Each subset served once as the test set, while the remaining
nine subsets were used for model training. After completing all iterations, we calculated
accuracy and error for each model. We then averaged these results across the ten folds to
obtain the final accuracy and error estimates.

Thirdly, because of the significant imbalance between groups, e.g., only 25% of patients
belonged to the deceased group, we considered that this class discrepancy could affect the
model’s performance in predicting mortality. To test whether class imbalance influenced
the linear model’s results, we applied the ROSE (random over-sampling examples) pack-
age. This statistical package generates balanced samples through a smoothed bootstrap
approach, enabling reliable estimates of classifier accuracy when the minority class is rare.
ROSE also provides traditional methods to address class imbalance and includes multiple
metrics for assessing accuracy, which can be estimated via cross-validation, bootstrapping,
or the holdout method [25,26]. We implemented the under option, which subsamples the
majority class without replacement until either the specified sample size (N) is reached
or the positive examples achieve a predefined probability (p). This method reduces the
resulting sample size. We used the ROSE software (version (.0-4) exclusively on the training
subset, leaving the test subset unchanged. After developing the model on the training data,
we applied it to the test set and evaluated its performance. We reported results as odds
ratios (OR) with 95% confidence intervals, along with accuracy, sensitivity, specificity, and
the area under the ROC curve (AUC).

Fourthly, to test our hypothesis, we developed a non-linear model using a random for-
est classifier (RFc). This technique is a powerful, tree-based machine learning approach. We
configured our model to generate 500 random trees, each considering at least 15 variables.
We evaluated model performance by calculating the out-of-bag (OOB) error, which esti-
mates prediction error through bootstrap aggregation. Additionally, we assessed variable
importance by examining the average loss of accuracy and the Gini index. The Gini index,
reported as “MeanDecreaseGini”, measures the degree of disorder: higher values indicate
greater importance in the model because scores near () imply higher disorder, while those
closer to 1 reflect lower disorder and more consistent contribution to the outcome. For
internal validation, we randomly split the population into a training set (70% of patients)
and a test set (30%). We determined model performance by measuring accuracy.

We performed all statistical analyses using R statistical software (version 4.4.1) from
The R Project for Statistical Computing (r-project.org).

3. Results
3.1. Whole Population

We included a total of 8902 ICU patients in the study: 3702 (41.6%) were diagnosed
with influenza, and 5200 (58.4%) with coronavirus disease 2019 (COVID-19). All diagnoses
were confirmed by polymerase chain reaction (PCR). Table 1 shows the general character-
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istics of patients by ICU outcome. The cohort was predominantly male (65.8%), with a
mean age of 60 years. Disease severity was moderate, with mean APACHE I and SOFA
scores of 14 and 5, respectively. The most common comorbidities were obesity, diabetes,
and chronic obstructive pulmonary disease (COPD). The mean ICU stay was 13 days, and
the crude ICU mortality rate reached 25.8%. Compared to survivors, non-survivors were
older and exhibited more severe illness, greater systemic inflammation, more comorbidities,
higher requirements for organ support, and longer ICU stays. Coinfection was also more
frequent among non-survivors, with significant differences observed in pathogens such as
Pseudomonas aeruginosa, Aspergillus spp., and Acinetobacter spp. (Table 1).

3.2. Factors Associated with Crude ICU Mortality According to General Linear Model (GLM)

We used multiple logistic regression to examine the associations between crude ICU
mortality (the dependent variable) and various independent variables. The model included
the following factors: sex (male), age cut-off, APACHE II cut-off, SOFA cut-off, ICU GAP
cut-off, GAP diagnosis cut-off, shock, asthma, COPD, chronic heart disease, chronic kidney
disease, hematological disease, pregnancy, obesity, diabetes, HIV, inmunosuppression,
steroid use, and antibiotic treatment at ICU admission. Additional variables included
mechanical ventilation at ICU admission, myocardial dysfunction, acute kidney injury
(AKI), more than two areas of infiltration on chest X-ray, lactate dehydrogenase (LDH)
cut-off, creatine phosphokinase (CPK) cut-off, white blood cell (WBC) cut-off; C-reactive
protein (CRP) cut-off; procalcitonin (PCT) cut-off; lactate cut-off; D-dimer (DD) cut-off;
presence of Klebsiella spp., Acinetobacter spp., Streptococcus pneumoniae, methicillin-sensitive
Staphylococcus aureus (MSSA), E. coli, methicillin-resistant S. aureus (MRSA), Pseudomonas
aeruginosa, and Aspergillus spp.; and administration of an antiviral vaccine. Among these,
17 variables were independently associated with all-cause ICU mortality. The significant
factors are detailed in Figure 1 and Table 2.

Table 2. Variables associated with ICU mortality in the linear multivariate analysis (GLM) and
non-linear multivariate analysis (random forest). Significant variables in the linear model and those
with a significance greater than 10% for the decrease in accuracy or greater than 50% for the decrease
in Gini in the non-linear model are shown.

GLM Model Random Forest Model
Variable OR 95%CI Decreased Accuracy Decreased Gini
Age > 58 years 203 1.74-2.36 34.9% 79.2%
APACHEII > 13 points 172 1.48-2.02 19.1% 88.1%
SOFA > 4 points 147 1.23-1.76 26.0% 65.1%
Shock 127 1.09-1.47 16.4% 774%
Hematologic disease 1.67 1.26-2.22 19.5% 39.4%
Obesity 116 1.01-1.32 92.4%
Diabetes 137 1.14-1.65 16.5% 60.6%
Immunosuppression 192 1.53-2.42 18.9% 53.0%
Steroids 1.54 1.34-1.77 12.7% 81.6%
Mechanical ventilation 1.94 1.67-2.25 33.0% 88.1%
Myocardial dysfunction 327 2.53-4.28 47.2% 63.6%
Acute kidney injury 1.29 1.07-1.55 —
>2 fields with infiltrations in chest X-ray 1.54 1.34-1.77 16.8% 81.3%
LDH > 500 U/L 141 1.22-1.63 11.5% 79.7%
Creatinine > 0.85 mg/dL 1.33 1.14-1.55 13.3% 73.8%
Acinetobacter spp. 9.95 2.61-47.8 - -
Aspergillus spp. 245 1.39-4.33 11.2% —
Procalcitonin >2 ng/mL —-- - 23.0% 68.1%
D-dimer > 2700 ng/mL — — 21.7% 75.9%
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Table 2. Cont.
GLM Model Random Forest Model
Variable OR 95%CI Decreased Accuracy Decreased Gini
Lactate > 2 mmol/L - - 18.1% 79.5%
COPD - - 17.4% 61.3%
CPK > 200U/L - - 13.1% 90.6%
GAP-Diagnosis > 3 days — - — 96.9%
WBC count < 8.5 x 10? — -—-- - 93.3%
Male — — — 81.3%
GAP-ICU < 1day - - - 77.1%

Abbreviations: OR: odds ratio; CI: confidence interval; APACHE II: Acute Physiology and Chronic Health
Evaluation; SOFA: sequential organ failure assessment; LDH: lactate dehydrogenase; GAP-ICU: time from
diagnosis to ICU admission; GAP-Diagnosis: time from symptoms onset to diagnosis; ICU: intensive care unit;
COPD: chronic obstructive pulmonary disease; CPK: creatine phosphokinase; WBC: white blood cells.
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Figure 1. Odds ratio (OR) plot of variables associated with ICU crude mortality in linear multivariate
analysis (GLM). Abbreviations: cut: cut-off; APACHE II: Acute Physiology and Chronic Health
Evaluation; SOFA: sequential organ failure assessment; AB: antibiotics; CPK: creatine phosphokinase;
DD: D-dimer; MR_SA: methicillin-resistant S. aureus; MV: invasive mechanical ventilation; WBC:
white blood cells; COPD: chronic obstructive pulmonary disease; dis: disfunction; Chr_Card_dis;
chronic cardiac disease; HIV: human immunodeficiency virus; AKL acute kidney injury; CRP: C-
reactive protein; GAP_ICU_cut: time elapsed between diagnosing pandemic viral infection and
admission to ICU; Chr_renal_dis: chronic renal disease; ID: immunosuppression; Rx-cutoff: > 2
fields with infiltrations in chest X-ray; PCT: procalcitonin; MS_SA: methicillin-sensitive S. aureus;
GAP_diagnsosis_cut: time from symptoms onset to diagnosis; hematol_dis: hematologic disease;
LDH: lactate dehydrogenase.
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3.3. Linear Model (GLM) Validation

When we applied the developed model to the test subset, it performed accept-
ably, achieving an accuracy of 76%, a sensitivity of 61%, and a specificity of 79% (see
Supplementary Table S1). The area under the curve (AUC) was 0.76 (95% ClI, 0.74-0.78; see
Supplementary Figure S1). We did not detect collinearity among the included variables (see
Supplementary Table 52). Cross-validation with k = 10 did not improve overall accuracy
(which remained at 76%) but increased sensitivity to 94% while reducing specificity to 26%
(see Supplementary Table S3).

3.4. Development of the GLM Model with Correction of Class Imbalance

When we applied the ROSE package to the training set, the number of patients
decreased from 6232 to 3152. Among these, 1606 died, resulting in an estimated mortality
rate of 50.9%, which was double the actual rate of 25%. Developing the linear GLM model
with this balanced dataset did not improve performance, yielding an AUC-ROC of 76%
(95% CI, 74-78%) and an accuracy of 68%. Supplementary Figures S2 and S3 and Table 54
provide details of the model development. Because this approach did not optimize results
and reduced the sample size substantially, we decided to retain the original GLM model
despite the class imbalance, as it did not appear to affect performance.

3.5. Factors Associated with ICU Mortality According to No-Linear Model (Random Forest)

We developed a random forest classifier (RFc) model to analyze the impact of con-
founding variables on ICU mortality in a non-linear manner. To enable comparison, we
included the same independent variables used in the GLM. The RFc model yielded an
out-of-bag (OOB) error rate of 25.3%.

Nineteen variables reduced model precision by more than 10% (Table 2 and Figure 2).
Notably, obesity, acute kidney injury (AKI), and the presence of Acinetobacter spp. were
important predictors in the GLM but did not contribute significantly to precision in the
RFc model. In contrast, COPD, lactate, procalcitonin, D-dimer, and CPK were relevant for
accuracy in the RFc model but not in the GLM.

Additionally, twenty-three variables were associated with a reduction in Gini greater
than 50% in the non-linear analysis. AKI, Acinetobacter spp. and Aspergillus spp. were
significant in the GLM but not relevant to Gini reduction. Conversely, GAP diagnosis, GAP
ICU, male sex, and WBC count were important contributors to Gini decrease in the RF
model (see Table 2 and Figure 2).

3.6. Non-Linear Model (RFc) Validation

We applied the developed model to the test subset, where it achieved an acceptable
accuracy of 75.6%. This performance closely matched that of the linear GLM model, despite
differences in the covariates used.

3.7. Patient Classification by Model

Of the 2670 patients in the test set, the GLM correctly classified 2035 (76.2%), and
the random forest (RF) correctly classified 2018 (75.6%) (see Figure 3 and Supplementary
Figure S4A,B). Both models agreed on the classification of 1872 patients (70.1%), and
489 patients were misclassified (18.3%). Figure 4 illustrates the probability distributions
generated by each model (Class) compared to the actual outcomes (Real).
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Figure 2. Contribution of each confounding variable according to the random forest (RF) model
for variables associated with all-cause ICU mortality. Abbreviations: cut: cut-off; APACHE II:
Acute Physiology and Chronic Health Evaluation; SOFA: sequential organ failure assessment; AB:
antibiotics; CPK: creatine phosphokinase; DD: D-dimer; MR_SA: methicillin-resistant S. aureus; MV:
invasive mechanical ventilation; WBC: white blood cells; COPD: chronic obstructive pulmonary
disease; dis: disfunction; Chr_Card_dis; chronic cardiac disease; HIV: human immunodeficiency
virus; AKI: acute kidney injury; CRP:C-reactive protein; GAP_ICU_cut: time elapsed between
diagnosing pandemic viral infection and admission to ICU; Chr_renal_dis: chronic renal disease;
ID: immunosuppression; Rx-cutoff: > 2 fields with infiltrations in chest X-ray; PCT: procalcitonin;
MS_SA: methicillin-sensitive S. aurens; GAP_diagnsosis_cut: time from symptoms onset to diagnosis;
hematol_dis: hematologic disease; LDH: lactate dehydrogenase).
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Figure 3. Classification of patients according to the linear (generalized linear model—GLM) and
non-linear (random forest—RF) models.
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Figure 4. Distribution of the probability generated by each model (Class) with respect to the observed
results (Real); (0 = survivors; 1 = non-survivors).

4. Discussion

To the best of our knowledge, this is the first study to use machine learning techniques
for a large number of critically ill patients affected by pandemic viruses. Our main finding
was that generating mortality prediction models using either a linear technique (GLM) or a
non-linear technique (RF) was associated with similar performance, with an accuracy close
to 80%.

However, the risk factors identified differed according to the type of analysis used.
While factors such as age, severity, degree of organ dysfunction, and need for mechanical
ventilation were important in both models (major determinants), other laboratory variables
such as procalcitonin, D-dimer, and lactate levels were only identified in the RF model
(minor determinants). Conversely, acute kidney injury (AKI) and the presence of Aciieto-
bacter spp. were significant only in the GLM (minor determinants). These findings should
alert clinicians to the limitations and implications of studies that rely exclusively on one
methodological approach to identify prognostic factors.

The influenza A (HIN1) and SARS-CoV-2 pandemics have put enormous pressure on
healthcare systems around the world, highlighting the urgent need for reliable and accurate
methods to predict patient outcomes in order to manage resources appropriately. Although
pandemics may seem to be a thing of the past, each winter, hospitals are overwhelmed by
patients with respiratory failure due to viral infections, generating seasonal surges in ICU
admissions and demand for resources.

The early identification of high-risk patients with viral infections is essential. It allows
for rapid triage, targeted intensive care, and optimized resource allocation, all of which can
ultimately improve patient outcomes. Against this backdrop, our study sought to evaluate
and compare the performance of traditional statistical and machine learning models in
predicting mortality, as well as exploring how each method identifies different clinical
predictors of outcome.
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Several authors have used different types of machine learning (ML) analysis to identify
risk factors and develop predictive models for patients with SARS-CoV-2, while we did
not find any studies involving influenza A HIN1. Additionally, most studies included
hospitalized patients, with few critically ill patients. Huang et al. [27] reported an AUC of
94.4%, a sensitivity of 94.1%, and a specificity of 90.2% when using ML, but the population
considered comprised only 127 patients, of whom 33 were critically ill. Meanwhile, Zhu
et al. [28] examined 127 patients with confirmed cases of SARS-CoV-2 (16 of whom were
severely ill), Gong et al. [29] examined 372 patients with confirmed cases of SARS-CoV-2
who were hospitalized, Aloisio et al. [30] examined 427 patients with confirmed cases of
SARS-CoV-2, and Liu et al. [31] examined 336 severely ill patients with confirmed cases
of SARS-CoV-2 (34 of whom died). All of these studies showed excellent performance
(AUC > 90%) using linear logistic regression models. The small number of patients included
in these studies limits the strength and generalizability of the results.

In line with our research, Reina-Reina et al. [32] conducted a sophisticated study on
a population of 1200 patients with confirmed cases of SARS-CoV-2. The study assessed
the risk of death and ICU admission using various machine learning (ML) techniques,
including support vector machine (SVM), logistic regression (LR), k-nearest neighbors,
decision tree, Gaussian naive Bayes, multi-layer perceptron (MLP), and ensemble methods
such as AdaBoost and bagging. The authors found no significant differences in classifi-
cation accuracy (>88%) between the different ML techniques. However, they opted for
logistic regression (LR) as the algorithm for optimization due to the interpretability of
the model, which is crucial in the medical field, despite random forest (RF) achieving
slightly better average results. The model identified the most important variables as COPD,
which increases the probability of death by 575%; age, which increases the probability
by 145% every 10 years; and acute respiratory failure, which increases the probability by
513%. However, the authors do not report the differences between the predictor variables
identified by each model, and only a small percentage of patients were critical.

Pourhomayoun et al. [33] applied various machine learning (ML) models (support
vector machine (SVM), neural networks (NN), random forest (RF), decision tree, and
logistic regression (LR)) to predict severity in a large cohort of more than 2,670,000 patients
with SARS-CoV-2 infection. The original dataset contained 32 data points for each patient,
including demographic and physiological data. The NN algorithm achieved the best
performance and accuracy, with an area under the curve (AUC) of 89.98%, compared to
87.93% for random forest (RF) and 87.91% for logistic regression (LR). However, the authors
did not conduct a statistical comparison of the AUCs to determine significance, nor did they
compare the predictive factors of the different models, only presenting the NN factors in
the form of a heat map. Furthermore, the severity of the patients’ disease was not reported.

In an excellent review of machine learning (ML) techniques used for prognosis in
patients with SARS-CoV-2 infection, Alballa et al. [34] note that the most commonly used
algorithm for diagnostic and prognostic models is logistic regression (LR), followed by
XGBoost and finally, support vector machine (SVM). The authors point out that most of the
studies included in the review used unbalanced datasets. In these studies, the majority of
records in the training dataset represent the negative class (survivors), while the positive
class (non-survivors) is under-represented. Consequently, the performance of various
ML algorithms applied in the context of COVID-19 may be biased. In such cases, a high
accuracy score could be attributed to the model’s ability to accurately identify negative
samples and erroneously exclude all positive cases. In our study, we recognized and
addressed this bias by applying subsampling to the majority class. However, this did not
improve the performance of the balanced model compared to that of the unbalanced model,
showing that class imbalance does not affect model reliability. This may be because the
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mortality rate among our critically ill patients is 25%, whereas in most published studies, it
is around 10-15% [8,32,35] due to the absence of critically ill patients.

As our study revealed, the linear model performs similarly to non-linear models
when it comes to predicting mortality in patients with COVID-19, a finding that has been
corroborated by several other studies [32-35]. However, despite the structural flexibility of
machine learning models for predicting outcomes in patients with this disease, there are
limitations to their practical use. These include high heterogeneity between patients’ clinical
profiles and small sample sizes, which may reduce the external validity and generalizability
of the data. Most studies describe different risk factors and performances depending
on which factors are included. This is consistent with studies [32,35-37] reporting the
modest performance of machine learning (ML) models when trained exclusively with
baseline clinical data collected at the time of intensive care unit (ICU) admission. The most
successful predictive models, such as those of Wang et al. [38] and Karasneh et al. [39],
incorporate dynamic, therapeutic, or immunological variables that significantly improve
model performance. However, these variables are not available during the initial hours of
care for critically ill patients, limiting their applicability to clinical practice.

We would like to highlight the strengths of our study. Firstly, the large number
of critically ill patients included (n = 8902), of whom more than 3000 were affected by
influenza A (HIN1)pdm09, makes it unique in its results. As it is a national multicenter
study involving more than 148 ICUs in Spain, its results can be generalized to the whole
country. Furthermore, it reports not only on the performance of the developed models, but
also on the different risk factors identified and how patients are classified by each model.
Based on these findings, we can classify risk factors as either major or minor determinants,
depending on whether they are important in both models or only one. Recognizing these
risk factors could be valuable in clinical practice for determining the prognosis of critically
ill patients with a pandemic virus infection. Finally, our study alerts clinicians to the
limitations of using models developed using a single method of analysis.

However, our study reflects limitations that need to be recognized. Firstly, despite
the large number of patients and the study’s multicenter nature, these findings cannot be
extrapolated to other populations (non-critical), health systems, or continents without local
validation. Secondly, while the potential bias due to class imbalance has been addressed,
other biases cannot be ruled out, such as those related to ethnicity or other confounding
variables, as these variables are not included in our data. Thirdly, including data on
ICU evolution in the models could potentially improve performance. However, our aim
was to identify early risk factors for mortality that could be modified by clinicians to
improve prognosis.

5. Conclusions

Our study highlights the continued relevance of linear models (GLM) for predicting
mortality in the era of machine learning analysis. However, it alerts clinicians to the need
for a complementary approach combining linear and non-linear analysis in order to identify
all the major and minor determinants of mortality, with the ultimate goal of improving the
prognosis of this critical patient group.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article /10.3390 /jcm14155383/s1, Table S1: Performance of multivariate linear
model (GLM) for ICU mortality; Table S2: Collinearity study by VIF (variance inflation factors)
determination; Table S3: Cross-validation of multivariate linear (GLM) model; Table S4: Performance
of balanced linear model; Figure S1: Area under ROC curve (AUC) for multivariate lineal model for
ICU mortality; Figure S2: Forest plot with the variables included in the balanced linear model, along
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with the odds ratio; Figure S3: area under ROC curve of balanced mortality linear model; Figure S4:
Category profiles according to the model (A = linear model; B = no linear model).
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Abstract: Background: During the influenza A(HIN1)and COVID-19 pandemics, empirical
antibiotic treatment (EAT) was widely administered to critically ill patients despite low
rates of confirmed bacterial co-infection (COI). The clinical benefit of this practice remains
uncertain and may contradict antimicrobial stewardship principles. Objective: To evaluate
whether EAT at ICU admission reduces ventilator-associated pneumonia (VAP) incidence or
ICU mortality in critically ill patients with pandemic viral pneumonia, stratified by presence
of COIL. Methods: This retrospective analysis combined two national multicentre ICU
registries in Spain, including 4197 adult patients requiring invasive mechanical ventilation
for influenza A(HIN1) or COVID-19 between 2009 and 2021. Primary outcomes were ICU
mortality and VAP incidence. Analyses were stratified by microbiologically confirmed
bacterial COl. Propensity score matching, Cox regression, General Linear (GLM), and
random forest models were applied. Results: Among patients without COI (n = 3543), EAT
was not associated with lower ICU mortality (OR = 1.02, 95%CI 0.81-1.28, p = 0.87) or VAP
(OR =1.02, 95%C10.79-1.39, p = 0.89). In patients with confirmed COI (n = 654), appropriate
EAT was associated with reduced VAP (17.4% vs. 36.3%, p < 0.001) and ICU mortality
(38.4% vs. 49.6%, OR = 1.89, 95%CI 1.13-3.14, p = 0.03) compared to inappropriate EAT.
Conclusions: EAT was not associated with a lower incidence of VAP or higher survival rates
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and could be harmful if administered incorrectly. These findings support a more targeted
approach to antibiotic use, guided by microbiology, biomarkers and stewardship principles.

Keywords: empirical antibiotic treatment; pandemic viral pneumonia; ventilator-associated
pneumonia; ICU mortality; antimicrobial stewardship

1. Introduction

The influenza A(HIN1) and COVID-19 pandemics placed enormous pressure on
health systems and were responsible for significant global mortality [1-4]. Although these
pandemics occurred a decade apart, both were marked by widespread empirical use of
antibiotics, largely encouraged by recommendations from scientific societies and public
health authorities [5-10]. This practice persisted despite the consistently low prevalence
of confirmed bacterial co-infection (COI)—reported in only 6% to 15% of cases—which
raised serious concerns about the appropriateness of antimicrobial use and the resulting
contribution to antibiotic resistance [10-16].

In viral pneumonias, antibiotic therapy is generally not indicated unless there is
clear evidence of COI [17]. However, clinical uncertainty often complicates early decision-
making, particularly in critically ill patients. In the absence of definitive diagnostic informa-
tion, many clinicians initiate empirical antibiotic treatment (EAT) at the time of intubation
as a precautionary measure. While this approach may appear clinically justifiable, it chal-
lenges the principles of antimicrobial stewardship, which emphasize minimizing unneces-
sary antibiotic use and discontinuing therapy as soon as bacterial infection is reasonably
excluded [5,7].

The literature to date offers conflicting perspectives. Some studies suggest that EAT
at intubation in COVID-19 patients may be associated with lower rates of pulmonary
superinfection and mortality [18]. However, the generalizability of these findings remains
uncertain, and other studies have not observed similar benefits [9,19,20]. In fact, some
have reported an increased incidence of ventilator-associated pneumonia (VAP) associated
with empirical antimicrobial use [21-23], reinforcing the need for a more cautious and
evidence-based approach.

With dozens of viruses capable of causing pneumonia in humans, differentiating viral
from bacterial pneumonia in clinical practice using traditional diagnostic methods can
be very difficult. Our group [6,14,15] and others [9,16,24] have investigated the value of
procalcitonin (PCT) in determining the presence of COI in pandemic viral pneumonia.
Although PCT performs better in influenza than in COVID-19, it has been shown to be
useful in aiding the diagnosis of COI and optimizing antimicrobial therapy [6,8,14,15,23].
Rather than recommending indiscriminate antimicrobial use in viral pneumonia, a real
effort should be made to determine whether or not bacterial COI is present in patients
with pandemic viral infection. In this context, the use of PCT and new rapid molecular
diagnostic techniques could be a valid tool for optimizing EAT. In our opinion, antibiotics
should be used with caution and discontinued unless the patient’s true need has been
established. While the administration of EAT in patients with bacterial COI should be
appropriate and early, it is important to ensure that EAT is given to those who really need
it and used with extreme caution.

We hypothesized that the administration of EAT in this population is not associated
with a reduced incidence of VAP or lower ICU mortality, once COI has been reasonably
excluded. To address our hypothesis, we conducted a retrospective study using two large
multicentre Spanish ICU databases, encompassing 4197 patients who required mechanical
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ventilation for acute respiratory failure due to either influenza A(HIN1) or COVID-19. Our
primary objective was to evaluate the association between EAT and both VAP occurrence
and ICU all-cause mortality, while the secondary objective was to assess the consistency
of these findings across the two pandemic contexts and to explore the robustness of the
results using both conventional statistical approaches and machine learning techniques.

2. Materials and Methods
2.1. Study Design

This was a secondary, retrospective observational analysis based on two prospective,
multicentre cohort studies conducted in Spain. The analysis followed the Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) guidelines [25].

2.2. Setting

Data were obtained from two national registries coordinated by the Spanish Society
of Intensive Care Medicine (SEMICYUC). The first dataset, the GETGAG registry [26,27],
included patients admitted to 184 ICUs with influenza A(HIN1)pdm09 between June 2009
and June 2019. The second dataset, the COVID-19 registry [15,28], involved 74 ICUs and
enrolled patients with SARS-CoV-2 infection between 1 July 2020 and 31 December 2021.
Ethical approval was obtained for both registries, with appropriate waivers for informed
consent due to the observational nature of the study.

2.3. Participants

Eligibility criteria: all adult patients admitted to the ICU for acute respiratory failure
due to confirmed influenza A(HIN1) pdm09 or SARS-CoV-2 infection requiring invasive
mechanical ventilation on admission were eligible.

Exclusion criteria: patients without invasive mechanical ventilation (IMV) on ICU
admission and those with microbiologically confirmed fungal co-infection were excluded.

Final cohort: a total of 4197 patients met inclusion criteria and were included in
the analysis.

Follow-up: patients were followed until ICU discharge or death.

2.4. Variables

Demographic data, comorbidities, and clinical and laboratory findings were collected
during the first 24 h after ICU admission. In addition, the need for IMV and the presence
of shock upon ICU admission were recorded. Disease severity was determined using the
Acute Physiology and Chronic Health Evaluation I (APACHE 1I) score [29], while the level
of organ dysfunction was determined using the SOFA score [30]. The variables controlled
for in the study can be seen in Table 1.

Definitions: co-infection (COI), ventilator-associated pneumonia (VAP), empiric an-
tibiotic treatment (EAT), appropriate EAT (AEAT), inappropriate EAT (IEAT), multidrug
resistance (MDR), acute kidney injury (AKI), shock and immunosuppression were defined
using standardized criteria (CDC, ERS/ESICM/ESCMID/ALAT, KDIGO) [1,14,31-34]. The
exact meanings of these variables can be found in the Supplementary Materials.
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2.5. Data Sources and Measurement

Viral infections were confirmed via rt-PCR per IDSA [35] and WHO [36] recommenda-
tions. Coinfections were confirmed using CDC microbiological criteria. Standardized forms
were used for data collection within each registry. Data consistency and integrity were
maintained across participating centres. Diagnostic definitions and laboratory standards
were harmonized within each registry.

2.6. Bias

To mitigate confounding, propensity score matching was applied for comparisons
between groups with and without EAT. Multivariate regression and non-linear modelling
(random forest) were used to control for known confounders. Definitions were standardized
to reduce classification bias.

2.7. Analysis Plan and Statistical Analysis (Figure 1)

First, we performed a descriptive analysis distinguishing between patients with and
without EAT on ICU admission. Continuous variables are presented as median and
quantiles (Q1-Q3) and categorical variables as numbers (n) and percentages. Chi-square
and U-Mann-Whitney tests were used to compare between groups.

Second, we performed a descriptive analysis differentiating patients with and without
the presence of COL Within each of these subgroups, we differentiated between those with
and without EAT.

Third, within the subgroup of patients with COI, we examined the impact of appro-
priate EAT on mortality, development of VAP, ICU and hospital LOS, and IMV days. For
this analysis, patients with inappropriate EAT (IEAT) were those with IEAT according to
microbiological sensitivity and those without EAT on ICU admission.

Fourth, within the subgroup of patients without COI, to analyse the impact of EAT on
the study objectives, and to convert an observational study into a quasi-randomized study,
a propensity score matching was performed. After matching, the effect of EAT on all-cause
ICU mortality and on the development of VAP was examined by Kaplan-Meier plot and
differences were determined by Log Rang test.

In addition, a Cox proportional hazards (COX) and GLM model was used to determine
whether EAT was a factor associated with VAP or ICU mortality in multivariate adjusted
analysis. The results are expressed as hazard ratio (HR) and its 95% confidence interval
(CI) for COX model and as Odds ratio (OR) and its 95%CI for GLM.

Fifth, in addition, to evaluate the impact of EAT on patients without COI, a non-linear
regression analysis (random forest-RF) was performed to study whether there are non-
linear associations between EAT use and crude mortality or the development of VAP that
cannot be evidenced by linear analysis (GLM). The performance of the RF model was
evaluated using out-of-bag (OOB) error. We also plotted the importance of the different
variables for the model, which is related to the average loss of accuracy and the Gini index
for the classification model.

Complete information on the statistical analysis is available in the Supplementary Materials.

Statistical analysis was performed with R statistical software (v 4.4.1) R: The R Project
for Statistical Computing (r-project.org).
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Figure 1. Schematic representation of the statistical analysis performed. A comparative analysis
was performed between patients with and without empirical antibiotic treatment (EAT) in the
coinfection subgroup (COI). A multivariate analysis was then conducted to identify factors associated
with ventilator-associated pneumonia (VAP) and ICU mortality. In the subgroup without COIL a
comparative analysis was performed between patients with and without EAT. Propensity score
matching was then used to adjust the variables. The impact of EAT on VAP and ICU mortality was
then evaluated over time using K-Meier and Cox regression, as a dichotomous variable using linear
(GLM) and non-linear (random forest) models.

3. Results
3.1. Whole Population

A total of 4197 ventilated patients were included in the study (Figure S1). Of these,
3702 (88.2%) received EAT on admission to the ICU. Patients receiving EAT had higher
severity of illness, higher levels of inflammation and higher levels of hypoperfusion. They
also had a higher incidence of AKI, shock and more days with IMV than those who did not
receive EAT. However, there were no significant differences in all-cause ICU mortality or in
the incidence of VAP (Table 1).

3.2. Patients with Bacterial Coinfection (COI)

Of the 4197 patients, 654 (15.6%) had a microbiologically confirmed COL The most fre-
quently isolated microorganisms are shown in Table S1 (Supplementary Materials). A total
of 704 microorganisms were isolated from 654 patients. Fifty-four patients (8.2%) and four
patients (0.6%) had two and three microorganisms isolated simultaneously. Streptococcus
preumoniae (n = 217, 33.2%), methicillin-sensitive Staphylococcus aureus (n = 107, 16.4%) and
Pseudomonas aeruginosa (n = 88, 13.4%) were the most commonly isolated microorganisms.

Twenty-eight patients (4.5%) did not receive EAT despite COI Patients with COI
without EAT had lower severity, lower systemic inflammation and lower hypoperfusion.
However, these patients had a higher incidence of VAP and higher mortality than patients
with EAT, although this was not significant, possibly due to a type 1 alpha error.(Table 1).

Of the 626 patients with COI and EAT, 85 (13.6%) received IEAT according to microbi-
ological results. The general characteristics of patients with COI and EAT distinguishing
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appropriate from inappropriate antibiotic treatment are shown in Table 2. Patients with
IEAT were older, occurred more frequently during the COVID-19 pandemic period and had
a higher incidence of VAP, more days of IMV, longer ICU and hospital stay. The presence of
MDR microorganisms was more common in this group and, as expected, a higher crude
ICU mortality was observed compared to those who received AEAT.

Table 2. The general characteristics of 626 patients with coinfection (COI) and empiric antibiotic
treatment distinguishing appropriate (AEAT) from inappropriate (TEAT) empiric antibiotic treatment.

Variables # TEAT (n = 85) AEAT (n = 541) p-Value
General Characteristics
Age, years 62 (56-72) 59 (47-70) 0.009
Male sex 55 (64.7) 359 (66.4) 086
APACHE Il score 18 (13-21) 19 (14-24) 017
SOFA score 7(5-9) 7 (5-10) 0.04
Gap-ICU, days 1(1-2) 1(0-2) 0.18
Chest X-ray cutoff 51 (60.0) 286 (52.9) 026
COVID 48 (56.5) 123 (22.7) <0.001
Influenza 37 (43.5) 418 (77.3) <0.001
Laboratory
WBC x 10° 8.0 (49-116) 8.7 (3.9-139) 0.60
LDH U/L 630 (473-830) 600 (458-745) 029
C-RP mg/mL 22.4(13.0-33.3) 33.4(19.7-91.3) <0.001
PCT ng/mL 1.44 (0.24-8.26) 7.86 (1.55-24.0) <0.001
Creatinine mg/dL 0.87 (0.70-1.48) 1.14 (0.79-1.86) 0.01
CPK 218 (119-399) 338 (151-647) 0.001
Lactate mmol/L 2.3 (1.6-3.6) 2.3(2.2-4.8) <0.001
D-dimer 3940 (1179-7200) 6800 (3780-11,700)
Comorbidities
CoPD 11(12.9) 111 (205) 013
Asthma 8(94) 31(5.7) 028
Chr. Heart Dis 4(47) 52(9.6) 0.20
Chr.Renal Dis. 7(82) 44(8.1) 1.0
Hematologic Dis. 4(47) 36 (6.6) 0.65
Pregnancy 2(23) 51(94) 0.04
Obesity 34 (40.0) 140 (25.9) 0.01
Diabetes 13 (15.3) 39(7.2) 0.02
Immunosuppression 8(94) 68 (12.6) 051
Treatment and complications
Corticosteroids 57 (67.1) 323 (59.7) 024
Presence of MDR bacteria 69 (81.2) 98 (18.1) <0.001
VAP 31 (36.5) 94 (17.4) <0.001
AKI 20(23.5) 194 (35.9) 0.03
Myocardial dysfunction 4(4.7) 10(1.8) 0.10
Shock 61 (71.8) 424 (78.4) 022
Outcomes
LOS ICU, days 22 (12-37) 16 (8-28) 0.001
LOS Hospital, days 30 (21-50) 25 (1242) 0.008
MV days 15 (10-30) 12 (6-24) 0.01
ICU mortality 40 (47.1) 208 (38.4) 0.16

# Continuous variables are shown as median values and percentiles Q1-Q3. Categorical variables are shown as
number of cases (n) and percentage (%). (LDH: Lactate dehydrogenase; C-RP: C-reactive protein; CPK: creatine
phosphokinase; PCT: procalcitonin; VAP: ventilator associated pneumonia; AKI: acute kidney injury; LOS length
of stay; ICU: intensive care units; Gap-ICU: time in days from hospital admission to ICU admission; Chest X-ray

cutoff: more than 2 lung fields occupied by infiltrates on chest X-ray; MDR: multi-drug resistant bacteria; EAT:

empiric antibiotic treatment; AEAT: appropriate empiric antibiotic treatment).
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When patients who did not receive EAT (n = 28) are also considered within inappro-
priate EAT, a total of 113 (17.3%) patients meet IEAT criteria (global IEAT). The incidence of
VAP (36.3% vs. 17.4%, p < 0.001) and crude ICU mortality (49.6% vs. 38.4%, p = 0.03) were
higher in this subgroup compared to those with AEAT.

Of the 654 patients with COI, 135 (20.6%) developed VAP. The characteristics of
patients according to the development of VAP or not are shown in Table 3. Strikingly,
patients with VAP had lower severity and lower inflammation on ICU admission. The
incidence of EAT and crude ICU mortality did not differ between patients with and without
VAP. However, AEAT was more common in patients without VAP.

Table 3. Patients with bacterial coinfection (COIl) according to whether or not they developed
ventilator-associated pneumonia (VAP).

Variables # No VAP (n = 519) VAP (n = 135) p-Value
General Characteristics
Age, years 59 (47-70) 61 (52-71) 0.09
Male sex 337 (64.9) 96 (71.1) 0.21
APACHE 1l score 19 (14-25) 17 (12-21) <0.001
SOFA score 7 (5-10) 7 (4-10) 0.44
Gap-ICU, days 1(0-2) 1(0-2) 0.55
Chest X-ray cutoff 268 (51.6) 92 (68.1) 0.001
Laboratory
WBC x 10° 8.3(3.7-13.7) 9.0 (5.0-133) 0.64
LDHU/L 600 (450-757) 590 (480-720) 0.62
C-RP mg/mL 33.0(19.1-85.0) 22.6(12.6-40.0) <0.001
PCT ng/mL 7.0 (1.5-24.0) 1.5(0.4-10.1) <0.001
Creatinine mg/dL 1.1(0.7-1.8) 0.9(0.7-14) 0.01
CPK 338 (138-657) 268 (141-400) 0.01
Lactate mmol/L 3.2(1.2-48) 23(1.6-37) <0.001
D-dimer 6667 (3900-11,220) 4000 (1000-9940) <0.001
Comorbidities
COPD 109 (21.0) 17 (12.6) 0.03
Asthma 32(6.1) 9(6.7) 0.98
Chr. Heart Dis 47 (9.0) 10 (7.4) 0.66
Chr.Renal Dis. 41(7.9) 11 (8.1) 1.00
Hematologic Dis. 34 (6.5) 8 (5.9) 0.94
Pregnancy 46 (8.8) 7(5.2) 0.22
Obesity 134 (25.8) 49 (36.3) 0.02
Diabetes 34(6.5) 23 (17.0) <0.001
Immunosuppression 65 (12.5) 12 (8.9) 0.30
Treatment and complications
Corticosteroids 310(59.7) 90 (66.7) 0.16
EAT 501 (96.5) 125 (92.6) 0.07
AEAT 451 (86.9) 98 (72.6) <0.001
Global IEAT 72 (13.9) 41 (30.4) <0.001
AKI 188 (36.2) 32(23.7) 0.008
Myocardial
dysfunction 10(1.9) 5(3.7) 0.20
Shock 403 (77.6) 95 (70.4) 0.09
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Table 3. Cont.
Variables # No VAP (n = 519) VAP (n =135) p-Value
Outcomes

LOSICU, days 14(7-23) 31 (19-48) <0.001
LOS Hospital, days 23 (12-36) 44 (27-59) <0.001
IMV days 10 (6-19) 27 (17-41) <0.001

ICU mortality 208 (40.1) 56 (41.5) 0.84

# Continuous variables are shown as median values and percentiles Q1-Q3. Categorical variables are shown as
number of cases (n) and percentage (%). (LDH: Lactate dehydrogenase; C-RP: C-reactive protein: CPK: creatine
phosphokinase; PCT: procalcitonin; VAP: ventilator associated pneumonia; AKI: acute kidney injury; LOS length
of stay; ICU: intensive care units; Gap-ICU: time in days from hospital admission to ICU admission; Chest X-ray
cutoff: more than 2 lung fields occupied by infiltrates on chest X-ray; MDR: multi-drug resistant bacteria; EAT:
empiric antibiotic treatment; AEAT: appropriate empiric antibiotic treatment, Global IEAT: includes patients with
IEAT and those without EAT).

The variables included in the multivariate GLM model for VAP were as follows: AKI,
EAT, global IEAT, diabetes, D-dimer, lactate, PCT, CRP, chest X-ray cutoff, and APACHE II
according to the significance in Table S3 (Supplementary Materials). Only IEAT (OR = 2.23,
95%CI 1.31-3.73) and chest X-ray cutoff (OR = 1.62, 95%CI 1.07-2.42) were variables
associated with the development of VAP (Figure S2, Supplementary Materials).

A total of 264 patients with COI died. Patients who died were older, had a higher
degree of severity and inflammation, and had more comorbidities and complications
(Table S3 in the Supplementary Materials). However, EAT (96.9% vs. 93.3%, p = 0.09) and
AEAT (86.2% vs. 80.7%, p = 0.07) were not different between survivors and non-survivors.
In addition, global IEAT was more common in non-survivors (21.2% vs. 14.6%, p = 0.03).

The variables included in the multivariate GLM model for crude ICU mortality were
myocardial dysfunction, AKI, EAT, global IEAT, immunosuppression, hematologic disease,
chronic heart disease, D.dimer, lactate, PCT, chest X-ray cutoff, GAP-UCI, SOFA, APACHE
I and age according to significance in Table S4 (Supplementary Materials). Global IEAT
(OR =1.89, 95%CI 1.13-3.14) but not EAT (OR = 0.58, 95%CI 0.23-1.46) was associated with
ICU mortality (Figure S3, Supplementary Materials).

3.3. Patients Without Bacterial Coinfection (No-COI)

Of the 3543 patients without COI, 3076 (86.8%) received EAT. Patients with EAT had
higher levels of organ dysfunction and inflammation, received more steroids and had
a higher incidence of shock on admission compared to patients without EAT. VAP and
all-cause mortality in the ICU did not differ between groups (Table 1).

The impact of EAT on outcome can only be causally assessed in a randomised clinical
trial. As this is not possible, and in an attempt to address the bias of an observational
study, propensity score matching was applied to the non-COI population. For this pur-
pose, the Matchlt package [37] of the R program was used with a “full” method and a
caliper of 0.2 (more detailed information on propensity matching can be found in the
Supplementary Materials).

After propensity score matching, there was a loss of only 23 patients who could not be
matched. Finally, the matched cohort (n = 3520) has 467 controls and 3053 cases receiving
EAT. The summary of balance for all data and matched data are shown in Table S5 and in
Figures 54 and S5 in the Supplementary Materials.

No impact of EAT was observed on the development of VAP (Figure 2) or on 28-day
mortality in the ICU (Figure 3).
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Figure 2. Kaplan-Meier plot for development of ventilator-associated pneumonia (VAP) according, to
whether or not patients without bacterial co-infection received empiric antibiotic treatment (EAT). As
can be seen, there are no significant differences in the probability of developing VAP between the
group with EAT (blue line) and the group without EAT (red line) (log rank test p = 0.8).
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Figure 3. Kaplan-Meier plot for development of all-cause ICU mortality according to whether or not
patients without bacterial co-infection received empiric antibiotic treatment (EAT). As can be seen,
there are no significant differences in the survival probability between the group with EAT (blue line)
and the group without EAT (red line) (log rank test p = 0.3).

3.4. Linear Models in Matched Cohort of Patients Without Coinfection
3.4.1. Risk Factors Associated with the Development of Ventilator-Associated
Pneumonia (VAP)
The characteristics of patients in the matched cohort according to whether they devel-

oped VAP or not are shown in Table S6 in the Supplementary Materials. Patients with VAP
had a higher mean age (62 vs. 60; p < 0.001) years, a higher degree of hypoperfusion (lactate
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2.8 mmol/L vs. 2.2 mmol /L; p < 0.001) and a higher incidence of myocardial dysfunction
(9.9% vs. 4.8%; p < 0.001). In addition, diabetes (17.5% vs. 11.2%; <0.001) and steroid use
(71.1% vs. 54.3%; p < 0.001) were more common in this group. However, EAT was not
associated with VAP on univariate analysis.

There was also no effect of EAT on the proportional hazard of VAP (HR = 1.00, 95%CI
0.78-1.27) when Cox regression was performed adjusting the model for age, chest X-ray
cutoff, steroids, diabetes, obesity and lactate with a Shoenfeld global test of 0.35 (Figure 4
and Table S7 in the Supplementary Materials).
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Figure 4. Cox Hazard regression plot for VAP probability according to received empiric antibiotic
treatment (EAT) or not in matched cohort of patients without coinfection. As can be seen, the lines
are almost superimposed, given that there are no significant differences in the proportional daily risk
of developing VAP between the group with (blue line) and without (red line) EAT (HR = 1.0).

EAT was also not associated with the development of VAP in the logistic regression
model (OR =1.02, 95%CI 0.79-1.39). More than 2 infiltrated lung fields (OR =1.63, 95%CI
1.34-2.0) and steroid administration (OR = 1.97, 95%CI 1.62-2.40) were the variables inde-
pendently associated with an increased risk of VAP (Figure S6, Supplementary Materials).

3.4.2. Risk Factors Associated with All-Cause ICU Mortality

Of the 3520 patients in the matched cohort, 1192 (33.8%) died. As expected, the
deceased patients were older (66 years vs. 58 years, p < 0.001), had higher APACHE 11
(17 vs. 14, p <0.001) and SOFA (7 vs. 6, p < 0.001) severity, and higher levels of inflammation.
In addition, chronic kidney disease, haematological disease, diabetes and immunosuppres-
sion, as well as the presence of AKI, shock and myocardial dysfunction were more common
in non-surviving patients (Table S8 in the Supplementary Materials). However, EAT did
not appear to be associated with ICU mortality in the univariate analysis.

There was also no effect of EAT on the proportional hazard of ICU mortality (HR = 1.02,
95%CI 0.85-1.22) when Cox regression analysis was performed adjusting the model for
age, chest X-ray cut-off, AKI, myocardial dysfunction, VAP, steroids, immunodepression,
diabetes, haematological disease, chronic kidney disease, shock, D-dimer, lactate, PCT,
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WBC, LDH, SOFA, APACHEII, GAP_ICU and sex according to significance in univariate
analysis. The Schoenfeld global test was p < 0.001 (Figure 5 and Table S9 in the Supplemen-
tary Materials).
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Figure 5. Cox Hazard regression plot for all-cause ICU mortality according to received empiric
antibiotic treatment (EAT) or not in matched cohort of patients without coinfection. As can be seen,
no significant differences in the proportional daily risk ICU survival between the group with (blue
line) and without (red line) EAT was observed (HR = 1.02).

EAT was also not associated with all-cause ICU mortality in the logistic regression
model (OR = 1.02, 95%CI 0.81-1.28). (Figure 57, Supplementary Materials).

3.5. Non-Linear Analysis—Random Forest Model (RF)
3.5.1. Factors Associated with VAP According to Non-Linear Model

A random forest classifier (RF) model was developed to study the contributions of
confounding variables to the dependent variable (VAP) in a non-linear way. All indepen-
dent variables were included in the RF model and a non-linear relationship with VAP was
found. The RF model for VAP had an OOB error rate estimate of 16.0%.

Twelve variables had an impact of more than 10% on the reduction in model accuracy,
and twelve variables were associated with a >50% reduction in GINI in the RF model
(Figure 6A and Table S8 in the Supplementary Materials). However, AET was not an
important variable for VAP development in the RF model.
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(A) Random Forest VAP model
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(B) Random Forest ICU mortality model
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Figure 6. Contribution of each confounding variable according to the random forest (RF) model

for variables associated with the development of ventilator-associated pneumonia (VAP) (A) and

all-cause ICU mortality (B). As can be seen in the figure, the empiric antibiotic treatment (EAT)

variable is below the cut-off points considered to determine which variables are important in the

model (dotted red line) for the development of VAP (A) and for ICU mortality (B). Abbreviations:
cut: cut-off; APACHE II: Acute Physiology and Chronic Health Evaluation; SOFA: Sequential organ
failure assessment; EAT: Empiric antibiotic treatment; VAP: ventilator-associated pneumonia; AEAT:
Adecuate empiric antibiotic treatment; CPK: creatine phosphokinase; DD: D dimer; WBC: White blood
cells; COPD: chronic obstructive pulmonary disease; dis: disfunction; Chr_Card_dis; chronic cardiac
disease; AKL: acute kidney injury; CRP:C-reactive protein; GAP_ICU_cut: time elapsed between
diagnosing pandemic viral infection and admission to ICU; Chr_renal_dis: Chronic renal disease;
ID: immunosuppression; Rx-cutoff: >2 fields with infiltrations in chest X-ray; PCT: procalcitonin;
Hematol-dis: Hematologic disease; LDH: Lactate dehydrogenase.

3.5.2. Factors Associated with All-Cause ICU Mortality According to No-Linear Model

A random forest classifier (RF) model was developed to study the contributions of
confounding variables to the dependent variable (non-survivors) in a non-linear way. All
independent variables were included in the RF model and non-linear relationship with

ICU mortality was found. The RF model for VAP had an OOB error rate estimate of 27.8%.
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Seventeen variables had an impact of more than 10% on the reduction in model
accuracy, and thirteen variables were associated with a >50% reduction in GINI in the RF
model (Figure 6B and Table S9 in the Supplementary Materials). However, AET was not an
important variable for all-cause ICU mortality in the RF model.

4. Discussion

In this large multicentre cohort of critically ill patients with pandemic viral pneumo-
nia (influenza A[HIN1] and COVID-19), our main conclusion is that empirical antibiotic
treatment administered at ICU admission was not associated with a reduction in ventilator-
associated pneumonia or ICU mortality in patients without microbiologically confirmed
bacterial co-infection. This finding remained consistent after adjusting for confounders us-
ing propensity score matching and was confirmed by both traditional multivariate models
(Cox and GLM) and non-linear approaches (random forest), reinforcing the robustness of
the results.

In contrast, among patients with confirmed bacterial co-infection, EAT was associated
with a lower incidence of VAP and ICU mortality, underscoring the importance of timely
and appropriate antibiotic administration when bacterial pathogens are present. This
highlights a key clinical distinction: while early antibiotics are warranted in patients with
confirmed or strongly suspected bacterial infections, their indiscriminate use in all cases of
viral pneumonia may be unjustified and potentially harmful.

Evidence regarding the impact of EAT in viral respiratory infections remains lim-
ited and heterogeneous [18,23,35,39]. Previous studies have varied widely in terms of
population, design, and definitions of co-infection, limiting comparability [19]. Notably,
a large international study of 3200 critically ill patients [21] found no effect of EAT on
ventilator-associated lower respiratory tract infection, although that analysis did not adjust
for baseline differences. A follow-up study evaluating PCT for detecting co-infection also
failed to demonstrate a survival benefit from EAT in COVID-19 patients [9]

Other observational studies raise additional concerns. Hovind et al. [40] observed in
3979 patients hospitalized for a viral respiratory infection (influenza virus H3N2, HIN1,
influenza B, respiratory syncytial virus [RSV], human metapneumovirus [hMPV] or severe
acute respiratory syndrome coronavirus-2 [SARS-CoV-2]) that 67.7% received EAT. When
EAT was initiated on admission, it was associated with increased in-hospital mortality
(OR = 2.25, 95%CI 1.26-4.02). In addition, patients with EAT had a longer hospital stay.
However, the number of critically ill patients in this study is very small (<2%).

Moretto et al. [20] studied the effect of EAT on in-hospital mortality using Cox hazard
regression with propensity-matched variable adjustment. Of the 222 patients included,
an adverse event (death or ICU transfer) was observed in 60 patients (34%) in the antibi-
otic group compared with 4 patients (8%) in the no antibiotic group (HR = 2.94 [95%CI:
1.07-8.11]; p = 0.04). After propensity score matching, there was no significant association
be-tween antibiotic use and outcome (HR =1.238; 0.77-2.00, p = 0.37).

Yin et al. [41], in hospitalized patients with moderate COVID-19, found that during
the 30-day follow-up period, 375 (27.3%) of the 1373 patients admitted with non-severe
COVID-19 progressed to severe disease. The proportion of patients who progressed to
severe COVID-19 was higher in the EAT group compared to the non-EAT group (31.74%
vs. 21.94%; p < 0.0001). In the Cox model, early antibiotic use was associated with a
higher likelihood of progression to severe COVID-19 [aHR = 1.5; 95%CI 1.2-1.9]. After
propensity matching, the results remained consistent, showing a higher risk of progression
to severe COVID-19 in the EAT group (adjusted HR 1.416, 95%CI 1.069-1.876). Finally, the
meta-analysis by Lansbury et al. [19] with over 3800 patients, evidences a low proportion
of patients with COVID-19 presenting with COI, whereby the authors conclude that these
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findings do not support the routine use of antibiotics in the treatment of confirmed COVID-
19 infection.

Among critically ill patients, available evidence remains sparse. A small study by
Buetti et al. [42] found no benefit of EAT in ICU patients, while a larger study by Saseed-
haran et al. [38] supported prophylactic antibiotics without comparative data. The study
by Wendel-Garcia et al. [18] with a large number of critically ill patients in a Spanish
multicentre study concludes, after adjusting covariates by propensity matching, that the
administration of EAT is associated with a lower incidence of respiratory superinfection
and lower mortality. These conclusions are in contrast to our results, also developed in
a Spanish multicentre database, but methodological differences limit comparison. The
main difference between the studies is that our population includes not only patients
with COVID-19 but also with influenza A (HIN1). Other differences between the studies
relate to the inclusion of patients with confirmed fungal infections, the use of broader
definitions of respiratory superinfection (including VAP and ventilator-associated tracheo-
bronchitis), and the use of a 24 h time limit from intubation to define empirical antibiotic
treatment, which could introduce misclassification bias. In addition, our most inclusive
cohort (comprising both SARS-CoV-2 and influenza A [HIN1]) had a higher coinfection
rate (15% versus 4%), which is likely to reflect differences in pathogen biology. Notably,
influenza A (HIN1) carries a higher risk of bacterial coinfection than SARS-CoV-2, and
there are significant differences in the epidemiology of coinfecting bacteria. This could
affect prescribing patterns and observed outcomes.

Because viral and bacterial pneumonias share overlapping clinical features and
biomarkers, clinicians frequently initiate EAT to avoid undertreatment—an approach
widely endorsed by professional societies [5,7,17,35]. Yet, our findings argue for a more
selective, evidence-based strategy. Tools such as PCT [9,14,15,24,43] and rapid molecu-
lar diagnostics [31,44,45] may help identify true co-infections and enable early antibiotic
de-escalation. Notably, PCT performs better in influenza than in COVID-19 [8,9]. Unnec-
essary broad-spectrum antibiotic use during the COVID-19 pandemic likely contributed
to increased antimicrobial resistance [10,11,13,46,47], and over 80% of COVID-19 patients
received EAT despite low confirmed co-infection rates [9,19,20,38,40]. Spanish registry data
showed VAP incidence more than doubled during the pandemic [48].

Our results strongly indicate that empirical antibiotic treatment should not be used
for patients with respiratory infections caused by pandemic viruses in the absence of
bacterial co-infection. Therefore, rather than adopting EAT as standard practice, the clinical
approach should focus on identifying which patients have COIl and would benefit most
from antibiotics. Antibiotics should be administered promptly in cases of confirmed or
highly suspected bacterial infection, but discontinued early if not justified.

Our study has several limitations. The observational design precludes causal inference.
Residual confounding is possible. Data on timing of VAP onset were unavailable, limiting
early/late stratification. Differences in co-infection rates and diagnostic approaches across
centres may affect generalizability. Nonetheless, the use of robust statistical methods,
including propensity score adjustment and machine learning, strengthens the reliability of
our findings.

5. Conclusions

Our findings suggest that empirical antibiotic treatment should be initiated promptly
when there is a high probability of bacterial co-infection. However, empirical antibiotic
treatment at ICU admission did not reduce VAP incidence or ICU mortality in critically ill
patients with viral pneumonia who lacked confirmed bacterial co-infection. Our findings
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support a more targeted approach to antibiotic use, guided by microbiology, biomarkers
and stewardship principles.
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5. Resumen global de los resultados

5.1 Determinantes prondsticos al ingreso en pacientes con neumonia grave por

virus pandémicos (influenza A HIN1 y SARS-CoV-2)

Para identificar los factores de riesgo de mortalidad se realizé un primer trabajo donde se
analizaron 8.902 pacientes en 184 unidades de cuidados intensivos espafiolas con
neumonia grave causada por virus pandémicos, incluyendo gripe A (41,6 %) y COVID-19
(58,4 %). La cohorte presentd una mediana de edad de 60 afios y predominé el sexo
masculino (65,8 %). El perfil clinico inicial reflejaba una gravedad intermedia, con valores
medianos de APACHE II de 14 y SOFA de 5. Las comorbilidades mas prevalentes fueron
obesidad, diabetes y EPOC. La mortalidad en UCI alcanz6 el 25,8 %, y los pacientes que
fallecieron eran significativamente mayores, con mayor puntuacion en escalas de gravedad,
y mayor frecuencia de shock, disfuncion organica, coinfeccion bacteriana y uso de soporte

vital avanzado (ver tabla 4).

Tabla 4 (Tabla 1 del articulo 1): Caracteristicas basales de los 8902 pacientes incluidos en
el analisis, categorizados seglin el desenlace en UCI y el punto de corte de las variables.
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Whole population Survival Non-survival

Variable (n=8,902) (n=6,608) (n=2,294) pvalue
General
Age, median (Q1-Q3) years 60 (49-70) 58 (48-68) 67 (57-74) <0.001
Age cut-off > 58 years, n (%) 5177(58.1) 3473 (52.6) 1704 (74.3) <0.001
Male sex, n (%) 5855 (65.8) 4248 (64,3) 1607 (70.1) <0.001
APACHE 11, median (Q1-Q3) 14 (10-19) 13 (10-17) 17 (13-22) <0.001
APACHE Il cut-off > 13, n (%) 5309 (59.6) 3536 (53.5) 1773 (77.3) <0.001
SOFA score, median (Q1-Q3) 5(3-7) 4(3-7) 6(4-9) <0.001
SOFA cut-off > 4, n (%) 6274 (70.5) 4299 (65.1) 1975 (86.1) <0.001
GAP UCI, median (Q1-Q3) 1(1-3) 1(1-3) 2(0-4) <0.001
GAP UCI cut-off > 1 day, n (%) 6804 (76.4) 5085 (77.0) 1719 (74.9) 0.053
GAP Diagnosis, median (Q1-Q3) 4(1-7) 3(1-7) 4(1-7) 0.012
GAP diagnosis cut-off > 3 days, n (%) 5413 (60.8) 3943 (59.7) 1470 (64.1) <0.001
> 2 fields with infiltrations in chest X-ray, n (%) 5343 (60.0) 3775 (57.1) 1568 (68.4) <0.001
Antiviral vaccine, n (%) 1333 (14.9) 885 (13.4) 448 (19.5) <0.001
Shock at ICU admission, n (%) 3549 (39.9) 2286 (34.6) 1263 (55.1) <0.001
Laboratory
White blood cells count, median (Q1-Q3) x10° 8.6 (5.7-12.5) 8.5(5.7-12.1) 9.0(5.8-13.7) <0.001
White blood cells count cut-off < 8.5 x10°, n (%) 4405 (49.5) 3351 (50.7) 1054 (45.9) <0.001
Lactate dehydrogenase, median (Q1-Q3) U/L 542 (403-687) 524 (378-665) 590 (458-749) <0.001
Lactate dehydrogenase cut-off > 500 U/L, n (%) 5157 (57.9) 3593 (54.4) 1564 (68.2) <0.001
C reactive protein, median (Q1-Q3) mg/dL 19.6 (9.8-34.7) 19.0(9.5-34.4) 21.1(10.4-35.4) 0.001
C reactive protein cut-off >20 mg/dL, n (%) 4387 (49.3) 3184 (48.2) 1203 (52.4) <0.001
Procalcitonin, median (Q1-Q3) ng/mL 0.88 (0.20-5.67) 0.83 (0.20-5.08) 1.04 (0.23-8.20) <0.001
Procalcitonin cut-off >0.80 ng/mL, n (%) 4606 (51.7) 3350 (50.7) 1256 (54.8) 0.001
Lactate, median (Q1-Q3) mmol/L 2.0(1-4-3.3) 2.0(1.3-3.2) 2.2(1.4-3.8) <0.001
Lactate cut-off > 2mmol/L, n (%) 4660 (52.3) 3369 (51.0) 1291 (56.3) <0.001
Creatinine, median (Q1-Q3) mg/dL 0.89(0.7-1.2) 0.85 (0.68-1.12) 1.01 (0.75-1.50) <0.001
Creatinine cut-off >0.85 mg/dL, n (%) 4841 (54.4) 3330 (50.4) 1511 (65.9) <0.001
D dimer, median (Q1-Q3) ng/mL 3071 (971-6604) 2716 (900- 6000) 4180 (1200-8680) <0.001
D dimer cut-off > 2700 ng/mL, n (%) 4663 (52.4) 3314 (50.2) 1349 (58.8) <0.001
creatine phosphokinase, median (Q1-Q3) U/L 216 (100-420) 210 (97-414) 234 (111-442) 0.001
creatine phosphokinase cut-off > 200 U/L, n (%) 4707 (52.9) 3433 (52.0) 1274 (55.5) 0.003
Comorbidities
Diabetes mellitus, n (%) 1196 (13.4) 756 (11.4) 440 (19.2) <0.001
Asthma, n (%) 698 (7.7) 556 (8.4) 142 (6.2) 0.001
COPD, n (%) 1281 (14.4) 936 (14.2) 345 (15.0) 032
Chronic heart disease, n (%) 623 (7.0) 418 (6.3) 205 (8.9) <0.001
Chronic liver disease, n (%) 595 (6.7) 357 (5.4) 238(10.4) <0.001
Pregnancy, n (%) 480 (5.4) 399 (6.0) 81(3.5) <0.001
Obesity, n (%) 3046 (34.2) 2256 (34.1) 790 (34.4) 0.81
Human immunodeficiency virus, n (%) 144 (1.6) 107 (1.6) 37(1.6) 1.00
Hematologic disease, n (%) 436 (4.8) 237 (3.6) 199 (8.7) <0.001
Immunosuppression, n (%) 711 (8.0) 401 (6.0) 310 (13.5) <0.001
Treatment
Steroids, n (%) 5275 (59.2) 3746 (56.7) 1529 (66.7) <0.001
Antibiotics (AB) at ICU admission, n (%) 7410 (83.2) 5428 (82.1) 1982 (86.4) <0.001
Appropriate empiric AB treatment, n (%) 951 ((10.7) 671(10.2) 280 (12.2) 0.007
High flow nasal cannula at admission, n (%) 1438 (16.1) 1138 (17.2) 300 (13.1) <0.001
Invasive mechanical ventilation, n (%) 4252 (47.8) 2751 (41.6) 1501 (65.4) <0.001
Most common aetiology of coinfection
Coinfection, n (%) 1211 (100) 810 (12.3) 401 (17.5) <0.001
Methicillin- sensitive S. aureus (MSSA), n (%) 172 (14.2) 111(13.7) 61(15.2) 0.47
Pseudomonas aeruginosa, n (%) 143 (11.8) 82(10.1) 61 (15.2) 0.01
Klebsiella spp. N (%) 85 (7.0) 60 (7.4) 25 (6.2)) 0.45
Aspergillus spp, n (%) 78 (6.5) 33 (4.0) 45 (11.2) <0.001
E. coli, n (%) 69 (5.7) 43(5.3) 26(6.3) 0.40
Methicillin- resistant S. aureus (MRSA). n (%) 56 (4.6) 33 (4.0) 23(5.7) 0.19
Acinetobacter spp, n (%) 17 (1.4) 4(0.5) 13(3.2) <0.001
Outcomes
ICU LOS, median (Q1-Q3) days 13 (6-23) 12 (6-23) 14 (7-24) 0.03
Acute Kidney injury, n (%) 1435 (16.1) 855 (12.9) 580 (25.3) <0.001

Las variables continuas se muestran como valores medianos y percentiles Q1-Q3. Las variables categoricas
se presentan como numero de casos (n) y porcentaje (%). (LDH: lactato deshidrogenasa; C-RP: proteina C
reactiva; CPK: creatincinasa; PCT: procalcitonina; VAP: neumonia asociada a la ventilaciéon mecéanica; AKI:
lesion renal aguda; LOS: duracion de la estancia; ICU: unidades de cuidados intensivos; Gap-ICU: tiempo
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en dias desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: mas de 2 campos pulmonares
ocupados por infiltrados en la radiografia de torax; MDR: bacterias multirresistentes; EAT: tratamiento
antibidtico empirico; AEAT: tratamiento antibidtico empirico adecuado.)

Para identificar aquellas variables independientes para la mortalidad se disefiaron dos
modelos multivariados distintos, uno lineal por regresion logistica multivariable, y uno no
lineal, Random Forest. La regresion logistica identifico 17 factores con asociacion
independiente a la mortalidad, siendo los més relevantes la infeccion por Acinetobacter
spp. (OR 9,95), disfuncion miocardica (OR 3,27) y edad superior a 58 afos (OR 2,03).
Otros predictores significativos incluyeron inmunosupresion, ventilacion mecanica,

puntuaciones elevadas de APACHE Il y SOFA, y niveles elevados de LDH.

El modelo de Random Forest identificé un conjunto parcialmente diferente de variables
importantes, incluyendo edad, APACHE II, SOFA, ventilacion mecénica, shock e
inmunosupresion como los factores mas determinantes. Ademads, otorgd relevancia
prondstica a biomarcadores como lactato (>2 mmol/L), procalcitonina (>2 ng/mL), dimero-
D (>2.700 ng/mL), CPK (>200 U/L) y presencia de EPOC, variables que no alcanzaron

significacion en el modelo lineal.

En total, trece variables fueron compartidas por ambos enfoques, destacando edad, sexo
masculino, gravedad al ingreso, presencia de shock, ventilacion mecanica,
inmunosupresion, diabetes, enfermedad hematoldgica, disfuncion miocardica, LDH y
creatinina elevada, y hallazgos radioldgicos compatibles con neumonia extensa. En
cambio, el GLM dio mayor peso a la lesion renal aguda y a la presencia de Aspergillus o
Acinetobacter, mientras que Random Forest destaco biomarcadores inflamatorios y

tiempos de acceso al diagndstico y tratamiento (ver Tabla 5).

Tabla 5 (Tabla 2 del articulol): Variables asociadas a la mortalidad en UCI en el andlisis
multivariante lineal (GLM) y el andlisis multivariante no lineal (Random Forest). Se
muestran las variables significativas en el modelo lineal y aquellas con una importancia
superior al 10% en la disminucion de la precision o superior al 50% en la disminucion del
indice GINI en el modelo no lineal.
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GLM Model Random Forest Model

Variable OR 95%CI Decrease Accuracy Decrease Gini
Age > 58 years 2.03 1.74-2.36 34.9% 79.2%
APACHE II > 13 points 1.72 1.48-2.02 19.1% 88.1%
SOFA > 4 points 1.47 1.23-1.76 26.0% 65.1%
Shock 1.27 1.09-1.47 16.4% 77.4%
Hematologic disease 1.67 1.26-2.22 19.5% 39.4%
Obesity 1.16 1.01-1.32 - 92.4%
Diabetes 1.37 1.14-1.65 16.5% 60.6%
Immunosuppression 1.92 1.53-2.42 18.9% 53.0%
Steroids 1.54 1.34-1.77 12.7% 81.6%
Mechanical ventilation 1.94 1.67-2.25 33.0% 88.1%
Myocardial dysfunction 3.27 2.53-4.28 47.2% 63.6%
Acute kidney injury 1.29 1.07-1.55 —

> 2 fields with infiltrations in chest X-ray 1.54 1.34-1.77 16.8% 81.3%
LDH > 500 U/L 1.41 1.22-1.63 11.5% 79.7%
Creatinine > 0.85 mg/dL 1.33 1.14-1.55 13.3% 73.8%
Acinetobacter spp. 9.95 2.61-47.8 - -
Aspergillus spp. 2.45 1.39-4.33 11.2% -
Procalcitonin >2ng/mL - - 23.0% 68.1%
D-dimer > 2700 ng/mL - - 21.7% 75.9%
Lactate > 2 mmol/L - - 18.1% 79.5%
COPD - - 17.4% 61.3%
CPK >200 U/L - - 13.1% 90.6%
GAP-Diagnosis > 3 days -—-- -—-- -—-- 96.9%
WBC count < 8.5 x10° 93.3%
Male - - - 81.3%
GAP-ICU < lday J— J— — 77.1%

Abreviaturas: OR: razén de momios (Odds Ratio); IC: intervalo de confianza; APACHE II: Evaluacién
Fisiologica Aguda y de Salud Crénica II; SOFA: Evaluacion Secuencial de Fallo Organico; LDH: lactato
deshidrogenasa; GAP-UCI: tiempo desde el diagndstico hasta el ingreso en UCI; GAP-Diagndstico: tiempo
desde el inicio de los sintomas hasta el diagndstico; UCI: Unidad de Cuidados Intensivos; EPOC: enfermedad
pulmonar obstructiva crénica; CPK: creatincinasa; WBC: leucocitos totales (recuento de globulos blancos).
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5.2 Capacidad predictiva de modelos estadisticos clasicos (regresion logistica
multivariable) en comparacion a modelos de aprendizaje automatico (Random

Forest) en la prediccion de mortalidad

En el primer trabajo se aplicaron dos modelos predictivos a la cohorte de 8.902 pacientes
con neumonia grave por virus pandémicos: un modelo estadistico lineal (regresion logistica
multivariable, GLM) y un modelo de aprendizaje automatico no lineal (Random Forest,
RF). Ambos mostraron un rendimiento muy similar: el GLM alcanzé un area bajo la curva
(AUC) de 0,76 (IC 95 %: 0,74—-0,78), con una exactitud del 76 %, sensibilidad del 61 % y
especificidad del 79 %; el modelo RF present6 una exactitud del 75,6 %, un error out-of-
bag del 25,3 % y una concordancia del 70,1 % con el GLM (1.872 casos clasificados igual)
(Figuras 1y 2).

Figura 1 (Figura 3 del articulo 1): Clasificacion de los pacientes segiin el modelo lineal
(Modelo Lineal Generalizado - GLM) y el modelo no lineal (Random Forest - RF).
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Figura 2 (Figura 4 del articulo 2): Distribucion de la probabilidad generada por cada
modelo (Clase) con respecto a la observada (Real). (0O = supervivientes; 1 = no
supervivientes)
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La regresion logistica identifico 17 variables asociadas de forma independiente con la
mortalidad, entre ellas infeccion por Acinetobacter spp. (OR 9,95), disfuncién miocérdica
(OR 3,27) y edad >58 afios (OR 2,03), ademéas de inmunosupresion, ventilacion mecanica,
puntuaciones elevadas de APACHE Il y SOFA, y LDH elevada. El modelo RF coincidio
en muchas de estas variables, pero otorgd mayor relevancia a otras no significativas en el
modelo lineal, como la procalcitonina >2 ng/mL, el lactato >2 mmol/L, el dimero D >2.700

ng/mL, la CPK >200 U/L y la presencia de EPOC.

Ambos modelos coincidieron en identificar un conjunto de 13 variables clave con alto valor
pronostico, entre las que se incluyen edad, sexo masculino, gravedad clinica al ingreso
(APACHE 1II, SOFA), presencia de shock, ventilacion mecénica, inmunosupresion,
diabetes, enfermedad hematologica, disfuncion miocardica, LDH y creatinina elevadas, y

un patréon radiologico extenso compatible con neumonia bilateral. No obstante, se
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observaron diferencias en las variables secundarias identificadas, lo que demuestra el valor
complementario de aplicar ambos enfoques para enriquecer la comprension del riesgo
clinico y mejorar la estratificacion prondstica en pacientes criticos con infecciones virales

graves (Tabla 2).

En el segundo estudio, también se emplearon andlisis multivariados mediante regresion
logistica (GLM) y modelos de aprendizaje automatico Random Forest (RF) donde se
identificaron factores de riesgo complementarios que contribuyeron a caracterizar los

desenlaces clinicos.

En relacién con la aparicion de NAVM, ambos modelos coincidieron en sefialar como
factores de riesgo la edad, el uso de corticoides y la elevacion del lactato sérico. Ademas,
el GLM identifico de forma especifica la extension radiologica de los infiltrados
pulmonares (Figura 3), mientras que el modelo RF destac la relevancia de biomarcadores

como la procalcitonina (Figura 4A).

Figura 3 (Figura S2 del material suplementario del articulo 2): Variables asociadas al
desarrollo de neumonia asociada a la ventilacion mecanica (NAVM) en el modelo de
regresion logistica multivariable (GLM).

Variable N Qdds ratio p

AKI 0434 l Reference
1220 ¢ ] 1 082055 ,153) 0756

EAT 0 28 . Reference
1626 L  J 1 1.37 (0.55,3.56) 04989

Global IEAT 0 541 - Reference
1113 + = 4 223(1.31,373) 0003

Diabetes 0597 l Reference
1 &7 s ' L 4 168(0.80,3.11) 0.0%98
D-dimer 654 . 1.00(1.00,1.00) 0.530
Lactate 654 L l' 098(0.83,1.02) 0345
CPK 654 - 1.00(1.00, 1.00) 0.349
PCT 654 . 0.98 (0.96,1.00) 0.069
CRP 654 - 1.00(1.00, 1.00) 0.814

Chest x-ray cutoff 0294 - Reference
1 360 E L - 1.62 (1.07, 2.49) 0.024
APACHEN 654 .' 087(0.84,1.00) 0075
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(CRP: proteina C reactiva; CPK: creatincinasa; PCT: procalcitonina; AKI: lesion renal aguda; Chest x-ray
cutoff: mas de 2 campos pulmonares ocupados por infiltrados en la radiografia de torax; EAT: tratamiento
antibidtico empirico; Global IEAT: tratamiento antibidtico empirico globalmente inapropiado, que incluye a
los pacientes con IEAT mas los pacientes sin EAT)

Figura 4 (Figura 6 del articulo 2). Contribucion de cada variable de confusion segun el
modelo de Random Forest (RF) para las variables asociadas al desarrollo de neumonia
asociada a la ventilacion mecanica (NAVM) (A) y a la mortalidad global en UCI (B). Como
puede observarse en la figura, la variable tratamiento antibiotico empirico (TAE) se sitiia
por debajo de los puntos de corte considerados para determinar qué variables son
importantes en el modelo (linea roja discontinua), tanto para el desarrollo de NAVM (A)
como para la mortalidad en UCI (B).
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{A} Random Forest VAP model
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Abreviaturas: cut: punto de corte; APACHE II: Evaluacion Fisiologica Aguda y de Salud Cronica II; SOFA:
Evaluacion Secuencial de Fallo Orgéanico; EAT: Tratamiento antibidtico empirico; VAP: Neumonia asociada
a la ventilacion mecanica; AEAT: Tratamiento antibidtico empirico adecuado; CPK: Creatincinasa; DD:
Dimero D; WBC: Recuento de leucocitos; COPD: Enfermedad pulmonar obstructiva cronica; dis: disfuncion;
Chr_Card dis: Enfermedad cardiaca cronica; AKI: Lesién renal aguda; CRP: Proteina C reactiva,
GAP_ICU_cut: Tiempo transcurrido entre el diagnostico de la infeccion viral pandémica y el ingreso en UCI;
Chr _renal dis: Enfermedad renal crénica; ID: Inmunosupresion; Rx-cutoff: >2 campos con infiltrados en la
radiografia de torax; PCT: Procalcitonina; Hematol-dis: Enfermedad hematologica; LDH: Lactato

deshidrogenasa.
En los andlisis de mortalidad realizados en pacientes sin coinfeccion bacteriana

confirmada, ni el TAE ni la NAVM se asociaron con un incremento significativo del riesgo

de muerte.
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En conjunto, se identificaron 12 variables prondsticas comunes a ambos modelos, entre
ellas: la edad, la gravedad clinica al ingreso, la inmunosupresion, los niveles de
procalcitonina y el tiempo transcurrido entre el diagnostico de la infeccion viral y el ingreso
en UCIL. Ademas, se observaron variables predictivas especificas segiin el modelo utilizado:
el sexo en el GLM (Figura 5) y la funcion renal y los marcadores inflamatorios (proteina

C reactiva, ferritina) en el RF (Figura 4B).

Figura 5 (Figura S3 del material suplementario del articulo2): Variables asociadas con la
mortalidad bruta en UCI en el modelo de regresion logistica multivariable (GLM).

Variable N Odds ratio P
Myocardial dysfunction 0839 . Reference

1 15 : - ] « | 15.96(4.06, 106.50)  <0.001
AKI 0434 . Reference

1220 + 1.27 (0.83,1.82) 0.265
EAT 0 28 . Reference

1626 | - [ ] L 0.58 (0.23, 1.46) 0.252
Global IEAT 0 541 . Reference

1113 —.— 1.89(1.13,3.14) 0.015
Immunosuppression 0 577 - Reference

1 77 “—l—‘ 1.77 (0.85, 3.30) 0.071
Hematologic disease 0812 - Reference

1 42 - 1.84 (0.83, 4.20) 0.138
Chronic heart disease 0 597 . Reference

157 R 245 (1.33, 4.59) 0.004
D-dimer 554 - 1.00 (1.00, 1.00) 0618
Lactate 654 . 1.01 (0.97, 1.04) 0.559
PcT 654 - 1.02 (1.01, 1.04) <0.001
Chest x-ray cutoff 0294 . Reference

1360 .- 1.78 (1.24, 2.57) 0.002
GAP-UCI 554 l 1.08 (1.04, 1.15) 0.001
SOFA 554 I 1.05(0.89, 1.12) 0.085
APACHE Il 654 - 1.02 (0.99, 1.04) 0.261
Age 854 " 102 (1.00, 1.03) 0.015

(AKI: lesion renal aguda; EAT: tratamiento antibidtico empirico; PCT: procalcitonina; Gap-ICU: tiempo en
dias desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: mas de 2 campos pulmonares
ocupados por infiltrados en la radiografia de torax; Global IEAT: incluye a los pacientes con tratamiento
antibidtico empirico inapropiado (IEAT) mas los pacientes sin EAT.)
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5.3 Impacto del tratamiento antibiotico empirico (EAT) sobre la aparicion de
neumonia asociada a ventilacion mecanica (NAVM) y la mortalidad segun la

presencia o ausencia de coinfeccidon bacteriana

Se disefi6 un segundo estudio para evaluar el impacto clinico del TAE en pacientes con

neumonia grave por virus pandémicos usando modelos de analisis lineales y no lineales.

Este estudio retrospectivo multicéntrico incluyd 4.197 pacientes criticos con neumonia
viral grave (COVID-19 o gripe A HIN1) ingresados en UCIs espafiolas. El 88 % recibio
antibiotico empirico al ingreso (EAT), eran pacientes mas graves (Apache II, SOFA, Rx),
mas inflamados (PCR, PCT, D-Dimero), mas hipoperfundidos (lactato), més disfuncion
organica (shock, AKI, ventilacién mecanica invasiva). El 15,6 % (n = 654) presentaban
coinfeccion bacteriana precoz confirmada por aislamiento microbiologico en las primeras
48 horas (Tabla 3). En este subgrupo, los pacientes que recibieron un tratamiento
inadecuado (IEAT) presentaron mayor mortalidad (49,6 % frente a 38,4 %) y mayor

incidencia de neumonia asociada a la ventilacion (VAP) (36 % frente a 17 %) (Tabla 4).

Tabla 3 (Tabla 1 del articulo 2): Caracteristicas de los 4197 pacientes con neumonia
grave por virus pandémicos y ventilacion mecanica invasiva (VMI) segun si tenian
coinfeccion bacteriana (COI).
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Las variables continuas se muestran como valores medianos y percentiles Q1—-Q3. Las variables categoéricas
se presentan como numero de casos (n) y porcentaje (%). (LDH: lactato deshidrogenasa; C-RP: proteina C
reactiva; CPK: creatincinasa; PCT: procalcitonina; VAP: neumonia asociada a la ventilaciéon mecéanica; AKI:
lesion renal aguda; LOS: duracion de la estancia; ICU: unidades de cuidados intensivos; Gap-ICU: tiempo
en dias desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: mas de 2 campos pulmonares
ocupados por infiltrados en la radiografia de térax; MDR: bacterias multirresistentes; EAT: tratamiento
antibidtico empirico; AEAT: tratamiento antibiotico empirico adecuado.)

Tabla 4 (Tabla 2 del articulo 2): Caracteristicas generales de los 626 pacientes con
coinfeccion (COI) y tratamiento antibidtico empirico (TAE), distinguiendo entre
tratamiento antibidtico empirico adecuado (AEAT) e inadecuado (IAET).
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Variables# IEAT (n=85) AEAT (n=541) p-value
General Characteristics

Age, years 62 (56-72) 59 (47-70) 0.009
Male sex 55 (64.7) 359 (66.4) 0.860
APACHE 1I score 18 (13-21) 19 (14-24) 0.170
SOFA score 7(5-9) 7(5-10) 0.040
Gap-ICU, days 1(1-2) 1(0-2) 0.180
Chest x-ray cutoff 51 (60.0) 286 (52.9) 0.260
COVID 48 (56.5) 123 (22.7) <0.001
Influenza 37 (43.5) 418 (77.3) <0.001
Laboratory

WBC x10° 8.0 (4.9-11.6) 8.7(3.9-13.9) 0.600
LDH U/L 630 (473-830) 600 (458-745) 0.290
C-RP mg/mL 22.4(13.0-33.3) 33.4(19.7-91.3) <0.001
PCT ng/mL 1.44 (0.24-8.26) 7.86 (1.55-24.0) <0.001
Creatinine mg/dL 0.87 (0.70-1.48) 1.14 (0.79-1.86) 0.010
CPK ng/mL 218 (119-399) 338 (151-647) 0.001
Lactate mmol/L 2.3 (1.6-3.6) 2.3(2.2-4.8) <0.001
D-dimer UI/L 3940 (1179-7200) 6800 (3780-11,700)

Comorbidities

COPD 11 (12.9) 111 (20.5) 0.130
Asthma 8(9.4) 31(5.7) 0.280
Chr. Heart Dis 4(4.7) 52 (9.6) 0.200
Chr.Renal Dis. 7(8.2) 44 (8.1) 1.00
Hematologic Dis. 4.(4.7) 36 (6.6) 0.650
Pregnancy 2(2.3) 51(9.4) 0.040
Obesity 34 (40.0) 140 (25.9) 0.010
Diabetes 13 (15.3) 39(7.2) 0.020
Immunosuppression 8(9.4) 68 (12.6) 0.510
Treatment and complications

Corticosteroids 57 (67.1) 323 (59.7) 0.240
Presence of MDR bacteria 69 (81.2) 98 (18.1) <0.001
VAP 31 (36.5) 94 (17.4) <0.001
AKI 20 (23.5) 194 (35.9) 0.030
Myocardial dysfunction 44.7) 10 (1.8) 0.100
Shock 61 (71.8) 424 (78.4) 0.220
QOutcomes

LOS ICU, days 22 (12-37) 16 (8-28) 0.001
LOS Hospital, days 30 (21-50) 25 (12-42) 0.008
IMV days 15 (10-30) 12 (6-24) 0.010
ICU mortality 40 (47.1) 208 (38.4) 0.160
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Las variables continuas se muestran como valores medianos y percentiles Q1—-Q3. Las variables categoéricas
se presentan como numero de casos (n) y porcentaje (%). (LDH: lactato deshidrogenasa; CRP: proteina C
reactiva; CPK: creatincinasa; PCT: procalcitonina; VAP: neumonia asociada a la ventilacion mecéanica; AKI:
lesion renal aguda; LOS: duracion de la estancia; ICU: unidades de cuidados intensivos; Gap-ICU: tiempo
en dias desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: mas de 2 campos pulmonares
ocupados por infiltrados en la radiografia de téorax; MDR: bacterias multirresistentes; * Global IEAT: incluye
a los pacientes con tratamiento antibidtico empirico inadecuado (IEAT) mas los pacientes sin tratamiento
empirico (EAT)*).

En los 3.543 pacientes sin coinfeccion bacteriana documentada, el 88 % recibi6 antibidtico
empirico. Este grupo presentaba mayor gravedad clinica basal (Tabla 3). Para reducir el
sesgo por indicacién, se aplicé un emparejamiento por puntuacion de propension (PSM),
generando una cohorte emparejada de 3.520 pacientes con caracteristicas similares. Tras
este ajuste, no se observaron diferencias significativas en la incidencia acumulada de
NAVM (p =0,8) (Figura 6) ni en la mortalidad en UCI (p = 0,3) (Figura 7). Estos resultados
fueron confirmados mediante modelos multivariables de regresion de Cox (HR NAVM =
1,00; HR mortalidad = 1,02), que tampoco mostraron un efecto beneficioso del EAT en

estos pacientes (Figuras 8 y 9).
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Figura 6 (Figura 2 del articulo 2): Curva de Kaplan-Meier para el desarrollo de neumonia
asociada a la ventilacion mecanica (NAVM) segin si los pacientes sin coinfeccion
bacteriana recibieron o no tratamiento antibidtico empirico (TAE). Como puede
observarse, no existen diferencias significativas en la probabilidad de desarrollar NAVM
entre el grupo con TAE (linea azul) y el grupo sin TAE (linea roja) (prueba de log-rank
p=0,8).
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Figura 7 (Figura 3 del articulo 2): Curva de Kaplan-Meier para el desarrollo de mortalidad
global en UCI segln si los pacientes sin coinfeccion bacteriana recibieron o no tratamiento
antibidtico empirico (TAE). Como puede observarse, no existen diferencias significativas

en la probabilidad de supervivencia entre el grupo con TAE (linea azul) y el grupo sin TAE
(linea roja) (prueba de log-rank p=0,3).
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Figura 8 (Figura 4 del articulo 2): Grafico de regresion de riesgos proporcionales de Cox
para la probabilidad de desarrollar NAVM segln si se recibid o no tratamiento antibiotico
empirico (TAE) en la cohorte emparejada de pacientes sin coinfeccion. Como puede
observarse, las lineas estan practicamente superpuestas, ya que no existen diferencias
significativas en el riesgo diario proporcional de desarrollar NAVM entre el grupo con
TAE (linea azul) y el grupo sin TAE (linea roja) (HR=1,0).
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Figura 9 (Figura 5 del articulo 2): Grafico de regresion de riesgos proporcionales de Cox
para la mortalidad global en UCI segln si se recibid o no tratamiento antibiotico empirico
(TAE) en la cohorte emparejada de pacientes sin coinfeccion. Como puede observarse, no
se observaron diferencias significativas en el riesgo diario proporcional de supervivencia
en UCI entre el grupo con TAE (linea azul) y el grupo sin TAE (linea roja) (HR=1,02).
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Neumonia asociada a ventilacion mecanica (NAVM):

En los pacientes sin coinfeccion bacteriana, el TAE no se asoci6é a una menor incidencia
de NAVM. En los analisis multivariados, los factores asociados al desarrollo de NAVM
fueron el uso de corticoides, la inmunosupresion y la afectacion radioldgica extensa
(Rx_cutoff). En los modelos de aprendizaje automatico (Random Forest), las variables con
mayor peso predictivo fueron también Rx_cutoff, uso de corticoides, inmunosupresion,
edad, SOFA, procalcitonina, APACHE II, intervalo entre ingreso hospitalario y admisién
en UCI (GAP-ICU), creatinina, urea, sexo femenino y dimero D. En ambos enfoques
analiticos, el EAT no mostrd asociacion significativa ni peso predictivo relevante respecto

al desarrollo de NAVM (Figuras 3 y 4A).
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Mortalidad en UCI:

Tampoco se observaron diferencias significativas en la mortalidad entre los pacientes sin
coinfeccidn tratados o no con antibidticos empiricos. Tras el emparejamiento por PSM y
el analisis multivariable con modelos de Cox, el EAT no se asocio a una reduccion de la
mortalidad (HR 1,02). En los modelos de regresion logistica (GLM), los factores asociados
a mayor mortalidad fueron la edad, la gravedad clinica (SOFA, APACHE II) y
biomarcadores inflamatorios elevados como la procalcitonina y el dimero D (Figura 5). El
modelo Random Forest identificdé como variables mas relevantes para la prediccion de
mortalidad: edad, SOFA, APACHE II, procalcitonina, lactato, dimero D, creatinina, urea,
Rx_cutoff, GAP-ICU, corticoides y sexo (Figura 4B). En ninguno de los modelos el EAT

tuvo un peso relevante ni se asocio de forma significativa con la mortalidad.

En conjunto, el antibidtico empirico solo fue util en pacientes con coinfeccion bacteriana
confirmada y tratamiento adecuado. En el resto, su uso no mejor6 los resultados y puede
contribuir al desarrollo de bacterias multirresistentes. Estos hallazgos respaldan la
necesidad de un esfuerzo diagndstico precoz para identificar coinfeccion y optimizar el uso

de antibidticos, en linea con las recomendaciones de los programas PROA.
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6. Resumen global de la discusidn:

Esta tesis doctoral se basa en dos estudios observacionales multicéntricos realizados sobre
una cohorte comun de 8.902 pacientes criticos con neumonia grave por virus pandémicos
(influenza A[HIN1]pdm09 y SARS-CoV-2) ingresados en mas de 180 UCIs espafiolas. Se
trata de la serie mas amplia publicada hasta la fecha con estas caracteristicas y el primer
trabajo que aplica técnicas de machine learning a pacientes criticos con gripe A, ampliando
su uso mas alla de la COVID-19. Al incluir infecciones por virus emergentes y estacionales
y reflejar la practica real de las UCIs espafiolas, sus resultados son clinicamente relevantes

y extrapolables a los picos epidémicos invernales que cada afio tensionan nuestras UCls.

6.1 Determinantes prondsticos al ingreso en pacientes con neumonia grave por

virus pandémicos (influenza A HIN1 y SARS-CoV-2)

El hallazgo mas importante fue que los dos enfoques analizados, la regresion logistica
multivariable como método estadistico lineal y el algoritmo Random Forest como técnica
de aprendizaje automatico no lineal, mostraron un rendimiento muy similar, con una
precision cercana al 80%. Este resultado coincide con lo descrito en otros estudios que
tampoco hallaron una ventaja clara de los modelos de machine learning cuando se utilizan

unicamente datos basales recogidos al ingreso (33,35,37,39).

Ambos modelos identificaron un grupo de factores que se asociaron de forma consistente
con la mortalidad y que denominamos determinantes mayores: la edad avanzada, la
gravedad clinica inicial, la disfuncion multiorganica y la necesidad temprana de ventilacion
mecanica invasiva. Estas variables fueron comunes a ambos métodos. Ademas, cada
modelo identifico otros factores adicionales, definidos como determinantes menores. En el
caso de Random Forest destacaron la procalcitonina, el dimero D y el lactato, mientras que
en la regresion logistica fueron relevantes la insuficiencia renal aguda y la coinfeccion por
Acinetobacter spp. Este enfoque combinado demuestra que la integracion de datos clinicos
clasicos con biomarcadores especificos permite identificar de forma mas precisa perfiles

de riesgo que pueden pasar desapercibidos si se utiliza un tnico modelo.
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Las pandemias de gripe A(HIN1) y COVID-19 han evidenciado la importancia de contar
con herramientas fiables que permitan identificar de forma temprana a los pacientes con
mayor riesgo de complicaciones. Este reconocimiento precoz facilita un triaje agil, una
asignacion adecuada de recursos y una mejor planificacion de los cuidados intensivos.
Aunque estos escenarios epidémicos puedan parecer excepcionales, cada invierno los
hospitales registran un incremento sostenido de ingresos por infecciones respiratorias
graves, que ejerce una elevada presion asistencial, especialmente en las unidades de

cuidados intensivos.

Diversos autores han empleado machine learning para crear modelos predictivos en
pacientes con COVID-19, pero la mayoria de los estudios se basan en cohortes pequefias y
en pacientes no criticos. Por ejemplo, Huang et al. (77) describieron un AUC del 94,4% en
127 pacientes, de los cuales solo 33 eran criticos. Otros trabajos, como los de Zhu (38),
Gong (50), Aloisio (51) y Liu (78), obtuvieron resultados similares con regresion logistica
lineal en muestras reducidas, con escasa aplicabilidad en pacientes con insuficiencia
respiratoria grave. En este contexto, el presente estudio aporta evidencia més solida al
incluir casi 9.000 pacientes criticos y realizar un analisis multicéntrico en 148 UCI, lo que
refuerza la validez y la generalizacion de los resultados. Ademads, la clasificacion de los
factores de riesgo en determinantes mayores y menores facilita su interpretacion y uso en

la practica clinica.

Implicacion clinica

En la practica diaria, identificar de forma precoz los determinantes mayores permite
realizar un triaje inicial mas rapido y orientar la asignacion prioritaria de camas y recursos
en la UCIL La valoracion complementaria de determinantes menores, como los
biomarcadores inflamatorios y tromboticos, ayuda a anticipar intervenciones dirigidas,
como la anticoagulacion precoz o el inicio temprano de tratamientos antibidticos en casos
seleccionados. Asimismo, reconocer la importancia de la insuficiencia renal aguda y la
coinfeccion bacteriana subraya la necesidad de aplicar protocolos de prevencion de
infecciones nosocomiales y de vigilar estrechamente la funcion renal desde el primer dia

de ingreso. La combinacion de estos enfoques contribuye a optimizar la gestion clinica en

90



situaciones de alta demanda asistencial y puede mejorar de manera significativa los

resultados en pacientes con neumonia grave por virus pandémicos.

6.2 Capacidad predictiva de modelos estadisticos clasicos (regresion logistica
multivariable) en comparacion a modelos de aprendizaje automatico (Random

Forest) en la prediccion de mortalidad

En el primer trabajo también se exploro si la combinacién de ambos enfoques analiticos
podia aportar un valor afadido. En nuestro estudio, ambos modelos mostraron un
rendimiento muy similar, con una precision aproximada del 80%, lo que confirma que la
regresion logistica sigue siendo una herramienta eficaz y plenamente vigente, incluso
frente a algoritmos mas complejos. Este hallazgo coincide con estudios previos que
tampoco encontraron diferencias sustanciales entre métodos estadisticos tradicionales y
técnicas de machine learning cuando se utilizan exclusivamente datos recogidos al ingreso

(33,37,39,79).

El anélisis detallado de las variables seleccionadas revel6 diferencias relevantes. Mientras
que Random Forest identificé como predictores la procalcitonina, el dimero D y el lactato,
la regresion logistica destac6 la insuficiencia renal aguda y la coinfeccion por
Acinetobacter spp. Esta diferencia en los factores identificados sugiere que ambos
enfoques no son redundantes, sino complementarios, ya que aportan perspectivas distintas

que permiten caracterizar mejor el perfil prondstico de cada paciente.

Otros autores han realizado comparaciones similares. Reina-Reina et al. (39) evaluaron
distintas técnicas de machine learning en 1.200 pacientes con COVID-19 y encontraron
una precision de clasificacion superior al 88% en todos los métodos. Aunque Random
Forest mostrd un rendimiento ligeramente mayor, se eligio finalmente la regresion logistica
por su mayor facilidad de interpretacion clinica. No obstante, este estudio no analiz6 las
diferencias especificas entre predictores y solo incluyé un nimero reducido de pacientes
criticos. Pourhomayoun et al. (33), en una cohorte de mas de 2,6 millones de casos,

obtuvieron resultados comparables entre redes neuronales (AUC 89,98%), Random Forest
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(87,93%) y regresion logistica (87,91%), si bien no se compararon estadisticamente estas

diferencias ni se detallo el grado de gravedad clinica de los pacientes incluidos.

Es importante sefialar que muchos estudios previos utilizaron bases de datos muy
desequilibradas, con un porcentaje de mortalidad bajo (41). En cambio, nuestra cohorte
presentd una mortalidad del 25%, claramente superior a la de otras series publicadas (10—
15%) (6,34,39,51,78), lo que aporta mayor solidez y aplicabilidad a los resultados. Este
hecho también explica que el muestreo equilibrado de clases no mejorara de manera
sustancial la capacidad predictiva, confirmando que el desequilibrio no comprometio la

fiabilidad del modelo.

Aunque el aprendizaje automdtico permite identificar interacciones complejas y patrones
no lineales, su aplicacion clinica tiene limitaciones, como la necesidad de grandes
volumenes de datos y una menor facilidad de interpretacion. Esto coincide con otros
estudios que observaron un rendimiento limitado de estos modelos cuando se entrenan
exclusivamente con variables clinicas basales y no incorporan datos dinamicos (37,39,40).
De hecho, los modelos con mejor capacidad predictiva, como los descritos por Wang et al.
(80) y Karasneh et al. (36), incluyeron informacién evolutiva o marcadores inmunoldgicos

que, en la practica, suelen no estar disponibles en las primeras horas de ingreso.

Implicacion clinica

En la practica, la combinacion de la regresion logistica con Random Forest permite
aprovechar las fortalezas de ambos métodos: la interpretacion clara de los factores clasicos
y la capacidad de los algoritmos no lineales para identificar relaciones complejas entre
variables. Este enfoque complementario facilita una deteccién mas precisa y temprana de
los pacientes con alto riesgo de mortalidad, mejora el triaje y la asignacioén de recursos
criticos, y permite un seguimiento mas dirigido mediante biomarcadores especificos,
especialmente en periodos de alta presion asistencial o ante nuevas variantes virales.
Ademas, conocer predictores que varian segun el método empleado genera nuevas

hipdtesis sobre mecanismos fisiopatologicos y abre oportunidades para disefiar estrategias
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terapéuticas personalizadas que puedan beneficiar de forma directa al paciente critico con

neumonia virica grave.

6.3 Impacto del tratamiento antibiotico empirico (EAT) sobre la aparicion de
neumonia asociada a ventilacion mecanica (NAVM) y la mortalidad segun la

presencia o ausencia de coinfeccién bacteriana

El segundo estudio mostrdé que el TAE administrado durante las primeras 24 horas de
ingreso en UCI no se asoci6 con una menor mortalidad ni con menos casos de neumonia
asociada a ventilacion mecanica (NAVM) en los pacientes sin coinfeccion bacteriana
confirmada. Este resultado se mantuvo tras ajustar por factores de confusiéon mediante
propensity score matching, modelos multivariantes y analisis no lineales, lo que refuerza
la solidez de los hallazgos y coincide con otros estudios recientes que no muestran

beneficio en el uso rutinario de antibidticos sin confirmacion microbioldgica (31,61,81,82).

En cambio, en los pacientes con coinfeccion bacteriana, el uso inadecuado de antibidticos
se relaciond con mas NAVM, mayor mortalidad, mas comorbilidad y estancias
hospitalarias mas largas. Estos efectos adversos son especialmente preocupantes en
periodos de alta presion asistencial, cuando los recursos y las camas de UCI son limitados.
Esta evidencia pone de relieve que una estrategia terapéutica inadecuada puede

comprometer tanto la evolucion clinica como la eficiencia del sistema sanitario (75,83).

La evidencia disponible sobre el impacto del antibidtico empirico en la neumonia viral
grave sigue siendo heterogénea y limitada. Algunos trabajos, como el de Wendel-Garcia et
al. (75), describen beneficios en pacientes con COVID-19, relacionando su uso con menor
sobreinfeccion y mortalidad. Sin embargo, otras series con ajustes metodologicos mas
rigurosos no encontraron diferencias significativas (81,82), y varias revisiones insisten en
la baja prevalencia de coinfeccion bacteriana en estos pacientes (59,61,84). Estas
discrepancias probablemente se deben a diferencias en las definiciones de sobreinfeccion,
la falta de ajustes por variables de confusion o la exclusion de casos de gripe A(HIN1), lo

que dificulta comparar y extrapolar resultados. En nuestra cohorte, con una definicion
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estricta de coinfeccion confirmada microbioldogicamente, la prevalencia fue mas alta

(~15%) frente a otros registros (~4%) (61,75).

Se identificaron ademas factores clinicos y bioldgicos asociados a peor evolucion, como la
edad avanzada, el uso de corticoides y la afectacion radioldgica extensa, en linea con
estudios previos (83,85). Aunque biomarcadores como la procalcitonina y la proteina C
reactiva pueden ayudar a orientar el manejo inicial, su utilidad diagnoéstica es limitada. El
estudio de Galli et al. (31) mostrd que sus niveles al ingreso no discriminan de forma fiable
la coinfeccion, lo que resalta la importancia de valorar siempre la evolucion clinica y la

microbiologia, y de monitorizar estos marcadores de manera secuencial.

Por otro lado, el uso indiscriminado de antibidticos de amplio espectro no mostrd
beneficios en la supervivencia y se asocid a mas complicaciones, como un mayor riesgo de
NAVM, la aparicion de bacterias multirresistentes y estancias mdas prolongadas
(56,57,64,86,87). En Espana, durante la pandemia, la incidencia de NAVM se duplicé (76),
y mas del 80% de los pacientes recibieron antibidticos empiricos pese a la baja tasa de
coinfeccion confirmada (31,81,82,83). Este escenario refuerza la necesidad de protocolos
claros y programas de optimizacion del uso de antimicrobianos (PROA) que promuevan la
desescalada precoz, el diagndstico rapido y la revision constante de la indicacion

antibiotica.

En conjunto, estos resultados apoyan que el tratamiento empirico debe reservarse a
pacientes con alta sospecha clinica o microbiolédgica de coinfeccion. La recogida precoz de
muestras, el uso de técnicas de diagndstico rapido y la interpretacion cuidadosa de los
biomarcadores permiten una aproximacion mas segura e individualizada. La implantacion
de programas PROA multidisciplinares, con la implicacion de intensivistas, microbiologos,
farmacéuticos y especialistas en enfermedades infecciosas, resulta clave no solo para
mejorar la evolucion clinica, sino también para aprovechar mejor los recursos disponibles,

sobre todo en situaciones de alta presion asistencial.

Implicacion clinica
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Los datos de este estudio apoyan un uso mas racional de los antibidticos en pacientes
criticos con neumonia viral grave. En la practica, el tratamiento empirico deberia reservarse
a pacientes con alta sospecha de coinfeccion bacteriana, en especial aquellos con factores
de riesgo claros como mayor gravedad clinica, edad avanzada, inmunosupresion,

afectacion radioldgica extensa y disfuncion organica.

En estos casos, es fundamental recoger muestras microbioldgicas de calidad de forma
precoz, utilizar técnicas de diagnostico rapido y reevaluar la necesidad de continuar el

tratamiento segun la evolucion clinica y los resultados de laboratorio.

La implantacion de protocolos de actuacion claros y programas de optimizacion de
antimicrobianos (PROA), coordinados por equipos multidisciplinares, resulta clave para
guiar la toma de decisiones, evitar el uso innecesario de antibidticos, reducir
complicaciones como las resistencias y optimizar los recursos en contextos de alta presion

asistencial.
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6.1. Limitaciones

A pesar del tamafio de la cohorte y del uso de métodos estadisticos avanzados, este estudio

presenta varias limitaciones que deben tenerse en cuenta al interpretar los resultados.

En primer lugar, se trata de un andlisis observacional retrospectivo basado en registros
asistenciales. Esto implica que algunos datos relevantes estaban incompletos o no
disponibles, como determinados biomarcadores y fechas clave. Ademas, la informacion no
fue monitorizada ni auditada externamente, lo que podria afectar su exactitud y

consistencia.

Los criterios empleados para definir la coinfeccion y la adecuacion del tratamiento
antibiotico tampoco fueron homogéneos entre los hospitales participantes, lo que introduce
variabilidad. Aunque se aplicaron técnicas como el propensity score y modelos de
aprendizaje automatico, persiste el riesgo de factores no medidos que puedan haber influido

en los resultados.

No se dispuso de informacion detallada sobre el momento exacto del diagnostico de la
neumonia asociada a la ventilacion ni sobre la duracion real del tratamiento antibiotico.
Dado que el andlisis se centrd en las primeras 24 horas de ingreso, no fue posible evaluar
la evolucidon clinica posterior ni otros factores que podrian haber condicionado los
desenlaces. Asimismo, los hospitales utilizaron protocolos diagnosticos diferentes y no se
recogieron datos sobre biomarcadores inmunitarios avanzados ni sobre estrategias de

desescalada antibioética.

Otra limitacion importante es que la clasificacion de variables clave se realizo de forma
retrospectiva. Por ejemplo, la adecuacion del tratamiento se determino segun los resultados
de los cultivos, lo que puede inducir errores si el aislamiento fue incompleto o incorrecto.
También es posible que algunas coinfecciones pasaran desapercibidas, especialmente si no
se recogieron muestras microbioldgicas de calidad en las primeras 48 horas. Esta

heterogeneidad en las practicas clinicas puede haber afectado la consistencia de los datos.
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Por ultimo, todos los pacientes procedian de UCI espaiiolas, lo que limita la aplicabilidad
de los resultados a otros sistemas sanitarios o entornos asistenciales. Tampoco se
recogieron variables como nivel socioecondmico, etnia o evolucion clinica a lo largo de la
estancia, y se observo cierto desequilibrio entre los grupos de comparacion. Todos estos
factores pueden influir tanto en la validez interna como en la generalizacion de los

hallazgos.
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7. Conclusiones

Los resultados de este estudio confirman la hipdtesis inicial de esta tesis: las decisiones
diagndsticas y terapéuticas adoptadas durante las primeras 24 horas de ingreso en UCI
influyen de forma decisiva en la evolucion de los pacientes con neumonia grave por virus
pandémicos. A partir de dos estudios observacionales multicéntricos y del uso combinado
de modelos estadisticos y de aprendizaje automadtico, se obtienen las siguientes

conclusiones:

1. Factores pronosticos de mortalidad al ingreso.
La estratificaciéon temprana del riesgo basada en variables clinicas accesibles
permite identificar con alta consistencia un conjunto de determinantes mayores de
la mortalidad: edad avanzada, gravedad clinica inicial, disfuncion organica y
necesidad de ventilacion mecanica invasiva. Estos factores mantienen su relevancia
independientemente del método analitico empleado, lo que subraya su utilidad en
la identificacion de pacientes de peor prondstico y en la planificacion del soporte
intensivo.

2. Valor complementario de los enfoques analiticos.
La comparacion entre regresion logistica multivariable (GLM) y Random Forest
mostré que ambos modelos alcanzan un rendimiento predictivo similar (AUROC
~0,76), aunque ofrecen perspectivas diferentes. La regresion logistica facilita una
interpretacion clara del peso de cada variable, mientras que Random Forest permite
identificar interacciones no lineales y patrones complejos, destacando
determinantes menores como biomarcadores inflamatorios (lactato, procalcitonina,
dimero D) que enriquecen la estratificacion del riesgo. La combinacion de ambos
enfoques proporciona una visidon mas completa y robusta, y sienta un marco
analitico replicable en futuros estudios.

3. El tratamiento antibiotico empirico debe ser selectivo y guiado.
En pacientes con coinfeccion bacteriana confirmada, la administracion precoz y
adecuada de antibidticos se asocid con menor mortalidad y menos complicaciones
graves. Por el contrario, en pacientes sin coinfeccion documentada, el uso

sistematico de antibidticos empiricos no redujo la mortalidad ni la incidencia de
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NAVM. Estos hallazgos apoyan una prescripcion mas individualizada, basada en
criterios clinicos y microbiologicos objetivos, e integrando biomarcadores rapidos
y métodos diagnosticos que permitan identificar precozmente la coinfeccion, en
linea con las recomendaciones de los programas de optimizacion del uso de

antimicrobianos (PROA).

En conjunto, estos resultados demuestran que una medicina intensiva de precision,
sustentada en modelos predictivos solidos y en un uso racional de los antibidticos, es
posible y se traduce en beneficios clinicos para los pacientes con neumonia grave por virus
pandémicos. Este trabajo sienta las bases para desarrollar protocolos de decision adaptados
al riesgo individual y consolidar una practica asistencial mas sostenible, eficiente y basada

en la evidencia.
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8. Lineas de futuro derivadas de la tesis

1.

Ensayos clinicos sobre estrategias guiadas por biomarcadores y diagndstico
rapido.

Se necesitan ensayos clinicos aleatorizados que evaluen estrategias combinadas.
Por un lado, el uso de paneles moleculares de diagnostico rapido, especialmente en
pacientes con sospecha clinica de coinfeccion bacteriana, permitiria confirmar
precozmente la presencia de patdogenos respiratorios e iniciar el tratamiento
antibidtico de forma temprana y dirigida. Por otro, la procalcitonina y otros
biomarcadores deben validarse como herramienta principal para suspender de
manera segura los antibioticos en pacientes sin evidencia de coinfeccion. Estas
estrategias podrian reducir la prescripcion innecesaria de antibidticos y su impacto
sobre la mortalidad, la neumonia asociada a ventilacion y la resistencia bacteriana.
Seguimiento completo del ingreso en UCI y uso dindmico de modelos
prondsticos.

La recogida de datos mas alld de las primeras 24 horas, incluyendo evolucion
clinica, complicaciones y biomarcadores seriados, permitira desarrollar modelos
pronosticos dindmicos. Estos modelos ayudaran a evaluar como la seleccion y
desescalada de antibioticos afectan los resultados clinicos. Esta aproximacion debe
basarse en métodos de inferencia causal y en los principios de los programas de
optimizacion de antimicrobianos (PROA).

Validacion externa de los modelos predictivos.
Los modelos desarrollados (GLM y Random Forest) deben validarse en cohortes
externas de distintos paises y niveles asistenciales. Esto permitird evaluar su
aplicabilidad y ajustar su rendimiento en contextos clinicos diversos.

Integracion de biomarcadores inmunitarios y tecnologias Omicas.
La incorporacion de marcadores inmunolégicos y plataformas Omicas
(transcriptomica, protedmica, metabolomica) permitird caracterizar mejor la
respuesta del huésped e identificar subgrupos con diferente riesgo. Estas
herramientas complementaran el diagnostico microbiologico rapido y la
monitorizacion de biomarcadores para apoyar decisiones individualizadas sobre el

inicio y la retirada de antibioticos.
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5. Desarrollo de sistemas de soporte clinico basados en inteligencia artificial.
Integrar los modelos predictivos en sistemas de soporte clinico automatizados
facilitara la toma de decisiones en tiempo real. Estas herramientas podran emitir
alertas para iniciar antibidticos si los paneles moleculares confirman coinfeccion
bacteriana en pacientes con sospecha clinica, o recomendar su suspension si los

biomarcadores indican baja probabilidad de infeccion.

Estas lineas de investigacion contribuiran a consolidar un enfoque mas seguro y eficiente
en el uso de antibiodticos en pacientes criticos con neumonia viral, combinando diagnodstico
rapido para iniciar el tratamiento cuando sea necesario y biomarcadores fiables para

suspenderlo cuando no esté indicado.
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10. Anexos

10.1 Material suplementario Articulo 1

Machine Learning-Based Identification of Risk Factors for ICU Mortality in 8,902

Table S1: Performance of multivariate linear model (GLM) for ICU mortality.

Critically Ill Patients with Pandemic Viral Infection

Point estimates and

Apparent

True prevalence *

prevalence

x

Sensitivity *
Specificity *

Positive
Negative
Positive
Negative
False T+
False T-
False T+
False T-

predictive
predictive
1ikelihood
Tikelihood
proportion
proportion
proportion
proportion

95% CIs:

value *
value *
ratio

ratio

for true D-
for true D+
for T+ =

for T- *

Correctly classified proportion

* Exact CIs

Supplementary material

Figure S1: Area under ROC curve (AUC) for multivariate lineal model for ICU mortality
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Table S2: Colinearity study by VIF (variance inflation factors) determination. For each
variable the VIF number shoud be lower than 5. No colinearity was observed between teh
variables included in the model.

(Cut: cut-off; AB: antibiotics; CPK: creatine phospokinase; DD: D dimer; MR _SA: methicillin-resistant S. Aureus; MV:
invasive mechanical ventilation, WBC: White blood cells; COPD: chronic obstructive pulmonary disease; dis:
disfunction; Chr_Card_dis; chronic cardiac disease; HIV: Human immunodeficiency virus; AKI: acute kidney injury;
CRP:C-reactive protein; GAP_ICU _cut: time elapsed between diagnosing pandemic viral infection and admission to
ICU; Chr_renal dis: Chronic renal disease; ID: immunosuppression ; Rx-cutoff: > 2 fields with infiltrations in chest X-
ray; PCT: procalcitonin; MS_SA: Methicillin-sensitive S. aureus; GAP_diagnsosis_cut: Time from symptoms onset to
diagnosis; hematol dis: Hematologic disease; LDH: Lactate dehydrogenase)
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Gender Age_cut APACHEII_cut SOFA_cut GAP_ICU_cut GAP_diagnosis_cut

1.244341 1.276926 1.208923 1.226265 1.093180 1.047728
shock asthma COPD chr_card_dis chr_renal_dis hematol_dis
1.356423 1.045245 1.145751 1.120188 1.235726 1.267477
pregnancy obesity diabetes HIV ID steroids
1.194002 1.074920 1.166280 1.038319 1.280052 1.120085
AB_admission MV_admission miocardial_dis AKI Rx_cutoff LDH_cut
1.057822 1.334363 1.045954 1.494582 1.094705 1.207255
CPK_cut WBC_cut Creatinine_cut CRP_cut PCT_cut lactate_cut
1.264428 1.059907 1.390359 1.376125 1.979526 1.536026
DD_cut klebsiella Acinetobacter S.pneumoniae MS_SA E.coli
1.633889 1.014681 1.011345 1.062170 1.025214 1.009540
MR_SA Pseudomonas aspergillus antiviral_vaccine
1.013241 1.019359 1.017844 1.072473

Table S3: Cross-validation of multivariate linear (GLM) model.

Confusion Matrix and Statistics

Reference
Prediction 0 1
0 1866 509
1 116 179

Accuracy : 0.7659

95% CI : (0.7494, 0.7819)
No Information Rate : 0.7423
P-value [Acc > NIR] : 0.00263

Kappa : 0.2479

Mcnemar's Test P-value : < 2e-16
Sensitivity : 0.9415
Specificity : 0.2602

Pos Pred value : 0.7857

Neg Pred value : 0.6068

Prevalence : 0.7423

Detection Rate : 0.6989

Detection Prevalence : 0.8895

Balanced Accuracy : 0.6008
'"Positive’ Class : 0

Development of the GLM linear model for mortality with class imbalance correction

Applying the ROSE package to the training set reduced the population from 6232
patients to 3152 patients. Of these, 1606 died, giving an estimated mortality rate of
50.9%, twice the real rate (25%).
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The variables included in the balanced model were the same as those used in the class
imbalance model: Male, age cut-off, APACHEII cut-off, SOFA cut-off, ICU GAP cut-off,
GAP diagnosis cut-off, shock, asthma, COPD, chronic heart disease, chronic kidney
disease, haematological disease, pregnancy, obesity, diabetes, HIV, immunosuppression,
steroids, antibiotic treatment on ICU admission, mechanical ventilation on ICU admission,
Myocardial dysfunction, acute kidney injury (AKI), > 2 areas of infiltration on chest X-
ray, lactate dehydrogenase cut-off, creatine phosphokinase cut-off, leukocyte cut-off, CRP
cut-off, PCT cut-off, lactate cut-off, D-dimer cut-off, Klebsiella spp, Acinetobacter spp, S.
pneumoniae, methicillin-resistant  Staphylococcus  aureus, methicillin-sensitive
Staphylococcus aureus (MSSA), E. coli, methicillin-resistant Staphylococcus aureus
(MRSA), Pseudomonas aeruginosa, Aspergillus spp and antiviral vaccine.

In Figure S2, the variables included in the models can be seen with their respective Odd
Ratios and confidence intervals. The variables independently associated with mortality
were the same as those observed in the unbalanced model.

Figure S2: Forest-Plot with the variables included in the balanced linear model with Odds
Ratio.
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Table S4 : Performance of balanced linear model

Point estimates and 95% CIs:

Apparent prevalence * (0.24, 0.27)
True prevalence * (0.41, 0.45)
Sensitivity * (0.40, 0.46)
Specificity * (0.85, 0.89)
Positive predictive value * (0.68, 0.75)
Negative predictive value * (0.65, 0.69)
Positive Tikelihood ratio 3.93)
Negative likelihood ratio (0.62, 0.69)
False T+ proportion for true D- * (0.11, 0.15)
False T- proportion for true D+ ¥ (0.54, 0.60)
False T+ proportion for T+ % (0.25, 0.32)
False T- proportion for T- # (0.31, 0.35)
Correctly classified proportion * (0.67, 0.70)

* Exact CIs
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Figure S4: area under ROC curve of balanced mortality linear model
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Figure S5: Categories profiles according to the model. A = linear model , B=no linear
model
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Categories profiles in Logistic Regression

Creatinine_cut

DD_cut CRP_cut TP
== FN
GAP_ICU_cut CPK_cut ==TN
GAP_diagnosis_cut Age_cut
LDH_cut IAPACHE[I_cut
PCT_cut prediccion_rf
Rx_cutoff prediccion
SOFA_cut lactate_cut
WEC_cut
Categories profiles in Random Forest
Creatinine_cut

DD_cut CRP_cut TP
—— FP
A == FN
GAP_ICU_cut y N CPK_cut e TN

GAP_diagnosis_cut Age_cut

LDH_cut JAPACHEIL cut

PCT_cut prediccion_rf

Rx_cutoff prediccion

SOFA_cut lactate_cut
WBC_cut

Abbreviations : cut: cut-off; APACHE II: Acute Physiology and Chronic Health Evaluation; SOFA: Sequential organ
failure assessment; AB: antibiotics; CPK: creatine phospokinase; DD: D dimer; MR_SA: methicillin-resistant S. Aureus;
MYV: invasive mechanical ventilation; WBC: White blood cells; COPD: chronic obstructive pulmonary disease; dis:
disfunction; Chr_Card _dis; chronic cardiac disease; HIV: Human immunodeficiency virus; AKI: acute kidney injury;
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CRP:C-reactive protein; GAP_ICU_cut: time elapsed between diagnosing pandemic viral infection and admission to
ICU; Chr_renal dis: Chronic renal disease; ID: immunosuppression ; Rx-cutoff: > 2 fields with infiltrations in chest X-
ray; PCT: procalcitonin; MS_SA: Methicillin-sensitive S. aureus; GAP_diagnsosis_cut: Time from symptoms onset to
diagnosis; hematol dis: Hematologic disease; LDH: Lactate dehydrogenase)
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10.2 Material suplementario Articulo 2

Does Empirical Antibiotic Use Improve Outcomes in Ventilated Patients with
Pandemic Viral Infection? A Multicentre Retrospective Study

Supplementary Material

Statistical analysis

First, we performed a descriptive analysis distinguishing between patients with and
without empirical antibiotic treatment (EAT) on ICU admission. Continuous variables are
presented as median and quantiles (Q1-Q3) and categorical variables as numbers (n) and
percentages. Chi-square and U-Mann-Whitney tests were used to compare between
groups.

Second, we performed a descriptive analysis differentiating patients with and without the
presence of bacterial co-infection (COI). Within each of these subgroups, we
differentiated between those with and without EAT.

Third, within the subgroup of patients with COI, we examined the impact of appropriate
EAT (AEAT) on mortality, development of VAP, ICU and hospital LOS, and IMV days.
For this analysis, patients with IAET were those with IEAT according to microbiological
sensitivity and those without AET on ICU admission.

Fourth, within the subgroup of patients without COI, to analyse the impact of EAT on the
study objectives, and to convert an observational study into a quasirandomized study, a
propensity score matching analysis was performed. After matching, the effect of EAT on
all cause ICU mortality and on the development of VAP was examined by Kaplan-Meier
plot and differences were determined by Log Rang test.

In addition, a Cox proportional hazards (COX) and GLM model was used to determine
whether EAT was a factor associated with VAP or ICU mortality in multivariate adjusted
analysis. The results are expressed as hazard ratio (HR) and its 95% confidence interval
(CI) for COX model and as Odds ratio (OR) and its 95% CI for GLM.

To assess whether the proportional hazard of the Cox model holds, the Schoenfeld residual
test was used. The Schoenfeld test uses these residuals to test the proportional hazards
hypothesis by examining whether they are correlated over time. If the test is not significant
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(no correlation), the Schoenfeld residuals are considered to be uncorrelated over time,
suggesting that the proportional hazards hypothesis is satisfied and that the effect of the
predictor is constant.

Fifth: In addition, to evaluate the impact of EAT on patients without COI, a non-linear
regression analysis (Random Forest - RF) was performed to study whether there are non-
linear associations between EAT use and crude mortality or the deve-lopment of VAP that
cannot be evidenced by linear analysis (GLM). Random forest models are a powerful non-
linear tree-based machine learning technique. The developed model was configured to
make 500 random trees, with a minimum number of 15 variables per tree. The performance
of the RF model was evaluated using out-of-bag (OOB) error. This method allows the
prediction error of random forests, boosted decision trees and other machine learning
models to be measured using bootstrap aggre-gation. We also plotted the importance of the
different variables for the model, which is related to the average loss of accuracy and the
Gini index for the classification mo-del. The Gini index is a “measure of disorder”,
represented as “MeanDecreaseGini”, which means that the higher the measure, the greater
the importance in the generated models, since values close to 0 for the Gini index imply
more disorder and values close to 1 imply less disorder. The higher this measure, the more
variability it will contri-bute to the dependent variable. (Figure 1)

Definitions

e Respiratory co-infection (COI) was suspected if a patient presented with signs and
symptoms of lower respiratory tract infection, with radiographic evidence of a
pulmonary infiltrate with no other known cause (23,30,31). Coinfection had to be
confirmed by laboratory testing using Centers for Disease Control and Prevention
(CDC) criteria . Only respiratory infection microbiologically confirmed with a
respiratory specimen or serology obtained within 2 days of ICU admission was
considered community-acquired coinfection. The diagnosis of coinfection was
considered “definitive” if respiratory pathogens were isolated from blood or pleural
fluid and if serological tests confirmed a fourfold increase of atypical pathogens,
including Chlamydia spp., Coxiella burnetti and Moraxella catarrhalis. Only
patients with confirmed microbiologic diagnosis were included in the present
analysis.

e Ventilator-associated pneumonia (VAP) was defined as a respiratory infection
occurring in mechanically ventilated patients according to the guidelines of the
European Respiratory Society (ERS), the European Society of Intensive Care
Medicine (ESICM), the European Society of Clinical Microbiology and Infectious
Diseases (ESCMID), and the Asociacion Latinoamericana del Térax (ALAT). VAP
was defined as pneumonia occurring more than 48 h after endotracheal intubation
with fever, without other apparent causes, with new or increased sputum
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production, positive endotracheal as-pirate (ETA) culture (>10° CFU/mL), or
bronchoalveolar lavage (BAL) culture (>10* CFU/mL), with at least one respiratory
pathogen known to cause pneumonia, and with radiographic evidence of
nosocomial pneumonia.

Empirical antibiotic treatment (EAT) were selected based on specialist clinical
judgment and internal ICU protocols, which could subsequently be modified by the
ASP (antimicrobial stewardship program) team, based on the clinical response in
the days following VAP diagnosis or final microbiology results.

Appropriate empiric antibiotic treatment (AEAT): Was defined as the
administration of an antibiotic on admission to the ICU before the microbiological
results are available and adjusted to the susceptibility of the pathogen when the
microbiological results are available. AEAT was de-ermined by the attending
physician in each center.

Inappropriate empirical antibiotic treatment (IEAT): Was defined as antibiotic
treatment administered on admission to the ICU that was not adapted to the
susceptibility of the pathogen when microbiological results are available. In
addition, the use of antibiotics at ICU admission in patients with no bacterial co-
infection was also included in this definition.

Multi-drug-resistant bacteria (MDR) are defined as those isolated strains that are
not sensitive to at least one agent from three families of antimicrobials.

Acute Kidney injury (AKI): The diagnosis of AKI was considered according to the
Acute Kidney Injury Network (AKIN) described in the international KDIGO
guidelines.

GAP-UCI: was defined as the time elapsed between diagnosing pandemic viral
infection and admission to ICU.

GAP-Diagnosis: Was defined as the period of time between the onset of clinical
symptoms and the microbiological diagnosis of the pandemic viral infection.
Immunosuppression: this variable includes patients with active solid organ cancer,
chemotherapy and patients on steroid therapy with a dose of prednisone > 30
mg/day or equivalent on prolonged therapy.

Shock: was defined as any patient with noradrenaline requirements at a dose > 0.1
mcg/kg/min during the first hours of ICU admission.

Chest x-ray cutoff: more than 2 lung fields occupied by infiltrates on chest x-ray
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Figure S1: Flow Chart of included patients. (IMV: invasive mechanical ventilation; COL:
coinfection; EAT: empiric antibiotic treatment; VAP: ventilator-associated pneumonia; AEAT: appropriate
empiric antibiotic treatment; IEAT: inappropriate empiric antibiotic treatment; ICU: intensive care unit)

8902 critically ill patients with
Pandemic virus infection

4627 patients excluded due to no IMV

78 patients excluded due to COI by fungal diagnosis

4197 ventilated critically ill patients

Bacterial coinfection (COl)
=654 (15.6%)
APACHE Il =18(13-24)'
VAP n= 135 (20.6%)°
ICU mortality n=264 (40 4% *

EAT n=526 (95.7%)
APACHE Il =18 (13-24
VAP n=125 (20.0%)°
ICU mortality n= 248 (36.6%)""

No- EAT n=28 (4.3%)
APACHE Il= 14 (10-18)°

VAP n=10 (35.7%)"°
ICU mortality n=16 (57 1%)"2

!

AEAT n=541(86.4%)
APACHE Il =19 (14-24)'¢
VAP n=04 (17.4%)2!

ICU mortality n= 208 (38.4%)%

}

IEAT n=85(13.6%)
APACHE Il =18 (13-21)2°
VAP n=31 (36.5%)%
ICU mortallity n=40(47 .1%)

|

3702 (88.29) received EAT No bacterial coinfection (No-COI)

n=3543 (88.4%)
APACHE Il = 15(12-202
VAP n=608 (17 2%)'

ICU mortality n= 1202 (33.9%)°

|
| |

EAT n=3076 (86.7%) No-EAT n=467 (13.3%)
APACHE Il = 15(12-21)"® APACHE lI= 15(12-18)"*
VAP n=530(17.2%)'® VAP n=T78 (16.7)"¢
ICU mortality n= 1059(34.4%)"" ICU mortality n=143 (30.6%)®

pvalue: 1 vs 2p<0.001; 3 vs 4 p=0.03; 5 vs 6 p<0.001; 7 vs 8 p<0.001; 9vs 10p=0.07; 11vs 12p=0.09
13vs 14p=001; 15vs 16p=082; 17vs 18p=0.11;19vs 20p=0.17; 21vs 22 p<0.001; 23vs 24 p=0.16
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Table S1: Microorganisms isolated (in order of frequency) in 654 patients with bacterial
co-infection (note that 54 patients (8.2%) had 2 microorganisms isolated and 4 (0.6%) had
3 microorganisms isolated simultaneously).

Microorganisms isolates n (%)*
Streptococcus pneumoniae 217 (33.2)
Methicillin-sensitive Staphylococcus aureus 107 (16.4)
Pseudomonas aeruginosa 88 (13.4)
Klebsiella spp. 47(7.2)
Haemophilus influenzae 41 (6.3)
Streptococcus pyogenes 41 (6.3)
Methicillin-resistant Staphylococcus aureus 35(5.3)
Escherichia coli 31(4.7)
Acinetobacter baumannii 15(2.3)
Serratia spp. 15(2.3)
Stenotrophomonas malthophilia 13 (2.0)
Enterobacter spp. 8(1.2)
Moraxella catarrhalis 7(1.1)
Chlamydia pneumoniae 5(0.8)
Legionella pneumophilia 5(0.8)
Mycoplasma pneumoniae 5(0.8)
Citrobacter spp. 4(0.6)
Coxiella burnetii 3(0.4)
Morganella morganii 3(04)
Streptococcus agalactiae 3(0.4)
Proteus spp. 3(04)
Neisseria pneumoniae 3(0.4)
Others 5(0.8)
Total 704

* percentages are considered over the total number of patients.
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Figure S2: Variables associated with the development of ventilator-associated

pneumonia (VAP) in multivariate logistic regression model (GLM).

Variable N DOdds ratio 3]

AKI 0434 ] Reference
1220 L 0.82(065, 163) 0.756

EAT o 28 L ] Reference
1828 L 1.37({0565,3.66) 0490

Global IEAT 0541 ] Reference
1113 223(131,373) 0003

Diabetes 0597 n Reference
167 1.68{080,3.11) 0.0%8
D-dimer 654 ] 1.00(1.00,1.00) 0.530
Lactate B&4 i 0.98{083,1.02) 0345
CPK 654 ] 1.00(1.00,1.00) 0349
PCT B&4 L} 098{088,1.00) 0088
CRP 654 | | 1.00{1.00,1.00) 0814

Chest x-ray cutoff 0294 [ ] Referance
1380 - 162(107,249) 0024
APACHEN B54 0.075

(CRP: C-reactive protein: CPK: creatine phosphokinase; PCT: procalcitonin; AKI: acute kidney injury; Chest x-ray cutoff: more than 2 lung fields

0.97 (0.94, 1.00)

occupied by infiltrates on chest x-ray; EAT: Empiric antibiotic treatment; Global IEAT: global inappropriate empiric antibiotic treatment include patients

with IEAT plus patients without EAT)
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Table S2: Patients with COI according to ICU outcome.

Variables

Age, years

Male sex
APACHE |l score
SOFA score
Gap-ICU, days
Chest x-ray cutoff

WBC x103

LDH UL

C-RP mg/mL
PCT ng/mL
Creatinine mg/dL
CPK ng/mL
Lactate mmol/L
D-dimer UL

COPD

Asthma

Chr. Heart Dis
Chr.Renal Dis.
Hematologic Dis.
Pregnancy

Obesity

Diabetes
Immunosuppression

Corticosteroids

EAT

AEAT

Global IEAT *

VAP

AKI

Myocardial dysfunction
Shock

LOS ICU, days
LOS Hospital, days
IMV days

Survivors (n=390)
General Characteristics

57 (47-68)

257 (65.9)

18 (13-23)
7(5-9)
1(0-2)

200 (51.3)
Laboratory

8.5 (4.7-13.5)
560 (456-720)
29.0 (16.0-76.0)
4.12 (0.83-19.7)
1.0 (0.74-1.59)
320 (140-600)
2.9(2.0-4.14)
5600 (2600-9540)

Comorbidities

Treatment and complications
223 (57.2)
378 (96.9)
336 (86.2)
57 (14.6)

79 (20.3)
107 (27.4)
2(0.5)
290 (74.4)
Outcomes
19 (12-34)
33 (22-49)
14 (8-27)

Non-survivors (n=264)

63 (52-74)
176 (66.7)
20 (15-26)
8 (5-10)
1(0-3)
160 (60.6)

8.4 (35-14.0)
620 (670-770)
32.2(18.1-84.5)
8.26(1.32-24.4)
1.25 (0.86-2.0)
315 (140-570)
3.5 (2.10-5.35)
7340 (3760-13,560)

47 (17.8)
13 (49)
35(13.3)
28 (10.6)
28 (10.6)
21(7.9)
74 (28.0)
27 (102)
46 (17.4)

177 (67.0)
248 (93.9)
213 (80.7)
56 (21.2)
56 (21.2)
113 (42.8)
13 (4.9)
208 (78.8)

11 (5-23)
14 (6-27)
11 (4-22)

p-value

<0.001
0.900
<0.001
0.002
<0.001
0.020

0.510
0.140
0.240
0.002
<0.001
0.810
0.010
<0.001

0.490
0.310
0.001
0.050
0.001
1.000
1.000
0.320
<0.001

0.010
0.090
0.070
0.030
0.840
<0.001
0.001
0.220

<0.001
<0.001
<0.001

#Continuous variables are shown as median values and percentiles Q1-Q3. Categorical variables are shown as number of cases (n) and percentage (%).
(LDH: Lactate dehydrogenase; CRP: C-reactive protein: CPK: creatine phosphokinase; PCT: procalcitonin, VAP: ventilator associated pneumonia; AKI:
acute kidney injury, LOS length of stay, ICU: intensive care units; Gap-ICU: Time in days from hospital admission to ICU admission; Chest x-ray cutoff:
more than 2 lung fields occupied by infiltrates on chest x-ray; MDR: multi-drug resistant bacteria ; * Global IEAT: include patients with IEAT plus patients

without EAT)
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Figure S3: Variables associated with the crude ICU mortality in multivariate logistic
regression model (GLM).

Variable N Odds ratio 4]
Myocardial dysfunction 0638 I Reference

1 15 L 15.9€ (4.06, 108.50) <0.001
AKI 0434 - Reference

1220 . 127(083,1.92) 0.265
EAT 0 28 - Reference

1626 | R 0.58 (0.23, 1.46) 0.252
Global IEAT 0 541 I Reference

1113 - ] “ 1.89(1.13,3.14) 0.015
Immunosuppression 0577 - Reference

177 e 1.7 (0.95, 3.30) 0.071
Hematologic disease 0612 - Reference

1 42 ——I— 1.84 (0.83, 4.20) 0.138
Chronic heart disease 0 597 [ ] Raference

1 57 . [ ] . 2.45(1.33, 4.59) 0.004
D-dimer 654 - 1.00 (1.00, 1.00) 0618
Lactate 654 [ 1.01(0.97,1.04) 0.559
peT 654 - 1.02 (1.01, 1.04) <0.001
Chest x-ray cutoff 0 294 I Reference

1 360 —a— 1.78(1.24,2.57) 0.002
GAP-UCI 654 l 1.09 (1.04, 1.15) 0.001
SOFA 654 . 1.05 (0.99, 1.12) 0.095
APACHEN 654 ] 102 (0.89, 1.04) 0201
Age 654 l 1.02 (1.00, 1.03) 0.015

(AKI: acute kidney injury; EAT: empiric antibiotic treatment ; PCT: procalcitonin; Gap-ICU: Time in days from hospital admission to ICU admission;
Chest x-ray cutoff: more than 2 lung fields occupied by infiltrates on chest x-ray; Global IEAT: include patients with IEAT plus patients without EAT)

Propensity Score Matching

In an attempt to address the bias of an observational study and to adjust for different
covariates between groups receiving and not receiving EAT, we performed propensity
score matching using the '"Matchlt' package of the 'R’ statistical programme (Ho, D. E.,
Imai, K., King, G., Stuart, E. A. Matchlt: Nonparametric Preprocessing for Parametric
Causal Inference. Journal of Statistical Software, 2011;42(8). doi:10.18637/jss.v042.108).

Matchlt provides a simple and straightforward interface for covariate balancing in
observational studies using Mahalanobis distance matching with substitution and balance
assessment. We have implemented the "Full" method for optimal full matching with a
caliper of 0.2, which is the width of the calipers to be used in the matching. It should be a
numerical vector with each value named according to the variable to which the caliper
applies. For positive values, the distance between the paired units must not be greater

127




than the caliper provided; for negative values, the distance between the paired units must

be greater than the absolute value of the caliper provided.

After propensity score matching, there was a loss of only 23 patients who could not be
matched. Finally, the matched cohort has 467 controls without EAT and 3053 cases
receiving EAT. The summary of balance for all data and matched data are show in Table

S5

Table S3: Summary of balance for all data (no-matched) and matched data

Table 55

Summary of Balance for All Data

distance
Genderd
Gender!
Age
GAP_ICU
APACHEI
SOFA
Rx_cutolfo
Rx_cutoffl
PCT

]
steroidst
steroids|
A0

ARl
shocko
shack!

Means Treated

0.5717
0.3427
06573
58.5217
25408
16,7395
6.5269
0.3524
0.6476
6.5431
7856.7859
0.4125
0.5875
0.8231
01769
0.3628
0.6372

Summary of Balance for Matched Data

distance
Genderd
Gender]
Age
GAP_ICU
APACHEN
SOFA
Rx_cutoffn
Rox_cuneffl
PCT

Do
steroidso
steroidsi
AKIO

AKIT
shockd
shockl

Means Treated

0.8720
0.3416
06584
58.5155
24860
16.6895
6.5106
03518
0.6482
6.3828
7840.1666
04107
0.5893
0.8248
0.1752
0.3626
06374

Means Control

0.8453
0.3769
06231
56.5096
28817
15,8594
5.8387
0.2548
0.7452
46518
6357 BATT
0.5353
0.4647
0.8779
0.1221
0.4368
0.5632

Means Control

0.8720
0.3438
0.6562
60,8277
27513
17.2528
6.2740
0.4261
0.5739
5.7892
7057 0687
0.4058
0.5942
0.8012
0.1988
0.4392
0.5608

Std. Mean Diff.

0.0008
-0.0045
0.0045
0.1649
0.0706
-0.0761
0.0791
0.1556
0.1556
00416
©0.0309
0.0100
0.0100
0.0618
00618
0.1594
0.1594

std. Mean Diff.

0.5073
.0721
oor2
0.1435
0.0855
01188
0.2301
0.2043
0.2043
0.1326
0.0624
0.2484
0.2494
0.1436
01436
0.1540
0.1540

Var. Ratio

1.0001

1.0657
1.5335
1.0492
1.0618

1.3046
2.5951

Var. Ratio

0.8509

0.7814
1.5391

1.4079
1.3276

1.5148
34398

eCDF Mean

0.0018
0.0021
0.0021
0.0366
0.0958
0.0501
0.0259
0.0744
0.0744
0.0468
0.0348
0.0049
0.0049
0.0236
0.02386
0.0766
0.0766

oCOF Mean

0.1380
0.0342
00342
0.0262
0.0955
00454
0.0753
0.0876
0.0976
0.0595
0.0476
0.1228
0.1228
0.0548
0.0548
0.0740
0.0740

eCDF Max

00121
0.0021
0.0021
[ RRRI]
0.1964
0.0983
0.0632
0.0744
0.0744
0.0942
00901
0.0049
0.0049
0.0236
0.0236
0.0766
0.0766
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COF Max

0.2233
0.0342
0.0342
0.0704
0.2359
0.1034
0.136%
0.0976
0.0976
0.1038

sud. Pair Dist,

0.0089
09214
09214
1.0384
0.7784
0.9739
0.8540
0.7654
0.7654
0.5339
0.3877
07174
07174
06417
06417
08748
08748



Figure S4: Histograms of propensity scores before and after matching.
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Figure S5: Plot of mean differences between unadjusted (no matched) and adjusted

(matched) covariates

Covariate Balance
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Gender - L B
Age| @
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APACHEI 1 ®
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PCT - *

DD 1 *
steroids - [
AKI ®

shock 1
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0.0

0.2
Mean Differences

04

129



Table S4 : Characteristics of matched cohort of patients without Coinfection according to
ventilator associated pneumonia.

Variables No VAP (n=2916) VAP (n=604) p-value
General Characteristics
Age, years 60 (48-69) 62 (52-71) <0.001
Male sex 1879 (64.4) 422 (69.9) 0.010
APACHE |l score 15 (12-20) 15 (12-20) 0.510
SOFA score 6 (4-8) 6 (4-8) 0.320
Chest x-ray cutoff 1878 (64.4) 449 (74.3) <0.001
Laboratory
WBC x103 8.7(5.7-12.2) 9.0 (6.0-13.0) 0.090
LDH UL 600 (450-770) 590 (450-740) 0.460
C-RP mg/mL 22.0(11.2-38.5) 18.0 (9.8-29.7) <0.001
PCT ng/mL 1.26 (0.30-7.30) 0.56 (0.20-2.05) <0.001
Creatinine mg/dL 0.90 (0.70-1.27) 0.90 (0.70-1.22) 0.310
CPK ng/mL 260 (117-480) 230 (116-440) 0.080
Lactate mmol/L 22(15-35) 2.8(1.2-2.9) <0.001
D-dimer UL 4200 (1650-7690) 2200 (750-7190) <0.001
Comorbidities
COPD 401 (13.8) 81(13.4) 0.870
Asthma 219 (7.5) 42 (6.9) 0.690
Chr. Heart Dis 184 (6.3) 29 (4.8) 0.180
Chr.Renal Dis. 171 (5.9) 34 (5.6) 0.890
Hematologic Dis. 142 (4.9) 26 (4.3) 0.620
Pregnancy 126 (4.3) 17 (2.8) 0.620
Obesity 1040 (35.7) 242 (40.1) 0.040
Diabetes 328 (11.2) 106 (17.5) <0.001
Immunosuppression 229 (7.8) 38(6.3) 0.210
Treatment and complications
Corticosteroids 1583 (54.3) 433 (71.7) <0.001
EAT 2527 (86.7) 526 (87.1) 0.830
AKI 496 (17.0) 96 (15.9) 0.540
Myocardial dysfunction 141 (4.8) 60 (9.9) <0.001
Shock 1856 (63.6) 353 (58.4) 0.010
Outcomes
LOS ICU, days 14 (9-23) 30 (20-46) <0.001
LOS Hospital, days 24 (15-35) 40 (27-60) <0.001
ICU mortality 953 (32.7) 239 (39.6) 0.001

#Continuous variables are shown as median values and percentiles Q1-Q3. Categorical variables are shown as number of cases (n) and percentage (%).
(LDH: Lactate dehydrogenase; CRP: C-reactive protein: CPK: creatine phosphokinase; PCT: procalcitonin, VAP: ventilator associated pneumonia; AKI:
acute kidney injury, LOS length of stay, ICU: intensive care units; Gap-ICU: Time in days from hospital admission to ICU admission; Chest x-ray cutoff:
more than 2 lung fields occupied by infiltrates on chest x-ray; MDR: multi-drug resistant bacteria ; * Global IEAT: include patients with IEAT plus patients
without EAT)
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Table SS: Variables associated with VAP in the Cox Hazard regresssion analysis.

HR 95 % CI
EAT 1.0046  0.7898  1.2777
Age 1.0046  0.9980  1.0112

Rx_cutoff  1.2632 1.0514  1.5177%
Steroids 1.2934 1.0776  1.5524**
Diabetes 0.9475 0.7590  1.1827
Obesity 1.1317  0.9596  1.3346
Lactate 0.9646  0.9404  0.9893**

Signif. codes: 0 ‘***' (.001 ‘**' 0.01 **' 0.05 *." 0.1 * " 1

Concordance= 0.58(se = 0.015 )

Likelihood ratio test= 36.27 on 7 df,p=6e-06
wald test = 31.51 on 7 df,p=5e-05
Score (Togrank) test = 32.1 on 7 df,p=4e-05
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Figure S6: Variables independently associated with VAP in logistic regression model

Variable

EAT

Rx_cutoff

steroids

diabetes

obesity

lactate

0 467

1 3053

3520

01193

1 2327

0 1504

12016

0 3088

1 434

0 2238

11282

3520

Odds ratio

Reference

1.02(0.79, 1.34)

1.01 (1.01, 1.02)

Reference

1.63 (1.34, 2.00)

Reference

1.87 (1.62, 2.40)

Reference

1.26 (0.98, 1.61)

Reference

1.17 (0.87, 1.41)

0.95 (0.92, 0.98)

0874

<0.001

<0.001

<0.001

0.073

0.088

0.002
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Table S6: Characteristics of matched cohort patients according to all cause ICU mortality
in patients without bacterial coinfection

Variables Survival (n=2328) Non-survival (n=1192) p-value
General Characteristics
Age, years 58 (46-66) 66 (55-73) <0.001
Male sex 1466 (63) 835(70.1) <0.001
APACHE Il score 14 (11-19) 17 (13-23) <0.001
SOFA score 6 (4-8) 7(5-9) <0.001
Chest x-ray cutoff 1470 (63.1) 857 (72.0) <0.001
GAP-UCI 1(1-3) 2 (1-4) 0.01
Laboratory
WBC x103 8.5 (5.6-12.1) 9.5 (6.2-14.2) <0,001
LDH UL 586 (435-750) 620 (490-796) <0.001
C-RP mg/mL 21.0(10.8-36.0) 22.0(11.0-35.4) 0.480
PCT ng/mL 1.02 (0.26-5.13) 1.25 (0.30-9.0) <0.001
Creatinine mg/dL 0.86 (0.70-1.16) 1.01(0.77-1.45) <0.001
CPK ng/mL 250 (115-470) 257 (120-480) 0.870
Lactate mmol/L 2.0 (14-3.1) 2.3(1.5-3.8) <0.001
D-dimer UL 3700 (1300-6800) 4900 (1700-9300) <0.001
Comorbidities
COPD 300 (12.9) 182 (15.3) 0.050
Asthma 185 (8.0) 76 (6.4) 0.100
Chr. Heart Dis 125 (5.4) 88 (7.4) 0.020
Chr.Renal Dis. 111 (4.8) 94 (7.9) <0.001
Hematologic Dis. 71 (3.0) 97 (8.1) <0.001
Pregnancy 109 (4.7) 34 (2.8) 0.010
Obesity 854 (36.7) 428 (36.0) 0.670
Diabetes 233 (10.0) 201 (17.0) <0.001
Immunosuppression 119 (5.1) 148 (12.4) <0.001
Treatment and complications
Corticosteroids 1259 (54.1) 757 (63.5) <0.001
EAT 2004 (86.1) 1049 (88.0) 0.120
VAP 365 (15.7) 239 (20.1) 0.001
AKI 305 (13.1) 287 (24.1) <0.001
Myocardial dysfunction 75(3.2) 126 (10.6) <0.001
Shock 1400 (60.1) 809 (68.0) <0.001
Outcomes

LOS ICU, days 17 (11-30) 14 (7-23) <0.001
LOS Hospital, days 30 (20-46) 18 (9-28) <0.001
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Table S7 : Variables associated with all cause ICU mortality in the Cox Hazard

regresssion analysis.

EATL

Age
Rx_cutoffl
AKIL
Myocardial_dysl
VAPL
steroidsl
Dl
diabetesl
hematol_disl
chr_renal_disl
shockl

DD

lactate

PCT

WBC

LDH

SOFA
APACHEII
GAP_ICU
Genderl

Signif. codes:

concordance= 0.698
LikeTlihood ratio test

wald test

score (logrank) test

FHRHRRPRRRRERRRPORRHERORRRERR

HR

(se

.0262
.0210
2633
2069
6750
5187
1060
5711
2156
2721
8252
0595
0000
0073
0087
0009
0003
0235
.0249
.0169
.0359

95% cI

.8595
.0159
1120
0319
.3808
.4463
9785
.2789
.0349
9949
6547
.9307
.0000
9961
.0068
.9992
0001
0002
.0156
.0031
.9131

ORFHHROFHOHROOORRKROOKRRKRRERO

0 ‘#*x’ 0,00l ‘**’ 0.01

= 0.009 )

448.7 on 21 df,
507.2 on 21 df,
546.9 on 21 df,

RFRRPRRRRPRPRERRRPRPRERRPRREPRPONRBERRER

¥ 0.05 ‘.

.2252
.0260%**
L4352%%%
L4117%
.0319%¥**
.6027%**
.2501
L9301 %
.4278%*
.6266
.0401
.2062
.0000%*
.0186
.0107%%**
.0026
.0004%*

. 047 3ww*
.0343*
.0309%**
.1751

p=<2e-16
p=<2e-16
p=<2e-16
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Figure S7: Variables independently associated with all cause ICU mortality in logistic
regression model

Variable N Odds ratio p
EAT 0 487 u Reference

1 3053 —_— 1.02 (0.81, 1.28) 0.88
Age 3520 . 1.03(1.03,1.04) <0.001
Rx_cutoff 0 11983 | | Reference

12327 —l, 1.64(1.39,1.95) <0.001
AKI 0 2928 | | Reference

1 892 —_— 1.09 (0.86, 1.37) 0.48
Myocardial_dys 0 3319 ] Reference

1 201 ; = 263(1.92,363) <0.001
VAP 0 2916 n Reference

1 604 —_—— 1.18 (0.97, 1.44) 0.10
steroids 0 1504 n Reference

1 2016 i —.— 1.42(1.21,1.67)  <0.001
ID 0 3253 n Reference

1 267 i - 1.90 (1.40,2.59)  <0.001
diabetes 0 3086 u Reference

1 434 —_—. 1.51(1.20,1.80)  <0.001
hematol_dis 0 3352 u Reference

1 168 : ] 1.61 (1.08, 2.37) 0.02
chr_renal_dis 0 33156 . Reference

1 205 L v 0.82 (0.58, 1.14) 0.24
shock 01311 - Reference

1 2209 — 1.12 (0.95, 1.33) 0.18
oD 3520 u 1.00 (1.00, 1.00) 0.10
lactate 3520 | ] 1.02 (1.00, 1.04) 0.08
PCT 3520 - 1.02(1.01,1.03)  <0.001
WBC 3520 n 1.01(1.00, 1.02) 0.02
LDH 3520 u 1.00(1.00,1.00)  <0.001
SOFA 3520 i 1.04 (1.00, 1.07) 0.03
APACHEI 3520 I 1.02(1.01,1.04)  <0.001
GAP_ICU 3520 il 1.04 (1.02, 1.06)  <0.001
Gender 01219 L ] Reference

12301 i 1.21(1.02, 1.42) 0.03

Table S10: Importance of variables for VAP according to Random Forest model

o] 1 MeanDecreaseAccuracy MeanDecreaseGini
Gender 2.34 -1.51 1.51 5.26
Age 9.81 3.06 10.51 60.73
GAP_ICU 9.85 6.14 11.92 36.86
APACHEII 15.33 0.90 14.51 60.99
SOFA 15.43 -0.47 14.42 49.68
LDH 5.76 3.86 6.91 74.80
CPK 10.22 -0.83 9.46 78.34
WBC 12.39 2.41 12.89 74.76
Creatinine 22.44 -5.07 20.47 67.96
urea 18.13 -2.98 16.70 65.36
CRP 15.58 -7.01 13.31 76.78
PCT 29.01 -2.85 29.64 77.03
lactate 26.38 0.40 26.74 74.57
DD 28.06 18.89 34.56 116.39
shock 4.90 0.30 4.87 6.92
asthma -0.16 -0.35 -0.28 4.04
COPD 1.07 0.61 1.28 4.88
chr_card_dis 2.15 -0.45 1.82 2.46
chr_renal_dis 4.90 -2.13 3.90 2.37
hematol_dis 1.63 -2.88 0.45 2.93
pregnancy -1.22 -1.69 -1.73 1.89
obesity 0.11 2.09 1.20 6.04
diabetes 3.48 2.45 4.56 4.98
D 6.06 0.44 5.71 3.24
steroids 6.33 16.23 13.15 14.36
EAT 5.62 4.39 6.92 6.79
AEAT 0.00 0.00 0.00 0.00
Myocardial_dys 8.28 6.98 10.88 8.12
AKT 4.11 -3.15 3.42 1.45
Rx_cutoff 3.89 8.12 6.55 8.37
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Table S11: Importance of variables for all cause ICU mortality according to Random
Forest model

0 1 MeanDecreaseAccuracy MeanDecreaseGini
Gender 3.04 -0.70 1.94 7.65
Age 36.89 21.67 45.31 151.75
GAP_ICU 17.46 5.93 17.99 65.83
APACHEII 13.84 12.01 18.79 103.61
SOFA 6.54 14.75 15.47 81.05
LDH 12.88 4.32 13.06 123.04
CPK 13.92 -3.19 10.11 101.83
WBC 17.98 -2.39 13.39 115.47
Creatinine 19.84 -0.66 20.12 104.58
urea 22.36 5.19 25.30 125.97
CRP 19.75 -5.74 16.65 103.08
PCT 31.81 0.20 32.22 114.59
lactate 14.41 2.37 14.12 101.06
DD 25.19 0.12 23.32 118.67
shock -2.32 7.13 3.16 9.74
asthma 2.23 1.03 2.43 5.49
COPD 12.31 -3.94 8.46 8.65
chr_card_dis 9.45 -3.06 6.61 6.84
chr_renal_dis 9.86 -5.75 5.23 5.50
hematol_dis 8.39 6.20 11.01 9.15
pregnancy -0.16 -0.99 -0.78 3.43
obesity -0.05 0.59 0.29 8.80
diabetes 13.69 6.70 15.06 13.15
ID 9.27 9.92 13.84 16.18
steroids 6.13 1.68 5.85 12.83
EAT 0.74 1.03 1.29 6.93
AEAT 0.00 0.00 0.00 0.00
VAP 5.69 8.34 9.62 13.01
Myocardial_dys 13.67 10.18 16.86 16.37
AKI 6.22 -2.87 5.78 2.92
Rx_cutoff 12.49 4.64 12.41 18.85
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