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RESUMEN 
Las pandemias virales representan uno de los mayores desafíos contemporáneos para la 

medicina intensiva, al provocar un aumento súbito de pacientes con neumonías graves que 

tensiona las UCI y exige respuestas clínicas rápidas en contextos de elevada incertidumbre. 

Esta presión asistencial y la variabilidad en la respuesta de los pacientes evidencian la 

necesidad de mejorar el abordaje inicial, optimizando tanto el diagnóstico como el 

tratamiento empírico desde el ingreso. La presente tesis tiene como objetivo profundizar 

en ese abordaje inicial mediante la identificación de factores de riesgo clínicos, 

microbiológicos y fisiopatológicos que condicionan la evolución, así como en la 

evaluación del impacto de las decisiones terapéuticas adoptadas en las primeras 24 horas. 

Al integrar datos de pacientes críticos con influenza A(H1N1)pdm09 y SARS-CoV-2, este 

trabajo se alinea con los principios de la medicina de precisión, y persigue ofrecer 

herramientas para estratificar el riesgo desde el primer momento, identificar precozmente 

a los pacientes con peor pronóstico, adecuar las intervenciones a las características 

individuales y formular estrategias dinámicas que mejoren los resultados clínicos y 

faciliten la toma de decisiones durante futuras emergencias sanitarias.  
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ABSTRACT 
Viral pandemics represent one of the greatest contemporary challenges for critical care 

medicine, as they lead to a sudden surge of patients with severe pneumonia that 

overwhelms ICUs and demands rapid clinical responses under conditions of high 

uncertainty. This healthcare pressure and the variability in patients’ responses highlight the 

need to improve the initial management by optimizing both diagnostic processes and 

empirical treatments from the moment of admission. The present thesis aims to enhance 

this early approach by identifying clinical, microbiological, and pathophysiological risk 

factors that influence patient outcomes, and by evaluating the impact of key therapeutic 

decisions made within the first 24 hours. By integrating data from critically ill patients with 

influenza A(H1N1)pdm09 and SARS-CoV-2, this work aligns with the principles of 

precision medicine and seeks to provide tools for early risk stratification, timely 

identification of patients with worse prognosis, personalized interventions tailored to 

individual characteristics, and the development of dynamic strategies to improve clinical 

outcomes and support decision-making in future public health emergencies.  
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1. Introducción 

1.1 Generalidades 

Desde el Neolítico, el ser humano ha convivido con epidemias que, en muchas ocasiones, 

han definido el rumbo de su historia. La sedentarización, el desarrollo de la agricultura y 

la domesticación animal incrementaron la densidad poblacional y facilitaron el contacto 

entre humanos y animales, propiciando la aparición de brotes epidémicos locales que, con 

el tiempo, evolucionaron hasta convertirse en fenómenos interregionales y globales (1). 

Pandemias como la peste negra en el siglo XIV, la viruela tras la llegada a América o las 

sucesivas oleadas gripales de los siglos XIX y XX ilustran no solo pérdidas demográficas 

masivas, sino también profundas transformaciones sociales, políticas y culturales. La Tabla 

1 recoge las pandemias más relevantes de la historia documentada (2,3).  

 

Tabla 1. Principales pandemias en la historia de la humanidad 

Nombre de la 

Pandemia 

Microorganismo 

Responsable 

Período Histórico Lugar de Origen Mortalidad 

Estimada (número 

de personas 

fallecidas) 

Peste de Atenas Probable fiebre 

tifoidea o ébola 

430 a.C. Atenas, Grecia ~100,000 

Plaga de Justiniano Yersinia pestis 541-542 d.C. Imperio Bizantino ~25-50 millones 

Peste Negra Yersinia pestis 1347-1351 Asia Central ~75-200 millones 

Viruela en América Variola virus Siglo XVI América ~50-100 millones 

Gripe Española Influenza A (H1N1) 1918-1919 Estados Unidos ~50 millones 

Poliomielitis 

(brotes epidémicos) 

Poliovirus 1940-1960 Europa/Estados 

Unidos 

~3000/año (EEUU 

antes de la vacuna)) 

Gripe Asiática Influenza A (H2N2) 1957-1958 China ~1-2 millones 

Gripe de Hong 

Kong 

Influenza A (H3N2) 1968-1969 Hong Kong ~1 millón 

VIH/SIDA Virus de la 

inmunodeficiencia 

humana 

Desde 1981 África Central ~36 millones 

Gripe A 

(H1N1)pdm09 

Influenza A 

(H1N1)pdm09 

2009-2010 México ~200,000 

COVID-19 SARS-CoV-2 Desde 2019 Wuhan, China >7 millones (OMS 

2023) 

 

La medicina moderna no dispuso de herramientas eficaces para afrontar estas crisis hasta 

el siglo XIX, cuando los descubrimientos de Pasteur y Koch y el nacimiento de la 

microbiología permitieron comprender los mecanismos de transmisión y los agentes 
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etiológicos. En el siglo XX, la introducción de vacunas, antibióticos y sistemas de salud 

pública supuso un punto de inflexión, reduciendo drásticamente la mortalidad de muchas 

enfermedades infecciosas. Sin embargo, fenómenos contemporáneos como la 

globalización, el cambio climático y la presión humana sobre ecosistemas naturales han 

favorecido la aparición de nuevos patógenos con capacidad de transmisión eficiente entre 

humanos (1,2). 

 

En las últimas décadas, los virus respiratorios han ganado protagonismo como agentes 

emergentes. Epidemias previas por SARS-CoV-1 en 2003, MERS-CoV en 2012 y distintos 

subtipos de influenza aviar (H5N1, H7N9) pusieron de manifiesto la facilidad con la que 

los virus zoonóticos pueden adaptarse al ser humano y propagarse rápidamente (3–8). Entre 

ellos, dos pandemias recientes han tenido un impacto global extraordinario: la gripe 

A(H1N1)pdm09 de 2009 y la COVID-19 causada por el SARS-CoV-2, emergida a finales 

de 2019 (3–8). 

Aunque ambos virus difieren en su estructura genética, mecanismos de transmisión y 

comportamiento epidemiológico, comparten rasgos clínicos fundamentales: transmisión 

por vía respiratoria (incluyendo gotas y aerosoles), potencial para inducir neumonía viral 

grave y SDRA, y una elevada tasa de ingreso en unidades de cuidados intensivos. Estas 

unidades se convirtieron no solo en escenarios de asistencia intensiva, sino también en 

focos de generación de conocimiento clínico durante ambas crisis sanitarias (9,10).  



15 

 

1.2. Infección por virus de la gripe A(H1N1)pdm09 

1.2.1. Fisiopatología 

El virus influenza A(H1N1)pdm09 es un ortomixovirus con genoma de ARN segmentado 

en ocho fragmentos, que codifican proteínas estructurales (hemaglutinina [HA], 

neuraminidasa [NA], M1/M2, nucleoproteína [NP]) y no estructurales (NS1, NS2). La HA 

permite la unión del virus a los residuos de ácido siálico en la superficie del epitelio 

respiratorio, facilitando la endocitosis. Tras la liberación del genoma viral en el núcleo, se 

inician los procesos de transcripción y replicación. La NA favorece la diseminación del 

virus al escindir los enlaces del ácido siálico y evitar la agregación de los nuevos viriones 

(2,9,10).  

Este ciclo viral causa daño directo al epitelio respiratorio y desencadena una intensa 

respuesta inmunitaria innata. Las células presentadoras de antígeno, como los macrófagos 

y las células dendríticas, secretan interferones tipo I, TNF-α, IL-6 e IL-1β, atrayendo 

neutrófilos y linfocitos T CD8⁺ al lugar de la infección. Si esta respuesta se desregula, 

puede provocar daño alveolar difuso, caracterizado histológicamente por exudados 

fibrinosos, formación de membranas hialinas y edema intersticial, configurando el cuadro 

clínico-patológico del síndrome de distrés respiratorio agudo (SDRA) (2,10). 

1.2.2. Clínica, neumonía y SDRA 

La infección suele iniciarse tras 1–3 días de incubación con fiebre alta, tos seca, odinofagia, 

cefalea, mialgias y malestar general. En algunos pacientes, especialmente aquellos con 

comorbilidades como obesidad, EPOC o cardiopatía, la infección progresa rápidamente a 

una neumonía viral primaria, con disnea progresiva, taquipnea e hipoxemia refractaria al 

oxígeno suplementario (2,9,10). 

La radiografía y la tomografía computarizada (TC) de tórax suelen mostrar infiltrados 

pulmonares bilaterales, parcheados o difusos. El diagnóstico de SDRA se establece según 

los criterios de Berlín, que requieren una PaO₂/FiO₂ ≤ 300 mmHg con PEEP ≥ 5 cmH₂O, 

presencia de infiltrados pulmonares bilaterales y ausencia de causa cardiogénica (11). 

Este cuadro aparece precozmente y se asocia a daño alveolar difuso, disminución de la 



16 

 

distensibilidad pulmonar, elevada mortalidad y necesidad frecuente de ventilación 

mecánica invasiva (12). 

La aspergilosis pulmonar invasiva asociada a gripe (IAPA) es una complicación emergente 

en pacientes con neumonía grave causada por el virus influenza A(H1N1)pdm09 

ingresados en UCI, incluso en ausencia de inmunosupresión clásica. Su incidencia se 

estima entre el 14 % y el 19 % en pacientes sometidos a ventilación mecánica, y suele 

manifestarse precozmente, durante los primeros 2–3 días tras la intubación. Se asocia a una 

mortalidad elevada, superior al 50 %. El diagnóstico requiere la combinación de hallazgos 

clínico-radiológicos y microbiológicos, que incluyen el cultivo de Aspergillus spp., la 

detección de galactomanano en suero o en lavado broncoalveolar (LBA) y la PCR fúngica. 

La positividad del galactomanano en suero es frecuente, lo que permite un diagnóstico más 

temprano y favorece el inicio precoz del tratamiento antifúngico en pacientes de alto riesgo 

(13). 

1.2.3. Tratamiento 

El tratamiento de la gripe A(H1N1)pdm09 grave se basa en tres pilares: soporte de órganos, 

terapia antiviral específica y tratamiento de la coinfección bacteriana. 

El soporte respiratorio se adapta a la gravedad del cuadro. En pacientes con hipoxemia 

moderada, puede iniciarse oxigenoterapia de alto flujo o ventilación no invasiva. Si la 

hipoxemia se agrava o el trabajo respiratorio aumenta, se indica ventilación mecánica 

invasiva con estrategia de protección pulmonar (volumen corriente de 4–8 mL/kg de peso 

ideal, presión meseta ≤ 30 cmH₂O y PEEP individualizada), relajación neuromuscular y 

pronación en caso de PaO₂/FiO₂ ≤ 150 mmHg. En situaciones de hipoxemia refractaria, 

puede considerarse el uso de ECMO en centros especializados (11). El resto del soporte 

orgánico (hemodinámico, renal, metabólico) debe individualizarse según la evolución 

clínica (14). 

La terapia antiviral recomendada para los pacientes con neumonía grave es la 

administración de inhibidores de la neuraminidasa, siendo el oseltamivir (75 mg cada 12 

horas durante 5 días) el fármaco de elección. Aunque su eficacia es mayor si se inicia en 



17 

 

las primeras 48 horas desde el comienzo de los síntomas, en pacientes críticos se 

recomienda su uso incluso más allá de ese periodo (12,15,16). En caso de sospecha de 

coinfección bacteriana, basada en la clínica, los hallazgos radiológicos o los biomarcadores 

inflamatorios, se debe iniciar una antibioterapia empírica ajustada a las guías locales y a la 

epidemiología del centro. Posteriormente, el tratamiento debe optimizarse conforme a la 

evolución clínica, los niveles de procalcitonina y los resultados microbiológicos, 

idealmente en el marco de un programa de optimización del uso de antimicrobianos 

(PROA) (17,18). 

1.2.4. Prevención 

La medida más eficaz para prevenir la gripe A(H1N1)pdm09 es la vacunación estacional, 

con una efectividad promedio del 60–70 % en la reducción de casos, hospitalizaciones y 

muertes (12,19). Tras la pandemia de 2009, la cepa A(H1N1)pdm09 se incorporó de forma 

permanente en las vacunas trivalentes y tetravalentes. Estas vacunas están especialmente 

recomendadas en grupos de riesgo, como las personas mayores de 65 años, los pacientes 

con enfermedades crónicas, las mujeres embarazadas y el personal sanitario (20). De forma 

complementaria, las medidas no farmacológicas como la higiene de manos, el uso de 

mascarillas y la ventilación de espacios cerrados, han demostrado ser eficaces para reducir 

la transmisión del virus y prevenir brotes, especialmente en entornos vulnerables o durante 

períodos de alta circulación viral (12). 

 

1.3. Infección por SARS-CoV-2 

1.3.1. Fisiopatología 

El SARS-CoV-2 es un betacoronavirus de ARN monocatenario positivo de 

aproximadamente 30 kb que codifica cuatro proteínas estructurales (Spike, Envelope, 

Membrana y Nucleocápside) y varias proteínas no estructurales. La entrada viral se 

produce cuando la glicoproteína Spike (S) se une al receptor ACE2, ampliamente 

expresado en el epitelio alveolar, las células endoteliales, los miocitos cardíacos, las 

nefronas y los enterocitos. La activación de la proteasa celular TMPRSS2 facilita la 
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escisión de la proteína S, permitiendo la fusión de la membrana viral con la célula huésped 

y la liberación del genoma viral en el citosol. 

Una vez dentro de la célula, el virus se replica y desencadena una respuesta inmunitaria 

bifásica. En la primera fase, la replicación viral directa induce citopatía y estimula la 

inmunidad innata, con liberación de interferones tipo I, TNF-α, IL-6 e IL-1β por parte de 

macrófagos y células dendríticas. Esta señalización promueve la activación y el 

reclutamiento de neutrófilos y linfocitos T CD8⁺.  

En los casos graves, esta respuesta inmunitaria se desregula, dando lugar a una segunda 

fase caracterizada por una hiperinflamación sistémica o “tormenta de citoquinas”. Esta se 

manifiesta por concentraciones elevadas de IL-6, TNF-α, IL-1β, ferritina y dímero D, entre 

otros marcadores. El proceso inflamatorio favorece el daño endotelial, el estado 

protrombótico y la lesión alveolar difusa, con formación de membranas hialinas y edema 

intersticial, lo que puede desembocar en un síndrome de distrés respiratorio agudo (SDRA) 

y disfunción multiorgánica (1,5,21). 

1.3.2. Clínica, neumonía y SDRA 

La COVID-19 suele comenzar tras un periodo de incubación de 2 a 7 días con síntomas 

inespecíficos como fiebre, tos seca, astenia, mialgias, cefalea y, en algunos casos, anosmia 

o ageusia. En un subgrupo de pacientes, particularmente varones de edad avanzada o con 

comorbilidades como obesidad, EPOC o enfermedad cardiovascular, la infección progresa 

rápidamente a una neumonía viral primaria, caracterizada por disnea progresiva, taquipnea 

e hipoxemia persistente a pesar del oxígeno suplementario (6,9,22,23). 

Las pruebas de imagen, como la radiografía o la tomografía computarizada (TC) de tórax, 

muestran opacidades en vidrio deslustrado bilaterales, difusas o parcheadas. El 

diagnóstico de SDRA se establece según los criterios de Berlín, que requieren una 

PaO₂/FiO₂ ≤ 300 mmHg con PEEP ≥ 5 cmH₂O, presencia de infiltrados pulmonares 

bilaterales y ausencia de causa cardiogénica (11). 

 

El SDRA suele aparecer entre los días 7 y 10 de evolución clínica. A diferencia del 
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SDRA clásico, algunos pacientes presentan un fenotipo atípico (fenotipo L), con 

hipoxemia severa y buena compliancia pulmonar, lo que ha motivado el desarrollo de 

estrategias ventilatorias adaptadas. En fases avanzadas, predomina el fenotipo H, 

caracterizado por baja distensibilidad, consolidaciones extensas y elevada mortalidad, 

que requiere frecuentemente ventilación mecánica invasiva (11,24). 

La aspergilosis pulmonar invasiva asociada a COVID-19 (CAPA) es una complicación 

emergente en pacientes con neumonía grave por SARS-CoV-2 ingresados en UCI, 

especialmente en aquellos que requieren ventilación mecánica prolongada o tratamiento 

immunomodulador. Su incidencia oscila entre el 5 % y el 15 %, pudiendo alcanzar hasta el 

30 % en cohortes con cribado sistemático. La CAPA suele desarrollarse entre los días 7 y 

10 tras la intubación y se asocia a una mortalidad elevada, estimada entre el 45 % y el 70 %. 

El diagnóstico es complejo debido a la baja sensibilidad del galactomanano sérico, lo que 

obliga a integrar los hallazgos clínicos y radiológicos con el cultivo, el galactomanano o la 

PCR en lavado broncoalveolar. La sospecha precoz de CAPA es esencial ante un 

empeoramiento clínico no explicado o la aparición de nuevos infiltrados pulmonares 

durante la evolución del SDRA, ya que su identificación temprana permite iniciar un 

tratamiento antifúngico adecuado y mejorar el pronóstico (13). 

1.3.3. Tratamiento 

El abordaje terapéutico de la COVID-19 ha evolucionado significativamente desde el inicio 

de la pandemia. Durante la fase viral, el antiviral remdesivir ha demostrado un beneficio 

modesto al reducir el tiempo de recuperación en pacientes que requieren oxigenoterapia, 

pero no ventilación mecánica invasiva. 

En la fase inflamatoria, la dexametasona a dosis bajas (6 mg diarios durante 10 días) ha 

evidenciado una reducción significativa de la mortalidad en pacientes con necesidad de 

oxígeno suplementario o ventilación mecánica (25), según el estudio RECOVERY (26). 

Asimismo, immunomoduladores como tocilizumab (anticuerpo anti-IL-6R) y baricitinib 

(inhibidor de JAK1/2) han mostrado beneficios en pacientes con inflamación sistémica 

persistente y deterioro respiratorio progresivo (23). 

El soporte ventilatorio debe adaptarse al fenotipo clínico del SDRA, empleando 
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estrategias de ventilación protectora, sesiones prolongadas de decúbito prono y, en casos 

de hipoxemia refractaria, oxigenación por membrana extracorpórea (ECMO) en centros 

especializados (11,14). El uso de antibióticos debe reservarse exclusivamente para 

pacientes con sospecha clínica o confirmación microbiológica de coinfección bacteriana, 

de acuerdo con las recomendaciones de los programas de optimización del uso de 

antimicrobianos (PROA) (17,27). 

1.3.4. Prevención 

La vacunación frente al SARS-CoV-2 constituye la principal herramienta preventiva frente 

a la COVID-19. Las vacunas de ARNm y vector viral han demostrado una elevada eficacia 

para prevenir la enfermedad sintomática y, especialmente, para reducir el riesgo de formas 

graves y hospitalización, con tasas de efectividad que superan el 90 % tras la pauta 

completa en los estudios iniciales. 

La vacunación está especialmente indicada en personas mayores de 60 años, pacientes con 

comorbilidades (enfermedades cardiovasculares, respiratorias, obesidad, diabetes, 

inmunodepresión) y profesionales sanitarios. De forma complementaria, las medidas no 

farmacológicas como el uso de mascarilla en espacios cerrados, el distanciamiento físico, 

la higiene de manos y la ventilación adecuada, han demostrado ser eficaces para reducir la 

transmisión viral en diferentes contextos epidemiológicos (23).  

1.4. Factores de riesgo y mortalidad en la neumonía grave por virus pandémicos 

La neumonía grave causada por virus pandémicos es una de las principales causas de 

ingreso en las Unidades de Cuidados Intensivos (UCI) durante los períodos epidémicos, 

generando una elevada morbimortalidad y una gran presión asistencial (4,28–30). En este 

contexto, la identificación precoz de los factores de riesgo asociados a una evolución 

desfavorable resulta fundamental para optimizar el manejo clínico, priorizar recursos y 

aplicar estrategias terapéuticas adecuadas desde las fases iniciales (31–33).  

Sin embargo, los factores de riesgo descritos pueden variar según el agente viral, las 

características del paciente y el tipo de análisis utilizado. Esta heterogeneidad plantea dudas 
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sobre cuáles son los verdaderos determinantes de mortalidad (34–41). En los siguientes 

apartados se revisan los principales factores de riesgo identificados en pacientes críticos 

con infección por influenza A(H1N1) pdm09 o SARS-CoV-2, incluyendo los hallazgos 

más recientes obtenidos mediante técnicas de aprendizaje automático. 

1.4.1 Gripe A(H1N1) pdm09 

Durante la pandemia de gripe A(H1N1)pdm09 en 2009, la mayoría de los ingresos en UCI 

correspondieron a adultos jóvenes previamente sanos, en contraste con lo observado 

habitualmente en la gripe estacional. Los principales factores de riesgo descritos para una 

evolución desfavorable fueron el embarazo, la obesidad, la enfermedad respiratoria crónica 

(asma o EPOC), la diabetes, la inmunosupresión y las enfermedades cardiovasculares 

(26,32,42–45). 

La mortalidad en UCI osciló entre el 25 % y el 40 %, siendo especialmente elevada en 

pacientes con síndrome de distrés respiratorio agudo (SDRA), coinfección bacteriana o 

disfunción multiorgánica. Diversos estudios han identificado la coinfección como un 

predictor independiente de mortalidad, lo que destaca la importancia de su diagnóstico 

precoz y de un tratamiento adecuado (29,43,46,47). 

Aunque la mayoría de los estudios iniciales utilizaron modelos estadísticos clásicos, 

análisis posteriores aplicaron técnicas de aprendizaje automático, como árboles de decisión 

y Random Forest, para identificar factores de riesgo. Sin embargo, su rendimiento 

predictivo ha sido limitado y no han demostrado mejoras consistentes frente a la regresión 

logística. (29,39,40,47,48). 

1.4.2 SARS-CoV-2 (COVID-19) 

En el caso del SARS-CoV-2, los factores de riesgo asociados a una evolución clínica 

desfavorable han sido ampliamente caracterizados y se han mantenido relativamente 

consistentes a lo largo de las sucesivas olas pandémicas. Entre los principales destacan la 

edad avanzada, la obesidad, la hipertensión arterial, la diabetes mellitus, la enfermedad 

renal crónica, las enfermedades cardiovasculares, la inmunosupresión y el sexo masculino 
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(6,49). A nivel biológico, diversos biomarcadores inflamatorios y de daño tisular, como la 

linfopenia, el dímero D, la ferritina, la interleucina-6 (IL-6), la procalcitonina y la 

troponina, han demostrado una asociación independiente con una mayor probabilidad de 

complicaciones y mortalidad en pacientes con COVID-19 grave (38,49–51). 

La mortalidad en UCI de estos pacientes ha oscilado entre el 30 % y el 45 %, siendo 

especialmente elevada en aquellos que desarrollan síndrome de distrés respiratorio agudo 

(SDRA), shock séptico o disfunción multiorgánica (35,52). A diferencia de lo observado 

en la pandemia por gripe A(H1N1)pdm09, donde la coinfección bacteriana se identificó 

como un factor pronóstico relevante, los estudios disponibles sobre COVID-19 no han 

demostrado una asociación consistente entre la presencia de coinfección o sobreinfección 

bacteriana y un aumento del riesgo de muerte. En los análisis multivariantes, estas variables 

no se han incluido como predictores independientes de mortalidad, lo que sugiere que 

podrían reflejar la gravedad clínica o complicaciones evolutivas más que actuar como 

determinantes causales directos (35,47). 

La elevada heterogeneidad clínica observada en pacientes con COVID-19 grave ha 

impulsado el uso de herramientas analíticas más sofisticadas para mejorar la estratificación 

pronóstica. En este sentido, los modelos de aprendizaje automático (machine learning) han 

cobrado protagonismo al permitir la identificación de relaciones no lineales, interacciones 

complejas entre variables y patrones clínicos latentes que no emergen con los análisis 

tradicionales. Modelos como Random Forest, redes neuronales o SVM han mostrado 

rendimientos similares o superiores a la regresión logística multivariable, especialmente 

cuando se dispone de grandes volúmenes de datos clínicos, demográficos y analíticos 

recogidos al ingreso (33,36,39). 

Un ejemplo destacado lo constituye un estudio multicéntrico español que aplicó técnicas 

de agrupamiento no supervisado para identificar fenotipos clínicos al ingreso en UCI (35). 

Los autores detectaron tres perfiles de pacientes con neumonía grave por COVID-19, cada 

uno con diferente riesgo de mortalidad, lo que respalda el valor añadido de los modelos no 

lineales en la identificación de subgrupos clínicos con distinto pronóstico. Este enfoque no 
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solo mejora la capacidad predictiva, sino que aporta una visión más personalizada del 

riesgo, ajustada a las características fisiopatológicas de cada paciente. 

En este contexto, el presente trabajo se propone comparar los factores de riesgo de 

mortalidad identificados mediante un modelo estadístico tradicional (regresión logística) y 

un modelo de aprendizaje automático (Random Forest), utilizando una amplia cohorte 

nacional de pacientes críticos con infección por SARS-CoV-2 o gripe A(H1N1)pdm09. 

Este enfoque comparativo permite explorar si el tipo de modelo influye en los 

determinantes pronósticos detectados y si la combinación de ambos métodos puede 

contribuir a una estratificación del riesgo más precisa y clínicamente útil en escenarios de 

alta complejidad asistencial. 

Tabla 2. Factores de riesgo de mortalidad en neumonía grave por Influenzavirus y SARS 

COV-2 

Factor de riesgo Gripe A 

(H1N1)pdm09 

Gripe estacional SARS-CoV-2 

(COVID-19) 

Comentario / 

relevancia clínica 

Edad avanzada  Menor 

relevancia (<65 

años) 

⬆️ Alta relevancia (≥65 

años) 

⬆️ Alta relevancia (≥60–

65 años) 

Más determinante en 

gripe estacional y 

COVID-19 

Sexo masculino — — ⬆️ OR ~1,3–1,5 Predominio claro en 

COVID-19 

Embarazo / puerperio ⬆️ Riesgo 

significativo 

Moderado (más 

complicaciones que 

mortalidad) 

Evidencia limitada Relevante sobre todo 

en H1N1 

Obesidad (IMC ≥30) ⬆️ Asociación ⬆️ Asociación ⬆️ Asociación Determinante mayor 

común 

Diabetes mellitus ⬆️ Riesgo ⬆️ Riesgo ⬆️ Riesgo Determinante mayor 

común 

Hipertensión arterial — Variable según series ⬆️ Asociación 

independiente 

Más relevante en 

COVID-19 

Enf. respiratoria crónica 

(EPOC/asma) 
⬆️ Riesgo ⬆️ Riesgo Tendencia no 

consistente 

Predominante en 

influenzas 

Cardiopatía / IAM previo ⬆️ Riesgo ⬆️ Riesgo ⬆️ Riesgo Determinante mayor 

común 

Enfermedad renal crónica Datos limitados Datos limitados ⬆️ Asociación clara Mayor relevancia en 

COVID-19 

Insuficiencia renal aguda 

(AKI) 
⬆️ Mortalidad 

asociada 

⬆️ Mortalidad asociada ⬆️ Mortalidad asociada Marcador de 

disfunción orgánica 

grave  

Inmunosupresión ⬆️ Riesgo ⬆️ Riesgo ⬆️ Riesgo Determinante mayor 

común 



24 

 

SDRA al ingreso ⬆️ Mortalidad 

asociada 

⬆️ Mortalidad asociada ⬆️ Mortalidad asociada Indicador de 

gravedad respiratoria 

Shock séptico / fracaso 

multiorgánico 

⬆️ Mortalidad 

asociada 

⬆️ Mortalidad asociada ⬆️ Mortalidad asociada Indicador de 

disfunción 

multiorgánica,  

 

1.5. Coinfección bacteriana, tratamiento antibiótico y aparición de bacterias 

multirresistentes en neumonías por virus pandémicos 

En pacientes críticos con neumonía grave causada por virus pandémicos, como la gripe 

A(H1N1)pdm09 y el SARS-CoV-2, uno de los principales desafíos clínicos consiste en 

diferenciar entre infección viral aislada y coinfección bacteriana (29,47). Esta distinción 

resulta fundamental, ya que condiciona decisiones clave sobre el inicio, la duración y la 

adecuación del tratamiento antibiótico empírico. El uso indiscriminado de antimicrobianos 

en pacientes sin infección bacteriana confirmada se asocia a un mayor riesgo de toxicidad, 

aparición de resistencias y desarrollo de bacterias multirresistentes (BMR) (14,53,54). En 

este contexto, los programas de optimización del uso de antimicrobianos (PROA) 

constituyen una herramienta esencial para racionalizar el uso antibiótico en unidades de 

cuidados intensivos (UCI) (17,55). 

1.5.1. Características de la coinfección bacteriana en gripe y COVID-19 

La coinfección bacteriana es más frecuente en la gripe A(H1N1)pdm09 que en la COVID-

19 (29,47,56). En la gripe, su prevalencia al ingreso en UCI se sitúa entre el 16% y el 35%, 

y se asocia con una mayor gravedad clínica, necesidad de ventilación mecánica y 

mortalidad. Su fisiopatología incluye la destrucción del epitelio respiratorio, la disbiosis 

del microbioma y la colonización por patógenos típicos como Streptococcus pneumoniae, 

Staphylococcus aureus o Haemophilus influenzae (16,47,57,58). 

En contraste, en pacientes con COVID-19 la coinfección bacteriana precoz es infrecuente 

(<5 %), aunque no exenta de impacto clínico (29,31,58,59). La estancia prolongada en 

UCI, la ventilación mecánica invasiva y el uso de corticoides o immunomoduladores 

favorecen infecciones bacterianas secundarias tardías, como la neumonía asociada a la 

ventilación mecánica (NAVM), la traqueobronquitis asociada (TAVM) y las bacteriemias 
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(57,58). Estas infecciones se caracterizan por una alta prevalencia de BMR como 

Klebsiella pneumoniae productora de carbapenemasa, Pseudomonas aeruginosa y 

Acinetobacter baumannii (56,58,60–62). 

Tabla 3. Coinfección bacteriana en neumonía grave por Influenzavirus y SARS COV-2 

Aspecto Gripe A(H1N1) / 

Estacional 

SARS-CoV-2 (COVID-19) Implicación clínica 

Prevalencia de coinfección al 

ingreso (≤48 h) 

16–35%  3–20%  En gripe es más 

frecuente; en COVID la 

mayoría reciben 

antibiótico empírico sin 

confirmación. 

Momento habitual de 

aparición 

Coinfección temprana, 

concomitante a la 

neumonía viral 

Coinfección temprana 

infrecuente; predominan 

infecciones secundarias 

tardías (NAVM, 

bacteriemias) tras ≥7 días en 

UCI 

En gripe requiere 

vigilancia 

microbiológica precoz; 

en COVID, foco en 

prevención de NAVM. 

Patógenos comunitarios 

frecuentes 

Streptococcus 

pneumoniae, 

Staphylococcus aureus, 

Haemophilus influenzae 

Mismos patógenos clásicos, 

pero muy baja prevalencia 

(≤5%) 

En gripe debe 

sospecharse 

coinfección bacteriana 

clásica; en COVID es 

menos probable. 

Patógenos nosocomiales / 

MDR 

Gramnegativos 

hospitalarios ocasionales 

Alta carga de MDR: 

Klebsiella pneumoniae KPC, 

Acinetobacter baumannii, 

Pseudomonas aeruginosa; 

MDR en UCI ≈27% 

Fundamental implantar 

PROA y medidas de 

aislamiento de contacto 

en COVID-19. 

Biomarcadores al ingreso PCT >0,29 ng/mL sugiere 

coinfección; PCT <0,25 

ng/mL tiene VPN ≈92% 

para descartarla 

PCT y CRP con AUC baja 

(0,57–0,60), pero valores 

bajos mantienen VPN >97%; 

combinación CRP ≥97 mg/L 

+ PCT ≥0,12 ng/mL aumenta 

probabilidad 

En gripe ayudan a 

decidir inicio/retirada 

de antibiótico; en 

COVID orientan sobre 

todo la desescalada. 

Antibiótico empírico al 

ingreso 

Recomendado (β-

lactámico + macrólido) 

por alta prevalencia de 

coinfección 

Muy extendido (~70–75% 

reciben antibiótico pese a 

<5% de coinfección) 

En gripe se justifica su 

uso precoz; en COVID 

conviene confirmación 

microbiológica antes de 

mantenerlo. 

Impacto en mortalidad Coinfección incrementa 

riesgo (HR ≈2–3) 

No es predictor 

independiente tras ajustar por 

gravedad 

En gripe respalda inicio 

precoz de tratamiento; 

en COVID su beneficio 

es dudoso. 

Diagnóstico rápido (PCR 

multiplex, panel respiratorio) 

Útil pero con menor 

penetración 

Ampliamente adoptado; 

facilita suspensión de 

antibióticos si negativo 

Herramienta clave para 

optimizar el tratamiento 

y reducir resistencias. 

NAVM: neumonía asociada a ventilación mecánica; MDR: patógenos multirresistentes; BMR: bacterias 

multirresistentes; PROA: Programas de Optimización del Uso de Antimicrobianos; PCT: procalcitonina; 

CRP: proteína C reactiva; VPN: valor predictivo negativo.  
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1.5.2. Técnicas microbiológicas rápidas 

El diagnóstico etiológico de la coinfección bacteriana se basa clásicamente en cultivos de 

muestras respiratorias y hemocultivos. Sin embargo, estas técnicas presentan importantes 

limitaciones, como la baja sensibilidad, el retraso en la obtención de resultados y la 

dificultad de interpretación en pacientes colonizados o en tratamiento antibiótico previo. 

La incorporación de técnicas de biología molecular, como los paneles multiplex de PCR, 

ha revolucionado el diagnóstico microbiológico rápido (63). Estas pruebas permiten la 

detección simultánea de múltiples patógenos virales y bacterianos, así como de genes de 

resistencia, a partir de una única muestra clínica y en pocas horas. Su uso ha demostrado 

un alto rendimiento diagnóstico y facilita decisiones clínicas más seguras respecto al inicio, 

la desescalada o la suspensión del tratamiento antibiótico. Aunque su implantación ha sido 

más frecuente durante la pandemia de COVID-19, también han mostrado utilidad en el 

contexto de la gripe (12,14,23,64,65). 

1.5.3. Uso de biomarcadores: procalcitonina (PCT) y proteína C reactiva (PCR) 

Los biomarcadores inflamatorios como la procalcitonina (PCT) y la proteína C reactiva 

(PCR) constituyen herramientas valiosas para diferenciar infección viral aislada de 

coinfección bacteriana. La PCT se eleva en respuesta a infecciones bacterianas, pero suele 

permanecer baja en infecciones víricas. En gripe, valores <0,25 ng/mL presentan alto valor 

predictivo negativo; en COVID-19, aunque su rendimiento es menor, sigue siendo útil para 

apoyar decisiones de suspensión antibiótica en pacientes con baja sospecha clínica (18,66–

68). 

La PCR, aunque menos específica, también se eleva en infecciones bacterianas, y su 

interpretación combinada con la PCT, los hallazgos clínicos y los resultados 

microbiológicos aumenta la capacidad de discriminación. Además, la monitorización 

seriada de la PCT permite evaluar la respuesta al tratamiento y optimizar la duración del 

mismo (31,67,69,70). 
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1.5.4. Tratamiento antibiótico empírico: una práctica extendida, pero controvertida 

A pesar de la baja prevalencia documentada de coinfección bacteriana en pacientes con 

neumonía viral grave, tanto en la pandemia de gripe A(H1N1)pdm09 como en la de 

COVID-19, el uso de antibióticos empíricos al ingreso en UCI ha sido una práctica 

ampliamente adoptada. Esta estrategia ha estado respaldada por recomendaciones iniciales 

de diversas sociedades científicas y autoridades de salud pública, en un contexto de elevada 

incertidumbre diagnóstica y alta mortalidad viral (12,14,22,23,29,56,70). 

Iniciar tratamiento antibiótico en el momento de la intubación puede parecer una decisión 

prudente en pacientes críticos, donde diferenciar una neumonía vírica pura de una 

coinfección bacteriana no es inmediato. Sin embargo, esta práctica empírica choca con los 

principios de la optimización antimicrobiana, que promueven un uso dirigido y ajustado 

del tratamiento antibiótico, basado en criterios clínicos, microbiológicos y biomarcadores 

objetivos (14,31,64,65,71). 

La literatura científica actual ofrece resultados contradictorios sobre los beneficios del 

tratamiento antibiótico empírico (EAT) en pacientes críticos con neumonía viral. Algunos 

estudios han sugerido que su uso precoz podría estar asociado con una menor incidencia 

de complicaciones respiratorias o incluso con una reducción de la mortalidad, incluso en 

ausencia de coinfección bacteriana documentada (72). En cambio, otros trabajos 

encuentran un beneficio clínico solo en aquellos pacientes con coinfección confirmada, sin 

observar mejoras significativas en quienes no presentan infección bacteriana concomitante 

(31,56). Por otro lado, existe evidencia que plantea que ni siquiera en pacientes 

coinfectados el uso de antibióticos modifica el pronóstico, y que su administración se 

asocia a un mayor riesgo de neumonía asociada a la ventilación mecánica (NAVM), 

prolongación de la estancia y aparición de bacterias multirresistentes (29,56,61,62). 

Esta incertidumbre pone de relieve la necesidad de estudios específicos que evalúen de 

forma comparativa y ajustada el impacto real del TAE en pacientes con neumonía viral 

grave, distinguiendo entre aquellos con y sin coinfección. Disponer de esta evidencia 

permitiría mejorar las decisiones clínicas, ajustar las recomendaciones terapéuticas y 

reforzar una estrategia más segura y sostenible en el manejo de estos pacientes en UCI. 
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1.5.5. Bacterias multirresistentes y programas PROA 

El sobreuso de antibióticos en pacientes con neumonía viral grave ha contribuido a la 

emergencia de BMR, especialmente en las UCI durante la pandemia por SARS-CoV-2. En 

este contexto, diversos informes, como el registro ENVIN-COVID en España, han 

documentado un aumento de infecciones nosocomiales por Klebsiella pneumoniae 

productora de carbapenemasa, Pseudomonas aeruginosa y Acinetobacter baumannii, 

asociadas a un peor pronóstico y mayores dificultades terapéuticas (73). 

Frente a este escenario, los programas de optimización del uso de antimicrobianos (PROA) 

ofrecen un enfoque estructurado basado en cinco ejes principales: 

• Indicación adecuada basada en criterios clínicos, factores de riesgo, diagnóstico 

microbiológico rápido y biomarcadores (17) 

• Desescalada precoz a las 48–72 h tres obtener cultivos definitivos, evolución clínica 

y de biomarcadores (31) 

• Optimización de la posología y vía de administración (66) 

• Duración limitada del tratamiento, generalmente 5 días sin coinfección bacteriana 

documentada y 7–10 días en neumonía bacteriana confirmada (64). 

• Suspensión precoz cuando la evolución clínica y los biomarcadores lo permitan 

(66). 

Aunque los PROA no constituyen el objetivo principal de esta tesis, su aplicación es clave 

para evitar el uso innecesario de antibióticos, reducir la aparición de resistencias y mejorar 

los resultados clínicos en pacientes críticos con neumonía viral. 
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2. Hipótesis  

Hipótesis 1: 

La identificación de los factores de riesgo asociados a la mortalidad en pacientes con 

neumonía grave por virus pandémicos ingresados en UCI mediante modelos avanzados 

de aprendizaje automático ofrece resultados divergentes respecto a los obtenidos 

mediante regresión logística. 

Hipótesis 2: 

La administración empírica de antibióticos (EAT) en pacientes con neumonía grave por 

virus pandémicos ingresados en UCI sin evidencia microbiológica de coinfección 

bacteriana, no se asocia con una menor incidencia de neumonía asociada a la ventilación 

mecánica (NAVM) ni con una reducción de la mortalidad en UCI. 

Se postula que el uso de antibióticos en ausencia de infección bacteriana documentada no 

aporta beneficios clínicos relevantes y puede favorecer la aparición de bacterias 

multirresistentes y otras complicaciones nosocomiales. 

2.1. Justificación 

Las infecciones respiratorias causadas por virus pandémicos, como el virus Influenza 

A(H1N1) pdm09 y el SARS-CoV-2, representan una amenaza recurrente para la salud 

pública global y un desafío importante para los sistemas sanitarios. En su forma grave, 

estas infecciones pueden evolucionar rápidamente hacia neumonía viral y síndrome de 

distrés respiratorio agudo (SDRA), generando una elevada demanda de recursos 

asistenciales en las unidades de cuidados intensivos (UCI). Durante las pandemias de 2009 

y 2020, estas patologías no solo duplicaron o triplicaron la ocupación habitual de las UCI, 

sino que también pusieron en evidencia importantes lagunas en la capacidad predictiva y 

en la toma de decisiones clínicas en escenarios de alta incertidumbre. 

Frente a esta complejidad, resulta esencial mejorar la estratificación pronóstica de los 

pacientes críticos mediante modelos analíticos robustos. La aplicación de técnicas de 

aprendizaje automático (machine learning), como el algoritmo Random Forest, permite 

detectar interacciones no lineales y patrones clínicos que podrían pasar desapercibidos con 
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métodos estadísticos clásicos como la regresión logística. Sin embargo, la utilidad real de 

estos enfoques en la práctica clínica sigue siendo motivo de debate: ¿aportan información 

nueva o refuerzan conocimientos ya establecidos? Comparar de forma sistemática ambas 

metodologías en grandes cohortes de pacientes con neumonía grave por virus pandémicos 

puede ayudar a identificar qué factores de riesgo son verdaderamente determinantes, 

independientemente del enfoque analítico utilizado, y cuáles dependen del modelo 

aplicado. 

En paralelo, las pandemias han reavivado la preocupación por el uso indiscriminado de 

antibióticos en pacientes con neumonía viral. Aunque la coinfección bacteriana al ingreso 

es poco frecuente, especialmente en la COVID-19 (<5%), la mayoría de los pacientes 

hospitalizados reciben TAE. Esta práctica conlleva riesgos significativos: toxicidad, 

prolongación de la estancia, desarrollo de resistencias, aparición de infecciones 

nosocomiales como la neumonía asociada a ventilación mecánica (NAVM) y aumento de 

costes. Diversos estudios y guías clínicas, incluyendo las recomendaciones de los 

programas PROA, insisten en la necesidad de una prescripción más racional, apoyada en 

técnicas de diagnóstico microbiológico rápido y en el uso de biomarcadores como la 

procalcitonina o la proteína C reactiva. Aun así, persiste una considerable incertidumbre 

sobre el impacto real de esta estrategia en la morbimortalidad de los pacientes sin 

coinfección documentada. 

Ambos ejes, la mejora en la predicción del riesgo de mortalidad y la evaluación crítica del 

tratamiento antibiótico empírico, convergen en una misma necesidad: avanzar hacia una 

medicina intensiva más precisa, que integre datos clínicos, microbiológicos y analíticos 

con herramientas metodológicas sólidas. Profundizar en estas cuestiones, mediante el 

análisis de bases de datos multicéntricas y el contraste entre enfoques analíticos diversos, 

puede contribuir a optimizar tanto los modelos de decisión clínica como el uso de recursos 

en situaciones de alta presión asistencial como las epidemias estacionales y las pandemias. 
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3. Objetivos  
 

Objetivo principal 

1. Evaluar los determinantes pronósticos al ingreso en pacientes con neumonía grave 

por virus pandémicos (influenza A H1N1 y SARS-CoV-2), con el fin de mejorar la 

estratificación del riesgo y apoyar la toma de decisiones en medicina intensiva. 

 

Objetivos secundarios 

1. Comparar la capacidad predictiva de modelos estadísticos clásicos (regresión 

logística multivariable) con modelos de aprendizaje automático (Random Forest) y 

explorar si su análisis combinado mejora la capacidad pronóstica. 

 

2. Analizar el impacto del tratamiento antibiótico empírico (EAT) sobre la neumonía 

asociada a ventilación mecánica (NAVM) y la mortalidad en pacientes con 

neumonía grave por virus pandémicos en relación a la presencia o ausencia de 

coinfección bacteriana documentada. 
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5. Resumen global de los resultados 

 

5.1 Determinantes pronósticos al ingreso en pacientes con neumonía grave por 

virus pandémicos (influenza A H1N1 y SARS-CoV-2) 

 

Para identificar los factores de riesgo de mortalidad se realizó un primer trabajo donde se 

analizaron 8.902 pacientes en 184 unidades de cuidados intensivos españolas con 

neumonía grave causada por virus pandémicos, incluyendo gripe A (41,6 %) y COVID-19 

(58,4 %). La cohorte presentó una mediana de edad de 60 años y predominó el sexo 

masculino (65,8 %). El perfil clínico inicial reflejaba una gravedad intermedia, con valores 

medianos de APACHE II de 14 y SOFA de 5. Las comorbilidades más prevalentes fueron 

obesidad, diabetes y EPOC. La mortalidad en UCI alcanzó el 25,8 %, y los pacientes que 

fallecieron eran significativamente mayores, con mayor puntuación en escalas de gravedad, 

y mayor frecuencia de shock, disfunción orgánica, coinfección bacteriana y uso de soporte 

vital avanzado (ver tabla 4). 

 

Tabla 4 (Tabla 1 del artículo 1): Características basales de los 8902 pacientes incluidos en 

el análisis, categorizados según el desenlace en UCI y el punto de corte de las variables.
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Variable  
Whole population  

(n= 8,902) 

Survival  

(n=6,608) 

Non-survival  

(n=2,294) 
p-value 

General  

Age, median (Q1-Q3) years 

Age cut-off > 58 years, n (%) 

60 (49-70) 

5177(58.1) 

58 (48-68) 

3473 (52.6) 

67 (57-74) 

1704 (74.3) 

<0.001 

<0.001 

Male sex, n (%) 5855 (65.8) 4248 (64,3) 1607 (70.1) <0.001 

APACHE II, median (Q1-Q3)    

APACHE II cut-off > 13, n (%) 

14 (10-19) 

5309 (59.6) 

13 (10-17) 

3536 (53.5) 

17 (13-22) 

1773 (77.3) 

<0.001 

<0.001 

SOFA score, median (Q1-Q3) 

SOFA cut-off > 4, n (%) 

5 (3-7) 

6274 (70.5) 

4(3-7) 

4299 (65.1) 

6(4-9) 

1975 (86.1) 

<0.001 

<0.001 

GAP UCI, median (Q1-Q3) 

GAP UCI cut-off > 1 day, n (%) 

1 (1-3) 

6804 (76.4) 

1 (1-3) 

5085 (77.0) 

2 (0-4) 

1719 (74.9) 

<0.001 

0.053 

GAP Diagnosis, median (Q1-Q3) 

GAP diagnosis cut-off > 3 days, n (%) 

4 (1-7) 

5413 (60.8) 

3 (1-7) 

3943 (59.7) 

4 (1- 7) 

1470 (64.1) 

0.012 

<0.001 

> 2 fields with infiltrations in chest X-ray, n (%)  5343 (60.0) 3775 (57.1) 1568 (68.4) <0.001 

Antiviral vaccine, n (%)  1333 (14.9) 885 (13.4) 448 (19.5) <0.001 

Shock at ICU admission, n (%) 3549 (39.9) 2286 (34.6) 1263 (55.1) <0.001 

Laboratory 

White blood cells count, median (Q1-Q3) x10
3
 

White blood cells count cut-off < 8.5 x10
3
, n (%) 

8.6 (5.7-12.5) 

4405 (49.5) 

8.5 (5.7-12.1) 

3351 (50.7) 

9.0 (5.8-13.7) 

1054 (45.9) 

<0.001 

<0.001 

Lactate dehydrogenase, median (Q1-Q3) U/L 

Lactate dehydrogenase cut-off > 500 U/L, n (%)  

542 (403-687) 

5157 (57.9) 

524 (378-665) 

3593 (54.4) 

590 (458-749) 

1564 (68.2) 

<0.001 

<0.001 

C reactive protein, median (Q1-Q3) mg/dL 

C reactive protein cut-off >20 mg/dL, n (%) 

19.6 (9.8-34.7) 

4387 (49.3) 

19.0(9.5-34.4) 

3184 (48.2) 

21.1 (10.4-35.4) 

1203 (52.4) 

0.001 

<0.001 

Procalcitonin, median (Q1-Q3) ng/mL 

Procalcitonin cut-off >0.80 ng/mL, n (%)  

0.88 (0.20-5.67) 

4606 (51.7) 

0.83 (0.20-5.08) 

3350 (50.7) 

1.04 (0.23-8.20) 

1256 (54.8) 

<0.001 

0.001 

Lactate, median (Q1-Q3) mmol/L 

Lactate cut-off > 2mmol/L, n (%)   

2.0 (1-4-3.3) 

4660 (52.3) 

2.0 (1.3-3.2) 

3369 (51.0) 

2.2 (1.4-3.8) 

1291 (56.3) 

<0.001 

<0.001 

Creatinine, median (Q1-Q3) mg/dL 

Creatinine cut-off >0.85 mg/dL, n (%)  

0.89 (0.7-1.2) 

4841 (54.4) 

0.85 (0.68-1.12) 

3330 (50.4) 

1.01 (0.75-1.50) 

1511 (65.9) 

<0.001 

<0.001 

D dimer, median (Q1-Q3) ng/mL  

D dimer cut-off > 2700 ng/mL, n (%) 

3071 (971-6604) 

4663 (52.4) 

2716 (900- 6000) 

3314 (50.2) 

4180 (1200-8680) 

1349 (58.8) 

<0.001 

<0.001 

creatine phosphokinase, median (Q1-Q3) U/L  

creatine phosphokinase cut-off > 200 U/L, n (%)  

216 (100-420) 

4707 (52.9) 

210 (97-414) 

3433 (52.0) 

234 (111-442) 

1274 (55.5) 

0.001 

0.003 

Comorbidities  

Diabetes mellitus, n (%) 1196 (13.4) 756 (11.4) 440 (19.2) <0.001 

Asthma, n (%) 698 (7.7) 556 (8.4) 142 (6.2) 0.001 

COPD, n (%)  1281 (14.4) 936 (14.2) 345 (15.0) 0.32 

Chronic heart disease, n (%) 623 (7.0) 418 (6.3) 205 (8.9) <0.001 

Chronic liver disease, n (%) 595 (6.7) 357 (5.4) 238 (10.4)  <0.001 

Pregnancy, n (%) 480 (5.4) 399 (6.0) 81 (3.5) <0.001 

Obesity, n (%)  3046 (34.2) 2256 (34.1) 790 (34.4) 0.81 

Human immunodeficiency virus, n (%) 144 (1.6) 107 (1.6) 37 (1.6) 1.00 

Hematologic disease, n (%)   436 (4.8) 237 (3.6) 199 (8.7) <0.001 

Immunosuppression, n (%) 711 (8.0) 401 (6.0) 310 (13.5) <0.001 

Treatment  

 Steroids, n (%) 5275 (59.2) 3746 (56.7) 1529 (66.7) <0.001 

 Antibiotics (AB) at ICU admission, n (%)  7410 (83.2) 5428 (82.1) 1982 (86.4) <0.001 

 Appropriate empiric AB treatment, n (%)   951 ((10.7) 671 (10.2) 280 (12.2) 0.007  

 High flow nasal cannula at admission, n (%) 1438 (16.1) 1138 (17.2) 300 (13.1) <0.001 

 Invasive mechanical ventilation, n (%) 4252 (47.8) 2751 (41.6) 1501 (65.4) <0.001  

Most common aetiology of coinfection 

Coinfection, n (%) 1211 (100) 810 (12.3) 401 (17.5) <0.001 

Methicillin- sensitive S. aureus (MSSA), n (%) 172 (14.2) 111 (13.7) 61 (15.2) 0.47 

Pseudomonas aeruginosa, n (%) 143 (11.8) 82 (10.1) 61 (15.2)  0.01 

Klebsiella spp. N (%) 85 (7.0) 60 (7.4) 25 (6.2)) 0.45 

Aspergillus spp, n (%) 78 (6.5) 33 (4.0) 45 (11.2) <0.001 

E. coli, n (%) 69 (5.7) 43 (5.3) 26 (6.3) 0.40 

Methicillin- resistant S. aureus (MRSA). n (%)  56 (4.6) 33 (4.0) 23 (5.7) 0.19 

Acinetobacter spp, n (%) 17 (1.4) 4 (0.5) 13 (3.2) <0.001 

Outcomes 

ICU LOS, median (Q1-Q3) days 13 (6-23) 12 (6-23) 14 (7-24) 0.03 

Acute Kidney injury, n (%) 1435 (16.1) 855 (12.9) 580 (25.3) <0.001 

 

Las variables continuas se muestran como valores medianos y percentiles Q1–Q3. Las variables categóricas 

se presentan como número de casos (n) y porcentaje (%). (LDH: lactato deshidrogenasa; C-RP: proteína C 

reactiva; CPK: creatincinasa; PCT: procalcitonina; VAP: neumonía asociada a la ventilación mecánica; AKI: 

lesión renal aguda; LOS: duración de la estancia; ICU: unidades de cuidados intensivos; Gap-ICU: tiempo 
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en días desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: más de 2 campos pulmonares 

ocupados por infiltrados en la radiografía de tórax; MDR: bacterias multirresistentes; EAT: tratamiento 

antibiótico empírico; AEAT: tratamiento antibiótico empírico adecuado.) 

 

Para identificar aquellas variables independientes para la mortalidad se diseñaron dos 

modelos multivariados distintos, uno lineal por regresión logística multivariable, y uno no 

lineal, Random Forest. La regresión logística identificó 17 factores con asociación 

independiente a la mortalidad, siendo los más relevantes la infección por Acinetobacter 

spp. (OR 9,95), disfunción miocárdica (OR 3,27) y edad superior a 58 años (OR 2,03). 

Otros predictores significativos incluyeron inmunosupresión, ventilación mecánica, 

puntuaciones elevadas de APACHE II y SOFA, y niveles elevados de LDH. 

El modelo de Random Forest identificó un conjunto parcialmente diferente de variables 

importantes, incluyendo edad, APACHE II, SOFA, ventilación mecánica, shock e 

inmunosupresión como los factores más determinantes. Además, otorgó relevancia 

pronóstica a biomarcadores como lactato (>2 mmol/L), procalcitonina (>2 ng/mL), dímero-

D (>2.700 ng/mL), CPK (>200 U/L) y presencia de EPOC, variables que no alcanzaron 

significación en el modelo lineal. 

En total, trece variables fueron compartidas por ambos enfoques, destacando edad, sexo 

masculino, gravedad al ingreso, presencia de shock, ventilación mecánica, 

inmunosupresión, diabetes, enfermedad hematológica, disfunción miocárdica, LDH y 

creatinina elevada, y hallazgos radiológicos compatibles con neumonía extensa. En 

cambio, el GLM dio mayor peso a la lesión renal aguda y a la presencia de Aspergillus o 

Acinetobacter, mientras que Random Forest destacó biomarcadores inflamatorios y 

tiempos de acceso al diagnóstico y tratamiento (ver Tabla 5). 

Tabla 5 (Tabla 2 del artículo1): Variables asociadas a la mortalidad en UCI en el análisis 

multivariante lineal (GLM) y el análisis multivariante no lineal (Random Forest). Se 

muestran las variables significativas en el modelo lineal y aquellas con una importancia 

superior al 10% en la disminución de la precisión o superior al 50% en la disminución del 

índice GINI en el modelo no lineal. 
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 GLM Model Random Forest Model 
Variable   OR 95%CI Decrease Accuracy  Decrease Gini  
Age > 58 years 2.03 1.74-2.36 34.9% 79.2% 
APACHE II > 13 points  1.72 1.48-2.02 19.1% 88.1% 
SOFA > 4 points  1.47  1.23-1.76 26.0% 65.1% 
Shock 1.27 1.09-1.47 16.4% 77.4% 
Hematologic disease  1.67 1.26-2.22 19.5% 39.4% 
Obesity  1.16 1.01-1.32 ----- 92.4% 
Diabetes  1.37 1.14-1.65 16.5% 60.6% 
Immunosuppression  1.92 1.53-2.42 18.9% 53.0% 
Steroids  1.54 1.34-1.77 12.7% 81.6% 
Mechanical ventilation  1.94 1.67-2.25 33.0% 88.1% 
Myocardial dysfunction  3.27 2.53-4.28 47.2% 63.6% 
Acute kidney injury 1.29 1.07-1.55 ---- ----- 
>  2 fields with infiltrations in chest X-ray 1.54 1.34-1.77 16.8% 81.3% 
LDH > 500 U/L 1.41 1.22-1.63 11.5% 79.7% 
Creatinine > 0.85 mg/dL  1.33 1.14-1.55 13.3% 73.8% 
Acinetobacter spp. 9.95 2.61-47.8 ---- ---- 
Aspergillus spp.  2.45 1.39-4.33 11.2% ---- 
Procalcitonin >2ng/mL ---- ---- 23.0% 68.1% 
D-dimer > 2700 ng/mL ---- ---- 21.7% 75.9% 
Lactate > 2 mmol/L ---- ---- 18.1% 79.5% 
COPD  ---- ---- 17.4% 61.3% 
CPK > 200 U/L ---- ---- 13.1% 90.6% 
GAP-Diagnosis > 3 days ---- ---- ---- 96.9% 
WBC count < 8.5 x10

3 ---- ---- ---- 93.3% 
Male  ---- ---- ---- 81.3% 
GAP-ICU < 1day ---- ---- ---- 77.1% 

 

Abreviaturas: OR: razón de momios (Odds Ratio); IC: intervalo de confianza; APACHE II: Evaluación 

Fisiológica Aguda y de Salud Crónica II; SOFA: Evaluación Secuencial de Fallo Orgánico; LDH: lactato 

deshidrogenasa; GAP-UCI: tiempo desde el diagnóstico hasta el ingreso en UCI; GAP-Diagnóstico: tiempo 

desde el inicio de los síntomas hasta el diagnóstico; UCI: Unidad de Cuidados Intensivos; EPOC: enfermedad 

pulmonar obstructiva crónica; CPK: creatincinasa; WBC: leucocitos totales (recuento de glóbulos blancos). 
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5.2 Capacidad predictiva de modelos estadísticos clásicos (regresión logística 

multivariable) en comparación a modelos de aprendizaje automático (Random 

Forest) en la predicción de mortalidad 

En el primer trabajo se aplicaron dos modelos predictivos a la cohorte de 8.902 pacientes 

con neumonía grave por virus pandémicos: un modelo estadístico lineal (regresión logística 

multivariable, GLM) y un modelo de aprendizaje automático no lineal (Random Forest, 

RF). Ambos mostraron un rendimiento muy similar: el GLM alcanzó un área bajo la curva 

(AUC) de 0,76 (IC 95 %: 0,74–0,78), con una exactitud del 76 %, sensibilidad del 61 % y 

especificidad del 79 %; el modelo RF presentó una exactitud del 75,6 %, un error out-of-

bag del 25,3 % y una concordancia del 70,1 % con el GLM (1.872 casos clasificados igual) 

(Figuras 1 y 2). 

 

Figura 1 (Figura 3 del artículo 1): Clasificación de los pacientes según el modelo lineal 

(Modelo Lineal Generalizado - GLM) y el modelo no lineal (Random Forest - RF). 

T
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Figura 2 (Figura 4 del artículo 2): Distribución de la probabilidad generada por cada 

modelo (Clase) con respecto a la observada (Real). (0 = supervivientes; 1 = no 

supervivientes) 

 

La regresión logística identificó 17 variables asociadas de forma independiente con la 

mortalidad, entre ellas infección por Acinetobacter spp. (OR 9,95), disfunción miocárdica 

(OR 3,27) y edad >58 años (OR 2,03), además de inmunosupresión, ventilación mecánica, 

puntuaciones elevadas de APACHE II y SOFA, y LDH elevada. El modelo RF coincidió 

en muchas de estas variables, pero otorgó mayor relevancia a otras no significativas en el 

modelo lineal, como la procalcitonina >2 ng/mL, el lactato >2 mmol/L, el dímero D >2.700 

ng/mL, la CPK >200 U/L y la presencia de EPOC. 

Ambos modelos coincidieron en identificar un conjunto de 13 variables clave con alto valor 

pronóstico, entre las que se incluyen edad, sexo masculino, gravedad clínica al ingreso 

(APACHE II, SOFA), presencia de shock, ventilación mecánica, inmunosupresión, 

diabetes, enfermedad hematológica, disfunción miocárdica, LDH y creatinina elevadas, y 

un patrón radiológico extenso compatible con neumonía bilateral. No obstante, se 
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observaron diferencias en las variables secundarias identificadas, lo que demuestra el valor 

complementario de aplicar ambos enfoques para enriquecer la comprensión del riesgo 

clínico y mejorar la estratificación pronóstica en pacientes críticos con infecciones virales 

graves (Tabla 2). 

En el segundo estudio, también se emplearon análisis multivariados mediante regresión 

logística (GLM) y modelos de aprendizaje automático Random Forest (RF) donde se 

identificaron factores de riesgo complementarios que contribuyeron a caracterizar los 

desenlaces clínicos. 

En relación con la aparición de NAVM, ambos modelos coincidieron en señalar como 

factores de riesgo la edad, el uso de corticoides y la elevación del lactato sérico. Además, 

el GLM identificó de forma específica la extensión radiológica de los infiltrados 

pulmonares (Figura 3), mientras que el modelo RF destacó la relevancia de biomarcadores 

como la procalcitonina (Figura 4A). 

Figura 3 (Figura S2 del material suplementario del artículo 2): Variables asociadas al 

desarrollo de neumonía asociada a la ventilación mecánica (NAVM) en el modelo de 

regresión logística multivariable (GLM). 
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(CRP: proteína C reactiva; CPK: creatincinasa; PCT: procalcitonina; AKI: lesión renal aguda; Chest x-ray 

cutoff: más de 2 campos pulmonares ocupados por infiltrados en la radiografía de tórax; EAT: tratamiento 

antibiótico empírico; Global IEAT: tratamiento antibiótico empírico globalmente inapropiado, que incluye a 

los pacientes con IEAT más los pacientes sin EAT) 

 

Figura 4 (Figura 6 del artículo 2). Contribución de cada variable de confusión según el 

modelo de Random Forest (RF) para las variables asociadas al desarrollo de neumonía 

asociada a la ventilación mecánica (NAVM) (A) y a la mortalidad global en UCI (B). Como 

puede observarse en la figura, la variable tratamiento antibiótico empírico (TAE) se sitúa 

por debajo de los puntos de corte considerados para determinar qué variables son 

importantes en el modelo (línea roja discontinua), tanto para el desarrollo de NAVM (A) 

como para la mortalidad en UCI (B). 
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Abreviaturas: cut: punto de corte; APACHE II: Evaluación Fisiológica Aguda y de Salud Crónica II; SOFA: 

Evaluación Secuencial de Fallo Orgánico; EAT: Tratamiento antibiótico empírico; VAP: Neumonía asociada 

a la ventilación mecánica; AEAT: Tratamiento antibiótico empírico adecuado; CPK: Creatincinasa; DD: 

Dímero D; WBC: Recuento de leucocitos; COPD: Enfermedad pulmonar obstructiva crónica; dis: disfunción; 

Chr_Card_dis: Enfermedad cardíaca crónica; AKI: Lesión renal aguda; CRP: Proteína C reactiva; 

GAP_ICU_cut: Tiempo transcurrido entre el diagnóstico de la infección viral pandémica y el ingreso en UCI; 

Chr_renal_dis: Enfermedad renal crónica; ID: Inmunosupresión; Rx-cutoff: >2 campos con infiltrados en la 

radiografía de tórax; PCT: Procalcitonina; Hematol-dis: Enfermedad hematológica; LDH: Lactato 

deshidrogenasa. 

En los análisis de mortalidad realizados en pacientes sin coinfección bacteriana 

confirmada, ni el TAE ni la NAVM se asociaron con un incremento significativo del riesgo 

de muerte. 
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En conjunto, se identificaron 12 variables pronósticas comunes a ambos modelos, entre 

ellas: la edad, la gravedad clínica al ingreso, la inmunosupresión, los niveles de 

procalcitonina y el tiempo transcurrido entre el diagnóstico de la infección viral y el ingreso 

en UCI. Además, se observaron variables predictivas específicas según el modelo utilizado: 

el sexo en el GLM (Figura 5) y la función renal y los marcadores inflamatorios (proteína 

C reactiva, ferritina) en el RF (Figura 4B). 

Figura 5 (Figura S3 del material suplementario del artículo2): Variables asociadas con la 

mortalidad bruta en UCI en el modelo de regresión logística multivariable (GLM). 

 

(AKI: lesión renal aguda; EAT: tratamiento antibiótico empírico; PCT: procalcitonina; Gap-ICU: tiempo en 

días desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: más de 2 campos pulmonares 

ocupados por infiltrados en la radiografía de tórax; Global IEAT: incluye a los pacientes con tratamiento 

antibiótico empírico inapropiado (IEAT) más los pacientes sin EAT.) 
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5.3 Impacto del tratamiento antibiótico empírico (EAT) sobre la aparición de 

neumonía asociada a ventilación mecánica (NAVM) y la mortalidad según la 

presencia o ausencia de coinfección bacteriana 

 

Se diseñó un segundo estudio para evaluar el impacto clínico del TAE en pacientes con 

neumonía grave por virus pandémicos usando modelos de análisis lineales y no lineales. 

Este estudio retrospectivo multicéntrico incluyó 4.197 pacientes críticos con neumonía 

viral grave (COVID-19 o gripe A H1N1) ingresados en UCIs españolas. El 88 % recibió 

antibiótico empírico al ingreso (EAT), eran pacientes más graves (Apache II, SOFA, Rx), 

más inflamados (PCR, PCT, D-Dímero), más hipoperfundidos (lactato), más disfunción 

orgánica (shock, AKI, ventilación mecánica invasiva). El 15,6 % (n = 654) presentaban 

coinfección bacteriana precoz confirmada por aislamiento microbiológico en las primeras 

48 horas (Tabla 3). En este subgrupo, los pacientes que recibieron un tratamiento 

inadecuado (IEAT) presentaron mayor mortalidad (49,6 % frente a 38,4 %) y mayor 

incidencia de neumonía asociada a la ventilación (VAP) (36 % frente a 17 %) (Tabla 4). 

 

Tabla 3 (Tabla 1 del artículo 2): Características de los 4197 pacientes con neumonía 

grave por virus pandémicos y ventilación mecánica invasiva (VMI) según si tenían 

coinfección bacteriana (COI). 
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Las variables continuas se muestran como valores medianos y percentiles Q1–Q3. Las variables categóricas 

se presentan como número de casos (n) y porcentaje (%). (LDH: lactato deshidrogenasa; C-RP: proteína C 

reactiva; CPK: creatincinasa; PCT: procalcitonina; VAP: neumonía asociada a la ventilación mecánica; AKI: 

lesión renal aguda; LOS: duración de la estancia; ICU: unidades de cuidados intensivos; Gap-ICU: tiempo 

en días desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: más de 2 campos pulmonares 

ocupados por infiltrados en la radiografía de tórax; MDR: bacterias multirresistentes; EAT: tratamiento 

antibiótico empírico; AEAT: tratamiento antibiótico empírico adecuado.) 

 

Tabla 4 (Tabla 2 del artículo 2): Características generales de los 626 pacientes con 

coinfección (COI) y tratamiento antibiótico empírico (TAE), distinguiendo entre 

tratamiento antibiótico empírico adecuado (AEAT) e inadecuado (IAET). 
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Variables#  IEAT (n= 85) AEAT  (n=541 ) p-value  

General Characteristics  

Age, years 62 (56-72) 59 (47-70) 0.009 

Male sex 55 (64.7) 359 (66.4) 0.860 

APACHE II score 18 (13-21) 19 (14-24) 0.170 

SOFA score 7 (5-9) 7(5-10) 0.040 

Gap-ICU, days 1 (1-2) 1 (0-2) 0.180 

Chest x-ray cutoff 51 (60.0) 286 (52.9) 0.260 

COVID  48 (56.5) 123 (22.7) <0.001 

Influenza  37 (43.5) 418 (77.3) <0.001 

Laboratory  

WBC x103 8.0 (4.9-11.6) 8.7 (3.9-13.9) 0.600 

LDH U/L 630 (473-830) 600 (458-745) 0.290 

C-RP mg/mL 22.4 (13.0-33.3) 33.4 (19.7-91.3) <0.001 

PCT ng/mL 1.44 (0.24-8.26) 7.86 (1.55-24.0) <0.001 

Creatinine mg/dL 0.87 (0.70-1.48) 1.14 (0.79-1.86) 0.010 

CPK ng/mL 218 (119-399) 338 (151-647) 0.001 

Lactate mmol/L  2.3 ( 1.6-3.6) 2.3 (2.2-4.8) <0.001 

D-dimer  UI/L 3940 (1179-7200) 6800 (3780-11,700)  

Comorbidities  

 COPD  11 (12.9) 111 (20.5) 0.130 

 Asthma 8 (9.4) 31 (5.7) 0.280 

Chr. Heart Dis 4 (4.7) 52 (9.6) 0.200 

Chr.Renal Dis.  7 (8.2) 44 (8.1) 1.00 

Hematologic Dis.  4 (4.7) 36 (6.6) 0.650 

Pregnancy  2 (2.3) 51 (9.4) 0.040 

Obesity  34 (40.0) 140 (25.9) 0.010 

Diabetes  13 (15.3) 39 (7.2) 0.020 

Immunosuppression  8 (9.4) 68 (12.6) 0.510 

Treatment and complications  

Corticosteroids 57 (67.1)  323 (59.7) 0.240 

Presence of MDR bacteria 69 (81.2) 98 (18.1) <0.001 

VAP  31 (36.5) 94 (17.4) <0.001 

AKI 20 (23.5) 194 (35.9) 0.030 

Myocardial dysfunction 4 (4.7) 10 (1.8) 0.100 

Shock  61 (71.8) 424 (78.4) 0.220 

Outcomes 

LOS ICU, days  22 (12-37) 16 (8-28) 0.001 

LOS Hospital, days 30 (21-50) 25 (12-42) 0.008 

IMV days 15 (10-30) 12 (6-24) 0.010 

ICU mortality 40 (47.1) 208 (38.4) 0.160 



 

83 

 

Las variables continuas se muestran como valores medianos y percentiles Q1–Q3. Las variables categóricas 

se presentan como número de casos (n) y porcentaje (%). (LDH: lactato deshidrogenasa; CRP: proteína C 

reactiva; CPK: creatincinasa; PCT: procalcitonina; VAP: neumonía asociada a la ventilación mecánica; AKI: 

lesión renal aguda; LOS: duración de la estancia; ICU: unidades de cuidados intensivos; Gap-ICU: tiempo 

en días desde el ingreso hospitalario hasta el ingreso en UCI; Chest x-ray cutoff: más de 2 campos pulmonares 

ocupados por infiltrados en la radiografía de tórax; MDR: bacterias multirresistentes; * Global IEAT: incluye 

a los pacientes con tratamiento antibiótico empírico inadecuado (IEAT) más los pacientes sin tratamiento 

empírico (EAT)*). 

 

En los 3.543 pacientes sin coinfección bacteriana documentada, el 88 % recibió antibiótico 

empírico. Este grupo presentaba mayor gravedad clínica basal (Tabla 3). Para reducir el 

sesgo por indicación, se aplicó un emparejamiento por puntuación de propensión (PSM), 

generando una cohorte emparejada de 3.520 pacientes con características similares. Tras 

este ajuste, no se observaron diferencias significativas en la incidencia acumulada de 

NAVM (p = 0,8) (Figura 6) ni en la mortalidad en UCI (p = 0,3) (Figura 7). Estos resultados 

fueron confirmados mediante modelos multivariables de regresión de Cox (HR NAVM = 

1,00; HR mortalidad = 1,02), que tampoco mostraron un efecto beneficioso del EAT en 

estos pacientes (Figuras 8 y 9). 
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Figura 6 (Figura 2 del artículo 2): Curva de Kaplan-Meier para el desarrollo de neumonía 

asociada a la ventilación mecánica (NAVM) según si los pacientes sin coinfección 

bacteriana recibieron o no tratamiento antibiótico empírico (TAE). Como puede 

observarse, no existen diferencias significativas en la probabilidad de desarrollar NAVM 

entre el grupo con TAE (línea azul) y el grupo sin TAE (línea roja) (prueba de log-rank 

p=0,8). 
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Figura 7 (Figura 3 del artículo 2): Curva de Kaplan-Meier para el desarrollo de mortalidad 

global en UCI según si los pacientes sin coinfección bacteriana recibieron o no tratamiento 

antibiótico empírico (TAE). Como puede observarse, no existen diferencias significativas 

en la probabilidad de supervivencia entre el grupo con TAE (línea azul) y el grupo sin TAE 

(línea roja) (prueba de log-rank p=0,3). 
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Figura 8 (Figura 4 del artículo 2): Gráfico de regresión de riesgos proporcionales de Cox 

para la probabilidad de desarrollar NAVM según si se recibió o no tratamiento antibiótico 

empírico (TAE) en la cohorte emparejada de pacientes sin coinfección. Como puede 

observarse, las líneas están prácticamente superpuestas, ya que no existen diferencias 

significativas en el riesgo diario proporcional de desarrollar NAVM entre el grupo con 

TAE (línea azul) y el grupo sin TAE (línea roja) (HR=1,0). 
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Figura 9 (Figura 5 del artículo 2): Gráfico de regresión de riesgos proporcionales de Cox 

para la mortalidad global en UCI según si se recibió o no tratamiento antibiótico empírico 

(TAE) en la cohorte emparejada de pacientes sin coinfección. Como puede observarse, no 

se observaron diferencias significativas en el riesgo diario proporcional de supervivencia 

en UCI entre el grupo con TAE (línea azul) y el grupo sin TAE (línea roja) (HR=1,02). 

 

Neumonía asociada a ventilación mecánica (NAVM): 

 

En los pacientes sin coinfección bacteriana, el TAE no se asoció a una menor incidencia 

de NAVM. En los análisis multivariados, los factores asociados al desarrollo de NAVM 

fueron el uso de corticoides, la inmunosupresión y la afectación radiológica extensa 

(Rx_cutoff). En los modelos de aprendizaje automático (Random Forest), las variables con 

mayor peso predictivo fueron también Rx_cutoff, uso de corticoides, inmunosupresión, 

edad, SOFA, procalcitonina, APACHE II, intervalo entre ingreso hospitalario y admisión 

en UCI (GAP-ICU), creatinina, urea, sexo femenino y dímero D. En ambos enfoques 

analíticos, el EAT no mostró asociación significativa ni peso predictivo relevante respecto 

al desarrollo de NAVM (Figuras 3 y 4A). 
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Mortalidad en UCI: 

 

Tampoco se observaron diferencias significativas en la mortalidad entre los pacientes sin 

coinfección tratados o no con antibióticos empíricos. Tras el emparejamiento por PSM y 

el análisis multivariable con modelos de Cox, el EAT no se asoció a una reducción de la 

mortalidad (HR 1,02). En los modelos de regresión logística (GLM), los factores asociados 

a mayor mortalidad fueron la edad, la gravedad clínica (SOFA, APACHE II) y 

biomarcadores inflamatorios elevados como la procalcitonina y el dímero D (Figura 5). El 

modelo Random Forest identificó como variables más relevantes para la predicción de 

mortalidad: edad, SOFA, APACHE II, procalcitonina, lactato, dímero D, creatinina, urea, 

Rx_cutoff, GAP-ICU, corticoides y sexo (Figura 4B). En ninguno de los modelos el EAT 

tuvo un peso relevante ni se asoció de forma significativa con la mortalidad. 

En conjunto, el antibiótico empírico solo fue útil en pacientes con coinfección bacteriana 

confirmada y tratamiento adecuado. En el resto, su uso no mejoró los resultados y puede 

contribuir al desarrollo de bacterias multirresistentes. Estos hallazgos respaldan la 

necesidad de un esfuerzo diagnóstico precoz para identificar coinfección y optimizar el uso 

de antibióticos, en línea con las recomendaciones de los programas PROA. 
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6. Resumen global de la discusión: 

Esta tesis doctoral se basa en dos estudios observacionales multicéntricos realizados sobre 

una cohorte común de 8.902 pacientes críticos con neumonía grave por virus pandémicos 

(influenza A[H1N1]pdm09 y SARS-CoV-2) ingresados en más de 180 UCIs españolas. Se 

trata de la serie más amplia publicada hasta la fecha con estas características y el primer 

trabajo que aplica técnicas de machine learning a pacientes críticos con gripe A, ampliando 

su uso más allá de la COVID-19. Al incluir infecciones por virus emergentes y estacionales 

y reflejar la práctica real de las UCIs españolas, sus resultados son clínicamente relevantes 

y extrapolables a los picos epidémicos invernales que cada año tensionan nuestras UCIs. 

6.1 Determinantes pronósticos al ingreso en pacientes con neumonía grave por 

virus pandémicos (influenza A H1N1 y SARS-CoV-2) 

El hallazgo más importante fue que los dos enfoques analizados, la regresión logística 

multivariable como método estadístico lineal y el algoritmo Random Forest como técnica 

de aprendizaje automático no lineal, mostraron un rendimiento muy similar, con una 

precisión cercana al 80%. Este resultado coincide con lo descrito en otros estudios que 

tampoco hallaron una ventaja clara de los modelos de machine learning cuando se utilizan 

únicamente datos basales recogidos al ingreso (33,35,37,39). 

Ambos modelos identificaron un grupo de factores que se asociaron de forma consistente 

con la mortalidad y que denominamos determinantes mayores: la edad avanzada, la 

gravedad clínica inicial, la disfunción multiorgánica y la necesidad temprana de ventilación 

mecánica invasiva. Estas variables fueron comunes a ambos métodos. Además, cada 

modelo identificó otros factores adicionales, definidos como determinantes menores. En el 

caso de Random Forest destacaron la procalcitonina, el dímero D y el lactato, mientras que 

en la regresión logística fueron relevantes la insuficiencia renal aguda y la coinfección por 

Acinetobacter spp. Este enfoque combinado demuestra que la integración de datos clínicos 

clásicos con biomarcadores específicos permite identificar de forma más precisa perfiles 

de riesgo que pueden pasar desapercibidos si se utiliza un único modelo. 



 

90 

 

Las pandemias de gripe A(H1N1) y COVID-19 han evidenciado la importancia de contar 

con herramientas fiables que permitan identificar de forma temprana a los pacientes con 

mayor riesgo de complicaciones. Este reconocimiento precoz facilita un triaje ágil, una 

asignación adecuada de recursos y una mejor planificación de los cuidados intensivos. 

Aunque estos escenarios epidémicos puedan parecer excepcionales, cada invierno los 

hospitales registran un incremento sostenido de ingresos por infecciones respiratorias 

graves, que ejerce una elevada presión asistencial, especialmente en las unidades de 

cuidados intensivos. 

Diversos autores han empleado machine learning para crear modelos predictivos en 

pacientes con COVID-19, pero la mayoría de los estudios se basan en cohortes pequeñas y 

en pacientes no críticos. Por ejemplo, Huang et al. (77) describieron un AUC del 94,4% en 

127 pacientes, de los cuales solo 33 eran críticos. Otros trabajos, como los de Zhu (38), 

Gong (50), Aloisio (51) y Liu (78), obtuvieron resultados similares con regresión logística 

lineal en muestras reducidas, con escasa aplicabilidad en pacientes con insuficiencia 

respiratoria grave. En este contexto, el presente estudio aporta evidencia más sólida al 

incluir casi 9.000 pacientes críticos y realizar un análisis multicéntrico en 148 UCI, lo que 

refuerza la validez y la generalización de los resultados. Además, la clasificación de los 

factores de riesgo en determinantes mayores y menores facilita su interpretación y uso en 

la práctica clínica. 

Implicación clínica 

En la práctica diaria, identificar de forma precoz los determinantes mayores permite 

realizar un triaje inicial más rápido y orientar la asignación prioritaria de camas y recursos 

en la UCI. La valoración complementaria de determinantes menores, como los 

biomarcadores inflamatorios y trombóticos, ayuda a anticipar intervenciones dirigidas, 

como la anticoagulación precoz o el inicio temprano de tratamientos antibióticos en casos 

seleccionados. Asimismo, reconocer la importancia de la insuficiencia renal aguda y la 

coinfección bacteriana subraya la necesidad de aplicar protocolos de prevención de 

infecciones nosocomiales y de vigilar estrechamente la función renal desde el primer día 

de ingreso. La combinación de estos enfoques contribuye a optimizar la gestión clínica en 
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situaciones de alta demanda asistencial y puede mejorar de manera significativa los 

resultados en pacientes con neumonía grave por virus pandémicos. 

 

6.2 Capacidad predictiva de modelos estadísticos clásicos (regresión logística 

multivariable) en comparación a modelos de aprendizaje automático (Random 

Forest) en la predicción de mortalidad 

En el primer trabajo también se exploró si la combinación de ambos enfoques analíticos 

podía aportar un valor añadido. En nuestro estudio, ambos modelos mostraron un 

rendimiento muy similar, con una precisión aproximada del 80%, lo que confirma que la 

regresión logística sigue siendo una herramienta eficaz y plenamente vigente, incluso 

frente a algoritmos más complejos. Este hallazgo coincide con estudios previos que 

tampoco encontraron diferencias sustanciales entre métodos estadísticos tradicionales y 

técnicas de machine learning cuando se utilizan exclusivamente datos recogidos al ingreso 

(33,37,39,79). 

El análisis detallado de las variables seleccionadas reveló diferencias relevantes. Mientras 

que Random Forest identificó como predictores la procalcitonina, el dímero D y el lactato, 

la regresión logística destacó la insuficiencia renal aguda y la coinfección por 

Acinetobacter spp. Esta diferencia en los factores identificados sugiere que ambos 

enfoques no son redundantes, sino complementarios, ya que aportan perspectivas distintas 

que permiten caracterizar mejor el perfil pronóstico de cada paciente. 

Otros autores han realizado comparaciones similares. Reina-Reina et al. (39) evaluaron 

distintas técnicas de machine learning en 1.200 pacientes con COVID-19 y encontraron 

una precisión de clasificación superior al 88% en todos los métodos. Aunque Random 

Forest mostró un rendimiento ligeramente mayor, se eligió finalmente la regresión logística 

por su mayor facilidad de interpretación clínica. No obstante, este estudio no analizó las 

diferencias específicas entre predictores y solo incluyó un número reducido de pacientes 

críticos. Pourhomayoun et al. (33), en una cohorte de más de 2,6 millones de casos, 

obtuvieron resultados comparables entre redes neuronales (AUC 89,98%), Random Forest 
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(87,93%) y regresión logística (87,91%), si bien no se compararon estadísticamente estas 

diferencias ni se detalló el grado de gravedad clínica de los pacientes incluidos. 

Es importante señalar que muchos estudios previos utilizaron bases de datos muy 

desequilibradas, con un porcentaje de mortalidad bajo (41). En cambio, nuestra cohorte 

presentó una mortalidad del 25%, claramente superior a la de otras series publicadas (10–

15%) (6,34,39,51,78), lo que aporta mayor solidez y aplicabilidad a los resultados. Este 

hecho también explica que el muestreo equilibrado de clases no mejorara de manera 

sustancial la capacidad predictiva, confirmando que el desequilibrio no comprometió la 

fiabilidad del modelo. 

Aunque el aprendizaje automático permite identificar interacciones complejas y patrones 

no lineales, su aplicación clínica tiene limitaciones, como la necesidad de grandes 

volúmenes de datos y una menor facilidad de interpretación. Esto coincide con otros 

estudios que observaron un rendimiento limitado de estos modelos cuando se entrenan 

exclusivamente con variables clínicas basales y no incorporan datos dinámicos (37,39,40). 

De hecho, los modelos con mejor capacidad predictiva, como los descritos por Wang et al. 

(80) y Karasneh et al. (36), incluyeron información evolutiva o marcadores inmunológicos 

que, en la práctica, suelen no estar disponibles en las primeras horas de ingreso. 

Implicación clínica 

En la práctica, la combinación de la regresión logística con Random Forest permite 

aprovechar las fortalezas de ambos métodos: la interpretación clara de los factores clásicos 

y la capacidad de los algoritmos no lineales para identificar relaciones complejas entre 

variables. Este enfoque complementario facilita una detección más precisa y temprana de 

los pacientes con alto riesgo de mortalidad, mejora el triaje y la asignación de recursos 

críticos, y permite un seguimiento más dirigido mediante biomarcadores específicos, 

especialmente en periodos de alta presión asistencial o ante nuevas variantes virales. 

Además, conocer predictores que varían según el método empleado genera nuevas 

hipótesis sobre mecanismos fisiopatológicos y abre oportunidades para diseñar estrategias 
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terapéuticas personalizadas que puedan beneficiar de forma directa al paciente crítico con 

neumonía vírica grave. 

6.3 Impacto del tratamiento antibiótico empírico (EAT) sobre la aparición de 

neumonía asociada a ventilación mecánica (NAVM) y la mortalidad según la 

presencia o ausencia de coinfección bacteriana 

El segundo estudio mostró que el TAE administrado durante las primeras 24 horas de 

ingreso en UCI no se asoció con una menor mortalidad ni con menos casos de neumonía 

asociada a ventilación mecánica (NAVM) en los pacientes sin coinfección bacteriana 

confirmada. Este resultado se mantuvo tras ajustar por factores de confusión mediante 

propensity score matching, modelos multivariantes y análisis no lineales, lo que refuerza 

la solidez de los hallazgos y coincide con otros estudios recientes que no muestran 

beneficio en el uso rutinario de antibióticos sin confirmación microbiológica (31,61,81,82). 

En cambio, en los pacientes con coinfección bacteriana, el uso inadecuado de antibióticos 

se relacionó con más NAVM, mayor mortalidad, más comorbilidad y estancias 

hospitalarias más largas. Estos efectos adversos son especialmente preocupantes en 

periodos de alta presión asistencial, cuando los recursos y las camas de UCI son limitados. 

Esta evidencia pone de relieve que una estrategia terapéutica inadecuada puede 

comprometer tanto la evolución clínica como la eficiencia del sistema sanitario (75,83). 

La evidencia disponible sobre el impacto del antibiótico empírico en la neumonía viral 

grave sigue siendo heterogénea y limitada. Algunos trabajos, como el de Wendel-García et 

al. (75), describen beneficios en pacientes con COVID-19, relacionando su uso con menor 

sobreinfección y mortalidad. Sin embargo, otras series con ajustes metodológicos más 

rigurosos no encontraron diferencias significativas (81,82), y varias revisiones insisten en 

la baja prevalencia de coinfección bacteriana en estos pacientes (59,61,84). Estas 

discrepancias probablemente se deben a diferencias en las definiciones de sobreinfección, 

la falta de ajustes por variables de confusión o la exclusión de casos de gripe A(H1N1), lo 

que dificulta comparar y extrapolar resultados. En nuestra cohorte, con una definición 
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estricta de coinfección confirmada microbiológicamente, la prevalencia fue más alta 

(~15%) frente a otros registros (~4%) (61,75). 

Se identificaron además factores clínicos y biológicos asociados a peor evolución, como la 

edad avanzada, el uso de corticoides y la afectación radiológica extensa, en línea con 

estudios previos (83,85). Aunque biomarcadores como la procalcitonina y la proteína C 

reactiva pueden ayudar a orientar el manejo inicial, su utilidad diagnóstica es limitada. El 

estudio de Galli et al. (31) mostró que sus niveles al ingreso no discriminan de forma fiable 

la coinfección, lo que resalta la importancia de valorar siempre la evolución clínica y la 

microbiología, y de monitorizar estos marcadores de manera secuencial. 

Por otro lado, el uso indiscriminado de antibióticos de amplio espectro no mostró 

beneficios en la supervivencia y se asoció a más complicaciones, como un mayor riesgo de 

NAVM, la aparición de bacterias multirresistentes y estancias más prolongadas 

(56,57,64,86,87). En España, durante la pandemia, la incidencia de NAVM se duplicó (76), 

y más del 80% de los pacientes recibieron antibióticos empíricos pese a la baja tasa de 

coinfección confirmada (31,81,82,83). Este escenario refuerza la necesidad de protocolos 

claros y programas de optimización del uso de antimicrobianos (PROA) que promuevan la 

desescalada precoz, el diagnóstico rápido y la revisión constante de la indicación 

antibiótica. 

En conjunto, estos resultados apoyan que el tratamiento empírico debe reservarse a 

pacientes con alta sospecha clínica o microbiológica de coinfección. La recogida precoz de 

muestras, el uso de técnicas de diagnóstico rápido y la interpretación cuidadosa de los 

biomarcadores permiten una aproximación más segura e individualizada. La implantación 

de programas PROA multidisciplinares, con la implicación de intensivistas, microbiólogos, 

farmacéuticos y especialistas en enfermedades infecciosas, resulta clave no solo para 

mejorar la evolución clínica, sino también para aprovechar mejor los recursos disponibles, 

sobre todo en situaciones de alta presión asistencial. 

Implicación clínica 
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Los datos de este estudio apoyan un uso más racional de los antibióticos en pacientes 

críticos con neumonía viral grave. En la práctica, el tratamiento empírico debería reservarse 

a pacientes con alta sospecha de coinfección bacteriana, en especial aquellos con factores 

de riesgo claros como mayor gravedad clínica, edad avanzada, inmunosupresión, 

afectación radiológica extensa y disfunción orgánica. 

En estos casos, es fundamental recoger muestras microbiológicas de calidad de forma 

precoz, utilizar técnicas de diagnóstico rápido y reevaluar la necesidad de continuar el 

tratamiento según la evolución clínica y los resultados de laboratorio. 

La implantación de protocolos de actuación claros y programas de optimización de 

antimicrobianos (PROA), coordinados por equipos multidisciplinares, resulta clave para 

guiar la toma de decisiones, evitar el uso innecesario de antibióticos, reducir 

complicaciones como las resistencias y optimizar los recursos en contextos de alta presión 

asistencial. 
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6.1. Limitaciones 

A pesar del tamaño de la cohorte y del uso de métodos estadísticos avanzados, este estudio 

presenta varias limitaciones que deben tenerse en cuenta al interpretar los resultados. 

En primer lugar, se trata de un análisis observacional retrospectivo basado en registros 

asistenciales. Esto implica que algunos datos relevantes estaban incompletos o no 

disponibles, como determinados biomarcadores y fechas clave. Además, la información no 

fue monitorizada ni auditada externamente, lo que podría afectar su exactitud y 

consistencia. 

Los criterios empleados para definir la coinfección y la adecuación del tratamiento 

antibiótico tampoco fueron homogéneos entre los hospitales participantes, lo que introduce 

variabilidad. Aunque se aplicaron técnicas como el propensity score y modelos de 

aprendizaje automático, persiste el riesgo de factores no medidos que puedan haber influido 

en los resultados. 

No se dispuso de información detallada sobre el momento exacto del diagnóstico de la 

neumonía asociada a la ventilación ni sobre la duración real del tratamiento antibiótico. 

Dado que el análisis se centró en las primeras 24 horas de ingreso, no fue posible evaluar 

la evolución clínica posterior ni otros factores que podrían haber condicionado los 

desenlaces. Asimismo, los hospitales utilizaron protocolos diagnósticos diferentes y no se 

recogieron datos sobre biomarcadores inmunitarios avanzados ni sobre estrategias de 

desescalada antibiótica. 

Otra limitación importante es que la clasificación de variables clave se realizó de forma 

retrospectiva. Por ejemplo, la adecuación del tratamiento se determinó según los resultados 

de los cultivos, lo que puede inducir errores si el aislamiento fue incompleto o incorrecto. 

También es posible que algunas coinfecciones pasaran desapercibidas, especialmente si no 

se recogieron muestras microbiológicas de calidad en las primeras 48 horas. Esta 

heterogeneidad en las prácticas clínicas puede haber afectado la consistencia de los datos. 
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Por último, todos los pacientes procedían de UCI españolas, lo que limita la aplicabilidad 

de los resultados a otros sistemas sanitarios o entornos asistenciales. Tampoco se 

recogieron variables como nivel socioeconómico, etnia o evolución clínica a lo largo de la 

estancia, y se observó cierto desequilibrio entre los grupos de comparación. Todos estos 

factores pueden influir tanto en la validez interna como en la generalización de los 

hallazgos. 

. 
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7. Conclusiones 

Los resultados de este estudio confirman la hipótesis inicial de esta tesis: las decisiones 

diagnósticas y terapéuticas adoptadas durante las primeras 24 horas de ingreso en UCI 

influyen de forma decisiva en la evolución de los pacientes con neumonía grave por virus 

pandémicos. A partir de dos estudios observacionales multicéntricos y del uso combinado 

de modelos estadísticos y de aprendizaje automático, se obtienen las siguientes 

conclusiones: 

1. Factores pronósticos de mortalidad al ingreso. 

La estratificación temprana del riesgo basada en variables clínicas accesibles 

permite identificar con alta consistencia un conjunto de determinantes mayores de 

la mortalidad: edad avanzada, gravedad clínica inicial, disfunción orgánica y 

necesidad de ventilación mecánica invasiva. Estos factores mantienen su relevancia 

independientemente del método analítico empleado, lo que subraya su utilidad en 

la identificación de pacientes de peor pronóstico y en la planificación del soporte 

intensivo. 

2. Valor complementario de los enfoques analíticos. 

La comparación entre regresión logística multivariable (GLM) y Random Forest 

mostró que ambos modelos alcanzan un rendimiento predictivo similar (AUROC 

≈0,76), aunque ofrecen perspectivas diferentes. La regresión logística facilita una 

interpretación clara del peso de cada variable, mientras que Random Forest permite 

identificar interacciones no lineales y patrones complejos, destacando 

determinantes menores como biomarcadores inflamatorios (lactato, procalcitonina, 

dímero D) que enriquecen la estratificación del riesgo. La combinación de ambos 

enfoques proporciona una visión más completa y robusta, y sienta un marco 

analítico replicable en futuros estudios. 

3. El tratamiento antibiótico empírico debe ser selectivo y guiado. 

En pacientes con coinfección bacteriana confirmada, la administración precoz y 

adecuada de antibióticos se asoció con menor mortalidad y menos complicaciones 

graves. Por el contrario, en pacientes sin coinfección documentada, el uso 

sistemático de antibióticos empíricos no redujo la mortalidad ni la incidencia de 
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NAVM. Estos hallazgos apoyan una prescripción más individualizada, basada en 

criterios clínicos y microbiológicos objetivos, e integrando biomarcadores rápidos 

y métodos diagnósticos que permitan identificar precozmente la coinfección, en 

línea con las recomendaciones de los programas de optimización del uso de 

antimicrobianos (PROA). 

En conjunto, estos resultados demuestran que una medicina intensiva de precisión, 

sustentada en modelos predictivos sólidos y en un uso racional de los antibióticos, es 

posible y se traduce en beneficios clínicos para los pacientes con neumonía grave por virus 

pandémicos. Este trabajo sienta las bases para desarrollar protocolos de decisión adaptados 

al riesgo individual y consolidar una práctica asistencial más sostenible, eficiente y basada 

en la evidencia. 
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8. Líneas de futuro derivadas de la tesis 

1. Ensayos clínicos sobre estrategias guiadas por biomarcadores y diagnóstico 

rápido. 

Se necesitan ensayos clínicos aleatorizados que evalúen estrategias combinadas. 

Por un lado, el uso de paneles moleculares de diagnóstico rápido, especialmente en 

pacientes con sospecha clínica de coinfección bacteriana, permitiría confirmar 

precozmente la presencia de patógenos respiratorios e iniciar el tratamiento 

antibiótico de forma temprana y dirigida. Por otro, la procalcitonina y otros 

biomarcadores deben validarse como herramienta principal para suspender de 

manera segura los antibióticos en pacientes sin evidencia de coinfección. Estas 

estrategias podrían reducir la prescripción innecesaria de antibióticos y su impacto 

sobre la mortalidad, la neumonía asociada a ventilación y la resistencia bacteriana. 

2. Seguimiento completo del ingreso en UCI y uso dinámico de modelos 

pronósticos. 

La recogida de datos más allá de las primeras 24 horas, incluyendo evolución 

clínica, complicaciones y biomarcadores seriados, permitirá desarrollar modelos 

pronósticos dinámicos. Estos modelos ayudarán a evaluar cómo la selección y 

desescalada de antibióticos afectan los resultados clínicos. Esta aproximación debe 

basarse en métodos de inferencia causal y en los principios de los programas de 

optimización de antimicrobianos (PROA). 

3. Validación externa de los modelos predictivos. 

Los modelos desarrollados (GLM y Random Forest) deben validarse en cohortes 

externas de distintos países y niveles asistenciales. Esto permitirá evaluar su 

aplicabilidad y ajustar su rendimiento en contextos clínicos diversos. 

4. Integración de biomarcadores inmunitarios y tecnologías ómicas. 

La incorporación de marcadores inmunológicos y plataformas ómicas 

(transcriptómica, proteómica, metabolómica) permitirá caracterizar mejor la 

respuesta del huésped e identificar subgrupos con diferente riesgo. Estas 

herramientas complementarán el diagnóstico microbiológico rápido y la 

monitorización de biomarcadores para apoyar decisiones individualizadas sobre el 

inicio y la retirada de antibióticos. 
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5. Desarrollo de sistemas de soporte clínico basados en inteligencia artificial. 

Integrar los modelos predictivos en sistemas de soporte clínico automatizados 

facilitará la toma de decisiones en tiempo real. Estas herramientas podrán emitir 

alertas para iniciar antibióticos si los paneles moleculares confirman coinfección 

bacteriana en pacientes con sospecha clínica, o recomendar su suspensión si los 

biomarcadores indican baja probabilidad de infección. 

Estas líneas de investigación contribuirán a consolidar un enfoque más seguro y eficiente 

en el uso de antibióticos en pacientes críticos con neumonía viral, combinando diagnóstico 

rápido para iniciar el tratamiento cuando sea necesario y biomarcadores fiables para 

suspenderlo cuando no esté indicado. 
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10. Anexos 

10.1 Material suplementario Artículo 1 

 

Machine Learning-Based Identification of Risk Factors for ICU Mortality in 8,902 

Critically Ill Patients with Pandemic Viral Infection  

Supplementary material 

 

 

Table S1: Performance of multivariate linear model (GLM) for ICU mortality.  

 

Figure S1:  Area under ROC curve (AUC) for multivariate lineal model for ICU mortality 
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Table S2: Colinearity study by VIF (variance inflation factors) determination. For each 

variable the VIF number shoud be lower than 5. No colinearity was observed between teh 

variables included in the model.   

(Cut: cut-off; AB: antibiòtics; CPK: creatine phospokinase; DD: D dímer; MR_SA: methicillin-resistant S. Aureus; MV: 

invasive mechanical ventilation; WBC: White blood cells; COPD: chronic obstructive pulmonary disease; dis: 

disfunction; Chr_Card_dis; chronic cardiac disease; HIV: Human immunodeficiency virus; AKI: acute kidney injury; 

CRP:C-reactive protein; GAP_ICU_cut: time elapsed between diagnosing pandemic viral infection and admission to 

ICU; Chr_renal_dis: Chronic renal disease; ID: immunosuppression ; Rx-cutoff: > 2 fields with infiltrations in chest X-

ray; PCT: procalcitonin; MS_SA: Methicillin-sensitive S. aureus; GAP_diagnsosis_cut: Time from symptoms onset to 

diagnosis; hematol_dis: Hematologic disease; LDH: Lactate dehydrogenase)  
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Table S3: Cross-validation of multivariate linear (GLM) model.  

                                           

 

 

 

Development of the GLM linear model for mortality with class imbalance correction 

Applying the ROSE package to the training set reduced the population from 6232 

patients to 3152 patients. Of these, 1606 died, giving an estimated mortality rate of 

50.9%, twice the real rate (25%). 
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The variables included in the balanced model were the same as those used in the class 

imbalance model:  Male, age cut-off, APACHEII cut-off, SOFA cut-off, ICU GAP cut-off, 

GAP diagnosis cut-off, shock, asthma, COPD, chronic heart disease, chronic kidney 

disease, haematological disease, pregnancy, obesity, diabetes, HIV, immunosuppression, 

steroids, antibiotic treatment on ICU admission, mechanical ventilation on ICU admission, 

Myocardial dysfunction, acute kidney injury (AKI), > 2 areas of infiltration on chest X-

ray, lactate dehydrogenase cut-off, creatine phosphokinase cut-off, leukocyte cut-off, CRP 

cut-off, PCT cut-off, lactate cut-off, D-dimer cut-off, Klebsiella spp, Acinetobacter spp, S. 

pneumoniae, methicillin-resistant Staphylococcus aureus, methicillin-sensitive 

Staphylococcus aureus (MSSA), E. coli, methicillin-resistant Staphylococcus aureus 

(MRSA), Pseudomonas aeruginosa, Aspergillus spp and antiviral vaccine. 

In Figure S2, the variables included in the models can be seen with their respective Odd 

Ratios and confidence intervals. The variables independently associated with mortality 

were the same as those observed in the unbalanced model. 

Figure S2: Forest-Plot with the variables included in the balanced linear model with Odds 

Ratio. 



 

116 

 

                                

Table S4 : Performance of balanced linear model  
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Figure S4: area under ROC curve of balanced mortality linear model 

 

 

 

 

 

 

 

 

 

Figure S5: Categories profiles according to the model. A = linear model , B= no linear 

model 

A 
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B

 

 

Abbreviations : cut: cut-off; APACHE II: Acute Physiology and Chronic Health Evaluation; SOFA: Sequential organ 

failure assessment; AB: antibiòtics; CPK: creatine phospokinase; DD: D dímer; MR_SA: methicillin-resistant S. Aureus; 

MV: invasive mechanical ventilation; WBC: White blood cells; COPD: chronic obstructive pulmonary disease; dis: 

disfunction; Chr_Card_dis; chronic cardiac disease; HIV: Human immunodeficiency virus; AKI: acute kidney injury; 
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CRP:C-reactive protein; GAP_ICU_cut: time elapsed between diagnosing pandemic viral infection and admission to 

ICU; Chr_renal_dis: Chronic renal disease; ID: immunosuppression ; Rx-cutoff: > 2 fields with infiltrations in chest X-

ray; PCT: procalcitonin; MS_SA: Methicillin-sensitive S. aureus; GAP_diagnsosis_cut: Time from symptoms onset to 

diagnosis; hematol_dis: Hematologic disease; LDH: Lactate dehydrogenase) 
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10.2 Material suplementario Artículo 2 

 

Does Empirical Antibiotic Use Improve Outcomes in Ventilated Patients with 

Pandemic Viral Infection? A Multicentre Retrospective Study 

Supplementary Material  

 

 

Statistical analysis 

First, we performed a descriptive analysis distinguishing between patients with and 

without empirical antibiotic treatment (EAT) on ICU admission. Continuous variables are 

presented as median and quantiles (Q1-Q3) and categorical variables as numbers (n) and 

percentages. Chi-square and U-Mann-Whitney tests were used to compare between 

groups. 

Second, we performed a descriptive analysis differentiating patients with and without the 

presence of bacterial co-infection (COI). Within each of these subgroups, we 

differentiated between those with and without EAT. 

Third, within the subgroup of patients with COI, we examined the impact of appropriate 

EAT (AEAT) on mortality, development of VAP, ICU and hospital LOS, and IMV days. 

For this analysis, patients with IAET were those with IEAT according to microbiological 

sensitivity and those without AET on ICU admission. 

Fourth, within the subgroup of patients without COI, to analyse the impact of EAT on the 

study objectives, and to convert an observational study into a quasirandomized study, a 

propensity score matching analysis was performed. After matching, the effect of EAT on 

all cause ICU mortality and on the development of VAP was examined by Kaplan-Meier 

plot and differences were determined by Log Rang test. 

In addition, a Cox proportional hazards (COX) and GLM model was used to determine 

whether EAT was a factor associated with VAP or ICU mortality in multivariate adjusted 

analysis. The results are expressed as hazard ratio (HR) and its 95% confidence interval 

(CI) for COX model and as Odds ratio (OR) and its 95% CI for GLM.  

To assess whether the proportional hazard of the Cox model holds, the Schoenfeld residual 

test was used. The Schoenfeld test uses these residuals to test the proportional hazards 

hypothesis by examining whether they are correlated over time. If the test is not significant 
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(no correlation), the Schoenfeld residuals are considered to be uncorrelated over time, 

suggesting that the proportional hazards hypothesis is satisfied and that the effect of the 

predictor is constant. 

Fifth: In addition, to evaluate the impact of EAT on patients without COI, a non-linear 

regression analysis (Random Forest - RF) was performed to study whether there are non-

linear associations between EAT use and crude mortality or the deve-lopment of VAP that 

cannot be evidenced by linear analysis (GLM). Random forest models are a powerful non-

linear tree-based machine learning technique. The developed model was configured to 

make 500 random trees, with a minimum number of 15 variables per tree. The performance 

of the RF model was evaluated using out-of-bag (OOB) error. This method allows the 

prediction error of random forests, boosted decision trees and other machine learning 

models to be measured using bootstrap aggre-gation. We also plotted the importance of the 

different variables for the model, which is related to the average loss of accuracy and the 

Gini index for the classification mo-del. The Gini index is a “measure of disorder”, 

represented as “MeanDecreaseGini”, which means that the higher the measure, the greater 

the importance in the generated models, since values close to 0 for the Gini index imply 

more disorder and values close to 1 imply less disorder. The higher this measure, the more 

variability it will contri-bute to the dependent variable. (Figure 1) 

 

Definitions  

• Respiratory co-infection (COI) was suspected if a patient presented with signs and 

symptoms of lower respiratory tract infection, with radiographic evidence of a 

pulmonary infiltrate with no other known cause (23,30,31). Coinfection had to be 

confirmed by laboratory testing using Centers for Disease Control and Prevention 

(CDC) criteria . Only respiratory infection microbiologically confirmed with a 

respiratory specimen or serology obtained within 2 days of ICU admission was 

considered community-acquired coinfection. The diagnosis of coinfection was 

considered “definitive” if respiratory pathogens were isolated from blood or pleural 

fluid and if serological tests confirmed a fourfold increase of atypical pathogens, 

including Chlamydia spp., Coxiella burnetti and Moraxella catarrhalis. Only 

patients with confirmed microbiologic diagnosis were included in the present 

analysis.   

• Ventilator-associated pneumonia (VAP) was defined as a respiratory infection 

occurring in mechanically ventilated patients according to the guidelines of the 

European Respiratory Society (ERS), the European Society of Intensive Care 

Medicine (ESICM), the European Society of Clinical Microbiology and Infectious 

Diseases (ESCMID), and the Asociación Latinoamericana del Tórax (ALAT). VAP 

was defined as pneumonia occurring more than 48 h after endotracheal intubation 

with fever, without other apparent causes, with new or increased sputum 
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production, positive endotracheal as-pirate (ETA) culture (>106 CFU/mL), or 

bronchoalveolar lavage (BAL) culture (>104 CFU/mL), with at least one respiratory 

pathogen known to cause pneumonia, and with radiographic evidence of 

nosocomial pneumonia. 

• Empirical antibiotic treatment (EAT) were selected based on specialist clinical 

judgment and internal ICU protocols, which could subsequently be modified by the 

ASP (antimicrobial stewardship program) team, based on the clinical response in 

the days following VAP diagnosis or final microbiology results. 

• Appropriate empiric antibiotic treatment (AEAT): Was defined as the 

administration of an antibiotic on admission to the ICU before the microbiological 

results are available and adjusted to the susceptibility of the pathogen when the 

microbiological results are available. AEAT was de-ermined by the attending 

physician in each center.  

• Inappropriate empirical antibiotic treatment (IEAT): Was defined as antibiotic 

treatment administered on admission to the ICU that was not adapted to the 

susceptibility of the pathogen when microbiological results are available. In 

addition, the use of antibiotics at ICU admission in patients with no bacterial co-

infection was also included in this definition. 

• Multi-drug-resistant bacteria (MDR) are defined as those isolated strains that are 

not sensitive to at least one agent from three families of antimicrobials. 

• Acute Kidney injury (AKI): The diagnosis of AKI was considered according to the 

Acute Kidney Injury Network (AKIN) described in the international KDIGO 

guidelines. 

• GAP-UCI: was defined as the time elapsed between diagnosing pandemic viral 

infection and admission to ICU. 

• GAP-Diagnosis: Was defined as the period of time between the onset of clinical 

symptoms and the microbiological diagnosis of the pandemic viral infection.   

• Immunosuppression: this variable includes patients with active solid organ cancer, 

chemotherapy and patients on steroid therapy with a dose of prednisone > 30 

mg/day or equivalent on prolonged therapy. 

• Shock: was defined as any patient with noradrenaline requirements at a dose > 0.1 

mcg/kg/min during the first hours of ICU admission. 

• Chest x-ray cutoff: more than 2 lung fields occupied by infiltrates on chest x-ray 
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Figure S1: Flow Chart of included patients. (IMV: invasive mechanical ventilation; COI: 

coinfection; EAT: empiric antibiotic treatment; VAP: ventilator-associated pneumonia; AEAT: appropriate 

empiric antibiotic treatment; IEAT: inappropriate empiric antibiotic treatment; ICU: intensive care unit)   
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Table S1: Microorganisms isolated (in order of frequency) in 654 patients with bacterial 

co-infection (note that 54 patients (8.2%) had 2 microorganisms isolated and 4 (0.6%) had 

3 microorganisms isolated simultaneously). 

 

 

 

 

 

 

 

 

 

 

 

 

 

* percentages are considered over the total number of patients. 

 

 

 

 

 

 

 

 

 

Microorganisms isolates n (%)* 

Streptococcus pneumoniae 217 (33.2) 

Methicillin-sensitive Staphylococcus aureus  107 (16.4) 

Pseudomonas aeruginosa  88 (13.4) 

Klebsiella spp. 47 (7.2) 

Haemophilus influenzae  41 (6.3) 

Streptococcus pyogenes  41 (6.3) 

Methicillin-resistant Staphylococcus aureus 35 (5.3) 

Escherichia coli 31 (4.7) 

Acinetobacter baumannii 15 (2.3) 

Serratia spp. 15 (2.3) 

Stenotrophomonas malthophilia 13 (2.0) 

Enterobacter spp. 8 (1.2) 

Moraxella catarrhalis 7 (1.1) 

Chlamydia pneumoniae 5 (0.8) 

Legionella pneumophilia  5 (0.8) 

Mycoplasma pneumoniae 5 (0.8) 

Citrobacter spp. 4 (0.6) 

Coxiella burnetii 3 (0.4) 

Morganella morganii 3 (0.4) 

Streptococcus agalactiae 3 (0.4) 

Proteus spp. 3 (0.4) 

Neisseria pneumoniae 3 (0.4) 

Others 5 (0.8) 

Total 704 
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Figure S2: Variables associated with the development of ventilator-associated 

pneumonia (VAP) in multivariate logistic regression model (GLM). 

 

           

(CRP: C-reactive protein: CPK: creatine phosphokinase; PCT: procalcitonin; AKI: acute kidney injury; Chest x-ray cutoff: more than 2 lung fields 

occupied by infiltrates on chest x-ray; EAT: Empiric antibiotic treatment; Global IEAT: global inappropriate empiric antibiotic treatment include patients 

with IEAT plus patients without EAT) 
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Table S2: Patients with COI according to ICU outcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Continuous variables are shown as median values and percentiles Q1-Q3. Categorical variables are shown as number of cases (n) and percentage (%). 

(LDH: Lactate dehydrogenase; CRP: C-reactive protein: CPK: creatine phosphokinase; PCT: procalcitonin, VAP: ventilator associated pneumonia;  AKI: 

acute kidney injury, LOS length of stay, ICU: intensive care units; Gap-ICU: Time in days from hospital admission to ICU admission; Chest x-ray cutoff: 

more than 2 lung fields occupied by infiltrates on chest x-ray; MDR: multi-drug resistant bacteria ; * Global IEAT: include patients with IEAT plus patients 

without EAT) 

 

 

 

 

Variables  Survivors  (n=390 ) Non-survivors  (n=264 ) p-value  

General Characteristics  

Age, years 57 (47-68) 63 (52-74) <0.001 

Male sex 257 (65.9) 176 (66.7) 0.900 

APACHE II score 18 (13-23) 20 (15-26) <0.001 

SOFA score 7 (5-9) 8 (5-10) 0.002 

Gap-ICU, days 1 (0-2)  1 (0-3) <0.001 

Chest x-ray cutoff 200 (51.3) 160 (60.6) 0.020 

Laboratory  

WBC x103 8.5 (4.7-13.5) 8.4 (3.5-14.0) 0.510 

LDH U/L 560 (456-720) 620 (670-770) 0.140 

C-RP mg/mL 29.0 (16.0-76.0) 32.2 (18.1-84.5) 0.240 

PCT ng/mL 4.12 (0.83-19.7) 8.26(1.32-24.4) 0.002 

Creatinine mg/dL 1.0 (0.74-1.59) 1.25 (0.86-2.0) <0.001 

CPK ng/mL 320 (140-600) 315 (140-570) 0.810 

Lactate mmol/L  2.9 (2.0-4.14) 3.5 ( 2.10-5.35) 0.010 

D-dimer  UI/L 5600 (2600-9540) 7340 (3760-13,560) <0.001 

Comorbidities  

 COPD  79 (20.3) 47 (17.8) 0.490 

 Asthma 28 (7.2) 13 (4.9) 0.310 

Chr. Heart Dis 22 (5.6) 35 (13.3) 0.001 

Chr.Renal Dis.  24 (6.1) 28 (10.6) 0.050 

Hematologic Dis.  14 (3.6) 28 (10.6) 0.001 

Pregnancy  32 ( 8.2) 21 (7.9) 1.000 

Obesity  109 (27.9) 74 (28.0) 1.000 

Diabetes  30 (7.7) 27 (10.2) 0.320 

Immunosuppression  31 (7.9) 46 (17.4) <0.001 

Treatment and complications  

Corticosteroids 223 (57.2) 177 (67.0) 0.010 

EAT  378 (96.9) 248 (93.9) 0.090 

AEAT  336 (86.2) 213 (80.7) 0.070 

Global IEAT * 57 (14.6) 56 (21.2) 0.030 

VAP  79 (20.3) 56 (21.2) 0.840 

AKI 107 (27.4) 113 (42.8) <0.001 

Myocardial dysfunction 2 (0.5) 13 (4.9) 0.001 

Shock  290 (74.4) 208 (78.8) 0.220 

Outcomes 

LOS ICU, days  19 (12-34) 11 (5-23) <0.001 

LOS Hospital, days 33 (22-49) 14 (6-27) <0.001 

IMV days 14 (8-27) 11 (4-22) <0.001 
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Figure S3: Variables associated with the crude ICU mortality in multivariate logistic 

regression model (GLM). 

 

 

 

(AKI: acute kidney injury; EAT: empiric antibiotic treatment ; PCT: procalcitonin;  Gap-ICU: Time in days from hospital admission to ICU admission; 

Chest x-ray cutoff: more than 2 lung fields occupied by infiltrates on chest x-ray; Global IEAT: include patients with IEAT plus patients without EAT) 

 

Propensity Score Matching  

In an attempt to address the bias of an observational study and to adjust for different 

covariates between groups receiving and not receiving EAT, we performed propensity 

score matching using the 'MatchIt' package of the 'R' statistical programme (Ho, D. E., 

Imai, K., King, G., Stuart, E. A. MatchIt: Nonparametric Preprocessing for Parametric 

Causal Inference. Journal of Statistical Software, 2011;42(8). doi:10.18637/jss.v042.i08). 

MatchIt provides a simple and straightforward interface for covariate balancing in 

observational studies using Mahalanobis distance matching with substitution and balance 

assessment. We have implemented the "Full" method for optimal full matching with a 

caliper of 0.2, which is the width of the calipers to be used in the matching. It should be a 

numerical vector with each value named according to the variable to which the caliper 

applies. For positive values, the distance between the paired units must not be greater 
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than the caliper provided; for negative values, the distance between the paired units must 

be greater than the absolute value of the caliper provided. 

After propensity score matching, there was a loss of only 23 patients who could not be 

matched. Finally, the matched cohort has 467 controls without EAT and 3053 cases 

receiving EAT. The summary of balance for all data and matched data are show in Table 

S5 

 

Table S3: Summary of balance for all data (no-matched) and matched data  
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Figure S4: Histograms of propensity scores before and after matching. 

 

 

Figure S5: Plot of mean differences between unadjusted (no matched) and adjusted 

(matched) covariates  
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Table S4 : Characteristics of matched cohort of patients without Coinfection according to 

ventilator associated pneumonia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Continuous variables are shown as median values and percentiles Q1-Q3. Categorical variables are shown as number of cases (n) and percentage (%). 

(LDH: Lactate dehydrogenase; CRP: C-reactive protein: CPK: creatine phosphokinase; PCT: procalcitonin, VAP: ventilator associated pneumonia;  AKI: 

acute kidney injury, LOS length of stay, ICU: intensive care units; Gap-ICU: Time in days from hospital admission to ICU admission; Chest x-ray cutoff: 

more than 2 lung fields occupied by infiltrates on chest x-ray; MDR: multi-drug resistant bacteria ; * Global IEAT: include patients with IEAT plus patients 

without EAT) 

 

 

 

 

 

Variables  No VAP (n=2916) VAP  (n=604 ) p-value  

General Characteristics  

Age, years 60 (48-69) 62 (52-71) <0.001 

Male sex 1879 (64.4) 422 (69.9) 0.010 

APACHE II score 15 (12-20) 15 (12-20) 0.510 

SOFA score 6 (4-8) 6 (4-8) 0.320 

Chest x-ray cutoff 1878 (64.4) 449 (74.3) <0.001 

Laboratory  

WBC x103 8.7 (5.7-12.2) 9.0 (6.0-13.0) 0.090 

LDH U/L 600 (450-770) 590 (450-740) 0.460 

C-RP mg/mL 22.0 (11.2-38.5) 18.0 (9.8-29.7) <0.001 

PCT ng/mL 1.26 (0.30-7.30) 0.56 (0.20-2.05) <0.001 

Creatinine mg/dL 0.90 (0.70-1.27) 0.90 (0.70-1.22) 0.310 

CPK ng/mL 260 (117-480) 230 (116-440) 0.080 

Lactate mmol/L  2.2 (1.5-3.5) 2.8 (1.2-2.9) <0.001 

D-dimer  UI/L 4200 (1650-7690) 2200 (750-7190) <0.001 

Comorbidities  

 COPD  401 (13.8) 81 (13.4) 0.870 

 Asthma 219 (7.5) 42 (6.9) 0.690 

Chr. Heart Dis 184 (6.3) 29 (4.8) 0.180 

Chr.Renal Dis.  171 (5.9) 34 (5.6) 0.890 

Hematologic Dis.  142 (4.9) 26 (4.3) 0.620 

Pregnancy  126 (4.3) 17 (2.8) 0.620 

Obesity  1040 (35.7) 242 (40.1) 0.040 

Diabetes  328 (11.2) 106 (17.5) <0.001 

Immunosuppression  229 (7.8) 38 (6.3) 0.210 

Treatment and complications  

Corticosteroids 1583 (54.3) 433 (71.7) <0.001 

EAT  2527 (86.7) 526 (87.1) 0.830 

AKI 496 (17.0) 96 (15.9) 0.540 

Myocardial dysfunction 141 (4.8) 60 (9.9) <0.001 

Shock  1856 (63.6) 353 (58.4) 0.010 

Outcomes 

LOS ICU, days  14 (9-23) 30 (20-46) <0.001 

LOS Hospital, days 24 (15-35) 40 (27-60) <0.001 

ICU mortality 953 (32.7) 239 (39.6) 0.001 
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Table S5: Variables associated with VAP in the Cox Hazard regresssion analysis.   
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Figure S6: Variables independently associated with VAP in logistic regression model 
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Table S6: Characteristics of matched cohort patients according to all cause ICU mortality 

in patients without bacterial coinfection  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables  Survival (n=2328) Non-survival  (n=1192 ) p-value  

General Characteristics  

Age, years 58 (46-66) 66 (55-73) <0.001 

Male sex 1466 (63) 835 (70.1) <0.001 

APACHE II score 14 (11-19) 17 (13-23) <0.001 

SOFA score 6 (4-8) 7 (5-9) <0.001 

Chest x-ray cutoff 1470 (63.1) 857 (72.0) <0.001 

GAP-UCI 1 (1-3) 2 (1-4) 0.01 

Laboratory  

WBC x103 8.5 (5.6-12.1) 9.5 (6.2-14.2) <0,001 

LDH U/L 586 (435-750) 620 (490-796) <0.001 

C-RP mg/mL 21.0 (10.8-36.0) 22.0 (11.0-35.4) 0.480 

PCT ng/mL 1.02 (0.26-5.13) 1.25 (0.30-9.0) <0.001 

Creatinine mg/dL 0.86 (0.70-1.16) 1.01 (0.77-1.45) <0.001 

CPK ng/mL 250 (115-470) 257 (120-480) 0.870 

Lactate mmol/L  2.0 (1.4-3.1) 2.3 (1.5-3.8) <0.001 

D-dimer  UI/L 3700 (1300-6800) 4900 (1700-9300) <0.001 

Comorbidities  

 COPD  300 (12.9) 182 (15.3) 0.050 

 Asthma 185 (8.0) 76 (6.4) 0.100 

Chr. Heart Dis 125 (5.4) 88 (7.4) 0.020 

Chr.Renal Dis.  111 (4.8) 94 (7.9) <0.001 

Hematologic Dis.  71 (3.0) 97 (8.1) <0.001 

Pregnancy  109 (4.7) 34 (2.8) 0.010 

Obesity  854 (36.7)  428 (36.0) 0.670 

Diabetes  233 (10.0) 201 (17.0) <0.001 

Immunosuppression  119 (5.1) 148 (12.4) <0.001 

Treatment and complications  

Corticosteroids 1259 (54.1) 757 (63.5) <0.001 

EAT  2004 (86.1) 1049 (88.0) 0.120 

VAP 365 (15.7) 239 (20.1) 0.001 

AKI 305 (13.1) 287 (24.1) <0.001 

Myocardial dysfunction 75 (3.2) 126 (10.6) <0.001 

Shock  1400 (60.1) 809 (68.0) <0.001 

Outcomes 

LOS ICU, days  17 (11-30) 14 (7-23) <0.001 

LOS Hospital, days 30 (20-46) 18 (9-28) <0.001 
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Table S7 : Variables associated with all cause ICU mortality in the Cox Hazard 

regresssion analysis.   
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Figure S7: Variables independently associated with all cause ICU mortality in logistic 

regression model 

 

 

Table S10: Importance of variables for VAP according to Random Forest model 
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Table S11: Importance of variables for all cause ICU mortality according to Random 

Forest model 
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