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SUMMARY

Next-generation sequencing (NGS) has revolutionized cancer genomics by enabling the detection of
clinically relevant somatic alterations. While targeted NGS panels are widely used for tumor
characterization, their effectiveness depends on bioinformatics pipelines capable of analyzing tumor-
only data and producing accurate, reproducible, and interpretable results. Current solutions often lack
flexibility, transparency, or full integration, underscoring the need for more adaptable and

comprehensive alternatives.

This thesis presents the implementation and validation of ClinBioNGS, an open-source,
comprehensive bioinformatics pipeline designed for the analysis of somatic NGS cancer panels. The
project pursued two main objectives: (1) to design a flexible, reproducible pipeline for the analysis
of tumor-only DNA and RNA panel data; and (2) to evaluate its performance using standardized

reference datasets and retrospective real-world data from diverse NGS panels.

ClinBioNGS enables the detection of a wide range of somatic events—including small variants,
copy-number alterations (CNAs), gene fusions, splice variants, and complex biomarkers such as
tumor mutational burden (TMB) and microsatellite instability (MSI). Built with Nextflow and
containerized environments, its panel-agnostic architecture ensures reproducibility and portability
across computing infrastructures. The pipeline integrates consensus variant calling strategies, panel-
specific CNA and MSI reference models, automated annotation and prioritization modules, internal
quality control systems, and a variant database for longitudinal tracking. Results are presented

through interactive, visual HTML reports tailored for interpretability and multidisciplinary review.

Validation using multi-panel reference datasets confirmed high accuracy in small variant detection.
Benchmarking with real-world clinical samples from multiple institutions and panels demonstrated
performance comparable to commercial solutions, while providing broader detection capabilities and
improved interpretability in complex cases. The pipeline is freely available for non-commercial

research use only at: https://github.com/raulmarinm/ClinBioNGS.

This work provides a robust, versatile, and openly accessible solution for somatic NGS panel

analysis, contributing to the advancement of both precision oncology and cancer research.


https://github.com/raulmarinm/ClinBioNGS
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RESUM (CATALA)

La seqiienciacié de nova generacido (NGS) ha revolucionat la genomica del cancer en permetre la
deteccio d’alteracions somatiques clinicament rellevants. Tot i que els panells dirigits de NGS
s’utilitzen ampliament per caracteritzar tumors, la seva eficacia depén de pipelines bioinformatics
capagos de analitzar dades tumorals sense teixit sa aparellat i generar resultats precisos, reproduibles
1 interpretables. Les solucions actuals sovint presenten limitacions de flexibilitat, transparéncia o

integracié completa, fet que posa de manifest la necessitat d’alternatives més adaptables i integrals.

Aquesta tesi presenta la implementacié i validacio de ClinBioNGS, un pipeline bioinformatic
complet i de codi obert dissenyat per a 1’analisi de panells NGS somatics en cancer. El projecte
aborda dos objectius principals: (1) dissenyar un pipeline flexible i reproduible per a 1’analisi de
dades de panells d’ADN i ARN tumorals sense teixit sa associat, i (2) avaluar-ne el rendiment
mitjangant conjunts de dades de referéncia estandarditzats i dades reals retrospectives procedents de

panells NGS diversos.

ClinBioNGS permet la detecciéo d’un ampli ventall d’alteracions somatiques, incloent petits canvis
de nucleotids, alteracions del nombre de copies (CNAs), fusions geniques, variants d’splicing i
biomarcadors complexos com la carrega mutacional tumoral (TMB) i la inestabilitat de
microsatél-lits (MSI). El seu disseny independent del panell, construit amb Nextflow i entorns
contenidoritzats, garanteix la seva reproductibilitat 1 portabilitat entre infraestructures
computacionals. També incorpora estratégies de consens per a la deteccié de variants, referéncies
especifiques per a CNA i MSI, moduls automatitzats per a 1’anotacio i prioritzacid clinica, sistemes
de control de qualitat interns, i una base de dades local per al seguiment longitudinal de variants. Els
resultats es presenten mitjancant informes HTML interactius i visuals, optimitzats per a la seva

interpretacio i revisié multidisciplinaria.

La validaci6 amb conjunts de dades de referéncia multi panell va confirmar una alta precisio en la
deteccio de variants petites. L'avaluacio comparativa amb dades cliniques reals de diverses
institucions i panells comercials va demostrar un rendiment comparable a les solucions existents, tot
oferint una major capacitat de deteccio6 i millor interpretabilitat en casos complexos. El pipeline esta
disponible Iliurement per a us en recerca i finalitats no comercials a:

https://github.com/raulmarinm/ClinBioNGS.

Aquest treball proporciona una solucio solida, versatil i accessible per a 1’analisi de panells NGS
somatics, contribuint al progrés tant de 1’oncologia de precisié com de la recerca translacional en

cancer.


https://github.com/raulmarinm/ClinBioNGS
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RESUMEN (CASTELLANO)

La secuenciacidén de nueva generacion (NGS) ha revolucionado la gendmica del cancer al permitir
la deteccion de alteraciones somaticas clinicamente relevantes. Aunque los paneles dirigidos de NGS
se utilizan ampliamente para la caracterizaciéon tumoral, su eficacia depende de pipelines
bioinforméaticos capaces de analizar muestras tumorales sin tejido sano emparejado y de generar
resultados precisos, reproducibles e interpretables. Las soluciones actuales a menudo carecen de
flexibilidad, transparencia o integracion completa, lo que pone de manifiesto la necesidad de

alternativas mds adaptables e integrales.

Esta tesis presenta la implementacion y validacion de ClinBioNGS, un pipeline bioinformatico de
codigo abierto y caracter integral, disefiado para el analisis de paneles de cancer por NGS en muestras
somaticas. El proyecto aborda dos objetivos principales: (1) disefiar un pipeline flexible y
reproducible para el andlisis de datos tumorales de ADN y ARN, y (2) evaluar su rendimiento
utilizando conjuntos de referencia estandarizados y datos retrospectivos del mundo real obtenidos de

distintos paneles comerciales.

ClinBioNGS permite la deteccion de una amplia variedad de eventos somaticos, incluyendo
pequefios cambios de nucleotidos, alteraciones del nimero de copias (CNAs), fusiones génicas,
variantes de splicing y biomarcadores complejos como la carga mutacional tumoral (TMB) y la
inestabilidad de microsatélites (MSI). Su disefio independiente del panel, basado en Nextflow y
entornos contenerizados, garantiza la reproducibilidad y portabilidad entre infraestructuras
computacionales. El pipeline integra estrategias de deteccion de variantes por consenso, modelos de
referencia especificos por panel para CNA y MSI, moddulos automatizados de anotacion y
priorizacion clinica, sistemas internos de control de calidad y una base de datos de variantes para
seguimiento longitudinal. Los resultados se presentan mediante informes HTML interactivos y

visuales, optimizados para su interpretacion y revision multidisciplinar.

La validaciéon con conjuntos de datos de referencia multi panel confirmé una alta precision en la
deteccion de variantes pequefias. El analisis comparativo con muestras clinicas reales de multiples
instituciones y paneles demostré un rendimiento comparable al de soluciones comerciales, al tiempo
que ofrecié un mayor alcance de deteccion y mejor capacidad interpretativa en casos complejos. El
pipeline esta disponible libremente para uso en investigacion y con fines no comerciales en:

https://github.com/raulmarinm/ClinBioNGS.

Este trabajo proporciona una solucion robusta, versatil y accesible para el analisis de paneles
somaticos por NGS, contribuyendo al avance tanto de la oncologia de precision como de la

investigacion del cancer.


https://github.com/raulmarinm/ClinBioNGS
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1. INTRODUCTION

1.1. Current state of molecular profiling in precision oncology

1.1.1. Molecular basis of cancer

Cancer is fundamentally a genetic disease driven by alterations in functional regions of DNA,
commonly referred to as genes, that disrupt normal cellular regulatory mechanisms'2. These genetic
alterations (also known as variants or mutations) can be inherited from parents or acquired over time
due to intrinsic biological processes (e.g., DNA replication errors, oxidative damage, or cytosine
deamination) and through extrinsic exposure to damaging agents (e.g., tobacco smoke, alcohol,
radiation, chemical carcinogens, or viral infections)'~. Such mutations can affect oncogenes, tumor
suppressor genes (TSGs), and DNA repair genes, ultimately leading to uncontrolled proliferation,
evasion of apoptosis, and genomic instability' . Unlike germline variants, which are inherited and
present in all cells of the body, somatic variants arise spontaneously in non-germline cells during a
person’s lifetime and are not transmitted to offspring! . The progressive accumulation of somatic
mutations enables tumor initiation, clonal evolution, and disease progression'—. Consequently, the
specific mutational landscape of a tumor profoundly influences its biological behavior, response to
treatment, and clinical outcome, underscoring the critical importance of molecular characterization

in oncology* .

1.1.2. Emergence of precision oncology

In recent years, precision oncology has transformed the landscape of cancer treatment, shifting from
a one-size-fits-all approach to a strategy guided by the molecular profile of each individual tumor,
with the goal of maximizing treatment efficacy while minimizing toxicity for each patient *®. Since
the introduction of targeted therapy against estrogen receptor (ER) expression in breast cancer in the
1970s, precision oncology has evolved rapidly®®. Parallel advances in technological innovation,
notably the emergence of next-generation sequencing (NGS), and deeper understanding of
tumorigenesis have driven the discovery of new actionable genomic alterations*”. These
developments have enabled the implementation of both alteration-specific, tumor-related therapies

and biomarker-driven, tumor-agnostic treatments (Figure 1)*%.
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Figure 1. Timeline of key milestones in 50 years of precision oncology.
The upper section highlights landmark therapeutic advances and their associated molecular targets. The lower section
summarizes major technological innovations, diagnostic tests, and guidelines that have shaped the development of
molecular diagnostics. Adapted from Rulten et al., 2023 6.
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At the core of this paradigm is molecular profiling, a comprehensive process that identifies a wide

spectrum of genetic and molecular alterations implicated in tumorigenesis and provides clinically

relevant information*'®. These alterations can occur at the DNA, RNA, or protein level and

encompass diverse classes of biomarkers. Increasingly, they are used as predictive biomarkers to

match patients with targeted therapies, immunotherapies, or clinical trials, as well as to refine tumor

classification, complement pathological diagnosis, and guide prognostic stratification*'”. A summary

of these alteration types and their clinical relevance is provided in Table 1.
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Table 1. Types of molecular alterations and biomarkers relevant to precision oncology.
Each alteration or biomarker includes a brief description and representative examples of its clinical relevance.

Alteration /
Biomarker

Description

Clinical relevance

Small variants

Single-nucleotide variants (SNVs)
or small insertions and deletions
(InDels) of nucleotides that can
affect protein function.

Diagnostic (NPM1 in AML), poor prognosis (7P53 in
CLL), drug response (BRAF V600E in melanoma/NSCLC)
or resistance (EGFR T790M in NSCLC).

Copy-number

Genomic amplifications (AMPs) or

Diagnostic (SMARCBI loss in ATRT), poor prognosis
(CDKN2A4 loss in low-grade glioma), drug response

Iterati deleti DELs) that affect
alterations eletions ( s) that affect gene (ERBB? gain in breast/gastric cancer) or resistance (PTEN
(CNAs) dosage. . .
loss in bladder carcinoma).
Structural rearraneements that Diagnostic (PDGFRA/B in CMML), better outcome
Fusions g (RUNXI1-RUNXITI in AML), targeted therapy (EML4-ALK

result in gene fusions.

or CD74-ROSI in NSCLC).

Splice variants

Mutations in splice sites or splicing
factors leading to alternative
splicing isoforms.

Drug response (MET exon 14 skipping in NSCLC) or
resistance (AR-V7 in prostate cancer).

Genomic changes that modulate

Epigenetic . . . Better outcome and drug response (MGMT promoter
. gene expression without altering S
alterations methylation in glioblastoma).
DNA sequence
Tumor . . . . g
mutational Total number of somatic mutations  Predictive of response to immune checkpoint inhibitors
u . . .
burden (TMB) in tumor cells. (ICIs) (TMB-high solid tumors).
Microsatellite Genetic hypermutability caused by  Predictive of response to ICIs (MSI-high/MMR deficient
instability (MSI)  mismatch repair deficiency. solid tumors)
G ic instability due t
CROMIC Instablity . ue. © Predictive of response to PARP inhibitors (HRD-high
HRD homologous recombination .. .
. BRCA1/2 mutations in breast/ovarian cancer)
deficiency (HRD).
. Specifi tati tt linked .
Mutational topfrflt: :ll:.lca lr(z)rl::se:rcl)ls e Drug response (UV/tobacco/APOBEC/POLE signatures to
. u i T . .. L
signatures g P IClIs) or resistance (APOBEC to tyrosine kinase inhibitors).

exposures.

Gene expression

Expression signatures of single
genes or gene panels.

Molecular subtyping and risk stratification (PAMS50 in
breast cancer), drug response (BRCAness to PARP
inhibitors).

Protein
expression

Abnormal levels or activation of
specific proteins

Therapy guidance (PD-L1 expression in tumor and/or
immune cells for ICI eligibility).

1.1.3. The rise of NGS-based comprehensive genomic profiling

The detection of the molecular alterations described above relies on a variety of laboratory assays,
each with distinct advantages and limitations. Traditionally, molecular testing in oncology has relied
on single-gene methods such as polymerase chain reaction (PCR), immunohistochemistry (IHC),
fluorescence in situ hybridization (FISH), or DNA Sanger sequencing®'>. These conventional
techniques offer high sensitivity (i.e., ability to identify existing variants) and specificity (i.e., ability
to avoid false variants) for predefined alterations and remain indispensable in many diagnostic
workflows>™'?. Moreover, each test has a distinct limit of detection, defined as the lowest variant
allele frequency or minimal number of mutant copies that can be reliably identified as true variants.
However, because each assay targets a specific biomarker, their scope is inherently limited and often

lacks the ability to detect unexpected, rare, or complex genomic events* %’
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In response to these limitations, improvements in NGS-based technologies have enabled more
complex, scalable, and cost-effective analyses of biological molecules, significantly expanding the
catalogue of clinically actionable alterations. As a result, there has been a progressive shift from
single-target diagnostic assays to NGS-based comprehensive genomic profiling (CGP)*'*!8, This
approach allows for the simultaneous interrogation of multiple genes and alteration types within a
single experiment, providing a more efficient, cost-effective, and tissue-sparing alternative to
sequential single-biomarker testing*'>!®. While gene-specific assays continue to play an important
role in routine diagnostics and in resolving discordant results, the adoption of NGS-based CGP panels
in clinical oncology has accelerated, driven by their ability to deliver a holistic view of the tumor
genome and to inform precision oncology decision-making (Figure 1)°!1°. The characteristics of

representative gene-specific assays and NGS-based CGP panels are summarized in Table 27131820,

Table 2. Representative examples of gene-specific tests and NGS-based CGP panels in oncology.

This table summarizes Food and Drug Administration (FDA)-approved diagnostic assays ranging from single-gene tests to
large-scale NGS-based panels. For each test, the table lists the number of genes interrogated, sample type, assay method,
and molecular profiling scope.

Test Genes Sample Method Molecular profiling
F lin-fi
Cobas 4800 BRAF V600 ormalin-fixed Real-time
: 1 paraffin-embedded BRAF V600E (melanoma)
Mutation Test (Roche) . PCR
(FFPE) tissue
Cobas EGFR Mutation Test 1 FFPE Real-time EGFR exons 18-21 mutations
V2 (Roche) PCR (NSCLC)
BRACAnalysis companion PCR + Sanger BRCA1/2 SNVs, InDels, and
diagnostics (CDx) 2 Blood Multiplex AMP/DEL (ovarian and breast
(Myriad Genetics) PCR cancers)
Prax1s.Extended RAS Panel ) FFPE NGS K/N-ras exons 2-4 mutations
(Illumina) (colorectal cancer)
InDels, CNAs (1
FoundationOne CDx 324 FFPE NGS rSeIZIIr\r/:n I;meelj';sc(% Se(ne6s)g ?15451)3
(Foundation Medicine) (DNA) MSI g & ’ ’
MSK IMPACT (Memorial 468 FFPE NGS SNVs, InDels, CNAs,
Sloan Kettering) (DNA) rearrangements, TMB, MSI
InDels (42 NA

Oncomine Dx Target Test 46 FFPE NGS (SII\(I)VS :lmd) rflu ;c i( n(gigenclzis), CNAs
(Thermo Fisher) (DNA+RNA) Benes), usions and spiice

variants (17 genes)

InDels, CNA

Trusight Oncology 500 FFPE SN.VS’ 1oes, C iy ( 59 genes),
(Hllumina) 523 (DNA+RNA) NGS fusions and splice variants (55

genes), TMB, MSI

InDels (1

Oncomine Comprehensive 161 FFPE NGS ?:E\;s a(lzgl nne ; (f 3? ienej()i’
Assay (Thermo Fisher) (DNA+RNA) . s .ge es), fusions

splice variants (51 genes)

Pl InDel 11
FoundationOne Liquid CDx . 'asma SNVs and InDels (311 genes),
(Foundation Medicine) 324 (circulating cell-free NGS CNAs (4 genes), rearrangements (4
DNA [cfDNA]) genes), TMB, MSI

Guandant360 CDx 55 Plasma NGS SNVs and InDels (55 genes), CNAs
(Guardant) (cfDNA) (2 genes), fusions (4 genes)
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With the advent of large-scale genome sequencing initiatives (e.g., The Cancer Genome Atlas
[TCGAJ?, the International Cancer Genome Consortium??, and the 1000 Genomes Project®®) vast
catalogs of tumor-associated variants have been identified and consolidated into public reference
resources such as the Genome Aggregation Database (gnomAD)*, the Catalogue Of Somatic
Mutations In Cancer (COSMIC)?, and the American Association for Cancer Research (AACR)
Project Genomics Evidence Neoplasia Information Exchange (GENIE)?. These foundational efforts
have, in turn, enabled the development of specialized clinical interpretation databases, including the
Clinical Variant Database (ClinVar)?’, the Oncology Knowledge Base (OncoKB)?, and the Clinical
Interpretations of Variants in Cancer (CIViC)%, that curate variant-specific evidence to support

clinical reporting.

However, the proliferation of numerous independent resources, curated by different groups with
varying scopes and methodologies, has also introduced significant challenges. Discordances in
variant representation across platforms—ranging from inconsistent nomenclature to divergent
evidence grading—complicate the accurate interpretation of molecular findings in clinical settings.
Consequently, the standardization and harmonization of variant annotation, classification, and
reporting have become critical to ensure equity, reproducibility, and consistency of genomic results

across laboratories and institutions*>.

To address these challenges, multiple guidelines and recommendations for molecular testing have
been developed (Figure 1), including frameworks for variant nomenclature (e.g., Human Genome
Variation Society [HGVS] recommendations)*® and variant interpretation (e.g., American College
of Medical Genetics and Genomics [ACMG] and Association for Molecular Pathology [AMP]
consensus recommendations®'), and guidance documents published by scientific societies (e.g.,
European Society for Medical Oncology [ESMO]J*?) and regulatory agencies (e.g., Food and Drug
Administration [FDA])** to define requirements for NGS-based in vitro diagnostics (IVDs).

In order to fully leverage the potential of NGS-driven precision oncology, the molecular tumor board
(MTB) has emerged as a central entity in many institutions. MTBs bring together multidisciplinary
teams—including oncologists, pathologists, geneticists, research scientists, and bioinformaticians,
among others—to collaboratively review each patient’s data from clinical, pathological, and

molecular perspectives and formulate evidence-based treatment recommendations®3*,

However, as the number of patients requiring MTB evaluation continues to grow, there is an
increasing need for automated systems that can efficiently integrate variant annotation, prioritization,
and reporting to streamline this process** . Moreover, given the interdisciplinary composition of
MTBsS, the results must be presented in a visual, intuitive, and accessible format—without sacrificing

scientific rigor—to support effective collaboration and improve clinical decision-making?*.
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In summary, the adoption of CGP through NGS has rapidly expanded in routine oncology practice,
driven by multiple converging factors:
e The growing number of clinically actionable biomarkers*™
e The increasing availability of targeted therapies and biomarker-driven treatments*®
e Continuous advances in NGS technologies and bioinformatics pipelines.
e Decreasing costs and shorter turnaround times, making high-throughput sequencing more
feasible and accessible.
e Ongoing harmonization of genomic knowledge bases to support reliable variant
interpretation.

e Strengthened regulatory frameworks and endorsement by clinical guidelines.

Together, these factors underscore the growing need for robust, standardized, and scalable

bioinformatics solutions capable of transforming raw NGS data into clinically actionable insights.

1.2. The NGS-based panel workflow in molecular diagnostics

1.2.1. General considerations

Building on the advances described in the previous section, NGS-based CGP panels have become a
cornerstone of precision oncology, enabling the simultaneous detection of multiple classes of

clinically relevant alterations within a single assay>!**

. In routine diagnostics, NGS panel
workflows follow a standardized sequence of steps (Figure 2)—including sample processing, library
preparation and target enrichment, sequencing, and bioinformatics analysis—to transform clinical

specimens into structured, interpretable genomic data’!?

. This integrated approach not only
facilitates the identification of actionable biomarkers to guide patient management but also promotes
consistency and transparency across laboratories and platforms. Each stage of the NGS workflow
involves specific technical considerations that influence the overall performance and clinical utility

of the assay.

Sample isolation and Sequencing library Target enrichment Sequencing Data analysis Interpretation and
specimen extraction preparation application

||” ||,' |M ‘\Q“‘
"' llh h’ |[’ “5

3
)

& — )
P T = il <
'ﬁ”\rb
&@ ﬂ
Extraction of tumor Extracted DNA is Enrichment of specific Enriched fragments FASTQ generation and NGS-based comprehensive
genomic DNA and fragmented, end- genes of interest using are sequenced demultiplexing followed genomic profiling (CGP)
RNA from FFPE (or repaired, and adapters amplicon-based or using NGS by alignment, variant helps to guide diagnosis,
DNA from plasma) are ligated to each end hybridization capture- calling, and tertiary prognosis, and therapy
based assays analyses selection

Figure 2. General workflow of NGS-based panel testing.

The process begins with nucleic acid extraction from the selected specimen type, followed by library preparation and target
enrichment to capture the genomic regions of interest. Sequencing is then performed, and bioinformatics analysis pipelines
are applied to generate structured variant data and facilitate clinical interpretation. Adapted from Pei et al., 2023'3.
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Before introducing the NGS workflow in detail, it is important to highlight several key NGS-related

features that are consistently evaluated across the workflow and influence both the quality of the data

and the interpretation of the results

9-13,38.

Reads: Individual DNA or RNA fragments sequenced from the sample, and their number
and quality directly affect downstream analyses.

Read depth (DP): Number of times each base or nucleotide is sequenced, corresponding to
the total number of reads overlapping a specific genomic position.

Coverage: From a broader perspective than DP, it indicates how much of the genome or
target region is sequenced. It can be expressed in percentage (e.g., 90% of the genome is
sequenced at least once) or commonly as a fold of the genome size expressed with an “X”
(e.g., 500X means that the target size is sequenced on average 500 times).

Reference allele (REF): Nucleotide(s) present at defined locus of the reference genome used
for comparison.

Alternate allele (ALT): Nucleotide(s) observed in the sample corresponding to the detected
variant that differs from the REF at the same position.

Allele depth (AD): Number of reads supporting each allele (REF, ALT) at a specific locus.
Allele frequency (AF): Proportion of reads supporting a specific allele (commonly referred
to ALT) relative to DP. In the population context, it represents the proportion of each allele
within a population.

Variant allele frequency (VAF): Proportion of reads supporting the variant allele (i.e., ALT).
Probe or capture bait: Oligonucleotides used during target enrichment to isolate specific
genomic regions.

Hotspots regions: Genomic loci that are frequently mutated in cancer may be associated with
a specific tumor type or carry clinical relevance. Variants found within these loci are also

referred to as hotspots mutations.

Targeted NGS panels have become a routine molecular diagnostic tool in both clinical and research

settings, as they deliver reliable results at relatively low cost and turnaround time. Regarding the

panel design, several aspects should be considered to ensure appropriate panel and optimal capture

of the relevant genomic alterations

9-13

The NGS panel choice depends primarily on the clinical purpose and the genes or biomarkers of

interest. For example, germline testing often requires different target regions and analytical

approaches compared to somatic profiling, and the requirements also differ between solid tumors and

hematologic malignancies® . In this thesis, the focus is on somatic applications in solid tumors,

mainly in the context of routine clinical diagnostics. For this purpose, commercially available pan-
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cancer CGP panels (Table 2) are frequently adopted, as they allow batching of samples from diverse

tumor types and clinical indications, ultimately saving time and reducing costs''~13.

Depending on the type of alteration targeted (Table 1), the design of the capture regions within the
panel may vary considerably. Small variants, including single-nucleotide variants (SNVs) and
insertions and deletions (InDels), can be reliably detected by targeting specific hotspot regions,
minimizing the overall size of the panel. In contrast, copy-number alteration (CNA) assessment

requires multiple probes spanning the entire gene of interest to obtain accurate results’ .

Gene fusions can be detected using either DNA- or RNA-based approaches. Because most fusion
breakpoints occur within intronic regions, DNA-based detection requires capture probes spanning
introns—an approach that can be technically challenging due to the typically large size of these
regions. Conversely, RNA-based methods target exon—exon junctions, facilitating the detection of
both known and novel fusion breakpoints in a more efficient manner. For this reason, RNA
sequencing (RNA-seq) is increasingly preferred for comprehensive fusion profiling, particularly

when novel fusion partners are expected® .

1.2.2. Wet-lab workflow: from sample preparation to sequencing

The wet-lab phase of NGS-based CGP encompasses all laboratory steps required to transform clinical
specimens into sequencing-ready libraries. This process begins with specimen selection and nucleic
acid extraction, continues through library preparation and target enrichment, and culminates in high-
throughput sequencing. Each step must be carefully optimized to ensure the generation of high-
quality, reproducible data suitable for downstream bioinformatics analysis. Variables such as the type
and preservation of the input material, the enrichment strategy employed, and the chosen sequencing
platform can all influence the sensitivity, specificity, and overall reliability of the assay>!*. The
following sections describe the main considerations and methodological approaches involved in each

stage of the wet-lab workflow.

1.2.2.1. Sample processing

The first step of any clinical NGS panel workflow is the preparation of input specimens, followed by
the extraction and evaluation of nucleic acids (i.e., DNA and RNA). While these procedures are not
strictly bioinformatic, they have significant downstream consequences for data quality and

interpretation® '3,

The choice of specimen depends on the clinical indication. Germline analyses typically require saliva
or peripheral blood to isolate non-tumor cells. In contrast, somatic testing—usually performed after

tumor diagnosis—commonly uses FFPE tumor tissue, fresh-frozen tumor tissue, or circulating cell-
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free DNA (cfDNA), as shown in the assays listed in Table 2. The preservation method can strongly
influence analysis outcomes. For example, DNA extracted from FFPE is prone to fixation-induced
damage and artifacts (such as cytosine deamination and strand bias) that must be accounted for during

variant calling® 3.

Another important consideration is sample quantity, which is often limited in the clinical setting,
particularly for solid tumors where tissue collection is invasive. Although single-gene tests generally
require smaller input amounts, the use of NGS panels provides broader information with a single
analysis, maximizing the yield from scarce specimens and increasing the likelihood of identifying

actionable biomarkers® 3.

Tumor-specific features also impact interpretation. For instance, estimating tumor purity (TP)—
defined as the proportion of tumor cells within the total sample—is essential when evaluating VAFs
of somatic variants and CNAs’'2, In solid tumor samples, pathologist-assessed tumor content can be
improved by microdissection of tumor-rich regions to increment neoplastic cell fraction and improve
sensitivity. However, pathology-based estimates are inherently subjective and can be influenced by
factors such as interobserver variability, infiltrating non-tumor cells, inflammation, or necrosis®!!.
Computational estimation of TP from sequencing data presents an alternative but is also affected by
genomic features such as chromosomal instability. Combining microscopic assessment and in silico

estimation could provide a more robust and reliable estimation of tumor content® !,

Following tissue selection, DNA and RNA are extracted and quantified. For RNA-based assays,
reverse transcription (RT) is performed to generate complementary DNA (cDNA). The required input
DNA quantity varies by panel and can range from 10 ng to 1000 ng. Additional parameters (e.g.,

quality, concentration, overall yield) are also evaluated to confirm sample suitability®'°.

In research applications, a wider variety of specimen types are commonly encountered. Beyond
tumor tissues, samples may include tumor-derived cell lines or tissues from patient-derived xenograft
(PDX) models. These cases often require additional bioinformatic pre-processing steps to correctly

attribute sequencing reads to their origin.

1.2.2.2. Library preparation

Library preparation is the process by which extracted DNA is converted into a form compatible with
sequencing. In a typical workflow, genomic DNA is first fragmented, and short adapter sequences
(which are complementary to the sequencing platform’s flow cell) are ligated to each end of each
fragment, creating what is known as an insert. This is followed by PCR amplification (PCR-Amp) to
increase DNA yield. However, the details of this process vary depending on the enrichment strategy

employed” 3.
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Depending on the chosen NGS approach, the scope of captured genomic regions differs considerably.

Whole genome sequencing (WGS) is untargeted, covering the entire genome. Whole exome

sequencing (WES) focuses on coding regions of all protein-coding genes, while targeted sequencing

restricts capture to a defined set of genes or hotspots of known clinical relevance. The main

characteristics of these three strategies are summarized in Figure 3. In clinical diagnostics, targeted

gene panels are generally preferred, as prior knowledge of relevant genes enables greater sensitivity

for detecting known alterations, while maintaining lower costs and shorter turnaround times>*'3,

Whole Genome Sequencing

Advantages X Disadvantages
* Comprehensive coverage of codin
and r?on-coding regionsg(30-60X). 9 e Lower coverage depth per base.

¢ Highest cost and data storage

¢ Detects structural variants and requirements

complex rearrangements.

* Not feasible for routine clinical

[Gene 1] [ Gene 3] L4 Enable_s genome'Wide biomarker use
analysis. :
* Focused on coding regions where * Misses non-coding and regulatory
Whole Exome Sequencing most pathogenic variants occur. alterations.
her coverage of exons * Uneven capture across targets.

— — || Higo-zooxy

[Gene 11 [_Gened T (e More cost-effective than WGS. variants.

o Limited assessment of structural

* Limited to predefined targets; no

| | ® Deep coverage of clinica(l)l

relevant genes (200-1000X). genome-wide discovery.

¢ Requires regular updates as

¢ Cost-effective and fast turnaround. knowledge évolves.

» Simplified analysis tailored to

clinical reporting. ¢ Cannot detect unexpected variants

outside the panel.

Figure 3. Overview of genomic NGS approaches.
Ilustration of three main sequencing strategies—WGS, WES, and targeted sequencing—highlighting their genomic scope,
advantages, and limitations. Adapted from Bewicke-Copley et al., 2019'.

Two principal methods are used for target enrichment and library preparation (Figure 4)° '3

Amplicon-based approaches rely on PCR primers designed to bind to the flanking regions
of targets and selectively amplify them (Figure 4A). In this method, adapters are
incorporated during PCR-Amp itself. Often, multiple overlapping primers are included to
ensure full coverage. Because all reads generated have the same start and end coordinates
(defined by primer positions), it cannot distinguish true unique molecules from PCR
duplicates by coordinates alone, complicating deduplication during analysis.

Hybridization capture-based approaches use biotinylated probes (i.e., capture baits) that
hybridize to target regions. These probe-bound fragments are captured via streptavidin-
coated magnetic beads (Figure 4B). In this workflow, adapters are ligated before
hybridization. The resulting reads start and end at variable positions, allowing accurate
detection and removal of duplicates. In general, hybridization capture yields more uniform
and accurate coverage, while amplicon-based methods are advantageous for smaller-scale

experiments, limited DNA input, or resource-constrained clinical applications.
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A Amplicon-based assay B Hybridization capture-based assay

Primer based
amplification
of DNA
templates

= 4=

Adapter ligation

PCR + barcoding
and adapter

’
|
o

Hybridize to custom
capture probes and

ligation ‘
l Sequencing |soI.ate targeted
) regions
Amplicon 1
Forward Wash, elute, amplify
reads and sequence
Reverse
reads
Amplicon 2
— I —— Exon 1 Exon 2 Exon 3

Gene X - mutational hotspot Large regions of interest

Advantages
* More uniform, reliable coverage.

Advantages
¢ High depth over hotspots.

e Fast, low-cost, minimal DNA needed. » Longer probes tolerate mismatches.

» Less hands-on time and simpler protocols.

X Disadvantages

« Captures larger regions, including flanking
sequences.

X Disadvantages

* Allele dropout risk from primer-site mutations.
» Poorer coverage uniformity and quality at ends.

« Reads have identical positions, complicating
deduplication.

* Higher DNA input required.
* More time-consuming and costly.

« Lower overall coverage per region compared
to amplicon (at the same sequencing depth).

Figure 4. Overview of amplicon-based and hybridization capture-based enrichment protocols.

(A) Amplicon-based assay: enrichment achieved by PCR-Amp using primers targeting regions of interest. (B)
Hybridization capture-based assay: enrichment performed using biotinylated probes complementary to target regions and
isolation of captured fragments via streptavidin magnetic beads. Adapted from Jennings et al., 2017 1.

Because targeted panels require less sequencing depth compared to WES or WGS, it is common in
clinical routine to pool multiple libraries together for sequencing, improving efficiency and reducing
per-sample costs. This process (i.e., multiplexing) relies on the addition of sample-specific short
sequences called barcodes or indexes (typically 8-12 base pairs [bp]), ligated to each end of the
inserts. After sequencing, these barcodes are used during demultiplexing to assign reads back to their

original samples®!3.

Another element often incorporated into library preparation is the Unique Molecular Identifier
(UMI)!'"12, UMIs are short, random sequences ligated to each fragment before PCR-Amp. As shown
in Figure 5, UMIs enable identification of unique original molecules, helping to distinguish true
duplicates from unrelated reads with identical start and end positions'. This is particularly important

for low-input or degraded DNA samples (such as from FFPE or cfDNA), where PCR duplicates and
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sequencing artifacts are common. By leveraging UMIs, pipelines can achieve more confident variant

calling at lower VAFs and perform accurate deduplication even for amplicon-based libraries,

mitigating the risk of overestimating read coverage'"!%.

/UMI /Sample DNA
[ [ [imar]
i7 index i5 index
Raw reads Mark Duplicates UMl
[ > < ] [ > < =X D €
[ > £ ] = > < ] > < ]
[ > < 1 > < T > <
[ > < ] L > < ] [ > < ]
| ) J L > < J L ) b3 < J
[ > < ] > < | =" > <
L ) < J L J < J L ) | 7 < ]
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Raw reads Mark Duplicates UMl
[ > < ]
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Figure 5. Use of UMIs to identify duplicates in NGS data.

UMIs are incorporated immediately before or after the DNA insert, while indexes (i7 and i5) enable sample identification.
Duplicate reads appear similar to true unique reads (raw reads), but they represent technical noise that can inflate coverage
estimates. Two deduplication strategies are illustrated: (i) detection using only start and end coordinates (red lines), and (ii)
detection using coordinates plus UMI tags (colored segments), which allows more accurate identification of true duplicate
molecules among reads sharing the same coordinates. Reads identified as duplicates are shown in red; reads retained as
unique are shown in grey. Reproduced from Bewicke-Copley et al., 2019'.

1.2.2.3. Sequencing

Once the sequencing library is prepared, the process of determining the order of nucleotides—
adenine (A), thymine (T), guanine (G), and cytosine (C)—that make up the DNA molecule, known
as sequencing, is performed® 3. Over the past decades, advances in sequencing technologies have
unlocked the ability to interrogate molecular genetics at unprecedented depth. These technologies
are commonly categorized into three generations (Figure 6)>:
e First-generation sequencing, primarily represented by Sanger sequencing, is based on
sequencing individual DNA molecules.
e Second-generation sequencing (commonly referred to as NGS) enables massive parallel
sequencing of millions of fragments, revolutionizing throughput and reducing costs.
e Third-generation sequencing allows the direct sequencing of native DNA molecules without
PCR-Amp, generating much longer reads compared to previous technologies (typically <500

bp in NGS vs. >10,000 bp in long-read platforms).
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Figure 6. Evolution of NGS platforms.
Development of sequencing generations over time (x-axis). The y-axis indicates the amount of data generated per run in
gigabases. Adapted from Satam et al., 2023 .

The most widely used platforms—whose data are analyzed in this thesis—are Illumina and Ion
Torrent:

e [llumina sequencing relies on sequencing-by-synthesis (SBS). As illustrated in Figure 7, this
approach resembles Sanger sequencing: a denatured DNA template is extended by DNA
polymerase using fluorescently labeled nucleotides that terminate synthesis. After detection
of the incorporated base, [llumina SBS removes the terminator group, permitting continued
extension and enabling base-by-base sequencing in cycles. Millions of DNA fragments are
immobilized on a solid substrate via their ligated adapters and sequenced in parallel, with
cycle number (typically 75-150) determining read length®>°.

e Jon Torrent sequencing also performs real-time nucleotide incorporation but uses
semiconductor technology. Each incorporated nucleotide releases a hydrogen ion, producing

a detectable pH change that generates a voltage signal corresponding to the base identity®*.

Although both platforms yield similar performance, Ion Torrent has limitations in accurately
resolving homopolymer tracts due to difficulties distinguishing voltage changes from multiple
identical nucleotides incorporated in succession. Conversely, [llumina sequencing generally yields
more reads per run but may be more expensive and slower, while lon Torrent workflows are often

faster and more cost-effective—especially for smaller targeted panels'!.

Modern sequencers feature multiple flowcell lanes, allowing independent processing of different
samples or runs’. When a single sample’s reads are distributed across lanes, the data must be merged

during pre-processing.
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Figure 7. Overview of Sanger and Illumina sequencing processes.

The traditional Sanger sequencing workflow is depicted on the left. The Illumina-based NGS workflow is shown on the
right. Both methods rely on the detection of fluorescently labeled nucleotides incorporated during DNA synthesis. Unlike
Sanger sequencing, [llumina sequencing is reversible—allowing continuous base detection—and is massively parallelized
across millions of templates. Reproduced from Larson et al., 2023°.
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Another technical consideration is the choice between single-end and paired-end sequencing. Single-
end sequencing reads DNA from one end of the insert, whereas paired-end sequencing reads from
both ends (forward direction usually labeled as “R1” and reverse as “R2”). Paired-end reads improve
mapping accuracy and coverage and enhance sensitivity for detecting structural variants (SVs), but

they can be more time- and resource-intensive’.

In summary, each platform and assay have specific considerations—including target size, variant
type and complexity, turnaround time, technical support, and bioinformatics requirements—that
determine its suitability for clinical or research applications. For example, in this thesis, two
commercial pan-cancer NGS panels were used with distinct focuses:

e [llumina: Hybrid-capture-based enrichment of a large gene set, sequenced as paired-end
reads on the Illumina platform. This approach prioritizes comprehensiveness and accuracy
over cost, input quantity, or turnaround time.

e Thermo Fisher (Ion Torrent): Amplicon-based capture targeting fewer genes, primarily
hotspot regions, with single-end reads. This configuration emphasizes streamlined
workflows, shorter turnaround, and lower input and cost—features well-suited to routine

clinical diagnostics.

1.2.3. Bioinformatics workflow: from sequence generation to clinical insights

NGS assays generate massive volumes of complex, multidimensional data that require sophisticated
computational methods to convert raw sequencing reads into clinically meaningful insights®344041,
In this context, bioinformatics expertise is essential to manage, process, and interpret these datasets
by applying specialized informatics techniques. A bioinformatic pipeline refers to a structured
collection of algorithms and tools that are executed sequentially to analyze NGS data in a
standardized and reproducible manner*®*?, These pipelines are designed to handle specific data
formats and associated metadata, systematically transforming them through a series of processing
steps. While pipelines can be adapted to individual laboratory requirements and platform
specifications, clinical NGS workflows generally follow a common structure composed of the
following major stages: sequence generation and pre-processing, sequence alignment, variant
calling, variant annotation, variant prioritization, and visualization and reporting®**4*4!, The
following sections will describe each of these components in detail, highlighting their objectives,

methodologies, and implications for downstream clinical interpretation.



16 1. Introduction

1.2.3.1. Sequence generation and pre-processing

Sequence generation—commonly referred to as base calling—is the process by which raw sensor
data (e.g., optical or electrical signals) from the sequencing instrument are translated into a nucleotide
sequence for each DNA fragment®*?. Each platform produces base call data in proprietary formats.
For example, Illumina sequencers generate binary base call (BCL) files that store the raw
fluorescence intensities, the interpreted nucleotide calls (A, T, G, C), and their associated quality
metrics (Q-scores)®*?. These BCL files must be converted into a standardized format suitable for
downstream bioinformatics processing. The most common output format is the FASTQ file, which
is generally considered the starting point (i.e., raw sequencing data) for analysis®*. In contrast, Ion
Torrent platforms export base calls in unmapped Binary Alignment Map (uBAM) file format®.
Unlike FASTQ, the Binary Alignment Map (BAM) format can also store platform-specific flow
signal data, which some lon Torrent pipelines use for downstream steps such as variant refinement.
Table 3 provides an overview of these formats and other commonly used files in NGS bioinformatics

workflows?#>43,

Table 3. Common bioinformatics file formats.
This table summarizes widely used file formats in NGS bioinformatics workflows. Each format is listed along with its
typical file extension(s), coordinate system (0-based or 1-based), and a brief description. Based on Larson et al., 2023°.

File Coordinate
File format . Description
extension system
. Binary files that store raw intensity measurements from Illumina
Binary base call . .
(BCL) .bel - sequencers. These files are demultiplexed and converted into

FASTQ format before downstream analysis.

Text-based format containing nucleotide sequences and their
FASTQ fastq, .fq - corresponding base quality scores. Commonly used as the
starting point for read processing.

Text-based file format used to store reference genome sequences

FASTA fasta, .fa - .
or other nucleotide sequences.
Browser Extensible bed 0-based Tab-separated values (TSV) format specifying genomic intervals
Data (BED) ’ and optional annotations. Used for defining regions of interest.
S .. . .
. equence TSV text file containing sequencing reads aligned to a reference
Alignment Map .sam 1-based
genome.
(SAM)
Binary Alignment bam 0-based Binary compressed version of a SAM file. Standard format for
Map (BAM) ’ storing and exchanging aligned read data.
Compressed
Reference-oriented cram 0-based Compressed format similar to BAM but optimized for storage by
Alignment Map ' saving only differences between reads and the reference genome.
(CRAM)
Variant Call Format TSV format used to store identified variants and their
wvef 1-based .
(VCF) annotations.
Gene Transfer atf I-based TSV format describing gene structure annotations (e.g., exons

Format (GTF) and transcripts).
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FASTQ files are plain-text files in which each sequencing read is represented by a four-line

structure®!*? (Figure 8):

Sequence identifier: A header line starting with the “@” symbol that uniquely labels each
read and often includes information such as the instrument, flowcell, lane, and optionally
barcodes like UMIs. In paired-end sequencing, two FASTQ files are generated with matching
identifiers distinguished by a read direction suffix (e.g., /1 and /2). Additional metadata (e.g.,
sample name, index, or read length) may be appended.

Nucleotide sequence: The called bases (A, T, G, C, or N for ambiguous calls).

Separator: Usually a “+” sign marking the start of the quality string.

Quality scores: A string of American Standard Code for Information Interchange (ASCII)-
encoded Phred Q-scores representing the estimated error probability for each base. For

example, Q=30 corresponds to a 0.1% chance of error (99.9% accuracy).

RAW SEQUENCE
SEQUENCE IDENTIFIER DESCRIPTION (OPTIONAL)

L

@SRR001110.1][EBTKRSX01D5SRD length=42)]
GGGGGGGGTCATGAGACCARAGCAGATGCCAGATGCCTGCTG)
+

|11111111BDDDDDDDDDHHHIIGIGGGGGGGGHGI IIGGGG]

QUALITY VALUES

Figure 8. Example of a FASTQ read entry.
[lustration of a single read entry highlighting the four-line structure within a FASTQ file: the read identifier, nucleotide
sequence, separator, and encoded base quality scores. Reproduced from Larson et al., 2023 °.

During this step, demultiplexing is typically performed to assign reads to their corresponding samples

based on the index sequences ligated during library preparation. A potential issue is index hopping,

where indexes are incorrectly assigned to the wrong sample!®!3, This can be mitigated using dual

indexing, in which two independent index sequences (e.g., 7 and i5) are applied (Figure 5)'°.

Once sample-specific FASTQ files have been generated, raw reads are pre-processed to retain only

the relevant insert sequences by

12,36.

Trimming adapter sequences, UMIs, and low-quality bases (especially from the 3’ ends).
Removing contaminant sequences, such as reads derived from non-human organisms.

Filtering out excessively short reads that would map ambiguously.

Sequencing quality control (QC) is also conducted at this stage'®!?3¢. QC checks typically include:

Assessing base quality score distributions to identify systematic biases or degradation.
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e Inspecting per-base composition to detect contamination or technical artifacts (e.g., residual
adapters, sample cross-talk).

e Estimating guanine-cytosine (GC) content to confirm that it matches the expected range for
human DNA. Deviations (such as an unexpected secondary GC peak) can indicate

contamination by non-human DNA.

1.2.3.2. Sequence alignment

The next step in the NGS workflow is the alignment of sequencing reads to a reference genome (i.e.,
read mapping), which aims to determine the most likely genomic position of each fragment, while
accounting for natural genetic variation and sequencing errors'®!'%3¢, Short-read aligners are designed
to efficiently map millions of reads to the reference genome by using pre-built indexes that enable
rapid pattern matching. For RNA data, where reads span joined exons, splice-aware aligners are
required to accurately map reads crossing exon—exon boundaries®!?. As determining the origin of
each read is critical for understanding the sequenced genetic information, this step must be highly
accurate. However, it is also computationally intensive and time-consuming, as each read is

compared to the entire genome®!%-3,

The reference genome is typically stored in the FASTA file format (Table 3), which contains a series
of entries with a header line (starting with “>*) and the corresponding nucleotide sequence. The
current standard in clinical applications is the Genome Reference Consortium (GRC) Human Build
38 (GRCh38)—also referred to as Human genome build 38 (hg38)—released by the GRC in 2013
(with the latest patch GRCh38.pl14 from 2022)*'%%, While this build includes significant
improvements over its predecessor GRCh37/hgl9 (2009), the latter remains widely used,
necessitating compatibility through coordinate conversion, commonly referred to as liftover. Other
alternatives include Telomere-to-Telomere CHM13 (T2T-CHM13)—the first gapless haploid
genome assembly—which improves the representation of difficult regions, but does not reflect
human population diversity*. To address this, the Human Pangenome Reference Consortium is
developing a multi-reference genome derived from diverse individuals, aiming to better represent

population-specific genomic variation*’,

Depending on the outcome of the alignment, reads can be classified as*:
e Mapped reads: Successfully aligned to a unique position in the genome. Most reads should
be mapped, and the mapping rate is a common QC metric.
e Unmapped reads: Failed to align to any region. They may originate from novel or non-human

sequences, repetitive regions, or reflect structural variations.
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Clipped reads: Partial alignments where one end of the read is not mapped. These can be
soft-clipped (retained but not aligned) or hard-clipped (removed). Clipping may reflect low-
quality bases or true biological alterations (e.g., InDels, SVs).

Multi-mapping reads: Align equally well to multiple locations. These often originate from

repetitive elements or paralogous genes.

Alignment outputs are saved in specific file formats®3¢434¢ (Table 3):

Sequence Alignment Map (SAM): A plain-text, tab-separated values (TSV) format that
includes aligned and unaligned reads. It contains a multi-line header (starting with “@”) with
metadata (e.g., software, reference genome), and per-read information (Table 4).

BAM: The binary version of SAM, optimized for storage and processing. BAM files are
compressed, indexable, and compatible with most downstream tools and genome browsers
for manual inspection.

Compressed Reference-Oriented Alignment Map (CRAM): A more compressed format that
stores only differences relative to the reference genome. It enables significant file size
reduction, although it requires specialized tools and may involve lossy compression,

potentially discarding non-variant reads.

Table 4. Summary of mandatory SAM file fields.
This table summarizes the eleven mandatory fields of SAM files. Adapted from the Sequence Alignment/Map Format
Specification*.

No. Field Type Description

1 QNAME String  Query name. Typically the read identifier, matching the one in the FASTQ file.

) FLAG Integer Bitwise flag representing read attributes (e.g., read is paired, properly aligned,
unmapped, etc.).

3 RNAME String Reference name (e.g., chromosome) where the read is aligned. Set to “*” for
unmapped reads.

4 POS Integer  1-based leftmost position of the aligned read. Set to 0 for unmapped reads.

5 MAPQ Integer Mapping quality. Phred-scaled sco‘re estimating the probability that the alignment is
incorrect. Set to 255 when not available.
Encodes the alignment of the read to the reference using a sequence of operations

6 CIGAR String  (e.g., “M”: alignment match, “I”’: insertion, “D”: deletion, “S”: soft-clipped, “H”:
hard-clipped).
Reference name of the mate/next read. Set to “*” if unavailable, or “=" if identical to

RNEXT I >

7 N nteger RNAME.

8 PNEXT Integer  1-based position of the mate/next read. Set to 0 if unavailable.

9 TLEN String Observ.ed templz.ite lerTgth (i.e., insert size for paired-end reads). It can be negative
depending on orientation.

10 SEQ String Read sequence. Set to “*” if sequence is not stored; can be “=* if identical to
reference.
ASCII- Ph li fi h in SEQ. rf

1 QUAL String SC . encoded Phred base quality scores for each base in SEQ. Set to i
unavailable.

Read alignment enables the coverage calculation which directly impacts the VAF and the sensitivity

and reliability of variant detection. High coverage is essential for detecting low-VAF somatic

variants, especially subclonal mutations present in only a subset of tumor cells. For this reason,
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targeted NGS panels are ideal for clinical applications, as they provide deep coverage in predefined

regions of interest™!°,

Before aligned reads can be used for variant calling, several post-alignment processing steps are
usually performed to generate analysis-ready BAM files®!%123¢ (some steps may be included within
variant calling tools):

e Deduplication: PCR duplicates, originating from over-amplified DNA fragments (especially
in FFPE or low-input samples), are removed. Duplicates are typically identified by identical
start and end coordinates, although UMIs (Figure 5) can enhance accuracy by tagging
original DNA fragments.

e Local realignment: Reads near potential InDels are locally realigned to improve alignment
accuracy and facilitate InDel detection.

e Bias correction: Systematic errors in base quality scores can be recalibrated using known
variant datasets, improving variant calling precision.

e BAM QC: In addition to sequencing QC, various metrics assess alignment quality (Figure
9). These include the mapping rate, on-target rate (for targeted panels), insert size
distribution, read length, duplication rate, and coverage statistics (e.g., mean, median, or

percentage of target bases above specific coverage thresholds).

Alignment QC
Reference genome TNTIDAI TN EID

Sequencing QC

Properly mapped [C>—11
—_ PCR duplicate >—<
Abnormal insert size

Co———< 1
Position in read (bp) Discordant mapping { o= —am

Figure 9. Sequencing and alignment QC of reads.
Read QC is assessed before and after the alignment to the reference genome. Based on Cortés-Ciriano et al., 2022 '°.

Several biological and technical factors can compromise alignment, including genomic complexity
(e.g., repeats, segmental duplications), sequencing errors, and limitations of the reference genome.
Misalignments may lead to false positive (FP) variants, so it is essential to monitor these issues and

apply corrective strategies during downstream analysis to ensure robust results'’.

1.2.3.3. Variant calling

Once the genomic positions of sequencing reads have been established, the next step is to identify
genetic differences between the tumor sample and a reference genome—a process known as variant
calling. This step enables the detection of various types of genomic alterations, such as small variants

(SNVs, InDels), CNAs, and SVs’#2,
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The resulting data is typically stored in a Variant Call Format (VCF) file (Table 3), a plain-text, TSV
file widely used for representing genomic variants. As shown in Figure 10, VCF files consist of a
header section—beginning with a “#’—which includes metadata such as file format version,
reference genome, and descriptions of quality metrics, followed by a series of variant entries with

defined fields described in Table 5°%.

A VCF example
¢ ##fileformat=VCFv4.1

##fileDate=20110413
##source=VCFtools
##reference=file:///refs/human_NCBI36.fasta
##contig=<ID=1, length=249250621,md5=1b22b98cdeb4a9304cb5d48026a85128, species="Homo Sapiens">
##contig=<ID=X, length=155270560,md5=7e0e2e580297b7764e31dbc80c2540dd, species="Homo Sapiens">
@ ##INFO=<ID=AA,Number=1, Type=String,Description="Ancestral Allele">
'S{ ##INFO=<ID=H2,Number=0, Type=Flag,Description="HapMap2 membership">
£ ##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1, Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1, Type=Integer,Description="Read Depth">
##ALT=<ID=DEL,Description="Deletion">
##INFO=<ID=SVTYPE,Number=1, Type=String,Description="Type of structural variant">
##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the variant">
\ #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE1 SAMPLE2
[ 1 1 s ACG A,AT 40 PASS : GT:DP 1/1:13 2/2:29
3 1 2 . C T ET . PASS H2; AA=T GT 0|1 2/2
@ 1 5 rsl2 A G 67 PASS 5 GT:DP 1/0:16 2/2:20
X 100 . T <DEL> . PASS SVTYPE=DEL;END=299  GT:GQ:DP  1:12:. 0/0:20:36
B sne C insertion D peletion E Replacement
Alignment VCF representation
1234 POS REF ALT 12345 POS REF ALT 1234 POS REF ALT 1234 POS REF ALT
ACGT 2 C T AC-GT 2 C (T ACGT 1 ACG A ACGT 1 ACG AT
ATGT ACTGT A--T A-TT

Figure 10. Structure of a VCF file.

(A) Example of a VCF file showing the header section and several variant records. The header contains metadata about the
file and the reference genome, while each row in the records section corresponds to a detected variant with structured fields.
(B-E) Illustrative examples of sequence alignments and their corresponding VCF representations for different types of
small variants. Reproduced from Larson et al., 2023°.

Table 5. Summary of fixed VCF file fields.
This table summarizes the mandatory fields in VCF files used to describe genomic variants. Missing values in any field are
indicated by a dot. Adapted from the Variant Call Format Specification .

No. Field Type Description
1 CHROM String  Chromosome or contig name where the variant is located.
2 POS Integer  1-based position of the variant on the chromosome.
3 ID String  Variant identifier. Commonly includes dbSNP rsID if available.
4 REF String  Reference allele(s). The base at POS is the first base in this string.

Alternate allele(s) or symbolic SVs (e.g., DEL, INS, DUP, INV). Multiple values

5 ALT Stri . .
g separated by commas for multiallelic sites.

6 QUAL Float Phred-scaled quality score assigned to the variant call.
Filter status of the variant. “PASS” if it passes all quality filters; otherwise, a
semicolon-separated list of failed filters.

7 FILTER String

Semicolon-separated list of key-value pairs with additional variant annotations.
Format defined in the VCF header.
9 FORMAT String  Colon-separated list of fields describing sample-specific data in the next columns.

8 INFO String

Small variants, including SNVs and InDels, are the most common types of somatic alterations found
in tumors. These variant classes are typically identified simultaneously by specialized software tools
known as variant callers, and the term variant calling often refers specifically to their

detection*®10-124042 ' Thjg step is one of the most computationally intensive in the pipeline, as it
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involves comparing each base in the aligned reads to the reference genome to identify deviations. To
reduce the likelihood of reporting FPs, variant callers assign quality metrics to each call and apply
filtering criteria—either automatically or as a post-processing step—to flag or exclude low-
confidence variants. Common filtering parameters include base quality, mapping quality, strand bias,
read position bias, and the presence of multiple nearby alternative alleles, among others. The
resulting file may include both pass and filtered variants, typically annotated in the VCF using the
FILTER field*.

The core objective of the variant calling process is to distinguish true genetic variants from
sequencing or alignment artifacts. An illustrative example of how sequencing reads are aligned to
the reference genome and how small variants are detected in different NGS contexts is shown in
Figure 11. In this context, SNV refers specifically to somatic variants, while single-nucleotide
polymorphism (SNP) denotes germline origin. Several factors can influence the accuracy of small
variant detection (see /.3. Bioinformatics challenges in the analysis of somatic NGS panel for further
detail)':

e DP and VAF: Both variant metrics are a key determinant of variant confidence. Germline
SNPs typically exhibit VAFs near 100% (homozygous) or ~50% (heterozygous). In contrast,
somatic SNVs often have lower VAFs, influenced by TP, ploidy, and intra-tumor
heterogeneity. For example, WGS (Figure 11A) provides uniform coverage across the
genome, which supports the reliable detection of clonal variants, but has limited sensitivity
for subclonal mutations. In contrast, targeted NGS panels (Figure 11B) achieve higher
sequencing depth over specific regions, enhancing sensitivity for low-frequency subclonal
variants, although the coverage variability across targets can hinder accurate estimation of
copy number (CN).

e Duplicate reads: PCR duplicates should be removed to avoid overestimating variant-
supporting reads and reduce the influence of potential artifacts.

e Tumor-only calling: In paired tumor-normal analyses, reads from matched normal tissue help
differentiate true somatic variants from germline alterations and sequencing artifacts.
However, normal samples are often unavailable in routine clinical workflows, necessitating
the use of alternative filtering strategies to suppress germline variants and technical noise.

e Systematic biases: Certain artifacts may display strand bias, where a variant is
disproportionately supported by reads from one strand (forward or reverse). Such biases are

commonly associated with FPs and should be carefully evaluated or filtered out.
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Figure 11. Illustration of variant identification in different NGS contexts.
Visual representation of aligned sequencing reads within a gene locus under (A) WGS and (B) exome or gene panel
sequencing approaches. Variants and sequencing artifacts are highlighted with distinct colors, and annotations indicate key

events. The figure illustrates how sequencing depth, coverage uniformity, and context affect variant detection sensitivity.
Reproduced from Cortés-Ciriano et al., 2022 1°,
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CNAs are another important class of somatic events typically assessed in clinical bioinformatics
workflows. Their identification is primarily based on coverage differences between a tumor sample
and a reference, which may be a matched normal sample or a reference pool of samples. An increase
or decrease in sequencing coverage across a genomic region is indicative of an amplification (AMP)
or deletion (DEL), respectively (Figure 12A). Some advanced approaches integrate allelic imbalance
information using the B-allele frequency (BAF) of heterozygous SNPs, which enables improved
CNA resolution and the detection of copy-neutral loss of heterozygosity (LOH) events—situations
where one allele is deleted and the other is amplified, leading to an unbalanced but diploid state
(Figure 12A). However, the resolution of these methods is limited in targeted gene panels due to the

reduced number of heterozygous SNPs and uneven coverage across the genome, which constrains

. 1. .. . 10,36
their ability to robustly distinguish such events'®°.
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Figure 12. Detection of CNAs and SVs using different sequencing-based approaches.

(A) Schematic representation of how distinct CNAs affect depth and BAF profiles. (B) Example of a deletion detected by
discordant read pairs and split reads spanning the deleted region. (C) Example of a tandem duplication identified by paired-
end reads with unexpected orientation or insert size, and split reads aligning at the duplication junction. Based on Cortés-
Ciriano et al., 2022 1.
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There are several systematic biases introduced during library preparation and sequencing that can
affect the accurate calculation of coverage and, consequently, impact the CNA detection in coverage-
based analyses'*’:

e GC content: Regions with extremely high GC content tend to exhibit reduced efficiency in
hybridization, PCR-Amp, and sequencing. This results in lower observed coverage
compared to regions with balanced GC content.

e Repetitive sequences: Genomic regions containing repetitive elements—such as
microsatellites or segmental duplications—pose challenges for short-read sequencing and
accurate read mapping, leading to decreased mappability and artificially reduced coverage.

e Target density bias: Uneven coverage across target regions is a known limitation in targeted
gene panels, particularly those using hybridization capture. Two edge-related effects can
occur: (i) a negative bias at the borders of target regions due to incomplete probe
hybridization—commonly referred to as the shoulder effect, and (ii) a positive bias in
flanking regions when adjacent targets are close enough for their capture signals to overlap,

causing inflated coverage values.

Other approaches for detecting CNAs—and more broadly, SVs—rely on the analysis of read
mapping patterns, particularly split (or clipped) reads and discordant read pairs (Figure 12B). Split
reads are individual sequencing reads that partially align to two distinct genomic regions, typically
corresponding to breakpoints where structural changes occur. Similarly, discordant read pairs are
paired-end reads whose mapping characteristics (e.g., orientation, insert size, or genomic distance)
deviate from the expected pattern, indicating a potential structural rearrangement. These signals are
particularly useful for identifying focal events (e.g., deletions, duplications, inversions, or

translocations) which may not always result in clear coverage imbalances'%3¢.

From a clinical perspective, the most relevant SVs are those that give rise to actionable oncogenic
gene fusions or splicing aberrations, as they can drive tumorigenesis and represent therapeutic
targets. In the context of clinical NGS panels, these events are more reliably detected using RNA-
seq data. Unlike DNA sequencing, RNA-seq captures only the transcribed regions of genes, thereby
skipping large intronic regions and improving the detection sensitivity for fusion transcripts. In this
approach, reads are aligned to the transcriptome or to a genome-guided transcript model to identify
two key signals: split reads that directly map to fusion junctions (i.e., across exons from different
genes), and discordant read pairs that span fusion breakpoints but map to non-adjacent gene regions.
This strategy enables the precise detection of both known and novel gene fusions, as well as splicing

isoforms with potential clinical significance *'°.
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1.2.3.4. Variant annotation and prioritization

Once genomic variants have been identified, the next critical step is to interpret their biological and

clinical relevance. Raw variant calls, regardless of their type, lack the contextual information

required for clinical decision-making. Therefore, a comprehensive annotation process is essential to

enrich each variant with relevant metadata, such as its genomic context, population frequency, known

pathogenicity, and potential therapeutic associations. This annotated information forms the

foundation for subsequent filtering and prioritization strategies that aim to highlight the most

clinically relevant alterations for diagnosis, prognosis, and therapy selection

49,11

Annotation of small variants (SNVs and InDels) typically includes*:

Genomic context: Identification of the affected gene and genomic region (e.g., coding vs.
non-coding), as well as specific features such as exons, introns, splice sites, or regulatory
elements.

Predicted functional consequences: Evaluation of the potential impact on protein function
(e.g., synonymous, missense, nonsense, frameshift, or splice site variants), often
supplemented by in silico prediction tools.

Population frequency: Cross-referencing large-scale population databases (e.g., gnomAD)
to distinguish common polymorphisms and infer germline origin.

Clinical databases: Integration of clinical interpretation data from curated resources (e.g.,
ClinVar, COSMIC, OncoKB, and CIViC) which provide information on pathogenicity or

drug sensitivity.

Annotation of CNAs typically involves**:

Annotation of gene fusions and splicing variants includes

Gene role in cancer: Identification of affected oncogenes or TSGs using curated cancer gene
lists to infer potential biological relevance.

Clinical interpretation: Evaluation of the functional consequence of focal or arm-level events
(e.g., ERBB2 AMP in breast cancer or CDKN2A4 DEL in glioma), often supported by known

clinical associations.
429,

Fusion structure: Assessment of the fusion partner genes, reading frame, and functional
domains to evaluate whether the event is likely to be oncogenic.

Database matching: Comparison with curated fusion databases to identify known oncogenic
rearrangements.

Therapeutic relevance: Identification of clinically actionable fusions (e.g., ALK, ROSI,
NTRK genes) or splicing events (e.g., MET exon 14 skipping [METex14]) associated with
targeted therapies.
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Once annotated, variant prioritization becomes essential to identify the most relevant alterations,
particularly in clinical settings where only a subset of variants is actionable. This process generally
involves:

e Variant confidence: Evaluation of calling metrics (e.g., DP, AD, AF) and variant context
(e.g., difficult regions) to estimate reliability.

e Biological and oncogenic relevance: Prioritization of variants affecting well-established
cancer genes, functional domains, or hotspot regions, often guided by classification
frameworks such as the Clinical Genome Resource (ClinGen)/Cancer Genomics Consortium
(CGC)/Variant Interpretation for Cancer Consortium (VICC) Standard Operating Procedure
(SOP) guidelines*®.

e C(linical significance: Assignment of clinical relevance tiers based on established guidelines
such as the AMP/American Society of Clinical Oncology (ASCO)/College of American
Pathologists (CAP)* consensus recommendations and the ESMO Scale for Clinical

Actionability of Molecular Targets (ESCAT)* framework.

To facilitate this process, automated pipelines are used to apply dynamic filtering criteria and
generate structured outputs such as tiered variant classifications, which can then be summarized in
interactive reports. These outputs support downstream interpretation in multidisciplinary settings,
such as MTBs, where clinical teams evaluate the potential diagnostic, prognostic, and therapeutic

implications of each case®.

1.2.3.5. Complex genomic biomarkers

Beyond individual genomic alterations, a subset of complex biomarkers derived from broader
mutational patterns or genome-wide instability has emerged as highly relevant in precision oncology.
These complex genomic biomarkers provide important insights into tumor pathophysiology and are
increasingly used to predict therapeutic response, particularly to immune checkpoint inhibitors
(ICIs), DNA-damaging agents, and targeted therapies. Unlike discrete variants, their detection
requires integrative bioinformatic analyses across multiple genomic features, often demanding
specific computational strategies and sufficient sequencing breadth or depth. However, despite their
clinical potential, the standardization of methods for their accurate assessment, especially in targeted

panel settings, remains an ongoing bioinformatic and clinical challenge™!'*36:40,

Microsatellite instability (MSI) refers to a hypermutator phenotype caused by defective DNA
mismatch repair (MMR), resulting in InDel errors at microsatellite regions—short tandem repeats
scattered throughout the genome. Tumors with high MSI accumulate frameshift mutations that can
generate neoantigens, making MSI-High status a predictive biomarker for immunotherapy efficacy.

Traditionally assessed via PCR-based assays or IHC, MSI can also be inferred from NGS data by
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examining either the length variability of specific microsatellite loci or characteristic mutation

patterns>3,

Tumor mutational burden (TMB) quantifies the number of somatic mutations per megabase
(Mut/Mb) of coding DNA and is also associated with response to ICIs. While WES remains the
reference method, TMB estimation in clinical settings is commonly adapted to targeted panels. In
this case, the TMB score is extrapolated from the count of somatic mutations within the panel’s

coding region, normalized by its effective size™.

Mutational signatures represent specific patterns of somatic single-nucleotide substitutions that
reflect distinct mutagenic processes, such as environmental exposures (e.g., UV light, tobacco),
enzymatic activity (e.g., APOBEC), or defects in DNA repair pathways. These signatures are defined
based on the frequency of each of the 96 possible trinucleotide substitution contexts. The associated
mutational processes can be discovered de novo from a large cohort of cancer genomes, or in case of
a small set or single sample, the relative contribution for a set of predefined signatures (i.e., refitting)
is obtained. This concept is extensively applied to other variant types, such as InDels, CNAs, or other

rearrangements! %40,

Homologous recombination deficiency (HRD) reflects the inability of tumor cells to faithfully repair
DNA double-strand breaks via the homologous recombination repair pathway. HRD is frequently
caused by biallelic inactivation of BRCAI/2 or other HR genes and is associated with increased
sensitivity to platinum-based chemotherapy and PARP inhibitors. Computational methods have been
developed to quantify HRD through so-called genomic scar scores, which measure the accumulation
of large-scale genomic aberrations indicative of defective DNA repair, including LOH, large-scale

state transitions (LST), and telomeric allelic imbalance (TAI)>'.

1.2.3.6. Visualization and reporting

The final step in the clinical bioinformatics workflow involves transforming the processed and
interpreted variant data into a structured format that supports decision-making in a clinical context.
This is typically achieved through intuitive visualizations and standardized reports that summarize
relevant findings, including detected variants, affected genes, clinical annotations, and suggested
therapies. Effective visualization tools, such as Integrative Genomics Viewer (IGV), allow the
inspection of sequence alignments, facilitating manual validation of critical findings. Reports must
be clear, concise, and adapted to multidisciplinary users (e.g., oncologists, pathologists, and
geneticists). They often integrate clinical classifications, evidence levels, and therapeutic
implications, and should highlight clinically actionable alterations, potential resistance markers, and

relevant biomarker statuses. In the context of high-throughput settings, automated reporting systems
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are essential to ensure reproducibility, scalability, and turnaround time, while enabling human

oversight for critical cases**®.

1.2.3.7. Workflow management and containerization

The increasing complexity and volume of clinical NGS data has made manual execution of
bioinformatics analyses impractical, error-prone, and difficult to reproduce. To address these
challenges, workflow management systems and software containerization have become essential

tools in modern clinical bioinformatics3®>23,

Workflow managers (e.g., Nextflow, Snakemake) enable the design and execution of complex
pipelines by orchestrating a series of bioinformatics tasks in a modular, scalable, and reproducible
manner. These systems handle dependencies, resource allocation, parallelization, and job scheduling,
and are compatible with a wide range of computing environments, including local machines, high-
performance computing (HPC) clusters, and cloud infrastructures. These tools help save time, reduce

errors, and ensure accuracy and reliability of the analyses®®%%,

In parallel, containerization technologies (e.g., Docker, singularity) ensure consistent software
environments across different computational platforms. Containers encapsulate all the software,
libraries, and dependencies required for each step of the workflow, avoiding conflicts and simplifying
deployment. In clinical bioinformatics, containerization is particularly relevant for ensuring version

control, minimizing discrepancies across institutions, and facilitating regulatory compliance>>?.

Together, workflow management and containerization provide the technical backbone for building
reproducible, auditable, and scalable clinical bioinformatics pipelines. Their integration is now
considered a best practice for implementing robust NGS workflows that support routine diagnostics,

regulatory requirements, and large-scale genomic data processing®-%3,

1.3. Bioinformatics challenges in the analysis of somatic NGS panels

Despite the widespread adoption of NGS-based cancer panels in clinical practice, the bioinformatic
analysis of somatic alterations remains a multifaceted and technically demanding task. Unlike
germline testing, somatic variant analysis must contend with tumor-specific complexities—including
variable TP, intra-tumor heterogeneity, and the frequent use of low-quality or low-input DNA from
FFPE specimens’!?. The limited and uneven genomic coverage typical of targeted panels further
complicates the detection of certain alterations, particularly InDels, SVs, CNAs, and complex

biomarkers such as TMB, MSI, or HRD?>!10:36:40,
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Additional challenges stem from the lack of matched normal samples, which hinders the accurate
discrimination of somatic versus germline variants and requires the adoption of alternative filtering

strategies!' 124!

. RNA-based analyses introduce further layers of complexity, from expression-
dependent detection limits to degraded input quality and the intricacies of fusion transcript
interpretation®!®34, Technical and computational variability across platforms—along with the
absence of standardized, harmonized workflows—exacerbate inconsistency in variant calling and
interpretation across laboratories®!*>34, Moreover, limited automation for variant prioritization, lack
of user-friendly clinical reporting tools, and persistent barriers to data sharing and interoperability
restrict the broader utility of these pipelines in routine oncology*****. Finally, existing commercial
and academic solutions often fall short of meeting clinical requirements for flexibility, portability,

and end-to-end reporting®’. This section reviews each of these critical challenges in detail and

outlines current efforts and strategies to overcome them.

1.3.1. Low-quality and low-input DNA

The quality and quantity of input DNA are critical factors influencing the success of NGS assays,
particularly in clinical oncology where samples are often scarce and derived from FFPE tissues.
Although FFPE is the standard method for long-term tissue preservation in diagnostic pathology, the
fixation process causes DNA fragmentation, crosslinking, and chemical modifications (e.g., cytosine
deamination), all of which introduce technical artifacts and may compromise the reliability of

downstream genomic analyses® !>,

Degraded or damaged DNA typically results in shorter fragment lengths and higher levels of
sequencing artifacts, such as nucleotide misincorporations, chimeric reads, and PCR duplicates.
These issues can compromise the detection of true somatic variants, especially low-frequency
mutations, by inflating FPs or reducing sensitivity. Additionally, chemical alterations to DNA bases
may interfere with primer binding during PCR-Amp or hinder adapter ligation during library

preparation, ultimately reducing library complexity and target region coverage''->*,

Low-input DNA—frequently encountered in small biopsies or cytological specimens—Ilimit the
feasibility of high-depth sequencing or technical replicates, and often lead to overamplification
during library preparation, resulting in elevated duplication rates and reduced effective (unique)
coverage. These conditions can severely impact variant calling performance, particularly in

applications requiring high sensitivity for subclonal or actionable alterations'"-3,
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To address these issues, bioinformatics pipelines must integrate specific preprocessing and filtering
strategies tailored to the limitations of compromised input material'?, including:

e Duplicate read filtering: High duplication rates are a hallmark of low-complexity libraries.
While duplicate removal is necessary to avoid coverage overestimation, distinguishing
technical duplicates from biological duplicates can be difficult, particularly in amplicon-
based assays. The use of UMIs can help to resolve this ambiguity by tagging original DNA
molecules before PCR-Amp.

e Error-aware variant calling: Tools designed for FFPE-derived samples include models to
detect strand bias or sequencing artifacts, helping reduce false-positive calls from chemically
damaged bases (e.g., C>T transitions).

e (Quality-based trimming and filtering: Removing low-quality bases (commonly from 3’
ends), filtering reads with low mapping quality, and excluding variants with weak support or

high strand bias improve overall specificity and variant reliability.

Despite the use of correction strategies, certain genomic regions—particularly those with extreme
GC content, repetitive elements, or high fragmentation—may remain poorly covered or inaccessible,
limiting confidence in negative findings. Therefore, integrating sequencing QC metrics (e.g.,
fragment length distributions, read quality profiles, on-target rate, duplication rate, and coverage
uniformity) into the bioinformatics workflow is essential for reliable downstream interpretation and

for informing the clinical confidence of reported results.

In summary, low-quality and low-input DNA remain significant barriers to accurate somatic variant
detection in NGS panel assays. Overcoming these limitations requires a combination of optimized
wet-lab protocols and dedicated bioinformatic strategies to ensure data quality, analytical robustness,
and clinical utility—particularly when working with suboptimal but routinely available clinical

specimens such as FFPE™,

1.3.2. Tumor heterogeneity and low-frequency variant detection

The sensitivity of somatic variant detection in NGS panel analysis is profoundly affected by different
forms of tumor heterogeneity, which can dilute or obscure the signal of clinically relevant
alterations®!'**, These heterogeneity sources include:

e Tissue heterogeneity (purity): Clinical tumor specimens often contain a mixture of neoplastic
and non-neoplastic cells, such as stromal, endothelial, or immune cells. This lowers the
overall TP and dilutes the representation of somatic variants in the sequencing data.

e Tumor cell heterogeneity (intra-tumor heterogeneity): Tumors are composed of diverse
cellular subpopulations or subclones, each harboring distinct genomic alterations. Subclonal

variants may only be present in a fraction of the tumor cells, resulting in lower VAFs.
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These combined effects can markedly limit the sensitivity of variant detection. Somatic variants
present at low VAFs may fall below the detection threshold of variant callers or be mistakenly filtered
as sequencing artifacts. This is particularly relevant in routine diagnostics where matched normal

samples or orthogonal validation are rarely available” !>,

To improve detection under these conditions, several strategies are applied!!!>4!:

e High-depth sequencing: Deep sequencing—especially in hotspot regions—enhances the
ability to detect variants at lower VAFs. Amplicon-based approaches are particularly useful
in this context but must be coupled with error suppression strategies (e.g., UMISs, strand bias
correction) to maintain specificity.

e Variant calling algorithms optimized for low-VAF detection: Some tools incorporate
probabilistic models and artifact filters tailored for low-frequency variant calling, especially

in tumor-only contexts.

CNA detection is also impacted by TP. In low-TP, the signal from AMPs or DELs is attenuated,
reducing the log?2 ratio shifts and BAF deviations. Some tools attempt to adjust CNA models based
on estimated TP, but these require reliable estimation of TP, which is not always available or

accurate!%4.

In summary, both TP and intra-tumor heterogeneity are major confounding factors in somatic NGS
analysis. Accurate detection of low-frequency events requires optimized panel design, robust error
suppression, and bioinformatics tools specifically adapted to handle signal dilution and high-
background conditions. These considerations are essential to avoid false negatives (FNs) and to
capture clinically actionable subclonal events that may influence treatment resistance or tumor

progression’*,

1.3.3. Tumor-only sequencing: lack of matched normal samples

In clinical oncology, most somatic NGS analyses are performed on tumor-only samples, without a
matched normal (non-tumor) specimen from the same patient. While this approach simplifies
logistics, reduces sequencing costs, and shortens turnaround time, it introduces key limitations for

distinguishing true somatic variants from germline variants and technical artifacts'®!2,

A matched normal sample provides a personalized reference that enables accurate subtraction of
germline variants and systematic sequencing noise. In its absence, variant interpretation in tumor-
only workflows must rely on indirect filtering strategies, such as excluding variants present in large-
scale population databases. However, this approach has important caveats!%!4!:

e Rare germline variants, especially those specific to underrepresented populations, may be

incorrectly classified as somatic.
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e Conversely, true somatic mutations that overlap with common polymorphisms or occur in

hypermutable regions may be filtered out, reducing sensitivity.

To compensate for the lack of patient-specific germline data, many workflows employ a panel of
normals (PoN)—a collection of normal samples sequenced and processed using the same protocols.
The PoN is used to flag recurrent sequencing artifacts and systematic noise (e.g., oxidative damage,
homopolymer-related errors), but it cannot substitute the matched normal for resolving patient-

specific germline variants®!%4!,

An additional strategy widely adopted in clinical labs is empirical artifact filtering based on routine
experience: variants observed at high frequency across unrelated tumor samples—especially if not
annotated as driver mutations or known hotspots—are likely artifacts and are filtered accordingly.
This approach, while heuristic, provides a valuable internal QC mechanism that complements

algorithmic and database-driven filters'?.

Further complicating tumor-only analysis are sample preparation artifacts, such as cytosine
deamination (caused by formalin fixation in FFPE samples) or oxidative base damage, which can
mimic true mutations. In these cases, read-level metrics—including strand bias, read orientation, or

positional base quality—become essential for discriminating true variants from technical noise!®!>%,

In summary, the absence of matched normal samples remains one of the main limitations of somatic
NGS analysis in routine diagnostics. While current bioinformatic strategies provide workarounds to
reduce FPs, none fully replicate the reliability of tumor—normal paired analyses. Therefore, the design
of pipelines must integrate multi-layered filtering approaches and contextual annotations to mitigate

this inherent limitation of tumor-only testing.

1.3.4. Complex genomic regions

Certain genomic regions possess intrinsic sequence features that complicate their analysis by short-

read NGS technologies, leading to limitations in read alignment, variant detection, and interpretation.

Despite the targeted design of clinical panels, some loci remain difficult to sequence or interpret due

to sequence repetitiveness, low mappability, or high sequence homology®!®!2. Key problematic

regions include!"%:

e Repetitive sequences: such as microsatellites, homopolymer runs, and transposable
elements, which can cause ambiguous read alignments and complicate InDel detection.

e Segmental duplications: large regions of nearly identical sequence shared across multiple
loci, which frequently lead to multi-mapping reads and uncertainty in variant localization.

e  GC-rich regions: which impair hybridization efficiency, PCR-Amp, and sequencing fidelity,

resulting in coverage dropouts and reduced sensitivity.
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These factors increase the rate of clipped or misaligned reads and reduce effective coverage in
affected regions. For example, InDels in tandem repeat regions may be misaligned or ambiguously

represented! %42,

Another significant challenge arises from pseudogenes and highly homologous gene families. Reads
from genes that have nearby pseudogenes or paralogs with high sequence identity may align equally

well to multiple loci, resulting in FP calls or missed true variants due to mapping uncertainty'!.

Although bioinformatic strategies such as GC bias correction and multi-mapping filtering can
partially mitigate these issues, they do not fully restore confidence in affected loci. Consequently,
regions with consistently poor coverage or ambiguous mapping should be flagged during analysis
and interpretation. For high-impact variants in such areas, orthogonal validation methods—such as
Sanger sequencing or long-read technologies—are strongly recommended to confirm or rule out

candidate alterations!'#!*2,

In summary, the complexity of certain genomic regions imposes persistent limitations on somatic
variant analysis with short-read NGS. Awareness of these challenges is essential in both pipeline
development and clinical reporting, ensuring that uncertain regions are properly annotated and

addressed in the diagnostic workflow.

1.3.5. Detection of complex genomic biomarkers

While targeted NGS panels have proven highly effective for the detection of individual alterations,
their limited genomic scope imposes significant constraints on the detection of complex genomic
biomarkers (e.g., MSI, TMB, mutational signatures, HRD). These biomarkers require integrative
analysis of broad mutational or copy-number patterns, which are not easily captured in small, focused

genomic assays.

MSI detection by NGS requires sufficient coverage of a representative set of microsatellite loci.
However, most targeted panels contain only a small number of such regions, reducing sensitivity and
increasing the likelihood of FNs. Furthermore, PCR slippage and sequencing artifacts—particularly
prevalent in FFPE-derived DNA—can mimic the signal of instability, necessitating careful
calibration, filtering, and the use of specialized algorithms to distinguish true MSI from technical

noise>3.

TMB estimation is another challenging application in panel-based assays. Traditionally calculated
from WES, TMB in targeted panels is extrapolated from the number of somatic mutations observed
within the captured coding territory. This calculation is highly sensitive to the size of the panel,
sequencing depth, variant filtering thresholds, and the presence of germline contamination—

especially in tumor-only workflows. Moreover, differences in the inclusion of synonymous vs. non-
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synonymous variants, and lack of standardized filtering pipelines, lead to inconsistencies across

panels and laboratories, hindering clinical harmonization and benchmarking™’.

The detection of mutational signatures is even more constrained. These signatures are based on the
trinucleotide context of mutations and typically require a large number of somatic variants—often
hundreds—to be robustly inferred. Such mutation counts are rarely observed in targeted panels, and
the biased representation of genomic regions further complicates signature extraction. Although
signature deconvolution tools have been adapted for high-depth panels, the accuracy and

interpretability of the results remain limited in this context!®%,

HRD assessment typically relies on genome-wide analysis of copy-number patterns, including
metrics such as LOH, LST, and TAI. These require dense SNP coverage across the genome—
generally achievable only with WGS or high-resolution SNP arrays. While some targeted panels
incorporate surrogate scores for HRD, they lack sufficient resolution to capture subtle allelic
imbalance events. Alternatively, BRCAI/2 mutation status and HRD-associated mutational
signatures can serve as indirect markers, but they provide only partial insight into the HRD

phenotype’!.

In summary, the accurate detection of complex genomic biomarkers in targeted panel assays is
hindered by limited genomic representation, reduced mutation counts, and technical variability.
While recent efforts have enabled approximation of some biomarkers, significant improvements in
panel design, analytical methodology, and standardization are still required to fully support their

clinical application in precision oncology>*.

1.3.6. RNA-seq—based somatic analysis

RNA-seq provides complementary insights to DNA-based profiling by enabling the detection of gene
fusions, alternative splicing, and transcript expression changes—features that are critical in many
cancer types. However, its implementation in somatic panel analysis introduces unique technical and
bioinformatic challenges that must be addressed to ensure robust and clinically meaningful

results®!1%-34,

A central limitation of RNA-seq is its dependence on gene expression. Transcripts must be expressed
at sufficient levels for sequencing reads to adequately cover fusion breakpoints or splice junctions.
Low expression, variability across tumor types or subclones, and stochastic transcriptional noise all
contribute to uneven coverage, potentially resulting in missed alterations. Unlike DNA, RNA
represents a dynamic transcriptional snapshot rather than a stable genomic baseline, complicating the

interpretation of AF and clonality!®.
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From a technical perspective, RNA derived from FFPE tissues—a common source in clinical
settings—is frequently degraded and fragmented. This results in shorter reads with lower quality,
hindering both transcript assembly and the sensitivity of fusion detection. RNA degradation also
increases the likelihood of sequencing artifacts and mispriming during library preparation, especially

in older samples®*5%%7,

Splice-aware alignment is another critical requirement of RNA-seq analysis. Short reads spanning
exon-exon junctions must be accurately mapped to the transcriptome, particularly for detecting
fusions or splicing aberrations. However, non-canonical junctions, complex rearrangements, and
regions with high sequence homology (e.g., pseudogenes or paralogs) can lead to misalignments and
FPs. The choice of aligner and its configuration are therefore essential for minimizing error

propagation® -7,

Fusion transcript interpretation is inherently complex. It requires determining whether the fusion is
in-frame, assessing predicted protein products, and evaluating biological relevance. Supporting
evidence—such as the number of split and spanning reads, expression of fusion partners, and
recurrence in curated fusion databases—must be integrated to distinguish likely driver events from

passengers or artifacts!®’.

Despite its growing adoption, standardization of RNA-seq analysis pipelines in the clinical context
remains limited. There is no consensus on best practices for alignment, fusion calling, filtering, or
reporting. Furthermore, benchmarking datasets for evaluating RNA-based variant detection—

particularly fusions—are still scarce, limiting tool validation and cross-platform reproducibility*>*’.

In summary, RNA-seq enhances the clinical utility of NGS panels by uncovering transcript-level
alterations, but its application is challenged by RNA quality, expression variability, complex
bioinformatics, and a lack of standardization. Addressing these barriers is essential for the reliable

integration of RNA-based biomarkers into clinical oncology workflows>*.

1.3.7. Lack of automated and standardized systems for variant prioritization

Following variant detection and annotation, a critical bottleneck in somatic NGS panel analysis is
the prioritization of clinically relevant alterations. This step is fundamental for guiding diagnostic,
prognostic, and therapeutic decisions, yet it remains largely manual, time-consuming, and

inconsistent across laboratories***3>.

In current practice, variant prioritization often requires expert review across multiple layers of
information, including functional impact, cancer gene relevance, known pathogenicity, updated
predictive biomarker state of art, and drug sensitivity and resistance associations. Although many

public and commercial databases provide curated knowledge, there is no universally accepted system
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capable of automatically integrate and interpret this information into structured, clinically actionable
outputs**¥, Several challenges contribute to this gap, which are also discussed in MTBs:
e Heterogeneity of variant types, including SNVs, InDels, CNAs, fusions, and splicing
alterations, each requiring distinct interpretation frameworks.
e Lack of harmonized criteria across knowledge databases and inconsistent use of clinical
evidence levels.
e Rapidly evolving clinical guidelines that are difficult to keep up-to-date in static pipelines.
e The frequent presence of variants of uncertain significance (VUS), which lack sufficient

evidence for automated classification and require expert review.

Most bioinformatics workflows rely on custom filtering scripts or heuristic rules for prioritization—
such as VAF thresholds, impact prediction, or known hotspot filters'®. However, these rules are often
hard-coded, panel-specific, and difficult to generalize or maintain. A few tools support semi-
automated classification following standardized tiering systems (e.g., AMP/ASCO/CAP), but these
are often not fully integrated into end-to-end workflows and rarely account for multi-variant or multi-

omics context >34,

International efforts are actively addressing the lack of standardized variant prioritization
frameworks. For example, the Cancer Genome Interpreter (CGI)-Clinics project (Horizon Europe)
is transforming the CGI framework® into a clinical-grade, community-driven decision-support
platform that enables automated variant tiering and integration of evolving clinical evidence for
oncology workflows. Similarly, the VICC, under the Global Alliance for Genomics and Health
(GA4GH) umbrella, harmonizes clinical interpretations across major knowledge bases through
resources like meta-knowledgebase (MetaKB), promoting consensus-driven, scalable variant
interpretation®®. These initiatives exemplify the push toward reproducible and interoperable solutions

for clinical genomics.

The absence of robust automated prioritization systems introduces subjectivity, inter-operator
variability, and reporting delays, especially when dealing with complex or ambiguous findings. To
address this limitation, future clinical pipelines should aim to incorporate*3:

e Rule-based or machine-learning prioritization modules aligned with international guidelines.
e Dynamic evidence integration from updated knowledge bases and drug approvals.

e Multi-variant interpretation strategies capable of joint prioritization (e.g., co-occurring

mutations, fusions, and CNAs).

Ultimately, automated and standardized prioritization frameworks would enhance reproducibility,

scalability, and clinical confidence—key goals for the routine implementation of precision oncology.
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1.3.8. Deficient visualization and reporting tools for clinical interpretation

A critical step in the clinical translation of NGS data is the effective communication of results to end
users—primarily clinicians, molecular pathologists, and members of the MTBs—many of whom
lack bioinformatics expertise. However, most existing pipelines, particularly academic or research-
oriented ones, output raw data formats (e.g., BAM, VCF) that are difficult to interpret without
specialized training. These formats typically lack accessible summaries, interactive dashboards, or
clinically relevant contextualization, creating a communication gap between data producers and

decision-makers>*4%42,

Commercial solutions often aim to bridge this gap through simplified graphical interfaces and
summary dashboards. However, they frequently suffer from limited interactivity, rigid designs, and
superficial outputs, focusing on mutation tables without integrating important complementary data
such as VAFs and read support, copy-number profiles, fusion diagrams or splicing illustrations, and

relevant clinical guidelines or therapy associations*>°.

Manual review remains essential for variant QC, particularly for ambiguous or borderline calls. Yet
tools like IGV, which allow read-level inspection in BAM files, require bioinformatics expertise and
are not scalable or user-friendly in high-throughput diagnostic workflows*?. Similarly, cross-sample
summaries, coverage statistics, or QC visualizations are rarely included in standard outputs, even

though they are vital for interpreting negative results or validating complex findings.

To overcome these limitations, clinical-grade reporting systems must evolve to incorporate:
o Integrated, tiered variant summaries aligned with interpretation frameworks (e.g.,
AMP/ASCO/CAP, ESCAT).
e Interactive and customizable web-based visualizations, including mutation lollipop plots,
CNV heatmaps, fusion gene maps, and variant filtering interfaces.
e Sample-level overviews, including key QC metrics and sequencing coverage benchmarks.

e Links to supporting clinical evidence, databases, and therapeutic annotations.

Ideally, these reports should be automatically generated at the end of the bioinformatics pipeline and
exportable in clinician-friendly formats (e.g., PDF, HTML) to support streamlined decision-making
in MTBs. Enhanced reporting not only improves interpretability and traceability but also increases

the reproducibility and clinical utility of somatic NGS analyses®*340,

1.3.9. Variability and lack of standardization across somatic NGS workflows

Despite the increasing adoption of NGS panel assays in clinical oncology, significant technical and

computational variability persists across laboratories and platforms, undermining the reproducibility
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and comparability of somatic variant analysis. This variability stems from differences in sequencing
technologies, wet-lab protocols, bioinformatic pipelines, and result interpretation frameworks, each

of which can introduce platform-specific biases or inconsistencies in downstream analysis®!!4>54,

At the technical level, sequencing platforms such as [llumina and Ion Torrent use distinct chemistries
and detection methods, leading to different error profiles. lon Torrent, for example, is known to
struggle with homopolymers due to its pH-based detection, while Illumina typically offers higher
base quality but may be susceptible to issues like index hopping. Read length, fragment size

distribution, and depth of coverage further influence the detection of InDels, CNAs, and SVs*¥.

From a computational standpoint, each variant caller applies different algorithms and thresholds,
often optimized for specific variant types or sequencing depths. As a result, using different tools or
pipelines—even on the same dataset—can yield divergent variant calls, particularly in challenging
contexts such as low TP or noisy regions. Differences in alignment strategies, duplicate removal, and
quality recalibration compound this variability. Additionally, tool-specific VCF formatting and

variant representations (e.g., InDel coordinates and alleles) complicate harmonization of results*.

To improve accuracy, ensemble calling strategies have been adopted in many cancer genomic
projects. These strategies combine multiple callers (e.g., through majority voting or intersection
rules) to reduce FPs and improve specificity'****!. However, they require careful post-processing to
normalize variant representations, including left-alignment (shifting variants to the most leftward
equivalent position) and parsimony (representing variants using the shortest allele strings possible),
to ensure consistent interpretation®. This additional complexity presents a burden for clinical

laboratories lacking specialized bioinformatics resources.

To address these challenges, there is growing momentum toward adopting standardized and
reproducible workflows grounded in the Findable, Accessible, Interoperable, and Reusable (FAIR)
principles. Initiatives like nf-core promote community-curated pipelines built on modular Nextflow
scripts with version control, testing, and full containerization®. Similarly, platforms such as
Dockstore and GA4GH Workflow Execution Services facilitate the deployment of standardized
pipelines across institutions and cloud environments. These tools improve transparency, portability,

and auditability—essential for clinical accreditation and external quality assurance>¢!.

Despite the emergence of community efforts and benchmarking initiatives—such as those led by
GA4GH, Sequencing Quality Control Phase II (SEQC2), and International Organization for
Standardization (ISO) working groups—that aim to define standardized file formats, performance
metrics, and analysis protocols, widespread implementation of these standards in clinical laboratories

remains limited. Many centers continue to rely on internally developed workflows that lack full
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documentation, validation, or traceability, further complicating cross-study comparability and quality

assurance’*92.

To ensure the reliability and clinical utility of somatic NGS panel testing, it is essential to minimize
both technical and computational variability through coordinated efforts that promote protocol
standardization, validated pipelines, and QC frameworks. Ultimately, the adoption of transparent,
reproducible, and community-vetted bioinformatics workflows—aligned with FAIR principles—will
be pivotal for achieving consistent, interpretable, and clinically actionable results across laboratories

and platforms3+33-3462,

1.3.10. Limited data sharing and interoperability in clinical genomics

Despite the increasing implementation of NGS in oncology, the reuse, integration, and exchange of
genomic data across laboratories and institutions remain restricted. Multiple factors contribute to this
limitation, undermining efforts to build collective knowledge and improve the reproducibility and

scalability of clinical genomics.

A major barrier is the presence of strict privacy regulations and institutional policies, which restrict
the sharing of genomic data—particularly when linked to sensitive clinical or personal information.
While international efforts such as the GA4GH, the European Genome-phenome Archive (EGA),
and the Beacon Project aim to promote secure, federated access to genomic datasets, their adoption
in routine diagnostics remains limited®*®°, The Beacon Project, for example, allows institutions to
share the existence of specific genomic variants without disclosing identifiable data, providing a

privacy-aware model for data discoverability®.

A second issue is the lack of interoperability and standardization across data formats and analysis
pipelines. Although core file types like FASTQ, BAM, and VCF are widely adopted, the structure,
metadata fields, and variant representations often differ between tools and institutions. These
discrepancies—ranging from inconsistent filtering tags to diverging nomenclature or alignment

conventions—complicate cross-tool comparison, meta-analysis, and benchmarking®**>62,

Furthermore, proprietary pipelines and closed-source platforms commonly used in commercial
diagnostics exacerbate this fragmentation by generating outputs in non-standard or locked formats.
These barriers hinder downstream integration, prevent external QC, and limit the ability to contribute

to shared datasets or collaborative research efforts*.

Addressing these challenges will require a coordinated global effort to promote the use of open
formats, interoperable standards, and federated infrastructures for secure data access and sharing.
These initiatives provide valuable frameworks for fostering transparency, reproducibility, and

responsible data stewardship in clinical genomics®>46%64,
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1.3.11. Limitations of existing solutions

In clinical diagnostics, commercial NGS panels are frequently accompanied by proprietary, “ready-
to-use” software solutions tailored to their specific assays®**"%¢67 These platforms are designed for
ease of use, requiring minimal bioinformatics expertise and allowing laboratories with limited
computational resources to perform basic analyses. However, closed-source pipelines provide very
limited flexibility. Users are unable to readily customize workflows, update individual tools, or
incorporate emerging methodologies. Moreover, their output is often restricted to basic variant tables
with minimal contextual information, lacking interactive visualizations, clinical annotations, or
quality metrics that are essential for comprehensive interpretation. Consequently, additional post-
processing steps (e.g., variant annotation, filtering, and manual review) are typically required before

results can be effectively used in clinical decision-making settings such as MTBs*.

Conversely, open-source academic pipelines provide transparency and flexibility but often address
only isolated components of the workflow (e.g., small variant calling, fusion detection, or
annotation). Although several integrated and portable tools have been developed for somatic variant
analysis®® 72, they frequently fall short in clinical settings, especially when applied to targeted cancer
panels. Key limitations include:

e Incomplete analytical scope: Many pipelines are designed for either DNA or RNA analysis,
but not both, restricting their application to dual DNA-RNA clinical panels, which are
increasingly employed for comprehensive tumor profiling.

e Dependency on matched normal samples: A significant number of workflows assume the
availability of paired tumor-normal samples for somatic filtering, yet such specimens are
rarely collected in routine clinical practice.

e Limited adaptability to panel-specific protocols: Variability in panel design, library
preparation, and sequencing technology demands flexible pipelines, but most tools cannot
readily accommodate to these variables.

e Insufficient clinical reporting: Academic tools often do not include modules for variant
prioritization, clinical classification, or interactive reporting, which are essential for real-
world diagnostics.

e Portability and reproducibility challenges: Many pipelines suffer from complex installation,
dependency conflicts, or poor documentation, which hinder their deployment across

different institutions and computing environments.

Together, these shortcomings highlight a critical gap in the current landscape: the lack of robust,

adaptable, and clinically oriented bioinformatics workflows capable of supporting the full analysis

and reporting of somatic NGS panels in precision oncology %4041,
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1.3.12. Concluding remarks

The bioinformatics analysis of somatic NGS panel data in oncology entails multiple technical,
biological, and computational challenges. These include the absence of matched normal samples,
intratumor heterogeneity, suboptimal DNA/RNA quality, and the complexity of detecting structural
alterations and composite biomarkers. In addition, variability across platforms, non-standardized
workflows, and limited interoperability still compromise the reproducibility and comparability of

results across laboratories and institutions.

Although existing commercial and academic solutions address specific analytical needs, none
provides a fully integrated, transparent, and adaptable framework that meets the broad requirements
of somatic cancer panel analysis. Key limitations persist in areas such as variant prioritization,

support for DNA-RNA panels, automated reporting, and workflow portability.

These gaps underscore the need for a comprehensive, modular, and open-source bioinformatics
pipeline capable of supporting the end-to-end analysis of somatic NGS panel data, from raw
sequencing files to interpretable, report-ready results. Addressing this unmet need motivates the work

presented in this thesis.
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2. HYPOTHESIS AND OBJECTIVES

2.1. Rationale

The adoption of NGS has revolutionized cancer genomics by enabling the simultaneous detection of
multiple somatic alterations, such as mutations, CNAs, and gene fusions, using targeted panels with
high resolution and efficiency. These NGS cancer panels are now routinely applied in both clinical
and research settings to support diagnosis, prognosis, therapeutic selection, and biomarker discovery.
However, the full value of these assays depends not only on sequencing technologies, but also on the
availability of robust bioinformatics workflows capable of handling the complexity and diversity of

tumor-derived data.

Current bioinformatics solutions present key limitations in flexibility, transparency, scalability, and
analytical completeness. Commercial platforms often operate as closed systems with limited
adaptability and superficial interpretability, while academic tools frequently lack full integration,
support for dual DNA-RNA inputs, or visual reporting. Additional challenges, such as the absence
of matched normal controls, low-quality input material, and a lack of standardized workflows, further

complicate the reproducibility and utility of somatic NGS analyses.

The hypothesis of this thesis is that, through a research-driven process to define the most suitable
analytical strategies for somatic NGS cancer panels, the development of a tailored, in-house
bioinformatics pipeline can enhance the accuracy, reproducibility, and applicability of genomic

analysis in both translational research and clinical oncology.

2.2. General objective

The main aim of this thesis is to design, implement, and evaluate an open-source, comprehensive
bioinformatics pipeline for the analysis of somatic NGS cancer panels. The pipeline is intended to
address the analytical complexity of tumor-derived data by enabling accurate variant detection,
automated annotation and prioritization, and the generation of visual reports. Through this, it seeks
to support both research and clinical applications by facilitating the interpretation of NGS panel

results in diverse precision oncology contexts.
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2.3. Specific objectives

1. To design and implement an open-source, comprehensive bioinformatics pipeline for
the analysis of somatic NGS cancer panels.

a) To develop a robust bioinformatics workflow capable of addressing the diverse
scenarios encountered in somatic panel analysis, using state-of-the-art open-source
tools, to ensure analytical reliability, reproducibility, and portability across diverse
environments.

b) To integrate an automated reporting system that generates interactive and user-
friendly visual outputs to enhance the accessibility, interpretation, and

communication of results.

2. To evaluate the performance and applicability of the implemented pipeline.
a) To validate the accuracy of variant detection and assess the pipeline’s panel-agnostic
design using standardized public reference datasets.
b) To benchmark the pipeline with retrospective real-world data from multiple tumor
types and commercial panels, evaluating its analytical robustness and adaptability to

routine diagnostic and research contexts.
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3. METHODOLOGY

3.1. Implementation of the ClinBioNGS pipeline

3.1.1. General architecture

The developed bioinformatics pipeline, ClinBioNGS, is a modular and fully automated clinical
bioinformatics pipeline designed for the analysis of somatic DNA and RNA sequencing data derived
from targeted NGS cancer panels. The pipeline is implemented in Nextflow” (v24.10.1) and all
required tools are encapsulated in Apptainer’* (formerly Singularity; v1.4.1) containers to ensure
portability, reproducibility, and ease of deployment. The selection of software and resources was
guided by criteria prioritizing open-source availability, broad accessibility, active maintenance, and

widespread adoption within the bioinformatics community.

The pipeline architecture follows a modular design in which each analytical step is implemented as
an independent Nextflow process. This structure allows for clear separation of functional stages (e.g.,
pipeline set up, pre-processing, alignment, variant calling, annotation, reporting), facilitates
debugging and maintenance, and supports customization and extension. Processes are connected
through channels that coordinate input and output dependencies, while computational resources are
dynamically assigned according to the specific requirements of each task. Multiple processes
corresponding to the same analytical stage are grouped into subworkflows, adding an additional layer
of modularization and enabling higher-level functional organization. Configuration is driven by user-
defined parameters and profile-based (already defined) settings that adapt the pipeline to the

sequencing platform, cancer panel, and computational environment.

ClinBioNGS supports multiple input data formats, including raw sequencing files in FASTQ, BCL,
or uBAM. These files are automatically pre-processed prior to downstream analysis. The pipeline
integrates QC at various stages and handles both DNA and RNA data processing for the detection of
related alterations and genomic biomarkers. Analysis results are collected into structured outputs,

including interactive reports, variant registries, and detailed logs for traceability and clinical review.

Overall, ClinBioNGS is designed to address the practical requirements of clinical genomics
workflows, providing automation, transparency, and compatibility with real-world diagnostic and
research environments. The pipeline has been validated on eight commercial panels and currently
supports full analytical workflows for the Illumina TruSight™ Oncology 500 (TSO500), Thermo
Fisher Oncomine™ Precision Assay (OPA), and Thermo Fisher Oncomine™ Comprehensive Assay
(OCA). ClinBioNGS is freely available for non-commercial research use only (RUO) at:
https://github.com/raulmarinm/ClinBioNGS.
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48 3. Methodology

3.1.2. Pipeline’s resources preparation

ClinBioNGS includes a pre-analysis module that automatically downloads and prepares all the
resources and containerized tools required for each functional stage of the pipeline. This ensures
reproducibility, minimizes manual intervention, and standardizes the analysis across environments.
Supplementary Table 1 lists all software and Supplementary Table 2 lists all resources used in the

pipeline, including version and role in the pipeling!42426:47.48.35.58.60.75-127

3.1.2.1. Apptainer images

ClinBioNGS relies on containerized tools executed via Apptainer. Images are either downloaded
directly or built from publicly available Docker repositories (e.g., BioContainers'?®, Galaxy

Project'®

, Docker Hub). Due to compatibility issues in certain environments, custom Docker images
were created for the Pisces®” and Octopus® small variant callers. Additionally, a dedicated R*
environment with all required packages was encapsulated in a single image. All three images are

publicly available on Docker Hub.

3.1.2.2. User-defined metadata files

ClinBioNGS allows user customization through metadata files:
o Samplelnfo.csv: A comma-separated values (CSV) file that provides sample-level metadata
such as sex, age, tumor type, and estimated TP.
o WhitelistGenes.csv: A CSV file that defines tumor-specific or general whitelist genes for
prioritization.
o  TumorNames.csv.: A CSV file that maps user-defined tumor names to Disease Ontology
Identifiers (DOIDs)'!, top-level ontology nodes, and OncoTree'*? tumor codes, ensuring

compatibility with clinical evidence annotations from CIViC'.

It is recommended that the DOID values in Samplelnfo.csv match those in TumorNames.csv to ensure

accurate downstream mapping.

3.1.2.3. Reference genomes and genome resources

Reference genome files for GRCh38 and GRC Mouse build 38 (GRCm38) are automatically
downloaded from the Illumina iGenomes Amazon Web Services (AWS) repository’’. Index files are
generated using Burrows-Wheeler Aligner - Maximum Exact Matches (BWA-MEM2)® | Torrent
Mapping Alignment Program (TMAP)* (Ion Torrent platform), and Xengsort'* (mouse).
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Cytoband information is retrieved from the University of California Santa Cruz (UCSC) Genome
Browser Database”® for gene annotation and copy-number analyses. Chain files to convert hg19 and

hg38 coordinates are also downloaded from UCSC and used for liftover operations.

3.1.2.4. MANE annotation files

To ensure transcript consistency, ClinBioNGS uses files from the Matched Annotation from NCBI
and EMBL-EBI (MANE) collaboration v1.4!%. These include Gene Transfer Format (GTF)-based

exon, intron, and coding annotations, which are used in various downstream annotation steps.

3.1.2.5. Target region files

Panel manifest files are standardized into 4-column BED format with hg38 coordinates and gene
names. When necessary, several processing steps are applied:

e Convert manifests from vendor-specific formats (e.g., [llumina, lon Torrent).

e Perform coordinate liftover (if hgl9).

e Annotate MANE genes.

e Remove non-primary chromosomes.

e Normalize gene symbols.

e Merge overlapping regions using Bedtools”.

Final BED files are converted to interval lists using Genome Analysis Toolkit version 4 (GATK4)*,

and additional versions are generated for padded regions or clipping, as required.

A gene annotation table is also generated per panel, providing updated gene symbols from the Human

)130

Genome Organization Gene Nomenclature Committee (HGNC)'*’, cytobands, RefSeq and Ensembl

IDs, and full gene names from the MANE resource.

3.1.2.6. VCF headers

Predefined VCF header templates are provided for each alteration type to ensure standardized output

formats. These templates are automatically appended when generating the results.

3.1.2.7. Gene role and oncogenicity resources

e Network of Cancer Genes (NCG)!%: Used to annotate oncogenes and TSGs.

e Catalog of Validated Oncogenic Mutations>®: Curated list of functionally validated variants
from CGI resource.

e CIViC oncogenic evidence: Oncogenic variants from the CIViC database.

e ClinGen/CGC/VICC SOP* dataset: Set of previously classified oncogenic variants.
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These datasets are harmonized (e.g., HGNC symbol updates, hgl9 to hg38 liftover) and used for

variant classification.

3.1.2.8. Variant annotation resources (VEP)

ClinBioNGS uses Ensembl Variant Effect Predictor (VEP)®* for small variant annotation, supported
by:
e VEP cache and GRCh38 FASTA reference.
e VEP plugins and data for Combined Annotation Dependent Depletion (CADD)!'?, Rare
Exome Variant Ensemble Learner (REVEL)'”, and AlphaMissense!® pathogenicity
predictors.

e Publicly available ClinVar and CIViC VCFs, integrated as custom annotation.

3.1.2.9. Cancer hotspot resources

Small variants are annotated against cancer hotspot evidence:
e Panel-specific hotspot BED files, either provided by the user or auto-generated from Ion
Torrent output.
e AACR GENIE BED file of known somatic events (lifted over to hg38).

e Cancer Hotspots'!? list of amino acid (AA) changes and counts for each mutation.

3.1.2.10. Problematic and high-confidence regions

To support the interpretation of small variant results, ClinBioNGS incorporates the annotation of
both low-confidence and high-confidence genomic regions:
e Low-confidence regions can be flagged using two types of BED files:
o Panel-specific blacklists provided by the user, which identify regions known to be
technically challenging or prone to artifacts in specific panels.
o A comprehensive BED file generated by ClinBioNGS that merges multiple publicly
available genomic stratification datasets, including:

= UCSC resources: Encyclopedia of DNA Elements (ENCODE) blacklist,
GRC exclusions, and regions with unusual mapping characteristics.

* Genome in a Bottle (GIAB) stratification files: homopolymers, tandem
repeats, segmental duplications, low mappability regions, and highly
polymorphic loci.

e In contrast, high-confidence regions are annotated using the Consensus Targeted Regions
(CTRs) defined by the SEQC2 Consortium. These regions represent genomic intervals with

robust sequencing reliability, making them suitable for confident small variant detection'!!.
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3.1.2.11. GENIE cancer registry

Raw data files from the AACR GENIE project were previously downloaded and processed for
downstream annotation in ClinBioNGS. The resulting processed files, organized by alteration type,

are stored within the pipeline’s annotation directory.

For raw somatic mutations (small variants), the following steps were applied:

e Standardize gene symbols according to the HGNC nomenclature.

e Count the number of samples harboring each unique mutation.

e (Calculate the maximum population VAF (pVAF) in non-bottlenecked populations from the
gnomAD database.

e Annotate the gene role with NCG resource and identify hotspot mutations from Cancer
Hotspots database.

e Lift over hgl9 to hg38 coordinates.

o (lassify by oncogenicity according to the ClinGen/CGC/VICC SOP guidelines.

For raw CNAs, processing steps included:
e Update gene symbols (HGNC).
e Count the number of samples profiled per gene.
e Select genes with AMP or homozygous DEL status.

e (Calculate the sample count and frequency for each CNA status per gene.

For raw SVs, including gene fusions, the following steps were applied:
e Update gene symbols (HGNC) for both fusion partners.
e Keep only in-frame fusions with potential functional relevance.
e Standardize coordinate nomenclature (“‘chromosome:position”) and lift over to hg38 for both
fusion breakpoints.
e Count the number of samples in which each fusion event (e.g., “geneA::geneB”) was

detected.

The final output includes a curated list of oncogenic mutations and summary tables detailing the
sample counts and frequencies for mutations, CNAs, and fusions, which are used throughout the

ClinBioNGS annotation workflow.

3.1.2.12. Clinical evidence files (CIViC)

A curated list of predictive, prognostic, and diagnostic clinical evidence from the CIViC database is
used to classify detected alterations according to the AMP/ASCO/CAP guidelines* for clinical

significance. This resource is compiled from the raw variant, molecular profile, and clinical evidence
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files provided by CIViC, in combination with a standardized list of tumor names (with DOIDs) used

in ClinBioNGS.

Alterations including mutations, CNAs, and gene fusions are extracted and processed from the
variant and molecular profile files. Clinical evidence entries are filtered to include only those with:
e Evidence types classified as predictive, prognostic, or diagnostic.
e Evidence levels rated “A” (validated association) to “D” (pre-clinical evidence).
e Evidence star ratings between 3 (convincing) and 5 (strong, well supported).

e Tumor-specific relevance (excluding germline associations).

Tumor names from CIViC are harmonized with the internal ClinBioNGS tumor list to ensure
consistency with user-provided metadata. Finally, each alteration is annotated with its associated
clinical evidence, distinguishing between tumor-specific and, for predictive evidence, drug-specific

associations.

3.1.2.13. RNA resources

Several external and in-house resources are integrated into ClinBioNGS to support various aspects
of RNA analysis:
e Trinity Cancer Transcriptome Analysis Toolkit (CTAT) library®?: Provides RNA genome and
annotation files necessary for fusion and splice variant detection.
e AACR GENIE registry: Supplies fusion event frequencies in cancer, based on the previously
processed datasets used for benchmarking and annotation.
e Mitelman Database!!>: A comprehensive list of reported gene fusions was obtained via a full
export of all entries listed under the "Gene Fusions" section of the database’s website.
e In-house whitelists: Curated collections of known gene fusions and splice variants, including
variant names and genomic coordinates, were compiled from multiple peer-reviewed
publications!'* !, These support enhanced annotation and prioritization of clinically

relevant RNA alterations.

3.1.2.14. Panel-recurrent small variants (TSO500, OPA, OCA)

ClinBioNGS supports the flagging of panel-recurrent small variants to help identify potential
technical artifacts or common population-specific variants*!. To enable this feature, users must
provide a list of recurrent variants tailored to the panel being analyzed. Precompiled lists are available
for the Illumina TSO500 and Thermo Fisher OPA and OCA commercial panels based on aggregated
variant data from benchmarking cohorts (Ntsoso0 = 655, Nopa = 621, and Noca = 537). Variants were

112

considered recurrent if detected in at least 15% of the samples for each panel'”. These files are

available in the ClinBioNGS GitHub repository.
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3.1.2.15. Panel-specific CNA baselines (TSO500, OPA, OCA)

CNA analysis in ClinBioNGS requires a panel-specific pooled reference cohort to serve as the
baseline for assessing tumor CNAs. Dedicated CNA baselines have been generated for the TSO500,
OPA, and OCA panels using large tumor cohorts (further details on their construction are provided
inthe 3.1.7. Analysis of CNAs section). Each baseline file contains a list of genomic regions annotated
with average coverage values and variability scores (i.e., spread) across the reference dataset. All

baseline files are available in the ClinBioNGS GitHub repository.

3.1.2.16. Panel-specific MSI baseline (TSO500)

To assess MSI in tumor samples, a platform-specific pooled reference cohort is required. For the
TSO500 panel, a baseline was generated using a cohort of microsatellite-stable (MSS) tumor samples
(see 3.1.10. Analysis of genomic biomarkers section for further details on its construction). The

TSO500-specific MSI baseline is available in the GitHub repository.

3.1.3. Input data and pre-processing

ClinBioNGS supports various input data formats and includes multiple pre-processing steps to ensure

compatibility across sequencing platforms, panel designs, and library preparation protocols.

3.1.3.1. FASTQ generation from raw sequencing data

Starting data for DNA and RNA libraries can be provided directly as FASTQ files or internally
generated from BCL or uBAM files. All input files must be placed in the --startingDataDir path.

FASTOQ files

By default, the pipeline expects DNA and RNA FASTQ files to be provided by the user. File naming
must follow the format <sample> <DNA/RNA>* fastq*, where “<sample>" matches the sample

identifier specified in the sample sheet.

BCL files

FASTQ files can be generated from raw BCL files using Illumina BCL Convert™, which also
supports adapter trimming, UMI processing, and sample demultiplexing based on parameters
specified in the sample sheet. Sample- and lane-level QC metrics are generated, which are parsed
and visualized in a report by MultiQC®. The following QC metrics are provided per sample and lane:

e Total number of clusters (read pairs) and bases (yield).

e Percentage of bases with a Phred quality score of 30 or higher.

e Percentage of reads with perfect sample index (0 mismatches) or one mismatch.

e Mean quality score of bases.
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The number of undetermined reads—those not assigned to any sample—is also reported. To allow
for the use of different processing parameters, BCL Convert is executed separately for DNA and
RNA libraries. As a result, some reads may appear as undetermined simply because they belong to
the other library type (DNA or RNA) processed in a separate run, rather than being truly unassigned.
MultiQC recognizes that both DNA and RNA outputs originate from the same sequencing run and
recalculates the undetermined read statistics, providing a more accurate representation of unassigned
reads. These QC metrics help identify underperforming samples or lanes and allow pre-alignment

quality checks before heavy compute steps.

BAM files

FASTAQ files can also be derived from uBAM files using Samtools’®. Supported input includes user-
provided uBAMs (<sample> <DNA/RNA>*.bam) or platform-specific files (e.g., lon Torrent’s
directory with *rawlib.basecaller.bam). If UMIs are encoded in a BAM tag, they can be extracted
and appended to the FASTQ header using Samtools and awk. Tag and header information are
preserved to support downstream tools that depend on them (e.g., alignment and variant calling for

Ion Torrent platforms).

3.1.3.2. FASTQ pre-processing

Pre-processing steps are panel-aware and tailored based on factors such as capture protocol
(hybridization vs. amplicon), library type (paired-end vs. single-end, UMI usage), sequencing

platform (Illumina-like vs. Ion Torrent), and sample origin (e.g., tumor tissue, cell lines, PDX).

Lane merging

If input FASTQ files are split by sequencing lane, they are automatically merged. Paired-end

sequences are combined into R1 and R2 files.

UMI transfer

In some panels (e.g., Agilent), UMI sequences are stored in a separate FASTQ file. The pipeline uses
UMI-transfer'® to append the UMI to the FASTQ header to enable downstream deduplication.

Host contamination filtering (PDX samples)

For sequencing data derived from PDX models, host-mouse contamination is filtered using

Xengsort'?, Only human-specific reads are retained for analysis.
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UMI separator normalization

Certain sequencing platforms encode dual UMIs with custom symbols in the FASTQ header. If these
separators are incompatible with downstream tools (e.g., Gencore), they are replaced using Bioawk®.

6

For example, the “+” symbol in BCL Convert output FASTQs is converted to

Trimming, filtering, and UMI processing

Comprehensive FASTQ pre-processing is performed using FastP®, which supports adapter
trimming, removal of low-quality or short reads, UMI extraction from reads or indices, and quality
profiling before and after the filtering. This step generates the final processed FASTQ files used in
QC and alignment. It is executed by default but can be skipped if clean FASTQs are already provided.

3.1.4. Alignment and deduplication

3.1.4.1. DNA workflow

Pre-processed DNA reads are initially aligned to the GRCh38 reference genome. By default,
alignment is performed using BWA-MEM?2?®! for Illumina and other non-Ion Torrent platforms. For
Ion Torrent panels, reads are aligned using TMAP?, following conversion of the processed FASTQ
files to BAM format with Samtools. In both cases, the resulting BAM files are also sorted using
Samtools. This initial alignment step serves to establish mapping positions necessary for subsequent

deduplication.

Deduplication is then performed to eliminate PCR duplicates and reduce sequencing artifacts. In the
default approach, GATK4 MarkDuplicates is used to identify duplicate reads based on identical start
and end coordinates. When UMIs are present, UMI-aware deduplication is applied to more accurately
distinguish true biological molecules from sequencing errors. In ClinBioNGS, Gencore is used for
paired-end libraries because it supports UMI-aware deduplication with consensus read generation,
enhancing specificity for somatic variant calling®’. However, Gencore does not support single-end
read processing. For single-end libraries, UMI-tools is employed due to its ability to deduplicate
single-end reads effectively. While UMI-tools does not generate consensus reads, it selects the most
representative read within each UMI group”. This specific use of each tool ensures optimal

deduplication performance across different library types.

After deduplication, the resulting unique reads are realigned to improve mapping precision. For Ion
Torrent data, realignment is performed using TMAP, without requiring BAM-to-FASTQ conversion,
since the input remains in BAM format. For non-Ion Torrent data, the deduplicated BAM is first
converted back to FASTQ format, then realigned to the reference genome using BWA-MEM2. To

further enhance alignment accuracy—particularly around InDels and complex regions—the BWA-
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MEM2-aligned BAM files (non-Ion Torrent) undergo local reassembly around target regions with

Abra2”. The resulting realigned BAM file serves as the final output for all downstream analyses.

By default, the deduplication step is enabled, but it can be optionally skipped for specific panel types,
such as amplicon-based assays without UMI support (e.g., OCA). In such cases, both the initial

alignment and deduplication steps are omitted.

3.1.4.2. RNA workflow

Pre-processed RNA reads are aligned to the GRCh38 reference genome using Spliced Transcripts
Alignment to a Reference (STAR)®, a splice-aware aligner optimized for transcriptomic data. This
step produces a sorted BAM file containing the initial mapped reads. STAR is executed with
parameters recommended by the CTAT framework, which are specifically adapted to the accurate
fusion detection and compatibility with STAR-Fusion®?. Key settings include the two-pass mapping
mode, where splice junctions identified during the first pass are used to refine the second pass,
improving sensitivity and reducing spurious junctions®. Additionally, parameters such as --
chimSegmentMin, — which enables chimeric read detection, and --chimOutType/--
chimOutJunctionFormat, which control the format and content of chimeric output, are applied to
ensure the output contains all necessary metadata for downstream fusion analysis®. Further options

are defined in the dedicated configuration file provided with the pipeline.

Following alignment, deduplication is applied using the same strategy as for DNA libraries,
depending on whether the data are single-end or paired-end and whether UMIs are present. This step

is used to eliminate PCR duplicates and reduce false-positive signals in downstream analyses.

The deduplicated RNA reads are subsequently realigned using STAR, generating the final set of
alignment outputs required for downstream analyses. These include:

e A BAM file containing uniquely aligned, deduplicated reads.

e A chimeric junction file (Chimeric.out.junction) that reports chimeric alignments, where
individual reads map to two distinct genomic loci. These intergenic junctions, defined by the
first intronic base of the donor and acceptor sites®, represent fusion-like events and are used
as input for downstream fusion gene detection.

e A splice junction file (SJ.out.tab) containing high-confidence collapsed splice junctions,
defined by the start and end positions of intronic regions within genes®®. Each junction is

accompanied by read support metrics and is used in the detection of splice variants.

If deduplication is disabled—such as in amplicon-based libraries without UMIs or in low-complexity

samples—the same output files are generated based on all reads, without removing duplicates.
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3.1.5. Quality metrics

3.1.5.1. FASTQ QC

Sequencing QC is performed on the processed FASTQ files using FastQC®, which provides a
comprehensive assessment of read quality and potential technical artifacts. FastQC outputs are

aggregated and visualized using MultiQC, which provides a summary report of QC metrics.

The FastQC module in MultiQC compiles per-sample statistics and visualizations. General metrics
include the total number of reads, GC content, read length, and sequence duplication levels. The main
plots provided are sequence counts distribution, per base sequence quality, per sequence quality
scores, per base sequence content, per sequence GC content, per base N content, sequence length
distribution, sequence duplication levels, overrepresented sequences, and adapter content. These
visualizations allow for the early detection of technical issues such as adapter contamination, low-

complexity reads, or sequencing bias.

3.1.5.2. BAM QC

Alignment quality metrics are collected from both initial and final alignment steps for DNA and RNA
libraries. For the initial alignment (prior to deduplication), GATK4 modules
(CollectAlignmentSummaryMetrics and CollectInsertSizeMetrics) and samtools are used to
calculate global and target-specific alignment statistics. These metrics reflect the full read set,
including duplicates, and provide a baseline assessment of sequencing and alignment quality. After
realignment, the same quality metrics are recalculated using the deduplicated BAM files, thereby
reflecting only unique, high-confidence reads. In addition, coverage statistics over the target regions
are computed using Mosdepth®, based on the realigned BAM files and the corresponding panel-
specific BED files. These coverage metrics support downstream evaluation of panel performance

and region-level completeness.

BAM-related quality metrics for all DNA and RNA samples are aggregated and presented in separate
visual reports for each data type using MultiQC. These reports integrate output from Picard’s
CollectAlignmentSummaryMetrics and CollectInsertSizeMetrics GATK4 modules, including
mapped reads, read length, and insert size distribution plots. Additionally, Mosdepth provides per-
sample metrics including coverage statistics (e.g., mean, median, minimum, maximum), fraction of
target genome with at least X coverage, and library size (in bp), along with cumulative coverage
distribution, coverage per chromosome plot, and XY coverage histogram®. These combined
summaries provide a comprehensive view of alignment quality and target enrichment performance

across all processed samples.
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3.1.5.3. QC results

All DNA and RNA quality metrics collected during alignment and coverage analysis are compiled
and summarized on a per-sample basis using a custom R script. This step produces a set of
standardized QC tables and visual plots for evaluating sequencing and mapping performance for each

sample.

Global QC metrics

A comprehensive table of global QC metrics is generated for each sample by integrating data from
alignment summaries (GATK4, Samtools) and coverage outputs (Mosdepth). These metrics enable
assessment of sequencing depth, alignment quality, target enrichment, and library complexity, which
are essential for determining whether a sample meets quality thresholds for inclusion in downstream

analyses. A summary of reported global QC metrics is shown in Table 6.

Table 6. Global QC metrics calculated for each DNA and RNA sample.
Each metric is accompanied by a description and its corresponding quality category.

Metric Description Category

TOTAL _READS Total number of sequencing reads Sequencing depth
ALIGNED READS Number of reads aligned to the reference genome Alignment quality
PCT_ALIGNED Percentage of aligned reads Alignment quality
ONTARGET READS Number of reads mapped within target regions Target enrichment
PCT _ONTARGET Percentage of on-target reads Target enrichment

Number of aligned reads with a mapping quality of >Q20

HQ ALIGNED READS
h B (£1% error probability)

Alignment quality

PCT HQ ALIGNED Percentage of high quality aligned reads

Alignment quality

MEDIAN READ LENGTH Median length of sequencing reads

Read characteristics

MEDIAN_INSERT SIZE Median distance between paired-end reads Library preparation
UNIQUE_READS Number of deduplicated reads (non-redundant) Library complexity
PCT _DUP Percentage of duplicated reads Library complexity
MEDIAN COVERAGE Median sequencing depth over target regions Coverage statistics
MEAN_COVERAGE Average sequencing depth across target regions Coverage statistics
PCT X COV Percentage of target bases with >X coverage Coverage completeness

>, 0,
PCT 04X MEAN Percentage of target bases covered at >40% of the mean

Coverage uniformity

coverage
MIN_COVERAGE Minimum observed coverage across target regions Coverage statistics
MAX COVERAGE Maximum observed coverage across target regions Coverage statistics
PANEL SIZE Total size (bp) of the target regions (from BED file) Panel information

Multi-level coverage assessment

Using the per-base coverage data generated by Mosdepth, ClinBioNGS performs a comprehensive
multi-level coverage analysis. For each DNA and RNA sample, coverage metrics—including mean,
minimum, and maximum coverage, various PCT X COV thresholds (e.g., percentage of bases
covered at >5%, >10x, etc.), and panel size—are summarized in structured tables across multiple

resolution levels:
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e By chromosome: coverage across all target regions within each chromosome.

e By target region: individual coverage statistics for each defined interval in the panel BED
file.

e By gene: coverage over specific loci, including target regions, coding regions, exons, and
the entire gene body.

e By exon: per-exon coverage for each target gene.

Gene-based and exon-level coverage calculations are based on coordinates derived from the MANE
SELECT transcript, ensuring consistency and clinical relevance in exon definitions and coding

sequence boundaries.

For visualization of gene-level coverage, multiple plots are generated using the karyoploteR R
package'?’, based on the previously calculated coverage metrics. As with the coverage tables,
visualizations are produced at various levels of resolution:

e Global and per-chromosome plots display the mean coverage of each target gene across its
genomic location. These plots can highlight genes from a user-defined whitelist and can
annotate genes with low coverage (below a user-defined threshold) in red for quick
identification.

e For individual gene visualization, detailed plots represent the observed coverage along the
MANE SELECT transcript structure, including labelled exons and distinguishing coding
from non-coding regions. Coverage across the entire gene locus is plotted, and target regions
from the panel manifest (BED file) are annotated to distinguish on-target from off-target

arcas.

Each coverage table and plot are saved as a separate file for inclusion in the final report and are also

integrated into an Excel summary file to facilitate interactive review and sample-level consultation.
3.1.6. Small variant analysis

3.1.6.1. Small variant calling

Following DNA processing, high-quality, deduplicated reads are used to detect small variants (SNVs
and InDels) by comparison to the reference genome. By default, ClinBioNGS applies a +25 bp
padding to the target regions to capture variants in flanking sequences. This padding is omitted for
amplicon-based panels, where primer sequences may artificially extend coverage beyond the region
of interest. In such cases, off-target read ends are clipped using Samtools to avoid their inclusion in
variant calling. Notably, this trimming step is unnecessary for lon Torrent panels, as their alignment

process inherently accounts for primer trimming.
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ClinBioNGS uses a multi-caller ensemble strategy for robust tumor-only small variant detection,

integrating five independent variant callers: Mutect2!?’, Pisces®?, VarDict'?!, Octopus®!, and Torrent

Variant Caller (TVC)*® (specific to Ion Torrent data). To improve efficiency and reduce computation

time, variant calling is parallelized by chromosome: the target BED file is split per chromosome, and

each caller processes these partitions independently, producing raw VCF files per sample,

chromosome, and caller.

Subsequently, all raw VCFs are merged. Variants are retained if they pass caller-specific filters and

overlap with the defined target regions. This filtering is performed using Beftools’™. To ensure

compatibility across callers, multiallelic variants are decomposed and InDels normalized using Vt%.

A custom R script is used to generate a representative list of consensus unique variants and provide

calling-related metrics. This process includes the following steps:

Intra-caller variant consensus:

1) Extract all variants and associated metrics from each processed VCF.

2) Resolve multiallelic positions by selecting the variant with the highest VAF, ensuring
only the most representative variant per locus is retained.

Inter-caller comparison:

1) Each variant is annotated with the number of matching callers (exact genomic change)
and overlapping callers (based on genomic positions).

2) All variants from all callers are consolidated into a single coordinate-sorted table.

Inter-caller consensus:

1) Identify overlapping variant groups. As variants are coordinate sorted, each variant
position is compared with the next one until no overlap is found to identify those groups.

2) For each group, select the most recurrent variant (i.e., supported by the highest number
of match callers). In the case of ties, the variant with the highest VAF is chosen.

3) Among matching callers, the variant with the highest VAF provides the primary set of
metrics for the consensus output.

4) All supporting metrics from other overlapping variants are retained and annotated for
traceability (collapsed with commas if multiple).

Variants are lifted over from hg38 to hg19 coordinates.

Variants are annotated with panel-specific hotspots and blacklisted regions provided by the

user.

The final output includes a summary table and a consensus VCF file containing all unique small

variants along with their metrics. An overview of the key metrics captured during this process is

provided in Table 7.
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Table 7. Small variant calling metrics provided by ClinBioNGS.
Each metric is accompanied by a description. Metrics are listed in alphabetical order.

Metric

Description

AD_ALT

Number of reads supporting the alternate allele

AD_ALT <CALLER>

Alternate read count from each caller

AD_REF

Number of reads supporting the reference allele

AD REF <CALLER>

Reference read count from each caller

AF

Allele frequency from the selected caller. It refers to the VAF.

AF <CALLER>

Allele frequency reported by each individual caller. It refers to the VAF.

ALT Alternate allele

CALLERS List of overlapping callers (e.g., Mutect2, Pisces, VarDict, Octopus, TVC)
CHROM Chromosome on which the variant is located

Dp Total read depth at the variant position

DP <CALLER> Read depth from each caller

END End position of the variant (hg38 reference)

END HGI19 End position (hg19 reference)

FILTER Primary flag assigned by ClinBioNGS

MATCH_CALLERS

Number of callers reporting the same variant

OVERLAP_CALLERS

Number of callers with overlapping variants

PANEL_BLACKLIST

Indicates if the variant overlaps a user-defined blacklisted region

PANEL_HOTSPOT

Indicates if the variant overlaps a user-defined hotspot region

REF Reference allele

START Start position of the variant (hg38 reference)

START HGI19 Start position (hgl9 reference)

TYPE Variant type (i.e., SNV, INDEL)

VAR Variant representation (i.e., <chrom>:<pos> <ref>/<alt>)
VAR HGI19 Variant representation in hgl9 coordinates (lifted-over)

VAR _<CALLER>

Variant representation from each caller (comma-separated if multiple)

3.1.6.2. Small variant annotation

Small variants are comprehensively annotated using VEP (v113), supplemented with information

from multiple external resources (see 3.1.2. Pipelines resources preparation section for details on

resource preparation). Annotation is performed at the run level, whereby all consensus VCF files

from individual samples are aggregated and the unique set of variants is annotated with VEP.

The resulting annotated VCF is further processed with a custom R script to integrate additional data

from external databases and to structure the information for downstream interpretation. A run-

specific annotation table is generated, linking each annotated variant back to the corresponding

samples in which it was detected. An overview of the information provided in the run-specific

annotation table is presented in Table 8. All this information is used in downstream analysis for

flagging and prioritizing the small variant results.
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Table 8. Small variant annotation provided by ClinBioNGS.
Each term is accompanied by a description and its corresponding source. Terms are listed in alphabetical order.

Term Description Source
AA Amino acid change VEP
AlphaMissense SCORE AlphaMissense score AlphaMissense (VEP)
AlphaMissense TERM AlphaMissense classification (likely pathogenic: >0.5, Custom
default)
APPRIS APPRIS principal isoform (e.g., P1-5, A1-2) VEP
BIOTYPE Transcript biotype (e.g., protein coding, ncRNA) VEP
CANONICAL Indicates if the transcript is canonical (Ensembl-based) VEP
CANONICAL DRIVER Classified as a canonical driver gene by NCG NCG
CADD_SCORE CADD score CADD (VEP)
CADD TERM CADD classification (likely pathogenic: >15, default) Custom
CCDS Consensus coding DNA sequence identifier VEP
CDNA _POS Position in cDNA (position/length) VEP
CDS_POS Position in coding sequence (position/length) VEP
CIVIC <term> CIYiC’s term (e.g., variant ID, alteration, evidence level, CIViC
rating, type, effect, drug, tumor)
CLASS Variant class (e.g., SNV, insertion, deletion) VEP
ClinVar <term> ClinVar’.s term (e.g., allele ID., c{linical significance, review ClinVar (VEP)
- status, disease name, allele origin)
CODING Coding region (based on CDS_POS) VEP
CODONS Affected codons VEP
CONSEQUENCE Variant effect on transcript VEP
CTR_REGION Located in a high-confidence CTR region SEQC2
dbSNP_ID Identifier in dbSNP (based on EXISTING VARIATION) VEP
DRIVER Indicates driver gene (found in NCG resource) NCG
EXISTING_VARIATION Known variant IDs (co-located) VEP
EXON Affected exon (number/total) VEP
GENE_ENSEMBL Ensembl gene identifier VEP
GENE_HGNC HGNC gene symbol VEP
GENE_SYMBOL Gene name VEP
GENIE_CNT Mutation count in GENIE cancer registry GENIE
Maximum pVAF in gnomAD (excluding AMI, ASJ, FIN,
gnomAD_MAX_AF MID, and “I;{emainifg Individflals”) ¢ gnomAD (VEP)
gnomADe <POP> AF Exome allele frequency by population gnomAD (VEP)
gnomADg <POP> AF Genome allele frequency by population gnomAD (VEP)
HGVSg Genomic HGVS notation VEP
HGVSc Coding HGVS notation VEP
HGVSp Protein HGVS notation VEP
HGVSp SHORT Short protein change Custom

HOTSPOT_MUT_CNT

Mutation count in Cancer Hotspots

Cancer Hotspots

HOTSPOT POS CNT

AA position count in Cancer Hotspots

Cancer Hotspots

IMPACT Predicted functional impact (e.g., High, Low, Moderate) VEP
INTRON Affected intron (number/total) VEP
MANE_PLUS_CLINICAL Transcript in the MANE Plus Clinical set VEP
MANE_SELECT Transcript in the MANE Select set VEP
MMR_GENE Mismatch repair gene MSigDB
MUT _ID Mutation ID (<GENE_SYMBOL> <MUTATION>) Custom
MUTATION Human-readable mutation name (abbreviated AA change) Custom
NMD ESCAPE Nonsense-mediated mRNA decay escaping variant VEP
ONCOGENE Indicates oncogene based on NCG NCG
ONCOGENE_EVIDENCE Supporting oncogene evidence in NCG NCG
Previously classified mutation as “oncogenic” using ClinGen/CGC/VICC

ONCOGENIC_SOP_MUT ClinGen/CGC/VICC SOP GENIE




3. Methodology

63

AA position in a previously “oncogenic” mutation ClinGen/CGC/VICC
ONCOGENIC_SOP_POS (ClinGen/CGC/VICC SOP) GENIE
ONCOGENIC_VALID MUT Mutation with oncogenic effect in functional studies CGI/CIViC
ONCOGENIC _VALID VAR  Variant with oncogenic effect in functional studies CGI/CIViC
PROBLEMATIC REGION Located in a problematic region UCSC/GIAB
PROTEIN _ENSEMBL Ensembl protein identifier VEP
PROTEIN_POS AA position (position/length) VEP
RECURRENT Panel-specific recurrent variant Custom
REVEL_SCORE REVEL score REVEL (VEP)
REVEL TERM REVEL classification (likely pathogenic: >0.5, default) Custom
STRAND Transcript strand VEP
SOMATIC WHITELIST Located in a known somatic position (hotspot evidence) GENIE (BED)
TRANSCRIPT ENSEMBL Ensembl transcript identifier VEP
TRANSCRIPT REFSEQ RefSeq transcript identifier VEP
TSG Indicates TSG based on NCG NCG
TSG_EVIDENCE Supporting TSG evidence in NCG NCG
TSL Transcript support level (e.g., 1-5) VEP

3.1.6.3. Small variant flagging

ClinBioNGS incorporates a systematic flagging system to distinguish high-confidence small variants

from those with lower reliability. This classification is based on a series of predefined flags applied

using information generated during both the variant calling (Table 7) and annotation (Table 8) stages.

Flags that assess the variant calling process are called primary flags. Variants may be flagged for:

e Low read support, based on metrics such as AD ALT, VAF, and DP.

e Insufficient caller support assessed using the OVERLAP_CALLERS metric.

e Localization within user-defined blacklisted regions (PANEL BLACKLIST). Notably,

variants located in user-defined hotspot regions (PANEL HOTSPOT) are exempt from

blacklist flagging, and custom read support thresholds can be defined for such cases.

Flags that provide additional variant context from post-calling annotation to further refine confidence

assessments are called secondary flags. These include:

e Non-hotspot germline variants based on maximum pVAF >0.05% (following GENIE

germline filtering), or observed VAF >90%, suggesting potential homozygosity.

e Non-hotspot variants located outside high-confidence regions (CTR_REGION) or within
problematic regions (PROBLEMATIC_REGION).

e Panel-specific recurrent variants (RECURRENT), suggesting systematic technical artifacts

or common population variants.

Hotspot variants are defined as those meeting any of the following:
e Mapped to panel-specific hotspot regions (PANEL HOTSPOT).
e Located in a known somatic position (SOMATIC_WHITELIST).
e Mutations recorded in the Cancer Hotspots database (HOTSPOT MUT CNT >1).
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Variants that do not meet any low-confidence criteria are considered high-confidence and labeled as

“OK”‘

A summary of small variant primary and secondary flags applied by ClinBioNGS is presented in
Table 9. Thresholds associated with each flag are fully customizable, allowing users to adapt the

stringency of the analysis to specific requirements.

Table 9. Description of flags used by ClinBioNGS to assess small variant confidence.
Each flag is defined along with its description and the corresponding pipeline step in which it is applied.

Pipeline step Flag Description
Blacklist Non-hotspot variant located within a panel-specific blacklisted region
LowAD AD_ALT <5 reads
Small variant calling LowCallers Overlapping callers <2 (< 3 for lon Torrent panels)
(primary flags) LowDP Total read depth (DP) <10 reads
LowVAF VAF <1%
PASS Variant passed all calling-related quality filters
Germline Non-hotspot variant with gnomAD MAX AF >0.05% or AF >90%
. NoCall Variant failed calling-related primary flags
Small variant : : :
ati OutCTR Non-hotspot variant located outside CTR region
annotation
ProblematicRegion = Non-hotspot variant located within a problematic genomic region
(secondary flags) — - -
Recurrent Variant identified as recurrent in panel background samples
OK High-confidence variant (passed all predefined flags)

3.1.6.4. Small variant prioritization

To assess the potential clinical and biological relevance of detected small variants, ClinBioNGS

implements two complementary classification frameworks: oncogenicity and clinical significance.
Oncogenicity

Oncogenic potential is evaluated according to the SOP developed by the ClinGen/CGC/VICC
consortium. Each variant is scored based on the strength of supporting evidence across multiple
predefined categories. These scores are summed up using a point-based system to assign the variant
to one of the following five categories:

e Oncogenic: >10 points.

e Likely oncogenic: 6 to 9 points.

e VUS: 0 to 5 points.

e Likely benign: -1 to -6 points.

e Benign: < -7 points.

A detailed description of the scoring criteria and evidence types is provided in Supplementary Table
3. ClinBioNGS incorporates 14 of the 17 evidence categories described in the SOP. The remaining
evidence types—OMI1, OP2, and SBS2—are not currently implemented due to unavailability of the

required input data.
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Color coding is applied to facilitate interpretation: shades of red indicate pathogenicity, yellow
corresponds to uncertain significance, and shades of green represent benign classifications. These

colors are reflected in the visualizations and tabular entries within the final sample report.

Clinical significance

Clinical significance is classified according to the AMP/ASCO/CAP guidelines, based on curated
data from the CIViC database—an open-access, expert-reviewed resource endorsed by the ClinGen
Somatic Cancer Working Group. The classification integrates tumor-specific therapeutic, prognostic,
and diagnostic evidence from CIViC with the variant’s oncogenicity status, and assigns each variant
to one of four clinical tiers:

e Tier I: Strong clinical significance (supported by high-level CIViC evidence).

e Tier II: Potential clinical significance (supported by CIViC evidence).

e Tier III: Unknown clinical significance (no CIViC evidence and not classified as

benign/likely benign).
e Tier IV: Benign or likely benign (no CIViC evidence and classified as benign or likely benign

based on oncogenicity).

A comprehensive description of classification rules and tier definitions is available in

Supplementary Table 4.

3.1.6.5. Small variant results

For each sample, small variant results are provided in an annotated VCF file containing both variant-
and sample-level information. In addition, ClinBioNGS generates summary tables and visualizations
using custom R scripts to facilitate result interpretation. Two separate summary tables are produced:

one for somatic variants and another for likely germline variants.

Variants are prioritized according to the following criteria:

1) Clinical significance: Variants classified as Tier I (strong) or Tier II (potential) are listed first.

2) Flagging status: High-confidence variants flagged as “OK” are prioritized, followed by those
without any calling-related flags (“PASS”).

3) Panel hotspot location: Variants located in panel-defined hotspot regions are given higher
priority.

4) Oncogenicity: Variants are ranked by oncogenicity score, from most to least likely to be
pathogenic.

5) Whitelist gene inclusion: Variants occurring in genes defined in the user-provided whitelist

are prioritized.
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For visualization purposes, only genes containing clinically or biologically relevant variants are
plotted. These include genes with: (i) Tier I or Tier II variants, (ii) variants classified as oncogenic,
or (iii) high-confidence (“OK”) non-benign variants, particularly if located within a panel hotspot.
Within each selected gene, relevant somatic variants are visualized using the karyoploteR R package.
The gene structure (based on the MANE SELECT transcript) is displayed, and variants are
highlighted with respect to their classification.

All summary tables and corresponding plots are saved as standalone files for inclusion in the final

interactive report. Additionally, all results are consolidated into an Excel file for convenient review.

3.1.7. Analysis of CNAs

3.1.7.1. CNA calling

After DNA processing, high-quality, unique reads are used to identify CNAs. CNA calling is
performed by comparing the observed coverage in each target genomic region to the expected

coverage derived from a panel-specific pooled reference cohort.

Coverage differences are calculated across predefined, panel-specific target regions (i.e., bins) using
CNVKkit". First, the “coverage” module computes coverage values for each region. Then, the “fix”
module applies a two-step normalization and correction process to generate a table of corrected copy
ratios (log2 fold changes) for each bin:

e Intra-sample normalization: Calculated coverage values are median-centered (i.e.,
subtracting the median), bias-corrected based on GC content, the fraction of masked repeats,
and (for hybrid-capture panels) target density, and converted to log2 scale.

e Reference-based correction: The log2 coverage values from the reference baseline are
subtracted from each bin. Additionally, each bin is assigned a weight based on its genomic

size and coverage variability within the baseline cohort.

Subsequently, gene-level copy ratios are computed as the weighted mean of all associated bins, and
absolute gene copy numbers (CNs) are estimated using fixed thresholds (Table 10) with a custom R
script. Each gene is then assigned to a CNA status based on the inferred copy number:
e Neutral: Two copies (CN =2).
e AMP: More than two copies (CN > 3), further subclassified as:
o “LowAmp”: Low-level AMP with CN < 5.
o “HighAmp”: High-level AMP with CN > 5.
e DEL: Fewer than two copies (CN < 2), further subclassified as:
o “LowDel”: Low-level DEL with CN = 1 (suggesting heterozygous DEL).
o “HighDel”: High-level DEL with CN = 0 (suggesting homozygous DEL).
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Notably, CN values are not adjusted based on TP estimates, to maintain consistency across samples
and ensure reproducibility in tumor-only analyses. An overview of the CNA classification thresholds

is provided in Table 10.

Table 10. Classification criteria for gene-level CNAs.
CNA classification is based on fixed copy ratio thresholds and corresponding absolute CN values.

Log2 copy ratio thresholds CN CNA CNA class
-Inf <log2 <-1.20 0 DEL HighDel
-1.20 <log2 <-0.40 1 DEL LowDel
-0.40 <log2 <0.40 2 NEUTRAL Neutral
0.40 <log2 <0.80 3 AMP LowAmp
0.80 <log2 <1.20 4 AMP LowAmp
1.20 <log2 <1.50 5 AMP HighAmp
1.50 <log2 < 1.70 6 AMP HighAmp
1.70 <log2 <191 7 AMP HighAmp
1.91 <log2 <2.09 8 AMP HighAmp
2.09 <log2 <2.25 9 AMP HighAmp
2.25<log2<2.39 10 AMP HighAmp
5.64 <log2 < Inf 100 AMP HighAmp

CNA calling is performed across all autosomes and chromosome X (chrX). Chromosomal sex can
be inferred from coverage patterns using CNVkit; however, if user-provided sex metadata is
available, it will take precedence. For male samples, the chrX copy ratio is adjusted by applying a
log2 + 1 transformation to account for haploidy. This adjustment is used solely for classification

purposes—raw copy ratios are retained for transparency in both tables and visualizations.

In hybrid capture panels (e.g., [llumina TSO500), CNVkit also performs segmentation to infer
genomic regions with consistent copy-number signals using the circular binary segmentation
algorithm by default, recommended for mid-size panels and exomes*’. These segments are further
processed using Arm-level Somatic Copy-number Events in Targeted Sequencing (ASCETS)’® tool
to estimate arm-level CNAs, particularly useful in data with off-target reads that enhance
segmentation resolution. Each chromosomal arm is assigned one of the following CNA statuses:

e NEUTRAL: Mean log2 copy ratio between + 0.40.

e AMP: Mean log2 copy ratio > 0.40.

e DEL: Mean log2 copy ratio < -0.40.

e CONFLICT: Inconsistent signal; alteration fraction < 0.7 (default threshold).

Color coding of CNA categories is applied to facilitate interpretation: shades of blue indicate AMPs,
while shades of red represent a DEL status. These colors are reflected in the visualizations and tabular

entries within the final sample report.
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3.1.7.2. CNA annotation

Gene-level CNAs identified by ClinBioNGS are annotated using a custom R script that integrates
information from several external resources (Supplementary Table 2). The annotation process
provides the following key features for each target gene:
e Genomic cytoband location derived from UCSC resources to facilitate chromosomal
context.
e MANE transcript coverage determines the percentage of the gene or exons covered by
targeted bins, based on the MANE SELECT transcript model.
e Gene role in cancer classification as an oncogene, TSG, or general cancer driver using NCG
data.
e Frequency in the AACR GENIE registry reports how frequently CNAs in the gene occur
across cancer types based on a large tumor cohort.
e C(linical evidence retrieved from the CIViC database, including annotations relevant to

therapy response, prognosis, and diagnosis.

A summary of the annotations provided per gene is shown in Table 11. This information supports
downstream interpretation by enabling evidence-based flagging and prioritization of clinically

relevant CNA events.

Table 11. Gene-level CNA metrics and annotation provided by ClinBioNGS.
Each term is accompanied by a brief description. Terms are sorted alphabetically.

Term Description

ALTERATION Formatted name of the general CNA status (SGENE> <CNA>)

BINS TARGET Number of on-target bins overlapping the gene

BINS TOTAL Total number of bins overlapping the gene (including off-target bins, if applicable)
CANONICAL DRIVER Indicates canonical driver gene based on NCG

CHROM Chromosome where the gene is located

CIVIiC_<term> SUIIZ(I)S) s term (e.g., variant ID, alteration, evidence level, rating, type, effect, drug,
CLASS Specific CNA class (e.g., HighAmp/Del, LowAmp/Del, Neutral)

CN Estimated absolute copy number for the gene (e.g., 0-100)

CNA Simplified CNA category (e.g., AMP, DEL, NEUTRAL)

CYTOBAND Cytogenetic band location of the gene (UCSC)

DEPTH Weighted mean read depth across on-target bins

DRIVER Indicates driver gene based on NCG

END End coordinate of the gene (last bin end position)

GENE Gene symbol (HGNC)

GENE ENSEMBL Ensembl gene ID (based on MANE annotations)

GENIE_CNT Number of samples with CNA in this gene from the GENIE registry

GENIE FREQ Frequency of CNA in this gene in the GENIE registry

LOG2 Weighted mean log2 copy ratio across overlapping bins

ONCOGENE Indicates an oncogene based on NCG
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PERC _COV_GENE ALL Percentage of total gene length covered by bins (based on MANE annotations)
PERC_COV_GENE_EXON Percentage of exonic gene length covered by bins (based on MANE annotations)
START Start coordinate of the gene (first bin start position)

STRAND Strand orientation of the gene (e.g., + or —, based on MANE annotations)
TRANSCRIPT ENSEMBL Ensembl transcript ID for MANE transcript

TRANSCRIPT REFSEQ RefSeq transcript ID for MANE transcript

TSG Indicates a tumor suppressor gene based on NCG

VAR Formatted name of the specific CNA status (SGENE> <CLASS>)

WEIGHT Sum of weights assigned to each overlapping bin based on size and variability
WHITELIST Indicates whether the gene is included in a user-defined whitelist

3.1.7.3. CNA flagging

ClinBioNGS implements a systematic flagging approach to differentiate high-confidence gene-level
CNAs from those with lower reliability. This classification relies on a set of predefined flags applied

to each gene-level CNA based on the previously collected metrics (Table 11).

Gene CNAs may be flagged under the following conditions:
e Neutral or low-level alterations.

o Insufficient bin support, determined by the number of on-target bins overlapping the gene.

Gene CNAs that do not meet any low-confidence criteria are considered high-confidence and are

labeled as “OK”.

A summary of the CNA flags used by ClinBioNGS is provided below in Table 12. All thresholds
used for flagging are fully customizable, allowing users to tailor the stringency of the analysis
according to specific needs.

Table 12. Description of flags used by ClinBioNGS to assess CNA confidence.

Each flag includes a brief description of the criteria used to assess gene-level CNA confidence.
Flag Description

LowAmp Low-level AMP with estimated CN < 5
LowBins Gene with < 4 on-target bins

LowDel Low-level DEL with estimated CN = 1
Neutral Gene has two copies (no CNA event is called)
OK High-confidence CNA (passes all flag criteria)

3.1.7.4. CNA prioritization

Gene-level CNAs are prioritized based on clinical significance following the AMP/ASCO/CAP joint
consensus guidelines. This classification incorporates tumor-specific therapeutic, prognostic, and
diagnostic evidence from the CIViC database, as well as gene-level CNA frequencies from the AACR
GENIE registry. Based on this information, CNAs are assigned to one of four clinical significance

tiers (Supplementary Table 4):
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e Tier I/Il (strong/potential clinical significance): CNAs with curated clinical evidence in
CIViC.

e Tier III (unknown clinical significance): CNAs without CIViC evidence but observed at a
frequency > 0.1% in the GENIE cancer registry.

e Tier IV (benign or likely benign): CNAs lacking both CIViC evidence and sufficient
prevalence in GENIE.

This tier-based system enables the prioritization of CNAs with potential diagnostic, prognostic, or

therapeutic relevance and helps to filter out alterations less likely to be clinically meaningful.

3.1.7.5. CNA results

For each sample, CNA results are delivered in both an annotated VCF file and accompanying

summary tables and plots generated using a custom R script.

Gene-level CNAs are prioritized using the following criteria:
1) Clinical significance, with Tier I and Tier II CNAs listed first.
2) Flagging status, giving precedence to high-confidence CNAs labeled as “OK”.

3) Whitelist gene inclusion, prioritizing CNAs in user-defined genes of interest.

Visualizations are produced with the karyoploteR R package. Genes flagged as “LowBins” are
excluded from plots unless they are clinically relevant. By default, only Tier I/Il CNAs or CNAs
affecting whitelist genes are labeled in the global overview and detailed gene-level plots. For small

panels, an optional setting allows plotting of all targeted genes regardless of their prioritization.

All CNA-related outputs—including summary tables and plots—are saved as individual files for
inclusion in the final interactive HTML report. Additionally, they are consolidated into an Excel file

for convenient review and distribution.

3.1.7.6. Panel-specific CNA baseline construction

Panel-specific CNA baselines for the [llumina TSO500 and Thermo Fisher OPA and OCA panels
were generated using multiple CN'Vkit modules. Because matched normal samples were unavailable,
large tumor cohorts were leveraged to identify samples with low coverage variability, presumed to

approximate normal-like profiles suitable for baseline construction.

First, a BED file defining the accessible regions of the GRCh38 genome was created with the CNVKkit
“access” module. This step excluded problematic loci, including centromeres, telomeres, long
stretches of “N” bases, and difficult regions flagged by GIAB stratification files (e.g., false
duplications, polymorphic sites, low-mappability regions). From these accessible regions and the

panel-specific target BEDs, anti-target BED files were generated with the “antitarget” module to
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define off-target regions. For amplicon-based panels (OPA and OCA), off-target regions were

omitted because they are not sequenced.

Next, using these files, a flat reference model assuming a neutral CN (i.e., log2 = 0.0) for each region
was built with the “reference” module. This model incorporates GC content and repeat-masked

proportions to correct for systematic biases.

Subsequently, as described in the CNA calling section, bin-level coverage and log2 copy ratios were
computed for large in-house tumor cohorts (N = 655 for TSO500, N = 623 for OPA, and N =537 for
OCA) using the flat reference. For hybrid-capture panels such as TSO500, segmentation and quality

metrics were additionally computed with the “segment” and “metrics” modules, respectively.

To evaluate coverage variability and select appropriate samples for the reference cohort, a custom R
script applied the following filtering steps:

1) Retain only autosomal target regions to avoid sex-related variability.

2) Exclude bins lacking coverage or showing extreme log2 values (< -5 or > 5), following
CNVkit recommendations.

3) For each bin, calculate variability thresholds as the median + 1 median absolute deviation
(MAD) across all samples, assuming most coverage values approximate those from normal
samples.

4) For each sample, compute:

e Percentage of bins falling within the defined variability thresholds (i.e., “normal” bins).
e Absolute value of the global weighted mean log2 copy ratio.
5) For hybrid-capture data (e.g., TSO500), estimate a noisiness score as the product of the

number of segmented regions and the biweight midvariance reported by CNVKkit.

Samples were included in the final reference baseline if they met all of the following criteria,
indicating the lowest coverage variability within the cohort (Supplementary Figure 1):

e >90% of bins classified as “normal”.

e Global weighted mean log2 copy ratio <0.1 (absolute value).

e Noisiness score below the cohort median (criterion applied only to TSO500).
3.1.8. Analysis of gene fusions

3.1.8.1. Fusion calling

Following RNA processing, aligned reads (BAM files) and chimeric junctions are analyzed using
STAR-Fusion®, a component of the CTAT toolkit*. The fusion calling process involves the

following key steps:
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Detection of candidate fusion transcripts by mapping junction and spanning reads to a
curated reference annotation set from the CTAT library.

In silico validation (--Fusionlnspector validate): The full set of input reads is realigned to a
combined reference composed of the standard genome and a set of fusion-gene contigs—
synthetic constructs that model candidate fusion partners in their proposed fused orientation.
Reads that align more accurately to the fusion contigs than to the reference genome are
identified and reported as supporting the fusion. Additionally, non-fused reads that misalign
across the fusion junction are also identified and quantified.

Prediction of fusion impact on coding sequences, with classification of the resulting chimeric

proteins (e.g., in-frame, frameshift).

STAR-Fusion outputs a table listing candidate fusions along with relevant metrics. These results

undergo additional processing with a custom R script, which performs the following operations:

Filtering of invalid fusions, removing those involving atypical chromosomes or gene pairs
outside the panel’s target regions.
Calculation of fusion-supporting reads, defined as the sum of:

o Junction reads: split reads that span the predicted fusion breakpoint.

o Spanning fragments: paired-end reads mapping to different fusion partners.
Estimation of fusion depth, defined as the sum of fusion-supporting reads and non-fused
partner reads (the latter obtained during in silico validation).

Computation of fusion AF as the proportion of fusion-supporting reads relative to the total
fusion DP.
Coordinate liftover from hg38 to hg19 for fusion breakpoints.

3.1.8.2. Fusion annotation

Fusion candidates identified by STAR-Fusion are annotated using the CTAT resource, which

provides detailed information on the genes involved, known fusion artifacts, and events commonly

detected in normal tissues—helping to distinguish cancer-related fusions from non-relevant or

technical artifacts.

Additional annotations are incorporated using a custom R script that integrates multiple external

resources (Supplementary Table 2). The following steps are applied:

Annotate the exon or intron affected at each fusion breakpoint based on MANE SELECT
transcript annotations.

If the breakpoint lies within an intron, calculate the distance (in bp) to the nearest exon.
Define the fused genomic region for each partner gene (from the gene start to the breakpoint,

or from the breakpoint to the gene end) based on MANE annotations.
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e (alculate the mean exon coverage within and outside the fused regions using per-base

coverage data from Mosdepth.

e Annotate the role of each gene in cancer (e.g., oncogene, TSG, general driver) using the

NCG database.

e Report fusion frequencies in the AACR GENIE registry and Mitelman Database.

e Match against a whitelist of curated, known fusion events (Supplementary Table 5).

e Integrate curated clinical evidence from the CIViC database.

A summary of all fusion-related annotations is provided in Table 13. These annotations are used in

downstream analyses to support the flagging and prioritization of fusion events based on their

potential biological and clinical relevance.

Table 13. Fusion metrics and annotations provided by ClinBioNGS.
Each entry includes a description and its corresponding data source. Entries are listed in alphabetical order.

Entry Description Source
AD Number of fusion-supporting reads (junction + spanning) Custom
AD_ NonFused A/B Number of non-fused reads for partner A/B STAR-Fusion
AF Allele frequency of the fusion, calculated as AD / DP Custom
BASES FROM_EXON_A/B Distance (in bp) from intronic breakpoint to closest exon Custom
BREAKPOINT A/B Genomic breakpoint coordinate STAR-Fusion
BREAKPOINT A/B HGI19 Lifted-over breakpoint coordinate in hg19 Custom
CANONICAL DRIVER A/B Indicates whether the gene is a canonical cancer driver NCG
CHROM_A/B Chromosome of the fusion breakpoint STAR-Fusion
CIVIC <term> CIViC’s term (e.g., variant ID, alteration, evidence level, rating, CIViC

- type, effect, drug, tumor)
COV_IN_FUSION A/B Mean exon coverage within fused genomic region Custom
COV_OUT _FUSION_A/B Mean exon coverage outside fused region Custom
DP Total fusion depth: fusion-supporting reads + non-fused reads Custom
DRIVER A/B Indicates whether the gene is cancer driver NCG
EXON_A/B Exon involved in the fusion breakpoint MANE
FFPM Fusion fragments per million, normalized fusion expression STAR-Fusion
FUSION _NAME Formatted name: <geneA>::<geneB> (<exonA>::<exonB>) Custom
FUSION _RANGE A/B Genomic coordinates of fused region Custom
FUSION SHORT Short representation of the fusion (<geneA >::< geneB >) STAR-Fusion
FUSION VARIANT Fusion variant label based on fusion whitelist match Whitelist

GENE_A/B HGNC gene symbol STAR-Fusion
GENE_ENSEMBL_A/B Ensembl gene identifier STAR-Fusion
GENIE CNT Number of samples with this fusion in the GENIE database GENIE
INTRON_A/B Intron involved in the fusion breakpoint MANE
InSilicoValid Indicates if fusion was validated by in silico realignment STAR-Fusion
JunctionReadCount Number of reads split across the fusion junction STAR-Fusion
LargeAnchorSupport Indicates.whether there a.re split reads with almost 25bp aligned STAR-Fusion
on both sides of breakpoint
Left/RightBreakDinuc Dinucleotide sequence at each breakpoint STAR-Fusion

MitelmanDB_CNT

Number of samples with this fusion in the Mitelman Database

MitelmanDB

MODEL_CDS_A/B

Coding sequence identifier of fusion protein model

STAR-Fusion

MODEL_CDS_RANGE_A/B

Coding coordinates of fusion protein model

STAR-Fusion

MODEL_FUSION_TYPE

Predicted fusion protein type (e.g., in-frame, frameshift)

STAR-Fusion

Normal

Indicates if fusion is commonly observed in normal samples

STAR-Fusion

ONCOGENE_A/B

Indicates an oncogene partner

NCG
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POS_A/B Genomic position of the fusion breakpoint STAR-Fusion
RefSpliceSite Indicates if the fusion uses a canonical splice site STAR-Fusion
RTartifact Indicates if fusion is a known RT artifact STAR-Fusion
SpanningFragCount Number of paired-end reads mapping to different partners STAR-Fusion
STRAND_ A/B Strand orientation of the transcript STAR-Fusion

TRANSCRIPT ENSEMBL A/B  Ensembl transcript identifier MANE
TRANSCRIPT REFSEQ A/B RefSeq transcript identifier MANE
TSG_A/B Indicates a tumor suppressor gene NCG
VAR Formatted fusion identifier (<breakpointA>::(<breakpointB>) Custom
VAR _HGI19 Lifted-over version of fusion identifier in hgl9 Custom
WHITELIST FUSION Indicates whether the fusion is found in the fusion whitelist Whitelist
WHITELIST _GENE Indicates whether either gene is in the gene whitelist Whitelist

3.1.8.3. Fusion flagging

ClinBioNGS incorporates a systematic flagging framework to distinguish high- from low-confidence

gene fusion candidates. Flags are assigned using metrics derived from both the fusion calling stage

and the post-calling processing steps from Table 13.

During fusion calling, candidates can include primary flags for low support based on key metrics

such as the number of junction and spanning reads, fusion fragments per million (FFPM) reads, and

the presence or absence of large anchor support—particularly relevant when spanning reads are not

detected (e.g., single-end data).

During post-calling processing, secondary flags include:

e Custom-calculated read metrics, such as the total of fused and non-fused ADs, fusion DP,

and fusion VAF.

e [n silico validation results: fusions not confirmed by STAR-Fusion's validation process are

flagged accordingly.

e Known artifacts or fusions typically found in normal tissue.

e Absence in cancer-specific resources such as AACR GENIE or the Mitelman Database.

Fusions that do not trigger any predefined flag are considered high-confidence and labeled as “OK”.

A summary of fusion primary and secondary flags applied by ClinBioNGS is presented in Table 14.

All thresholds associated with these flags are fully customizable, enabling users to adjust stringency

to their specific analytical needs.
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Table 14. Description of flags used by ClinBioNGS to assess fusion confidence.
Each flag is defined along with its description and the pipeline step in which it is applied.

Pipeline step Flag Description
Junction reads < 5
Fusion calling LowSupport FFPM <1
(primary flags) No spanning reads and < 25 bp of anchor support in junction reads
PASS No calling-related quality issue detected
LowAD Fusion-supporting reads (junction + spanning) < 10
LowDP Total fusion depth (supporting + non-fused reads) <20 (< 10 for Ion Torrent)
LowNonFused  (AD_NonFused A+ AD NonFused B) <5
LowVAF Fusion allele frequency (AF) < 3%

Post-calling

. NoCall Flagged due to low quality at the calling stage
I in

Processing NolnSilicoValid  The fusion was not confirmed by STAR-Fusion’s in silico validation

(secondary flags) — - -
Normal The fusion is commonly observed in normal tissue
RTartifact The fusion is identified as a known artifact
Unknown The fusion is not present in cancer databases (e.g., GENIE, MitelmanDB)
OK High-confidence fusion candidate; passed all flag criteria

3.1.8.4. Fusion prioritization

Gene fusions are prioritized according to clinical significance based on the AMP/ASCO/CAP joint
consensus guidelines®. This classification integrates tumor-specific therapeutic, prognostic, and
diagnostic evidence from the CIViC database, along with fusion presence in cancer-specific

resources such as the AACR GENIE registry and the Mitelman Database.

Based on this information, each fusion is assigned to one of four clinical significance tiers
(Supplementary Table 4):
e Tier /Il (strong or potential clinical significance): Fusions with curated clinical evidence in
CIViC.
e Tier III (unknown clinical significance): Fusions not supported by CIViC but reported in
cancer resources such as GENIE or MitelmanDB.

e Tier IV (benign or likely benign): Fusions absent from both CIViC and cancer databases.

3.1.8.5. Fusion results

Fusion results for each sample are delivered as an annotated VCF file, accompanied by summary

tables and visualizations generated using a custom R script.

Fusion entries are ranked based on the following prioritization criteria:
1) Clinical significance, with Tier I and Tier II fusions listed first.
2) Presence in a whitelist of known or clinically relevant fusions.
3) Flagging status, prioritizing high-confidence fusions labeled as “OK”.

4) Involvement of genes included in a user-defined whitelist.
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For visualization, each fusion event is displayed alongside the gene structures of both fusion partners.
These plots highlight the predicted breakpoint and fusion range, as well as sequencing coverage
across the involved genes. Visualizations are created using the karyoploteR R package. Fusions

flagged as “LowSupport” are excluded from plots unless they match a known fusion in the whitelist.

All summary tables and plots are saved as standalone files for inclusion in the final interactive report

and are also consolidated into a comprehensive Excel file for convenient review.
3.1.9. Splice variant analysis

3.1.9.1. Splice variant calling

Following RNA processing, aligned reads (BAM files) and splice junctions are analyzed using CTAT-
splicing, a component of the CTAT toolkit designed to detect potential cancer-associated splice
variants. The tool maps junction reads to a curated reference annotation and outputs a table of

candidate splice junctions along with their supporting read counts.

These results are further processed using a custom R script, applying the following steps:
e Exclude splice variants located in off-target genes.
e (Calculate splice variant AD as the sum of supporting unique and multi-mapped reads.
e Estimate total DP at each junction breakpoint (start and end) by aggregating splice-
supporting reads from all variants sharing the same coordinate.
e Compute the VAF for each splice variant as the proportion of splice-supporting reads relative
to the maximum DP across both breakpoints.

e Convert junction coordinates from hg38 to hgl9.

3.1.9.2. Splice variant annotation

Splice variants identified by CTAT-splicing are initially annotated using the CTAT resource, which
highlights cancer-enriched junctions based on comparative analyses of tumor (TCGA) and normal

(GTEX) tissues.

Additional annotation is performed using a custom R script and several external resources
(Supplementary Table 2). The following steps are applied:
e Annotate the affected exon or intron using MANE SELECT transcript annotations.
e (Calculate average coverage across affected and flanking exons using per-base coverage data
from Mosdepth.
e Determine the gene’s role in cancer (e.g., oncogene, TSG, general driver) using the NCG

database.
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e Identify known splice events by matching against a curated whitelist of cancer-associated

splice variants (Supplementary Table 6).

e Integrate curated clinical evidence from the CIViC database.

e Cross-reference detected splice variants with small variants identified in the corresponding

DNA sample to identify overlapping mutations at splice donor or acceptor sites.

A summary of the splicing-related annotations is presented in Table 15. These annotations are used

in downstream analyses for the flagging and prioritization of splice variants.

Table 15. Splice variant metrics and annotations provided by ClinBioNGS.

Each entry includes a description and its corresponding data source. Entries are listed in alphabetical order.

Entry Description Source
AD Number of splice-supporting reads (unique + multi-mapped) Custom
AF Allele frequency, calculated as AD / DP_ MAX Custom
CancerEnriched Indicates if the splice variant is commonly observed in tumor tissues CTAT
CANONICAL DRIVER Indicates whether the gene is a canonical cancer driver NCG
CHROM Chromosome on which the splice variant occurs CTAT
CIVIC <term> CIViC’s term (e.g., variant ID, alteration, evidence level, rating, type, CIViC
- effect, drug, tumor)
COV_EXONS AFFECTED Mean coverage across affected exons Custom
COV_EXONS FLANKING Mean coverage across exons flanking the splice junction Custom
DP_END Read depth at the end position of the splice junction Custom
DP_MAX Maximum of DP_ START and DP_END Custom
DP_MEAN Mean of DP_START and DP_END Custom
DP START Read depth at the start position of the splice junction Custom
DRIVER Indicates whether the gene is cancer driver NCG
END End coordinate of the splice junction CTAT
END HGI19 Lifted-over end coordinate in hgl9 Custom
EXONS_AFFECTED Exon(s) overlapping the splice junction MANE
GENE HGNC gene symbol CTAT
GENE_ENSEMBL Ensembl gene identifier CTAT
GTEx Number of samples with this splice event in normal tissues (GTEx) CTAT
INTRONS_AFFECTED Intron(s) overlapping the splice junction MANE
MULTI MAPPED READS  Number of reads mapped to multiple genomic locations CTAT
MUTATION Small variant affecting donor or acceptor splice sites in DNA Custom
ONCOGENE Indicates whether the gene is an oncogene NCG
REGION_AFFECTED Affected region formatted as “Exon” or “Intron” followed by index Custom
START Start coordinate of the splice junction CTAT
START HGI19 Lifted-over start coordinate in hg19 Custom
STRAND Strand orientation of the transcript CTAT
TCGA Number of samples with this splice event in tumor tissues (TCGA) CTAT
TRANSCRIPT ENSEMBL  Ensembl transcript identifier MANE
TRANSCRIPT REFSEQ RefSeq transcript identifier MANE
TSG Indicates whether the gene is a tumor suppressor gene NCG
UNIQ MAPPED READS Number of reads uniquely mapped to the genome CTAT
VAR Variant coordinates in the format “<chr>:<start>-<end>“ CTAT
VAR GENE Formatted name combining gene and affected region Custom
VAR_HGI19 Lifted-over variant coordinates in hg19 Custom
VAR NAME Specific splice variant name from the curated whitelist Whitelist
WHITELIST_GENE Indicates whether the gene is included in a user-defined whitelist Whitelist
WHITELIST_SPLICING Indicates whether the splice variant is found in a curated whitelist Whitelist
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3.1.9.3. Splice variant flagging

Splice variants are evaluated for confidence with a set of predefined flags using metrics derived from

the calling and post-calling processing steps in Table 15.

Primary flags are based on a minimum number of total splice-supporting reads. Secondary flags are
subsequently applied to refine confidence, including:

e Custom-calculated metrics such as a higher splice variant AD, DP, and VAF.

e Absence from both the CTAT database of cancer-enriched splice junctions and a curated

whitelist of known variants.

Splice variants that do not trigger any of these flags are considered high-confidence and are labeled

as “OK”

A summary of splicing primary and secondary flags applied by ClinBioNGS is presented in Table
16. All flagging thresholds are fully customizable, allowing users to adjust the stringency of the

analysis to meet specific requirements.

Table 16. Description of flags used by ClinBioNGS to assess splice variant confidence.
Each flag includes a description and the corresponding pipeline step where it is applied.

Pipeline step Flag Description

Splice variant LowSupport Splice-supporting reads (unique + multi-mapped) < 10

E::ﬁfry flags) PASS No quality issue detected at the calling stage
LowAD Splice-supporting reads < 100
LowDP Maximum read depth <200

Post-calling LowVAF Variant allele frequency < 3%

processing NoCall Variant flagged due to low support at the calling stage
NoCancerEnriched  Variant not enriched in tumor tissues (absent from CTAT cancer database)
OK High-confidence variant candidate that passed all flag criteria

3.1.9.4. Splice variant prioritization

Splice variants are prioritized based on clinical significance following the AMP/ASCO/CAP tiered
classification guidelines. Final tier assignments (Supplementary Table 4) are determined by the
presence of curated CIViC evidence, inclusion in the CTAT splicing database, or matching to a known
variant in the curated whitelist:
e Tier I/II (strong or potential clinical significance): Splice variants with curated clinical
evidence in CIViC database.
e Tier III (unknown clinical significance): Variants without CIViC evidence but identified as
cancer-enriched in the CTAT database or matched to the splicing whitelist.
e Tier IV (benign or likely benign): Variants not found in any cancer-specific resource or

curated whitelist.
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3.1.9.5. Splice variant results

Final splice variant results are provided per sample as annotated VCF files, along with summary
tables and visualizations generated using a custom R script. Variants are prioritized based on the
following criteria:

1) Clinical significance (Tier I and II).

2) Presence in the curated splicing whitelist.

3) High-confidence classification (“OK™).

4) Occurrence in genes included in the user-defined whitelist.

Splice junctions are visualized on the MANE SELECT transcript using sashimi-style plots, which
display splicing patterns and local read coverage. These plots are generated with the karyoploteR R
package. By default, only high-confidence and cancer-enriched junctions are plotted, except for

known variants from the whitelist, which are always included.

All tables and plots are saved as standalone files for inclusion in the final HTML report and are also

consolidated into a single Excel file for a convenient review.
3.1.10. Analysis of genomic biomarkers

3.1.10.1. TMB

TMB is defined as the somatic Mut/Mb of interrogated genomic sequence. For each sample, the
TMB score is calculated as the ratio of qualifying somatic small variants to the total length of eligible

DNA target regions™.

To ensure robust and accurate estimation, several filters are applied to both the annotated small

variants and the DNA target regions used for calculation.

Target region filters (denominator): To define the length of high-confidence target regions, the
following criteria are applied:
e Exclude regions with low coverage (<100 reads), based on per-base coverage data from
Mosdepth.
e Remove non-coding regions that do not overlap with MANE coding regions.

e Discard regions that overlap with known problematic loci from UCSC and GIAB.
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Variant filters (numerator): Only robust somatic small variants are considered, based on the following
conditions:
e Located within the high-confidence regions defined above.
e  Meet minimum read support thresholds (default values):
o AD ALT=>5.
o DP>100.
o VAF = 5%.
e Absent from the gnomAD database (gnomAD MAX AF = 0%) or with an observed AF <
90%, to exclude likely germline variants. This population filter is stricter than in other steps
(e.g., variant flagging), as it has been shown to better align with TMB estimates from WES,
the current gold standard®°.
e Not flagged as panel-specific recurrent, to remove potential artifacts or population-specific
germline events.
e Not classified as hotspot, oncogenic/likely oncogenic, or clinically relevant (Tier I/II), since
these known pathogenic variants can artificially inflate TMB scores—particularly in panels

enriched for cancer-related genes™.

Additionally, ClinBioNGS also reports an alternative TMB score that includes only non-synonymous
variants from the eligible set, for panels where this calculation is recommended. However, it has been
shown that excluding synonymous variants has a minimal impact on the approximation of TMB to

WES values™.

Finally, two result tables are generated for each sample: one containing the calculated TMB scores
along with associated metrics (e.g., number of eligible variants and effective region size), and another
serving as a TMB trace table, listing all evaluated small variants with the corresponding evidence
used for inclusion or exclusion. Both tables are incorporated into the final HTML report and are also

compiled into a single Excel file for convenient review.

3.1.10.2. MSI

MSI is evaluated using MSIsensor-pro®’, which compares microsatellite lengths between each tumor

sample and a panel-specific baseline reference.

Baseline construction (this process is performed once and not during per-sample analysis): An MSI
baseline was generated for the TSO500 panel. Because matched normal samples were not available,
we used 66 microsatellite stable (MSS) tumor samples identified with the TSO500 Local App, based
on evidence that MSS tumors exhibit profiles comparable to normal tissue.'*! The baseline was

constructed as follows:
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1) A list of microsatellite sites from the GRCh38 reference genome was generated using the
“scan” module of MSIsensor-pro, producing a table of genomic coordinates, repeat length
and times, and flanking bases.

2) Homopolymer repeats 10-20 bp in length were selected using a custom R script, mirroring
the length range used by the FoundationOne CDx panel'®.

3) The MSI baseline was built using the “baseline” module of MSIsensor-pro with the selected
microsatellite sites and the DNA processed reads from the MSS cohort (minimum required:
20 samples). Only microsatellite loci with sufficient coverage (=100 reads) were included.
For each locus, an instability threshold (probability of deletion) was estimated from the

reference cohort®.

Sample analysis: After DNA processing, aligned reads (BAM) and the MSI baseline are used to
quantify polymerase slippage events at microsatellite loci. Only loci with adequate coverage in the
sample (=100 reads by default) are assessed. MSIsensor-pro classifies each locus as unstable if the
calculated probability exceeds the predefined baseline threshold. Finally, an MSI score per sample is

calculated as the percentage of unstable loci among all evaluated microsatellites®.

Because MSI is a hallmark of MMR deficiency'®, ClinBioNGS also includes a summary of small
variants detected in MMR-related genes. These genes are defined using curated gene sets from the
Molecular Signatures Database (MSigDB) collections'*® (Supplementary Table 7), providing

complementary information to support MSI interpretation.

Both the MSI score and the list of MMR gene mutations are included in the final interactive HTML

report.
3.1.11. Processing of final results

3.1.11.1. Generation of a variant registry

Upon completion of the analysis, ClinBioNGS generates two types of SQLite databases using the

DBI R package'** to systematically store and organize results.

First, a run-specific database is created. This includes a separate table for each type of alteration and

compiles results from all samples within the run.

Second, a global variant registry is built by aggregating selected information from the run-specific
databases, including:

e Sample metadata.

e DNA and RNA QC metrics.

e Small variants that passed the calling step (flagged as “PASS”).
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e Gene- and arm-level CNAs classified as non-neutral (i.e., AMPs and DELSs).
e High-confidence RNA alterations (flagged as “OK”).
e TMB and MSI scores.

The registry also calculates the frequency of each variant across all analyzed samples, to track

recurrence.

The file path of each run-specific database is recorded within the global registry. When a new run is
processed, ClinBioNGS automatically retrieves existing paths, integrates newly detected variants

with previously stored ones, recalculates variant frequencies, and updates the registry accordingly.

3.1.11.2. Generation of a comprehensive report of results

All processed tables and visual outputs are compiled into a self-contained, interactive HTML report
using the flexdashboard R package'?®. An example report is available in the ClinBioNGS GitHub
repository.

The report provides a user-friendly interface for exploring the results and is organized into multiple
sections:
e Main results: A summary overview highlighting key findings, including Tier I-III variants
and biomarker scores (TMB and MSI).
e Alteration-specific sections: For each type of variant (small variants, CNAs, gene fusions,
splice variants), the report provides:
o An overview with top-tier variants, variant statistics (e.g., counts in each flag and
tier categories), and associated clinical evidence.
o Visualization subsections with variant-specific plots.
o Interactive tables with filtering and export options for detailed exploration.
e Biomarkers section: Includes dedicated subsections for TMB and MSI results:
o TMB subsection: Displays the calculated TMB score along with the TMB trace
table, listing all evaluated small variants.
o MSI subsection: Shows MSI metrics and a table of small variants in MMR-related
genes to support MSI interpretation.
e Sample QC section: Summarizes patient and sample metadata (e.g., tumor type, TP, sex,
age), as well as global DNA and RNA QC metrics. Each sample is assigned a color-coded

QC status. Additional subsections include coverage-specific tables and plots.

The HTML report is designed for seamless navigation, interpretation, and sharing of results, making

it a key output for both clinical and research applications.
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3.1.12. Installation, configuration, and structure of the pipeline

3.1.12.1 Installation

To run the pipeline, only Nextflow and Apptainer must be installed on the system. Please refer to the

official documentation for instructions on installing these dependencies.

To install the pipeline, clone the public GitHub repository and make the executable scripts available:

nextflow clone raulmarinm/ClinBioNGS
cd ClinBioNGS
chmod +x bin/*

After cloning the repository, two setup modules are available to automatically download the required
container images (Supplementary Table 1) and general resource files (Supplementary Table 2):

e To download Apptainer images:

nextflow run main.nf --preparelmages --runName setup

e To download general resource files only:

nextflow run main.nf --resourcesOnly --runName setup
rm -r work # optional: delete intermediate files to save space

This step prepares general resources (approximately 200 GB). Panel-specific resources (e.g.,
manifest files) can be automatically generated as needed during execution. To avoid delays during
the first full analysis, it is advisable to first execute the pipeline with --resourcesOnly to pre-generate

any panel-specific resources. Then, run the full analysis.

3.1.12.2. Configuration

The configuration of ClinBioNGS is modular and organized across multiple files:
o nextflow.config: It defines global defaults and Nextflow profiles.
e base.config: It specifies computational resource allocations.

e modules.config: It sets process-specific options.

Additionally, profile-based configurations (via -profile) allow customization for specific

computational environments (e.g., “sge”, “slurm”) and NGS panels (e.g., “ts0500”, “opa”, “oca”).

For unsupported panels, users can define a custom.config file called by “custom” profile.

To initiate a run, users must define the following parameters:
e —-projectDir: Path where output files will be saved.
e -—dataDir: Directory to store processed data (e.g., FASTQ, BAM, or VCF).

e —runName: A unique identifier for the analysis.
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e -—startingDataDir: Directory containing the input sequencing data. Supported formats
include:

o uBAM or FASTQ files: the directory may contain files named
<sample> <DNA/RNA>*bam or <sample> <DNA/RNA>*fastq*. Symbolic
links are supported. Set --startingDataType to “FASTQ” (default) or “BAM”.

o Illumina BCL directory (e.g., TSO500): contains raw BCL files and a
SampleSheet.csv. Set --startingDataType to “BCL”.

o lon Torrent results directory (e.g., OPA, OCA): should contain *tarxz files under
Final Results Files/, including uBAMs (*rawlib.basecaller.bam) and auxiliary
files. Set --startingDataType to “BAM” and add --preparelontorrentBam if pre-
processing is needed (this is pre-configured in panel profiles).

o -—sampleSheet: A CSV file describing sample identifiers. Multiple options are supported:

o Manual input: Users can prepare a sample sheet manually (examples provided in the
GitHub  repo). If it is saved at the  default location
Jresources/sampleSheets/SampleSheet <runName>.csv, it 1is automatically
detected.

o Illumina BCL directory: A standard SampleSheet.csv is typically included and can
be used directly or placed in the default directory.

o lon Torrent (OPA/OCA): The sample sheet can be automatically generated from --
startingDataDir using the Info.csv file. In this case, specify --
preparelontorrentSamplesheet (this is pre-configured in panel profiles).

e For custom panels, specify a custom --manifestDir to define the location of panel-specific
manifest files. A recommended structure is ./resources/manifests/<seqPanel>/, containing

the required --dnaManifest and --rnaManifest files. Update pipeline parameters accordingly.

The pipeline uses a tag-based system to allocate computing resources (e.g., CPU, memory, execution
time), with tags including “min”, “low”, “med”, “high”, and “extra”. If resource limits are exceeded,

the pipeline automatically retries the task with increased allocation.

In summary, ClinBioNGS provides a modular, controlled setup process with flexible profile options

and user-defined metadata, enabling easy deployment in clinical and research settings.

Example: TSO500 analysis on a SLURM cluster

nextflow run main.nf -profile slurm,tso500 \
--runName TS0500 RUN \
--projectDir /mnt/projects/ClinBioNGS/output \
--dataDir /mnt/projects/ClinBioNGS/data \
--startingDataDir /mnt/illumina_runs/TS0500 Run/BclDirectory
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Example: Custom panel analysis on an SGE cluster

nextflow run main.nf -profile sge,custom \
--runName customPanel RUN \
--projectDir /mnt/projects/ClinBioNGS/output \
--dataDir /mnt/projects/ClinBioNGS/data \
--startingDataDir /mnt/data/custom_samples \
--sampleSheet ./resources/sampleSheets/SampleSheet customPanel RUN.csv

3.1.12.3. Structure
Pipeline source

The ClinBioNGS pipeline is hosted in a public GitHub repository and is organized to be fully
compatible with Nextflow. Its directory structure is modular and clearly separated into configuration
files, executable scripts, and predefined resource folders. A summary of the pipeline’s source
structure is presented in Table 17.

Table 17. Overview of the ClinBioNGS source directory structure.

This table summarizes the main files and folders included in the repository, along with a brief description of their contents.
Files/Folders Description

main.nf Main Nextflow script that defines the overall workflow execution logic.

nextflow.config Global configuration file that defines default parameters and loads specific configuration files.
bin/ Contains external scripts (e.g., R) that are executed as part of the workflow processes.

conf/ Configuration directory with global, module-specific, and panel-specific settings.

docker/ Custom Dockerfiles for selected tools (e.g., Octopus, Pisces, R).

modules/ Nextflow scripts organized into:

e process/: individual pipeline processes.
o subworkflow/: pipeline subworkflows.

resources/ Directory containing user-defined and predefined metadata or resource files, structured as
follows:
e User-defined metadata files: Samplelnfo.csv, TumorNames.csv, and WhitelistGenes.csv
e annotation/: variant annotation files (e.g., GENIE)
e cna/: CNA-related files such as panel-specific baselines
o fusion/: fusion-related files (e.g., VCF headers, curated whitelist)
o manifests/. panel-specific manifest files
o msi/: MSl-related files including the required baseline
o sampleSheets/: run-specific sample sheets
o smallVariant/: predefined files for small variant analysis (e.g., hotspot, recurrent,
blacklist)
e splicing/: splicing-related files (e.g., curated whitelist, VCF header)

Pipeline outputs

When the pipeline is executed, all output files are organized into structured directories based on their

type and purpose. The key output locations and contents are described below:
e Temporary files: Each process generates files stored within its dedicated working directory
under the automatically created work/ folder (in the current working directory). Once the
process is completed, only essential results are retained. The work/ folder can be deleted after

the run to conserve disk space.
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Resources files: Any newly generated resources (e.g., panel-specific target files, annotation

data) are stored in the resources/ directory within the main ClinBioNGS folder.

Global variant registry: The global SQLite database that tracks all detected variants and

metadata is stored at the root of the project directory (<projectDir>/).

Run-specific output files: Each execution of the pipeline generates a structured output

directory under the specified run name (--runName), typically inside the <projectDir>/.

These outputs include:

O

Analysis/: Located at <projectDir>/<runName>/, this folder contains the main
analytical results.
= A subdirectory is created for each sample.
= Within each sample folder, subfolders are organized by pipeline module
(e.g., 01 FASTQ PROCESSING/, 02 FASTQ QC/, 03 ALIGNMENT)).
= Each subfolder includes outputs such as QC tables, variant files, and
associated visualizations.
Data/: Located at <dataDir>/<runName>/, this directory contains processed data
files in standard formats.
= Subdirectories are created per sample.
= FEach sample folder contains separate folders by data type (e.g., BAM/,
FASTQ/, VCF/), containing the final processed files.
Logs/: Located at <projectDir>/<runName>/, this folder stores all Nextflow-related
log files.
* Organized by subworkflow and then by DNA or RNA processes.
= Each process-specific folder includes all log files (.err, .log, .out, .run, .sh)
for every sample.
Results/: Located at <projectDir>/<runName>/, this folder contains the final, user-
friendly output files.
*  MultiQC HTML reports summarizing DNA and RNA QC metrics.
= Interactive HTML reports per sample.
»  The run-specific SQLite database.
» Includes a folder for each sample, with Excel files summarizing all QC
metrics and detected variants by alteration type (SNVs/Indels, CNAs,

fusions, splice variants).
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3.2. Cross-panel small variant validation on reference datasets

3.2.1. Dataset description

To assess the performance of ClinBioNGS in detecting small variants across multiple NGS panel
technologies, publicly available reference data from the SEQC2 Consortium was analyzed'*!!!, This
dataset includes multi-panel sequencing of a genomic reference sample ("Sample A") engineered to
contain both known positive (KP) variants—introduced at various VAFs—and known negative (KN)

positions, which are high-confidence wild-type sites within coding regions.

Each panel was sequenced independently by a different laboratory, with four technical replicates per
panel. Of the eight initially considered panels, two were excluded due to either unclear UMI
processing requirements or their non-commercial nature. The remaining six commercial panels
included in the analysis were (Supplementary Table 8):

e Agilent Custom Comprehensive Cancer Panel v2 (AGL).

e Burning Rock DX OncoScreen Plus (BRP).

e Integrated DNA Technologies xGen Pan-Cancer Panel (IDT).

e iGeneTech AlOnco-seq (IGT).

e [llumina TruSight Tumor 170 (ILM).

e Thermo Fisher Oncomine Comprehensive Assay v3 (TFS).

The reference dataset included:
e A BED file (hg38) defining CTR regions, covering validated KP and KN sites.
e A VCEF file listing over 40,000 KP variants for Sample A (originally in hg19, lifted to hg38).
e A BED file (hg38) containing over 10 million KN positions for Sample A.

Panel-specific resources consisted of:
e Raw sequencing files (FASTQ or uBAM) downloaded from NCBI BioProject
PRINA677997'% (via AWS S3).
e Panel-specific variant call files (VCFs), lifted to hg38 coordinates.
e BED files defining panel target regions (hg19).

3.2.2. ClinBioNGS analysis

For each panel, custom configuration files were created to ensure accurate execution of ClinBioNGS.
These configurations are available in the pipeline’s GitHub repository. Key modifications included:
e Only the small variant analysis module was enabled. CNAs, TMB, MSI, and RNA-based

analyses were disabled.



88

3. Methodology

Input BED files defining the panel regions were converted to hg38 coordinates using the --
liftoverManifest option.

For AGL panel, UMI sequences were extracted from an additional FASTQ file (R3) using -
-fastqUmiTransfer.

For ILM, FASTQ files were merged across sequencing lanes via --fastgMergeLanes.

For BRP and IGT, trimming and filtering parameters were aligned with those described in
the SEQC2 supplementary methods'®.

For TFS (Ion Torrent data), platform-specific options were applied, including handling of
single-end uBAM files and the incorporation of blacklisted regions. Panel BED files were

also lifted to hg38 (--liftoverManifest, --liftoverVariantBlacklistBed).

Each pipeline run required:

A sample sheet listing the sample identifiers in the format “<sample> DNA”. These files are
found in the pipeline’s repository.

A raw data directory (--startingDataDir) containing either FASTQ or uBAM files named
accordingly (<sample> DNA%*.fastq.gz or .bam). Symbolic links were used to point to the

original files for consistency and ease of access.

3.2.3. Output and performance evaluation

Following small variant detection, the variant calls produced by ClinBioNGS and the original

commercial pipelines were compared against the SEQC2 reference dataset to assess performance.

The evaluation process involved the following steps:

Extraction of KP variants from the reference VCF file.
Compilation of detected variants and associated metrics from each analysis.

Annotation of each variant with CTR and KN regions.

To ensure consistency and reliability, the following filters were applied:

Only target regions overlapping CTRs and outside blacklisted regions were considered.

KP variants had to meet panel-specific VAF thresholds:

o AGL =1 %.
o BRP >1%.
o IDT =2%.
o IGT = 1%.

o ILM >2.6%.
o TFS >22.5%.
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e Detected variants were required to
o Have a “PASS” status (or no filter) in the VCF.
o Meet minimum read support thresholds:
= AD ALT>S5.
= DP=>10.
*  VAF > panel-specific threshold.

The following metrics were computed:
e True positives (TPs):
o SNVs: exact positional and allelic match with KP set.
o InDels: matched by overlapping position.
e FNs: KP variants not detected by the pipeline.
e FPs: Variants identified within KN regions.

Based on these, the key performance indicators were calculated:
e Precision = TP/ (TP + FP).
e Recall=TP/ (TP + FN).

e F1 Score =2 x (Precision X Recall) / (Precision + Recall).

These metrics allowed for a robust comparison of variant calling performance across multiple NGS

panels and pipelines.

3.3. Cross-panel benchmarking in real-world clinical cohorts.

3.3.1. Dataset description

To evaluate the performance of ClinBioNGS in a real-world clinical setting, over 2,000 tumor
samples sequenced using three commercial pan-cancer NGS panels (Supplementary Table 8) were
analyzed. The data was provided by participating clinical institutions, each contributing raw
sequencing files, manifest files, and the corresponding results from their established commercial
analysis pipelines:

e Institut Catala d’Oncologia and Hospital Universitari de Bellvitge contributed data for the

[lumina TSO500 and Thermo Fisher OPA panels.
e Hospital Clinic de Barcelona provided data for the Thermo Fisher OCA panel.

All participants provided written informed consent for NGS testing as part of their clinical evaluation.
The project was approved by the Ethical Committee of the participating hospitals and conducted in

accordance with the Declaration of Helsinki.
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For the TSO500 panel, raw data in BCL format, panel manifest files (in hg19 coordinates), and results
from the TSO500 Local App (v2.2.0.12) were collected.

For the OPA and OCA panels (Ion Torrent platform), uBAM files and panel-specific resources were
obtained from the Torrent Suite software (v6.6.2.1), using the following assay versions:

e OPA: Oncomine™ Precision GX5 DNA and Fusions v3.2.0.

e OCA: Oncomine™ Comprehensive v3 GX5 DNA and Fusions v5.0.2.

This diverse and clinically annotated dataset enabled robust benchmarking of the pipeline across

different sequencing technologies and analysis environments.

3.3.2. ClinBioNGS analysis

Panel-specific configuration files were developed to ensure accurate analysis with ClinBioNGS.
These configurations are publicly available in the pipeline’s GitHub repository. Several adjustments
were made to adapt the pipeline beyond its default settings:

e TSO500 (Illumina):

o The BCL folder was provided as the input directory, from which FASTQ files and
the sample sheet were automatically generated (--startingDataDir <bclDir>, --
startingDataType BCL).

o Manifest files were converted to BED files (--manifestToBed) and lifted over from
hg19 to hg38 (--liftoverManifest).

o UMIs were extracted from DNA samples during the BCL Convert step (--umiDna),
with delimiter adjustments applied as needed (--fastqChangeUmiSep).

e OPA and OCA (Ion Torrent):

o The Torrent Suite results directory was used as the input (--startingDataDir), from
which all relevant resources were extracted, including manifest files (--
preparelontorrentManifest), sample sheet (--preparelontorrentSamplesheet),
hotspot BED (--preparelontorrentVariantHotspots), and uBAM files (--
preparelontorrentBam, --startingDataType BAM).

o Manifest files (BED) were lifted over to hg38 coordinates (--liftoverManifest).

o As these panels rely on single-end (--singleEnd), amplicon-based (--amplicon)
sequencing from lon Torrent platform (--seqPlatform IonTorrent), adequate pre-
processing steps were applied.

o Alignments were performed using TMAP parameters from the commercial pipeline.

o For OPA, which includes UMIs in DNA library (--umiDna), deduplication was
performed using the extracted UMI information. This step was not applied to OCA,

as it does not include them.
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o A blacklist BED file, adapted from the SEQC2 Thermo Fisher panel, was used to
flag small variants in problematic regions.
o TMB and MSI analyses were not performed on lon Torrent data due to platform-

specific limitations.

3.3.3. Output and comparative analysis

After pipeline execution, results from both ClinBioNGS and the commercial pipelines were collected
for comparative analysis. Only samples that passed the QC criteria—generated by ClinBioNGS’s QC

module (Table 6)—were included. QC criteria are summarized in Supplementary Table 9.

For cases sequenced in multiple runs, the sample with the highest total read count was selected. Final
cohort sizes were as follows:

e TSO500: 755 samples (Npna = 655, Nrna = 687).

e OPA: 674 samples (Npna = 624, Nrna = 588).

o  OCA: 595 samples (Npna = 538, Nrna = 508).

To harmonize the commercial pipeline results for comparison:
e Gene symbols were updated to match HGNC nomenclature.
e C(Coordinates were lifted over from hg19 to hg38.
e Duplicate variants per sample were removed.
e Hotspot and oncogenic variants were annotated.

e CIViC clinical evidence was linked where applicable.

Variants included in the comparison:
e (linBioNGS
o Small variants with primary “PASS” flag (i.e., no calling-related filter; Table 9).
o Non-neutral CNAs in genes covered by >4 bins in the panel-specific CNA baseline.
o Fusions and splice variants with primary “PASS” flag (i.e., no “LowSupport” flag;
Table 14 and Table 16). Splice variants with >1000 supporting reads in OCA panel.
e Commercial pipelines:
o TSO500:
= Reported small variants in CombinedVariantOutput.tsv (final results).
=  (CNAs with ALT field not equal to “.”.
= Non-intragenic fusions labeled “KEEPFUSION”.
= Splice variants in target genes from the final results.
o OPA/OCA:
= Variants marked as “PRESENT”.
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Cancer-related subset (applied to the filtered variants above):
e Small variants annotated as oncogenic, hotspot, or with CIViC evidence.
e (CNAs with >0.5% frequency in GENIE or annotated in CIViC.
e Gene fusions present in GENIE, MitelmanDB, or CIViC.

e Splice variants annotated in CIViC.

Comparison methodology:
e Small variants (SNVs/InDels): matched by genomic position or AA change.
e (CNAs: matched by gene and AMP/DEL status.
e Fusions: matched by gene partners.

e Splice variants: matched by splice sites (and also by exon for TSO500).

Variant-level concordance between pipelines was calculated and summarized using alluvial plots,

illustrating the overlap in detected variants.

Moreover, Pearson coefficients and linear regression lines were computed and plotted to assess the
correlation of gene-level copy-number ratios and estimated CN values between pipelines. TMB-high
(>10 mut/Mb) and MSI-high (>20% unstable loci) classifications were also compared in TSO500

samples.
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4. RESULTS

4.1. ClinBioNGS enables end-to-end analysis of somatic NGS cancer

panels

4.1.1. Workflow design enables comprehensive analysis

This thesis presents ClinBioNGS, an open-source, comprehensive bioinformatics pipeline designed

for the analysis of somatic NGS cancer panels. It provides a fully automated, portable, and end-to-

end solution—covering raw data pre-processing through to variant detection, annotation,

prioritization, and reporting. The pipeline leverages state-of-the-art open-source tools and curated

external resources (Supplementary Table 1 and Supplementary Table 2). A schematic

representation of the ClinBioNGS workflow is shown in Figure 13.
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Figure 13. Overview of the ClinBioNGS workflow.

The top section (green box) illustrates the pre-processing of raw sequencing data (DNA and RNA), including FASTQ
handling, alignment, deduplication, and QC. The middle section (blue box) shows the DNA analysis module, which detects
small variants (SNVs/InDels), CNAs, MSI, and TMB. The bottom section (orange box) outlines the RNA analysis module,
which includes the detection of gene fusions and splice variants. Outputs from QC, DNA, and RNA analyses are

consolidated into a variant registry and a self-contained, interactive HTML report for each sample.
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The pipeline is highly flexible and supports DNA and RNA pre-processing across a broad range of
experimental settings, including variations in:

e Panel design: hybrid-capture or amplicon-based;

e Library preparation: paired-end or single-end; with or without UMIs;

e Sequencing platforms: Illumina or [on Torrent technology;

e Sample types: tumor tissue, cell lines, or PDXs;

e Input formats: FASTQ, BCL, or uBAM files.

ClinBioNGS performs a comprehensive quality assessment by calculating global QC metrics and
evaluating gene- and exon-level coverage. The pipeline supports full analysis of distinct somatic
alterations—including small variants, CNAs, gene fusions, splice variants, and, when panel design
allows, TMB and MSI. All findings are stored in a variant registry, enabling longitudinal tracking
and knowledge reuse. Upon completion, the results for each sample are integrated into a self-

contained, interactive HTML report optimized for clinical review.

4.1.2. Visualizations enhance interpretability of results

In addition to comprehensive QC metrics and variant outputs, ClinBioNGS generates diverse
informative visualizations. The following sections present representative real-case examples, derived
from [llumina TSO500 panel data, to illustrate how these plots help contextualize genomic alterations

and facilitate clinical interpretability.

4.1.2.1. Coverage visualizations enable sequencing quality assessment

ClinBioNGS produces a suite of informative coverage plots at multiple levels of resolution. The

following examples correspond to a non-small cell lung cancer (NSCLC) sample.

A genome-wide overview of gene-level coverage is provided for all targeted regions (Figure 14).
This plot enables rapid evaluation of overall panel performance by displaying the mean coverage for
each target gene across all chromosomes. Chromosome-specific plots (Figure 15) are provided to
localize target genes within each chromosome. These representations allow users to assess capture
uniformity across chromosomes. Poorly covered genes or those included in a user-defined whitelist

are also highlighted to facilitate their evaluation.
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Figure 14. Genome-wide gene coverage visualization (TSO500 DNA data in NSCLC).

Each point represents the average coverage of an individual target gene. A dark grey line optionally shows the mean
coverage per chromosome. Genes in a user-defined whitelist are highlighted in orange and labeled above the coverage
track. Genes falling below a user-defined minimum coverage threshold (indicated by a red horizontal line) are labeled in
red along the bottom of the plot.
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Figure 15. Chromosome-specific gene coverage plot for chr17 (TSO500 DNA data in NSCLC).

Each point represents the mean coverage of a targeted gene on the selected chromosome. A light grey line shows the average
coverage of all targeted regions in that chromosome. Gene symbols are displayed along the bottom. Genes in the whitelist
are highlighted in orange, and those below the coverage threshold are annotated in red.

For high-resolution assessment, ClinBioNGS generates single-gene coverage plots, which are
especially useful for evaluating intragenic coverage variability. By default, these plots are created
only for genes in a user-defined whitelist, though full-panel plotting can be enabled for smaller
panels. Each plot shows gene structure, coverage across the genomic region, and target capture
regions from the manifest. Figure 16 presents an example for the ERBB2 gene using both DNA and
RNA data from the same sample. In DNA data, coverage often extends to intronic and off-target
flanking regions, while RNA coverage presents narrower peaks reflecting transcript structure and

exon-exon junctions.

These multi-resolution coverage visualizations—spanning genome, chromosome, and gene levels—
can facilitate robust evaluation of sequencing performance, data quality, and capture efficiency of

target genes.
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Figure 16. Single-gene coverage plots for ERBB2 (TSO500 DNA and RNA data in NSCLC).

(A) DNA-based coverage. (B) RNA-based coverage. Gene structure (top) is based on the MANE SELECT transcript, with
coding (black) and non-coding (grey) exons labeled. Per-base coverage across the gene is shown in the middle. Panel-
defined target regions are shown below as black segments.

4.1.2.2. Gene-centric visualizations support contextual interpretation of small variants

ClinBioNGS produces small variant visualizations that position mutations within gene structures to
aid interpretation. Each variant is provided with the following information: observed VAF, amino
acid change, oncogenicity classification (ClinGen/CGC/VICC), clinical tier (AMP/ASCO/CAP),

and occurrence in the GENIE cancer registry.

Representative examples are shown in Figure 17, illustrating a glioma case with four missense 7P53
variants (Figure 17A) and a NSCLC sample with a well-known BRAF V600E mutation (Figure
17B). These gene-centric maps help contextualize mutations within the full gene structure and
mutational landscape:

o TSGs like TP53 often show dispersed inactivating mutations clustered in functional regions.

e Oncogenes such as BRAF typically display hotspot activating mutations at specific loci.

Additionally, the inclusion of known oncogenic mutations from the GENIE registry enables users to

assess the broader clinical and biological significance of observed variants.
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Figure 17. Visualization of small variants mapped to their gene locus (TSO500 DNA data).

(A) Glioma with four missense 7P53 variants and (B) NSCLC with BRAF V600E mutation. The central panel shows gene
structure from the MANE SELECT transcript, with annotation of the covered exons. Detected variants are displayed in the
upper section with their corresponding VAFs and AA changes, color-coded by predicted oncogenicity. AMP/ASCO/CAP
classifications are indicated with symbols. A red line marks the minimum user-defined VAF threshold. Known oncogenic
variants from the GENIE registry are shown below the gene structure, with the height reflecting cohort counts.

4.1.2.3. Multi-level CNA visualizations enhance comprehensive analysis

CNAs are visualized at multiple levels to support both global and fine-grained interpretation:

o Figure 18 shows genome-wide CNA patterns, ideal for identifying broad events such as
CNAs in short arms (i.e., “p”) or long arms (i.e., “q”) of chromosomes. The example features
a uveal melanoma case, where canonical events in this tumor type—such as 3p/q, 6q, and
8p losses, and 8q gain'**—are clearly visible.

e Figure 19 presents a chromosome-specific view (chr8 in the same case), facilitating
inspection of CNA status in specific target genes.

o Figure 20 shows a high-resolution CNA profile for the MET gene, including copy ratios for
individual bins and the observed read coverage, supporting detailed assessment of focal
events and intra-gene variability. In this case we can observe that copy ratios are generally

uniform along the genome.
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Figure 18. Genome-wide CNA visualization (TSO500 DNA data in uveal melanoma).

Each point represents a gene-level copy ratio, color-coded by CNA classification. Thresholds for CNA classification are
shown as horizontal lines. Clinically relevant CNAs are labeled. Arm-level CNAs are displayed as colored segments along

the x-axis.
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Figure 19. Chromosome-specific CNA results for chr8 (TSO500 DNA data in uveal melanoma).

Chromosome-level CNA plot for chr8. Each point corresponds to a gene’s copy ratio, color-coded by classification. Gene
symbols are displayed and colored by CNA status.
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Figure 20. CNA profile of the MET gene (TSO500 DNA data in uveal melanoma).
The gene structure (middle panel) is annotated from the MANE SELECT transcript. Individual bin-level copy ratios are
shown (top panel) with a weighted mean overlay. The lower panel shows per-base coverage with panel-defined target

regions indicated in black.

4.1.2.4. RNA-based visualizations facilitate functional assessment of results

ClinBioNGS generates detailed visualizations for RNA-based alterations to support the interpretation

of gene fusions and splicing events.
e Figure 21 shows an example of the EML4-ALK fusion in a NSCLC sample. The plot
displays predicted breakpoints and coverage profiles for both fusion partners. We can

observe the selective expression in the 3’ region of ALK, which harbors the oncogenic kinase
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Figure 21. Visualization of EML4-ALK fusion (TSO500 RNA data in NSCLC).

Coverage profiles of both fusion partners are shown with gene structure based on MANE SELECT transcripts. The fusion
breakpoint and fusion region are marked with a red dashed line. Key metrics and the variant name appear at the top. Target
regions from the panel manifest are shown below the coverage track.



4. Results 101

e Figure 22 illustrates the METex14 event in NSCLC, a known actionable alteration'>*. Splice
variants are depicted with sashimi-style plots displaying splice junction reads and the
observed coverage in the affected genomic locus. We can observe the drop in coverage over
the skipped exon 14.

METx14del (ENST00000397752.8) AF=0.6442
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Figure 22. Visualization of METex14 variant (TSO500 RNA data in NSCLC).

Exon structures, splice junctions, and supporting read counts are displayed. Blue arcs denote canonical junctions, while the
red arc highlights the aberrant, cancer-associated splice event. The variant name and estimated VAF are noted at the top.
The observed coverage across the gene locus and panel-defined target regions are also included below the transcript
structure.

Together, these plots provide indirect evidence of gene expression and help contextualize the

functional effect of RNA alterations detected by ClinBioNGS.

4.1.3. Interactive report supports exploration of results

ClinBioNGS consolidates prioritized findings, QC metrics, and visualizations in a self-contained
HTML report. This interactive report serves as the main deliverable of the pipeline, offering a user-

friendly and centralized interface for exploring complex genomic results on a per-sample basis.

The following subsections illustrate representative screenshots of the report’s core features from the

previous TSO500 cases. A composite HTML report is also available in the pipeline's repository.

4.1.3.1. Summary section highlights key results

The report opens with a summary section that highlights the most relevant findings at a glance
(Figure 23). This overview is structured as a grid, where each column represents a specific variant
type (e.g., SNV/Indel, CNA, fusion, splicing), and each row corresponds to the assigned clinical tier
(Tier I-III). Additional biomarker results, such as TMB and MSI scores, are also displayed in a
column, enabling quick assessment of genomic indicators associated with therapeutic response.
Sample metadata—including run name, sample ID, tumor type, and panel—are displayed in the

upper-left corner and remain visible during navigation.
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ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500 Main Results SNVandInDel +  CNA~ Fusion ~ Splicing ~ Biomarkers v Sample QC ~

SNV/InDel CNA Fusion Splicing Biomarkers

Svariants Tierl-11I 10 gene CNAs Tierl-lll 1 fusions Tierl-1ll 1variants Tierl-l1l TMB & MSI

BRAF_V600E 0 CNAs EML4::ALK V1 METx14del 423.5 mut/Mb

Tier| Tierl Tierl Tierl TMB estimate

0 variants 0 CNAs 0 fusions 0 variants 0.6% MSI

Tier Il Tier ll Tier Il Tier Il MSI| estimate

4 Tier Il 10 Tier I 0 fusions 0 variants

Genes: TP53 ELOC AMP, LYN AMP, MYC AMP, Tierlll Tier
NBN AMP, PREX2 AMP, PRKDC
AMP, RAD21 AMP, RECQL4 AMP,
RUNX1T1 AMP, SOX17 AMP

Figure 23. Summary section of the ClinBioNGS report.

Columns represent variant types, and rows correspond to variant tiers (Tier I-III). The final column summarizes TMB and
MSI scores. Clickable boxes link to specific report sections. Sample metadata is displayed in a fixed panel at the top left,
and navigation tabs provide access to all major sections.

Each colored box in the summary view is interactive, allowing users to click and access the
corresponding visualizations or detailed tables. Additionally, navigation tabs at the top of the report

enable direct access to each report section.

4.1.3.2. QC section supports sample assessment

The “Sample QC” section of the ClinBioNGS report provides a centralized view of key sample
characteristics and sequencing quality metrics. It begins with an overview subsection that
summarizes sample metadata (e.g., tumor type, tumor whitelist inclusion, TP, sex, age), alongside
calculated DNA and RNA global QC metrics (Figure 24). Each sample is assigned a color-coded QC
status for DNA and RNA to facilitate rapid assessment:

e (Green indicates acceptable values across all metrics.

e Orange highlights potential issues (warning).

e Red indicates any failed QC metric.

These colors are determined based on user-defined thresholds configured within the pipeline and
apply independently to DNA and RNA metrics. A summarized QC box at the top of the section

reflects the overall QC status for each sample.

Additional tabs provide access to detailed coverage visualizations and tables. The coverage

visualizations shown in Figure 14 to Figure 16 are fully integrated into specific subsections.
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ClinBioNGS-RUNO01: SAMPLEO1 | NSCLC | TS0500 Main Results SNVandInDel v  CNA~ Fusion ~ Splicing ~ Biomarkers ~ Sample QC ~

SAMPLEO1 DNA RNA NSCLC (DOID:3908) | LUNG Genome visualization

Sample ID QC status QC status Tumor Whitelist DNA Gene visualization
RNA Gene visualization
DNA CovByGene datatable

RNA CovByGene datatable
TOTAL_READS PCT_ALIGNED PCT_ONTARGET MEDIAN_READ_LENGTH MEDIAN_INSERT_SIZE MEDIAN_COVERAGE PCT_0.4X_MEAN

DNA CovByExon datatable
91M 94.9% 14.7% 92 96 721 93% 9 RNACovByExon datatable

3

TOTAL_READS PCT_ALIGNED ONTARGET_READS PCT_ONTARGET MEDIAN_READ_LENGTH MEDIAN_INSERT_SIZE ALIGNED_READS HQ_ALIGNED_READS

21M 91.1% 1M 89.8% 101 164 19M 1M {

Figure 24. Overview of the Sample QC subsection in the ClinBioNGS report.
The top row displays collected sample metadata (e.g., sample ID, tumor type with DOID, tumor-specific whitelist inclusion,
estimated TP, sex, and age). If a field is missing, “ND” (No Data) is displayed. Global QC metrics are shown in separate
tables for DNA and RNA, with horizontally scrollable views. Metrics are colored based on configured thresholds: green
(pass), orange (warning), red (fail). The most severe color across all metrics determines the final QC status shown at the
top of the section. Tabs are available to access additional coverage-related content.

ClinBioNGS also generates interactive per-gene and per-exon coverage tables for both DNA and
RNA data. Figure 25 shows examples of these tables, which are equipped with powerful features to
enhance usability:

e Column-based filtering (checkboxes, value entry, sliders for ranges).

e Full-text search bar.

e Column sorting and reordering.

e Row highlighting.

e Export of filtered tables to CSV or Excel.

Two examples are illustrated in Figure 25:
e Figure 25A shows a DNA per-gene coverage table filtered to display only genes included in
a user-defined whitelist. The coverage for different loci categories (e.g., target regions,
coding regions, exons) and coverage statistics are presented.
e Figure 25B shows a per-exon RNA coverage table for the MET gene, filtered to show exons
12-16 from the METex14 case (Figure 22). The highlighted exon 14 row shows a visibly

reduced mean coverage, supporting the splicing event identified in the sashimi plot.
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ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500 MainResults ~ SNVandinDel - CNA~  Fusion~  Splicing -  Biomarkers~  SampleQC ~

WHITELIST gene P pe—

TRUE [ FALSE
Copy csv Excel Search:

Low coverage
GENE TARGET CODING EXON WHOLE MIN MAX PCT_5X PCT_10X PCT_30X PCT_50X PCT_100X PCT_200X
0 TRUE O FALSE

ALK 754 76 619 13 23 1182 100 100 100 99 97 96
GENE

BRAF 682 828 304 55 13 1317 100 100 99 97 93 89

ALK BRAF EGFR
ERBB2 KRAS MET EGFR 798 861 323 94 4 2074 100 100 99 99 98 97
P53 ) - )
ERBB2 804 863 E] 220 a 1427 100 100 98 97 97 9%
Target coverage KRAS 684 706 132 94 141 1145 100 100 100 100 100 100
—— MET 1229 1286 795 79 481 1765 100 100 100 100 100 100
P53 666 841 594 285 49 1396 100 100 100 100 a7 92

Showing 1 to 7 of 7 entries (filtered from 524 total entries)

B Low coverage

) TRUE U FALSE

RNA exon coverage (only whitelist)

Copy csv Excel Search: MET
GENE
GENE  EXON  DEPTH  MIN  MAX  LENGTH  PCT_5X  PCT_10X  PCT_30X  PCT_50X  PCT_100X
MET 12 1574 1194 1984 147 100 100 100 100 100
EXON
MET 13 1847 1508 2103 157 100 100 100 100 100
12 13 14 15 16
MET] 14 760 501 895 141 100 100 100 100 100
Exon coverage
= MET 15 1300 960 1759 231 100 100 100 100 100
I
MET 16 1316 1246 1377 81 100 100 100 100 100

Showing 1 to 5 of 5 entries (filtered from 254 total entries)

Figure 25. Interactive coverage tables in the ClinBioNGS report.

Users can apply filters via the left-hand panel or the top-right search bar, and export results in various formats. (A) DNA
per-gene coverage table showing filtered whitelist genes and their mean coverage at various loci with coverage statistics.
(B) RNA per-exon coverage table for the MET gene, highlighting exon 14 with reduced coverage indicative of exon
skipping.

4.1.3.3. Alteration-specific sections facilitate tumor result exploration

ClinBioNGS organizes all tumor-related findings into dedicated sections within the interactive
report, facilitating an intuitive exploration and review of detected somatic alterations and biomarkers.
Each alteration type is presented through a common structure that includes an overview of key
findings, informative visualizations (seen in the previous section), and dynamic result tables.

Additionally, calculated biomarker scores for TMB and MSI are shown in separate subsections.

Small Variants (SNVs and InDels)

The following screenshots illustrate two core components of the “SNV and InDel” section using the
previously shown case with a Tier | BRAF V600FE and four Tier III TP53 mutations (Figure 17).
e Figure 26 shows the “Overview” subsection:
o The top panel highlights the most relevant findings, also presented in the “Main
Results” section (Figure 23).
o Middle panel provides summary statistics (e.g., assigned flags, clinical and

oncogenic classifications), using color-coded categories.
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o Bottom panel displays collected tumor-specific clinical evidence from CIViC (e.g.,
predictive, prognostic, diagnostic). Actionable associations are detected for this

tumor case (i.e., trametinib and dabrafenib for BRAF V600E in NSCLC).

ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500

Main Results ~ SNVandInDel +  CNA = Fusion = Splici Biomarkers +  SampleQC

0 Tier Il

potential clinical significance

Variant FLAGS Clinical status (AMP/ASCO/CAP) Oncogenicity (ClinGen/CGC/VICC) Tier I/l variants

4 Tierlll

unknown clinical significance

SNV/InDel

5 variants Tierl-1l

BRAF_V600E

Tier | (strong clinical significance)

PASS (N=54) OK (N=5 OK (N=5) OK (N=1 OK (N=1)
B 0K (no fags) I . N Oncogenic B 8 e veoot| N6 veooe|
- o . i1 SOMATIC (N=1 SOMATIC (N=2
— e : :
:39 N N T eroanme oo & MSH6E_F10885fs*2 <
Predictive  Prognostic  Diagnostic
ALTERATION MOLECULAR_ID LEVEL RATING EFFECT DRUG TUMOR SCORE ORIGIN
BRAF_V600E 12 A-Validated 5 Sensitivity/Response Vemurafenib skin melanoma 1378.5 Somatic
BRAF_V600E 12 A -Validated 5 Sensitivity/Response Cetuximab, Encorafenib colorectal cancer 1378.5 Somatic
BRAF_V600E 12 A-Validated 4 Sensitivity/Response Trametinib, Dabrafenib lung non-small cell carcinoma 1378.5 Somatic
BRAF_V600E 12 B - Clinical 5 Sensitivity/Response Trametinib, Dabrafenib, Vemurafenib, Cobimetinib melanoma 1378.5 Somatic
trial -

Figure 26. Overview of small variant results in the ClinBioNGS report.
Top findings, summary statistics, and CIViC clinical evidence are organized into distinct panels. Color coding is used for
quick visual reference, and tumor-specific clinical evidence is displayed at the bottom.

e Figure 27 presents the “Somatic Datatable” subsection:
o In this example some filters have been applied to show SNVs with the “OK” flag.
o Clinically relevant (Tier I/II) and oncogenic variants are prioritized and highlighted.

e Users can consult detailed annotation, apply custom filters, and export selected subsets.

ClinBioNGS-RUNO1: SAMPLEQ1 | NSCLC | TSO500

Main Results SNV and InDel - CNA ~ Fusion ~ Splicing ~ Biomarkers ~ Sample QC ~

Somatic variants (Tierl-111)

Search:| SNV

OK (no flags)

TRUE OJ FALSE

Copy csv Excel

PASS
MUTATION

AD_ALT

CLIN_STATUS ONCOGENICITY ONCO_CODES

U TRUE U FALSE

WHITELIST gene

. . 051, 052, OP1,
OK SNV BRAF VG00E 591 0.325 TierlA Oncogenic
O TRUE O FALSE @3
MMR gene
O TRUE O FALSE
OK SNV TP53 R2495M 58 0.04 Tierlll 053, 0P1, OP4
NMD escape
O TRUE O FALSE
CTR region
O 1ruE O EALSE 0K SNV TP53 V2176 309 0222 Tierlll OP1,0P4
Panel blacklist »

W uE W e Showing 1to 5 of 5 entries (filtered from 9 total entries)
Figure 27. Interactive table of somatic small variants in the ClinBioNGS report.

Variants are color-coded by clinical relevance and oncogenicity. Rows are sortable and filterable. Top-tier variants appear
at the top, and selected filters are applied to streamline review.
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CNAs

The CNA “Overview” (similar to Figure 26) is provided (Supplementary Figure 2A), along with
interactive CNA tables (Figure 28):
e Figure 28A shows gene-level CNA results:
o Visual flags and CNA classifications are color-coded (e.g., red/blue for AMP/DEL).
o Results are ranked by clinical tier and confidence flag for fast triaging.
e Figure 28B presents arm-level CNA results:
o Only altered chromosomes are displayed based on filters.
o Each row includes metrics such as mean copy ratio and frequency from the variant

registry (AC_SAMPLES, AF_SAMPLES).

ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500 MainResults ~ SNVandInDel ~ CNA~  Fusion~  Splicing~  Biomarkers =  Sample QC ~

ox oo g

—J TRUE U FALSE

Copy sV Excel Search:
CLINICAL status
FLAGS CYTOBAND GENE CNA CLASS CLIN_STATUS CN L0G2 DEPTH BINS_TARGET GENIE_CNT
TierlA O Tierip
Tieris O Tier il 3p22.2 MLH1 Tier 1B 1 -0.7649 523 21 85
O tiernc O Tier v 7q34 BRAF AMP  LowAmp TierliC 3 05314 1263 41 259
CNA 4q12 KIT AMP  LowAmp TierliC 3 0.4098 1228 33 748
AMP L) DEL 7q31.2 MET AMP LowAmp  Tier liC 3 0.7581 1682 30 958
CNA CLASS 3p25.3 VHL Tier ID 1 -1.1376 380 2 50
HighAmp LowAmp
HighDel () LowDel OK 8q21.11 ELOC AMP  HighAmp Tierlll 5 13712 2183 5 997
OK 8ql2.1 LYN AMP HighAmp  Tierlll 5 1.3295 2298 12 707

Copy number (CN) -
] 3 L 7
1 4 [ 8

B Lo Arm CNAs

AMP L) NEUTRAL

Showing 1 to 126 of 126 entries

Copy csv Excel Search:
DEL UJ CONFLICT
CHR_ARM CNA LOG2 CHROM SIDE START END AC_SAMPLES AF_SAMPLES VAR
CHROMOSOME
chrt O chrg chr1? 3p DEL -0.7047  chr3 p 1 90900000 0/0 0 3p_DEL
chiz [ chrio chr1g 3q DEL 0.7156  chr3 q 90900001 198295559  0/0 0 3q_DEL
chr3 O chril O chr1g
O chré O chriz O chr2o 6p NEUTRAL 0.0034 chré p 1 59800000 0/0 0 6p_NEUTRAL
chrs U chr13 chr21 6q DEL -0.6652 chré q 59800001 170805979  0/0 0 6q_DEL
chré [J chria O chr22
= = T NEUTRAL 0.3793 chr7 1 60100000 0/0 0 7p_NEUTRAL
chr7 O chris O chix - g ) 5
chig O chr16 1q AMP 0.432  chr? q 60100001 159345973 0/0 0 Tq_AMP
SIDE 8p DEL -0.6928 chr8 p 1 45200000 0/0 0 8p_DEL
Op Ogq gq AMP 1.5296 chr8 q 45200001 145138636 0/0 0 Bq_AMP

Showing 1 to 8 of 8 entries (filtered from 45 total entries)
Log(2)-ratio
ETR m -

Figure 28. Interactive tables of CNA results in the ClinBioNGS report.
(A) Gene-level CNA results include color-coded CNA classification and QC flags, and the annotated metrics. (B) Arm-
level CNA results filtered to show chromosomes with non-neutral events.
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RNA alterations: fusions and splice variants

Each RNA variant type has its own section in the report, including visual summaries
(Supplementary Figure 2B-C) and interactive tables of results that include variant names, clinical
classification, QC flags, metrics, and a filtering column (Figure 29):

o Figure 29A displays gene fusion results (e.g., EML4-ALK).

e Figure 29B shows splice variants (e.g., METex14, plus a flagged known variant).

SAMPLEO1 | NSCLC | TSO500 i ts  SNVandinDel v CNA~  Fusiol

O trRUE U FALSE

Copy csv Excel Search:
CLINICAL status
FLAGS  FUSION FUSION_NAME VARIANT  AD AF CLIN_STATUS = CALLING  TYPE DP FFPM
L) Tieria LU TierliD
; y EML4::ALK V1 EML4:ALK .
Tier18 L Tierml oK EMLA::ALK 2184 0.3688 TierlA PASS INFRAME 5922 668.8951
) . (E13::A20) vi
Tier lIC ] Tier v
WHITELIST fusion '

Showing 1 to 1 of 1 entries
) TRUE U FALSE

B ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500 MainResults ~ SNVandInDel+ CNA~  Fusion~  Spliing~  Biomarkers~  Sample QC ~

ot oo

O trUE O FALSE

Copy csv Excel Search:

CLINICAL status

(1113 REGION VARIANT AD AF CLIN_STATUS CALLING DP_MAX MUTATION
U TieriA U TierliD
O Tieris O Tier il oK MET Exon1d  METxlddel 929 0.6442 TierlA PASS 1442
U Tiernc O Tier v

AR Intron1 AR-45 12 0.0417 Tier lll PASS 288
WHITELIST variant =
TRUE ) FALSE Showing 1to 2 of 2 entries (filtered from 10 total entries)

Figure 29. Interactive tables of RNA-based findings in the ClinBioNGS report.
(A) Gene fusions and (B) splice variants. Clinically relevant variants are highlighted in purple, low-confidence flags in red,
and high-confidence flags in green (“OK”). Tables are filterable, scrollable, and exportable.

Genomic biomarkers: TMB and MSI

ClinBioNGS includes calculated metrics for TMB and MSI in dedicated tabs.
e Figure 30 shows the “TMB” subsection:
o Displays calculated scores (overall and non-synonymous).
o Interactive table of eligible variants is provided below. Note that Tier I/Il or
oncogenic variants are excluded for TMB calculation.
e Figure 31 shows the “MSI” subsection:
o Presents calculated metrics (i.e., unstable microsatellites over total assessed)
o Contains small variants in MMR genes, supporting MSI status beyond scores.
o The example illustrates that only low-confidence variants are present, as no “OK”
variants appear at the top. The observed oncogenic variant is found in the provided

list of TSOS500 recurrent mutations, suggesting a panel-specific recurrent artefact.
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ClinBioNGS-RUNO1: SAMPLEOL | NSCLC | TSO500 MainResults ~ SNVandinDel» CNA~  Fusion-  Splicing~  Biomarkers~  Sample QC ~

TMB 423.5 mut/Mb | 344.3 mut/Mb | 508 413 1.2 Mb

Tumor Mutational Burden TMB estimate Non-synonymous TMB Eligible mutations Non-syn mutations Effective region size

CLINICAL status B T™™B eligible mutations

O Tierm O Tierlv -

Copy csv Excel Search:
| J J J

ONCOGENICITY GeneName *  Mutation AltDepth VAF TotalDepth Consequence MaxpVAF Oncogenicity ClinStatus VAR

O Likely Benign

O vus ABL1 Y¥253C 364 0.178 2041 missense_variant [} Tier Il chr9:1301 =
ABLL S410= 80 0.0652 1227 synonymous_variant [] Tier IV chr9:1308

CONSEQUENCE (VEP)

O frameshift_variant ABL2 Q154* 215 0,132 1758  stop_gained 0 Tier Il chr1:179:

U missense_variant ABLZ Q8TH 85  0.073 1188 missense_variant 0 Tier lll chr1:179:

O splice_region_variant

O stop_gained ABRAXAS1 S152F 139 0.205 677 missense_variant 1] Tier Il chra:834
“ >

(@] iant
synonymous._varian Showing 1 to 508 of 508 entries

Figure 30. TMB results in the ClinBioNGS report.
Calculated metrics appear at the top. Annotated eligible variants are shown below. Filter options and color-coding help
interpret the variant selection criteria. Rows have been sorted by gene name by clicking on the corresponding column.

ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500 MainResults ~ SNVandInDel~ CNA~  Fusion~  Splicing~  Biomarkers~  SampleQC ~

MsSI 0.6% MSI 1 178

Microsatellite (MS) Instability MSI estimate MSl sites Total MS sites

OK (no flags) Bl Mutations (Ti MMR genes

O TRUE O FALSE -

Copy csv Excel Search:

PASS MUTATION AD_ALT STATUS 'ONCOGENICITY ONCO_CODES CONSEQUENCE
O TrRUE O FALSE frameshift A
Recurrent deletion MSH6 F10885fs*2 49 0.0234 Tierlll Oncogenic 0Vs1, 0P1, 0P4 _—
varian
CLINICAL status
ProblematicRegion, N . . .
O TierlA O TierllD Recurrent deletion  ABL1 K609del 74 0.0434 Tierlil OM2,0P1,0P4 inframe deletion
O Tieris O Tierm
O Tiernc O Tieriv Outctk, .
ProblematicRegion, deletion = MSH3 K383Rfs*32 24 0.019 Tierlll OP1, OP4 frameshift variant
Recurrent <
ONCOGENICITY . )

O oncogenic Showing1to 4 of 4 entries

> < r

Figure 31. MSI results in the ClinBioNGS report.
Calculated metrics are shown above. Variants in MMR genes are displayed below. Flags, clinical status, and oncogenicity
are highlighted.

4.2. Accurate detection of small variants across multiple NGS panels

ClinBioNGS achieved high accuracy for small variant detection using SEQC2 reference datasets
across six commercial NGS panels. Figure 32 summarizes the performance results:
e Figure 32A presents replicate-level precision and recall values for both ClinBioNGS and
the commercial pipelines.
e Figure 32B shows the distribution of Fl-scores per panel, comparing the overall

performance of both pipelines.

Precision (0.987-1.000), recall (0.920-0.997), and F1-score (0.956-0.999) were consistently high in
ClinBioNGS. These results were in line with, and in several cases slightly exceed, those obtained
from commercial pipelines. Particularly, ClinBioNGS showed superior performance for the AGL
panel, which included the most comprehensive set of known positive variants (n = 2,824). Complete

benchmarking results, including replicate-level metrics, are provided in Supplementary Table 10.
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Figure 32. Cross-panel evaluation of ClinBioNGS small variant calling using SEQC2 datasets.

(A) Precision and recall metrics for each of four replicates per panel. Points are colored by pipeline (red for commercial,
blue for ClinBioNGS). (B) Violin plots showing F1-score distributions across replicates for each panel, grouped by pipeline
and colored by panel.

4.3. Real-world comparative analysis across commercial panels

4.3.1. High concordance for detecting cancer-related alterations

To evaluate the clinical utility of ClinBioNGS beyond controlled benchmarking, the pipeline was
applied to 2,024 clinical tumor samples using three commercial pan-cancer NGS panels: Illumina
TSO500 (n = 755), Ion Torrent OCA (n = 595), and Ion Torrent OPA (n = 674). Cohort-level

characteristics are detailed in Supplementary Table 11.

Figure 33 shows the full comparative analysis of cancer-related alterations between ClinBioNGS
and commercial pipelines. ClinBioNGS demonstrated high concordance with commercial pipelines,
recapitulating 97% of small variants (3,502 of 3,606; Figure 33A), 89% of CNAs (2,083 of 2,339;
Figure 33B), and 94% of RNA alterations (217 of 231; Figure 33C). Aggregate benchmarking

metrics are summarized in Supplementary Table 12.
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Figure 33. Real-world comparative analysis of all cancer-related alterations.

Alluvial plots showing concordance for cancer-related (A) mutations, (B) CNAs, and (C) RNA alterations. “OK” and
flagged (i.e., secondary flags) ClinBioNGS variants are included. Each plot displays NGS panel, detection status,
ClinBioNGS variant classification status, and clinical evidence status. Flows are colored by detection status and annotated
with absolute counts and percentages.



4. Results 111

Moreover, strong correlations were observed for normalized copy ratio values (R =0.97 for TSO500,
R = 0.96 for OPA; OCA excluded due to unavailable commercial values) and for absolute CN
estimates (R = 0.74 for TSO500, R = 0.75 for OPA, R = 0.89 for OCA) (Figure 34).
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Figure 34. Correlation of copy ratios and CNs between ClinBioNGS and commercial pipelines.

Results are shown for TSO500 (A-B), OPA panel (C-D), and OCA (E) panels. The x-axis represents values from

ClinBioNGS, and the y-axis represents those from the commercial pipeline. Pearson correlation coefficients (R) and linear
regression lines are shown.
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4.3.2. Discrepancies between ClinBioNGS and commercial solutions

Low-confidence ClinBioNGS calls—flagged due to limited support, location in problematic
genomic regions, or recurrence in background samples (Supplementary Figure 3)—were mostly
unique and lacked potential clinical relevance. Therefore, subsequent discrepancy analyses were

restricted to high-confidence (“OK”) variants to ensure greater interpretability and clinical value.

ClinBioNGS reported 222 additional mutations (Figure 35).
e Fourteen showed associated clinical evidence from CIViC (Supplementary Table 13):
o Thirteen had low VAFs (<5%) and were likely filtered by commercial pipelines due
to limited support or suboptimal quality metrics.
o A KRAS G124 mutation (OPA) with 288 supporting reads and 17% VAF was not
reported by the commercial pipeline.
o An EGFR S7681 mutation (TSO500) with 1.4% VAF was missed by the commercial
solution but orthogonally confirmed using Roche Cobas EGFR Mutation Test v2.
e Among the remaining 208 variants without clinical evidence, 35 were classified as oncogenic
and 33 as likely oncogenic (Supplementary Table 14), including:
o Borderline calls that were filtered by commercial pipelines due to limited support
and low-quality issues.
o Well-supported variants that were either blacklisted by TSO500 commercial pipeline
or omitted from predefined SNV/InDel lists used in OCA and OPA workflows.
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Figure 35. Real-world benchmarking of “OK” ClinBioNGS cancer-related mutations.

ClinBioNGS variants are restricted to high-confidence calls (i.e., those passing all internal flags). Alluvial plot showing
concordance for cancer-related mutations. Each plot displays NGS panel, detection status, and clinical evidence status.
Flows are colored by detection status and annotated with absolute counts and percentages.
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Conversely, 104 commercial variants were not reported by ClinBioNGS (Figure 35).
e Sixteen had associated clinical evidence (Supplementary Table 15):

o These variants showed in ClinBioNGS variant callers specific filters related to poor
quality or strand bias. That is the reason why they do not reach the minimum number
of callers established for each panel (2/4 for TSO500 and 3/5 for lon Torrent panels).

o Although these variants were mostly flagged by ClinBioNGS as “LowCallers” (i.e.,
primary flag), which led to their exclusion from concordance counting, they would
also be presented in the final results for the appropriate review.

o In the absence of orthogonal validation, their clinical relevance remains uncertain.

e Among the remaining 88 variants (Supplementary Table 16), most were also filtered by
ClinBioNGS callers due to poor quality and strand bias issues. Notably, MST! G673S and
U2AF1 S34F were recurrently missed by ClinBioNGS in the TSO500 panel.

ClinBioNGS reported 572 additional CNAs (Figure 36), including 191 with clinical evidence. Most
involved genes were not assessed by the commercial pipelines, with CDKN24 deletion being the

most frequent event (n = 107) across all panels (Supplementary Table 17).
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Figure 36. Real-world benchmarking of “OK” ClinBioNGS cancer-related CNAs.

ClinBioNGS variants are restricted to high-confidence calls (i.e., those passing all internal flags). Alluvial plot showing
concordance for cancer-related CNAs. Each plot displays NGS panel, detection status, and clinical evidence status. Flows
are colored by detection status and annotated with absolute counts and percentages.

Conversely, 256 CNAs were exclusively reported by commercial solutions (Figure 36), including
224 with clinical evidence (Supplementary Table 18). Most discrepancies were attributable to
borderline events in TSO500 (median CN = 3) and TP-based CN corrections applied in OCA and
OPA samples (median TP = 20%).
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ClinBioNGS identified 89 additional RNA events (Figure 37), including 37 with clinical evidence
from the OCA panel (Supplementary Table 19).

e Fusions (n=21):

o Most were supported by low number of reads (median = 21), often falling below the

thresholds of commercial filters.

o Notably, one EML4-ALK fusion (17 reads) was missed by the commercial pipeline

due to overall sample QC failure.

e Splice variants (n = 16):

o All were androgen receptor splice variant 7 (AR-V7) robustly supported by

ClinBioNGS but not assessed by commercial analysis.
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Figure 37. Real-world benchmarking of “OK” ClinBioNGS cancer-related RNA alterations.
ClinBioNGS variants are restricted to high-confidence calls (i.e., those passing all internal flags). Alluvial plot showing
concordance for cancer-related RNA alterations. Each plot displays NGS panel, detection status, and clinical evidence
status. Flows are colored by detection status and annotated with absolute counts and percentages.

Commercial-only

Conversely, 14 RNA events were uniquely called by commercial pipelines (Figure 37), including 6

with clinical evidence (Supplementary Table 20).

e Three low-read BRAF fusions, lacking strong supporting evidence and likely clinically

irrelevant without further validation.

e One KIF5B-RET fusion (OPA) with higher read support. Upon disabling deduplication,

ClinBioNGS recovered this event. From now, OPA’s deduplication is disabled by default.

e One METexi4 event (OPA) was also detected by ClinBioNGS, although flagged as

“LowSupport” (8 supporting reads), which is comparable to the commercial call.
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4.3.3. High concordance in biomarker classification (TMB and MSI)

ClinBioNGS demonstrated strong agreement with commercial TSO500 pipeline in the classification

of TMB-High and MSI-High samples. Correlation was high for both metrics (R = 0.99 for TMB

[Figure 38A] and R = 0.97 for MSI [Figure 38C]).
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Figure 38. Biomarker agreement between ClinBioNGS and TSO500 commercial pipeline.

(A) Correlation plot of TMB-high values. The x-axis shows ClinBioNGS values, and the y-axis shows those from the
commercial pipeline. Pearson correlation coefficient (R) and the linear regression line are shown. Red dashed lines at 10
mut/Mb indicate the threshold used for TMB-high classification. (B) Pie chart showing concordance of TMB-high
classification between pipelines, with color-coded segments indicating agreement or discrepancy between pipelines. (C)
Correlation plot of MSI-high values. Red dashed lines at 20% unstable loci indicate the MSI-high classification threshold.

(D) Pie chart showing concordance of MSI-high classification.

For TMB-High status, 141 of 193 samples (73.1%) were concordantly classified by both pipelines

(Figure 38B). Among the 52 discordant cases, 50 were classified as TMB-High only by the

commercial pipeline (TSO500). Notably, most discordant cases had TMB values close to the

high/low decision threshold, as shown in the scatter plot.
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For MSI-High status, 10 of 13 samples (76.9%) were concordantly classified between pipelines
(Figure 38D). In the remaining three discordant cases, ClinBioNGS classified the samples as MSI-
High while the commercial pipeline did not. All three had MSI scores near the threshold, indicating
potential classification ambiguity. Importantly, one discordant sample—initially classified as MSI-
Low by the commercial pipeline (17.3% unstable loci) but as MSI-High by ClinBioNGS (21.7%)—
was confirmed to be MSI-High (~75% instability) upon later re-sequencing, supporting the

ClinBioNGS classification. No additional validation was available for the other discordant samples.

4.4. Case studies illustrating the extended capabilities of ClinBioNGS

Beyond controlled benchmarking, the real-world application of ClinBioNGS in clinical and
translational settings underscores its value in handling diverse and challenging scenarios commonly
encountered in somatic panel analysis. The following case studies illustrate how the pipeline delivers

robust performance in routine practice, presenting critical improvements over commercial solutions.

These examples emphasize several key strengths of ClinBioNGS:
e Reliable detection and representation of complex alterations, including adjacent InDels and
arm-level CNAs.
e Recovery of relevant variants that may be missed or filtered by vendor pipelines due to
platform-specific limitations or filtering.
e Improved transparency and interpretability, thanks to comprehensive flagging,
standardization, and intuitive visualizations.

e Adaptability to non-standard or research-oriented samples (e.g., xenografts).

4.4.1. Correction of TMB overestimation in pancreatic PDX samples

A set of 16 PDX pancreatic tumor samples analyzed with the TSO500 panel showed abnormally high
numbers of small variants and inflated TMB scores. The likely cause was mouse DNA contamination,

which is common in PDX models but not accounted for by the commercial pipeline.

To address this, a pre-processing step was integrated into ClinBioNGS to filter mouse reads prior to
variant calling. This adjustment resulted in a substantial reduction in variant counts and

normalization of TMB scores to expected ranges.

This case highlights the versatility of ClinBioNGS to accommodate complex experimental settings

and adapt to research-specific requirements.
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4.4.2. Refined detection of complex EGFR exon 19 deletions in Ion Torrent
OPA samples

4.4.2.1. Case 1: Resolution of a multi-event complex InDel

In one sample analyzed with the Ion Torrent OPA panel, the commercial pipeline reported a complex
EGFR exon 19 variant (chr7:55242468 ATTAAGAGAAGCAACATC/GCAACA, VAF 1.9%,
hg19). The OPA viewer suggested multiple adjacent small deletions with higher VAFs (Figure 39A).

ClinBioNGS resolved this complex signal into three distinct deletions (hg19):
e chr7:55242465 GGAATTAAGA/G (VAF 26%).
e chr7:55242479 CA/C (VAF 26%).
o chr7:55242483 ATC/A (VAF 26%).

These calls aligned more closely with the read evidence and yielded more consistent and reliable
VAF estimates, enhancing clinical interpretability. This illustrates the advantage of ClinBioNGS’s

multi-caller consensus approach in accurately deconstructing complex InDels.
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Figure 39. Detection of complex EGFR exon 19 variants in Ion Torrent OPA samples.
(A) Screenshot from the OPA viewer. (B) Screenshot from IGV visualizing the variants detected by ClinBioNGS.
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4.4.2.2. Case 2: Recovery of a filtered complex variant

In another case, an EGFR exon 19 deletion was detected via cfDNA by a Foundation Liquid test. The

sample was initially analyzed using the OPA panel, but no variant call was returned—the commercial

pipeline flagged the event as "Complex" and filtered it out. A second analysis with relaxed parameters

("allowing complex variants") reported a composite variant without a clear VAF:

c.2235_2250delinsAATTCCC (chr7:55174772_GGAATTAAGAGAAGCA/AATTCCC).

Re-analysis with ClinBioNGS identified the following four variants in that region (hg38):

chr7:55174771_AGG/A; ¢.2235 2236del (VAF 47.5%).
chr7:55174777 TAAGAGAA/T; ¢.2241 2247del (VAF 47.4%).
chr7:55174785_G/C; ¢.2248G>C (VAF 47.5%).
chr7:55174787 A/C; ¢.2250A>C (VAF 47.7%).

Inspection with IGV (Figure 39B) revealed two main read groups:

One group showed two interspersed InDels followed by two SNVs, consistent with the calls
made by both pipelines.

The other group contained a full-length deletion spanning the affected region. This allele was
not reported by any pipeline, likely due to lower read support. ClinBioNGS selects the most
frequent representation across callers in multi-allelic contexts, so less frequent forms may be

omitted from the final consensus.

The patient received first line osimertinib and achieved a partial response and significant clinical

benefit, demonstrating the relevance of identifying complex variants that align with clinically

actionable EGFR exon 19 deletion profiles.

4.4.2 3. Interpretation and implications

These cases illustrate both strengths and limitations of ClinBioNGS in handling complex InDels:

Strengths: ClinBioNGS’s multi-caller consensus approach facilitates the deconstruction of
complex variant signals and yields clearer representations with reliable VAF estimates—key
factors for proper clinical interpretation and to define whether patients harboring those
complex genomic alterations may benefit from targeted therapies. Moreover, it can recover
complex deletions that commercial pipelines may filter out due to variant complexity or
flagging systems.

Limitations: As individual variant calls are reported per caller, phasing information may be
lost. When most callers report variants separately, they appear as isolated events in the
consensus output. Thus, manual review (e.g., IGV) is still necessary in complex regions to

evaluate allelic phasing and reconstruct the full mutational profile.
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These examples underscore the multiallelic and complex nature of EGFR exon 19 deletions and
reinforce their clinical relevance. While ClinBioNGS offers a powerful solution for resolving these
events, future integration of phasing-aware algorithms—or complementary long-read sequencing

technologies—may further improve the characterization of such complex alterations.

4.4.3. Recovery of a relevant germline MSH6 mutation

A known pathogenic germline frameshift mutation in the MSH6 gene (chr2:47803500 A/AC;
p.Phel088Leufs*5; ClinVar ID: 89364) was previously identified through a hereditary cancer
susceptibility panel at our institution. This variant, known to be heterozygous and classified as

pathogenic, was expected to be detected in a tumor sample subsequently analyzed with the [llumina

TSO500 panel.

However, the TSO500 Local App failed to report the mutation. The reason was that the variant
position lies within a blacklisted region defined by the commercial pipeline, likely to avoid reporting
recurrent artifacts. In contrast, ClinBioNGS successfully detected the MSH6 variant in this sample,
as well as in three additional samples from the benchmarking cohort. In none of these cases was

reported by the commercial pipeline.

ClinBioNGS classified the variant as oncogenic and assigned it an “OK” flag. The variant showed
intermediate VAF values, consistent with expected heterozygous germline origin, and had no strong
representation in general population databases, further supporting its pathogenic classification. For
the three additional cases, the absence of matched normal tissue precluded confirmation of their

germline or somatic origin.

The commercial pipeline’s blacklisting appears to be related to a different variant at the same position
(chr2:47803500 AC/A; F1088Sfs*2), which is recurrently detected in TSO500 data (found in our
TSO500-recurrent variant list). This variant was detected in 456 samples across the benchmarking
cohort and is flagged as “Recurrent” by ClinBioNGS. This suggests that the position was blacklisted

due to its association with this alternate, artifact-prone event.

This case underscores the strength of ClinBioNGS’s transparent and informative flagging system:
e The truly pathogenic variant was retained and reported with appropriate annotation.
o The potentially artifactual variant was detected and explicitly flagged as “Recurrent”, aiding

interpretation without suppressing evidence.

In contrast to the commercial pipeline’s strategy of outright filtering, ClinBioNGS’s philosophy of
reporting all potentially relevant variants—alongside contextual flags and quality indicators—

minimizes the risk of missing potentially actionable or clinically relevant genomic alterations.
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4.4.4. Accurate detection of typical arm-level CNAs in uveal melanoma

As shown previously (Figure 18), ClinBioNGS successfully identified canonical arm-level CNAs in
a uveal melanoma case, including 8q¢ AMP and 3p/q, 6q, and 8p DELs. These hallmark alterations
were clearly visualized in the CNA plots, illustrating the pipeline’s ability to accurately detect both
focal and arm-level CNAs. No additional data was available regarding orthogonal validation of this
case, and no other uveal melanoma samples were sequenced with the TSO500 panel during the study

period, limiting the possibility of further cross-validation.

4.4.5. Detection of 1p/19q co-deletion in oligodendroglioma

In a TSO500 case of oligodendroglioma validated by FISH as harboring a hallmark 1p/19q co-
deletion, the TSO500 Local App failed to report any CNA events. In contrast, ClinBioNGS clearly
identified both 1p and 19q arm-level deletions, as visualized in Figure 40. FISH was performed on
FFPE tumor tissue using dual-color probes for chromosomal regions 1p36/1g25 and 19q13/19p13
(Vysis). A total of 100 non-overlapping nuclei were evaluated, with allelic loss defined as a red/green
signal ratio < 0.8. The observed signal ratios were 0.65 for chrl and 0.6 for chr19, consistent with
allelic loss of both 1p and 19q. These results confirm the presence of a canonical 1p/19q co-deletion,

in agreement with the arm-level events detected by ClinBioNGS (FISH image was not available).
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Figure 40. Visualization of 1p/19q co-deletion in oligodendroglioma detected by ClinBioNGS.

4.4.6. Cross-validation of arm-level CNAs in mesothelioma using sWGS

A case of malignant pleural mesothelioma was analyzed using both the Illumina TSO500 panel and
shallow whole genome sequencing (sSWGS) in a research setting, providing an opportunity to cross-

validate CNA profiles obtained through targeted and genome-wide approaches.
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ClinBioNGS successfully detected several arm-level CNAs in the TSO500 data that were concordant
with those observed in the sWGS analysis, including 11q AMP and 12q, 14pq, and 22pq DELs.

These hallmark CNAs were clearly visualized in the CNA plots produced by ClinBioNGS and
matched the copy-number patterns observed in the genome-wide sWGS profile (Figure 41).
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Figure 41. Arm-level CNA detection in mesothelioma.
(A) CNA profile from ClinBioNGS (TSOS500 panel). (B) CNA profile from sWGS results.

This case illustrates the reliability of ClinBioNGS in capturing broad chromosomal alterations even
when derived from targeted sequencing panels. It also highlights the pipeline’s ability to identify
biologically plausible, arm-level CNAs with performance comparable to low-pass genome-wide

methods.

The consistency with sWGS reinforces the pipeline’s potential utility for tumor types like
mesothelioma, where chromosomal instability and arm-level alterations are clinically informative

but may be under-reported in standard panel workflows.
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5. DISCUSSION

5.1. Overview and contextualization of ClinBioNGS

In this work, ClinBioNGS is presented as a novel open-source bioinformatics pipeline specifically
developed to address the analytical and interpretative challenges associated with somatic NGS cancer
panels. The pipeline has been designed to enable the comprehensive processing, analysis, and
interpretation of genomic alterations derived from tumor-only sequencing data. In addition, over the
course of this thesis, ClinBioNGS has been extensively validated using both public standardized
datasets and internal clinical cohorts, establishing ClinBioNGS as a reliable and versatile tool for

precision oncology.

The development of ClinBioNGS was driven by the increasing adoption of somatic NGS panels in
routine clinical oncology and the critical need for standardized, transparent, reproducible, and

scalable bioinformatics workflows that fulfill clinical-grade requirements*!>!8,

Existing pipelines for somatic NGS panel analysis present important limitations in scope, flexibility,
and clinical utility. To contextualize the development of ClinBioNGS within the landscape of existing
solutions, we performed a comparative analysis of representative workflows covering commercial,
institutional, and open-source pipelines (Supplementary Table 21). Commercial platforms (e.g.,
Archer Analysis, FoundationOne CDx, Illumina TSO500, QCI Interpret, SOPHiA DDM, Thermo
Ion Reporter, VarSome Clinical) offer standardized, ready-to-use environments with vendor support
and interactive graphical interfaces, but they are proprietary, limited in flexibility, and often restricted
to fixed assays. Institutional pipelines such as MSK-IMPACT or DFCI OncoPanel provide clinically
validated frameworks, but remain panel-specific and typically inaccessible outside their home

institutions.

By contrast, academic and open-source workflows (e.g., BALSAMIC, bebio-nextgen, nf-core/sarek,
DNAscan2, MIRACUM-Pipe, PipelT2, SCHOOL, TOSCA) provide transparency and adaptability,
yet they often lack end-to-end integration, multi-omics support, or clinically oriented annotation and
reporting. Many rely on static outputs, provide limited visualization capacity, or are no longer

actively maintained.

ClinBioNGS was designed to bridge this gap by combining the portability and transparency of open-
source solutions with the comprehensiveness and interpretability demanded by clinical and
translational contexts. Compared with other pipelines, it uniquely integrates DNA and RNA analyses
within a single workflow, supports tumor-only data, provides a comprehensive annotation framework

with clinical prioritization, generates informative QC and variant-specific visualizations, and delivers
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interactive HTML reports of results. This positions ClinBioNGS as a robust, versatile, and actively

maintained alternative that extends beyond the limitations of existing solutions.

5.2. Key innovations and strengths of the pipeline

ClinBioNGS introduces a series of methodological and practical innovations that distinguish it from
existing solutions (Supplementary Table 21) for somatic NGS panel analysis. The pipeline was
designed to achieve a robust balance between flexibility, reproducibility, and clinical applicability,

addressing many of the recurring challenges in routine genomic diagnostics>#36:40:42,

5.2.1. Integrated DNA and RNA analysis

A key strength of ClinBioNGS is its ability to integrate both DNA- and RNA-based analyses within
a unified, standardized workflow—an uncommon feature among most existing pipelines that often
focus exclusively on a single data type. This dual capability enables the detection of diverse genomic
alterations, including small variants (SNVs and InDels), CNAs, gene fusions, splice variants, and
complex genomic biomarkers such as TMB and MSI. This multi-layered integration enables a more
comprehensive tumor profiling, enhancing the detection of complex and co-occurring genomic

events with potential clinical relevance!%-%40-42,

5.2.2. Standardized and comprehensive annotation framework

A central strength of ClinBioNGS lies in its unified and fully standardized annotation framework,
specifically designed to support accurate and clinically meaningful interpretation of somatic
alterations*¥-364_ Key features include:

e Panel-agnostic results: ClinBioNGS applies a consistent analytical strategy across different
commercial panels, producing harmonized output formats and variant classifications. This
ensures interpretability and comparability of results regardless of panel design.

e Consistent genome reference usage: All analyses are performed using the updated GRCh38
reference genome, which improves alignment accuracy and compatibility with current
annotation resources®'**°. For backward compatibility with legacy systems, output files also
include liftover coordinates to GRCh37.

e Standardized file formats: The entire pipeline is built around widely accepted bioinformatics
standards®**4¢ (e.g., FASTQ, BAM, VCF), with fully annotated VCF files generated for each
variant type (SNVs/InDels, CNAs, fusions, splice variants). This ensures interoperability

with downstream tools and promotes transparency in the variant review**.
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e Up-to-date gene and transcript annotations: Annotations are based on HGNC-approved gene
symbols, MANE Select transcripts, and HGVS-compliant nomenclature, in line with current
clinical reporting best practices.

e Integration of curated knowledge bases: Multiple public and expert-curated resources—
including GENIE, CIViC, CTAT, and others—are incorporated to enrich variant annotations
with up-to-date biological, functional, and clinical information.

e Implementation of international prioritization guidelines: ClinBioNGS integrates
recommendations from ClinGen/CGC/VICC for oncogenicity classification and
AMP/ASCO/CAP guidelines for assessing clinical significance, enabling standardized and

evidence-based variant prioritization.

This comprehensive and transparent annotation strategy supports robust variant interpretation while
maintaining full traceability of the underlying evidence®. All annotations are directly accessible
through the interactive HTML report, empowering users to evaluate variants in detail within a

clinically oriented context.

5.2.3. Internal flagging and prioritization system

ClinBioNGS incorporates a comprehensive internal flagging system designed to enhance
transparency, interpretability, and clinical relevance in variant reporting®*®?, Each detected alteration
is systematically evaluated and assigned one or more flags based on calling- and context-based

indicators to help distinguish between well-supported and borderline findings.

Rather than discarding borderline or lower-confidence alterations through hard filters without any
explanation in the final output—as commonly done in commercial pipelines—ClinBioNGS retains
and transparently flags such variants, allowing users to assess variant quality and relevance with full

contextual awareness.

For example, a particularly valuable feature of this approach is the systematic flagging of potential
germline variants, which are compiled in a dedicated section of the final report. This allows for

31,135

focused clinical review of potentially heritable findings®''*°, while maintaining the somatic scope of

the pipeline.

By reducing the risk of FNs (e.g., discarding rare but relevant variants) and FPs (e.g., reporting
artifacts as real events), the flagging system supports nuanced interpretation and multidisciplinary

oversight, which is particularly valuable in complex or borderline cases.
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5.2.4. Tumor-only analytical strategies

In routine somatic testing, the lack of matched normal samples poses a significant challenge for

accurately distinguishing somatic mutations from germline variants and technical artifacts'®!>4!,

ClinBioNGS addresses this limitation by implementing a set of tumor-only analytical strategies

specifically optimized for this context:

e Multi-caller consensus strategy for small variant detection: ClinBioNGS integrates the
output of multiple variant callers to increase sensitivity and robustness, particularly for low-
VAF variants and complex InDels. This consensus approach mitigates the limitations of any
single tool and reduces the impact of caller-specific artifacts, improving both confidence and
reproducibility of variant calls!®4%4,

e Panel-specific pooled reference baselines for CNA and MSI analysis: Instead of relying on
matched normals, ClinBioNGS leverages curated tumor-only reference datasets specific to
each panel. These pooled baselines enable effective estimation of CNAs and MSI, allowing
accurate detection of somatic events even in tumor-only sequencing data. In benchmarking

analyses, these methods achieved performance metrics comparable to, or exceeding, those

of commercial pipelines.

Together with the pipeline’s comprehensive annotation framework and internal flagging system,
these tumor-only strategies ensure a more reliable and transparent classification of tumor-specific
alterations in the absence of normal controls. This enables broader applicability of ClinBioNGS in

real-world clinical settings, where matched normal samples are rarely available.

5.2.5. Generation of informative plots and interactive reports

One of the key features that distinguishes ClinBioNGS from other existing tools is its ability not only
to perform comprehensive analyses, but also to generate dedicated visualizations for each type of
result. All outputs are integrated into a fully interactive, self-contained HTML report, which greatly

facilitates the interpretation and exploration of complex genomic data.

Unlike most academic pipelines—which often provide only static outputs and limited visualization
capacity—ClinBioNGS delivers intuitive, interactive summaries that enhance accessibility. While
some commercial platforms offer interactive graphical interfaces, they are typically restricted to
proprietary environments with limited flexibility and transparency. By contrast, ClinBioNGS
combines interactivity with openness and adaptability, ensuring reproducible, user-friendly reporting

across diverse contexts (Supplementary Table 21).

In clinical practice, this functionality supports multidisciplinary communication, for instance in

MTBs, and ultimately streamlines the clinical decision-making process for each patient.
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5.2.6. Modular, portable, and open-source design

ClinBioNGS is built on a modular architecture implemented in Nextflow, with containerization
through Singularity images to ensure reproducibility, scalability, and portability across environments
ranging from local workstations to HPC systems?®33627374 ts flexible configuration system allows
seamless adaptation to diverse experimental and clinical setups, as demonstrated by its ability to

analyze multiple panels from both public datasets and routine diagnostic data across institutions.

The open-source availability of ClinBioNGS further enhances transparency and adaptability,
enabling laboratories and research groups to inspect, customize, and extend the workflow to their
specific needs. Version-controlled profiles and environment-independent execution guarantee
consistent results regardless of infrastructure, while fostering collaborative development and

alignment with best practices in clinical bioinformatics®*33:626,

By integrating modularity, portability, and open access, ClinBioNGS stands as a robust, institution-
independent solution suitable for a wide range of applications—from diagnostic workflows in
clinical laboratories to exploratory cancer research—supporting the evolving needs of precision

oncology>’.

5.3. Validation and benchmarking performance

The analytical performance of ClinBioNGS was comprehensively evaluated using both standardized
public reference datasets and large-scale real-world clinical tumor samples. This dual benchmarking
approach enabled a robust assessment of the pipeline’s accuracy, reproducibility, and concordance
across sequencing platforms, commercial panels, and variant classes. Results confirmed that
ClinBioNGS delivers reliable and consistent outputs in both controlled benchmarking and routine

clinical contexts, supporting its use in diverse diagnostic and research applications.

5.3.1. High analytical accuracy in SEQC?2 reference datasets

Benchmarking with SEQC2 public reference datasets provided a rigorous framework for assessing
small variant detection against established ground truth®*!%, The evaluation included six commercial
pan-cancer NGS panels from different vendors, representing a broad spectrum of panel designs and
technical challenges. ClinBioNGS achieved consistently high accuracy across all datasets, with
performance metrics comparable to vendor-provided pipelines. These results validate the robustness
of its small variant calling strategy and demonstrate its capacity to operate as a truly panel-agnostic

workflow under standardized conditions.
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5.3.2. Robust performance across real-world clinical tumor samples

To complement benchmarking on public datasets, ClinBioNGS was evaluated on retrospective
internal cohorts encompassing three commercial NGS panels analyzed across different institutions.
This real-world benchmarking provided a comprehensive assessment of performance across variant
types and clinical contexts. ClinBioNGS demonstrated high concordance with established

commercial pipelines, underscoring its readiness to support routine use.

Observed discrepancies primarily involved borderline variants of limited clinical significance.
Nonetheless, certain well-supported small variants required closer attention. Several ClinBioNGS-
only calls were located in regions blacklisted by the TSO500 pipeline, while others were omitted by
OCA and OPA tools due to their absence from predefined SNV/InDel reporting lists. Although not
immediately actionable, some of these variants—including oncogenic or likely oncogenic findings—
may acquire clinical value as new evidence emerges. Conversely, some TSO500 commercial-only
calls can be attributed to differences in reference genome versions, such as the known failure to detect
U2AF1 §34F in GRCh38"%¢, which is used by ClinBioNGS. More broadly, most commercial-only
alterations were not truly missed by ClinBioNGS. They were excluded from the comparative because
they were associated with calling-related flags (i.e., primary flags). However, these events would still
be surfaced for expert review, allowing their borderline nature to be recognized and evaluated in the

context of available clinical evidence.

ClinBioNGS identified a large number of CNAs not reported by commercial pipelines, reflecting its
broader detection scope. For example, the TSO500 Local App reports amplifications in only 59 of
523 genes, and the OCA pipeline restricts analysis to amplifications, explaining most discrepancies.
Among genes assessed by ClinBioNGS and commercial solutions, copy ratio values showed strong
correlation, although slight differences in copy-number estimates were observed—Iikely due to TP
adjustments applied by commercial pipelines. ClinBioNGS instead adopts a more conservative
strategy, avoiding purity correction to ensure stable results when purity estimates are unavailable or
unreliable. While this may lead to CNA underestimation in low-purity samples, users are encouraged
to interpret CNA results in the context of tumor cellularity. Future versions will incorporate panel-

specific models for purity-adjusted CNA estimation, leveraging our large tumor cohorts.

Regarding biomarker classification, ClinBioNGS demonstrated strong concordance with commercial
pipelines for both TMB and MSI status. Most discordant cases occurred near classification
thresholds, consistent with the pipeline’s conservative mutation filtering and robust MSI estimation
calibrated on a broad baseline. In one notable case, an MSI-High classification by ClinBioNGS was
later confirmed by repeat testing, illustrating the pipeline’s capacity to detect early or borderline

biomarker signals not captured by commercial tools.
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Overall, this multi-panel benchmarking shows that ClinBioNGS achieves performance comparable
to commercial pipelines in routine analyses while providing enhanced sensitivity, a broader detection
scope, and improved interpretability in complex or borderline scenarios. Its transparent reporting and
robust flagging system ensure that even low-confidence or atypical events are highlighted for expert
evaluation—an essential feature in clinical genomics, where seemingly marginal findings can hold

diagnostic or therapeutic relevance®3+33:4248,

5.3.3. Extended capabilities in real-world case studies

Beyond benchmarking and quantitative comparisons, a series of real-world clinical and research
cases further illustrated the practical value of ClinBioNGS in diverse and challenging scenarios.
These cases highlight the pipeline’s ability to not only replicate the outputs of commercial pipelines
but also to enhance the resolution, sensitivity, and interpretability of complex genomic alterations

that may influence diagnostic, prognostic, or therapeutic assessments.

Several cases demonstrated the recovery of clinically relevant variants missed by commercial
solutions, either due to overly strict quality filters, blacklisted regions, or incomplete algorithmic
support. For example, ClinBioNGS successfully detected a known pathogenic germline mutation in
MSHG6 previously validated by a dedicated hereditary panel, which had been filtered out by the
commercial pipeline because it fell within a blacklisted region which accumulates recurrent artifacts.
Unlike a binary reporting strategy, ClinBioNGS flagged this variant appropriately while retaining it

for expert review, thereby demonstrating the advantage of transparent reporting over hard filtering.

In other cases, the multi-caller consensus strategy proved instrumental in resolving complex InDels,
particularly EGFR exon 19 deletions, which were misclassified or filtered out by commercial
software. The ability to disentangle multiallelic or compound InDel events using multiple callers
enhanced variant representation and VAF estimation, improving interpretability for therapy

selection!04041

. Although the pipeline currently does not retain phasing information across
consecutive variants, it provides all variant-level details and BAM files to facilitate manual

inspection when required.

The broader CNA detection scope of ClinBioNGS also provided added clinical value. In tumors such
as oligodendroglioma and uveal melanoma, ClinBioNGS successfully identified canonical arm-level
CNAs that were not reported by vendor pipelines, enabling a more comprehensive molecular
characterization. Several of these results were concordant with orthogonal analyses by FISH or
shallow WGS, reinforcing the reliability of the CNA module, even for large-scale chromosomal

alterations.
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Taken together, these case studies showcase the real-world utility of ClinBioNGS in scenarios where
data complexity, platform limitations, or algorithmic constraints hinder accurate variant reporting.
They emphasize the value of combining high sensitivity with interpretive flexibility, allowing
variants of uncertain or borderline confidence to be surfaced with sufficient context for expert review.
This approach minimizes the risk of excluding potentially actionable findings and reinforces

ClinBioNGS as a valuable asset for both clinical diagnostics and translational research.

5.4. Limitations and current challenges

5.4.1. Inherent challenges in tumor-only somatic NGS panel analysis

Despite the strengths demonstrated by ClinBioNGS, several intrinsic challenges persist in the
analysis of tumor-only NGS panel data. These limitations are not specific to this pipeline but rather
reflect broader obstacles commonly encountered in clinical bioinformatics and somatic variant
interpretation:

e Lack of universal gold standards: The absence of universally accepted reference datasets and
standardized workflows for tumor-only analysis complicates benchmarking and
harmonization across laboratories**3*%2, The wide variety of available tools, databases, and
analytical strategies further contributes to variability in implementation and interpretation’.

e Absence of matched normal tissue and underrepresentation of population diversity: Without
access to matched samples, it is difficult to definitively distinguish somatic mutations from
germline variants and to effectively suppress panel- or platform-specific artifacts. While
population databases assist in filtering common germline variants, rare germline
alterations—particularly those in underrepresented populations—may be misclassified as
somatic'®!>4! Conversely, somatic variants present in these databases can be incorrectly
excluded. Such misclassifications may result in diagnostic inaccuracies or inappropriate
therapeutic decisions, especially when germline mutations associated with hereditary cancer
risk are missed'?’.

o Impact of TP on CNA detection: The accuracy of CN estimation is influenced by tumor
cellularity, especially for events near detection thresholds where diluted signals may lead to
underestimation. This may impact both sensitivity and specificity for detecting low-level
AMPs or DELs'*47,

e Low-VAF variant detection (<1-2%): Identifying variants at very low VAFs remains
inherently difficult®'**, While ClinBioNGS’s multi-caller consensus strategy enhances
detection robustness, tuning for sensitivity must be carefully balanced against the risk of FPs

in a clinical setting.
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Challenges in RNA-based alteration detection: Detection sensitivity for gene fusions and
splice variants depends heavily on sequencing depth, read quality, and pre-processing
choices such as deduplication®!%3*3%57 Subtle differences in thresholds across pipelines can

result in discordant or missed events, particularly for low-abundance transcripts.

ClinBioNGS addresses many of these limitations through a comprehensive annotation and

prioritization system, conservative yet informative flagging of uncertain events, and transparent

reporting of all detected variants, including those near confidence thresholds. However, certain edge

cases will inevitably require expert review within the appropriate clinical context to ensure accurate

interpretation, underscoring the indispensable role of multidisciplinary evaluation in MTBs for

precision oncology

4,34,35,42,48

5.4.2. Limitations of the benchmarking approach

While the benchmarking efforts presented in this thesis provided valuable insights into the

performance of ClinBioNGS, several important limitations must be acknowledged:

Limited reference resources for CNA and RNA validation: Unlike small variants, for which
high-quality reference datasets such as SEQC2 are available, benchmarking of CNAs and
RNA-based events remains challenging due to the lack of publicly accessible gold-standard
datasets for somatic NGS panels. This limits the ability to independently assess these
genomic alterations under standardized conditions>*%2,

Constraints in experimental validation: In the clinical routine, the limited availability of
tumor tissue restricts opportunities for orthogonal validation of discordant calls®'->,
Differences in genome reference builds: Several observed discrepancies may also arise from
differences in reference genome versions. While ClinBioNGS applies a consistent GRCh38-
based reference, the commercial pipelines used for comparison were operating on the older
GRCh37 build during the benchmarking period. Such differences can affect variant
coordinates, coverage, and mapping quality, particularly in complex genomic regions®!%4,
Pipeline versioning and evolving vendor tools: The benchmarking was conducted using
commercial pipeline versions available at the start of this study. However, vendor platforms
are continuously evolving, and more recent versions may now offer improved analytical
performance. For example, Illumina’s updated DRAGEN'?® commercial platform for
TSO500 provides broader CNA coverage compared to the Local App version used in this
study. Thus, the comparisons reported here represent a temporal snapshot of performance

and should be interpreted in that context.

Overall, while these limitations introduce important caveats, the benchmarking results nonetheless

provide strong evidence of the robustness and competitiveness of ClinBioNGS across distinct
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genomic alterations and platforms. As both ClinBioNGS and commercial solutions continue to

evolve, future benchmarking using updated datasets and tools will be essential to further refine

performance comparisons and guide pipeline optimization.

5.5. Perspectives for future developments

The modular and open architecture of ClinBioNGS positions it for continued evolution in parallel

with advances in sequencing technologies, data interpretation frameworks, and precision oncology

workflows. Several promising directions for future development include:

Expansion of multi-caller strategies to additional variant types: Extending the current
consensus approach to CNA and RNA alterations could enhance sensitivity, robustness, and
variant confidence scoring, particularly for low-abundance or borderline cases***!.
Continuous enrichment of the annotation framework: Regular updates incorporating
emerging curated resources (e.g., ClinGen'*, OncoKB*, COSMIC?®) will maintain the
clinical and biological relevance of variant interpretations.

Incorporation of additional scales of actionability: New frameworks, such as ESCAT>, will
provide more integrative clinical prioritization and evidence grading of alterations.
Adoption of updated genome references: Integration of the T2T-CHM13* reference genome
may improve alignment accuracy and variant detection in regions poorly represented in
GRCh38, particularly for complex or repetitive loci.

Adoption of new and improved standard file formats: Incorporating support for updated
formats such as CRAM, a compressed alternative to BAM, will enable more efficient data
storage and management without compromising compatibility with downstream tools®**.
Enhanced somatic-germline discrimination: Adding support for matched tumor-normal
pipelines or leveraging panel-specific PON can improve the classification of rare germline
variants and mitigate panel-related artifacts in tumor-only data®!%4!,

Automated TP and contamination assessment: Implementing modules for estimating TP and
detecting sample contamination will improve QC metrics and support better interpretation
of CNAs and low-frequency variants® ',

TP-aware CNA recalibration: Providing CN values adjusted by estimated TP could facilitate
the interpretation of borderline AMPs or DELs and enhance downstream clinical utility.
Integration of RNA-based expression analysis: Adding transcript quantification and

expression imbalance modules could aid in prioritizing fusions and splice variants based on

functional impact and aberrant expression.
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e Expanded biomarker profiling: Development of additional modules for emerging
biomarkers—such as mutational signatures, chromosomal instability, HRD, and complex
rearrangements—will further support translational and research applications!%4%-31:54,

e Development of interactive query tools for variant registries: Building a visual explorer to
interactively query, filter, and review aggregated variant data across samples and panels
would support institutional audits, cohort-level analyses, and the development of internal
genomic knowledge bases.

e Support for additional data types and study designs: Broadening compatibility to WES and
WGS sequencing approaches, cfDNA from liquid biopsies, and long-read sequencing
platforms (e.g., Oxford Nanopore, PacBio) will extend the pipeline's applicability to a wider
range of clinical and research scenarios’7-%10:13:34.39,

e Improved data-sharing interoperability: Incorporation of established standards for secure
data exchange (e.g., GA4GH Beacon® and related APIs) could facilitate regulated genomic

data sharing across institutions, enhancing collaboration and multi-center integration®*%4,

These future directions highlight the capacity of ClinBioNGS to remain a dynamic and sustainable
platform, supporting both clinical diagnostics and research-driven precision oncology in an evolving

genomic landscape.

5.6. Final remarks

ClinBioNGS emerges as an open-source, comprehensive, and flexible, bioinformatics pipeline
tailored to the analytical and interpretative challenges of somatic NGS cancer panels. By integrating
DNA and RNA variant detection within a unified workflow—together with standardized annotation,
detailed flagging, and informative reporting—it provides a robust solution to support precision

oncology in both clinical and translational settings.

Its modular and transparent architecture, built on containerized environments and workflow
management systems, ensures reproducibility, portability, and long-term sustainability. The capacity
to adapt to diverse sequencing technologies, panel designs, and sample types makes ClinBioNGS
widely applicable across institutions, fostering harmonization and standardization in somatic variant

analysis.

Extensive validation using public benchmark datasets and large-scale real-world clinical tumor
cohorts confirmed the pipeline’s analytical accuracy, reliability, and concordance with commercial
solutions. Importantly, ClinBioNGS was able to recover relevant variants and biomarkers overlooked
by vendor pipelines, underscoring its potential to enhance diagnostic sensitivity and broaden the

detection of clinically meaningful alterations, particularly in complex or borderline cases.
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As genomic medicine advances and the complexity of tumor sequencing data increases, tools like
ClinBioNGS will be essential to ensure that results are not only accurately generated but also
meaningfully interpreted and effectively communicated to clinicians. By bridging the gap between
raw sequencing data and clinical insights, ClinBioNGS contributes a scalable and transparent

bioinformatics solution to the evolving landscape of precision oncology.
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6. CONCLUSIONS

This thesis presents the design, implementation, and evaluation of ClinBioNGS, an open-source,

panel-agnostic, and comprehensive bioinformatics pipeline tailored for the analysis of somatic NGS

cancer panels. The project was driven by in-depth research to identify and address the key

computational challenges involved in tumor-only NGS panel analysis, culminating in a robust

solution suitable for both routine diagnostics and translational research applications.

The main conclusions of this thesis are as follows:

L.

ClinBioNGS was developed as a portable, open-source workflow that enables standardized

and reproducible analysis of somatic NGS panel data across diverse settings.

Its modular architecture, implemented using Nextflow and containerized environments,
ensures flexibility and portability, enabling panel-agnostic execution across heterogeneous

computing infrastructures.

The pipeline supports the comprehensive detection of DNA and RNA somatic alterations—
including small variants, CNAs, gene fusions, splice variants, and complex biomarkers such

as TMB and MSI—within a single unified analytical framework.

ClinBioNGS incorporates a multi-caller consensus strategy for small variant detection and
uses panel-specific pooled references for the analysis of CNAs and MSI, providing robust

performance in tumor-only data.

It integrates automated modules for variant annotation and clinical prioritization, leveraging
curated databases and established guidelines to support consistent and clinically relevant

interpretation.

The workflow includes dedicated systems for QC, variant flagging, and custom filtering,

ensuring transparency and supporting expert review of potentially actionable findings.

ClinBioNGS integrates a local variant database module to store and retrieve detected variants

across analyses, facilitating longitudinal tracking and reuse of internal knowledge.

The pipeline results are delivered through self-contained, interactive HTML reports that
combine intuitive visualizations and comprehensive tables, enhancing interpretability and

facilitating use in multidisciplinary settings.

All annotations are directly accessible through the interactive HTML report, empowering

users to evaluate variants in detail within a clinically oriented context.
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10. Validation with SEQC2 multi-panel public reference datasets confirmed high accuracy in

11.

12.

small variant detection, supporting the pipeline’s analytical reliability.

Benchmarking on retrospective, real-world clinical datasets from multiple institutions and
commercial NGS panels showed that ClinBioNGS performs comparably to existing
commercial solutions, while offering broader detection capabilities and greater

interpretability, particularly in complex or ambiguous cases.

Real-world case studies further demonstrated the pipeline’s adaptability across both
diagnostic and research applications, highlighting its added value in resolving challenging

variants and improving the resolution to assess CNAs.
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APPENDIX

A1l. Supplementary Tables

Supplementary Table 1. Software tools required by ClinBioNGS.
Each entry includes the tool name, version, and its role within the pipeline. Resources are listed in alphabetical order.

Tool Version Role in ClinBioNGS

ABRA27 2.24 Realignment of DNA reads around target regions

ASCETS" 1.1.2 Estimate arm-level CNAs from inferred segment copy ratio
AWS CLI 2.15.32  Download of reference genomes from the AWS iGenomes repository”’
Beftools™ 1.16 VCF processing and filtering

BCL Convert™ 4.0.3 Conversion of BCL to FASTQ

Bedtools” 2.31.0  Processing and manipulation of BED files

Bioawk® 1 Text manipulation for biological data

BWA-MEM28! 2.2.1 Alignment of DNA reads to the reference genome

CNVKkit¥ 0.9.9 CNA analysis from DNA reads

CTAT-splicing®? 0.0.2 Detection and annotation of splicing variants from RNA data
Ensembl VEP®3 113 Annotation of small variants

FastP% 0.23.4  Pre-processing and quality filtering of FASTQ files
FastQC% 0.12.1 FASTQ QC

File manipulation, deduplication (MarkDuplicates), small variant calling

GATKA™ 4.3.0.0 (Mutect2!?7), and BAM QC

Gencore®’ 0.17.2 UMI-aware deduplication for paired-end reads

Mosdepth®® 0.33 Per-base and region-level read coverage calculation

MSIsensor-pro® 1.2.0 MSI detection from DNA reads

MultiQC? 1.22.3 Aggregation and visualization of QC metrics

Octopus®! 0.7.4 Small variant calling from DNA reads

Pisces®? 5.3.0.0  Small variant calling from DNA reads

R 4.04 Data manipulation, statistical analysis, and generation of tables, plots, and reports
Samtools’® 1.18 Processing and manipulation of BAM and FASTQ files

STAR-Fusion®*% 1.13.0  Detection of fusion transcripts from RNA data

TMAP / TVC* 5.12.1 Alignment and small variant calling for lon Torrent DNA reads

UCSC bigBedToBed”’ 377 Conversion of bigBed files to BED format

UCSC liftOver®® 377 Conversion of genomic coordinates between genome builds (e.g., hg19 to hg38)
UMI-tools®” 1.1.2 UMI-aware deduplication for single-end reads

UMI-transfer'* 1.0.0 Transfer of UMI information from separate FASTQ files into read headers
VarDict!%! 1.8.3 Small variant calling from DNA reads

Vit 0.57721  VCF decomposition and normalization of indels

Xengsort'?? 1.1.0 Filtering of mouse-derived reads in xenograft sequencing data
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Supplementary Table 2. External resources required by ClinBioNGS.
Each entry includes the resource name, version (if applicable), and its role within the pipeline. Resources are grouped by
category for clarity.

Category Resource Version Role in ClinBioNGS
Sample sheet - Specify DNA and RNA samples
Samplelnfo.csv ) PI‘OYId% rgeItDadata (e.g., sex, tumor,
User-defined I])) urfl-ty, f) ]
metadata files ) efine specific tumor names an
TumorNames.csv associated DOIDs!21-122
WhitelistGenes.csv - D§ﬁr}§ turpor-sp ccific gene lists for
prioritization
Fuman reference genome”” GRCh38 Deﬁne. reference genome for DNA
analysis
. Enable DNA alignment via BWA-
BWA-MEM?2 indexed genome - MEM?28!
TMAP indexed genome - Enable DNA alignment via TMAP%
Genome Mouse reference genome”’ GRCm38 Enable mouse read filtering
resources
. Support Xengsort-based mouse
Xengsort indexed genome - filtering! %2
UCSC cytoband'® hg38 Annotate gene cytobands
UCSC arm coordinates hg38 Support CNA arm-level annotations
UCSC hg38 / hg19 liftover chain®® - Convert genomic coordinates
MANE!%4 MANE GTF 1.4 Define MANE transcript structures
annotation MANE summary - List MANE transcript-gene associations
files MANE genes / exons / coding / introns - Annotate regions based on MANE
TS0500 / SEQC2'% raw manifests hgl19 Define panel target regions
Target 4-column BED hg38 Define final analysis regions
Target region Target genes - Annotate panel-specific gene content
files Extended BED / Interval list hg38 Apply padding for small variant calling
Off-target BED he38 Support BAM clipping in amplicon
panels
Target chromosomes - Enable per-chromosome variant calling
VCEF headers for consensus, annotation, . .
VCF headers CNA, fusion, splicing 4.2 Standardize output formatting
NCG!% resource file 17 Annotate oncogenes and tumor
suppressors
Catalqg 0f5;/ alidated Oncogenic 20180130 List of validated oncogenic variants
Gene role and _Mutations
oncogenicity CIViC'* oncogenic evidence 01-Nov-2024  Support for oncogenic classification
GENIE?° oncogenic mutations 16.1 Previously classified oncogenic variants
ClinGen/CGC/VICC* oncogenic - Previously classified oncogenic variants
VEP cache® 113 Reference data for VEP annotation
gnomAD?* 4.1 Population allele frequencies
CADD SNVs/InDels'?? 1.7 Pathogenicity prediction
VEP-related REVEL!" 1.3 Pathogenicity prediction
resources
AlphaMissense'%® hg38 Pathogenicity prediction
ClinVar'® VCF 20241103 Pathogenicity annotations
CIViC'* accepted VCF 01-Nov-2024  Clinical evidence annotations
Panel-specific hotspot BED hg38 Define user-specific hotspot regions
Cancer GENIE?® whitelist BED hgl19 Define known somatic hotspots
hotspots
Cancer Hotspots'!° V2 Define statistically enriched mutations
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) Panel-specific blacklist BED hg38 User-defined problematic regions
Problematic
and high- UCSC problematic regions!% 20240606 Define problematic regions
confidence GIARB stratification BED? 3.5 Define problematic regions
regions
£ CTR regions?®!1! hg38 Define high-confidence callable regions
GENIE?¢ GENIE mutation, CNA, fusion data 16.1 Annotate variant recurrence in cancer
CIViC variant summaries (raw) 01-Nov-2024  List of CIViC variants
Clinical CIViC molecular profiles (raw) 01-Nov-2024  Variant-to-evidence mapping
?(\éll(i/eil(ll‘c)ﬁ 4 CIViC clinical evidence (raw) 01-Nov-2024  Clinical evidence
CIViC evidence (processed) 01-Nov-2024 Tum or-specific curated clinical
evidence
CTAT library®? 0ct292023 Fusion/splicing detection reference
.. Annotate cancer-associated splice
82
RNA CTAT splicing database Jun232020 events
resources Mitelman Database'!? 20241105 Annotate fusion recurrence in cancer
Fusion/Splicing whitelists ; Curated list of known fusion/splice
variants
TSOS500 / OPA / OCA recurrent 2024XX Flag panel-specific recurrent small
. variants variants
Panel-specific
files TSO500 / OPA / OCA CNA baseline 2024XX Enable copy number analysis
TSO500 MSI baseline 20230124 Define baseline for MSI analysis
MSigDB!?* MMR gene sets 2024.1 MSI-related annotations
TVC parameters file® - TVC configuration for lon Torrent
Other Sequence-accessible regions*’ hg38 Define callable genome for CNA
resources baseline : : :
CNA problematic regions (GIAB)3 hg38 Exclude regions with unreliable
coverage
Microsatellite loci (10-20bp)® hg38 Identify MSI loci
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Supplementary Table 3. Standards for oncogenicity classification of somatic variants based on ClinGen/CGC/VICC SOP recommendations.

This table summarizes the evidence types used by ClinBioNGS to classify small variants by oncogenic potential. Each evidence type is assigned a weight (in points) and linked to specific

criteria implemented in the pipeline.

Type Category  Points Evidence Description Criteria
EP “HIGH” i t luding “stop_lost”) in a TSG (>2
Very Strong ~ +8  OVS1  Null variant in a validated TSG VEP "HIGH™ impact (excluding “stop_lost”) in a TSG (22/3
evidence in NCG)
0s1 Same AA change as a known “oncogenic” variant (using this Same AA change as variant labeled “Oncogenic” in GENIE or
standard). ClinGen/CGC/VICC datasets
Stron 4 02 Functional studies support an oncogenic effect. AA change is Variant in CIViC (oncogenic evidence) or Catalog of Validated
g not compatible with OS1. Oncogenic Mutations at nucleotide or AA (not OS1) level
0S3 Same AA change as a Cancer Hotspot mutation (=50 position Cancer Hotspots: position count >50 and mutation count >10
count and >10 mutation count). Not compatible with OS1. (not OS1)
OM1 Located in a critical functional domain. Not implemented due to lack of data
oM In-frame InDel in oncogene/TSG or stop-loss in TSG. Not VEP “inframe_deletion” or “inframe_insertion” in
Oncogenicity compatible with OVS1. oncogene/TSG, or “stop_lost” in TSG
S AA ch C Hotspot mutation (<50 positi
Moderate +2 ame change as .a ancer Hopot mu a.1on ( . posthion Cancer Hotspots: position count <50 and mutation count >10
OM3 count and >10 mutation count). Not compatible with OM1 or
(not OM1 or OM4)
OM4.
OM4 Same AA position, different change than a known “oncogenic” VEP “missense variant” and AA position in GENIE/ClinGen
variant. Not compatible with OS1, OS3 or OMI1. “Oncogenic” dataset (not OS1 or OS3)
OP1 All in silico predictors support oncogenicity. Unique predictor term is “likely pathogenic”
) OP2 Somatic variant in cancer with a single genetic etiology. Not implemented due to lack of data
Supporting +1 - - -
OP3 Same AA change as Cancer Hotspot mutation with <10 samples.  Cancer Hotspots: mutation count <10
OP4 Absent or extremely rare in population controls (gnomAD). gnomAD pVAF <0.05%
SBP1 All in silico predictors suggest no impact. Unique predictor term is “likely benign”
Supporting -1 . . . . .
SBP2 Synonymous variant with no predicted effect. VEP impact is “LOW” or “MODIFIER” (not OP1)
Benignity o . SBS1 Minor AF between 1% and 5% in gnomAD. 1% < gnomAD pVAF < 5%
ron -
g SBS2 Functional studies show no oncogenic effects. Not implemented due to lack of data
Very Strong -8 SBVSI Minor AF >5% in gnomAD. gnomAD pVAF > 5%
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Supplementary Table 4. Standards for clinical variant prioritization based on AMP/ASCO/CAP guidelines.
This table outlines the evidence categories used to classify variants according to clinical significance, as implemented in ClinBioNGS. Each category includes a description, and the specific
evidence-based criteria applied within the pipeline. Classification follows tier-based recommendations from AMP/ASCO/CAP guidelines.

Clinical

Cat Descripti Criteri
significance ategory escription riteria
Tier IA Therapeutic, prognostic, or diagnostic evidence from FDA-approved therapies or ~ CIViC evidence (therapeutic, prognostic, diagnostic) with 3—5 stars
S et professional guidelines. and level “A” for the same tumor type.
ong ) . . . CIViC evidence (therapeutic, prognostic, diagnostic) with 3—5 stars
Tier IB  Evidence from well-powered studies with expert consensus. e
and level “B” for the same tumor type.
) Evidence includes FDA-approved therapies in other tumor types or CIViC evidence with 3-5 stars and level “A” or “B” in other
Tier IIC . . . . . . s
Potential investigational therapies; multiple smaller studies with some consensus. tumors, or level “C” (any tumor).
Tier ID  Evidence from preclinical trials or a few case reports without consensus. CIViC evidence with 3-5 stars and level “D”.

Small variants: Classified as “Oncogenic”, “Likely Oncogenic” or

) ) ) ) ) “VUS” (ClinGen/CGC/VICC).
Unknown Tier IIL Variant not Qbsewed 1n.c.0ntr0¥ p.opulat.lon databases; found in cancer-specific CNAs: Frequency > 0.1% in GENIE.
databases without definitive clinical evidence. - - -
Fusions: Found in GENIE or MitelmanDB.

Splice variants: Annotated as cancer-enriched in CTAT.

Small variants: Classified as “Benign” or “Likely Benign*
(ClinGen/CGC/VICC).

CNAs: Frequency <0.1% in GENIE.

Fusions: Not found in GENIE or MitelmanDB.

Splice variants: Not cancer-enriched.

Benign or Likely Tier IV Variant observed at significant frequency in population datasets or absent from

Benign cancer-specific resources.
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Supplementary Table 5. Reference list of known variants for gene fusions used by ClinBioNGS.
Each fusion contains the breakpoints, name, variant, and fused genomic region for each partner gene.

Fusion breakpoints (A::B)

Fusion name

Variant

Fusion range A

Fusion range B

chr2:42295516

::chr2:29223528

EML4::ALK (E13::A20)

V1

chr2:42169350-42295516

chr2:29192774-29223528

chr2:42325554

::chr2:29223528

EML4::ALK (E20::A20)

V2

chr2:42169350-42325554

chr2:29192774-29223528

chr2:42264731::

chr2:29223528

EMLA4::ALK (E6::A20)

V3a

chr2:42169350-42264731

chr2:29192774-29223528

chr2:42264764::

chr2:29223528

EML4::ALK (E6ins33::A20)

V3b

chr2:42169350-42301392

chr2:29192774-29223528

chr2:42264731::

chr2:29223546

EML4::ALK (E6::ins18A20)

V3c

chr2:42169350-42264731

chr2:29192774-29223546

chr2:42301392::

chr2:29223479

EMLA4::ALK (E14::del49A20)

V4

chr2:42169350-42301392

chr2:29192774-29223479

chr2:42245687::

chr2:29223528

EMLA4::ALK (E2::A20)

V5a

chr2:42169350-42245687

chr2:29192774-29223528

chr2:42245687:

:chr2:29223645

EML4::ALK (E2::ins117A20)

V5b

chr2:42169350-42245687

chr2:29192774-29223645

chr2:42295516::

chr2:29223597

EML4::ALK (E13::ins69A20)

Vo6

chr2:42169350-42295516

chr2:29192774-29223597

chr2:42301392::

chr2:29223516

EMLA4::ALK (E14del12::A20)

\%

chr2:42169350-42301392

chr2:29192774-29223516

chr2:42304551::

chr2:29223558

EML4::ALK (E17::ins30A20)

V8a

chr2:42169350-42304551

chr2:29192774-29223558

chr2:42304581::

chr2:29223593

EML4::ALK (E17ins30::ins65A20)

V8b

chr2:42169350-42304581

chr2:29192774-29223593
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Supplementary Table 6. Reference list of known splice variants used by ClinBioNGS.
Each variant contains the genomic coordinates and the associated variant name, gene, and transcript.

Splice range Variant Gene Transcript Splice range (hg19)
chr7:116771655-116774880 METx14del MET ENST00000397752.8  chr7:116411709-116414934
chr7:55161632-55171174 EGFRvII EGFR ENST00000275493.7  chr7:55229325-55238867
chr7:55161632-55170306 EGFRvIIb EGFR ENST00000275493.7  chr7:55229325-55237999
chr7:55019366-55155829 EGFRvIII EGFR ENST00000275493.7  chr7:55087059-55223522
chr7:55109959-55155829 EGFRvIIIb EGFR  ENST00000275493.7 chr7:55177652-55223522
chr7:55200414-55205255 EGFRvIVa EGFR ENST00000275493.7  chr7:55268107-55272948
chr7:55200414-55202516 EGFRvIVb EGFR ENST00000275493.7  chr7:55268107-55270209
chrX:67686127-67689555 i%\ég//AA%\\]/i/ AR ENSTO00000374690.9  chrX:66905969-66909397
chrX:67643408-67680719 AR-V3 AR ENST00000374690.9  chrX:66863250-66900561
chrX:67681004-67686009  AR-V3/AR-V4 AR ENST00000374690.9  chrX:66900846-66905851
chrX:67686127-67692267 AR-V5 AR ENST00000374690.9  chrX:66905969-66912109
chrX:67686127-67692187 AR-V6 AR ENST00000374690.9  chrX:66905969-66912029
chrX:67686127-67694672 AR-V7 AR ENST00000374690.9  chrX:66905969-66914514
chrX:67686127-67690281 AR-V8 AR ENST00000374690.9  chrX:66905969-66910123
chrX:67686127-67693569 AR-V9 AR ENST00000374690.9  chrX:66905969-66913411
chrX:67686127-67694878 AR-V10 AR ENST00000374690.9  chrX:66905969-66914720
chrX:67711690-67722826 AR-V12 AR ENST00000374690.9  chrX:66931532-66942668
chrX:67721964-67728673 AR-V13 AR ENST00000374690.9  chrX:66941806-66948515
chrX:67722985-67728673 AR-V14 AR ENST00000374690.9  chrX:66942827-66948515
chrX:67643408-67685940 AR-V23 AR ENST00000374690.9  chrX:66863250-66905782
chrX:67546763-67568835 AR-45 AR ENST00000374690.9  chrX:66766605-66788677
chrX:67569023-67643255 AR-45 AR ENST00000374690.9  chrX:66788865-66863097
chrX:67546763-67685940 ARS8 AR ENST00000374690.9  chrX:66766605-66905782
chr7:140787585-140924565  BRAFx2-8del =~ BRAF ENST00000646891.2  chr7:140487385-140624365
chr7:140783158-140924565 BRAFx2-9del = BRAF ENST00000646891.2  chr7:140482958-140624365
chr7:140781694-140924565 BRAFx2-10del BRAF ENST00000646891.2 chr7:140481494-140624365
chr7:140778076-140924565 BRAFx2-11del BRAF ENST00000646891.2 chr7:140477876-140624365
chr7:140777089-140924565 BRAFx2-12del BRAF ENST00000646891.2 chr7:140476889-140624365
chr7:140754234-140924565 BRAFx2-13del BRAF ENST00000646891.2  chr7:140454034-140624365
chr7:140753394-140924565 BRAFx2-14del BRAF ENST00000646891.2 chr7:140453194-140624365
chr7:140749419-140924565 BRAFx2-15del BRAF ENST00000646891.2 chr7:140449219-140624365
chr7:140739947-140924565 BRAFx2-16del BRAF ENST00000646891.2 chr7:140439747-140624365
chr7:140734771-140924565 BRAFx2-17del BRAF ENST00000646891.2 chr7:140434571-140624365
chr7:140787585-140850110  BRAFx3-8del =~ BRAF ENST00000646891.2  chr7:140487385-140549910
chr7:140783158-140850110  BRAFx3-9del = BRAF ENST00000646891.2  chr7:140482958-140549910
chr7:140781694-140850110 BRAFx3-10del BRAF ENST00000646891.2 chr7:140481494-140549910
chr7:140778076-140850110 BRAFx3-11del BRAF ENST00000646891.2 chr7:140477876-140624365
chr7:140777089-140850110 BRAFx3-12del BRAF ENST00000646891.2 chr7:140476889-140624365
chr7:140754234-140850110 BRAFx3-13del BRAF ENST00000646891.2 chr7:140454034-140624365
chr7:140753394-140850110 BRAFx3-14del BRAF ENST00000646891.2 chr7:140453194-140624365
chr7:140749419-140850110 BRAFx3-15del BRAF ENST00000646891.2 chr7:140449219-140624365
chr7:140739947-140850110 BRAFx3-16del BRAF ENST00000646891.2 chr7:140439747-140624365
chr7:140734771-140850110 BRAFx3-17del BRAF ENST00000646891.2 chr7:140434571-140624365
chr7:140787585-140834608  BRAFx4-8del =~ BRAF ENST00000646891.2  chr7:140487385-140534408
chr7:140783158-140834608  BRAFx4-9del BRAF ENST00000646891.2  chr7:140482958-140534408
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chr7:140781694-140834608

BRAFx4-10del

BRAF

ENST00000646891.2

chr7:140481494-140534408

chr7:140778076-140834608

BRAFx4-11del

BRAF

ENST00000646891.2

chr7:140477876-140624365

chr7:140777089-140834608

BRAFx4-12del

BRAF

ENST00000646891.2

chr7:140476889-140624365

chr7:140754234-140834608

BRAFx4-13del

BRAF

ENSTO00000646891.2

chr7:140454034-140624365

chr7:140753394-140834608

BRAFx4-14del

BRAF

ENST00000646891.2

chr7:140453194-140624365

chr7:140749419-140834608

BRAFx4-15del

BRAF

ENSTO00000646891.2

chr7:140449219-140624365

chr7:140739947-140834608

BRAFx4-16del

BRAF

ENST00000646891.2

chr7:140439747-140624365

chr7:140734771-140834608

BRAFx4-17del

BRAF

ENST00000646891.2

chr7:140434571-140624365
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Supplementary Table 7. Mismatch repair pathway genes used by ClinBioNGS.
This table lists the MSigDB (v2024.1) gene set collections and their corresponding gene symbols employed by ClinBioNGS to annotate small variants involved in the MMR pathway. These
genes provide complementary evidence in the assessment of MSI. Collections and gene lists are shown in alphabetical order.

MSigDB collection Gene list
ABL1, AXIN2, EXO1, HDAC10, HMGBI, LIG1, MCM8, MCM9, MLH1, MLH3, MSH2, MSH3, MSH4, MSHS, MSH6,
GOBP_MISMATCH_REPAIR MUTYH, PCNA, PMS1, PMS2, PMS2P1, PMS2P3, PMS2P5, PMS2P6, POLD3, PRKCG, RNASEH2A, RNASEH?2B,
RNASEH2C, RPA1, RPA2, RPA3, SETD2, TP73, TREX1, XPC
GOCC_MISMATCH_REPAIR_COMPLEX MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2, PMS2P1, PMS2P3, PMS2P5, PMS2P6
GOMF_MISMATCH _REPAIR COMPLEX BINDING ATR, MCM8, MCM9, MLH1, MSH2, MSH6, MUTYH, PCNA, PMS2, TREX1, WRN
GOMF_MISMATCHED DNA BINDING APTX, MLH1, MLH3, MSH2, MSH3, MSH4, MSHS5, MSH6, MUTYH, PCNA, PMS1, PMS2, TDG, XPC

EXO1l, L1G1, MLHI1, MSH2, MSH6, PCNA, PMS2, POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3, POLE4,

WP_DNA_MISMATCH_REPAIR RFCI1, RFC2, RFC3, RFC4, RFCS5, RPA1, RPA2, RPA3

Supplementary Table 8. Overview of the pan-cancer NGS panels assessed in the SEQC?2 validation study and benchmarking in a real clinical setting.
The table summarizes key technical parameters for each panel, including target region size, input DNA, enrichment strategy, library layout, selection method, and sequencing platform.

Study Panel Full name Target size Input Enrichment Library Libratry Sequencing
(Kb) DNA (ng) assay layout selection platform
AGL Agilent Custom Comprehensive Cancer Panel v2 7,625 30 Capture Paired-end Hybrid [llumina NovaSeq 6000
BRP Burning Rock DX OncoScreen Plus 1,631 100 Capture Paired-end Hybrid [llumina NovaSeq 6000
SEQC2 IDT Integrated DNA Technologies xGen Pan-Cancer Panel 780 100 Capture Paired-end Hybrid Illumina NovaSeq 6000
IGT iGeneTech AlOnco-seq 944 100 Capture Paired-end Hybrid [lumina HiSeq 2500
ILM Illumina TruSight Tumor 170 527 50 Capture Paired-end Hybrid Illumina NextSeq 550
TFS Thermo Fisher Oncomine Comprehensive Assay v3 349 20 Amplicon Single-end PCR Ion Torrent S5 XL
Clinical OCA Oncomine Comprehensive v3 GX5 DNA and Fusions 349 10 Amplicon Single-end PCR Ion Torrent Genexus
Setting OPA OncoTnine Précision GXS5 DNA and Fusions 14 10 Amplicon Sir}gle-end PCB Ion Torrent Genexus
TSOS500  Illumina TruSight Oncology 500 1,940 40 Capture Paired-end Hybrid [llumina NextSeq550
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Supplementary Table 9. Summary table with the QC criteria used to select tumor samples for benchmarking in the TSO500, OPA, and OCA panels.
It includes the type of panel and sample, followed by each metric.

Panel Nucleic Total Aligned reads On-target Median read Median insert Median target Target bases Target bases
acid reads (%) reads (%) length size coverage >100X (%) >0.4xMean (%)
OCA DNA >2M >95 >90 >80 - >500 >90 >50
RNA >500K >75 >50 >80 - - - -
OPA DNA >500K >90 >85 >80 - >500 >95 >80
RNA >250K >85 >30 >60 - - - -
DNA >10M >90 >70 >80 >70 >200 >90 >80
TSO500
RNA >10M >80 >80 >70 >70 - - -

Supplementary Table 10. Performance metrics from the multi-panel validation of ClinBioNGS small variant detection using SEQC?2 reference data.
For each analyzed sample, variant calling performance was assessed for both ClinBioNGS and the corresponding commercial pipeline. The following metrics were calculated: TP, FN, FP,
precision, recall, and F1-score.

NGS panel  KP variants ID Pipeline TP variants  FN variants  FP variants Precision Recall F1-score
Commercial 2790 34 12 0995717345 0.98796034  0.991823676
SampleA_AGLI_STO1 30ng LIB4 - 5i NGs 2810 14 3 0.998933523  0.995042493  0.996984211
Commercial 2779 45 20 0.992854591  0.984065156  0.988440334
SampleA_AGLI_STO1 30ng LIB3 5i NGs 2801 23 4 0.998573975  0.991855524  0.995203411
AGL 2824 Commercial 2788 36 14 0995003569  0.987252125  0.991112691
SampleA AGL1_STO1 30ng LIB2 .
ClinBioNGS 2805 19 1 0.999643621  0.993271955  0.996447602
C ial 2798 26 15 0.994667615  0.990793201  0.992726628
SampleA AGL1 STOl 30ng LIBI et
ClinBioNGS 2811 13 2 0.999289015  0.995396601  0.99733901
ial 112 11 0.990274094 0.992 1 09915891
SampleA BRPI ST27 100ng LIB2 Commercia 0 8 0.990274094  0.992907801  0.991589199
ClinBioNGS 1120 8 8 0.992907801  0.992907801  0.992907801

0.994657168  0.990248227  0.992447801
0.997323818  0.991134752  0.994219653
Commercial 1121 7 0.995559503  0.993794326  0.994676131

Commercial 1117 11 6
3
5
ClinBioNGS 1116 12 4 0996428571  0.989361702  0.992882562
5
2

leA BRP1 ST27 1 LIBI
SampleA_BRP1_ST27_100ng_ ClinBioNGS 1118 10

BRP 1128
SampleA_BRP1_ST27_100ng_LIB4

Commercial 1122 6 0.995563443  0.994680851  0.995121951

SampleA BRP1 ST27 100ng LIB3
ampleA _BREL ST/ _TUUne_ ClinBioNGS 1118 10 0.998214286  0.991134752  0.994661922
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Samolon IDT1 ST06 100ma Lipp  COMmercial 378 10 0 1 0974226804  0.98694517
pren DL STV _THne_ ClinBioNGS 381 7 5 0987046632  0.981958763  0.984496124
Commercial 379 9 0 1 0976804124  0.988265971
DT 158 SampleA_IDT1_ST06_100ng LIB2 . b NGs 382 6 30992207792 0984536082  0.98835705
ial 1 1 0931 . 2
Sample IDT1 ST06 100ng Lips  CO™™eIcia 38 7 0 0.981958763  0.990897269
ClinBioNGS 382 6 2 0994791667  0.984536082  0.989637306
ial 2 o 4 0984536082 0.990920882
Sample IDT1 ST06 100ng Lis  CO™™eIci 38 6 0.997389034  0.984536082  0.99092088
ClinBioNGS 385 3 4 0989717224  0.992268041  0.990990991
Commercial 352 1 0 1 0997167139 0.99858156
leA IGT1 STO8 100ng LIB4
SampleA_IGTI_ST08_100ng_ ClinBioNGS 352 1 0 1 0997167139  0.99858156
fal 1 2 1 09943342 997159091
SampleA IGT1 _ST0S 100ng LIB3 C(l)mrr.lerma 35 0 0.994334278  0.99715909
o1 152 ClinBioNGS 352 1 0 1 0997167139  0.99858156
Commercial 352 1 0 1 0997167139 0.99858156
leA IGT1 ST08 100ng LIB2
SampleA_IGTI_ST08_100ng_ ClinBioNGS 352 1 0 1 0997167139  0.99858156
Commercial 352 1 0 1 0997167139 0.99858156
SampleA_IGT1_STO8_100ng LIBL . ». NGs 352 1 0 1 0997167139  0.99858156
Samolon 1M1 ST10 S0na Lipa  COMMercial 420 24 2 0995260664 0945945946  0.969976905
plen LAl ST IR e ClinBioNGS 431 13 1 0997685185 0.970720721  0.984018265
Samlon 1M1 ST10 S0me Lips  COMmercial 423 21 2 0995294118 0.952702703 0973532796
M » plen_ILAMI_STIE Pne_ ClinBioNGS 436 8 0 1 0981981982  0.990909091
Samlon 1M1 ST10 S0me g COMMercial 418 26 2 0995238095 0941441441  0.967592593
plen_ILAMI_STIE Pne_ ClinBioNGS 435 9 0 1 097972973  0.989761092
Samlon 1M1 ST10 Soma L1y COmmercial 417 27 2 099522673 0939189189  0.966396292
plea_ILAMI_STIE Pne_ ClinBioNGS 429 15 1 0997674419  0.966216216  0.981693364
fal 221 1 1 09954954 032489451 0.962962
SampleA TFS1 ST24 20ng Lip4  CO™MeIci 6 0.995495495  0.932489451  0.962962963
ClinBioNGS 225 12 3 0986842105 0.949367089  0.967741935
fal 21 2 1 0995412844 0915611814  0.953846154
SampleA TFS1 ST24 20ng LIB3 C(l)mrr.lerma 7 0 0.995 8 0.9156118 0.95384615
- . ClinBioNGS 218 19 1 099543379 0919831224  0.956140351
Commercial 218 19 1 099543379 0919831224  0.956140351
SampleA TFS1 ST24 20ng LIB2 o
— Sl oRes SOng ClinBioNGS 221 16 1 0995495495  0.932489451  0.962962963
fal 21 1 1 0924 96052631
SampleA TFSI_ST24 20ng LIBI Cc?mn?erma 9 8 0 0.924050633 0.960526316
— Sl oRes SOng ClinBioNGS 221 16 1 0995495495  0.932489451  0.962962963
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Supplementary Table 11. Patient characteristics in the clinical benchmarking cohort.
Age, sex, sample type, TP, and tumor type characteristics are summarized across TSO500, OPA, and OCA panels. Most
represented tumor types (>10 samples) in any panel are specified.

Characteristic TSO500 (N=755) OCA(N=595) OPA(N=674)
Age, years, No. (%)
<50 103 (13.6) 33 (5.5) 41 (6.1)
50-60 177 (23.5) 83 (14.0) 104 (15.4)
61-70 176 (23.3) 127 (21.3) 200 (29.7)
71-80 170 (22.5) 114 (19.2) 184 (27.3)
>80 18 (2.4) 32(5.4) 45 (6.7)
Missing 111 (14.7) 206 (34.6) 100 (14.8)
Sex, No. (%)
Male 443 (58.7) 311 (52.3) 378 (56.1)
Female 306 (40.5) 242 (40.7) 191 (28.3)
Missing 6 (0.8) 42 (7.0) 105 (15.6)
Sample type, No. (%)
DNA & RNA 587 (77.8) 449 (75.5) 536 (79.5)
DNA-only 68 (9.0) 88 (14.8) 87 (12.9)
RNA-only 100 (13.2) 58 (9.7) 51 (7.6)
TP (%), No. (%)
<25 112 (14.8) 58 (9.7) 119 (17.7)
25-50 241 (31.9) 212 (35.6) 226 (33.5)
51-75 239 (31.7) 197 (33.1) 137 (20.3)
>75 163 (21.6) 105 (17.7) 88 (13.1)
Missing 0(0) 23 (3.9 104 (15.4)
Tumor type, No. (%)
Biliary tract 5(0.7) 1(0.2) 21 (3.1)
Breast 1(0.1) 29 (4.9) 1(0.1)
Central nervous system 97 (12.8) 51 (8.6) -
Connective tissue 54(7.2) 1(0.2) 2(0.3)
Head and neck 17 (2.3) 8(1.3) -
Large intestine 57(7.5) 79 (13.3) 112 (16.6)
Lung 340 (45.0) 207 (34.8) 403 (59.8)
Ovarian 12 (1.6) 15 (2.5) -
Pancreatic 10 (1.3) 19 (3.2) 3(0.5)
Prostate 13 (1.7) 16 (2.7) -
Skin 13 (1.7) 46 (7.7) -
Thyroid 13 (1.7) 5(0.8) -
Urinary bladder 12 (1.6) 26 (4.4) -
Uterine 28 (3.7) 21 (3.5) 1(0.1)
Other 81 (10.7) 49 (8.2) 27 (4.0)
Missing 2 (0.3) 22 (3.7) 104 (15.4)
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Supplementary Table 12. Comparative analysis of ClinBioNGS and commercial pipeline results across three pan-
cancer NGS panels.

This table summarizes the number of cancer-related alterations detected by both pipelines or uniquely by either
ClinBioNGS or the commercial pipeline. Results are categorized by panel and variant type. For each group, the
ClinBioNGS classification status and the presence of each variant in the CIViC database are considered.

NGS panel Variant type  Detection status  ClinBioNGS status CIViC  Variants

TRUE 330
OK
L FALSE 632
Both pipelines
TRUE 12
Flagged
FALSE 1093
TSO500 Small variant OK TRUE 3
ClinBioNGS-only FALSE 124
Flagged FALSE 1792
TRUE 6
Commercial-only Absent
FALSE 46
TRUE 350
OK
L FALSE 405
Both pipelines
- q TRUE 2
agge
&8 FALSE
TRUE 4
OCA Small variant OK
L FALSE 32
ClinBioNGS-only
TRUE 8
Flagged
FALSE 832
] TRUE 5
Commercial-only Absent
FALSE 29
TRUE 400
OK
Both pipelines FALSE 272
Flagged FALSE 1
TRUE 7
OPA Small variant OK
ClinBioNGS-only FALSE 52
Flagged FALSE 13
. TRUE 5
Commercial-only Absent
FALSE 13
TRUE 118
OK
o FALSE 139
Both pipelines
TRUE 545
Flagged
FALSE 463
TRUE 11
AMP OK
FALSE 348
ClinBioNGS-only
TRUE 689
TSO500 Flagged
FALSE 4996
TRUE 61
Commercial-only Absent
FALSE 14
TRUE 86
OK
FALSE 25
DEL ClinBioNGS-only
TRUE 1068
Flagged
FALSE 372
OCA AMP Both pipelines OK TRUE 162
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FALSE 29
TRUE 264
Flagged
FALSE 104
TRUE 12
OK
FALSE 5
ClinBioNGS-only
TRUE 985
Flagged
FALSE 356
. TRUE 48
Commercial-only Absent
FALSE 16
TRUE 66
OK
. FALSE 3
DEL ClinBioNGS-only
TRUE 775
Flagged
FALSE 38
OK TRUE 48
Both pipelines TRUE 167
Flagged
FALSE 1
AMP OK TRUE 5
Flagged TRUE 309
Commercial-only
OPA TRUE 115
Absent
FALSE 2
OK TRUE 28
Both pipelines
Flagged TRUE 15
DEL
OK TRUE 11
ClinBioNGS-only
Flagged TRUE 226
TRUE 45
OK
L FALSE 23
Both pipelines
TRUE 3
Flagged
. FALSE 14
Fusion
OK FALSE 1
TSO500 ClinBioNGS-only TRUE 5
Flagged
FALSE 36
Commercial-only Absent FALSE 2
Lo OK TRUE 22
. . Both pipelines
Splice variant Flagged TRUE 10
ClinBioNGS-only Flagged TRUE 2
TRUE 33
L OK
Both pipelines FALSE
Flagged TRUE 6
TRUE 21
Fusion OK
L FALSE 51
OCA ClinBioNGS-only
TRUE 32
Flagged
FALSE 63
Commercial-only Absent TRUE 1
. . Both pipelines OK TRUE 7
Splice variant —
ClinBioNGS-only OK TRUE 16
OPA Fusion Both pipelines OK TRUE 21
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FALSE 1
TRUE 5

Flagged
FALSE 2
ClinBioNGS-only Flagged TRUE 3
TRUE 4

Commercial-only Absent
FALSE 6
Lo OK TRUE 9

Both pipelines
) ) Flagged TRUE 8
Splice variant —

ClinBioNGS-only Flagged TRUE 11
Commercial-only Absent TRUE 1
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Supplementary Table 13. ClinBioNGS-only “OK” cancer mutations with clinical evidence.

For each small variant uniquely detected by ClinBioNGS, the following information is provided: variant identifier, mutation name, AD, VAF, assigned flags, CIViC evidence type and level,

oncogenicity classification, and number of supporting callers. The last column includes the detection status in the commercial pipeline. Results are grouped by NGS panel.

ClIviC

CIViC

Panel Variant ID Mutation AD VAF (%) Evidence type  Evidence level Oncogenicity Callers Commercial status
chr11:108365359 C/T ATM_R3008C 10 2.42 Predictive D - Preclinical VvUuS 2 LowSupport, AD=4, VAF=1.8%
TSO500  chr7:55181312 G/T  EGFR S7681 18 1.4 Predictive ~ C-Casestudy  Likely Oncogenic 2 Ié’ovrlsﬁ‘ﬁll’e‘gtwﬁf ;LZ’IZ’;:;; tg:f“
chrl7:7674252 C/T TP53 M2371 11 1.4 Predictive D - Preclinical ~ Likely Oncogenic 2 LowSupport, AD=49, VAF=1.2%
chr12:25245350 C/T KRAS GI12D 113 1.63 Prognostic B - Clinical trial Oncogenic 3 QualityScore<8, AD=36, VAF=1.8%
chr12:25245351 C/T KRAS G128 117 1.29 Predictive B - Clinical trial Oncogenic 3 ABSENT, AD=24, VAF=1.2%
OcA chr3:38141150 T/C ~ MYDS88 L252P 9 1.9 Predictive B - Clinical trial ~ Likely Oncogenic 3 QualityScore<8, AD=11, VAF=1.8%
chrl7:7674221 G/A TP53 R248W 11 24 Prognostic B - Clinical trial Oncogenic 3 QualityScore<8, AD=12, VAF=1.8%
chr7:55191822_T/G EGFR L858R 62 2.54 Predictive A - Validated Oncogenic 3 QualityScore<6, AD=103, VAF=2.4%
chr12:25225627 G/A  KRAS _Al146V 59 2.4 Predictive D - Preclinical Oncogenic 3 QualityScore<6, AD=124, VAF=2.4%
chr12:25245350_C/G ~ KRAS_GI12A 288 17 Predictive B - Clinical trial Oncogenic 3 NO CALL, AD=207, VAF=10.7%
OPA chr12:25245350 C/T KRAS GI12D 42 2.5 Prognostic B - Clinical trial Oncogenic 3 QualityScore<6, AD=62, VAF=2.4%
chrl7:7674220_C/T TP53 R248Q 56 2.24 Prognostic B - Clinical trial Oncogenic 3 QualityScore<6, AD=182, VAF=2.4%
chr17:7673802_C/T TP53 R273H 5 3.5 Prognostic B - Clinical trial Oncogenic 3 QualityScore<6, AD=21, VAF=2.2%
chr17:7673781 C/T TP53 R280K 23 1.75 Predictive D - Preclinical ~ Likely Oncogenic 3 ABSENT, AD=46, VAF=2%
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Supplementary Table 14. ClinBioNGS-only ”OK” cancer mutations with no clinical evidence.
Only “Oncogenic” and “Likely Oncogenic” small variants are shown. For each variant uniquely detected by ClinBioNGS, the following information is provided: variant identifier, mutation
name, alternate read count, allele frequency, and number of supporting callers. Some variants are condensed into one row, and a range of minimum and maximum values are represented. The
last column includes the detection status in the commercial pipeline. Results are grouped by panel.

Panel Oncogenicity Variant ID Mutation AD VAF (%)  Callers Commercial status
chr20:32434485_C/A ASXL1_Y591* 14 1.3 2 LowSupport
chr15:44711549 G/C B2M_M1? 10 1.7 2 LowSupport
chr4:152323033_G/A FBXW7_R658* 17 1.9 2 LowSupport
chr4:152329731_G/A FBXW7_R393* 19 1.8 2 LowSupport
chr7:152358671_G/A KMT2C R56* 6 2.1 2 Blacklist;LowSupport

Oncogenic 4 x chr2:47803500_A/AC 4 x MSH6_F1088Lfs*5 [26,686]  [3.8,60.4] [2,4] Blacklist
chr5:68293123_C/T PIK3R1_R348* 21 1.5 2 LowSupport
2 x chr10:87960914_G/A 2 x PTEN_W274* [10, 40] [4.9,10.3] [3.4] Blacklist
chr13:48368549_C/T RB1_R358* 13 1.8 2 LowSupport
150300 chr13:48379594 C/T RBI1_R445%* 5 1.9 2 LowSupport
chr13:48379594 C/T RBI1_R445%* 8 1.5 2 LowSupport
chr3:10149804 C/T VHL RI161* 6 2.0 2 LowSupport
chr1:26773716_CGGT...TATA/C  ARIDIA_c.4004_4005-2del 6 3.8 2 Not found in the VCF
7 x chr20:32434638_A/AG 7 x ASXL1_G646Wfs*12 [12,127]  [2.1,30.8] [2,3] Blacklist
Likely Oncogenic chr7:140781678_G/A BRAF_R444W 10 2.4 3 LowSupport
chr9:21971037_C/A CDKN2A_DI108Y 10 39 3 LowSupport
chr2:25234373_C/T DNMT3A_R882H 19 1.1 2 LowSupport
chr17:7673534_CCTG...AAAG/C TP53_¢.920-31_993del 93 28.4 4 Not found in the VCF
chr9:21971209_C/T CDKN2A _c.151-1G>A 14 100 5 Not found in the SNV/InDel list
chr12:25245348 C/A KRAS G13C 49 1.9 3 QualityScore<8
) chr10:87961095_C/T PTEN_R335%* 23 1.1 3 Not found in the SN'V/InDel list

OCA Oncogenic chr13:48362847_C/T RB1_R251* 20 1.7 3 QualityScore<8
chr13:48362859 C/T RBI1_R255%* 37 24 3 Not found in the SNV/InDel list
chr13:48465238_C/T RB1_R787* 22 1.5 3 Not found in the SN'V/InDel list

Likely Oncogenic 2 x chr7:55174737_G/A 2 x EGFR_E734K [18,26] [1.3,1.8] 3 Not found in the SNV/InDel list
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2 x chr7:55174729 _G/A 2 x EGFR_W731* [25,48] 1.4 3 Not found in the SNV/InDel list
chr15:90088703_G/A IDH2 R140W 16 2.5 3 QualityScore<8
chr12:25227349 C/T KRAS A59T 36 1.3 3 QualityScore<8
chr12:25245345 C/T KRAS V141 25 1.7 3 Not found in the SNV/InDel list
chr15:66436825 C/T MAP2K1 P124L 22 1.2 3 ABSENT
chr3:179234296 C/T PIK3CA H1047Y 20 1.9 3 QualityScore<8

chr9:21971209_C/A CDKN2A _c.151-1G>T 382 37.8 5 Not found in the SNV/InDel list
chr20:58909366_G/A GNAS_R201H 21 2.7 3 QualityScore<6

3 x chrl7:7675052_C/T 3 x TP53 ¢.559+1G>A [44,417]  [2.2,42.3] [3,5]  Not found in the SNV/InDel list

chrl7:7675052_C/G TP53 ¢.559+1G>C 623 343 4 Not found in the SNV/InDel list
chr17:7674858_C/G TP53 ¢.672+1G>C 1089 72.1 4 Not found in the SNV/InDel list
Oncogenic chr17:7674858 C/A TP53 ¢.672+1G>T 80 8.1 4 Not found in the SNV/InDel list
chrl7:7673767_C/A TP53 E285%* 383 25.6 5 Not found in the SNV/InDel list
chr17:7673824_CC/AA TP53_G266* 390 383 5 Not found in the SNV/InDel list
chr17:7673824_C/A TP53_G266* 292 39.0 5 Not found in the SNV/InDel list
OPA chr17:7675206_G/A TP53_Ql136* 142 11.9 4 Not found in the SNV/InDel list
chr17:7675182_G/A TP53 Ql144* 611 54.5 5 Not found in the SNV/InDel list
chr9:21971186_CG/C CDKN2A RS58Efs*88 5 1.2 3 Not found in the SNV/InDel list
chr9:21971184_CTCGG/C CDKN2A_R58W{fs*87 66 15.4 3 Not found in the SNV/InDel list
chr10:87952142 C/T PTEN R173C 41 1.5 3 ABSENT
chr17:7674239 A/AG TP53_C242Lfs*22 128 16.0 5 Not found in the SNV/InDel list
Likely Oncogenic 2 x chr17:7673809_C/T 2 x TP53 E271K [67,1386] [5.1,49.1] 4 Not found in the SNV/InDel list
chr17:7675204 TTG/T TP53 QI136Tfs*12 665 20.8 4 Not found in the SNV/InDel list
chr17:7675167_AATC...CTGC/A TP53_Q144Pfs*21 563 31.7 4 Not found in the SN'V/InDel list
chr17:7673802_C/A TP53_R273L 8 2.1 3 ABSENT
3 x chr17:7674887 C/A 3 x TP53 S2151 [62,527] [12.5,47.6] [4,5] Not found in the SNV/InDel list
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Supplementary Table 15. Commercial-only cancer mutations with clinical evidence.

For each small variant uniquely reported by the commercial pipelines, the following information is provided: variant identifier, mutation name, AD, VAF, CIViC evidence type and level, and
its detection status in ClinBioNGS. Results are grouped by NGS panel.

CLViC
AF 1Vi
Panel Variant ID Mutation AD V: Evidence ,C vic ClinBioNGS status
(%) Evidence level
type
) - .. . Primary flags=LowVAF;LowCallers

chr7:140753334 _T/C BRAF _K601E 10 0.87 Predictive B - Clinical trial (Mutect2), Pisces=q20:SB
chr7:140753336_A/T BRAF V600E 13 0.9 Predictive A - Validated Not reported, Pisces=q20;SB
chr7:55174772. GGAATTAAGAGAAGCA/G ~ EGFR_E746 A750del 3 032  Predictive  C - Case study Not reported, Pisces=q20;SB,

TSO500 Mutect2=weak evidence
chr17:39724728 A/AGCATACGTGATG ~ ERBB2 Y772 A775dup 22 1.13  Predictive B - Clinical trial Not reported, Pisces=q20;SB,

— — — Mutect2=slippage
chr12:25245350 C/A KRAS GI2V 5 1.14 Predictive B - Clinical trial Not reported, Pisces=q20;SB
chr17:7675139_C/A TP53_RI58L 14 153  Predictive D - Preclinical Primary flags=LowCallers (VarDict),

_ _ Pisces=q20;SB

) _ . Primary flags=LowCallers (VarDict, TVC),
chr7:55191822_T/G EGFR_L858R 53 2.7 Predictive A - Validated Pisces=q20:SB, Mutect2=clustered cvents
cht7:55181378_C/T EGFR_T790M 347 174 Predictive  A-Validated L nmary flags=LowCallers (Pisces, TVC),

- - Mutect2=base qual;haplotype
. .. . Primary flags=LowCallers (VarDict, TVC),
hr12:25245350_C/T KRAS _GI2D 80 4 P t B-Cl 1 trial
oca o - - rognostic ficat tra Pisces=q20;SB, Mutect2=clustered_events
Pri flags=LowCall VarDict, TVC
chr3:179218303 G/A PIK3CA E545K 53 27 Predictive  C - Case study rimary flags=LowCallers (VarDict, TVC),
- - Pisces=q20;SB
Pri flags=LowCall VarDict, TVC
chr3:179234297 A/G PIK3CA_H1047R 71 35 Predictive  C-Casestudy | rmary flags=LowCallers (VarDict, TVC),
- - Pisces=q20, Mutect2=clustered events
Pri flags=LowCall VarDict, TVC
chr7:140753354_T/C BRAF D594G 160 29  Predictive  C - Case study rimary flags=LowCallers (VarDict, TVC),
- - Pisces=q20;SB
Pri flags=LowCall VarDict, TVC
chr7:55174771_AGGAATTAAGAGAAGC/A  EGFR_E746_A750del 234 3.1 Predictive C - Case study rimaty Tlags Pi:c\zsjqze(fs(B Ak >
Pri flags=L 11 Pi TV
OPA chr7:55181378_C/T EGFR_T790M 4352 389  Predictive A - Validated rimary flags=LowCallers (Pisces, TVC),
Mutect2=orientation
chr7:55181378_C/T EGFR_T790M 440 117  Predictive A - Validated _ Primary flags=LowCallers (TVC), |
- - Pisces=SB, Mutect2=haplotype;orientation
chr17:7673802_C/T TP53 R273H 36 3.2 Prognostic B - Clinical trial Not reported, Pisces=q20;SB
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Supplementary Table 16. Commercial-only cancer mutations with no clinical evidence.

For each small variant uniquely reported by the commercial pipelines, the following information is provided: variant identifier, mutation name, AD, VAF, and its detection status in ClinBioNGS.

Some variants are condensed into one row, and a range of minimum and maximum values are represented. Results are grouped by NGS panel.

Panel Variant ID Mutation AD VAF (%) ClinBioNGS status
chr1:26761012_C/T ARID1A R693* 9 2.2 Primary flags=LowCallers (VarDict), Pisces=q20
chr9:21971097_C/A CDKN2A E88* 17 1.4 Not reported, Pisces=q20
chr2:25234374 G/A DNMT3A R882C 7 1.0 Primary flags=LowCallers (Mutect2), Pisces=q20;SB
chr2:25234373 C/T DNMT3A R882H 11 1.2 Primary flags=LowCallers (Mutect2), Pisces=q20;SB
¢hr20:58909365_C/T GNAS_R844C 12 1.9 Primary flags=LowCallers (VarDict), Pisces=q20,

- = Mutect2=orientation
chr12:120978847 A/C HNF1A 127L 12 1.2 Not reported, Pisces=q20;SB
TSO500
29 x chr3:49684189 C/T 29 x MST1_G673S [6,59] [2.7,11.3] Not reported, Pisces=q20;SB, VarDict=q10
chr3:179199088 G/A PIK3CA R88Q 11 1.1 Primary flags=LowCallers (Mutect2), Pisces=q20;SB
chrl7:7673743_C/T TP53 G293R 8 1.7 Not reported, Pisces=q20;SB
chrl7:7675077_G/T TP53 H179N 3 1.7 Primary flags=LowCallers (VarDict), Pisces=q20
chr17:7673802_C/G TP53 R273P 9 0.9 Not reported, Pisces=q20;SB
7 x chr21:43104346_G/A 7 x U2AF1_S34F [10,234] [3.7,27.4] Not reported, VarDict=q10
chr1:26779059 C/T ARID1A _R1721* 17 3.1 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr7:140753332 T/G BRAF K601N 12 2.9 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr7:140753339 G/A BRAF T5991 7 3.7 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
OCA chr9:21971139_C/A CDKN2A_D74Y 233 59 Primary flags=Blacklist
chr9:21970969_CA/C CDKN2A_L130Rfs*16 32 26.7 Primary flags=Blacklist
chr9:21974726_CGCCTCCAGCAGCGCCCGC/C CDKN2A_R29_A34del 541 29.1 Primary flags=Blacklist
chr9:21971187_G/A CDKN2A_R58* 2 43 Primary flags=LowAD; LowCallers (TVC), Pisces=q20
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chr9:21974793_G/T CDKN2A_S12* 157 72.7 Primary flags=Blacklist
chr9:21974732 CAGCAGCGCCCGCACCTCC/C CDKN2A V28 E33del 258 13.8 Primary flags=Blacklist
chr5:68295418 A/T - 598 46.6 Primary flags=Blacklist
chr9:21971210_T/G - 9 45.0 Primary flags=Blacklist
chr3:41224607_A/T CTNNB1_ D32V 23 2.6 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr17:39725187 C/T ERBB2 H878Y 11 3.0 Primary flags=LowCallers (TVC; VarDict); Pisces=q20;SB
chr4:1801837 C/T FGFR3 R248C 4 49 Primary ﬂags=LowAD;LowC_allers (TVC,; VarDict), Pisces=q20;SB,
- = Mutect2=clustered events
chr5:177095550 G/T FGFR4 VS550L 3 3.0 Not reported, Pisces=q20;SB
chr12:120988846 C/T HNF1A R114C 4 3.0 Primary flags=LowAD;LowCallers (TVC; VarDict), Pisces=q20;SB
chr12:120988846 C/T HNFIA R114C 1 6.9 Primary flags=LowCallers (TVC; Vafcht), Pisces=q20;SB,
- - Mutect2=orientation
chr3:179221146 _G/A PIK3CA E726K 163 8.2 Primary flags=LowCallers (Pisces;TVC), VarDict=q10
chr3:179218307_A/G PIK3CA Q546R 72 3.6 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr12:112489106_G/A PTPN11_Q510= 9 2.8 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr13:48345108_G/T RB1_E137* 740 372 Primary flags=Blacklist
chr10:43114501 _G/A RET _C634Y 6 33 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr3:49375540 C/T RHOA GI7E 28 25 Primary flags=LowCallers (TV.C; Var.cht), Pisces=q20;SB,
- - Mutect2=orientation
chr22:23834143 G/A SMARCBI1_R374Q 5 34 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr19:1220429 _A/G STK11_H174R 97 20.0 Primary flags=Blacklist
chr17:7673795_A/ACAAA TP53_A276Lfs*31 961 48.3 PASS (4 callers) but different insertion representation
chr17:7674908_T/C TP53_D208G 77 24.5 Primary flags=Blacklist
chrl17:7674233_C/A TP53_G244C 13 2.4 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
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chrl7:7674893 C/T TP53 R213Q 9 2.2 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr3:41224613 G/A CTNNBI G34E 325 45 Primary flags=LowCallers (TVC; VarDict), Pisces=SB,
- - Mutect2=haplotype;orientation
chr3:41224622 C/T CTNNBI1_S37F 224 3.5 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr4:1804392 G/A FGFR3_G380R 26 5.6 Primary flags=LowAD;LowCallers (TVC), Pisces=q20;SB
chr5:177095550 G/T FGFR4_V550L 14 5.1 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chr5:177095550_G/A FGFR4 V550M 24 5.0 Primary flags=LowAD, Pisces=q20;SB
chr15:90088703 G/A IDH2 R140W 78 3.0 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
. Primary flags=LowCallers (TVC; VarDict), Pisces=SB,
OPA chr10:87894057_C/T PTEN_P38S 1870 413 Mutect2=haplotype;orientation
chrl7:7675085_C/G TP53 C1768 1808 29.1 Primary flags=LowCallers (TVC; VarDict), Pisces=SB,
Mutect2=base qual;orientation
chrl7-7674248 T/C TP53 N239D 240 59 Primary flags=LowCallers (TYC; Yarcht), Pisces=q20,
— - Mutect2=orientation
chr17:7675071_G/A TP53 RI81C 472 15.3 Primary flags=LowCallers (Pisces; VarDict),
- - Mutect2=clustered events
chrl7:7673782_T/C TP53 R280G 29 3.6 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
2 x chrl17:7673776_G/A 2 x TP53 R282W [20,38] [2.9,3.4] Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
chrl17:7673776_G/A TP53 R282W 20 34 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB
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Supplementary Table 17. ClinBioNGS-only “OK” cancer CNAs with clinical evidence.

For each gene, the following information is provided: number of affected samples, estimated absolute CN, CIViC evidence type and level, and detection status in the commercial pipeline.

Results are grouped by panel and CNA status.

Panel CNA Gene Samples CN . CIviC . CIvic Commercial status
Evidence type  Evidence level
FOXP1 1 8 Diagnostic B - Clinical trial No CNA gene
MAPKI1 1 11 Predictive D - Preclinical No CNA gene
MYB 1 5 Prognostic B - Clinical trial No CNA gene
AMP NCOA3 4 5 Prognostic B - Clinical trial No CNA gene
REL 1 8 Diagnostic B - Clinical trial No CNA gene
TOP1 3 5 Predictive B - Clinical trial No CNA gene
ATRX 3 0 Predictive D - Preclinical No CNA gene
TSO500 CDKN2A 55 0 Prognostic B - Clinical trial No CNA gene
IKZF1 3 0 Prognostic A - Validated No CNA gene
KMT2C 1 0 Predictive B - Clinical trial No CNA gene
DEL NF1 1 0 Predictive D - Preclinical No CNA gene
PTEN 10 0 Predictive B - Clinical trial LowValidation (deletions are not reported)
SMAD4 3 0 Predictive B - Clinical trial No CNA gene
SMARCA4 3 0 Predictive D - Preclinical No CNA gene
SMARCBI1 1 0 Diagnostic B - Clinical trial No CNA gene
STK11 6 0 Predictive D - Preclinical No CNA gene
BRAF 1 5 Predictive C - Case study ABSENT (CN=4.6)
CCNE1 1 5 Prognostic B - Clinical trial ABSENT (CN=4.73)
CDK4 1 10 Predictive B - Clinical trial NO CALL (DIFFERENT MEAN SIGNAL; CN=10)
EGFR 1 5 Predictive B - Clinical trial NO CALL (MAPD>0.5)
AMP KIT 2 5 Predictive B - Clinical trial NO CALL (MAPD>0.5)
MDM2 1 5 Prognostic B - Clinical trial NO CALL (MAPD>0.5)
MYC 2 6,5 Predictive D - Preclinical NO CALL (MAPD>0.5)
OCA PIK3CA 2 5 Predictive B - Clinical trial ABSENT (CN=4.7); NO CALL (MAPD>(.5)
TERT 1 5 Prognostic B - Clinical trial ABSENT (CN=5.38)
ATRX 2 0 Prognostic B - Clinical trial ABSENT (CN=0)
CDKN2A 43 0 Prognostic B - Clinical trial ABSENT (CN=0)
DEL PTEN 7 0 Predictive B - Clinical trial ABSENT (CN=0)
SMARCA4 2 0 Predictive B - Clinical trial NO CALL (SEVERE_GRADIENT)
STK11 6 0 Predictive D - Preclinical ABSENT (CN=0)
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TP53 6 0 Predictive D - Preclinical ABSENT (CN=0)
AMP KIT 3 8,7,5 Predictive B - Clinical trial No CNA gene
PDGFRA 2 8,7 Predictive D - Preclinical No CNA gene
OPA CDKN2A 9 0 Prognostic B - Clinical trial ABSENT (CN=0.6-3.13)
DEL PTEN 1 0 Predictive B - Clinical trial ABSENT (CN=0.35)
TP53 1 0 Predictive D - Preclinical No CNA gene
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Supplementary Table 18. Commercial-only cancer CNAs with clinical evidence.

For each gene, the following information is provided: number of affected samples, estimated absolute CN, CIViC evidence type and level, and sample’s TP. CN and TP values include the

number of samples in parentheses when it is necessary. Results are grouped by panel and CNA status.

CIVviC Cl1viC
Panel CNA Gene Samples CN Evidence type  Evidence level TP (%)
ALK 23 3 (n=13), 4 (n=7), 5 (n=3) Predictive C - Case study Median=70
BRAF 3 3 Predictive C - Casestudy 80 (n=2), 10 (n=1)
CDK4 2 4,13 Predictive B - Clinical trial 60, 10
EGFR 21 3 (n=11), 4 (n=9), 7 (n=1;TP=20%) Predictive B - Clinical trial Median=60
TSO500 AMP  ERBB2 8 3 (n=6), 4 (n=1), 7 (n=1;TP=20%) Predictive A - Validated Median=65
FGFR1 1 3 Prognostic B - Clinical trial 95
MET 1 4 Predictive C - Case study 50
MYCN 1 3 Prognostic A - Validated 90
PDGFRA 1 3 Predictive D - Preclinical 70
ALK 1 6 Predictive C - Case study 20
BRAF 4 7 (n=2), 8 (n=2) Predictive C - Case study 20 (n=3), 8 (n=1)
EGFR 3 6 (n=2), 7 (n=1) Predictive B - Clinical trial 20 (n=2), 15 (n=1)
FGFR2 9 6 (n=4), 7 (n=3), 9 (n=2) Predictive B - Clinical trial Median=20
OCA AMP KIT 10 5 (n=1), 6 (n=2), 7 (n=5), 8 (n=1), 12 (n=1; TP=8%) Predictive B - Clinical trial Median=20
KRAS 16 6 (n=8), 7 (n=6), 11 (n=2) Prognostic B - Clinical trial Median=25
MET 3 5 (n=1), 6 (n=2) Predictive C-Casestudy 20 (n=2), 30 (n=1)
PDGFRA 1 8 Predictive D - Preclinical 20
PIK3CA 1 9 Predictive B - Clinical trial 10
ALK 2 4 Predictive C - Case study 30,25
EGFR 17 4 (n=8), 5 (n=7), 8 (n=1), 14 (n=1) Predictive B - Clinical trial Median=12.5
ERBB2 24 4 (n=12), 5 (n=7), 6 (n=2), 7 (n=2), 11 (n=1) Predictive A - Validated Median=20
OPA AMP  FGFRI 3 4 Prognostic B - Clinical trial 20
KRAS 27 4 (n=9), 5 (n=11), 6 (n=4), 7 (n=1), 8 (n=1) Prognostic B - Clinical trial Median=15
MET 11 4 (n=6), 5 (n=2), 6 (n=2), 7 (n=1) Predictive C - Case study Median=15
PIK3CA 31 4 (n=12), 5 (n=11), 6 (n=2), 7(n=2), 9 (n=1), 10 (n=3) Predictive B - Clinical trial Median=15
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Supplementary Table 19. ClinBioNGS-only “OK” cancer RNA events with clinical evidence.
For each RNA alteration uniquely detected by ClinBioNGS, the following information is provided: number of samples, number of supporting reads, CIViC evidence type and level, and

detection status in the commercial pipeline. Results are grouped by panel and variant type.

Panel Variant type Variant name Samples Supporting reads EVi(::eIn\:ieCtype EVi(feIn\l(ievel Commercial status
AKAP13::NTRK3 1 48 Predictive B - Clinical trial ABSENT
BAG4::FGFR1 1 12 Diagnostic A - Validated ABSENT
CDC27::BRAF 1 12 Predictive A - Validated ABSENT
EMLA4::ALK V2 1 17 Predictive B - Clinical trial ~ 57 reads, NO CALL (Sample QC FAIL)
FGFR3::TACC3 3 902,27, 11 Predictive C - Case study ABSENT (Read Count <40)
Fusion
OCA FIP1L1::PDGFRA 4 99, 55, 14, 13 Diagnostic A - Validated ABSENT (Read Count <40)
LMNA::NTRK1 1 64 Predictive B - Clinical trial ABSENT
NSD3::FGFR1 7 61,33, 24,21, 20, 16, 15 Diagnostic A - Validated ABSENT (Read Count <1000)
SLC34A2::ROSI 1 11 Predictive A - Validated ABSENT (Read Count <40)
SND1::BRAF 1 33 Predictive A - Validated ABSENT
Splicing AR-V7 16 Median: 2164 Predictive B - Clinical trial No calling status
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Supplementary Table 20. Commercial-only cancer RNA alterations with clinical evidence.
For each RNA alteration uniquely detected by commercial pipelines, the following information is provided: number of samples, number of supporting reads, CIViC evidence type and level,
and detection status in ClinBioNGS. Results are grouped by panel and variant type.

Cl1viC Cl1viC
Panel Varianttype  Variantname  Samples Supporting reads Evi dencle type Evi dencle level ClinBioNGS status
OCA Fusion SND1::BRAF 1 187 Predictive A - Validated Not detected
FGFR2::CCDC6 1 3 Predictive C - Case study Not detected
KIF5B::RET 1 90 Predictive A - Validated  Detected after reanalysis (no deduplication)
Fusion
OPA MKRNI1::BRAF 1 4 Predictive A - Validated Not detected
SND1::BRAF 1 3 Predictive A - Validated Not detected
Splicing METx14del 1 7 Predictive A - Validated Primary flags=LowSupport (8 reads)
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Supplementary Table 21. Comparative overview of representative bioinformatics workflows for the analysis of somatic NGS cancer panels.

Workflows are grouped by their availability (i.e., commercial, institutional, or open-source) with clarifying notes on their status (e.g., SaaS, FDA-approved, CE-IVDR, CLIA, RUO). Columns
summarize the following features: support for tumor-only analysis, DNA-RNA integration, type of genomic profiling, annotation and prioritization strategies, generation of informative plots,
reporting format, adaptability, deployment complexity, and support status. The last row corresponds to ClinBioNGS, the pipeline developed in this thesis.

kfl T - DNA+RNA Annotati Infe ti t
Workflow/ Availability umor=— : CGP nnotation / nformative o borting  Adaptability Deployment - 'PPOF
Platform only integration Prioritization plots status
. . . Genome Interactive X Low
Archer™ Analysis Cozlslriiesr)c ial v v v r?(?scllcir?irclzf :?;?I?’ browser, (GUI' web  (proprietary, ‘g Easy A ‘/
& CNA profile explorer)  fixed assays) (ready-to-use) ctive
Commercial FDA-approved A Stati X Low v Easy v
FoundationOne CDx (FDA- v X v AMP/ASCO/CAP- X atie (proprietary,  (sample send- .
. only Active
approved) based tiering fixed panels) out)
. . . . X Low
. Commercial Basic annotation; QC, CNA /\ Static . v Easy v
Mlumina TSO500 (RUO/IVD) v v v no clinical tiering profile only (fl_iizgr;?sg)’ (ready-to-use) Active
Commercial C(;rzgéiieigzl.ve QC, genome  Interactive A (Ilz/izifrate J Easy v
I Int t E- > I .
QCl Interpre (Saas, C v v v AMP/ASCO/CAp Drowser,  (GUIweb 0 icbut  (ready-to-use)  Active
IVDR) . CNA profile explorer) .
tiering proprietary)
Commercial Cfomgzl;enslgej QC, genome  Interactive A Mod;:rate VE v
SOPHiA DDM™ (SaaS, CE- v v v proprictary A, browser, (GUI web (panel- asy .
AMP/ASCO/CAP, agnosticbut  (ready-to-use) Active
IVDR) o CNA profile explorer) .
ESCAT tiering proprietary)
. . . Genome Interactive X Low
Commercial Basic annotation; . v Easy v
Thermo Ton Reporter v v v O browser, (GUI'web  (proprietary, .
(RUO/IVD) no clinical tiering CNA profile explorer) fixed panel) (ready-to-use) Active
. Comprehensive, QC, genome . /\ Moderate
Commercial proprietary KB browser, Interactive (panel J Easy v
linical E- ’ “Lollipop” I .
VarSome Clinical - (Saa, C v X v AMP/ASCO/CAP, olfipop”  (GUIweb | Gicbut  (ready-to-use)  Active
IVDR) tierin graph, CNA explorer) .
g profile proprietary)
o Internal . X Low X
DFCI OncoPanel Ins(gtilﬁz? al v X v AMP/ASCO/CAP- X Aor?lt atie (institutional Institutional Ac\t/i .
based tiering Y fixed panel) use only v
Institutional FDA-approved A Static X Low X v
MSK-IMPACT (FDA- X X v AMP/ASCO/CAP- X onl (institutional Institutional Active
approved) based tiering Y fixed panel) use only v
Open-source Basic annotation; QC /\ Static v High /\ Moderate v
BALSAMI .. . .
S c (RUO) v X v no clinical tiering (MultiQC) only (open-source,  (containerized  Active
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panel- but expert
agnostic) requirement)
A Limited . . . v High X Hard )(.
bebi Open-source Basic annotation; /\ Static  (open-source, (legacy, Inactive
cbio-nextgen v (no S X -
(RUO) bi kers) no clinical tiering only panel- complex since
1OMATKELS agnostic) install) 2024
' A
/\ Limited . S . v High A Mode.rate Unclear
DNA. Open-source Basic annotation; /\ Static  (open-source, (containerized
scan2 /N Unclear (no S X (last
(RUO) . no clinical tiering only panel- but expert
biomarkers) agnostic) requirement) update
& q 2023)
CNA profile, v High X Hard (low A
. Open-source Basic annotation; circos graph /\ Static  (open-source portability Unclear
MIRACUM-Pipe v v e - ’ ’ ’ (last
(RUO) no clinical tiering cBioPortal only panel- some manual dat
integration agnostic) installation) L;%;;)e
v High /\ Moderate
Open-source Basic annotation; QC /\ Static  (open-source, (containerized v
ni-core/sarek (RUO) v v no clinical tiering ~ (MultiQC) only panel- but expert Active
agnostic) requirement)
o /\ Moderate A
PipelT2 Open-source v s%VLl/rlmgdl Basic annotation; % /\ Static A\ Moderate (containerized Unlcletar
p (RUO) (SNVs/InDels ,; ¢jinical tiering only ~(open-source, T o pert (las
only) fixed assay) requirement) update
d 2023)
v High /\ Moderate A
SCHOOL Open-source A Uncl v Basic annotation; X /\ Static  (open-source, (containerized Un]cletar
(RUO/CLIA) nclear no clinical tiering only panel- but expert uggzsne
agnostic) requirement) 2022)
- v High /\ Moderate A
TOSCA Open-source A Limited Basic annotation; QC /\ Static  (open-source, (containerized Unclear
v (SNVs/InDels gl : (last
(RUO) only) no clinical tiering (MultiQC) only panel- but expert update
agnostic) requirement) 2022)
Comprehensive QC, coverage, v High /\ Moderate
ClinBioNGS Open-source v v . annotation.; and va.riant— Interactive  (open-source, (containerized J
(RUO) internal flagging; specific (HTML) panel- but expert Active
AMP/ASCO/CAP  visualizations agnostic) requirement)
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A2. Supplementary Figures
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Supplementary Figure 1. Selection of CNA

(A) TSO500, (B), OPA, and (C) OCA panels. Scatter plots display individual samples, with the percentage of "normal"
bins (log2 within median + 1 MAD) on the x-axis and the absolute global weighted mean log2 copy ratio on the y-axis. For
TSO500 (A), samples are highlighted based on their noisiness status (high or low). Samples meeting the reference selection
criteria—=>90% “normal” bins and absolute weighted mean log2 > 0.1—are marked as selected reference samples: red
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circle in (A) and red-colored points in (B) and (C).
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MET_AMP 266 C - Case study 4 Sensitivity/Response Crizotinib, Vemurafenib colorectal cancer 815 N/A
BRAF_AMP 1243 C - Case study 4 Resistance Trametinib, Dabrafenib melanoma 1.5 Somatic
MET_AMP 266 C - Case study 3 Sensitivity/Response Onartuzumab gastric adenocarcinoma 815 Somatic 22

™ { ClinBioNGS-RUNO1: SAMPLEO1 | NSCLC | TSO500 MainResults  SNVandinDel + CNA~  Fusion~  Splicing~  Biomarkers~  Sample QC +

Fusion EML4::ALK V1 0 Tierll 0 Tier I

1 fusions Tierl-Ill Tier | (strong clinical significance) potential clinical significance unknown clinical significance

Primary FLAGS Secondary FLAGS cal status (AMP/ASCO/CAP) riI/1l fu _
:mmm LY i | B

Clinical evidences (CIViC resource)

Predictive Prognostic Diagnostic

ALTERATION MOLECULAR_ID LEVEL RATING EFFECT DRUG TUMOR SCORE ORIGIN
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METx14del 320 C - Case study 3 Sensitivity/Response Crizotinib, Capmatinib lung adenocarcinoma 108.5 Somatic

Supplementary Figure 2. Overview of other results in the ClinBioNGS report.

(A) CNA, (B) fusion, and (C) splicing results. Top findings, summary statistics, and CIViC clinical evidence are organized
into distinct panels. Color coding is used for quick visual reference, and tumor-specific clinical evidence is displayed at the
bottom.
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Supplementary Figure 3. ClinBioNGS flagged status in the real-world benchmarking.

UpSet plots illustrate the recurrence and combination of secondary flags assigned by ClinBioNGS across cancer-related
(A) mutations, (B) CNAs, and (C) RNA alterations. Each plot includes two accompanying bar charts: one showing the
distribution of detection status, and another showing the distribution by NGS panel for each intersection group of flags.
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