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TMAP Torrent Mapping Alignment Program 

TOSCA Tumor Only Somatic CAlling 

TP True Positive  //  Tumor Purity 

TSG Tumor Suppressor Gene 

TSO500 TruSight™ Oncology 500 

TSV Tab-Separated Values 

TVC Torrent Variant Caller 

T2T- CHM13 Telomere-to-Telomere CHM13 

uBAM Unmapped Binary Alignment Map 

UCSC University of California Santa Cruz 

UMI Unique Molecular Identifier 

VAF Variant Allele Frequency 

VCF Variant Call Format 

VEP Variant Effect Predictor 

VICC Variant Interpretation for Cancer Consortium 

VUS Variant of Uncertain Significance 

WES Whole Exome Sequencing 

WGS Whole Genome Sequencing 
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SUMMARY 

Next-generation sequencing (NGS) has revolutionized cancer genomics by enabling the detection of 

clinically relevant somatic alterations. While targeted NGS panels are widely used for tumor 

characterization, their effectiveness depends on bioinformatics pipelines capable of analyzing tumor-

only data and producing accurate, reproducible, and interpretable results. Current solutions often lack 

flexibility, transparency, or full integration, underscoring the need for more adaptable and 

comprehensive alternatives. 

This thesis presents the implementation and validation of ClinBioNGS, an open-source, 

comprehensive bioinformatics pipeline designed for the analysis of somatic NGS cancer panels. The 

project pursued two main objectives: (1) to design a flexible, reproducible pipeline for the analysis 

of tumor-only DNA and RNA panel data; and (2) to evaluate its performance using standardized 

reference datasets and retrospective real-world data from diverse NGS panels. 

ClinBioNGS enables the detection of a wide range of somatic events—including small variants, 

copy-number alterations (CNAs), gene fusions, splice variants, and complex biomarkers such as 

tumor mutational burden (TMB) and microsatellite instability (MSI). Built with Nextflow and 

containerized environments, its panel-agnostic architecture ensures reproducibility and portability 

across computing infrastructures. The pipeline integrates consensus variant calling strategies, panel-

specific CNA and MSI reference models, automated annotation and prioritization modules, internal 

quality control systems, and a variant database for longitudinal tracking. Results are presented 

through interactive, visual HTML reports tailored for interpretability and multidisciplinary review. 

Validation using multi-panel reference datasets confirmed high accuracy in small variant detection. 

Benchmarking with real-world clinical samples from multiple institutions and panels demonstrated 

performance comparable to commercial solutions, while providing broader detection capabilities and 

improved interpretability in complex cases. The pipeline is freely available for non-commercial 

research use only at: https://github.com/raulmarinm/ClinBioNGS. 

This work provides a robust, versatile, and openly accessible solution for somatic NGS panel 

analysis, contributing to the advancement of both precision oncology and cancer research. 

  

https://github.com/raulmarinm/ClinBioNGS
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RESUM (CATALÀ) 

La seqüenciació de nova generació (NGS) ha revolucionat la genòmica del càncer en permetre la 

detecció d’alteracions somàtiques clínicament rellevants. Tot i que els panells dirigits de NGS 

s’utilitzen àmpliament per caracteritzar tumors, la seva eficàcia depèn de pipelines bioinformàtics 

capaços de analitzar dades tumorals sense teixit sa aparellat i generar resultats precisos, reproduïbles 

i interpretables. Les solucions actuals sovint presenten limitacions de flexibilitat, transparència o 

integració completa, fet que posa de manifest la necessitat d’alternatives més adaptables i integrals. 

Aquesta tesi presenta la implementació i validació de ClinBioNGS, un pipeline bioinformàtic 

complet i de codi obert dissenyat per a l’anàlisi de panells NGS somàtics en càncer. El projecte 

aborda dos objectius principals: (1) dissenyar un pipeline flexible i reproduïble per a l’anàlisi de 

dades de panells d’ADN i ARN tumorals sense teixit sa associat, i (2) avaluar-ne el rendiment 

mitjançant conjunts de dades de referència estandarditzats i dades reals retrospectives procedents de 

panells NGS diversos. 

ClinBioNGS permet la detecció d’un ampli ventall d’alteracions somàtiques, incloent petits canvis 

de nucleòtids, alteracions del nombre de còpies (CNAs), fusions gèniques, variants d’splicing i 

biomarcadors complexos com la càrrega mutacional tumoral (TMB) i la inestabilitat de 

microsatèl·lits (MSI). El seu disseny independent del panell, construït amb Nextflow i entorns 

contenidoritzats, garanteix la seva reproductibilitat i portabilitat entre infraestructures 

computacionals. També incorpora estratègies de consens per a la detecció de variants, referències 

específiques per a CNA i MSI, mòduls automatitzats per a l’anotació i priorització clínica, sistemes 

de control de qualitat interns, i una base de dades local per al seguiment longitudinal de variants. Els 

resultats es presenten mitjançant informes HTML interactius i visuals, optimitzats per a la seva 

interpretació i revisió multidisciplinària. 

La validació amb conjunts de dades de referència multi panell va confirmar una alta precisió en la 

detecció de variants petites. L'avaluació comparativa amb dades clíniques reals de diverses 

institucions i panells comercials va demostrar un rendiment comparable a les solucions existents, tot 

oferint una major capacitat de detecció i millor interpretabilitat en casos complexos. El pipeline està 

disponible lliurement per a ús en recerca i finalitats no comercials a: 

https://github.com/raulmarinm/ClinBioNGS. 

Aquest treball proporciona una solució sòlida, versàtil i accessible per a l’anàlisi de panells NGS 

somàtics, contribuint al progrés tant de l’oncologia de precisió com de la recerca translacional en 

càncer.  

https://github.com/raulmarinm/ClinBioNGS
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RESUMEN (CASTELLANO) 

La secuenciación de nueva generación (NGS) ha revolucionado la genómica del cáncer al permitir 

la detección de alteraciones somáticas clínicamente relevantes. Aunque los paneles dirigidos de NGS 

se utilizan ampliamente para la caracterización tumoral, su eficacia depende de pipelines 

bioinformáticos capaces de analizar muestras tumorales sin tejido sano emparejado y de generar 

resultados precisos, reproducibles e interpretables. Las soluciones actuales a menudo carecen de 

flexibilidad, transparencia o integración completa, lo que pone de manifiesto la necesidad de 

alternativas más adaptables e integrales. 

Esta tesis presenta la implementación y validación de ClinBioNGS, un pipeline bioinformático de 

código abierto y carácter integral, diseñado para el análisis de paneles de cáncer por NGS en muestras 

somáticas. El proyecto aborda dos objetivos principales: (1) diseñar un pipeline flexible y 

reproducible para el análisis de datos tumorales de ADN y ARN, y (2) evaluar su rendimiento 

utilizando conjuntos de referencia estandarizados y datos retrospectivos del mundo real obtenidos de 

distintos paneles comerciales. 

ClinBioNGS permite la detección de una amplia variedad de eventos somáticos, incluyendo 

pequeños cambios de nucleótidos, alteraciones del número de copias (CNAs), fusiones génicas, 

variantes de splicing y biomarcadores complejos como la carga mutacional tumoral (TMB) y la 

inestabilidad de microsatélites (MSI). Su diseño independiente del panel, basado en Nextflow y 

entornos contenerizados, garantiza la reproducibilidad y portabilidad entre infraestructuras 

computacionales. El pipeline integra estrategias de detección de variantes por consenso, modelos de 

referencia específicos por panel para CNA y MSI, módulos automatizados de anotación y 

priorización clínica, sistemas internos de control de calidad y una base de datos de variantes para 

seguimiento longitudinal. Los resultados se presentan mediante informes HTML interactivos y 

visuales, optimizados para su interpretación y revisión multidisciplinar. 

La validación con conjuntos de datos de referencia multi panel confirmó una alta precisión en la 

detección de variantes pequeñas. El análisis comparativo con muestras clínicas reales de múltiples 

instituciones y paneles demostró un rendimiento comparable al de soluciones comerciales, al tiempo 

que ofreció un mayor alcance de detección y mejor capacidad interpretativa en casos complejos. El 

pipeline está disponible libremente para uso en investigación y con fines no comerciales en: 

https://github.com/raulmarinm/ClinBioNGS. 

Este trabajo proporciona una solución robusta, versátil y accesible para el análisis de paneles 

somáticos por NGS, contribuyendo al avance tanto de la oncología de precisión como de la 

investigación del cáncer. 

https://github.com/raulmarinm/ClinBioNGS
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1. INTRODUCTION 

1.1. Current state of molecular profiling in precision oncology 

1.1.1. Molecular basis of cancer 

Cancer is fundamentally a genetic disease driven by alterations in functional regions of DNA, 

commonly referred to as genes, that disrupt normal cellular regulatory mechanisms1,2. These genetic 

alterations (also known as variants or mutations) can be inherited from parents or acquired over time 

due to intrinsic biological processes (e.g., DNA replication errors, oxidative damage, or cytosine 

deamination) and through extrinsic exposure to damaging agents (e.g., tobacco smoke, alcohol, 

radiation, chemical carcinogens, or viral infections)1–3. Such mutations can affect oncogenes, tumor 

suppressor genes (TSGs), and DNA repair genes, ultimately leading to uncontrolled proliferation, 

evasion of apoptosis, and genomic instability1–4. Unlike germline variants, which are inherited and 

present in all cells of the body, somatic variants arise spontaneously in non-germline cells during a 

person’s lifetime and are not transmitted to offspring1–4. The progressive accumulation of somatic 

mutations enables tumor initiation, clonal evolution, and disease progression1–3. Consequently, the 

specific mutational landscape of a tumor profoundly influences its biological behavior, response to 

treatment, and clinical outcome, underscoring the critical importance of molecular characterization 

in oncology2–6. 

1.1.2. Emergence of precision oncology 

In recent years, precision oncology has transformed the landscape of cancer treatment, shifting from 

a one-size-fits-all approach to a strategy guided by the molecular profile of each individual tumor, 

with the goal of maximizing treatment efficacy while minimizing toxicity for each patient 4–8 . Since 

the introduction of targeted therapy against estrogen receptor (ER) expression in breast cancer in the 

1970s, precision oncology has evolved rapidly5–8. Parallel advances in technological innovation, 

notably the emergence of next-generation sequencing (NGS), and deeper understanding of 

tumorigenesis have driven the discovery of new actionable genomic alterations4–9. These 

developments have enabled the implementation of both alteration-specific, tumor-related therapies 

and biomarker-driven, tumor-agnostic treatments (Figure 1)4–8. 
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Figure 1. Timeline of key milestones in 50 years of precision oncology.  

The upper section highlights landmark therapeutic advances and their associated molecular targets. The lower section 

summarizes major technological innovations, diagnostic tests, and guidelines that have shaped the development of 

molecular diagnostics. Adapted from Rulten et al., 2023 6. 

At the core of this paradigm is molecular profiling, a comprehensive process that identifies a wide 

spectrum of genetic and molecular alterations implicated in tumorigenesis and provides clinically 

relevant information4–13. These alterations can occur at the DNA, RNA, or protein level and 

encompass diverse classes of biomarkers. Increasingly, they are used as predictive biomarkers to 

match patients with targeted therapies, immunotherapies, or clinical trials, as well as to refine tumor 

classification, complement pathological diagnosis, and guide prognostic stratification4–17. A summary 

of these alteration types and their clinical relevance is provided in Table 1. 
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Table 1. Types of molecular alterations and biomarkers relevant to precision oncology. 

Each alteration or biomarker includes a brief description and representative examples of its clinical relevance. 

Alteration / 

Biomarker 
Description Clinical relevance 

Small variants 

Single-nucleotide variants (SNVs) 

or small insertions and deletions 

(InDels) of nucleotides that can 

affect protein function. 

Diagnostic (NPM1 in AML), poor prognosis (TP53 in 

CLL), drug response (BRAF V600E in melanoma/NSCLC) 

or resistance (EGFR T790M in NSCLC). 

Copy-number 

alterations 

(CNAs) 

Genomic amplifications (AMPs) or 

deletions (DELs) that affect gene 

dosage. 

Diagnostic (SMARCB1 loss in ATRT), poor prognosis 

(CDKN2A loss in low-grade glioma), drug response 

(ERBB2 gain in breast/gastric cancer) or resistance (PTEN 

loss in bladder carcinoma). 

Fusions 
Structural rearrangements that 

result in gene fusions. 

Diagnostic (PDGFRA/B in CMML), better outcome 

(RUNX1-RUNX1T1 in AML), targeted therapy (EML4-ALK 

or CD74-ROS1 in NSCLC). 

Splice variants 

Mutations in splice sites or splicing 

factors leading to alternative 

splicing isoforms. 

Drug response (MET exon 14 skipping in NSCLC) or 

resistance (AR-V7 in prostate cancer). 

Epigenetic 

alterations 

Genomic changes that modulate 

gene expression without altering 

DNA sequence 

Better outcome and drug response (MGMT promoter 

methylation in glioblastoma). 

Tumor 

mutational 

burden (TMB) 

Total number of somatic mutations 

in tumor cells. 

Predictive of response to immune checkpoint inhibitors 

(ICIs) (TMB-high solid tumors). 

Microsatellite 

instability (MSI) 

Genetic hypermutability caused by 

mismatch repair deficiency. 

Predictive of response to ICIs (MSI-high/MMR deficient 

solid tumors) 

HRD 

Genomic instability due to 

homologous recombination 

deficiency (HRD).  

Predictive of response to PARP inhibitors (HRD-high 

BRCA1/2 mutations in breast/ovarian cancer) 

Mutational 

signatures 

Specific mutation patterns linked 

to mutagenic processes or 

exposures. 

Drug response (UV/tobacco/APOBEC/POLE signatures to 

ICIs) or resistance (APOBEC to tyrosine kinase inhibitors). 

Gene expression 
Expression signatures of single 

genes or gene panels. 

Molecular subtyping and risk stratification (PAM50 in 

breast cancer), drug response (BRCAness to PARP 

inhibitors). 

Protein 

expression 

Abnormal levels or activation of 

specific proteins 

Therapy guidance (PD-L1 expression in tumor and/or 

immune cells for ICI eligibility). 

1.1.3. The rise of NGS-based comprehensive genomic profiling 

The detection of the molecular alterations described above relies on a variety of laboratory assays, 

each with distinct advantages and limitations. Traditionally, molecular testing in oncology has relied 

on single-gene methods such as polymerase chain reaction (PCR), immunohistochemistry (IHC), 

fluorescence in situ hybridization (FISH), or DNA Sanger sequencing5–13. These conventional 

techniques offer high sensitivity (i.e., ability to identify existing variants) and specificity (i.e., ability 

to avoid false variants) for predefined alterations and remain indispensable in many diagnostic 

workflows5–10. Moreover, each test has a distinct limit of detection, defined as the lowest variant 

allele frequency or minimal number of mutant copies that can be reliably identified as true variants. 

However, because each assay targets a specific biomarker, their scope is inherently limited and often 

lacks the ability to detect unexpected, rare, or complex genomic events4–6,9. 
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In response to these limitations, improvements in NGS-based technologies have enabled more 

complex, scalable, and cost-effective analyses of biological molecules, significantly expanding the 

catalogue of clinically actionable alterations. As a result, there has been a progressive shift from 

single-target diagnostic assays to NGS-based comprehensive genomic profiling (CGP)4–13,18. This 

approach allows for the simultaneous interrogation of multiple genes and alteration types within a 

single experiment, providing a more efficient, cost-effective, and tissue-sparing alternative to 

sequential single-biomarker testing4–13,18. While gene-specific assays continue to play an important 

role in routine diagnostics and in resolving discordant results, the adoption of NGS-based CGP panels 

in clinical oncology has accelerated, driven by their ability to deliver a holistic view of the tumor 

genome and to inform precision oncology decision-making (Figure 1)5–11,19. The characteristics of 

representative gene-specific assays and NGS-based CGP panels are summarized in Table 27–13,18–20. 

Table 2. Representative examples of gene-specific tests and NGS-based CGP panels in oncology. 

This table summarizes Food and Drug Administration (FDA)-approved diagnostic assays ranging from single-gene tests to 

large-scale NGS-based panels. For each test, the table lists the number of genes interrogated, sample type, assay method, 

and molecular profiling scope. 

Test Genes Sample Method Molecular profiling 

Cobas 4800 BRAF V600 

Mutation Test (Roche) 
1 

Formalin-fixed 

paraffin-embedded 

(FFPE) tissue 

Real-time 

PCR 
BRAF V600E (melanoma) 

Cobas EGFR Mutation Test 

V2 (Roche) 
1 FFPE 

Real-time 

PCR 

EGFR exons 18-21 mutations 

(NSCLC) 

BRACAnalysis companion 

diagnostics (CDx)  

(Myriad Genetics) 

2 Blood 

PCR + Sanger 

Multiplex 

PCR 

BRCA1/2 SNVs, InDels, and 

AMP/DEL (ovarian and breast 

cancers) 

Praxis Extended RAS Panel 

(Illumina) 
2 FFPE NGS 

K/N-ras exons 2-4 mutations 

(colorectal cancer) 

FoundationOne CDx 

(Foundation Medicine) 
324 

FFPE 

(DNA) 
NGS 

SNVs, InDels, CNAs (16 genes), 

rearrangements (36 genes), TMB, 

MSI 

MSK IMPACT (Memorial 

Sloan Kettering) 
468 

FFPE 

(DNA) 
NGS 

SNVs, InDels, CNAs, 

rearrangements, TMB, MSI 

Oncomine Dx Target Test 

(Thermo Fisher) 
46 

FFPE 

(DNA+RNA) 
NGS 

SNVs and InDels (42 genes), CNAs 

(10 genes), fusions and splice 

variants (17 genes) 

Trusight Oncology 500 

(Illumina) 
523 

FFPE 

(DNA+RNA) 
NGS 

SNVs, InDels, CNAs (59 genes), 

fusions and splice variants (55 

genes), TMB, MSI 

Oncomine Comprehensive 

Assay (Thermo Fisher) 
161 

FFPE 

(DNA+RNA) 
NGS 

SNVs and InDels (135 genes), 

CNAs (43 genes), fusions and 

splice variants (51 genes) 

FoundationOne Liquid CDx 

(Foundation Medicine) 
324 

Plasma 

(circulating cell-free 

DNA [cfDNA]) 

NGS 

SNVs and InDels (311 genes), 

CNAs (4 genes), rearrangements (4 

genes), TMB, MSI 

Guandant360 CDx 

(Guardant) 
55 

Plasma 

(cfDNA) 
NGS 

SNVs and InDels (55 genes), CNAs 

(2 genes), fusions (4 genes) 
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With the advent of large-scale genome sequencing initiatives (e.g., The Cancer Genome Atlas 

[TCGA]21, the International Cancer Genome Consortium22, and the 1000 Genomes Project23) vast 

catalogs of tumor-associated variants have been identified and consolidated into public reference 

resources such as the Genome Aggregation Database (gnomAD)24, the Catalogue Of Somatic 

Mutations In Cancer (COSMIC)25, and the American Association for Cancer Research (AACR) 

Project Genomics Evidence Neoplasia Information Exchange (GENIE)26. These foundational efforts 

have, in turn, enabled the development of specialized clinical interpretation databases, including the 

Clinical Variant Database (ClinVar)27, the Oncology Knowledge Base (OncoKB)28, and the Clinical 

Interpretations of Variants in Cancer (CIViC)29, that curate variant-specific evidence to support 

clinical reporting. 

However, the proliferation of numerous independent resources, curated by different groups with 

varying scopes and methodologies, has also introduced significant challenges. Discordances in 

variant representation across platforms—ranging from inconsistent nomenclature to divergent 

evidence grading—complicate the accurate interpretation of molecular findings in clinical settings. 

Consequently, the standardization and harmonization of variant annotation, classification, and 

reporting have become critical to ensure equity, reproducibility, and consistency of genomic results 

across laboratories and institutions4,5.  

To address these challenges, multiple guidelines and recommendations for molecular testing have 

been developed (Figure 1), including frameworks for variant nomenclature (e.g.,  Human Genome 

Variation Society [HGVS] recommendations)30 and variant interpretation (e.g.,  American College 

of Medical Genetics and Genomics [ACMG] and Association for Molecular Pathology [AMP] 

consensus recommendations31), and guidance documents published by scientific societies (e.g., 

European Society for Medical Oncology [ESMO]32) and regulatory agencies (e.g., Food and Drug 

Administration [FDA])33 to define requirements for NGS-based in vitro diagnostics (IVDs). 

In order to fully leverage the potential of NGS-driven precision oncology, the molecular tumor board 

(MTB) has emerged as a central entity in many institutions. MTBs bring together multidisciplinary 

teams—including oncologists, pathologists, geneticists, research scientists, and bioinformaticians, 

among others—to collaboratively review each patient’s data from clinical, pathological, and 

molecular perspectives and formulate evidence-based treatment recommendations5,34. 

However, as the number of patients requiring MTB evaluation continues to grow, there is an 

increasing need for automated systems that can efficiently integrate variant annotation, prioritization, 

and reporting to streamline this process34–36. Moreover, given the interdisciplinary composition of 

MTBs, the results must be presented in a visual, intuitive, and accessible format—without sacrificing 

scientific rigor—to support effective collaboration and improve clinical decision-making34.  
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In summary, the adoption of CGP through NGS has rapidly expanded in routine oncology practice, 

driven by multiple converging factors: 

• The growing number of clinically actionable biomarkers4–9. 

• The increasing availability of targeted therapies and biomarker-driven treatments4–9. 

• Continuous advances in NGS technologies and bioinformatics pipelines. 

• Decreasing costs and shorter turnaround times, making high-throughput sequencing more 

feasible and accessible. 

• Ongoing harmonization of genomic knowledge bases to support reliable variant 

interpretation. 

• Strengthened regulatory frameworks and endorsement by clinical guidelines. 

Together, these factors underscore the growing need for robust, standardized, and scalable 

bioinformatics solutions capable of transforming raw NGS data into clinically actionable insights. 

1.2. The NGS-based panel workflow in molecular diagnostics 

1.2.1. General considerations 

Building on the advances described in the previous section, NGS-based CGP panels have become a 

cornerstone of precision oncology, enabling the simultaneous detection of multiple classes of 

clinically relevant alterations within a single assay5–13,37. In routine diagnostics, NGS panel 

workflows follow a standardized sequence of steps (Figure 2)—including sample processing, library 

preparation and target enrichment, sequencing, and bioinformatics analysis—to transform clinical 

specimens into structured, interpretable genomic data7–13. This integrated approach not only 

facilitates the identification of actionable biomarkers to guide patient management but also promotes 

consistency and transparency across laboratories and platforms. Each stage of the NGS workflow 

involves specific technical considerations that influence the overall performance and clinical utility 

of the assay. 

 
Figure 2. General workflow of NGS-based panel testing. 

The process begins with nucleic acid extraction from the selected specimen type, followed by library preparation and target 

enrichment to capture the genomic regions of interest. Sequencing is then performed, and bioinformatics analysis pipelines 

are applied to generate structured variant data and facilitate clinical interpretation. Adapted from Pei et al., 202313. 
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Before introducing the NGS workflow in detail, it is important to highlight several key NGS-related 

features that are consistently evaluated across the workflow and influence both the quality of the data 

and the interpretation of the results9–13,38:  

• Reads: Individual DNA or RNA fragments sequenced from the sample, and their number 

and quality directly affect downstream analyses. 

• Read depth (DP): Number of times each base or nucleotide is sequenced, corresponding to 

the total number of reads overlapping a specific genomic position. 

• Coverage: From a broader perspective than DP, it indicates how much of the genome or 

target region is sequenced. It can be expressed in percentage (e.g., 90% of the genome is 

sequenced at least once) or commonly as a fold of the genome size expressed with an “X” 

(e.g., 500X means that the target size is sequenced on average 500 times). 

• Reference allele (REF): Nucleotide(s) present at defined locus of the reference genome used 

for comparison. 

• Alternate allele (ALT): Nucleotide(s) observed in the sample corresponding to the detected 

variant that differs from the REF at the same position. 

• Allele depth (AD): Number of reads supporting each allele (REF, ALT) at a specific locus. 

• Allele frequency (AF): Proportion of reads supporting a specific allele (commonly referred 

to ALT) relative to DP. In the population context, it represents the proportion of each allele 

within a population. 

• Variant allele frequency (VAF): Proportion of reads supporting the variant allele (i.e., ALT). 

• Probe or capture bait: Oligonucleotides used during target enrichment to isolate specific 

genomic regions. 

• Hotspots regions: Genomic loci that are frequently mutated in cancer may be associated with 

a specific tumor type or carry clinical relevance. Variants found within these loci are also 

referred to as hotspots mutations. 

Targeted NGS panels have become a routine molecular diagnostic tool in both clinical and research 

settings, as they deliver reliable results at relatively low cost and turnaround time. Regarding the 

panel design, several aspects should be considered to ensure appropriate panel and optimal capture 

of the relevant genomic alterations9–13. 

The NGS panel choice depends primarily on the clinical purpose and the genes or biomarkers of 

interest. For example, germline testing often requires different target regions and analytical 

approaches compared to somatic profiling, and the requirements also differ between solid tumors and 

hematologic malignancies9–13. In this thesis, the focus is on somatic applications in solid tumors, 

mainly in the context of routine clinical diagnostics. For this purpose, commercially available pan-
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cancer CGP panels (Table 2) are frequently adopted, as they allow batching of samples from diverse 

tumor types and clinical indications, ultimately saving time and reducing costs11–13. 

Depending on the type of alteration targeted (Table 1), the design of the capture regions within the 

panel may vary considerably. Small variants, including single-nucleotide variants (SNVs) and 

insertions and deletions (InDels), can be reliably detected by targeting specific hotspot regions, 

minimizing the overall size of the panel. In contrast, copy-number alteration (CNA) assessment 

requires multiple probes spanning the entire gene of interest to obtain accurate results9–13. 

Gene fusions can be detected using either DNA- or RNA-based approaches. Because most fusion 

breakpoints occur within intronic regions, DNA-based detection requires capture probes spanning 

introns—an approach that can be technically challenging due to the typically large size of these 

regions. Conversely, RNA-based methods target exon–exon junctions, facilitating the detection of 

both known and novel fusion breakpoints in a more efficient manner. For this reason, RNA 

sequencing (RNA-seq) is increasingly preferred for comprehensive fusion profiling, particularly 

when novel fusion partners are expected9–13. 

1.2.2. Wet-lab workflow: from sample preparation to sequencing 

The wet-lab phase of NGS-based CGP encompasses all laboratory steps required to transform clinical 

specimens into sequencing-ready libraries. This process begins with specimen selection and nucleic 

acid extraction, continues through library preparation and target enrichment, and culminates in high-

throughput sequencing. Each step must be carefully optimized to ensure the generation of high-

quality, reproducible data suitable for downstream bioinformatics analysis. Variables such as the type 

and preservation of the input material, the enrichment strategy employed, and the chosen sequencing 

platform can all influence the sensitivity, specificity, and overall reliability of the assay5,9–13. The 

following sections describe the main considerations and methodological approaches involved in each 

stage of the wet-lab workflow. 

1.2.2.1. Sample processing 

The first step of any clinical NGS panel workflow is the preparation of input specimens, followed by 

the extraction and evaluation of nucleic acids (i.e., DNA and RNA). While these procedures are not 

strictly bioinformatic, they have significant downstream consequences for data quality and 

interpretation9–13. 

The choice of specimen depends on the clinical indication. Germline analyses typically require saliva 

or peripheral blood to isolate non-tumor cells. In contrast, somatic testing—usually performed after 

tumor diagnosis—commonly uses FFPE tumor tissue, fresh-frozen tumor tissue, or circulating cell-
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free DNA (cfDNA), as shown in the assays listed in Table 2. The preservation method can strongly 

influence analysis outcomes. For example, DNA extracted from FFPE is prone to fixation-induced 

damage and artifacts (such as cytosine deamination and strand bias) that must be accounted for during 

variant calling9–13. 

Another important consideration is sample quantity, which is often limited in the clinical setting, 

particularly for solid tumors where tissue collection is invasive. Although single-gene tests generally 

require smaller input amounts, the use of NGS panels provides broader information with a single 

analysis, maximizing the yield from scarce specimens and increasing the likelihood of identifying 

actionable biomarkers9–13. 

Tumor-specific features also impact interpretation. For instance, estimating tumor purity (TP)—

defined as the proportion of tumor cells within the total sample—is essential when evaluating VAFs 

of somatic variants and CNAs9–12. In solid tumor samples, pathologist-assessed tumor content can be 

improved by microdissection of tumor-rich regions to increment neoplastic cell fraction and improve 

sensitivity. However, pathology-based estimates are inherently subjective and can be influenced by 

factors such as interobserver variability, infiltrating non-tumor cells, inflammation, or necrosis9,11. 

Computational estimation of TP from sequencing data presents an alternative but is also affected by 

genomic features such as chromosomal instability. Combining microscopic assessment and in silico 

estimation could provide a more robust and reliable estimation of tumor content9–11. 

Following tissue selection, DNA and RNA are extracted and quantified. For RNA-based assays, 

reverse transcription (RT) is performed to generate complementary DNA (cDNA). The required input 

DNA quantity varies by panel and can range from 10 ng to 1000 ng. Additional parameters (e.g., 

quality, concentration, overall yield) are also evaluated to confirm sample suitability9–13. 

In research applications, a wider variety of specimen types are commonly encountered. Beyond 

tumor tissues, samples may include tumor-derived cell lines or tissues from patient-derived xenograft 

(PDX) models. These cases often require additional bioinformatic pre-processing steps to correctly 

attribute sequencing reads to their origin. 

1.2.2.2. Library preparation 

Library preparation is the process by which extracted DNA is converted into a form compatible with 

sequencing. In a typical workflow, genomic DNA is first fragmented, and short adapter sequences 

(which are complementary to the sequencing platform’s flow cell) are ligated to each end of each 

fragment, creating what is known as an insert. This is followed by PCR amplification (PCR-Amp) to 

increase DNA yield. However, the details of this process vary depending on the enrichment strategy 

employed9–13. 
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Depending on the chosen NGS approach, the scope of captured genomic regions differs considerably. 

Whole genome sequencing (WGS) is untargeted, covering the entire genome. Whole exome 

sequencing (WES) focuses on coding regions of all protein-coding genes, while targeted sequencing 

restricts capture to a defined set of genes or hotspots of known clinical relevance. The main 

characteristics of these three strategies are summarized in Figure 3. In clinical diagnostics, targeted 

gene panels are generally preferred, as prior knowledge of relevant genes enables greater sensitivity 

for detecting known alterations, while maintaining lower costs and shorter turnaround times5,9–13. 

 
Figure 3. Overview of genomic NGS approaches. 

Illustration of three main sequencing strategies—WGS, WES, and targeted sequencing—highlighting their genomic scope, 

advantages, and limitations. Adapted from Bewicke-Copley et al., 201912. 

Two principal methods are used for target enrichment and library preparation (Figure 4)9–13: 

• Amplicon-based approaches rely on PCR primers designed to bind to the flanking regions 

of targets and selectively amplify them (Figure 4A). In this method, adapters are 

incorporated during PCR-Amp itself. Often, multiple overlapping primers are included to 

ensure full coverage. Because all reads generated have the same start and end coordinates 

(defined by primer positions), it cannot distinguish true unique molecules from PCR 

duplicates by coordinates alone, complicating deduplication during analysis. 

• Hybridization capture-based approaches use biotinylated probes (i.e., capture baits) that 

hybridize to target regions. These probe-bound fragments are captured via streptavidin-

coated magnetic beads (Figure 4B). In this workflow, adapters are ligated before 

hybridization. The resulting reads start and end at variable positions, allowing accurate 

detection and removal of duplicates. In general, hybridization capture yields more uniform 

and accurate coverage, while amplicon-based methods are advantageous for smaller-scale 

experiments, limited DNA input, or resource-constrained clinical applications. 
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Figure 4. Overview of amplicon-based and hybridization capture-based enrichment protocols. 

(A) Amplicon-based assay: enrichment achieved by PCR-Amp using primers targeting regions of interest. (B) 

Hybridization capture-based assay: enrichment performed using biotinylated probes complementary to target regions and 

isolation of captured fragments via streptavidin magnetic beads. Adapted from Jennings et al., 2017 11. 

Because targeted panels require less sequencing depth compared to WES or WGS, it is common in 

clinical routine to pool multiple libraries together for sequencing, improving efficiency and reducing 

per-sample costs. This process (i.e., multiplexing) relies on the addition of sample-specific short 

sequences called barcodes or indexes (typically 8–12 base pairs [bp]), ligated to each end of the 

inserts. After sequencing, these barcodes are used during demultiplexing to assign reads back to their 

original samples9,13. 

Another element often incorporated into library preparation is the Unique Molecular Identifier 

(UMI)11,12. UMIs are short, random sequences ligated to each fragment before PCR-Amp. As shown 

in Figure 5, UMIs enable identification of unique original molecules, helping to distinguish true 

duplicates from unrelated reads with identical start and end positions12. This is particularly important 

for low-input or degraded DNA samples (such as from FFPE or cfDNA), where PCR duplicates and 
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sequencing artifacts are common. By leveraging UMIs, pipelines can achieve more confident variant 

calling at lower VAFs and perform accurate deduplication even for amplicon-based libraries, 

mitigating the risk of overestimating read coverage11,12. 

 
Figure 5. Use of UMIs to identify duplicates in NGS data. 

UMIs are incorporated immediately before or after the DNA insert, while indexes (i7 and i5) enable sample identification. 

Duplicate reads appear similar to true unique reads (raw reads), but they represent technical noise that can inflate coverage 

estimates. Two deduplication strategies are illustrated: (i) detection using only start and end coordinates (red lines), and (ii) 

detection using coordinates plus UMI tags (colored segments), which allows more accurate identification of true duplicate 

molecules among reads sharing the same coordinates. Reads identified as duplicates are shown in red; reads retained as 

unique are shown in grey. Reproduced from Bewicke-Copley et al., 201912. 

1.2.2.3. Sequencing 

Once the sequencing library is prepared, the process of determining the order of nucleotides—

adenine (A), thymine (T), guanine (G), and cytosine (C)—that make up the DNA molecule, known 

as sequencing, is performed9–13. Over the past decades, advances in sequencing technologies have 

unlocked the ability to interrogate molecular genetics at unprecedented depth. These technologies 

are commonly categorized into three generations (Figure 6)9,39: 

• First-generation sequencing, primarily represented by Sanger sequencing, is based on 

sequencing individual DNA molecules. 

• Second-generation sequencing (commonly referred to as NGS) enables massive parallel 

sequencing of millions of fragments, revolutionizing throughput and reducing costs. 

• Third-generation sequencing allows the direct sequencing of native DNA molecules without 

PCR-Amp, generating much longer reads compared to previous technologies (typically <500 

bp in NGS vs. >10,000 bp in long-read platforms). 
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Figure 6. Evolution of NGS platforms. 

Development of sequencing generations over time (x-axis). The y-axis indicates the amount of data generated per run in 

gigabases. Adapted from Satam et al., 2023 39. 

The most widely used platforms—whose data are analyzed in this thesis—are Illumina and Ion 

Torrent: 

• Illumina sequencing relies on sequencing-by-synthesis (SBS). As illustrated in Figure 7, this 

approach resembles Sanger sequencing: a denatured DNA template is extended by DNA 

polymerase using fluorescently labeled nucleotides that terminate synthesis. After detection 

of the incorporated base, Illumina SBS removes the terminator group, permitting continued 

extension and enabling base-by-base sequencing in cycles. Millions of DNA fragments are 

immobilized on a solid substrate via their ligated adapters and sequenced in parallel, with 

cycle number (typically 75–150) determining read length9,39. 

• Ion Torrent sequencing also performs real-time nucleotide incorporation but uses 

semiconductor technology. Each incorporated nucleotide releases a hydrogen ion, producing 

a detectable pH change that generates a voltage signal corresponding to the base identity9,39. 

Although both platforms yield similar performance, Ion Torrent has limitations in accurately 

resolving homopolymer tracts due to difficulties distinguishing voltage changes from multiple 

identical nucleotides incorporated in succession. Conversely, Illumina sequencing generally yields 

more reads per run but may be more expensive and slower, while Ion Torrent workflows are often 

faster and more cost-effective—especially for smaller targeted panels11. 

Modern sequencers feature multiple flowcell lanes, allowing independent processing of different 

samples or runs9. When a single sample’s reads are distributed across lanes, the data must be merged 

during pre-processing. 
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Figure 7. Overview of Sanger and Illumina sequencing processes. 

The traditional Sanger sequencing workflow is depicted on the left. The Illumina-based NGS workflow is shown on the 

right. Both methods rely on the detection of fluorescently labeled nucleotides incorporated during DNA synthesis. Unlike 

Sanger sequencing, Illumina sequencing is reversible—allowing continuous base detection—and is massively parallelized 

across millions of templates. Reproduced from Larson et al., 2023 9. 



1. Introduction  15 

 

 

Another technical consideration is the choice between single-end and paired-end sequencing. Single-

end sequencing reads DNA from one end of the insert, whereas paired-end sequencing reads from 

both ends (forward direction usually labeled as “R1” and reverse as “R2”). Paired-end reads improve 

mapping accuracy and coverage and enhance sensitivity for detecting structural variants (SVs), but 

they can be more time- and resource-intensive9. 

In summary, each platform and assay have specific considerations—including target size, variant 

type and complexity, turnaround time, technical support, and bioinformatics requirements—that 

determine its suitability for clinical or research applications. For example, in this thesis, two 

commercial pan-cancer NGS panels were used with distinct focuses: 

• Illumina: Hybrid-capture-based enrichment of a large gene set, sequenced as paired-end 

reads on the Illumina platform. This approach prioritizes comprehensiveness and accuracy 

over cost, input quantity, or turnaround time. 

• Thermo Fisher (Ion Torrent): Amplicon-based capture targeting fewer genes, primarily 

hotspot regions, with single-end reads. This configuration emphasizes streamlined 

workflows, shorter turnaround, and lower input and cost—features well-suited to routine 

clinical diagnostics. 

1.2.3. Bioinformatics workflow: from sequence generation to clinical insights 

NGS assays generate massive volumes of complex, multidimensional data that require sophisticated 

computational methods to convert raw sequencing reads into clinically meaningful insights9,34,40,41. 

In this context, bioinformatics expertise is essential to manage, process, and interpret these datasets 

by applying specialized informatics techniques. A bioinformatic pipeline refers to a structured 

collection of algorithms and tools that are executed sequentially to analyze NGS data in a 

standardized and reproducible manner36,42. These pipelines are designed to handle specific data 

formats and associated metadata, systematically transforming them through a series of processing 

steps. While pipelines can be adapted to individual laboratory requirements and platform 

specifications, clinical NGS workflows generally follow a common structure composed of the 

following major stages: sequence generation and pre-processing, sequence alignment, variant 

calling, variant annotation, variant prioritization, and visualization and reporting9,34,40,41. The 

following sections will describe each of these components in detail, highlighting their objectives, 

methodologies, and implications for downstream clinical interpretation. 
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1.2.3.1. Sequence generation and pre-processing 

Sequence generation—commonly referred to as base calling—is the process by which raw sensor 

data (e.g., optical or electrical signals) from the sequencing instrument are translated into a nucleotide 

sequence for each DNA fragment9,42. Each platform produces base call data in proprietary formats. 

For example, Illumina sequencers generate binary base call (BCL) files that store the raw 

fluorescence intensities, the interpreted nucleotide calls (A, T, G, C), and their associated quality 

metrics (Q-scores)9,42. These BCL files must be converted into a standardized format suitable for 

downstream bioinformatics processing. The most common output format is the FASTQ file, which 

is generally considered the starting point (i.e., raw sequencing data) for analysis9,42. In contrast, Ion 

Torrent platforms export base calls in unmapped Binary Alignment Map (uBAM) file format43. 

Unlike FASTQ, the Binary Alignment Map (BAM) format can also store platform-specific flow 

signal data, which some Ion Torrent pipelines use for downstream steps such as variant refinement. 

Table 3 provides an overview of these formats and other commonly used files in NGS bioinformatics 

workflows9,42,43. 

Table 3. Common bioinformatics file formats. 

This table summarizes widely used file formats in NGS bioinformatics workflows. Each format is listed along with its 

typical file extension(s), coordinate system (0-based or 1-based), and a brief description. Based on Larson et al., 2023 9. 

File format 
File 

extension 

Coordinate 

system 
Description 

Binary base call 

(BCL) 
.bcl - 

Binary files that store raw intensity measurements from Illumina 

sequencers. These files are demultiplexed and converted into 

FASTQ format before downstream analysis. 

FASTQ .fastq, .fq - 

Text-based format containing nucleotide sequences and their 

corresponding base quality scores. Commonly used as the 

starting point for read processing. 

FASTA .fasta, .fa - 
Text-based file format used to store reference genome sequences 

or other nucleotide sequences. 

Browser Extensible 

Data (BED) 
.bed 0-based 

Tab-separated values (TSV) format specifying genomic intervals 

and optional annotations. Used for defining regions of interest. 

Sequence 

Alignment Map 

(SAM) 

.sam 1-based 
TSV text file containing sequencing reads aligned to a reference 

genome. 

Binary Alignment 

Map (BAM) 
.bam 0-based 

Binary compressed version of a SAM file. Standard format for 

storing and exchanging aligned read data. 

Compressed 

Reference-oriented 

Alignment Map 

(CRAM) 

.cram 0-based 
Compressed format similar to BAM but optimized for storage by 

saving only differences between reads and the reference genome. 

Variant Call Format 

(VCF) 
.vcf 1-based 

TSV format used to store identified variants and their 

annotations. 

Gene Transfer 

Format (GTF) 
.gtf 1-based 

TSV format describing gene structure annotations (e.g., exons 

and transcripts). 
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FASTQ files are plain-text files in which each sequencing read is represented by a four-line 

structure9,11,42 (Figure 8): 

• Sequence identifier: A header line starting with the “@” symbol that uniquely labels each 

read and often includes information such as the instrument, flowcell, lane, and optionally 

barcodes like UMIs. In paired-end sequencing, two FASTQ files are generated with matching 

identifiers distinguished by a read direction suffix (e.g., /1 and /2). Additional metadata (e.g., 

sample name, index, or read length) may be appended.  

• Nucleotide sequence: The called bases (A, T, G, C, or N for ambiguous calls). 

• Separator: Usually a “+” sign marking the start of the quality string. 

• Quality scores: A string of American Standard Code for Information Interchange (ASCII)-

encoded Phred Q-scores representing the estimated error probability for each base. For 

example, Q=30 corresponds to a 0.1% chance of error (99.9% accuracy). 

 
Figure 8. Example of a FASTQ read entry. 

Illustration of a single read entry highlighting the four-line structure within a FASTQ file: the read identifier, nucleotide 

sequence, separator, and encoded base quality scores. Reproduced from Larson et al., 2023 9. 

During this step, demultiplexing is typically performed to assign reads to their corresponding samples 

based on the index sequences ligated during library preparation. A potential issue is index hopping, 

where indexes are incorrectly assigned to the wrong sample10,13. This can be mitigated using dual 

indexing, in which two independent index sequences (e.g., i7 and i5) are applied (Figure 5)10. 

Once sample-specific FASTQ files have been generated, raw reads are pre-processed to retain only 

the relevant insert sequences by12,36: 

• Trimming adapter sequences, UMIs, and low-quality bases (especially from the 3′ ends). 

• Removing contaminant sequences, such as reads derived from non-human organisms. 

• Filtering out excessively short reads that would map ambiguously. 

Sequencing quality control (QC) is also conducted at this stage10,12,36. QC checks typically include: 

• Assessing base quality score distributions to identify systematic biases or degradation. 
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• Inspecting per-base composition to detect contamination or technical artifacts (e.g., residual 

adapters, sample cross-talk). 

• Estimating guanine-cytosine (GC) content to confirm that it matches the expected range for 

human DNA. Deviations (such as an unexpected secondary GC peak) can indicate 

contamination by non-human DNA. 

1.2.3.2. Sequence alignment 

The next step in the NGS workflow is the alignment of sequencing reads to a reference genome (i.e., 

read mapping), which aims to determine the most likely genomic position of each fragment, while 

accounting for natural genetic variation and sequencing errors10,12,36. Short-read aligners are designed 

to efficiently map millions of reads to the reference genome by using pre-built indexes that enable 

rapid pattern matching. For RNA data, where reads span joined exons, splice-aware aligners are 

required to accurately map reads crossing exon–exon boundaries9,10. As determining the origin of 

each read is critical for understanding the sequenced genetic information, this step must be highly 

accurate. However, it is also computationally intensive and time-consuming, as each read is 

compared to the entire genome9,10,36. 

The reference genome is typically stored in the FASTA file format (Table 3), which contains a series 

of entries with a header line (starting with “>“) and the corresponding nucleotide sequence. The 

current standard in clinical applications is the Genome Reference Consortium (GRC) Human Build 

38 (GRCh38)—also referred to as Human genome build 38 (hg38)—released by the GRC in 2013 

(with the latest patch GRCh38.p14 from 2022)9,10,40. While this build includes significant 

improvements over its predecessor GRCh37/hg19 (2009), the latter remains widely used, 

necessitating compatibility through coordinate conversion, commonly referred to as liftover. Other 

alternatives include Telomere-to-Telomere CHM13 (T2T-CHM13)—the first gapless haploid 

genome assembly—which improves the representation of difficult regions, but does not reflect 

human population diversity44. To address this, the Human Pangenome Reference Consortium is 

developing a multi-reference genome derived from diverse individuals, aiming to better represent 

population-specific genomic variation45. 

Depending on the outcome of the alignment, reads can be classified as46: 

• Mapped reads: Successfully aligned to a unique position in the genome. Most reads should 

be mapped, and the mapping rate is a common QC metric. 

• Unmapped reads: Failed to align to any region. They may originate from novel or non-human 

sequences, repetitive regions, or reflect structural variations. 
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• Clipped reads: Partial alignments where one end of the read is not mapped. These can be 

soft-clipped (retained but not aligned) or hard-clipped (removed). Clipping may reflect low-

quality bases or true biological alterations (e.g., InDels, SVs). 

• Multi-mapping reads: Align equally well to multiple locations. These often originate from 

repetitive elements or paralogous genes. 

Alignment outputs are saved in specific file formats9,36,43,46 (Table 3): 

• Sequence Alignment Map (SAM): A plain-text, tab-separated values (TSV) format that 

includes aligned and unaligned reads. It contains a multi-line header (starting with “@”) with 

metadata (e.g., software, reference genome), and per-read information (Table 4). 

• BAM: The binary version of SAM, optimized for storage and processing. BAM files are 

compressed, indexable, and compatible with most downstream tools and genome browsers 

for manual inspection. 

• Compressed Reference-Oriented Alignment Map (CRAM): A more compressed format that 

stores only differences relative to the reference genome. It enables significant file size 

reduction, although it requires specialized tools and may involve lossy compression, 

potentially discarding non-variant reads. 

Table 4. Summary of mandatory SAM file fields. 

This table summarizes the eleven mandatory fields of SAM files. Adapted from the Sequence Alignment/Map Format 

Specification 46. 

No. Field Type Description 

1 QNAME String Query name. Typically the read identifier, matching the one in the FASTQ file. 

2 FLAG Integer 
Bitwise flag representing read attributes (e.g., read is paired, properly aligned, 

unmapped, etc.). 

3 RNAME String 
Reference name (e.g., chromosome) where the read is aligned. Set to “*” for 

unmapped reads. 

4 POS Integer 1-based leftmost position of the aligned read. Set to 0 for unmapped reads. 

5 MAPQ Integer 
Mapping quality. Phred-scaled score estimating the probability that the alignment is 

incorrect. Set to 255 when not available. 

6 CIGAR String 

Encodes the alignment of the read to the reference using a sequence of operations 

(e.g., “M”: alignment match, “I”: insertion, “D”: deletion, “S”: soft-clipped, “H”: 

hard-clipped).  

7 RNEXT Integer 
Reference name of the mate/next read. Set to “*” if unavailable, or “=“ if identical to 

RNAME. 

8 PNEXT Integer 1-based position of the mate/next read. Set to 0 if unavailable. 

9 TLEN String 
Observed template length (i.e., insert size for paired-end reads). It can be negative 

depending on orientation. 

10 SEQ String 
Read sequence. Set to “*” if sequence is not stored; can be “=“ if identical to 

reference. 

11 QUAL String 
ASCII-encoded Phred base quality scores for each base in SEQ. Set to “*” if 

unavailable. 

Read alignment enables the coverage calculation which directly impacts the VAF and the sensitivity 

and reliability of variant detection. High coverage is essential for detecting low-VAF somatic 

variants, especially subclonal mutations present in only a subset of tumor cells. For this reason, 
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targeted NGS panels are ideal for clinical applications, as they provide deep coverage in predefined 

regions of interest9,10. 

Before aligned reads can be used for variant calling, several post-alignment processing steps are 

usually performed to generate analysis-ready BAM files9,10,12,36 (some steps may be included within 

variant calling tools): 

• Deduplication: PCR duplicates, originating from over-amplified DNA fragments (especially 

in FFPE or low-input samples), are removed. Duplicates are typically identified by identical 

start and end coordinates, although UMIs (Figure 5) can enhance accuracy by tagging 

original DNA fragments. 

• Local realignment: Reads near potential InDels are locally realigned to improve alignment 

accuracy and facilitate InDel detection. 

• Bias correction: Systematic errors in base quality scores can be recalibrated using known 

variant datasets, improving variant calling precision. 

• BAM QC: In addition to sequencing QC, various metrics assess alignment quality (Figure 

9). These include the mapping rate, on-target rate (for targeted panels), insert size 

distribution, read length, duplication rate, and coverage statistics (e.g., mean, median, or 

percentage of target bases above specific coverage thresholds). 

 
Figure 9. Sequencing and alignment QC of reads. 

Read QC is assessed before and after the alignment to the reference genome. Based on Cortés-Ciriano et al., 2022 10. 

Several biological and technical factors can compromise alignment, including genomic complexity 

(e.g., repeats, segmental duplications), sequencing errors, and limitations of the reference genome. 

Misalignments may lead to false positive (FP) variants, so it is essential to monitor these issues and 

apply corrective strategies during downstream analysis to ensure robust results10. 

1.2.3.3. Variant calling 

Once the genomic positions of sequencing reads have been established, the next step is to identify 

genetic differences between the tumor sample and a reference genome—a process known as variant 

calling. This step enables the detection of various types of genomic alterations, such as small variants 

(SNVs, InDels), CNAs, and SVs9,42. 



1. Introduction  21 

 

 

The resulting data is typically stored in a Variant Call Format (VCF) file (Table 3), a plain-text, TSV 

file widely used for representing genomic variants. As shown in Figure 10, VCF files consist of a 

header section—beginning with a “#”—which includes metadata such as file format version, 

reference genome, and descriptions of quality metrics, followed by a series of variant entries with 

defined fields described in Table 59,38. 

 
Figure 10. Structure of a VCF file. 

(A) Example of a VCF file showing the header section and several variant records. The header contains metadata about the 

file and the reference genome, while each row in the records section corresponds to a detected variant with structured fields. 

(B-E) Illustrative examples of sequence alignments and their corresponding VCF representations for different types of 

small variants. Reproduced from Larson et al., 2023 9. 

Table 5. Summary of fixed VCF file fields. 

This table summarizes the mandatory fields in VCF files used to describe genomic variants. Missing values in any field are 

indicated by a dot. Adapted from the Variant Call Format Specification 38. 

No. Field Type Description 

1 CHROM String Chromosome or contig name where the variant is located. 

2 POS Integer 1-based position of the variant on the chromosome. 

3 ID String Variant identifier. Commonly includes dbSNP rsID if available. 

4 REF String Reference allele(s). The base at POS is the first base in this string. 

5 ALT String 
Alternate allele(s) or symbolic SVs (e.g., DEL, INS, DUP, INV). Multiple values 

separated by commas for multiallelic sites. 

6 QUAL Float Phred-scaled quality score assigned to the variant call. 

7 FILTER String 
Filter status of the variant. “PASS” if it passes all quality filters; otherwise, a 

semicolon-separated list of failed filters. 

8 INFO String 
Semicolon-separated list of key-value pairs with additional variant annotations. 

Format defined in the VCF header. 

9 FORMAT String Colon-separated list of fields describing sample-specific data in the next columns. 

Small variants, including SNVs and InDels, are the most common types of somatic alterations found 

in tumors. These variant classes are typically identified simultaneously by specialized software tools 

known as variant callers, and the term variant calling often refers specifically to their 

detection4,9,10,12,40–42. This step is one of the most computationally intensive in the pipeline, as it 
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involves comparing each base in the aligned reads to the reference genome to identify deviations. To 

reduce the likelihood of reporting FPs, variant callers assign quality metrics to each call and apply 

filtering criteria—either automatically or as a post-processing step—to flag or exclude low-

confidence variants. Common filtering parameters include base quality, mapping quality, strand bias, 

read position bias, and the presence of multiple nearby alternative alleles, among others. The 

resulting file may include both pass and filtered variants, typically annotated in the VCF using the 

FILTER field42. 

The core objective of the variant calling process is to distinguish true genetic variants from 

sequencing or alignment artifacts. An illustrative example of how sequencing reads are aligned to 

the reference genome and how small variants are detected in different NGS contexts is shown in 

Figure 11. In this context, SNV refers specifically to somatic variants, while single-nucleotide 

polymorphism (SNP) denotes germline origin. Several factors can influence the accuracy of small 

variant detection (see 1.3. Bioinformatics challenges in the analysis of somatic NGS panel for further 

detail)10: 

• DP and VAF: Both variant metrics are a key determinant of variant confidence. Germline 

SNPs typically exhibit VAFs near 100% (homozygous) or ~50% (heterozygous). In contrast, 

somatic SNVs often have lower VAFs, influenced by TP, ploidy, and intra-tumor 

heterogeneity. For example, WGS (Figure 11A) provides uniform coverage across the 

genome, which supports the reliable detection of clonal variants, but has limited sensitivity 

for subclonal mutations. In contrast, targeted NGS panels (Figure 11B) achieve higher 

sequencing depth over specific regions, enhancing sensitivity for low-frequency subclonal 

variants, although the coverage variability across targets can hinder accurate estimation of 

copy number (CN). 

• Duplicate reads: PCR duplicates should be removed to avoid overestimating variant-

supporting reads and reduce the influence of potential artifacts. 

• Tumor-only calling: In paired tumor-normal analyses, reads from matched normal tissue help 

differentiate true somatic variants from germline alterations and sequencing artifacts. 

However, normal samples are often unavailable in routine clinical workflows, necessitating 

the use of alternative filtering strategies to suppress germline variants and technical noise. 

• Systematic biases: Certain artifacts may display strand bias, where a variant is 

disproportionately supported by reads from one strand (forward or reverse). Such biases are 

commonly associated with FPs and should be carefully evaluated or filtered out. 
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Figure 11. Illustration of variant identification in different NGS contexts. 

Visual representation of aligned sequencing reads within a gene locus under (A) WGS and (B) exome or gene panel 

sequencing approaches. Variants and sequencing artifacts are highlighted with distinct colors, and annotations indicate key 

events. The figure illustrates how sequencing depth, coverage uniformity, and context affect variant detection sensitivity. 

Reproduced from Cortés-Ciriano et al., 2022 10. 
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CNAs are another important class of somatic events typically assessed in clinical bioinformatics 

workflows. Their identification is primarily based on coverage differences between a tumor sample 

and a reference, which may be a matched normal sample or a reference pool of samples. An increase 

or decrease in sequencing coverage across a genomic region is indicative of an amplification (AMP) 

or deletion (DEL), respectively (Figure 12A). Some advanced approaches integrate allelic imbalance 

information using the B-allele frequency (BAF) of heterozygous SNPs, which enables improved 

CNA resolution and the detection of copy-neutral loss of heterozygosity (LOH) events—situations 

where one allele is deleted and the other is amplified, leading to an unbalanced but diploid state 

(Figure 12A). However, the resolution of these methods is limited in targeted gene panels due to the 

reduced number of heterozygous SNPs and uneven coverage across the genome, which constrains 

their ability to robustly distinguish such events10,36. 

 
Figure 12. Detection of CNAs and SVs using different sequencing-based approaches. 

(A) Schematic representation of how distinct CNAs affect depth and BAF profiles. (B) Example of a deletion detected by 

discordant read pairs and split reads spanning the deleted region. (C) Example of a tandem duplication identified by paired-

end reads with unexpected orientation or insert size, and split reads aligning at the duplication junction. Based on Cortés-

Ciriano et al., 2022 10. 
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There are several systematic biases introduced during library preparation and sequencing that can 

affect the accurate calculation of coverage and, consequently, impact the CNA detection in coverage-

based analyses10,47: 

• GC content: Regions with extremely high GC content tend to exhibit reduced efficiency in 

hybridization, PCR-Amp, and sequencing. This results in lower observed coverage 

compared to regions with balanced GC content. 

• Repetitive sequences: Genomic regions containing repetitive elements—such as 

microsatellites or segmental duplications—pose challenges for short-read sequencing and 

accurate read mapping, leading to decreased mappability and artificially reduced coverage. 

• Target density bias: Uneven coverage across target regions is a known limitation in targeted 

gene panels, particularly those using hybridization capture. Two edge-related effects can 

occur: (i) a negative bias at the borders of target regions due to incomplete probe 

hybridization—commonly referred to as the shoulder effect, and (ii) a positive bias in 

flanking regions when adjacent targets are close enough for their capture signals to overlap, 

causing inflated coverage values. 

Other approaches for detecting CNAs—and more broadly, SVs—rely on the analysis of read 

mapping patterns, particularly split (or clipped) reads and discordant read pairs (Figure 12B). Split 

reads are individual sequencing reads that partially align to two distinct genomic regions, typically 

corresponding to breakpoints where structural changes occur. Similarly, discordant read pairs are 

paired-end reads whose mapping characteristics (e.g., orientation, insert size, or genomic distance) 

deviate from the expected pattern, indicating a potential structural rearrangement. These signals are 

particularly useful for identifying focal events (e.g., deletions, duplications, inversions, or 

translocations) which may not always result in clear coverage imbalances10,36. 

From a clinical perspective, the most relevant SVs are those that give rise to actionable oncogenic 

gene fusions or splicing aberrations, as they can drive tumorigenesis and represent therapeutic 

targets. In the context of clinical NGS panels, these events are more reliably detected using RNA-

seq data. Unlike DNA sequencing, RNA-seq captures only the transcribed regions of genes, thereby 

skipping large intronic regions and improving the detection sensitivity for fusion transcripts. In this 

approach, reads are aligned to the transcriptome or to a genome-guided transcript model to identify 

two key signals: split reads that directly map to fusion junctions (i.e., across exons from different 

genes), and discordant read pairs that span fusion breakpoints but map to non-adjacent gene regions. 

This strategy enables the precise detection of both known and novel gene fusions, as well as splicing 

isoforms with potential clinical significance 9,10. 
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1.2.3.4. Variant annotation and prioritization 

Once genomic variants have been identified, the next critical step is to interpret their biological and 

clinical relevance. Raw variant calls, regardless of their type, lack the contextual information 

required for clinical decision-making. Therefore, a comprehensive annotation process is essential to 

enrich each variant with relevant metadata, such as its genomic context, population frequency, known 

pathogenicity, and potential therapeutic associations. This annotated information forms the 

foundation for subsequent filtering and prioritization strategies that aim to highlight the most 

clinically relevant alterations for diagnosis, prognosis, and therapy selection4,9,11. 

Annotation of small variants (SNVs and InDels) typically includes4: 

• Genomic context: Identification of the affected gene and genomic region (e.g., coding vs. 

non-coding), as well as specific features such as exons, introns, splice sites, or regulatory 

elements. 

• Predicted functional consequences: Evaluation of the potential impact on protein function 

(e.g., synonymous, missense, nonsense, frameshift, or splice site variants), often 

supplemented by in silico prediction tools. 

• Population frequency: Cross-referencing large-scale population databases (e.g., gnomAD) 

to distinguish common polymorphisms and infer germline origin. 

• Clinical databases: Integration of clinical interpretation data from curated resources (e.g., 

ClinVar, COSMIC, OncoKB, and CIViC) which provide information on pathogenicity or 

drug sensitivity. 

Annotation of CNAs typically involves4,29: 

• Gene role in cancer: Identification of affected oncogenes or TSGs using curated cancer gene 

lists to infer potential biological relevance. 

• Clinical interpretation: Evaluation of the functional consequence of focal or arm-level events 

(e.g., ERBB2 AMP in breast cancer or CDKN2A DEL in glioma), often supported by known 

clinical associations. 

Annotation of gene fusions and splicing variants includes4,29: 

• Fusion structure: Assessment of the fusion partner genes, reading frame, and functional 

domains to evaluate whether the event is likely to be oncogenic. 

• Database matching: Comparison with curated fusion databases to identify known oncogenic 

rearrangements. 

• Therapeutic relevance: Identification of clinically actionable fusions (e.g., ALK, ROS1, 

NTRK genes) or splicing events (e.g., MET exon 14 skipping [METex14]) associated with 

targeted therapies. 
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Once annotated, variant prioritization becomes essential to identify the most relevant alterations, 

particularly in clinical settings where only a subset of variants is actionable. This process generally 

involves: 

• Variant confidence: Evaluation of calling metrics (e.g., DP, AD, AF) and variant context 

(e.g., difficult regions) to estimate reliability. 

• Biological and oncogenic relevance: Prioritization of variants affecting well-established 

cancer genes, functional domains, or hotspot regions, often guided by classification 

frameworks such as the Clinical Genome Resource (ClinGen)/Cancer Genomics Consortium 

(CGC)/Variant Interpretation for Cancer Consortium (VICC) Standard Operating Procedure 

(SOP) guidelines48. 

• Clinical significance: Assignment of clinical relevance tiers based on established guidelines 

such as the AMP/American Society of Clinical Oncology (ASCO)/College of American 

Pathologists (CAP)4 consensus recommendations and the ESMO Scale for Clinical 

Actionability of Molecular Targets (ESCAT)49 framework. 

To facilitate this process, automated pipelines are used to apply dynamic filtering criteria and 

generate structured outputs such as tiered variant classifications, which can then be summarized in 

interactive reports. These outputs support downstream interpretation in multidisciplinary settings, 

such as MTBs, where clinical teams evaluate the potential diagnostic, prognostic, and therapeutic 

implications of each case48. 

1.2.3.5. Complex genomic biomarkers 

Beyond individual genomic alterations, a subset of complex biomarkers derived from broader 

mutational patterns or genome-wide instability has emerged as highly relevant in precision oncology. 

These complex genomic biomarkers provide important insights into tumor pathophysiology and are 

increasingly used to predict therapeutic response, particularly to immune checkpoint inhibitors 

(ICIs), DNA-damaging agents, and targeted therapies. Unlike discrete variants, their detection 

requires integrative bioinformatic analyses across multiple genomic features, often demanding 

specific computational strategies and sufficient sequencing breadth or depth. However, despite their 

clinical potential, the standardization of methods for their accurate assessment, especially in targeted 

panel settings, remains an ongoing bioinformatic and clinical challenge5,10,36,40.  

Microsatellite instability (MSI) refers to a hypermutator phenotype caused by defective DNA 

mismatch repair (MMR), resulting in InDel errors at microsatellite regions—short tandem repeats 

scattered throughout the genome. Tumors with high MSI accumulate frameshift mutations that can 

generate neoantigens, making MSI-High status a predictive biomarker for immunotherapy efficacy. 

Traditionally assessed via PCR-based assays or IHC, MSI can also be inferred from NGS data by 
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examining either the length variability of specific microsatellite loci or characteristic mutation 

patterns5,36. 

Tumor mutational burden (TMB) quantifies the number of somatic mutations per megabase 

(Mut/Mb) of coding DNA and is also associated with response to ICIs. While WES remains the 

reference method, TMB estimation in clinical settings is commonly adapted to targeted panels. In 

this case, the TMB score is extrapolated from the count of somatic mutations within the panel’s 

coding region, normalized by its effective size50. 

Mutational signatures represent specific patterns of somatic single-nucleotide substitutions that 

reflect distinct mutagenic processes, such as environmental exposures (e.g., UV light, tobacco), 

enzymatic activity (e.g., APOBEC), or defects in DNA repair pathways. These signatures are defined 

based on the frequency of each of the 96 possible trinucleotide substitution contexts. The associated 

mutational processes can be discovered de novo from a large cohort of cancer genomes, or in case of 

a small set or single sample, the relative contribution for a set of predefined signatures (i.e., refitting) 

is obtained. This concept is extensively applied to other variant types, such as InDels, CNAs, or other 

rearrangements10,40. 

Homologous recombination deficiency (HRD) reflects the inability of tumor cells to faithfully repair 

DNA double-strand breaks via the homologous recombination repair pathway. HRD is frequently 

caused by biallelic inactivation of BRCA1/2 or other HR genes and is associated with increased 

sensitivity to platinum-based chemotherapy and PARP inhibitors. Computational methods have been 

developed to quantify HRD through so-called genomic scar scores, which measure the accumulation 

of large-scale genomic aberrations indicative of defective DNA repair, including LOH, large-scale 

state transitions (LST), and telomeric allelic imbalance (TAI)51. 

1.2.3.6. Visualization and reporting 

The final step in the clinical bioinformatics workflow involves transforming the processed and 

interpreted variant data into a structured format that supports decision-making in a clinical context. 

This is typically achieved through intuitive visualizations and standardized reports that summarize 

relevant findings, including detected variants, affected genes, clinical annotations, and suggested 

therapies. Effective visualization tools, such as Integrative Genomics Viewer (IGV), allow the 

inspection of sequence alignments, facilitating manual validation of critical findings. Reports must 

be clear, concise, and adapted to multidisciplinary users (e.g., oncologists, pathologists, and 

geneticists). They often integrate clinical classifications, evidence levels, and therapeutic 

implications, and should highlight clinically actionable alterations, potential resistance markers, and 

relevant biomarker statuses. In the context of high-throughput settings, automated reporting systems 
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are essential to ensure reproducibility, scalability, and turnaround time, while enabling human 

oversight for critical cases4,36. 

1.2.3.7. Workflow management and containerization 

The increasing complexity and volume of clinical NGS data has made manual execution of 

bioinformatics analyses impractical, error-prone, and difficult to reproduce. To address these 

challenges, workflow management systems and software containerization have become essential 

tools in modern clinical bioinformatics36,52,53. 

Workflow managers (e.g., Nextflow, Snakemake) enable the design and execution of complex 

pipelines by orchestrating a series of bioinformatics tasks in a modular, scalable, and reproducible 

manner. These systems handle dependencies, resource allocation, parallelization, and job scheduling, 

and are compatible with a wide range of computing environments, including local machines, high-

performance computing (HPC) clusters, and cloud infrastructures. These tools help save time, reduce 

errors, and ensure accuracy and reliability of the analyses36,52,53.  

In parallel, containerization technologies (e.g., Docker, singularity) ensure consistent software 

environments across different computational platforms. Containers encapsulate all the software, 

libraries, and dependencies required for each step of the workflow, avoiding conflicts and simplifying 

deployment. In clinical bioinformatics, containerization is particularly relevant for ensuring version 

control, minimizing discrepancies across institutions, and facilitating regulatory compliance52,53. 

Together, workflow management and containerization provide the technical backbone for building 

reproducible, auditable, and scalable clinical bioinformatics pipelines. Their integration is now 

considered a best practice for implementing robust NGS workflows that support routine diagnostics, 

regulatory requirements, and large-scale genomic data processing36,52,53. 

1.3. Bioinformatics challenges in the analysis of somatic NGS panels 

Despite the widespread adoption of NGS-based cancer panels in clinical practice, the bioinformatic 

analysis of somatic alterations remains a multifaceted and technically demanding task. Unlike 

germline testing, somatic variant analysis must contend with tumor-specific complexities—including 

variable TP, intra-tumor heterogeneity, and the frequent use of low-quality or low-input DNA from 

FFPE specimens9–13. The limited and uneven genomic coverage typical of targeted panels further 

complicates the detection of certain alterations, particularly InDels, SVs, CNAs, and complex 

biomarkers such as TMB, MSI, or HRD5,10,36,40. 
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Additional challenges stem from the lack of matched normal samples, which hinders the accurate 

discrimination of somatic versus germline variants and requires the adoption of alternative filtering 

strategies10,12,41. RNA-based analyses introduce further layers of complexity, from expression-

dependent detection limits to degraded input quality and the intricacies of fusion transcript 

interpretation9,10,54. Technical and computational variability across platforms—along with the 

absence of standardized, harmonized workflows—exacerbate inconsistency in variant calling and 

interpretation across laboratories9,11,42,54. Moreover, limited automation for variant prioritization, lack 

of user-friendly clinical reporting tools, and persistent barriers to data sharing and interoperability 

restrict the broader utility of these pipelines in routine oncology4,34,35. Finally, existing commercial 

and academic solutions often fall short of meeting clinical requirements for flexibility, portability, 

and end-to-end reporting40. This section reviews each of these critical challenges in detail and 

outlines current efforts and strategies to overcome them. 

1.3.1. Low-quality and low-input DNA 

The quality and quantity of input DNA are critical factors influencing the success of NGS assays, 

particularly in clinical oncology where samples are often scarce and derived from FFPE tissues. 

Although FFPE is the standard method for long-term tissue preservation in diagnostic pathology, the 

fixation process causes DNA fragmentation, crosslinking, and chemical modifications (e.g., cytosine 

deamination), all of which introduce technical artifacts and may compromise the reliability of 

downstream genomic analyses9–11,54. 

Degraded or damaged DNA typically results in shorter fragment lengths and higher levels of 

sequencing artifacts, such as nucleotide misincorporations, chimeric reads, and PCR duplicates. 

These issues can compromise the detection of true somatic variants, especially low-frequency 

mutations, by inflating FPs or reducing sensitivity. Additionally, chemical alterations to DNA bases 

may interfere with primer binding during PCR-Amp or hinder adapter ligation during library 

preparation, ultimately reducing library complexity and target region coverage11,54. 

Low-input DNA—frequently encountered in small biopsies or cytological specimens—limit the 

feasibility of high-depth sequencing or technical replicates, and often lead to overamplification 

during library preparation, resulting in elevated duplication rates and reduced effective (unique) 

coverage. These conditions can severely impact variant calling performance, particularly in 

applications requiring high sensitivity for subclonal or actionable alterations11,54. 
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To address these issues, bioinformatics pipelines must integrate specific preprocessing and filtering 

strategies tailored to the limitations of compromised input material12, including: 

• Duplicate read filtering: High duplication rates are a hallmark of low-complexity libraries. 

While duplicate removal is necessary to avoid coverage overestimation, distinguishing 

technical duplicates from biological duplicates can be difficult, particularly in amplicon-

based assays. The use of UMIs can help to resolve this ambiguity by tagging original DNA 

molecules before PCR-Amp. 

• Error-aware variant calling: Tools designed for FFPE-derived samples include models to 

detect strand bias or sequencing artifacts, helping reduce false-positive calls from chemically 

damaged bases (e.g., C>T transitions). 

• Quality-based trimming and filtering: Removing low-quality bases (commonly from 3’ 

ends), filtering reads with low mapping quality, and excluding variants with weak support or 

high strand bias improve overall specificity and variant reliability. 

Despite the use of correction strategies, certain genomic regions—particularly those with extreme 

GC content, repetitive elements, or high fragmentation—may remain poorly covered or inaccessible, 

limiting confidence in negative findings. Therefore, integrating sequencing QC metrics (e.g., 

fragment length distributions, read quality profiles, on-target rate, duplication rate, and coverage 

uniformity) into the bioinformatics workflow is essential for reliable downstream interpretation and 

for informing the clinical confidence of reported results36. 

In summary, low-quality and low-input DNA remain significant barriers to accurate somatic variant 

detection in NGS panel assays. Overcoming these limitations requires a combination of optimized 

wet-lab protocols and dedicated bioinformatic strategies to ensure data quality, analytical robustness, 

and clinical utility—particularly when working with suboptimal but routinely available clinical 

specimens such as FFPE54. 

1.3.2. Tumor heterogeneity and low-frequency variant detection 

The sensitivity of somatic variant detection in NGS panel analysis is profoundly affected by different 

forms of tumor heterogeneity, which can dilute or obscure the signal of clinically relevant 

alterations9–11,54. These heterogeneity sources include: 

• Tissue heterogeneity (purity): Clinical tumor specimens often contain a mixture of neoplastic 

and non-neoplastic cells, such as stromal, endothelial, or immune cells. This lowers the 

overall TP and dilutes the representation of somatic variants in the sequencing data. 

• Tumor cell heterogeneity (intra-tumor heterogeneity): Tumors are composed of diverse 

cellular subpopulations or subclones, each harboring distinct genomic alterations. Subclonal 

variants may only be present in a fraction of the tumor cells, resulting in lower VAFs. 
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These combined effects can markedly limit the sensitivity of variant detection. Somatic variants 

present at low VAFs may fall below the detection threshold of variant callers or be mistakenly filtered 

as sequencing artifacts. This is particularly relevant in routine diagnostics where matched normal 

samples or orthogonal validation are rarely available9–11,54. 

To improve detection under these conditions, several strategies are applied11,12,41: 

• High-depth sequencing: Deep sequencing—especially in hotspot regions—enhances the 

ability to detect variants at lower VAFs. Amplicon-based approaches are particularly useful 

in this context but must be coupled with error suppression strategies (e.g., UMIs, strand bias 

correction) to maintain specificity. 

• Variant calling algorithms optimized for low-VAF detection: Some tools incorporate 

probabilistic models and artifact filters tailored for low-frequency variant calling, especially 

in tumor-only contexts. 

CNA detection is also impacted by TP. In low-TP, the signal from AMPs or DELs is attenuated, 

reducing the log2 ratio shifts and BAF deviations. Some tools attempt to adjust CNA models based 

on estimated TP, but these require reliable estimation of TP, which is not always available or 

accurate10,47. 

In summary, both TP and intra-tumor heterogeneity are major confounding factors in somatic NGS 

analysis. Accurate detection of low-frequency events requires optimized panel design, robust error 

suppression, and bioinformatics tools specifically adapted to handle signal dilution and high-

background conditions. These considerations are essential to avoid false negatives (FNs) and to 

capture clinically actionable subclonal events that may influence treatment resistance or tumor 

progression54. 

1.3.3. Tumor-only sequencing: lack of matched normal samples 

In clinical oncology, most somatic NGS analyses are performed on tumor-only samples, without a 

matched normal (non-tumor) specimen from the same patient. While this approach simplifies 

logistics, reduces sequencing costs, and shortens turnaround time, it introduces key limitations for 

distinguishing true somatic variants from germline variants and technical artifacts10,12. 

A matched normal sample provides a personalized reference that enables accurate subtraction of 

germline variants and systematic sequencing noise. In its absence, variant interpretation in tumor-

only workflows must rely on indirect filtering strategies, such as excluding variants present in large-

scale population databases. However, this approach has important caveats10,12,41: 

• Rare germline variants, especially those specific to underrepresented populations, may be 

incorrectly classified as somatic. 
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• Conversely, true somatic mutations that overlap with common polymorphisms or occur in 

hypermutable regions may be filtered out, reducing sensitivity. 

To compensate for the lack of patient-specific germline data, many workflows employ a panel of 

normals (PoN)—a collection of normal samples sequenced and processed using the same protocols. 

The PoN is used to flag recurrent sequencing artifacts and systematic noise (e.g., oxidative damage, 

homopolymer-related errors), but it cannot substitute the matched normal for resolving patient-

specific germline variants9,10,41. 

An additional strategy widely adopted in clinical labs is empirical artifact filtering based on routine 

experience: variants observed at high frequency across unrelated tumor samples—especially if not 

annotated as driver mutations or known hotspots—are likely artifacts and are filtered accordingly. 

This approach, while heuristic, provides a valuable internal QC mechanism that complements 

algorithmic and database-driven filters12. 

Further complicating tumor-only analysis are sample preparation artifacts, such as cytosine 

deamination (caused by formalin fixation in FFPE samples) or oxidative base damage, which can 

mimic true mutations. In these cases, read-level metrics—including strand bias, read orientation, or 

positional base quality—become essential for discriminating true variants from technical noise10,12,36.  

In summary, the absence of matched normal samples remains one of the main limitations of somatic 

NGS analysis in routine diagnostics. While current bioinformatic strategies provide workarounds to 

reduce FPs, none fully replicate the reliability of tumor–normal paired analyses. Therefore, the design 

of pipelines must integrate multi-layered filtering approaches and contextual annotations to mitigate 

this inherent limitation of tumor-only testing. 

1.3.4. Complex genomic regions 

Certain genomic regions possess intrinsic sequence features that complicate their analysis by short-

read NGS technologies, leading to limitations in read alignment, variant detection, and interpretation. 

Despite the targeted design of clinical panels, some loci remain difficult to sequence or interpret due 

to sequence repetitiveness, low mappability, or high sequence homology9,10,12. Key problematic 

regions include11,55: 

• Repetitive sequences: such as microsatellites, homopolymer runs, and transposable 

elements, which can cause ambiguous read alignments and complicate InDel detection. 

• Segmental duplications: large regions of nearly identical sequence shared across multiple 

loci, which frequently lead to multi-mapping reads and uncertainty in variant localization. 

• GC-rich regions: which impair hybridization efficiency, PCR-Amp, and sequencing fidelity, 

resulting in coverage dropouts and reduced sensitivity. 
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These factors increase the rate of clipped or misaligned reads and reduce effective coverage in 

affected regions. For example, InDels in tandem repeat regions may be misaligned or ambiguously 

represented10,42. 

Another significant challenge arises from pseudogenes and highly homologous gene families. Reads 

from genes that have nearby pseudogenes or paralogs with high sequence identity may align equally 

well to multiple loci, resulting in FP calls or missed true variants due to mapping uncertainty11.  

Although bioinformatic strategies such as GC bias correction and multi-mapping filtering can 

partially mitigate these issues, they do not fully restore confidence in affected loci. Consequently, 

regions with consistently poor coverage or ambiguous mapping should be flagged during analysis 

and interpretation. For high-impact variants in such areas, orthogonal validation methods—such as 

Sanger sequencing or long-read technologies—are strongly recommended to confirm or rule out 

candidate alterations11,41,42. 

In summary, the complexity of certain genomic regions imposes persistent limitations on somatic 

variant analysis with short-read NGS. Awareness of these challenges is essential in both pipeline 

development and clinical reporting, ensuring that uncertain regions are properly annotated and 

addressed in the diagnostic workflow. 

1.3.5. Detection of complex genomic biomarkers 

While targeted NGS panels have proven highly effective for the detection of individual alterations, 

their limited genomic scope imposes significant constraints on the detection of complex genomic 

biomarkers (e.g., MSI, TMB, mutational signatures, HRD). These biomarkers require integrative 

analysis of broad mutational or copy-number patterns, which are not easily captured in small, focused 

genomic assays. 

MSI detection by NGS requires sufficient coverage of a representative set of microsatellite loci. 

However, most targeted panels contain only a small number of such regions, reducing sensitivity and 

increasing the likelihood of FNs. Furthermore, PCR slippage and sequencing artifacts—particularly 

prevalent in FFPE-derived DNA—can mimic the signal of instability, necessitating careful 

calibration, filtering, and the use of specialized algorithms to distinguish true MSI from technical 

noise5,36. 

TMB estimation is another challenging application in panel-based assays. Traditionally calculated 

from WES, TMB in targeted panels is extrapolated from the number of somatic mutations observed 

within the captured coding territory. This calculation is highly sensitive to the size of the panel, 

sequencing depth, variant filtering thresholds, and the presence of germline contamination—

especially in tumor-only workflows. Moreover, differences in the inclusion of synonymous vs. non-
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synonymous variants, and lack of standardized filtering pipelines, lead to inconsistencies across 

panels and laboratories, hindering clinical harmonization and benchmarking50. 

The detection of mutational signatures is even more constrained. These signatures are based on the 

trinucleotide context of mutations and typically require a large number of somatic variants—often 

hundreds—to be robustly inferred. Such mutation counts are rarely observed in targeted panels, and 

the biased representation of genomic regions further complicates signature extraction. Although 

signature deconvolution tools have been adapted for high-depth panels, the accuracy and 

interpretability of the results remain limited in this context10,40. 

HRD assessment typically relies on genome-wide analysis of copy-number patterns, including 

metrics such as LOH, LST, and TAI. These require dense SNP coverage across the genome—

generally achievable only with WGS or high-resolution SNP arrays. While some targeted panels 

incorporate surrogate scores for HRD, they lack sufficient resolution to capture subtle allelic 

imbalance events. Alternatively, BRCA1/2 mutation status and HRD-associated mutational 

signatures can serve as indirect markers, but they provide only partial insight into the HRD 

phenotype51. 

In summary, the accurate detection of complex genomic biomarkers in targeted panel assays is 

hindered by limited genomic representation, reduced mutation counts, and technical variability. 

While recent efforts have enabled approximation of some biomarkers, significant improvements in 

panel design, analytical methodology, and standardization are still required to fully support their 

clinical application in precision oncology54. 

1.3.6. RNA-seq–based somatic analysis 

RNA-seq provides complementary insights to DNA-based profiling by enabling the detection of gene 

fusions, alternative splicing, and transcript expression changes—features that are critical in many 

cancer types. However, its implementation in somatic panel analysis introduces unique technical and 

bioinformatic challenges that must be addressed to ensure robust and clinically meaningful 

results9,10,54. 

A central limitation of RNA-seq is its dependence on gene expression. Transcripts must be expressed 

at sufficient levels for sequencing reads to adequately cover fusion breakpoints or splice junctions. 

Low expression, variability across tumor types or subclones, and stochastic transcriptional noise all 

contribute to uneven coverage, potentially resulting in missed alterations. Unlike DNA, RNA 

represents a dynamic transcriptional snapshot rather than a stable genomic baseline, complicating the 

interpretation of AF and clonality10,54. 
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From a technical perspective, RNA derived from FFPE tissues—a common source in clinical 

settings—is frequently degraded and fragmented. This results in shorter reads with lower quality, 

hindering both transcript assembly and the sensitivity of fusion detection. RNA degradation also 

increases the likelihood of sequencing artifacts and mispriming during library preparation, especially 

in older samples54,56,57. 

Splice-aware alignment is another critical requirement of RNA-seq analysis. Short reads spanning 

exon-exon junctions must be accurately mapped to the transcriptome, particularly for detecting 

fusions or splicing aberrations. However, non-canonical junctions, complex rearrangements, and 

regions with high sequence homology (e.g., pseudogenes or paralogs) can lead to misalignments and 

FPs. The choice of aligner and its configuration are therefore essential for minimizing error 

propagation9–11,57. 

Fusion transcript interpretation is inherently complex. It requires determining whether the fusion is 

in-frame, assessing predicted protein products, and evaluating biological relevance. Supporting 

evidence—such as the number of split and spanning reads, expression of fusion partners, and 

recurrence in curated fusion databases—must be integrated to distinguish likely driver events from 

passengers or artifacts10,57. 

Despite its growing adoption, standardization of RNA-seq analysis pipelines in the clinical context 

remains limited. There is no consensus on best practices for alignment, fusion calling, filtering, or 

reporting. Furthermore, benchmarking datasets for evaluating RNA-based variant detection—

particularly fusions—are still scarce, limiting tool validation and cross-platform reproducibility42,57. 

In summary, RNA-seq enhances the clinical utility of NGS panels by uncovering transcript-level 

alterations, but its application is challenged by RNA quality, expression variability, complex 

bioinformatics, and a lack of standardization. Addressing these barriers is essential for the reliable 

integration of RNA-based biomarkers into clinical oncology workflows54. 

1.3.7. Lack of automated and standardized systems for variant prioritization 

Following variant detection and annotation, a critical bottleneck in somatic NGS panel analysis is 

the prioritization of clinically relevant alterations. This step is fundamental for guiding diagnostic, 

prognostic, and therapeutic decisions, yet it remains largely manual, time-consuming, and 

inconsistent across laboratories4,34,35. 

In current practice, variant prioritization often requires expert review across multiple layers of 

information, including functional impact, cancer gene relevance, known pathogenicity, updated 

predictive biomarker state of art, and drug sensitivity and resistance associations. Although many 

public and commercial databases provide curated knowledge, there is no universally accepted system 
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capable of automatically integrate and interpret this information into structured, clinically actionable 

outputs34,35. Several challenges contribute to this gap, which are also discussed in MTBs: 

• Heterogeneity of variant types, including SNVs, InDels, CNAs, fusions, and splicing 

alterations, each requiring distinct interpretation frameworks. 

• Lack of harmonized criteria across knowledge databases and inconsistent use of clinical 

evidence levels. 

• Rapidly evolving clinical guidelines that are difficult to keep up-to-date in static pipelines. 

• The frequent presence of variants of uncertain significance (VUS), which lack sufficient 

evidence for automated classification and require expert review. 

Most bioinformatics workflows rely on custom filtering scripts or heuristic rules for prioritization—

such as VAF thresholds, impact prediction, or known hotspot filters10. However, these rules are often 

hard-coded, panel-specific, and difficult to generalize or maintain. A few tools support semi-

automated classification following standardized tiering systems (e.g., AMP/ASCO/CAP), but these 

are often not fully integrated into end-to-end workflows and rarely account for multi-variant or multi-

omics context 9,34. 

International efforts are actively addressing the lack of standardized variant prioritization 

frameworks. For example, the Cancer Genome Interpreter (CGI)-Clinics project (Horizon Europe) 

is transforming the CGI framework58 into a clinical-grade, community-driven decision-support 

platform that enables automated variant tiering and integration of evolving clinical evidence for 

oncology workflows. Similarly, the VICC, under the Global Alliance for Genomics and Health 

(GA4GH) umbrella, harmonizes clinical interpretations across major knowledge bases through 

resources like meta-knowledgebase (MetaKB), promoting consensus-driven, scalable variant 

interpretation35. These initiatives exemplify the push toward reproducible and interoperable solutions 

for clinical genomics. 

The absence of robust automated prioritization systems introduces subjectivity, inter-operator 

variability, and reporting delays, especially when dealing with complex or ambiguous findings. To 

address this limitation, future clinical pipelines should aim to incorporate34,35: 

• Rule-based or machine-learning prioritization modules aligned with international guidelines. 

• Dynamic evidence integration from updated knowledge bases and drug approvals. 

• Multi-variant interpretation strategies capable of joint prioritization (e.g., co-occurring 

mutations, fusions, and CNAs). 

Ultimately, automated and standardized prioritization frameworks would enhance reproducibility, 

scalability, and clinical confidence—key goals for the routine implementation of precision oncology. 
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1.3.8. Deficient visualization and reporting tools for clinical interpretation 

A critical step in the clinical translation of NGS data is the effective communication of results to end 

users—primarily clinicians, molecular pathologists, and members of the MTBs—many of whom 

lack bioinformatics expertise. However, most existing pipelines, particularly academic or research-

oriented ones, output raw data formats (e.g., BAM, VCF) that are difficult to interpret without 

specialized training. These formats typically lack accessible summaries, interactive dashboards, or 

clinically relevant contextualization, creating a communication gap between data producers and 

decision-makers34,40,42. 

Commercial solutions often aim to bridge this gap through simplified graphical interfaces and 

summary dashboards. However, they frequently suffer from limited interactivity, rigid designs, and 

superficial outputs, focusing on mutation tables without integrating important complementary data 

such as VAFs and read support, copy-number profiles, fusion diagrams or splicing illustrations, and 

relevant clinical guidelines or therapy associations4,59. 

Manual review remains essential for variant QC, particularly for ambiguous or borderline calls. Yet 

tools like IGV, which allow read-level inspection in BAM files, require bioinformatics expertise and 

are not scalable or user-friendly in high-throughput diagnostic workflows42. Similarly, cross-sample 

summaries, coverage statistics, or QC visualizations are rarely included in standard outputs, even 

though they are vital for interpreting negative results or validating complex findings. 

To overcome these limitations, clinical-grade reporting systems must evolve to incorporate: 

• Integrated, tiered variant summaries aligned with interpretation frameworks (e.g., 

AMP/ASCO/CAP, ESCAT). 

• Interactive and customizable web-based visualizations, including mutation lollipop plots, 

CNV heatmaps, fusion gene maps, and variant filtering interfaces. 

• Sample-level overviews, including key QC metrics and sequencing coverage benchmarks. 

• Links to supporting clinical evidence, databases, and therapeutic annotations. 

Ideally, these reports should be automatically generated at the end of the bioinformatics pipeline and 

exportable in clinician-friendly formats (e.g., PDF, HTML) to support streamlined decision-making 

in MTBs. Enhanced reporting not only improves interpretability and traceability but also increases 

the reproducibility and clinical utility of somatic NGS analyses34,36,40. 

1.3.9. Variability and lack of standardization across somatic NGS workflows 

Despite the increasing adoption of NGS panel assays in clinical oncology, significant technical and 

computational variability persists across laboratories and platforms, undermining the reproducibility 
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and comparability of somatic variant analysis. This variability stems from differences in sequencing 

technologies, wet-lab protocols, bioinformatic pipelines, and result interpretation frameworks, each 

of which can introduce platform-specific biases or inconsistencies in downstream analysis9,11,42,54. 

At the technical level, sequencing platforms such as Illumina and Ion Torrent use distinct chemistries 

and detection methods, leading to different error profiles. Ion Torrent, for example, is known to 

struggle with homopolymers due to its pH-based detection, while Illumina typically offers higher 

base quality but may be susceptible to issues like index hopping. Read length, fragment size 

distribution, and depth of coverage further influence the detection of InDels, CNAs, and SVs9,39. 

From a computational standpoint, each variant caller applies different algorithms and thresholds, 

often optimized for specific variant types or sequencing depths. As a result, using different tools or 

pipelines—even on the same dataset—can yield divergent variant calls, particularly in challenging 

contexts such as low TP or noisy regions. Differences in alignment strategies, duplicate removal, and 

quality recalibration compound this variability. Additionally, tool-specific VCF formatting and 

variant representations (e.g., InDel coordinates and alleles) complicate harmonization of results4,60. 

To improve accuracy, ensemble calling strategies have been adopted in many cancer genomic 

projects. These strategies combine multiple callers (e.g., through majority voting or intersection 

rules) to reduce FPs and improve specificity10,40,41. However, they require careful post-processing to 

normalize variant representations, including left-alignment (shifting variants to the most leftward 

equivalent position) and parsimony (representing variants using the shortest allele strings possible), 

to ensure consistent interpretation60. This additional complexity presents a burden for clinical 

laboratories lacking specialized bioinformatics resources. 

To address these challenges, there is growing momentum toward adopting standardized and 

reproducible workflows grounded in the Findable, Accessible, Interoperable, and Reusable (FAIR) 

principles. Initiatives like nf-core promote community-curated pipelines built on modular Nextflow 

scripts with version control, testing, and full containerization53. Similarly, platforms such as 

Dockstore and GA4GH Workflow Execution Services facilitate the deployment of standardized 

pipelines across institutions and cloud environments. These tools improve transparency, portability, 

and auditability—essential for clinical accreditation and external quality assurance53,61. 

Despite the emergence of community efforts and benchmarking initiatives—such as those led by 

GA4GH, Sequencing Quality Control Phase II (SEQC2), and International Organization for 

Standardization (ISO) working groups—that aim to define standardized file formats, performance 

metrics, and analysis protocols, widespread implementation of these standards in clinical laboratories 

remains limited. Many centers continue to rely on internally developed workflows that lack full 
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documentation, validation, or traceability, further complicating cross-study comparability and quality 

assurance54,62. 

To ensure the reliability and clinical utility of somatic NGS panel testing, it is essential to minimize 

both technical and computational variability through coordinated efforts that promote protocol 

standardization, validated pipelines, and QC frameworks. Ultimately, the adoption of transparent, 

reproducible, and community-vetted bioinformatics workflows—aligned with FAIR principles—will 

be pivotal for achieving consistent, interpretable, and clinically actionable results across laboratories 

and platforms34,53,54,62. 

1.3.10. Limited data sharing and interoperability in clinical genomics 

Despite the increasing implementation of NGS in oncology, the reuse, integration, and exchange of 

genomic data across laboratories and institutions remain restricted. Multiple factors contribute to this 

limitation, undermining efforts to build collective knowledge and improve the reproducibility and 

scalability of clinical genomics. 

A major barrier is the presence of strict privacy regulations and institutional policies, which restrict 

the sharing of genomic data—particularly when linked to sensitive clinical or personal information. 

While international efforts such as the GA4GH, the European Genome-phenome Archive (EGA), 

and the Beacon Project aim to promote secure, federated access to genomic datasets, their adoption 

in routine diagnostics remains limited63–65. The Beacon Project, for example, allows institutions to 

share the existence of specific genomic variants without disclosing identifiable data, providing a 

privacy-aware model for data discoverability65. 

A second issue is the lack of interoperability and standardization across data formats and analysis 

pipelines. Although core file types like FASTQ, BAM, and VCF are widely adopted, the structure, 

metadata fields, and variant representations often differ between tools and institutions. These 

discrepancies—ranging from inconsistent filtering tags to diverging nomenclature or alignment 

conventions—complicate cross-tool comparison, meta-analysis, and benchmarking4,42,62. 

Furthermore, proprietary pipelines and closed-source platforms commonly used in commercial 

diagnostics exacerbate this fragmentation by generating outputs in non-standard or locked formats. 

These barriers hinder downstream integration, prevent external QC, and limit the ability to contribute 

to shared datasets or collaborative research efforts40. 

Addressing these challenges will require a coordinated global effort to promote the use of open 

formats, interoperable standards, and federated infrastructures for secure data access and sharing. 

These initiatives provide valuable frameworks for fostering transparency, reproducibility, and 

responsible data stewardship in clinical genomics53,54,62,64. 
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1.3.11. Limitations of existing solutions 

In clinical diagnostics, commercial NGS panels are frequently accompanied by proprietary, “ready-

to-use” software solutions tailored to their specific assays20,37,66,67. These platforms are designed for 

ease of use, requiring minimal bioinformatics expertise and allowing laboratories with limited 

computational resources to perform basic analyses. However, closed-source pipelines provide very 

limited flexibility. Users are unable to readily customize workflows, update individual tools, or 

incorporate emerging methodologies. Moreover, their output is often restricted to basic variant tables 

with minimal contextual information, lacking interactive visualizations, clinical annotations, or 

quality metrics that are essential for comprehensive interpretation. Consequently, additional post-

processing steps (e.g., variant annotation, filtering, and manual review) are typically required before 

results can be effectively used in clinical decision-making settings such as MTBs40. 

Conversely, open-source academic pipelines provide transparency and flexibility but often address 

only isolated components of the workflow (e.g., small variant calling, fusion detection, or 

annotation). Although several integrated and portable tools have been developed for somatic variant 

analysis68–72, they frequently fall short in clinical settings, especially when applied to targeted cancer 

panels. Key limitations include: 

• Incomplete analytical scope: Many pipelines are designed for either DNA or RNA analysis, 

but not both, restricting their application to dual DNA-RNA clinical panels, which are 

increasingly employed for comprehensive tumor profiling. 

• Dependency on matched normal samples: A significant number of workflows assume the 

availability of paired tumor-normal samples for somatic filtering, yet such specimens are 

rarely collected in routine clinical practice. 

• Limited adaptability to panel-specific protocols: Variability in panel design, library 

preparation, and sequencing technology demands flexible pipelines, but most tools cannot 

readily accommodate to these variables. 

• Insufficient clinical reporting: Academic tools often do not include modules for variant 

prioritization, clinical classification, or interactive reporting, which are essential for real-

world diagnostics. 

• Portability and reproducibility challenges: Many pipelines suffer from complex installation, 

dependency conflicts, or poor documentation, which hinder their deployment across 

different institutions and computing environments. 

Together, these shortcomings highlight a critical gap in the current landscape: the lack of robust, 

adaptable, and clinically oriented bioinformatics workflows capable of supporting the full analysis 

and reporting of somatic NGS panels in precision oncology10,40,41. 
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1.3.12. Concluding remarks 

The bioinformatics analysis of somatic NGS panel data in oncology entails multiple technical, 

biological, and computational challenges. These include the absence of matched normal samples, 

intratumor heterogeneity, suboptimal DNA/RNA quality, and the complexity of detecting structural 

alterations and composite biomarkers. In addition, variability across platforms, non-standardized 

workflows, and limited interoperability still compromise the reproducibility and comparability of 

results across laboratories and institutions. 

Although existing commercial and academic solutions address specific analytical needs, none 

provides a fully integrated, transparent, and adaptable framework that meets the broad requirements 

of somatic cancer panel analysis. Key limitations persist in areas such as variant prioritization, 

support for DNA-RNA panels, automated reporting, and workflow portability. 

These gaps underscore the need for a comprehensive, modular, and open-source bioinformatics 

pipeline capable of supporting the end-to-end analysis of somatic NGS panel data, from raw 

sequencing files to interpretable, report-ready results. Addressing this unmet need motivates the work 

presented in this thesis. 
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2. HYPOTHESIS AND OBJECTIVES 

2.1. Rationale 

The adoption of NGS has revolutionized cancer genomics by enabling the simultaneous detection of 

multiple somatic alterations, such as mutations, CNAs, and gene fusions, using targeted panels with 

high resolution and efficiency. These NGS cancer panels are now routinely applied in both clinical 

and research settings to support diagnosis, prognosis, therapeutic selection, and biomarker discovery. 

However, the full value of these assays depends not only on sequencing technologies, but also on the 

availability of robust bioinformatics workflows capable of handling the complexity and diversity of 

tumor-derived data. 

Current bioinformatics solutions present key limitations in flexibility, transparency, scalability, and 

analytical completeness. Commercial platforms often operate as closed systems with limited 

adaptability and superficial interpretability, while academic tools frequently lack full integration, 

support for dual DNA-RNA inputs, or visual reporting. Additional challenges, such as the absence 

of matched normal controls, low-quality input material, and a lack of standardized workflows, further 

complicate the reproducibility and utility of somatic NGS analyses. 

The hypothesis of this thesis is that, through a research-driven process to define the most suitable 

analytical strategies for somatic NGS cancer panels, the development of a tailored, in-house 

bioinformatics pipeline can enhance the accuracy, reproducibility, and applicability of genomic 

analysis in both translational research and clinical oncology. 

2.2. General objective 

The main aim of this thesis is to design, implement, and evaluate an open-source, comprehensive 

bioinformatics pipeline for the analysis of somatic NGS cancer panels. The pipeline is intended to 

address the analytical complexity of tumor-derived data by enabling accurate variant detection, 

automated annotation and prioritization, and the generation of visual reports. Through this, it seeks 

to support both research and clinical applications by facilitating the interpretation of NGS panel 

results in diverse precision oncology contexts. 
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2.3. Specific objectives 

1. To design and implement an open-source, comprehensive bioinformatics pipeline for 

the analysis of somatic NGS cancer panels. 

a) To develop a robust bioinformatics workflow capable of addressing the diverse 

scenarios encountered in somatic panel analysis, using state-of-the-art open-source 

tools, to ensure analytical reliability, reproducibility, and portability across diverse 

environments. 

b) To integrate an automated reporting system that generates interactive and user-

friendly visual outputs to enhance the accessibility, interpretation, and 

communication of results. 

2. To evaluate the performance and applicability of the implemented pipeline. 

a) To validate the accuracy of variant detection and assess the pipeline’s panel-agnostic 

design using standardized public reference datasets. 

b) To benchmark the pipeline with retrospective real-world data from multiple tumor 

types and commercial panels, evaluating its analytical robustness and adaptability to 

routine diagnostic and research contexts. 
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3. METHODOLOGY 

3.1. Implementation of the ClinBioNGS pipeline 

3.1.1. General architecture 

The developed bioinformatics pipeline, ClinBioNGS, is a modular and fully automated clinical 

bioinformatics pipeline designed for the analysis of somatic DNA and RNA sequencing data derived 

from targeted NGS cancer panels. The pipeline is implemented in Nextflow73 (v24.10.1) and all 

required tools are encapsulated in Apptainer74 (formerly Singularity; v1.4.1) containers to ensure 

portability, reproducibility, and ease of deployment. The selection of software and resources was 

guided by criteria prioritizing open-source availability, broad accessibility, active maintenance, and 

widespread adoption within the bioinformatics community. 

The pipeline architecture follows a modular design in which each analytical step is implemented as 

an independent Nextflow process. This structure allows for clear separation of functional stages (e.g., 

pipeline set up, pre-processing, alignment, variant calling, annotation, reporting), facilitates 

debugging and maintenance, and supports customization and extension. Processes are connected 

through channels that coordinate input and output dependencies, while computational resources are 

dynamically assigned according to the specific requirements of each task. Multiple processes 

corresponding to the same analytical stage are grouped into subworkflows, adding an additional layer 

of modularization and enabling higher-level functional organization. Configuration is driven by user-

defined parameters and profile-based (already defined) settings that adapt the pipeline to the 

sequencing platform, cancer panel, and computational environment. 

ClinBioNGS supports multiple input data formats, including raw sequencing files in FASTQ, BCL, 

or uBAM. These files are automatically pre-processed prior to downstream analysis. The pipeline 

integrates QC at various stages and handles both DNA and RNA data processing for the detection of 

related alterations and genomic biomarkers. Analysis results are collected into structured outputs, 

including interactive reports, variant registries, and detailed logs for traceability and clinical review. 

Overall, ClinBioNGS is designed to address the practical requirements of clinical genomics 

workflows, providing automation, transparency, and compatibility with real-world diagnostic and 

research environments. The pipeline has been validated on eight commercial panels and currently 

supports full analytical workflows for the Illumina TruSight™ Oncology 500 (TSO500), Thermo 

Fisher Oncomine™ Precision Assay (OPA), and Thermo Fisher Oncomine™ Comprehensive Assay 

(OCA). ClinBioNGS is freely available for non-commercial research use only (RUO) at: 

https://github.com/raulmarinm/ClinBioNGS. 

https://github.com/raulmarinm/ClinBioNGS
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3.1.2. Pipeline’s resources preparation  

ClinBioNGS includes a pre-analysis module that automatically downloads and prepares all the 

resources and containerized tools required for each functional stage of the pipeline. This ensures 

reproducibility, minimizes manual intervention, and standardizes the analysis across environments. 

Supplementary Table 1 lists all software and Supplementary Table 2 lists all resources used in the 

pipeline, including version and role in the pipeline14,24,26,47,48,55,58,60,75–127. 

3.1.2.1. Apptainer images 

ClinBioNGS relies on containerized tools executed via Apptainer. Images are either downloaded 

directly or built from publicly available Docker repositories (e.g., BioContainers128, Galaxy 

Project129, Docker Hub). Due to compatibility issues in certain environments, custom Docker images 

were created for the Pisces92 and Octopus91 small variant callers. Additionally, a dedicated R93 

environment with all required packages was encapsulated in a single image. All three images are 

publicly available on Docker Hub. 

3.1.2.2. User-defined metadata files 

ClinBioNGS allows user customization through metadata files: 

• SampleInfo.csv: A comma-separated values (CSV) file that provides sample-level metadata 

such as sex, age, tumor type, and estimated TP. 

• WhitelistGenes.csv: A CSV file that defines tumor-specific or general whitelist genes for 

prioritization. 

• TumorNames.csv: A CSV file that maps user-defined tumor names to Disease Ontology 

Identifiers (DOIDs)121, top-level ontology nodes, and OncoTree122 tumor codes, ensuring 

compatibility with clinical evidence annotations from CIViC14. 

It is recommended that the DOID values in SampleInfo.csv match those in TumorNames.csv to ensure 

accurate downstream mapping. 

3.1.2.3. Reference genomes and genome resources 

Reference genome files for GRCh38 and GRC Mouse build 38 (GRCm38) are automatically 

downloaded from the Illumina iGenomes Amazon Web Services (AWS) repository77. Index files are 

generated using Burrows-Wheeler Aligner - Maximum Exact Matches (BWA-MEM2)81 , Torrent 

Mapping Alignment Program (TMAP)96 (Ion Torrent platform), and Xengsort102 (mouse). 
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Cytoband information is retrieved from the University of California Santa Cruz (UCSC) Genome 

Browser Database98 for gene annotation and copy-number analyses. Chain files to convert hg19 and 

hg38 coordinates are also downloaded from UCSC and used for liftover operations. 

3.1.2.4. MANE annotation files 

To ensure transcript consistency, ClinBioNGS uses files from the Matched Annotation from NCBI 

and EMBL-EBI (MANE) collaboration v1.4104. These include Gene Transfer Format (GTF)-based 

exon, intron, and coding annotations, which are used in various downstream annotation steps. 

3.1.2.5. Target region files 

Panel manifest files are standardized into 4-column BED format with hg38 coordinates and gene 

names. When necessary, several processing steps are applied: 

• Convert manifests from vendor-specific formats (e.g., Illumina, Ion Torrent). 

• Perform coordinate liftover (if hg19). 

• Annotate MANE genes. 

• Remove non-primary chromosomes. 

• Normalize gene symbols. 

• Merge overlapping regions using Bedtools79. 

Final BED files are converted to interval lists using Genome Analysis Toolkit version 4 (GATK4)86, 

and additional versions are generated for padded regions or clipping, as required. 

A gene annotation table is also generated per panel, providing updated gene symbols from the Human 

Genome Organization Gene Nomenclature Committee (HGNC)130, cytobands, RefSeq and Ensembl 

IDs, and full gene names from the MANE resource. 

3.1.2.6. VCF headers 

Predefined VCF header templates are provided for each alteration type to ensure standardized output 

formats. These templates are automatically appended when generating the results. 

3.1.2.7. Gene role and oncogenicity resources 

• Network of Cancer Genes (NCG)106: Used to annotate oncogenes and TSGs. 

• Catalog of Validated Oncogenic Mutations58: Curated list of functionally validated variants 

from CGI resource. 

• CIViC oncogenic evidence: Oncogenic variants from the CIViC database. 

• ClinGen/CGC/VICC SOP48 dataset: Set of previously classified oncogenic variants. 
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These datasets are harmonized (e.g., HGNC symbol updates, hg19 to hg38 liftover) and used for 

variant classification. 

3.1.2.8. Variant annotation resources (VEP)  

ClinBioNGS uses Ensembl Variant Effect Predictor (VEP)83 for small variant annotation, supported 

by: 

• VEP cache and GRCh38 FASTA reference. 

• VEP plugins and data for Combined Annotation Dependent Depletion (CADD)123, Rare 

Exome Variant Ensemble Learner (REVEL)107, and AlphaMissense108 pathogenicity 

predictors. 

• Publicly available ClinVar and CIViC VCFs, integrated as custom annotation. 

3.1.2.9. Cancer hotspot resources 

Small variants are annotated against cancer hotspot evidence: 

• Panel-specific hotspot BED files, either provided by the user or auto-generated from Ion 

Torrent output. 

• AACR GENIE BED file of known somatic events (lifted over to hg38). 

• Cancer Hotspots110 list of amino acid (AA) changes and counts for each mutation.  

3.1.2.10. Problematic and high-confidence regions 

To support the interpretation of small variant results, ClinBioNGS incorporates the annotation of 

both low-confidence and high-confidence genomic regions: 

• Low-confidence regions can be flagged using two types of BED files: 

o Panel-specific blacklists provided by the user, which identify regions known to be 

technically challenging or prone to artifacts in specific panels. 

o A comprehensive BED file generated by ClinBioNGS that merges multiple publicly 

available genomic stratification datasets, including: 

▪ UCSC resources: Encyclopedia of DNA Elements (ENCODE) blacklist, 

GRC exclusions, and regions with unusual mapping characteristics. 

▪ Genome in a Bottle (GIAB) stratification files55: homopolymers, tandem 

repeats, segmental duplications, low mappability regions, and highly 

polymorphic loci. 

• In contrast, high-confidence regions are annotated using the Consensus Targeted Regions 

(CTRs) defined by the SEQC2 Consortium. These regions represent genomic intervals with 

robust sequencing reliability, making them suitable for confident small variant detection111. 
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3.1.2.11. GENIE cancer registry 

Raw data files from the AACR GENIE project were previously downloaded and processed for 

downstream annotation in ClinBioNGS. The resulting processed files, organized by alteration type, 

are stored within the pipeline’s annotation directory. 

For raw somatic mutations (small variants), the following steps were applied: 

• Standardize gene symbols according to the HGNC nomenclature. 

• Count the number of samples harboring each unique mutation. 

• Calculate the maximum population VAF (pVAF) in non-bottlenecked populations from the 

gnomAD database. 

• Annotate the gene role with NCG resource and identify hotspot mutations from Cancer 

Hotspots database. 

• Lift over hg19 to hg38 coordinates. 

• Classify by oncogenicity according to the ClinGen/CGC/VICC SOP guidelines. 

For raw CNAs, processing steps included: 

• Update gene symbols (HGNC). 

• Count the number of samples profiled per gene. 

• Select genes with AMP or homozygous DEL status. 

• Calculate the sample count and frequency for each CNA status per gene. 

For raw SVs, including gene fusions, the following steps were applied: 

• Update gene symbols (HGNC) for both fusion partners. 

• Keep only in-frame fusions with potential functional relevance. 

• Standardize coordinate nomenclature (“chromosome:position”) and lift over to hg38 for both 

fusion breakpoints. 

• Count the number of samples in which each fusion event (e.g., “geneA::geneB”) was 

detected. 

The final output includes a curated list of oncogenic mutations and summary tables detailing the 

sample counts and frequencies for mutations, CNAs, and fusions, which are used throughout the 

ClinBioNGS annotation workflow. 

3.1.2.12. Clinical evidence files (CIViC) 

A curated list of predictive, prognostic, and diagnostic clinical evidence from the CIViC database is 

used to classify detected alterations according to the AMP/ASCO/CAP guidelines4 for clinical 

significance. This resource is compiled from the raw variant, molecular profile, and clinical evidence 
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files provided by CIViC, in combination with a standardized list of tumor names (with DOIDs) used 

in ClinBioNGS. 

Alterations including mutations, CNAs, and gene fusions are extracted and processed from the 

variant and molecular profile files. Clinical evidence entries are filtered to include only those with: 

• Evidence types classified as predictive, prognostic, or diagnostic. 

• Evidence levels rated “A” (validated association) to “D” (pre-clinical evidence). 

• Evidence star ratings between 3 (convincing) and 5 (strong, well supported). 

• Tumor-specific relevance (excluding germline associations). 

Tumor names from CIViC are harmonized with the internal ClinBioNGS tumor list to ensure 

consistency with user-provided metadata. Finally, each alteration is annotated with its associated 

clinical evidence, distinguishing between tumor-specific and, for predictive evidence, drug-specific 

associations. 

3.1.2.13. RNA resources 

Several external and in-house resources are integrated into ClinBioNGS to support various aspects 

of RNA analysis: 

• Trinity Cancer Transcriptome Analysis Toolkit (CTAT) library82: Provides RNA genome and 

annotation files necessary for fusion and splice variant detection. 

• AACR GENIE registry: Supplies fusion event frequencies in cancer, based on the previously 

processed datasets used for benchmarking and annotation. 

• Mitelman Database112: A comprehensive list of reported gene fusions was obtained via a full 

export of all entries listed under the "Gene Fusions" section of the database’s website. 

• In-house whitelists: Curated collections of known gene fusions and splice variants, including 

variant names and genomic coordinates, were compiled from multiple peer-reviewed 

publications113–119. These support enhanced annotation and prioritization of clinically 

relevant RNA alterations. 

3.1.2.14. Panel-recurrent small variants (TSO500, OPA, OCA) 

ClinBioNGS supports the flagging of panel-recurrent small variants to help identify potential 

technical artifacts or common population-specific variants41. To enable this feature, users must 

provide a list of recurrent variants tailored to the panel being analyzed. Precompiled lists are available 

for the Illumina TSO500 and Thermo Fisher OPA and OCA commercial panels based on aggregated 

variant data from benchmarking cohorts (NTSO500 = 655, NOPA = 621, and NOCA = 537). Variants were 

considered recurrent if detected in at least 15% of the samples for each panel12. These files are 

available in the ClinBioNGS GitHub repository. 
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3.1.2.15. Panel-specific CNA baselines (TSO500, OPA, OCA) 

CNA analysis in ClinBioNGS requires a panel-specific pooled reference cohort to serve as the 

baseline for assessing tumor CNAs. Dedicated CNA baselines have been generated for the TSO500, 

OPA, and OCA panels using large tumor cohorts (further details on their construction are provided 

in the 3.1.7. Analysis of CNAs section). Each baseline file contains a list of genomic regions annotated 

with average coverage values and variability scores (i.e., spread) across the reference dataset. All 

baseline files are available in the ClinBioNGS GitHub repository. 

3.1.2.16. Panel-specific MSI baseline (TSO500) 

To assess MSI in tumor samples, a platform-specific pooled reference cohort is required. For the 

TSO500 panel, a baseline was generated using a cohort of microsatellite-stable (MSS) tumor samples 

(see 3.1.10. Analysis of genomic biomarkers section for further details on its construction). The 

TSO500-specific MSI baseline is available in the GitHub repository. 

3.1.3. Input data and pre-processing 

ClinBioNGS supports various input data formats and includes multiple pre-processing steps to ensure 

compatibility across sequencing platforms, panel designs, and library preparation protocols. 

3.1.3.1. FASTQ generation from raw sequencing data 

Starting data for DNA and RNA libraries can be provided directly as FASTQ files or internally 

generated from BCL or uBAM files. All input files must be placed in the --startingDataDir path. 

FASTQ files 

By default, the pipeline expects DNA and RNA FASTQ files to be provided by the user. File naming 

must follow the format <sample>_<DNA/RNA>*.fastq*, where “<sample>” matches the sample 

identifier specified in the sample sheet. 

BCL files 

FASTQ files can be generated from raw BCL files using Illumina BCL Convert™, which also 

supports adapter trimming, UMI processing, and sample demultiplexing based on parameters 

specified in the sample sheet. Sample- and lane-level QC metrics are generated, which are parsed 

and visualized in a report by MultiQC90. The following QC metrics are provided per sample and lane: 

• Total number of clusters (read pairs) and bases (yield). 

• Percentage of bases with a Phred quality score of 30 or higher. 

• Percentage of reads with perfect sample index (0 mismatches) or one mismatch. 

• Mean quality score of bases. 
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The number of undetermined reads—those not assigned to any sample—is also reported. To allow 

for the use of different processing parameters, BCL Convert is executed separately for DNA and 

RNA libraries. As a result, some reads may appear as undetermined simply because they belong to 

the other library type (DNA or RNA) processed in a separate run, rather than being truly unassigned. 

MultiQC recognizes that both DNA and RNA outputs originate from the same sequencing run and 

recalculates the undetermined read statistics, providing a more accurate representation of unassigned 

reads. These QC metrics help identify underperforming samples or lanes and allow pre-alignment 

quality checks before heavy compute steps. 

BAM files 

FASTQ files can also be derived from uBAM files using Samtools78. Supported input includes user-

provided uBAMs (<sample>_<DNA/RNA>*.bam) or platform-specific files (e.g., Ion Torrent’s 

directory with *rawlib.basecaller.bam). If UMIs are encoded in a BAM tag, they can be extracted 

and appended to the FASTQ header using Samtools and awk. Tag and header information are 

preserved to support downstream tools that depend on them (e.g., alignment and variant calling for 

Ion Torrent platforms). 

3.1.3.2. FASTQ pre-processing 

Pre-processing steps are panel-aware and tailored based on factors such as capture protocol 

(hybridization vs. amplicon), library type (paired-end vs. single-end, UMI usage), sequencing 

platform (Illumina-like vs. Ion Torrent), and sample origin (e.g., tumor tissue, cell lines, PDX). 

Lane merging 

If input FASTQ files are split by sequencing lane, they are automatically merged. Paired-end 

sequences are combined into R1 and R2 files. 

UMI transfer 

In some panels (e.g., Agilent), UMI sequences are stored in a separate FASTQ file. The pipeline uses 

UMI-transfer100 to append the UMI to the FASTQ header to enable downstream deduplication. 

Host contamination filtering (PDX samples) 

For sequencing data derived from PDX models, host-mouse contamination is filtered using 

Xengsort102. Only human-specific reads are retained for analysis. 
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UMI separator normalization 

Certain sequencing platforms encode dual UMIs with custom symbols in the FASTQ header. If these 

separators are incompatible with downstream tools (e.g., Gencore), they are replaced using Bioawk80. 

For example, the “+” symbol in BCL Convert output FASTQs is converted to “_”. 

Trimming, filtering, and UMI processing 

Comprehensive FASTQ pre-processing is performed using FastP84, which supports adapter 

trimming, removal of low-quality or short reads, UMI extraction from reads or indices, and quality 

profiling before and after the filtering. This step generates the final processed FASTQ files used in 

QC and alignment. It is executed by default but can be skipped if clean FASTQs are already provided. 

3.1.4. Alignment and deduplication 

3.1.4.1. DNA workflow 

Pre-processed DNA reads are initially aligned to the GRCh38 reference genome. By default, 

alignment is performed using BWA-MEM281 for Illumina and other non-Ion Torrent platforms. For 

Ion Torrent panels, reads are aligned using TMAP96, following conversion of the processed FASTQ 

files to BAM format with Samtools. In both cases, the resulting BAM files are also sorted using 

Samtools. This initial alignment step serves to establish mapping positions necessary for subsequent 

deduplication. 

Deduplication is then performed to eliminate PCR duplicates and reduce sequencing artifacts. In the 

default approach, GATK4 MarkDuplicates is used to identify duplicate reads based on identical start 

and end coordinates. When UMIs are present, UMI-aware deduplication is applied to more accurately 

distinguish true biological molecules from sequencing errors. In ClinBioNGS, Gencore is used for 

paired-end libraries because it supports UMI-aware deduplication with consensus read generation, 

enhancing specificity for somatic variant calling87. However, Gencore does not support single-end 

read processing. For single-end libraries, UMI-tools is employed due to its ability to deduplicate 

single-end reads effectively. While UMI-tools does not generate consensus reads, it selects the most 

representative read within each UMI group99. This specific use of each tool ensures optimal 

deduplication performance across different library types. 

After deduplication, the resulting unique reads are realigned to improve mapping precision. For Ion 

Torrent data, realignment is performed using TMAP, without requiring BAM-to-FASTQ conversion, 

since the input remains in BAM format. For non-Ion Torrent data, the deduplicated BAM is first 

converted back to FASTQ format, then realigned to the reference genome using BWA-MEM2. To 

further enhance alignment accuracy—particularly around InDels and complex regions—the BWA-
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MEM2-aligned BAM files (non-Ion Torrent) undergo local reassembly around target regions with 

Abra275. The resulting realigned BAM file serves as the final output for all downstream analyses. 

By default, the deduplication step is enabled, but it can be optionally skipped for specific panel types, 

such as amplicon-based assays without UMI support (e.g., OCA). In such cases, both the initial 

alignment and deduplication steps are omitted. 

3.1.4.2. RNA workflow 

Pre-processed RNA reads are aligned to the GRCh38 reference genome using Spliced Transcripts 

Alignment to a Reference (STAR)95, a splice-aware aligner optimized for transcriptomic data. This 

step produces a sorted BAM file containing the initial mapped reads. STAR is executed with 

parameters recommended by the CTAT framework, which are specifically adapted to the accurate 

fusion detection and compatibility with STAR-Fusion82. Key settings include the two-pass mapping 

mode, where splice junctions identified during the first pass are used to refine the second pass, 

improving sensitivity and reducing spurious junctions95. Additionally, parameters such as --

chimSegmentMin, which enables chimeric read detection, and --chimOutType/--

chimOutJunctionFormat, which control the format and content of chimeric output, are applied to 

ensure the output contains all necessary metadata for downstream fusion analysis95. Further options 

are defined in the dedicated configuration file provided with the pipeline. 

Following alignment, deduplication is applied using the same strategy as for DNA libraries, 

depending on whether the data are single-end or paired-end and whether UMIs are present. This step 

is used to eliminate PCR duplicates and reduce false-positive signals in downstream analyses. 

The deduplicated RNA reads are subsequently realigned using STAR, generating the final set of 

alignment outputs required for downstream analyses. These include: 

• A BAM file containing uniquely aligned, deduplicated reads. 

• A chimeric junction file (Chimeric.out.junction) that reports chimeric alignments, where 

individual reads map to two distinct genomic loci. These intergenic junctions, defined by the 

first intronic base of the donor and acceptor sites95, represent fusion-like events and are used 

as input for downstream fusion gene detection. 

• A splice junction file (SJ.out.tab) containing high-confidence collapsed splice junctions, 

defined by the start and end positions of intronic regions within genes95. Each junction is 

accompanied by read support metrics and is used in the detection of splice variants. 

If deduplication is disabled—such as in amplicon-based libraries without UMIs or in low-complexity 

samples—the same output files are generated based on all reads, without removing duplicates. 
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3.1.5. Quality metrics 

3.1.5.1. FASTQ QC 

Sequencing QC is performed on the processed FASTQ files using FastQC85, which provides a 

comprehensive assessment of read quality and potential technical artifacts. FastQC outputs are 

aggregated and visualized using MultiQC, which provides a summary report of QC metrics.  

The FastQC module in MultiQC compiles per-sample statistics and visualizations. General metrics 

include the total number of reads, GC content, read length, and sequence duplication levels. The main 

plots provided are sequence counts distribution, per base sequence quality, per sequence quality 

scores, per base sequence content, per sequence GC content, per base N content, sequence length 

distribution, sequence duplication levels, overrepresented sequences, and adapter content. These 

visualizations allow for the early detection of technical issues such as adapter contamination, low-

complexity reads, or sequencing bias. 

3.1.5.2. BAM QC 

Alignment quality metrics are collected from both initial and final alignment steps for DNA and RNA 

libraries. For the initial alignment (prior to deduplication), GATK4 modules 

(CollectAlignmentSummaryMetrics and CollectInsertSizeMetrics) and samtools are used to 

calculate global and target-specific alignment statistics. These metrics reflect the full read set, 

including duplicates, and provide a baseline assessment of sequencing and alignment quality. After 

realignment, the same quality metrics are recalculated using the deduplicated BAM files, thereby 

reflecting only unique, high-confidence reads. In addition, coverage statistics over the target regions 

are computed using Mosdepth88, based on the realigned BAM files and the corresponding panel-

specific BED files. These coverage metrics support downstream evaluation of panel performance 

and region-level completeness. 

BAM-related quality metrics for all DNA and RNA samples are aggregated and presented in separate 

visual reports for each data type using MultiQC. These reports integrate output from Picard’s 

CollectAlignmentSummaryMetrics and CollectInsertSizeMetrics GATK4 modules, including 

mapped reads, read length, and insert size distribution plots. Additionally, Mosdepth provides per-

sample metrics including coverage statistics (e.g., mean, median, minimum, maximum), fraction of 

target genome with at least X coverage, and library size (in bp), along with cumulative coverage 

distribution, coverage per chromosome plot, and XY coverage histogram90. These combined 

summaries provide a comprehensive view of alignment quality and target enrichment performance 

across all processed samples. 
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3.1.5.3. QC results 

All DNA and RNA quality metrics collected during alignment and coverage analysis are compiled 

and summarized on a per-sample basis using a custom R script. This step produces a set of 

standardized QC tables and visual plots for evaluating sequencing and mapping performance for each 

sample. 

Global QC metrics 

A comprehensive table of global QC metrics is generated for each sample by integrating data from 

alignment summaries (GATK4, Samtools) and coverage outputs (Mosdepth). These metrics enable 

assessment of sequencing depth, alignment quality, target enrichment, and library complexity, which 

are essential for determining whether a sample meets quality thresholds for inclusion in downstream 

analyses. A summary of reported global QC metrics is shown in Table 6. 

Table 6. Global QC metrics calculated for each DNA and RNA sample. 

Each metric is accompanied by a description and its corresponding quality category. 

Metric Description Category 

TOTAL_READS Total number of sequencing reads Sequencing depth 

ALIGNED_READS Number of reads aligned to the reference genome Alignment quality 

PCT_ALIGNED Percentage of aligned reads Alignment quality 

ONTARGET_READS Number of reads mapped within target regions Target enrichment 

PCT_ONTARGET Percentage of on-target reads Target enrichment 

HQ_ALIGNED_READS 
Number of aligned reads with a mapping quality of ≥Q20 

(≤1% error probability) 
Alignment quality 

PCT_HQ_ALIGNED Percentage of high quality aligned reads Alignment quality 

MEDIAN_READ_LENGTH Median length of sequencing reads Read characteristics 

MEDIAN_INSERT_SIZE Median distance between paired-end reads Library preparation 

UNIQUE_READS Number of deduplicated reads (non-redundant) Library complexity 

PCT_DUP Percentage of duplicated reads Library complexity 

MEDIAN_COVERAGE Median sequencing depth over target regions Coverage statistics 

MEAN_COVERAGE Average sequencing depth across target regions Coverage statistics 

PCT_X_COV Percentage of target bases with ≥X coverage Coverage completeness 

PCT_0.4X_MEAN 
Percentage of target bases covered at ≥40% of the mean 

coverage 
Coverage uniformity 

MIN_COVERAGE Minimum observed coverage across target regions Coverage statistics 

MAX_COVERAGE Maximum observed coverage across target regions Coverage statistics 

PANEL_SIZE Total size (bp) of the target regions (from BED file) Panel information 

Multi-level coverage assessment  

Using the per-base coverage data generated by Mosdepth, ClinBioNGS performs a comprehensive 

multi-level coverage analysis. For each DNA and RNA sample, coverage metrics—including mean, 

minimum, and maximum coverage, various PCT_X_COV thresholds (e.g., percentage of bases 

covered at ≥5×, ≥10×, etc.), and panel size—are summarized in structured tables across multiple 

resolution levels: 
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• By chromosome: coverage across all target regions within each chromosome. 

• By target region: individual coverage statistics for each defined interval in the panel BED 

file. 

• By gene: coverage over specific loci, including target regions, coding regions, exons, and 

the entire gene body. 

• By exon: per-exon coverage for each target gene. 

Gene-based and exon-level coverage calculations are based on coordinates derived from the MANE 

SELECT transcript, ensuring consistency and clinical relevance in exon definitions and coding 

sequence boundaries. 

For visualization of gene-level coverage, multiple plots are generated using the karyoploteR R 

package125, based on the previously calculated coverage metrics. As with the coverage tables, 

visualizations are produced at various levels of resolution: 

• Global and per-chromosome plots display the mean coverage of each target gene across its 

genomic location. These plots can highlight genes from a user-defined whitelist and can 

annotate genes with low coverage (below a user-defined threshold) in red for quick 

identification. 

• For individual gene visualization, detailed plots represent the observed coverage along the 

MANE SELECT transcript structure, including labelled exons and distinguishing coding 

from non-coding regions. Coverage across the entire gene locus is plotted, and target regions 

from the panel manifest (BED file) are annotated to distinguish on-target from off-target 

areas. 

Each coverage table and plot are saved as a separate file for inclusion in the final report and are also 

integrated into an Excel summary file to facilitate interactive review and sample-level consultation. 

3.1.6. Small variant analysis 

3.1.6.1. Small variant calling 

Following DNA processing, high-quality, deduplicated reads are used to detect small variants (SNVs 

and InDels) by comparison to the reference genome. By default, ClinBioNGS applies a ±25 bp 

padding to the target regions to capture variants in flanking sequences. This padding is omitted for 

amplicon-based panels, where primer sequences may artificially extend coverage beyond the region 

of interest. In such cases, off-target read ends are clipped using Samtools to avoid their inclusion in 

variant calling. Notably, this trimming step is unnecessary for Ion Torrent panels, as their alignment 

process inherently accounts for primer trimming. 
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ClinBioNGS uses a multi-caller ensemble strategy for robust tumor-only small variant detection, 

integrating five independent variant callers: Mutect2127, Pisces92, VarDict101, Octopus91, and Torrent 

Variant Caller (TVC)96 (specific to Ion Torrent data). To improve efficiency and reduce computation 

time, variant calling is parallelized by chromosome: the target BED file is split per chromosome, and 

each caller processes these partitions independently, producing raw VCF files per sample, 

chromosome, and caller. 

Subsequently, all raw VCFs are merged. Variants are retained if they pass caller-specific filters and 

overlap with the defined target regions. This filtering is performed using Bcftools78. To ensure 

compatibility across callers, multiallelic variants are decomposed and InDels normalized using Vt60. 

A custom R script is used to generate a representative list of consensus unique variants and provide 

calling-related metrics. This process includes the following steps: 

• Intra-caller variant consensus: 

1) Extract all variants and associated metrics from each processed VCF. 

2) Resolve multiallelic positions by selecting the variant with the highest VAF, ensuring 

only the most representative variant per locus is retained. 

• Inter-caller comparison: 

1) Each variant is annotated with the number of matching callers (exact genomic change) 

and overlapping callers (based on genomic positions).  

2) All variants from all callers are consolidated into a single coordinate-sorted table. 

• Inter-caller consensus: 

1) Identify overlapping variant groups. As variants are coordinate sorted, each variant 

position is compared with the next one until no overlap is found to identify those groups. 

2) For each group, select the most recurrent variant (i.e., supported by the highest number 

of match callers). In the case of ties, the variant with the highest VAF is chosen. 

3) Among matching callers, the variant with the highest VAF provides the primary set of 

metrics for the consensus output. 

4) All supporting metrics from other overlapping variants are retained and annotated for 

traceability (collapsed with commas if multiple). 

• Variants are lifted over from hg38 to hg19 coordinates. 

• Variants are annotated with panel-specific hotspots and blacklisted regions provided by the 

user. 

The final output includes a summary table and a consensus VCF file containing all unique small 

variants along with their metrics. An overview of the key metrics captured during this process is 

provided in Table 7. 
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Table 7. Small variant calling metrics provided by ClinBioNGS. 

Each metric is accompanied by a description. Metrics are listed in alphabetical order. 

Metric Description 

AD_ALT Number of reads supporting the alternate allele 

AD_ALT_<CALLER> Alternate read count from each caller 

AD_REF Number of reads supporting the reference allele 

AD_REF_<CALLER> Reference read count from each caller 

AF Allele frequency from the selected caller. It refers to the VAF. 

AF_<CALLER> Allele frequency reported by each individual caller. It refers to the VAF. 

ALT Alternate allele 

CALLERS List of overlapping callers (e.g., Mutect2, Pisces, VarDict, Octopus, TVC) 

CHROM Chromosome on which the variant is located 

DP Total read depth at the variant position 

DP_<CALLER> Read depth from each caller 

END End position of the variant (hg38 reference) 

END_HG19 End position (hg19 reference) 

FILTER Primary flag assigned by ClinBioNGS 

MATCH_CALLERS Number of callers reporting the same variant 

OVERLAP_CALLERS Number of callers with overlapping variants 

PANEL_BLACKLIST Indicates if the variant overlaps a user-defined blacklisted region 

PANEL_HOTSPOT Indicates if the variant overlaps a user-defined hotspot region 

REF Reference allele 

START Start position of the variant (hg38 reference) 

START_HG19 Start position (hg19 reference) 

TYPE Variant type (i.e., SNV, INDEL) 

VAR Variant representation (i.e., <chrom>:<pos>_<ref>/<alt>) 

VAR_HG19 Variant representation in hg19 coordinates (lifted-over) 

VAR_<CALLER> Variant representation from each caller (comma-separated if multiple) 

3.1.6.2. Small variant annotation 

Small variants are comprehensively annotated using VEP (v113), supplemented with information 

from multiple external resources (see 3.1.2. Pipeline’s resources preparation section for details on 

resource preparation). Annotation is performed at the run level, whereby all consensus VCF files 

from individual samples are aggregated and the unique set of variants is annotated with VEP. 

The resulting annotated VCF is further processed with a custom R script to integrate additional data 

from external databases and to structure the information for downstream interpretation. A run-

specific annotation table is generated, linking each annotated variant back to the corresponding 

samples in which it was detected. An overview of the information provided in the run-specific 

annotation table is presented in Table 8. All this information is used in downstream analysis for 

flagging and prioritizing the small variant results. 
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Table 8. Small variant annotation provided by ClinBioNGS. 

Each term is accompanied by a description and its corresponding source. Terms are listed in alphabetical order. 

Term Description Source 

AA Amino acid change VEP 

AlphaMissense_SCORE AlphaMissense score AlphaMissense (VEP) 

AlphaMissense_TERM 
AlphaMissense classification (likely pathogenic: ≥0.5, 

default) 
Custom 

APPRIS APPRIS principal isoform (e.g., P1-5, A1-2) VEP 

BIOTYPE Transcript biotype (e.g., protein coding, ncRNA) VEP 

CANONICAL Indicates if the transcript is canonical (Ensembl-based) VEP 

CANONICAL_DRIVER Classified as a canonical driver gene by NCG NCG 

CADD_SCORE CADD score CADD (VEP) 

CADD_TERM CADD classification (likely pathogenic: ≥15, default) Custom 

CCDS Consensus coding DNA sequence identifier VEP 

CDNA_POS Position in cDNA (position/length) VEP 

CDS_POS Position in coding sequence (position/length) VEP 

CIViC_<term> 
CIViC’s term (e.g., variant ID, alteration, evidence level, 

rating, type, effect, drug, tumor) 
CIViC 

CLASS Variant class (e.g., SNV, insertion, deletion) VEP 

ClinVar_<term> 
ClinVar’s term (e.g., allele ID, clinical significance, review 

status, disease name, allele origin) 
ClinVar (VEP) 

CODING Coding region (based on CDS_POS) VEP 

CODONS Affected codons VEP 

CONSEQUENCE Variant effect on transcript VEP 

CTR_REGION Located in a high-confidence CTR region SEQC2 

dbSNP_ID Identifier in dbSNP (based on EXISTING_VARIATION) VEP 

DRIVER Indicates driver gene (found in NCG resource) NCG 

EXISTING_VARIATION Known variant IDs (co-located) VEP 

EXON Affected exon (number/total) VEP 

GENE_ENSEMBL Ensembl gene identifier VEP 

GENE_HGNC HGNC gene symbol VEP 

GENE_SYMBOL Gene name VEP 

GENIE_CNT Mutation count in GENIE cancer registry GENIE 

gnomAD_MAX_AF 
Maximum pVAF in gnomAD (excluding AMI, ASJ, FIN, 

MID, and “Remaining Individuals”) 
gnomAD (VEP) 

gnomADe_<POP>_AF Exome allele frequency by population gnomAD (VEP) 

gnomADg_<POP>_AF Genome allele frequency by population gnomAD (VEP) 

HGVSg Genomic HGVS notation VEP 

HGVSc Coding HGVS notation VEP 

HGVSp Protein HGVS notation VEP 

HGVSp_SHORT Short protein change Custom 

HOTSPOT_MUT_CNT Mutation count in Cancer Hotspots Cancer Hotspots 

HOTSPOT_POS_CNT AA position count in Cancer Hotspots Cancer Hotspots 

IMPACT Predicted functional impact (e.g., High, Low, Moderate) VEP 

INTRON Affected intron (number/total) VEP 

MANE_PLUS_CLINICAL Transcript in the MANE Plus Clinical set VEP 

MANE_SELECT Transcript in the MANE Select set VEP 

MMR_GENE Mismatch repair gene MSigDB 

MUT_ID Mutation ID (<GENE_SYMBOL>_<MUTATION>) Custom 

MUTATION Human-readable mutation name (abbreviated AA change) Custom 

NMD_ESCAPE Nonsense-mediated mRNA decay escaping variant VEP 

ONCOGENE Indicates oncogene based on NCG  NCG 

ONCOGENE_EVIDENCE Supporting oncogene evidence in NCG NCG 

ONCOGENIC_SOP_MUT 
Previously classified mutation as “oncogenic” using 

ClinGen/CGC/VICC SOP 

ClinGen/CGC/VICC 

GENIE 
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ONCOGENIC_SOP_POS 
AA position in a previously “oncogenic” mutation 

(ClinGen/CGC/VICC SOP) 

ClinGen/CGC/VICC 

GENIE 

ONCOGENIC_VALID_MUT Mutation with oncogenic effect in functional studies CGI/CIViC 

ONCOGENIC_VALID_VAR Variant with oncogenic effect in functional studies CGI/CIViC 

PROBLEMATIC_REGION Located in a problematic region UCSC/GIAB 

PROTEIN_ENSEMBL Ensembl protein identifier VEP 

PROTEIN_POS AA position (position/length) VEP 

RECURRENT Panel-specific recurrent variant Custom 

REVEL_SCORE REVEL score REVEL (VEP) 

REVEL_TERM REVEL classification (likely pathogenic: ≥0.5, default) Custom 

STRAND Transcript strand VEP 

SOMATIC_WHITELIST Located in a known somatic position (hotspot evidence) GENIE (BED) 

TRANSCRIPT_ENSEMBL Ensembl transcript identifier VEP 

TRANSCRIPT_REFSEQ RefSeq transcript identifier VEP 

TSG Indicates TSG based on NCG NCG 

TSG_EVIDENCE Supporting TSG evidence in NCG NCG 

TSL Transcript support level (e.g., 1-5) VEP 

3.1.6.3. Small variant flagging 

ClinBioNGS incorporates a systematic flagging system to distinguish high-confidence small variants 

from those with lower reliability. This classification is based on a series of predefined flags applied 

using information generated during both the variant calling (Table 7) and annotation (Table 8) stages. 

Flags that assess the variant calling process are called primary flags. Variants may be flagged for: 

• Low read support, based on metrics such as AD_ALT, VAF, and DP. 

• Insufficient caller support assessed using the OVERLAP_CALLERS metric. 

• Localization within user-defined blacklisted regions (PANEL_BLACKLIST). Notably, 

variants located in user-defined hotspot regions (PANEL_HOTSPOT) are exempt from 

blacklist flagging, and custom read support thresholds can be defined for such cases. 

Flags that provide additional variant context from post-calling annotation to further refine confidence 

assessments are called secondary flags. These include: 

• Non-hotspot germline variants based on maximum pVAF >0.05% (following GENIE 

germline filtering), or observed VAF >90%, suggesting potential homozygosity. 

• Non-hotspot variants located outside high-confidence regions (CTR_REGION) or within 

problematic regions (PROBLEMATIC_REGION). 

• Panel-specific recurrent variants (RECURRENT), suggesting systematic technical artifacts 

or common population variants. 

Hotspot variants are defined as those meeting any of the following: 

• Mapped to panel-specific hotspot regions (PANEL_HOTSPOT). 

• Located in a known somatic position (SOMATIC_WHITELIST). 

• Mutations recorded in the Cancer Hotspots database (HOTSPOT_MUT_CNT ≥1). 
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Variants that do not meet any low-confidence criteria are considered high-confidence and labeled as 

“OK”. 

A summary of small variant primary and secondary flags applied by ClinBioNGS is presented in 

Table 9. Thresholds associated with each flag are fully customizable, allowing users to adapt the 

stringency of the analysis to specific requirements. 

Table 9. Description of flags used by ClinBioNGS to assess small variant confidence. 

Each flag is defined along with its description and the corresponding pipeline step in which it is applied. 

Pipeline step Flag Description 

Small variant calling 

(primary flags) 

Blacklist Non-hotspot variant located within a panel-specific blacklisted region 

LowAD AD_ALT < 5 reads 

LowCallers Overlapping callers < 2 (< 3 for Ion Torrent panels) 

LowDP Total read depth (DP) <10 reads 

LowVAF VAF <1% 

PASS Variant passed all calling-related quality filters 

Small variant 

annotation  

(secondary flags) 

Germline Non-hotspot variant with gnomAD_MAX_AF >0.05% or AF >90% 

NoCall Variant failed calling-related primary flags 

OutCTR Non-hotspot variant located outside CTR region 

ProblematicRegion Non-hotspot variant located within a problematic genomic region 

Recurrent Variant identified as recurrent in panel background samples 

OK High-confidence variant (passed all predefined flags) 

3.1.6.4. Small variant prioritization 

To assess the potential clinical and biological relevance of detected small variants, ClinBioNGS 

implements two complementary classification frameworks: oncogenicity and clinical significance. 

Oncogenicity 

Oncogenic potential is evaluated according to the SOP developed by the ClinGen/CGC/VICC 

consortium. Each variant is scored based on the strength of supporting evidence across multiple 

predefined categories. These scores are summed up using a point-based system to assign the variant 

to one of the following five categories: 

• Oncogenic: ≥10 points. 

• Likely oncogenic: 6 to 9 points. 

• VUS: 0 to 5 points. 

• Likely benign: -1 to -6 points. 

• Benign: ≤ -7 points. 

A detailed description of the scoring criteria and evidence types is provided in Supplementary Table 

3. ClinBioNGS incorporates 14 of the 17 evidence categories described in the SOP. The remaining 

evidence types—OM1, OP2, and SBS2—are not currently implemented due to unavailability of the 

required input data. 
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Color coding is applied to facilitate interpretation: shades of red indicate pathogenicity, yellow 

corresponds to uncertain significance, and shades of green represent benign classifications. These 

colors are reflected in the visualizations and tabular entries within the final sample report. 

Clinical significance 

Clinical significance is classified according to the AMP/ASCO/CAP guidelines, based on curated 

data from the CIViC database—an open-access, expert-reviewed resource endorsed by the ClinGen 

Somatic Cancer Working Group. The classification integrates tumor-specific therapeutic, prognostic, 

and diagnostic evidence from CIViC with the variant’s oncogenicity status, and assigns each variant 

to one of four clinical tiers: 

• Tier I: Strong clinical significance (supported by high-level CIViC evidence). 

• Tier II: Potential clinical significance (supported by CIViC evidence). 

• Tier III: Unknown clinical significance (no CIViC evidence and not classified as 

benign/likely benign). 

• Tier IV: Benign or likely benign (no CIViC evidence and classified as benign or likely benign 

based on oncogenicity). 

A comprehensive description of classification rules and tier definitions is available in 

Supplementary Table 4. 

3.1.6.5. Small variant results 

For each sample, small variant results are provided in an annotated VCF file containing both variant- 

and sample-level information. In addition, ClinBioNGS generates summary tables and visualizations 

using custom R scripts to facilitate result interpretation. Two separate summary tables are produced: 

one for somatic variants and another for likely germline variants. 

Variants are prioritized according to the following criteria: 

1) Clinical significance: Variants classified as Tier I (strong) or Tier II (potential) are listed first.  

2) Flagging status: High-confidence variants flagged as “OK” are prioritized, followed by those 

without any calling-related flags (“PASS”). 

3) Panel hotspot location: Variants located in panel-defined hotspot regions are given higher 

priority. 

4) Oncogenicity: Variants are ranked by oncogenicity score, from most to least likely to be 

pathogenic. 

5) Whitelist gene inclusion: Variants occurring in genes defined in the user-provided whitelist 

are prioritized. 



66  3. Methodology 

 

 

For visualization purposes, only genes containing clinically or biologically relevant variants are 

plotted. These include genes with: (i) Tier I or Tier II variants, (ii) variants classified as oncogenic, 

or (iii) high-confidence (“OK”) non-benign variants, particularly if located within a panel hotspot. 

Within each selected gene, relevant somatic variants are visualized using the karyoploteR R package. 

The gene structure (based on the MANE SELECT transcript) is displayed, and variants are 

highlighted with respect to their classification. 

All summary tables and corresponding plots are saved as standalone files for inclusion in the final 

interactive report. Additionally, all results are consolidated into an Excel file for convenient review. 

3.1.7. Analysis of CNAs 

3.1.7.1. CNA calling 

After DNA processing, high-quality, unique reads are used to identify CNAs. CNA calling is 

performed by comparing the observed coverage in each target genomic region to the expected 

coverage derived from a panel-specific pooled reference cohort. 

Coverage differences are calculated across predefined, panel-specific target regions (i.e., bins) using 

CNVkit47. First, the “coverage” module computes coverage values for each region. Then, the “fix” 

module applies a two-step normalization and correction process to generate a table of corrected copy 

ratios (log2 fold changes) for each bin: 

• Intra-sample normalization: Calculated coverage values are median-centered (i.e., 

subtracting the median), bias-corrected based on GC content, the fraction of masked repeats, 

and (for hybrid-capture panels) target density, and converted to log2 scale. 

• Reference-based correction: The log2 coverage values from the reference baseline are 

subtracted from each bin. Additionally, each bin is assigned a weight based on its genomic 

size and coverage variability within the baseline cohort. 

Subsequently, gene-level copy ratios are computed as the weighted mean of all associated bins, and 

absolute gene copy numbers (CNs) are estimated using fixed thresholds (Table 10) with a custom R 

script. Each gene is then assigned to a CNA status based on the inferred copy number: 

• Neutral: Two copies (CN = 2). 

• AMP: More than two copies (CN ≥ 3), further subclassified as: 

o “LowAmp”: Low-level AMP with CN < 5. 

o “HighAmp”: High-level AMP with CN ≥ 5. 

• DEL: Fewer than two copies (CN < 2), further subclassified as: 

o “LowDel”: Low-level DEL with CN = 1 (suggesting heterozygous DEL). 

o “HighDel”: High-level DEL with CN = 0 (suggesting homozygous DEL). 
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Notably, CN values are not adjusted based on TP estimates, to maintain consistency across samples 

and ensure reproducibility in tumor-only analyses. An overview of the CNA classification thresholds 

is provided in Table 10. 

Table 10. Classification criteria for gene-level CNAs. 

CNA classification is based on fixed copy ratio thresholds and corresponding absolute CN values. 

Log2 copy ratio thresholds CN CNA CNA class 

-Inf < log2 ≤ -1.20 0 DEL HighDel 

-1.20 < log2 ≤ -0.40 1 DEL LowDel 

-0.40 < log2 ≤ 0.40 2 NEUTRAL Neutral 

0.40 < log2 ≤ 0.80 3 AMP LowAmp 

0.80 < log2 ≤ 1.20 4 AMP LowAmp 

1.20 < log2 ≤ 1.50 5 AMP HighAmp 

1.50 < log2 ≤ 1.70 6 AMP HighAmp 

1.70 < log2 ≤ 1.91 7 AMP HighAmp 

1.91 < log2 ≤ 2.09 8 AMP HighAmp 

2.09 < log2 ≤ 2.25 9 AMP HighAmp 

2.25 < log2 ≤ 2.39 10 AMP HighAmp 

… … … … 

5.64 < log2 < Inf 100 AMP HighAmp 

CNA calling is performed across all autosomes and chromosome X (chrX). Chromosomal sex can 

be inferred from coverage patterns using CNVkit; however, if user-provided sex metadata is 

available, it will take precedence. For male samples, the chrX copy ratio is adjusted by applying a 

log2 + 1 transformation to account for haploidy. This adjustment is used solely for classification 

purposes—raw copy ratios are retained for transparency in both tables and visualizations. 

In hybrid capture panels (e.g., Illumina TSO500), CNVkit also performs segmentation to infer 

genomic regions with consistent copy-number signals using the circular binary segmentation  

algorithm by default, recommended for mid-size panels and exomes47. These segments are further 

processed using Arm-level Somatic Copy-number Events in Targeted Sequencing (ASCETS)76 tool 

to estimate arm-level CNAs, particularly useful in data with off-target reads that enhance 

segmentation resolution. Each chromosomal arm is assigned one of the following CNA statuses: 

• NEUTRAL: Mean log2 copy ratio between ± 0.40. 

• AMP: Mean log2 copy ratio ≥ 0.40. 

• DEL: Mean log2 copy ratio ≤ -0.40. 

• CONFLICT: Inconsistent signal; alteration fraction < 0.7 (default threshold). 

Color coding of CNA categories is applied to facilitate interpretation: shades of blue indicate AMPs, 

while shades of red represent a DEL status. These colors are reflected in the visualizations and tabular 

entries within the final sample report. 
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3.1.7.2. CNA annotation 

Gene-level CNAs identified by ClinBioNGS are annotated using a custom R script that integrates 

information from several external resources (Supplementary Table 2). The annotation process 

provides the following key features for each target gene: 

• Genomic cytoband location derived from UCSC resources to facilitate chromosomal 

context. 

• MANE transcript coverage determines the percentage of the gene or exons covered by 

targeted bins, based on the MANE SELECT transcript model. 

• Gene role in cancer classification as an oncogene, TSG, or general cancer driver using NCG 

data. 

• Frequency in the AACR GENIE registry reports how frequently CNAs in the gene occur 

across cancer types based on a large tumor cohort. 

• Clinical evidence retrieved from the CIViC database, including annotations relevant to 

therapy response, prognosis, and diagnosis. 

A summary of the annotations provided per gene is shown in Table 11. This information supports 

downstream interpretation by enabling evidence-based flagging and prioritization of clinically 

relevant CNA events. 

Table 11. Gene-level CNA metrics and annotation provided by ClinBioNGS. 

Each term is accompanied by a brief description. Terms are sorted alphabetically. 

Term Description 

ALTERATION Formatted name of the general CNA status (<GENE>_<CNA>) 

BINS_TARGET Number of on-target bins overlapping the gene 

BINS_TOTAL Total number of bins overlapping the gene (including off-target bins, if applicable) 

CANONICAL_DRIVER Indicates canonical driver gene based on NCG 

CHROM Chromosome where the gene is located 

CIViC_<term> 
CIViC’s term (e.g., variant ID, alteration, evidence level, rating, type, effect, drug, 

tumor) 

CLASS Specific CNA class (e.g., HighAmp/Del, LowAmp/Del, Neutral) 

CN Estimated absolute copy number for the gene (e.g., 0-100) 

CNA Simplified CNA category (e.g., AMP, DEL, NEUTRAL) 

CYTOBAND Cytogenetic band location of the gene (UCSC) 

DEPTH Weighted mean read depth across on-target bins 

DRIVER Indicates driver gene based on NCG 

END End coordinate of the gene (last bin end position) 

GENE Gene symbol (HGNC) 

GENE_ENSEMBL Ensembl gene ID (based on MANE annotations) 

GENIE_CNT Number of samples with CNA in this gene from the GENIE registry 

GENIE_FREQ Frequency of CNA in this gene in the GENIE registry 

LOG2 Weighted mean log2 copy ratio across overlapping bins 

ONCOGENE Indicates an oncogene based on NCG 
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PERC_COV_GENE_ALL Percentage of total gene length covered by bins (based on MANE annotations) 

PERC_COV_GENE_EXON Percentage of exonic gene length covered by bins (based on MANE annotations) 

START Start coordinate of the gene (first bin start position) 

STRAND Strand orientation of the gene (e.g., + or −, based on MANE annotations) 

TRANSCRIPT_ENSEMBL Ensembl transcript ID for MANE transcript 

TRANSCRIPT_REFSEQ RefSeq transcript ID for MANE transcript 

TSG Indicates a tumor suppressor gene based on NCG 

VAR Formatted name of the specific CNA status (<GENE>_<CLASS>) 

WEIGHT Sum of weights assigned to each overlapping bin based on size and variability 

WHITELIST Indicates whether the gene is included in a user-defined whitelist 

3.1.7.3. CNA flagging 

ClinBioNGS implements a systematic flagging approach to differentiate high-confidence gene-level 

CNAs from those with lower reliability. This classification relies on a set of predefined flags applied 

to each gene-level CNA based on the previously collected metrics (Table 11). 

Gene CNAs may be flagged under the following conditions: 

• Neutral or low-level alterations. 

• Insufficient bin support, determined by the number of on-target bins overlapping the gene. 

Gene CNAs that do not meet any low-confidence criteria are considered high-confidence and are 

labeled as “OK”. 

A summary of the CNA flags used by ClinBioNGS is provided below in Table 12. All thresholds 

used for flagging are fully customizable, allowing users to tailor the stringency of the analysis 

according to specific needs. 

Table 12. Description of flags used by ClinBioNGS to assess CNA confidence. 

Each flag includes a brief description of the criteria used to assess gene-level CNA confidence. 

Flag Description 

LowAmp Low-level AMP with estimated CN < 5 

LowBins Gene with < 4 on-target bins 

LowDel Low-level DEL with estimated CN = 1 

Neutral Gene has two copies (no CNA event is called) 

OK High-confidence CNA (passes all flag criteria) 

3.1.7.4. CNA prioritization 

Gene-level CNAs are prioritized based on clinical significance following the AMP/ASCO/CAP joint 

consensus guidelines. This classification incorporates tumor-specific therapeutic, prognostic, and 

diagnostic evidence from the CIViC database, as well as gene-level CNA frequencies from the AACR 

GENIE registry. Based on this information, CNAs are assigned to one of four clinical significance 

tiers (Supplementary Table 4): 
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• Tier I/II (strong/potential clinical significance): CNAs with curated clinical evidence in 

CIViC. 

• Tier III (unknown clinical significance): CNAs without CIViC evidence but observed at a 

frequency ≥ 0.1% in the GENIE cancer registry. 

• Tier IV (benign or likely benign): CNAs lacking both CIViC evidence and sufficient 

prevalence in GENIE. 

This tier-based system enables the prioritization of CNAs with potential diagnostic, prognostic, or 

therapeutic relevance and helps to filter out alterations less likely to be clinically meaningful. 

3.1.7.5. CNA results 

For each sample, CNA results are delivered in both an annotated VCF file and accompanying 

summary tables and plots generated using a custom R script. 

Gene-level CNAs are prioritized using the following criteria: 

1) Clinical significance, with Tier I and Tier II CNAs listed first. 

2) Flagging status, giving precedence to high-confidence CNAs labeled as “OK”. 

3) Whitelist gene inclusion, prioritizing CNAs in user-defined genes of interest. 

Visualizations are produced with the karyoploteR R package. Genes flagged as “LowBins” are 

excluded from plots unless they are clinically relevant. By default, only Tier I/II CNAs or CNAs 

affecting whitelist genes are labeled in the global overview and detailed gene-level plots. For small 

panels, an optional setting allows plotting of all targeted genes regardless of their prioritization. 

All CNA-related outputs—including summary tables and plots—are saved as individual files for 

inclusion in the final interactive HTML report. Additionally, they are consolidated into an Excel file 

for convenient review and distribution. 

3.1.7.6. Panel-specific CNA baseline construction 

Panel-specific CNA baselines for the Illumina TSO500 and Thermo Fisher OPA and OCA panels 

were generated using multiple CNVkit modules. Because matched normal samples were unavailable, 

large tumor cohorts were leveraged to identify samples with low coverage variability, presumed to 

approximate normal-like profiles suitable for baseline construction. 

First, a BED file defining the accessible regions of the GRCh38 genome was created with the CNVkit 

“access” module. This step excluded problematic loci, including centromeres, telomeres, long 

stretches of “N” bases, and difficult regions flagged by GIAB stratification files (e.g., false 

duplications, polymorphic sites, low-mappability regions). From these accessible regions and the 

panel-specific target BEDs, anti-target BED files were generated with the “antitarget” module to 
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define off-target regions. For amplicon-based panels (OPA and OCA), off-target regions were 

omitted because they are not sequenced. 

Next, using these files, a flat reference model assuming a neutral CN (i.e., log2 = 0.0) for each region 

was built with the “reference” module. This model incorporates GC content and repeat-masked 

proportions to correct for systematic biases. 

Subsequently, as described in the CNA calling section, bin-level coverage and log2 copy ratios were 

computed for large in-house tumor cohorts (N = 655 for TSO500, N = 623 for OPA, and N = 537 for 

OCA) using the flat reference. For hybrid-capture panels such as TSO500, segmentation and quality 

metrics were additionally computed with the “segment” and “metrics” modules, respectively. 

To evaluate coverage variability and select appropriate samples for the reference cohort, a custom R 

script applied the following filtering steps: 

1) Retain only autosomal target regions to avoid sex-related variability. 

2) Exclude bins lacking coverage or showing extreme log2 values (≤ –5 or ≥ 5), following 

CNVkit recommendations. 

3) For each bin, calculate variability thresholds as the median ± 1 median absolute deviation 

(MAD) across all samples, assuming most coverage values approximate those from normal 

samples.  

4) For each sample, compute: 

• Percentage of bins falling within the defined variability thresholds (i.e., “normal” bins). 

• Absolute value of the global weighted mean log2 copy ratio. 

5) For hybrid-capture data (e.g., TSO500), estimate a noisiness score as the product of the 

number of segmented regions and the biweight midvariance reported by CNVkit. 

Samples were included in the final reference baseline if they met all of the following criteria, 

indicating the lowest coverage variability within the cohort (Supplementary Figure 1):  

• ≥90% of bins classified as “normal”. 

• Global weighted mean log2 copy ratio ≤0.1 (absolute value). 

• Noisiness score below the cohort median (criterion applied only to TSO500). 

3.1.8. Analysis of gene fusions 

3.1.8.1. Fusion calling 

Following RNA processing, aligned reads (BAM files) and chimeric junctions are analyzed using 

STAR-Fusion94, a component of the CTAT toolkit82. The fusion calling process involves the 

following key steps: 
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• Detection of candidate fusion transcripts by mapping junction and spanning reads to a 

curated reference annotation set from the CTAT library. 

• In silico validation (--FusionInspector validate): The full set of input reads is realigned to a 

combined reference composed of the standard genome and a set of fusion-gene contigs—

synthetic constructs that model candidate fusion partners in their proposed fused orientation. 

Reads that align more accurately to the fusion contigs than to the reference genome are 

identified and reported as supporting the fusion. Additionally, non-fused reads that misalign 

across the fusion junction are also identified and quantified. 

• Prediction of fusion impact on coding sequences, with classification of the resulting chimeric 

proteins (e.g., in-frame, frameshift). 

STAR-Fusion outputs a table listing candidate fusions along with relevant metrics. These results 

undergo additional processing with a custom R script, which performs the following operations: 

• Filtering of invalid fusions, removing those involving atypical chromosomes or gene pairs 

outside the panel’s target regions. 

• Calculation of fusion-supporting reads, defined as the sum of: 

o Junction reads: split reads that span the predicted fusion breakpoint. 

o Spanning fragments: paired-end reads mapping to different fusion partners. 

• Estimation of fusion depth, defined as the sum of fusion-supporting reads and non-fused 

partner reads (the latter obtained during in silico validation). 

• Computation of fusion AF as the proportion of fusion-supporting reads relative to the total 

fusion DP. 

• Coordinate liftover from hg38 to hg19 for fusion breakpoints. 

3.1.8.2. Fusion annotation 

Fusion candidates identified by STAR-Fusion are annotated using the CTAT resource, which 

provides detailed information on the genes involved, known fusion artifacts, and events commonly 

detected in normal tissues—helping to distinguish cancer-related fusions from non-relevant or 

technical artifacts. 

Additional annotations are incorporated using a custom R script that integrates multiple external 

resources (Supplementary Table 2). The following steps are applied: 

• Annotate the exon or intron affected at each fusion breakpoint based on MANE SELECT 

transcript annotations. 

• If the breakpoint lies within an intron, calculate the distance (in bp) to the nearest exon. 

• Define the fused genomic region for each partner gene (from the gene start to the breakpoint, 

or from the breakpoint to the gene end) based on MANE annotations. 
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• Calculate the mean exon coverage within and outside the fused regions using per-base 

coverage data from Mosdepth. 

• Annotate the role of each gene in cancer (e.g., oncogene, TSG, general driver) using the 

NCG database. 

• Report fusion frequencies in the AACR GENIE registry and Mitelman Database. 

• Match against a whitelist of curated, known fusion events (Supplementary Table 5). 

• Integrate curated clinical evidence from the CIViC database. 

A summary of all fusion-related annotations is provided in Table 13. These annotations are used in 

downstream analyses to support the flagging and prioritization of fusion events based on their 

potential biological and clinical relevance. 

Table 13. Fusion metrics and annotations provided by ClinBioNGS. 

Each entry includes a description and its corresponding data source. Entries are listed in alphabetical order. 

Entry Description Source 

AD Number of fusion-supporting reads (junction + spanning) Custom 

AD_NonFused_A/B Number of non-fused reads for partner A/B STAR-Fusion 

AF Allele frequency of the fusion, calculated as AD / DP Custom 

BASES_FROM_EXON_A/B Distance (in bp) from intronic breakpoint to closest exon Custom 

BREAKPOINT_A/B Genomic breakpoint coordinate STAR-Fusion 

BREAKPOINT_A/B_HG19 Lifted-over breakpoint coordinate in hg19 Custom 

CANONICAL_DRIVER_A/B Indicates whether the gene is a canonical cancer driver NCG 

CHROM_A/B Chromosome of the fusion breakpoint STAR-Fusion 

CIViC_<term> 
CIViC’s term (e.g., variant ID, alteration, evidence level, rating, 

type, effect, drug, tumor) 
CIViC 

COV_IN_FUSION_A/B Mean exon coverage within fused genomic region Custom 

COV_OUT_FUSION_A/B Mean exon coverage outside fused region Custom 

DP Total fusion depth: fusion-supporting reads + non-fused reads Custom 

DRIVER_A/B Indicates whether the gene is cancer driver NCG 

EXON_A/B Exon involved in the fusion breakpoint MANE 

FFPM Fusion fragments per million, normalized fusion expression STAR-Fusion 

FUSION_NAME Formatted name: <geneA>::<geneB> (<exonA>::<exonB>) Custom 

FUSION_RANGE_A/B Genomic coordinates of fused region Custom 

FUSION_SHORT Short representation of the fusion (<geneA >::< geneB >) STAR-Fusion 

FUSION_VARIANT Fusion variant label based on fusion whitelist match Whitelist 

GENE_A/B HGNC gene symbol STAR-Fusion 

GENE_ENSEMBL_A/B Ensembl gene identifier STAR-Fusion 

GENIE_CNT Number of samples with this fusion in the GENIE database GENIE 

INTRON_A/B Intron involved in the fusion breakpoint MANE 

InSilicoValid Indicates if fusion was validated by in silico realignment STAR-Fusion 

JunctionReadCount Number of reads split across the fusion junction STAR-Fusion 

LargeAnchorSupport 
Indicates whether there are split reads with almost 25bp aligned 

on both sides of breakpoint 
STAR-Fusion 

Left/RightBreakDinuc Dinucleotide sequence at each breakpoint STAR-Fusion 

MitelmanDB_CNT Number of samples with this fusion in the Mitelman Database MitelmanDB 

MODEL_CDS_A/B Coding sequence identifier of fusion protein model STAR-Fusion 

MODEL_CDS_RANGE_A/B Coding coordinates of fusion protein model STAR-Fusion 

MODEL_FUSION_TYPE Predicted fusion protein type (e.g., in-frame, frameshift) STAR-Fusion 

Normal Indicates if fusion is commonly observed in normal samples STAR-Fusion 

ONCOGENE_A/B Indicates an oncogene partner NCG 
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POS_A/B Genomic position of the fusion breakpoint STAR-Fusion 

RefSpliceSite Indicates if the fusion uses a canonical splice site STAR-Fusion 

RTartifact Indicates if fusion is a known RT artifact STAR-Fusion 

SpanningFragCount Number of paired-end reads mapping to different partners STAR-Fusion 

STRAND_A/B Strand orientation of the transcript STAR-Fusion 

TRANSCRIPT_ENSEMBL_A/B Ensembl transcript identifier MANE 

TRANSCRIPT_REFSEQ_A/B RefSeq transcript identifier MANE 

TSG_A/B Indicates a tumor suppressor gene NCG 

VAR Formatted fusion identifier (<breakpointA>::(<breakpointB>) Custom 

VAR_HG19 Lifted-over version of fusion identifier in hg19 Custom 

WHITELIST_FUSION Indicates whether the fusion is found in the fusion whitelist Whitelist 

WHITELIST_GENE Indicates whether either gene is in the gene whitelist Whitelist 

3.1.8.3. Fusion flagging 

ClinBioNGS incorporates a systematic flagging framework to distinguish high- from low-confidence 

gene fusion candidates. Flags are assigned using metrics derived from both the fusion calling stage 

and the post-calling processing steps from Table 13. 

During fusion calling, candidates can include primary flags for low support based on key metrics 

such as the number of junction and spanning reads, fusion fragments per million (FFPM) reads, and 

the presence or absence of large anchor support—particularly relevant when spanning reads are not 

detected (e.g., single-end data). 

During post-calling processing, secondary flags include: 

• Custom-calculated read metrics, such as the total of fused and non-fused ADs, fusion DP, 

and fusion VAF. 

• In silico validation results: fusions not confirmed by STAR-Fusion's validation process are 

flagged accordingly. 

• Known artifacts or fusions typically found in normal tissue. 

• Absence in cancer-specific resources such as AACR GENIE or the Mitelman Database. 

Fusions that do not trigger any predefined flag are considered high-confidence and labeled as “OK”. 

A summary of fusion primary and secondary flags applied by ClinBioNGS is presented in Table 14. 

All thresholds associated with these flags are fully customizable, enabling users to adjust stringency 

to their specific analytical needs. 
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Table 14. Description of flags used by ClinBioNGS to assess fusion confidence. 

Each flag is defined along with its description and the pipeline step in which it is applied. 

Pipeline step Flag Description 

Fusion calling 

(primary flags) 

LowSupport 

Junction reads < 5 

FFPM < 1 

No spanning reads and < 25 bp of anchor support in junction reads 

PASS No calling-related quality issue detected 

Post-calling 

processing 

(secondary flags) 

LowAD Fusion-supporting reads (junction + spanning) < 10 

LowDP Total fusion depth (supporting + non-fused reads) < 20 (< 10 for Ion Torrent) 

LowNonFused (AD_NonFused_A + AD_NonFused_B) < 5 

LowVAF Fusion allele frequency (AF) < 3% 

NoCall Flagged due to low quality at the calling stage 

NoInSilicoValid The fusion was not confirmed by STAR-Fusion’s in silico validation 

Normal The fusion is commonly observed in normal tissue 

RTartifact The fusion is identified as a known artifact 

Unknown The fusion is not present in cancer databases (e.g., GENIE, MitelmanDB) 

OK High-confidence fusion candidate; passed all flag criteria 

3.1.8.4. Fusion prioritization 

Gene fusions are prioritized according to clinical significance based on the AMP/ASCO/CAP joint 

consensus guidelines4. This classification integrates tumor-specific therapeutic, prognostic, and 

diagnostic evidence from the CIViC database, along with fusion presence in cancer-specific 

resources such as the AACR GENIE registry and the Mitelman Database. 

Based on this information, each fusion is assigned to one of four clinical significance tiers 

(Supplementary Table 4): 

• Tier I/II (strong or potential clinical significance): Fusions with curated clinical evidence in 

CIViC. 

• Tier III (unknown clinical significance): Fusions not supported by CIViC but reported in 

cancer resources such as GENIE or MitelmanDB. 

• Tier IV (benign or likely benign): Fusions absent from both CIViC and cancer databases. 

3.1.8.5. Fusion results 

Fusion results for each sample are delivered as an annotated VCF file, accompanied by summary 

tables and visualizations generated using a custom R script. 

Fusion entries are ranked based on the following prioritization criteria: 

1) Clinical significance, with Tier I and Tier II fusions listed first. 

2) Presence in a whitelist of known or clinically relevant fusions. 

3) Flagging status, prioritizing high-confidence fusions labeled as “OK”. 

4) Involvement of genes included in a user-defined whitelist. 
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For visualization, each fusion event is displayed alongside the gene structures of both fusion partners. 

These plots highlight the predicted breakpoint and fusion range, as well as sequencing coverage 

across the involved genes. Visualizations are created using the karyoploteR R package. Fusions 

flagged as “LowSupport” are excluded from plots unless they match a known fusion in the whitelist. 

All summary tables and plots are saved as standalone files for inclusion in the final interactive report 

and are also consolidated into a comprehensive Excel file for convenient review. 

3.1.9. Splice variant analysis 

3.1.9.1. Splice variant calling 

Following RNA processing, aligned reads (BAM files) and splice junctions are analyzed using CTAT-

splicing, a component of the CTAT toolkit designed to detect potential cancer-associated splice 

variants. The tool maps junction reads to a curated reference annotation and outputs a table of 

candidate splice junctions along with their supporting read counts. 

These results are further processed using a custom R script, applying the following steps: 

• Exclude splice variants located in off-target genes. 

• Calculate splice variant AD as the sum of supporting unique and multi-mapped reads. 

• Estimate total DP at each junction breakpoint (start and end) by aggregating splice-

supporting reads from all variants sharing the same coordinate. 

• Compute the VAF for each splice variant as the proportion of splice-supporting reads relative 

to the maximum DP across both breakpoints. 

• Convert junction coordinates from hg38 to hg19. 

3.1.9.2. Splice variant annotation 

Splice variants identified by CTAT-splicing are initially annotated using the CTAT resource, which 

highlights cancer-enriched junctions based on comparative analyses of tumor (TCGA) and normal 

(GTEx) tissues. 

Additional annotation is performed using a custom R script and several external resources 

(Supplementary Table 2). The following steps are applied: 

• Annotate the affected exon or intron using MANE SELECT transcript annotations. 

• Calculate average coverage across affected and flanking exons using per-base coverage data 

from Mosdepth. 

• Determine the gene’s role in cancer (e.g., oncogene, TSG, general driver) using the NCG 

database. 
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• Identify known splice events by matching against a curated whitelist of cancer-associated 

splice variants (Supplementary Table 6). 

• Integrate curated clinical evidence from the CIViC database. 

• Cross-reference detected splice variants with small variants identified in the corresponding 

DNA sample to identify overlapping mutations at splice donor or acceptor sites. 

A summary of the splicing-related annotations is presented in Table 15. These annotations are used 

in downstream analyses for the flagging and prioritization of splice variants. 

Table 15. Splice variant metrics and annotations provided by ClinBioNGS. 

Each entry includes a description and its corresponding data source. Entries are listed in alphabetical order. 

Entry Description Source 

AD Number of splice-supporting reads (unique + multi-mapped) Custom 

AF Allele frequency, calculated as AD / DP_MAX Custom 

CancerEnriched Indicates if the splice variant is commonly observed in tumor tissues CTAT 

CANONICAL_DRIVER Indicates whether the gene is a canonical cancer driver NCG 

CHROM Chromosome on which the splice variant occurs CTAT 

CIViC_<term> 
CIViC’s term (e.g., variant ID, alteration, evidence level, rating, type, 

effect, drug, tumor) 
CIViC 

COV_EXONS_AFFECTED Mean coverage across affected exons Custom 

COV_EXONS_FLANKING Mean coverage across exons flanking the splice junction Custom 

DP_END Read depth at the end position of the splice junction Custom 

DP_MAX Maximum of DP_START and DP_END Custom 

DP_MEAN Mean of DP_START and DP_END Custom 

DP_START Read depth at the start position of the splice junction Custom 

DRIVER Indicates whether the gene is cancer driver NCG 

END End coordinate of the splice junction CTAT 

END_HG19 Lifted-over end coordinate in hg19 Custom 

EXONS_AFFECTED Exon(s) overlapping the splice junction MANE 

GENE HGNC gene symbol CTAT 

GENE_ENSEMBL Ensembl gene identifier CTAT 

GTEx Number of samples with this splice event in normal tissues (GTEx) CTAT 

INTRONS_AFFECTED Intron(s) overlapping the splice junction MANE 

MULTI_MAPPED_READS Number of reads mapped to multiple genomic locations CTAT 

MUTATION Small variant affecting donor or acceptor splice sites in DNA Custom 

ONCOGENE Indicates whether the gene is an oncogene NCG 

REGION_AFFECTED Affected region formatted as “Exon” or “Intron” followed by index Custom 

START Start coordinate of the splice junction CTAT 

START_HG19 Lifted-over start coordinate in hg19 Custom 

STRAND Strand orientation of the transcript CTAT 

TCGA Number of samples with this splice event in tumor tissues (TCGA) CTAT 

TRANSCRIPT_ENSEMBL Ensembl transcript identifier MANE 

TRANSCRIPT_REFSEQ RefSeq transcript identifier MANE 

TSG Indicates whether the gene is a tumor suppressor gene NCG 

UNIQ_MAPPED_READS Number of reads uniquely mapped to the genome CTAT 

VAR Variant coordinates in the format “<chr>:<start>-<end>“ CTAT 

VAR_GENE Formatted name combining gene and affected region Custom 

VAR_HG19 Lifted-over variant coordinates in hg19 Custom 

VAR_NAME Specific splice variant name from the curated whitelist Whitelist 

WHITELIST_GENE Indicates whether the gene is included in a user-defined whitelist Whitelist 

WHITELIST_SPLICING Indicates whether the splice variant is found in a curated whitelist Whitelist 
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3.1.9.3. Splice variant flagging 

Splice variants are evaluated for confidence with a set of predefined flags using metrics derived from 

the calling and post-calling processing steps in Table 15. 

Primary flags are based on a minimum number of total splice-supporting reads. Secondary flags are 

subsequently applied to refine confidence, including: 

• Custom-calculated metrics such as a higher splice variant AD, DP, and VAF. 

• Absence from both the CTAT database of cancer-enriched splice junctions and a curated 

whitelist of known variants. 

Splice variants that do not trigger any of these flags are considered high-confidence and are labeled 

as “OK”. 

A summary of splicing primary and secondary flags applied by ClinBioNGS is presented in Table 

16. All flagging thresholds are fully customizable, allowing users to adjust the stringency of the 

analysis to meet specific requirements. 

Table 16. Description of flags used by ClinBioNGS to assess splice variant confidence. 

Each flag includes a description and the corresponding pipeline step where it is applied. 

Pipeline step Flag Description 

Splice variant 

calling 

(primary flags) 

LowSupport Splice-supporting reads (unique + multi-mapped) < 10 

PASS No quality issue detected at the calling stage 

Post-calling 

processing 

LowAD Splice-supporting reads < 100 

LowDP Maximum read depth < 200 

LowVAF Variant allele frequency < 3% 

NoCall Variant flagged due to low support at the calling stage 

NoCancerEnriched Variant not enriched in tumor tissues (absent from CTAT cancer database) 

OK High-confidence variant candidate that passed all flag criteria 

3.1.9.4. Splice variant prioritization 

Splice variants are prioritized based on clinical significance following the AMP/ASCO/CAP tiered 

classification guidelines. Final tier assignments (Supplementary Table 4) are determined by the 

presence of curated CIViC evidence, inclusion in the CTAT splicing database, or matching to a known 

variant in the curated whitelist: 

• Tier I/II (strong or potential clinical significance): Splice variants with curated clinical 

evidence in CIViC database. 

• Tier III (unknown clinical significance): Variants without CIViC evidence but identified as 

cancer-enriched in the CTAT database or matched to the splicing whitelist. 

• Tier IV (benign or likely benign): Variants not found in any cancer-specific resource or 

curated whitelist. 
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3.1.9.5. Splice variant results 

Final splice variant results are provided per sample as annotated VCF files, along with summary 

tables and visualizations generated using a custom R script. Variants are prioritized based on the 

following criteria: 

1) Clinical significance (Tier I and II). 

2) Presence in the curated splicing whitelist. 

3) High-confidence classification (“OK”). 

4) Occurrence in genes included in the user-defined whitelist. 

Splice junctions are visualized on the MANE SELECT transcript using sashimi-style plots, which 

display splicing patterns and local read coverage. These plots are generated with the karyoploteR R 

package. By default, only high-confidence and cancer-enriched junctions are plotted, except for 

known variants from the whitelist, which are always included. 

All tables and plots are saved as standalone files for inclusion in the final HTML report and are also 

consolidated into a single Excel file for a convenient review. 

3.1.10. Analysis of genomic biomarkers 

3.1.10.1. TMB 

TMB is defined as the somatic Mut/Mb of interrogated genomic sequence. For each sample, the 

TMB score is calculated as the ratio of qualifying somatic small variants to the total length of eligible 

DNA target regions50. 

To ensure robust and accurate estimation, several filters are applied to both the annotated small 

variants and the DNA target regions used for calculation. 

Target region filters (denominator): To define the length of high-confidence target regions, the 

following criteria are applied: 

• Exclude regions with low coverage (<100 reads), based on per-base coverage data from 

Mosdepth. 

• Remove non-coding regions that do not overlap with MANE coding regions. 

• Discard regions that overlap with known problematic loci from UCSC and GIAB. 
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Variant filters (numerator): Only robust somatic small variants are considered, based on the following 

conditions: 

• Located within the high-confidence regions defined above. 

• Meet minimum read support thresholds (default values): 

o AD_ALT ≥ 5. 

o DP ≥ 100. 

o VAF ≥ 5%. 

• Absent from the gnomAD database (gnomAD_MAX_AF = 0%) or with an observed AF ≤ 

90%, to exclude likely germline variants. This population filter is stricter than in other steps 

(e.g., variant flagging), as it has been shown to better align with TMB estimates from WES, 

the current gold standard50. 

• Not flagged as panel-specific recurrent, to remove potential artifacts or population-specific 

germline events. 

• Not classified as hotspot, oncogenic/likely oncogenic, or clinically relevant (Tier I/II), since 

these known pathogenic variants can artificially inflate TMB scores—particularly in panels 

enriched for cancer-related genes50. 

Additionally, ClinBioNGS also reports an alternative TMB score that includes only non-synonymous 

variants from the eligible set, for panels where this calculation is recommended. However, it has been 

shown that excluding synonymous variants has a minimal impact on the approximation of TMB to 

WES values50. 

Finally, two result tables are generated for each sample: one containing the calculated TMB scores 

along with associated metrics (e.g., number of eligible variants and effective region size), and another 

serving as a TMB trace table, listing all evaluated small variants with the corresponding evidence 

used for inclusion or exclusion. Both tables are incorporated into the final HTML report and are also 

compiled into a single Excel file for convenient review. 

3.1.10.2. MSI 

MSI is evaluated using MSIsensor-pro89, which compares microsatellite lengths between each tumor 

sample and a panel-specific baseline reference. 

Baseline construction (this process is performed once and not during per-sample analysis): An MSI 

baseline was generated for the TSO500 panel. Because matched normal samples were not available, 

we used 66 microsatellite stable (MSS) tumor samples identified with the TSO500 Local App, based 

on evidence that MSS tumors exhibit profiles comparable to normal tissue.131 The baseline was 

constructed as follows: 
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1) A list of microsatellite sites from the GRCh38 reference genome was generated using the 

“scan” module of MSIsensor-pro, producing a table of genomic coordinates, repeat length 

and times, and flanking bases. 

2) Homopolymer repeats 10–20 bp in length were selected using a custom R script, mirroring 

the length range used by the FoundationOne CDx panel15. 

3) The MSI baseline was built using the “baseline” module of MSIsensor-pro with the selected 

microsatellite sites and the DNA processed reads from the MSS cohort (minimum required: 

20 samples). Only microsatellite loci with sufficient coverage (≥100 reads) were included. 

For each locus, an instability threshold (probability of deletion) was estimated from the 

reference cohort89. 

Sample analysis: After DNA processing, aligned reads (BAM) and the MSI baseline are used to 

quantify polymerase slippage events at microsatellite loci. Only loci with adequate coverage in the 

sample (≥100 reads by default) are assessed. MSIsensor-pro classifies each locus as unstable if the 

calculated probability exceeds the predefined baseline threshold. Finally, an MSI score per sample is 

calculated as the percentage of unstable loci among all evaluated microsatellites89. 

Because MSI is a hallmark of MMR deficiency15, ClinBioNGS also includes a summary of small 

variants detected in MMR-related genes. These genes are defined using curated gene sets from the 

Molecular Signatures Database (MSigDB) collections120 (Supplementary Table 7), providing 

complementary information to support MSI interpretation. 

Both the MSI score and the list of MMR gene mutations are included in the final interactive HTML 

report. 

3.1.11. Processing of final results 

3.1.11.1. Generation of a variant registry 

Upon completion of the analysis, ClinBioNGS generates two types of SQLite databases using the 

DBI R package124 to systematically store and organize results.  

First, a run-specific database is created. This includes a separate table for each type of alteration and 

compiles results from all samples within the run. 

Second, a global variant registry is built by aggregating selected information from the run-specific 

databases, including: 

• Sample metadata. 

• DNA and RNA QC metrics. 

• Small variants that passed the calling step (flagged as “PASS”). 
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• Gene- and arm-level CNAs classified as non-neutral (i.e., AMPs and DELs). 

• High-confidence RNA alterations (flagged as “OK”). 

• TMB and MSI scores. 

The registry also calculates the frequency of each variant across all analyzed samples, to track 

recurrence. 

The file path of each run-specific database is recorded within the global registry. When a new run is 

processed, ClinBioNGS automatically retrieves existing paths, integrates newly detected variants 

with previously stored ones, recalculates variant frequencies, and updates the registry accordingly. 

3.1.11.2. Generation of a comprehensive report of results 

All processed tables and visual outputs are compiled into a self-contained, interactive HTML report 

using the flexdashboard R package126. An example report is available in the ClinBioNGS GitHub 

repository. 

The report provides a user-friendly interface for exploring the results and is organized into multiple 

sections: 

• Main results: A summary overview highlighting key findings, including Tier I–III variants 

and biomarker scores (TMB and MSI). 

• Alteration-specific sections: For each type of variant (small variants, CNAs, gene fusions, 

splice variants), the report provides: 

o An overview with top-tier variants, variant statistics (e.g., counts in each flag and 

tier categories), and associated clinical evidence. 

o Visualization subsections with variant-specific plots. 

o Interactive tables with filtering and export options for detailed exploration. 

• Biomarkers section: Includes dedicated subsections for TMB and MSI results: 

o TMB subsection: Displays the calculated TMB score along with the TMB trace 

table, listing all evaluated small variants.  

o MSI subsection: Shows MSI metrics and a table of small variants in MMR-related 

genes to support MSI interpretation. 

• Sample QC section: Summarizes patient and sample metadata (e.g., tumor type, TP, sex, 

age), as well as global DNA and RNA QC metrics. Each sample is assigned a color-coded 

QC status. Additional subsections include coverage-specific tables and plots. 

The HTML report is designed for seamless navigation, interpretation, and sharing of results, making 

it a key output for both clinical and research applications. 
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3.1.12. Installation, configuration, and structure of the pipeline 

3.1.12.1 Installation 

To run the pipeline, only Nextflow and Apptainer must be installed on the system. Please refer to the 

official documentation for instructions on installing these dependencies. 

To install the pipeline, clone the public GitHub repository and make the executable scripts available: 

nextflow clone raulmarinm/ClinBioNGS 
cd ClinBioNGS 
chmod +x bin/* 

 

After cloning the repository, two setup modules are available to automatically download the required 

container images (Supplementary Table 1) and general resource files (Supplementary Table 2): 

• To download Apptainer images: 

nextflow run main.nf --prepareImages --runName setup 

• To download general resource files only: 

nextflow run main.nf --resourcesOnly --runName setup 
rm -r work # optional: delete intermediate files to save space 

This step prepares general resources (approximately 200 GB). Panel-specific resources (e.g., 

manifest files) can be automatically generated as needed during execution. To avoid delays during 

the first full analysis, it is advisable to first execute the pipeline with --resourcesOnly to pre-generate 

any panel-specific resources. Then, run the full analysis. 

3.1.12.2. Configuration 

The configuration of ClinBioNGS is modular and organized across multiple files: 

• nextflow.config: It defines global defaults and Nextflow profiles. 

• base.config: It specifies computational resource allocations. 

• modules.config: It sets process-specific options. 

Additionally, profile-based configurations (via -profile) allow customization for specific 

computational environments (e.g., “sge”, “slurm”) and NGS panels (e.g., “tso500”, “opa”, “oca”). 

For unsupported panels, users can define a custom.config file called by “custom” profile. 

To initiate a run, users must define the following parameters: 

• --projectDir: Path where output files will be saved. 

• --dataDir: Directory to store processed data (e.g., FASTQ, BAM, or VCF). 

• --runName: A unique identifier for the analysis. 
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• --startingDataDir: Directory containing the input sequencing data. Supported formats 

include: 

o uBAM or FASTQ files: the directory may contain files named 

<sample>_<DNA/RNA>*.bam or <sample>_<DNA/RNA>*.fastq*. Symbolic 

links are supported. Set --startingDataType to “FASTQ” (default) or “BAM”. 

o Illumina BCL directory (e.g., TSO500): contains raw BCL files and a 

SampleSheet.csv. Set --startingDataType to “BCL”. 

o Ion Torrent results directory (e.g., OPA, OCA): should contain *.tar.xz files under 

Final_Results_Files/, including uBAMs (*rawlib.basecaller.bam) and auxiliary 

files. Set --startingDataType to “BAM” and add --prepareIontorrentBam if pre-

processing is needed (this is pre-configured in panel profiles). 

• --sampleSheet: A CSV file describing sample identifiers. Multiple options are supported: 

o Manual input: Users can prepare a sample sheet manually (examples provided in the 

GitHub repo). If it is saved at the default location 

./resources/sampleSheets/SampleSheet_<runName>.csv, it is automatically 

detected. 

o Illumina BCL directory: A standard SampleSheet.csv is typically included and can 

be used directly or placed in the default directory. 

o Ion Torrent (OPA/OCA): The sample sheet can be automatically generated from --

startingDataDir using the Info.csv file. In this case, specify --

prepareIontorrentSamplesheet (this is pre-configured in panel profiles). 

• For custom panels, specify a custom --manifestDir to define the location of panel-specific 

manifest files. A recommended structure is ./resources/manifests/<seqPanel>/, containing 

the required --dnaManifest and --rnaManifest files. Update pipeline parameters accordingly. 

The pipeline uses a tag-based system to allocate computing resources (e.g., CPU, memory, execution 

time), with tags including “min”, “low”, “med”, “high”, and “extra”. If resource limits are exceeded, 

the pipeline automatically retries the task with increased allocation. 

In summary, ClinBioNGS provides a modular, controlled setup process with flexible profile options 

and user-defined metadata, enabling easy deployment in clinical and research settings. 

Example: TSO500 analysis on a SLURM cluster 

nextflow run main.nf -profile slurm,tso500 \ 
  --runName TSO500_RUN \ 
  --projectDir /mnt/projects/ClinBioNGS/output \ 
  --dataDir /mnt/projects/ClinBioNGS/data \ 
  --startingDataDir /mnt/illumina_runs/TSO500_Run/BclDirectory 
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Example: Custom panel analysis on an SGE cluster 

nextflow run main.nf -profile sge,custom \ 
  --runName customPanel_RUN \ 
  --projectDir /mnt/projects/ClinBioNGS/output \ 
  --dataDir /mnt/projects/ClinBioNGS/data \ 
  --startingDataDir /mnt/data/custom_samples \ 
  --sampleSheet ./resources/sampleSheets/SampleSheet_customPanel_RUN.csv 

3.1.12.3. Structure 

Pipeline source 

The ClinBioNGS pipeline is hosted in a public GitHub repository and is organized to be fully 

compatible with Nextflow. Its directory structure is modular and clearly separated into configuration 

files, executable scripts, and predefined resource folders. A summary of the pipeline’s source 

structure is presented in Table 17. 

Table 17. Overview of the ClinBioNGS source directory structure. 

This table summarizes the main files and folders included in the repository, along with a brief description of their contents. 

Files/Folders Description 

main.nf Main Nextflow script that defines the overall workflow execution logic. 

nextflow.config Global configuration file that defines default parameters and loads specific configuration files. 

bin/ Contains external scripts (e.g., R) that are executed as part of the workflow processes. 

conf/ Configuration directory with global, module-specific, and panel-specific settings. 

docker/ Custom Dockerfiles for selected tools (e.g., Octopus, Pisces, R). 

modules/ Nextflow scripts organized into: 

• process/: individual pipeline processes. 

• subworkflow/: pipeline subworkflows. 

resources/ Directory containing user-defined and predefined metadata or resource files, structured as 

follows: 

• User-defined metadata files: SampleInfo.csv, TumorNames.csv, and WhitelistGenes.csv 

• annotation/: variant annotation files (e.g., GENIE) 

• cna/: CNA-related files such as panel-specific baselines 

• fusion/: fusion-related files (e.g., VCF headers, curated whitelist) 

• manifests/: panel-specific manifest files 

• msi/: MSI-related files including the required baseline 

• sampleSheets/: run-specific sample sheets 

• smallVariant/: predefined files for small variant analysis (e.g., hotspot, recurrent, 

blacklist) 

• splicing/: splicing-related files (e.g., curated whitelist, VCF header) 

Pipeline outputs 

When the pipeline is executed, all output files are organized into structured directories based on their 

type and purpose. The key output locations and contents are described below: 

• Temporary files: Each process generates files stored within its dedicated working directory 

under the automatically created work/ folder (in the current working directory). Once the 

process is completed, only essential results are retained. The work/ folder can be deleted after 

the run to conserve disk space. 
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• Resources files: Any newly generated resources (e.g., panel-specific target files, annotation 

data) are stored in the resources/ directory within the main ClinBioNGS folder. 

• Global variant registry: The global SQLite database that tracks all detected variants and 

metadata is stored at the root of the project directory (<projectDir>/). 

• Run-specific output files: Each execution of the pipeline generates a structured output 

directory under the specified run name (--runName), typically inside the <projectDir>/. 

These outputs include: 

o Analysis/: Located at <projectDir>/<runName>/, this folder contains the main 

analytical results. 

▪ A subdirectory is created for each sample. 

▪ Within each sample folder, subfolders are organized by pipeline module 

(e.g., 01_FASTQ_PROCESSING/, 02_FASTQ_QC/, 03_ALIGNMENT/). 

▪ Each subfolder includes outputs such as QC tables, variant files, and 

associated visualizations. 

o Data/: Located at <dataDir>/<runName>/, this directory contains processed data 

files in standard formats. 

▪ Subdirectories are created per sample. 

▪ Each sample folder contains separate folders by data type (e.g., BAM/, 

FASTQ/, VCF/), containing the final processed files. 

o Logs/: Located at <projectDir>/<runName>/, this folder stores all Nextflow-related 

log files. 

▪ Organized by subworkflow and then by DNA or RNA processes. 

▪ Each process-specific folder includes all log files (.err, .log, .out, .run, .sh) 

for every sample. 

o Results/: Located at <projectDir>/<runName>/, this folder contains the final, user-

friendly output files. 

▪ MultiQC HTML reports summarizing DNA and RNA QC metrics. 

▪ Interactive HTML reports per sample. 

▪ The run-specific SQLite database. 

▪ Includes a folder for each sample, with Excel files summarizing all QC 

metrics and detected variants by alteration type (SNVs/Indels, CNAs, 

fusions, splice variants). 
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3.2. Cross-panel small variant validation on reference datasets 

3.2.1. Dataset description 

To assess the performance of ClinBioNGS in detecting small variants across multiple NGS panel 

technologies, publicly available reference data from the SEQC2 Consortium was analyzed105,111. This 

dataset includes multi-panel sequencing of a genomic reference sample ("Sample A") engineered to 

contain both known positive (KP) variants—introduced at various VAFs—and known negative (KN) 

positions, which are high-confidence wild-type sites within coding regions. 

Each panel was sequenced independently by a different laboratory, with four technical replicates per 

panel. Of the eight initially considered panels, two were excluded due to either unclear UMI 

processing requirements or their non-commercial nature. The remaining six commercial panels 

included in the analysis were (Supplementary Table 8): 

• Agilent Custom Comprehensive Cancer Panel v2 (AGL). 

• Burning Rock DX OncoScreen Plus (BRP). 

• Integrated DNA Technologies xGen Pan-Cancer Panel (IDT). 

• iGeneTech AIOnco-seq (IGT). 

• Illumina TruSight Tumor 170 (ILM). 

• Thermo Fisher Oncomine Comprehensive Assay v3 (TFS). 

The reference dataset included: 

• A BED file (hg38) defining CTR regions, covering validated KP and KN sites. 

• A VCF file listing over 40,000 KP variants for Sample A (originally in hg19, lifted to hg38). 

• A BED file (hg38) containing over 10 million KN positions for Sample A. 

Panel-specific resources consisted of: 

• Raw sequencing files (FASTQ or uBAM) downloaded from NCBI BioProject 

PRJNA677997132 (via AWS S3). 

• Panel-specific variant call files (VCFs), lifted to hg38 coordinates. 

• BED files defining panel target regions (hg19). 

3.2.2. ClinBioNGS analysis 

For each panel, custom configuration files were created to ensure accurate execution of ClinBioNGS. 

These configurations are available in the pipeline’s GitHub repository. Key modifications included: 

• Only the small variant analysis module was enabled. CNAs, TMB, MSI, and RNA-based 

analyses were disabled. 
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• Input BED files defining the panel regions were converted to hg38 coordinates using the --

liftoverManifest option. 

• For AGL panel, UMI sequences were extracted from an additional FASTQ file (R3) using -

-fastqUmiTransfer. 

• For ILM, FASTQ files were merged across sequencing lanes via --fastqMergeLanes. 

• For BRP and IGT, trimming and filtering parameters were aligned with those described in 

the SEQC2 supplementary methods105. 

• For TFS (Ion Torrent data), platform-specific options were applied, including handling of 

single-end uBAM files and the incorporation of blacklisted regions. Panel BED files were 

also lifted to hg38 (--liftoverManifest, --liftoverVariantBlacklistBed). 

Each pipeline run required: 

• A sample sheet listing the sample identifiers in the format “<sample>_DNA”. These files are 

found in the pipeline’s repository. 

• A raw data directory (--startingDataDir) containing either FASTQ or uBAM files named 

accordingly (<sample>_DNA*.fastq.gz or .bam). Symbolic links were used to point to the 

original files for consistency and ease of access. 

3.2.3. Output and performance evaluation 

Following small variant detection, the variant calls produced by ClinBioNGS and the original 

commercial pipelines were compared against the SEQC2 reference dataset to assess performance. 

The evaluation process involved the following steps: 

• Extraction of KP variants from the reference VCF file. 

• Compilation of detected variants and associated metrics from each analysis. 

• Annotation of each variant with CTR and KN regions. 

To ensure consistency and reliability, the following filters were applied: 

• Only target regions overlapping CTRs and outside blacklisted regions were considered. 

• KP variants had to meet panel-specific VAF thresholds: 

o AGL  ≥1 %. 

o BRP  ≥ 1%. 

o IDT  ≥ 2%. 

o IGT  ≥ 1%. 

o ILM  ≥ 2.6%. 

o TFS  ≥ 2.5%. 
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• Detected variants were required to 

o Have a “PASS” status (or no filter) in the VCF. 

o Meet minimum read support thresholds: 

▪ AD_ALT ≥ 5. 

▪ DP ≥ 10. 

▪ VAF ≥ panel-specific threshold. 

The following metrics were computed: 

• True positives (TPs): 

o SNVs: exact positional and allelic match with KP set. 

o InDels: matched by overlapping position. 

• FNs: KP variants not detected by the pipeline. 

• FPs: Variants identified within KN regions. 

Based on these, the key performance indicators were calculated: 

• Precision = TP / (TP + FP). 

• Recall = TP / (TP + FN). 

• F1 Score = 2 × (Precision × Recall) / (Precision + Recall). 

These metrics allowed for a robust comparison of variant calling performance across multiple NGS 

panels and pipelines. 

3.3. Cross-panel benchmarking in real-world clinical cohorts. 

3.3.1. Dataset description 

To evaluate the performance of ClinBioNGS in a real-world clinical setting, over 2,000 tumor 

samples sequenced using three commercial pan-cancer NGS panels (Supplementary Table 8) were 

analyzed. The data was provided by participating clinical institutions, each contributing raw 

sequencing files, manifest files, and the corresponding results from their established commercial 

analysis pipelines: 

• Institut Català d’Oncologia and Hospital Universitari de Bellvitge contributed data for the 

Illumina TSO500 and Thermo Fisher OPA panels. 

• Hospital Clínic de Barcelona provided data for the Thermo Fisher OCA panel. 

All participants provided written informed consent for NGS testing as part of their clinical evaluation. 

The project was approved by the Ethical Committee of the participating hospitals and conducted in 

accordance with the Declaration of Helsinki. 



90  3. Methodology 

 

 

For the TSO500 panel, raw data in BCL format, panel manifest files (in hg19 coordinates), and results 

from the TSO500 Local App (v2.2.0.12) were collected. 

For the OPA and OCA panels (Ion Torrent platform), uBAM files and panel-specific resources were 

obtained from the Torrent Suite software (v6.6.2.1), using the following assay versions: 

• OPA: Oncomine™ Precision GX5 DNA and Fusions v3.2.0. 

• OCA: Oncomine™ Comprehensive v3 GX5 DNA and Fusions v5.0.2. 

This diverse and clinically annotated dataset enabled robust benchmarking of the pipeline across 

different sequencing technologies and analysis environments. 

3.3.2. ClinBioNGS analysis 

Panel-specific configuration files were developed to ensure accurate analysis with ClinBioNGS. 

These configurations are publicly available in the pipeline’s GitHub repository. Several adjustments 

were made to adapt the pipeline beyond its default settings: 

• TSO500 (Illumina): 

o The BCL folder was provided as the input directory, from which FASTQ files and 

the sample sheet were automatically generated (--startingDataDir <bclDir>, --

startingDataType BCL). 

o Manifest files were converted to BED files (--manifestToBed) and lifted over from 

hg19 to hg38 (--liftoverManifest). 

o UMIs were extracted from DNA samples during the BCL Convert step (--umiDna), 

with delimiter adjustments applied as needed (--fastqChangeUmiSep). 

• OPA and OCA (Ion Torrent):  

o The Torrent Suite results directory was used as the input (--startingDataDir), from 

which all relevant resources were extracted, including manifest files (--

prepareIontorrentManifest), sample sheet (--prepareIontorrentSamplesheet), 

hotspot BED (--prepareIontorrentVariantHotspots), and uBAM files (-- 

prepareIontorrentBam, --startingDataType BAM). 

o Manifest files (BED) were lifted over to hg38 coordinates (--liftoverManifest). 

o As these panels rely on single-end (--singleEnd), amplicon-based (--amplicon) 

sequencing from Ion Torrent platform (--seqPlatform IonTorrent), adequate pre-

processing steps were applied. 

o Alignments were performed using TMAP parameters from the commercial pipeline. 

o For OPA, which includes UMIs in DNA library (--umiDna), deduplication was 

performed using the extracted UMI information. This step was not applied to OCA, 

as it does not include them.  
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o A blacklist BED file, adapted from the SEQC2 Thermo Fisher panel, was used to 

flag small variants in problematic regions. 

o TMB and MSI analyses were not performed on Ion Torrent data due to platform-

specific limitations. 

3.3.3. Output and comparative analysis 

After pipeline execution, results from both ClinBioNGS and the commercial pipelines were collected 

for comparative analysis. Only samples that passed the QC criteria—generated by ClinBioNGS’s QC 

module (Table 6)—were included. QC criteria are summarized in Supplementary Table 9. 

For cases sequenced in multiple runs, the sample with the highest total read count was selected. Final 

cohort sizes were as follows: 

• TSO500: 755 samples (NDNA = 655, NRNA = 687). 

• OPA: 674 samples (NDNA = 624, NRNA = 588). 

• OCA: 595 samples (NDNA = 538, NRNA = 508). 

To harmonize the commercial pipeline results for comparison: 

• Gene symbols were updated to match HGNC nomenclature. 

• Coordinates were lifted over from hg19 to hg38. 

• Duplicate variants per sample were removed. 

• Hotspot and oncogenic variants were annotated. 

• CIViC clinical evidence was linked where applicable. 

Variants included in the comparison: 

• ClinBioNGS 

o Small variants with primary “PASS” flag (i.e., no calling-related filter; Table 9). 

o Non-neutral CNAs in genes covered by ≥4 bins in the panel-specific CNA baseline. 

o Fusions and splice variants with primary “PASS” flag (i.e., no “LowSupport” flag; 

Table 14 and Table 16). Splice variants with ≥1000 supporting reads in OCA panel. 

• Commercial pipelines: 

o TSO500: 

▪ Reported small variants in CombinedVariantOutput.tsv (final results). 

▪ CNAs with ALT field not equal to “.”. 

▪ Non-intragenic fusions labeled “KEEPFUSION”. 

▪ Splice variants in target genes from the final results. 

o OPA/OCA:  

▪ Variants marked as “PRESENT”. 
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Cancer-related subset (applied to the filtered variants above): 

• Small variants annotated as oncogenic, hotspot, or with CIViC evidence. 

• CNAs with ≥0.5% frequency in GENIE or annotated in CIViC. 

• Gene fusions present in GENIE, MitelmanDB, or CIViC. 

• Splice variants annotated in CIViC. 

Comparison methodology: 

• Small variants (SNVs/InDels): matched by genomic position or AA change. 

• CNAs: matched by gene and AMP/DEL status. 

• Fusions: matched by gene partners. 

• Splice variants: matched by splice sites (and also by exon for TSO500). 

Variant-level concordance between pipelines was calculated and summarized using alluvial plots, 

illustrating the overlap in detected variants. 

Moreover, Pearson coefficients and linear regression lines were computed and plotted to assess the 

correlation of gene-level copy-number ratios and estimated CN values between pipelines. TMB-high 

(≥10 mut/Mb) and MSI-high (≥20% unstable loci) classifications were also compared in TSO500 

samples. 
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4. RESULTS  

4.1. ClinBioNGS enables end-to-end analysis of somatic NGS cancer 

panels 

4.1.1. Workflow design enables comprehensive analysis 

This thesis presents ClinBioNGS, an open-source, comprehensive bioinformatics pipeline designed 

for the analysis of somatic NGS cancer panels. It provides a fully automated, portable, and end-to-

end solution—covering raw data pre-processing through to variant detection, annotation, 

prioritization, and reporting. The pipeline leverages state-of-the-art open-source tools and curated 

external resources (Supplementary Table 1 and Supplementary Table 2). A schematic 

representation of the ClinBioNGS workflow is shown in Figure 13. 

 
Figure 13. Overview of the ClinBioNGS workflow. 

The top section (green box) illustrates the pre-processing of raw sequencing data (DNA and RNA), including FASTQ 

handling, alignment, deduplication, and QC. The middle section (blue box) shows the DNA analysis module, which detects 

small variants (SNVs/InDels), CNAs, MSI, and TMB. The bottom section (orange box) outlines the RNA analysis module, 

which includes the detection of gene fusions and splice variants. Outputs from QC, DNA, and RNA analyses are 

consolidated into a variant registry and a self-contained, interactive HTML report for each sample. 
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The pipeline is highly flexible and supports DNA and RNA pre-processing across a broad range of 

experimental settings, including variations in: 

• Panel design: hybrid-capture or amplicon-based; 

• Library preparation: paired-end or single-end; with or without UMIs; 

• Sequencing platforms: Illumina or Ion Torrent technology; 

• Sample types: tumor tissue, cell lines, or PDXs; 

• Input formats: FASTQ, BCL, or uBAM files. 

ClinBioNGS performs a comprehensive quality assessment by calculating global QC metrics and 

evaluating gene- and exon-level coverage. The pipeline supports full analysis of distinct somatic 

alterations—including small variants, CNAs, gene fusions, splice variants, and, when panel design 

allows, TMB and MSI. All findings are stored in a variant registry, enabling longitudinal tracking 

and knowledge reuse. Upon completion, the results for each sample are integrated into a self-

contained, interactive HTML report optimized for clinical review. 

4.1.2. Visualizations enhance interpretability of results 

In addition to comprehensive QC metrics and variant outputs, ClinBioNGS generates diverse 

informative visualizations. The following sections present representative real-case examples, derived 

from Illumina TSO500 panel data, to illustrate how these plots help contextualize genomic alterations 

and facilitate clinical interpretability. 

4.1.2.1. Coverage visualizations enable sequencing quality assessment 

ClinBioNGS produces a suite of informative coverage plots at multiple levels of resolution. The 

following examples correspond to a non-small cell lung cancer (NSCLC) sample. 

A genome-wide overview of gene-level coverage is provided for all targeted regions (Figure 14). 

This plot enables rapid evaluation of overall panel performance by displaying the mean coverage for 

each target gene across all chromosomes. Chromosome-specific plots (Figure 15) are provided to 

localize target genes within each chromosome. These representations allow users to assess capture 

uniformity across chromosomes. Poorly covered genes or those included in a user-defined whitelist 

are also highlighted to facilitate their evaluation. 
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Figure 14. Genome-wide gene coverage visualization (TSO500 DNA data in NSCLC). 

Each point represents the average coverage of an individual target gene. A dark grey line optionally shows the mean 

coverage per chromosome. Genes in a user-defined whitelist are highlighted in orange and labeled above the coverage 

track. Genes falling below a user-defined minimum coverage threshold (indicated by a red horizontal line) are labeled in 

red along the bottom of the plot. 

 
Figure 15. Chromosome-specific gene coverage plot for chr17 (TSO500 DNA data in NSCLC). 

Each point represents the mean coverage of a targeted gene on the selected chromosome. A light grey line shows the average 

coverage of all targeted regions in that chromosome. Gene symbols are displayed along the bottom. Genes in the whitelist 

are highlighted in orange, and those below the coverage threshold are annotated in red.  

For high-resolution assessment, ClinBioNGS generates single-gene coverage plots, which are 

especially useful for evaluating intragenic coverage variability. By default, these plots are created 

only for genes in a user-defined whitelist, though full-panel plotting can be enabled for smaller 

panels. Each plot shows gene structure, coverage across the genomic region, and target capture 

regions from the manifest. Figure 16 presents an example for the ERBB2 gene using both DNA and 

RNA data from the same sample. In DNA data, coverage often extends to intronic and off-target 

flanking regions, while RNA coverage presents narrower peaks reflecting transcript structure and 

exon-exon junctions. 

These multi-resolution coverage visualizations—spanning genome, chromosome, and gene levels—

can facilitate robust evaluation of sequencing performance, data quality, and capture efficiency of 

target genes. 
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Figure 16. Single-gene coverage plots for ERBB2 (TSO500 DNA and RNA data in NSCLC). 

(A) DNA-based coverage. (B) RNA-based coverage. Gene structure (top) is based on the MANE SELECT transcript, with 

coding (black) and non-coding (grey) exons labeled. Per-base coverage across the gene is shown in the middle. Panel-

defined target regions are shown below as black segments. 

4.1.2.2. Gene-centric visualizations support contextual interpretation of small variants 

ClinBioNGS produces small variant visualizations that position mutations within gene structures to 

aid interpretation. Each variant is provided with the following information: observed VAF, amino 

acid change, oncogenicity classification (ClinGen/CGC/VICC), clinical tier (AMP/ASCO/CAP), 

and occurrence in the GENIE cancer registry. 

Representative examples are shown in Figure 17, illustrating a glioma case with four missense TP53 

variants (Figure 17A) and a NSCLC sample with a well-known BRAF V600E mutation (Figure 

17B). These gene-centric maps help contextualize mutations within the full gene structure and 

mutational landscape: 

• TSGs like TP53 often show dispersed inactivating mutations clustered in functional regions. 

• Oncogenes such as BRAF typically display hotspot activating mutations at specific loci. 

Additionally, the inclusion of known oncogenic mutations from the GENIE registry enables users to 

assess the broader clinical and biological significance of observed variants. 
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Figure 17. Visualization of small variants mapped to their gene locus (TSO500 DNA data). 

(A) Glioma with four missense TP53 variants and (B) NSCLC with BRAF V600E mutation. The central panel shows gene 

structure from the MANE SELECT transcript, with annotation of the covered exons. Detected variants are displayed in the 

upper section with their corresponding VAFs and AA changes, color-coded by predicted oncogenicity. AMP/ASCO/CAP 

classifications are indicated with symbols. A red line marks the minimum user-defined VAF threshold. Known oncogenic 

variants from the GENIE registry are shown below the gene structure, with the height reflecting cohort counts. 

4.1.2.3. Multi-level CNA visualizations enhance comprehensive analysis 

CNAs are visualized at multiple levels to support both global and fine-grained interpretation: 

• Figure 18 shows genome-wide CNA patterns, ideal for identifying broad events such as 

CNAs in short arms (i.e., “p”) or long arms (i.e., “q”) of chromosomes. The example features 

a uveal melanoma case, where canonical events in this tumor type—such as 3p/q, 6q, and 

8p losses, and 8q gain133—are clearly visible. 

• Figure 19 presents a chromosome-specific view (chr8 in the same case), facilitating 

inspection of CNA status in specific target genes. 

• Figure 20 shows a high-resolution CNA profile for the MET gene, including copy ratios for 

individual bins and the observed read coverage, supporting detailed assessment of focal 

events and intra-gene variability. In this case we can observe that copy ratios are generally 

uniform along the genome. 
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Figure 18. Genome-wide CNA visualization (TSO500 DNA data in uveal melanoma). 

Each point represents a gene-level copy ratio, color-coded by CNA classification. Thresholds for CNA classification are 

shown as horizontal lines. Clinically relevant CNAs are labeled. Arm-level CNAs are displayed as colored segments along 

the x-axis. 

 
Figure 19. Chromosome-specific CNA results for chr8 (TSO500 DNA data in uveal melanoma). 

Chromosome-level CNA plot for chr8. Each point corresponds to a gene’s copy ratio, color-coded by classification. Gene 

symbols are displayed and colored by CNA status. 
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Figure 20. CNA profile of the MET gene (TSO500 DNA data in uveal melanoma). 

The gene structure (middle panel) is annotated from the MANE SELECT transcript. Individual bin-level copy ratios are 

shown (top panel) with a weighted mean overlay. The lower panel shows per-base coverage with panel-defined target 

regions indicated in black. 

4.1.2.4. RNA-based visualizations facilitate functional assessment of results 

ClinBioNGS generates detailed visualizations for RNA-based alterations to support the interpretation 

of gene fusions and splicing events. 

• Figure 21 shows an example of the EML4–ALK fusion in a NSCLC sample. The plot 

displays predicted breakpoints and coverage profiles for both fusion partners. We can 

observe the selective expression in the 3′ region of ALK, which harbors the oncogenic kinase 

domain114. 

 
Figure 21. Visualization of EML4–ALK fusion (TSO500 RNA data in NSCLC). 

Coverage profiles of both fusion partners are shown with gene structure based on MANE SELECT transcripts. The fusion 

breakpoint and fusion region are marked with a red dashed line. Key metrics and the variant name appear at the top. Target 

regions from the panel manifest are shown below the coverage track. 
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• Figure 22 illustrates the METex14 event in NSCLC, a known actionable alteration134. Splice 

variants are depicted with sashimi-style plots displaying splice junction reads and the 

observed coverage in the affected genomic locus. We can observe the drop in coverage over 

the skipped exon 14. 

 
Figure 22. Visualization of METex14 variant (TSO500 RNA data in NSCLC). 

Exon structures, splice junctions, and supporting read counts are displayed. Blue arcs denote canonical junctions, while the 

red arc highlights the aberrant, cancer-associated splice event. The variant name and estimated VAF are noted at the top. 

The observed coverage across the gene locus and panel-defined target regions are also included below the transcript 

structure. 

Together, these plots provide indirect evidence of gene expression and help contextualize the 

functional effect of RNA alterations detected by ClinBioNGS. 

4.1.3. Interactive report supports exploration of results 

ClinBioNGS consolidates prioritized findings, QC metrics, and visualizations in a self-contained 

HTML report. This interactive report serves as the main deliverable of the pipeline, offering a user-

friendly and centralized interface for exploring complex genomic results on a per-sample basis. 

The following subsections illustrate representative screenshots of the report’s core features from the 

previous TSO500 cases. A composite HTML report is also available in the pipeline's repository. 

4.1.3.1. Summary section highlights key results 

The report opens with a summary section that highlights the most relevant findings at a glance 

(Figure 23). This overview is structured as a grid, where each column represents a specific variant 

type (e.g., SNV/Indel, CNA, fusion, splicing), and each row corresponds to the assigned clinical tier 

(Tier I–III). Additional biomarker results, such as TMB and MSI scores, are also displayed in a 

column, enabling quick assessment of genomic indicators associated with therapeutic response. 

Sample metadata—including run name, sample ID, tumor type, and panel—are displayed in the 

upper-left corner and remain visible during navigation. 
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Figure 23. Summary section of the ClinBioNGS report. 

Columns represent variant types, and rows correspond to variant tiers (Tier I–III). The final column summarizes TMB and 

MSI scores. Clickable boxes link to specific report sections. Sample metadata is displayed in a fixed panel at the top left, 

and navigation tabs provide access to all major sections. 

Each colored box in the summary view is interactive, allowing users to click and access the 

corresponding visualizations or detailed tables. Additionally, navigation tabs at the top of the report 

enable direct access to each report section. 

4.1.3.2. QC section supports sample assessment 

The “Sample QC” section of the ClinBioNGS report provides a centralized view of key sample 

characteristics and sequencing quality metrics. It begins with an overview subsection that 

summarizes sample metadata (e.g., tumor type, tumor whitelist inclusion, TP, sex, age), alongside 

calculated DNA and RNA global QC metrics (Figure 24). Each sample is assigned a color-coded QC 

status for DNA and RNA to facilitate rapid assessment: 

• Green indicates acceptable values across all metrics. 

• Orange highlights potential issues (warning). 

• Red indicates any failed QC metric. 

These colors are determined based on user-defined thresholds configured within the pipeline and 

apply independently to DNA and RNA metrics. A summarized QC box at the top of the section 

reflects the overall QC status for each sample. 

Additional tabs provide access to detailed coverage visualizations and tables. The coverage 

visualizations shown in Figure 14 to Figure 16 are fully integrated into specific subsections. 



4. Results  103 

 

 

 
Figure 24. Overview of the Sample QC subsection in the ClinBioNGS report. 

The top row displays collected sample metadata (e.g., sample ID, tumor type with DOID, tumor-specific whitelist inclusion, 

estimated TP, sex, and age). If a field is missing, “ND” (No Data) is displayed. Global QC metrics are shown in separate 

tables for DNA and RNA, with horizontally scrollable views. Metrics are colored based on configured thresholds: green 

(pass), orange (warning), red (fail). The most severe color across all metrics determines the final QC status shown at the 

top of the section. Tabs are available to access additional coverage-related content. 

ClinBioNGS also generates interactive per-gene and per-exon coverage tables for both DNA and 

RNA data. Figure 25 shows examples of these tables, which are equipped with powerful features to 

enhance usability: 

• Column-based filtering (checkboxes, value entry, sliders for ranges). 

• Full-text search bar. 

• Column sorting and reordering. 

• Row highlighting. 

• Export of filtered tables to CSV or Excel. 

Two examples are illustrated in Figure 25: 

• Figure 25A shows a DNA per-gene coverage table filtered to display only genes included in 

a user-defined whitelist. The coverage for different loci categories (e.g., target regions, 

coding regions, exons) and coverage statistics are presented. 

• Figure 25B shows a per-exon RNA coverage table for the MET gene, filtered to show exons 

12–16 from the METex14 case (Figure 22). The highlighted exon 14 row shows a visibly 

reduced mean coverage, supporting the splicing event identified in the sashimi plot. 
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Figure 25. Interactive coverage tables in the ClinBioNGS report. 

Users can apply filters via the left-hand panel or the top-right search bar, and export results in various formats. (A) DNA 

per-gene coverage table showing filtered whitelist genes and their mean coverage at various loci with coverage statistics. 

(B) RNA per-exon coverage table for the MET gene, highlighting exon 14 with reduced coverage indicative of exon 

skipping. 

4.1.3.3. Alteration-specific sections facilitate tumor result exploration 

ClinBioNGS organizes all tumor-related findings into dedicated sections within the interactive 

report, facilitating an intuitive exploration and review of detected somatic alterations and biomarkers. 

Each alteration type is presented through a common structure that includes an overview of key 

findings, informative visualizations (seen in the previous section), and dynamic result tables. 

Additionally, calculated biomarker scores for TMB and MSI are shown in separate subsections. 

Small Variants (SNVs and InDels) 

The following screenshots illustrate two core components of the “SNV and InDel” section using the 

previously shown case with a Tier I BRAF V600E and four Tier III TP53 mutations (Figure 17). 

• Figure 26 shows the “Overview” subsection: 

o The top panel highlights the most relevant findings, also presented in the “Main 

Results” section (Figure 23). 

o Middle panel provides summary statistics (e.g., assigned flags, clinical and 

oncogenic classifications), using color-coded categories. 
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o Bottom panel displays collected tumor-specific clinical evidence from CIViC (e.g., 

predictive, prognostic, diagnostic). Actionable associations are detected for this 

tumor case (i.e., trametinib and dabrafenib for BRAF V600E in NSCLC). 

 
Figure 26. Overview of small variant results in the ClinBioNGS report. 

Top findings, summary statistics, and CIViC clinical evidence are organized into distinct panels. Color coding is used for 

quick visual reference, and tumor-specific clinical evidence is displayed at the bottom. 

• Figure 27 presents the “Somatic Datatable” subsection: 

o In this example some filters have been applied to show SNVs with the “OK” flag. 

o Clinically relevant (Tier I/II) and oncogenic variants are prioritized and highlighted. 

• Users can consult detailed annotation, apply custom filters, and export selected subsets. 

 
Figure 27. Interactive table of somatic small variants in the ClinBioNGS report. 

Variants are color-coded by clinical relevance and oncogenicity. Rows are sortable and filterable. Top-tier variants appear 

at the top, and selected filters are applied to streamline review. 



106  4. Results 

 

 

CNAs 

The CNA “Overview” (similar to Figure 26) is provided (Supplementary Figure 2A), along with 

interactive CNA tables (Figure 28): 

• Figure 28A shows gene-level CNA results: 

o Visual flags and CNA classifications are color-coded (e.g., red/blue for AMP/DEL). 

o Results are ranked by clinical tier and confidence flag for fast triaging. 

• Figure 28B presents arm-level CNA results: 

o Only altered chromosomes are displayed based on filters. 

o Each row includes metrics such as mean copy ratio and frequency from the variant 

registry (AC_SAMPLES, AF_SAMPLES). 

 
Figure 28. Interactive tables of CNA results in the ClinBioNGS report. 

(A) Gene-level CNA results include color-coded CNA classification and QC flags, and the annotated metrics. (B) Arm-

level CNA results filtered to show chromosomes with non-neutral events. 
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RNA alterations: fusions and splice variants 

Each RNA variant type has its own section in the report, including visual summaries 

(Supplementary Figure 2B-C) and interactive tables of results that include variant names, clinical 

classification, QC flags, metrics, and a filtering column (Figure 29): 

• Figure 29A displays gene fusion results (e.g., EML4–ALK). 

• Figure 29B shows splice variants (e.g., METex14, plus a flagged known variant). 

 
Figure 29. Interactive tables of RNA-based findings in the ClinBioNGS report. 

(A) Gene fusions and (B) splice variants. Clinically relevant variants are highlighted in purple, low-confidence flags in red, 

and high-confidence flags in green (“OK”). Tables are filterable, scrollable, and exportable. 

Genomic biomarkers: TMB and MSI 

ClinBioNGS includes calculated metrics for TMB and MSI in dedicated tabs. 

• Figure 30 shows the “TMB” subsection: 

o Displays calculated scores (overall and non-synonymous). 

o Interactive table of eligible variants is provided below. Note that Tier I/II or 

oncogenic variants are excluded for TMB calculation. 

• Figure 31 shows the “MSI” subsection: 

o Presents calculated metrics (i.e., unstable microsatellites over total assessed) 

o Contains small variants in MMR genes, supporting MSI status beyond scores. 

o The example illustrates that only low-confidence variants are present, as no “OK” 

variants appear at the top. The observed oncogenic variant is found in the provided 

list of TSO500 recurrent mutations, suggesting a panel-specific recurrent artefact. 
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Figure 30. TMB results in the ClinBioNGS report. 

Calculated metrics appear at the top. Annotated eligible variants are shown below. Filter options and color-coding help 

interpret the variant selection criteria. Rows have been sorted by gene name by clicking on the corresponding column. 

 
Figure 31. MSI results in the ClinBioNGS report. 

Calculated metrics are shown above. Variants in MMR genes are displayed below. Flags, clinical status, and oncogenicity 

are highlighted. 

4.2. Accurate detection of small variants across multiple NGS panels 

ClinBioNGS achieved high accuracy for small variant detection using SEQC2 reference datasets 

across six commercial NGS panels. Figure 32 summarizes the performance results: 

• Figure 32A presents replicate-level precision and recall values for both ClinBioNGS and 

the commercial pipelines. 

• Figure 32B shows the distribution of F1-scores per panel, comparing the overall 

performance of both pipelines. 

Precision (0.987−1.000), recall (0.920−0.997), and F1-score (0.956−0.999) were consistently high in 

ClinBioNGS. These results were in line with, and in several cases slightly exceed, those obtained 

from commercial pipelines. Particularly, ClinBioNGS showed superior performance for the AGL 

panel, which included the most comprehensive set of known positive variants (n = 2,824). Complete 

benchmarking results, including replicate-level metrics, are provided in Supplementary Table 10. 
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Figure 32. Cross-panel evaluation of ClinBioNGS small variant calling using SEQC2 datasets. 

(A) Precision and recall metrics for each of four replicates per panel. Points are colored by pipeline (red for commercial, 

blue for ClinBioNGS). (B) Violin plots showing F1-score distributions across replicates for each panel, grouped by pipeline 

and colored by panel. 

4.3. Real-world comparative analysis across commercial panels 

4.3.1. High concordance for detecting cancer-related alterations 

To evaluate the clinical utility of ClinBioNGS beyond controlled benchmarking, the pipeline was 

applied to 2,024 clinical tumor samples using three commercial pan-cancer NGS panels: Illumina 

TSO500 (n = 755), Ion Torrent OCA (n = 595), and Ion Torrent OPA (n = 674). Cohort-level 

characteristics are detailed in Supplementary Table 11. 

Figure 33 shows the full comparative analysis of cancer-related alterations between ClinBioNGS 

and commercial pipelines. ClinBioNGS demonstrated high concordance with commercial pipelines, 

recapitulating 97% of small variants (3,502 of 3,606; Figure 33A), 89% of CNAs (2,083 of 2,339; 

Figure 33B), and 94% of RNA alterations (217 of 231; Figure 33C). Aggregate benchmarking 

metrics are summarized in Supplementary Table 12. 
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Figure 33. Real-world comparative analysis of all cancer-related alterations. 

Alluvial plots showing concordance for cancer-related (A) mutations, (B) CNAs, and (C) RNA alterations. “OK” and 

flagged (i.e., secondary flags) ClinBioNGS variants are included. Each plot displays NGS panel, detection status, 

ClinBioNGS variant classification status, and clinical evidence status. Flows are colored by detection status and annotated 

with absolute counts and percentages. 
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Moreover, strong correlations were observed for normalized copy ratio values (R = 0.97 for TSO500, 

R = 0.96 for OPA; OCA excluded due to unavailable commercial values) and for absolute CN 

estimates (R = 0.74 for TSO500, R = 0.75 for OPA, R = 0.89 for OCA) (Figure 34). 

 
Figure 34. Correlation of copy ratios and CNs between ClinBioNGS and commercial pipelines. 

Results are shown for TSO500 (A-B), OPA panel (C-D), and OCA (E) panels. The x-axis represents values from 

ClinBioNGS, and the y-axis represents those from the commercial pipeline. Pearson correlation coefficients (R) and linear 

regression lines are shown. 
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4.3.2. Discrepancies between ClinBioNGS and commercial solutions 

Low-confidence ClinBioNGS calls—flagged due to limited support, location in problematic 

genomic regions, or recurrence in background samples (Supplementary Figure 3)—were mostly 

unique and lacked potential clinical relevance. Therefore, subsequent discrepancy analyses were 

restricted to high-confidence (“OK”) variants to ensure greater interpretability and clinical value. 

ClinBioNGS reported 222 additional mutations (Figure 35). 

• Fourteen showed associated clinical evidence from CIViC (Supplementary Table 13): 

o Thirteen had low VAFs (<5%) and were likely filtered by commercial pipelines due 

to limited support or suboptimal quality metrics. 

o A KRAS G12A mutation (OPA) with 288 supporting reads and 17% VAF was not 

reported by the commercial pipeline. 

o An EGFR S768I mutation (TSO500) with 1.4% VAF was missed by the commercial 

solution but orthogonally confirmed using Roche Cobas EGFR Mutation Test v2. 

• Among the remaining 208 variants without clinical evidence, 35 were classified as oncogenic 

and 33 as likely oncogenic (Supplementary Table 14), including: 

o Borderline calls that were filtered by commercial pipelines due to limited support 

and low-quality issues. 

o Well-supported variants that were either blacklisted by TSO500 commercial pipeline 

or omitted from predefined SNV/InDel lists used in OCA and OPA workflows. 

 
Figure 35. Real-world benchmarking of “OK” ClinBioNGS cancer-related mutations. 

ClinBioNGS variants are restricted to high-confidence calls (i.e., those passing all internal flags). Alluvial plot showing 

concordance for cancer-related mutations. Each plot displays NGS panel, detection status, and clinical evidence status. 

Flows are colored by detection status and annotated with absolute counts and percentages. 
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Conversely, 104 commercial variants were not reported by ClinBioNGS (Figure 35). 

• Sixteen had associated clinical evidence (Supplementary Table 15): 

o These variants showed in ClinBioNGS variant callers specific filters related to poor 

quality or strand bias. That is the reason why they do not reach the minimum number 

of callers established for each panel (2/4 for TSO500 and 3/5 for Ion Torrent panels).  

o Although these variants were mostly flagged by ClinBioNGS as “LowCallers” (i.e., 

primary flag), which led to their exclusion from concordance counting, they would 

also be presented in the final results for the appropriate review. 

o In the absence of orthogonal validation, their clinical relevance remains uncertain. 

• Among the remaining 88 variants (Supplementary Table 16), most were also filtered by 

ClinBioNGS callers due to poor quality and strand bias issues. Notably, MST1 G673S and 

U2AF1 S34F were recurrently missed by ClinBioNGS in the TSO500 panel. 

ClinBioNGS reported 572 additional CNAs (Figure 36), including 191 with clinical evidence. Most 

involved genes were not assessed by the commercial pipelines, with CDKN2A deletion being the 

most frequent event (n = 107) across all panels (Supplementary Table 17). 

 
Figure 36. Real-world benchmarking of “OK” ClinBioNGS cancer-related CNAs. 

ClinBioNGS variants are restricted to high-confidence calls (i.e., those passing all internal flags). Alluvial plot showing 

concordance for cancer-related CNAs. Each plot displays NGS panel, detection status, and clinical evidence status. Flows 

are colored by detection status and annotated with absolute counts and percentages. 

Conversely, 256 CNAs were exclusively reported by commercial solutions (Figure 36), including 

224 with clinical evidence (Supplementary Table 18). Most discrepancies were attributable to 

borderline events in TSO500 (median CN = 3) and TP-based CN corrections applied in OCA and 

OPA samples (median TP = 20%). 
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ClinBioNGS identified 89 additional RNA events (Figure 37), including 37 with clinical evidence 

from the OCA panel (Supplementary Table 19). 

• Fusions (n = 21): 

o Most were supported by low number of reads (median = 21), often falling below the 

thresholds of commercial filters. 

o Notably, one EML4-ALK fusion (17 reads) was missed by the commercial pipeline 

due to overall sample QC failure. 

• Splice variants (n = 16):  

o All were androgen receptor splice variant 7 (AR-V7) robustly supported by 

ClinBioNGS but not assessed by commercial analysis. 

 
Figure 37. Real-world benchmarking of “OK” ClinBioNGS cancer-related RNA alterations. 

ClinBioNGS variants are restricted to high-confidence calls (i.e., those passing all internal flags). Alluvial plot showing 

concordance for cancer-related RNA alterations. Each plot displays NGS panel, detection status, and clinical evidence 

status. Flows are colored by detection status and annotated with absolute counts and percentages. 

Conversely, 14 RNA events were uniquely called by commercial pipelines (Figure 37), including 6 

with clinical evidence (Supplementary Table 20). 

• Three low-read BRAF fusions, lacking strong supporting evidence and likely clinically 

irrelevant without further validation. 

• One KIF5B-RET fusion (OPA) with higher read support. Upon disabling deduplication, 

ClinBioNGS recovered this event. From now, OPA’s deduplication is disabled by default. 

• One METex14 event (OPA) was also detected by ClinBioNGS, although flagged as 

“LowSupport” (8 supporting reads), which is comparable to the commercial call. 
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4.3.3. High concordance in biomarker classification (TMB and MSI) 

ClinBioNGS demonstrated strong agreement with commercial TSO500 pipeline in the classification 

of TMB-High and MSI-High samples. Correlation was high for both metrics (R = 0.99 for TMB 

[Figure 38A] and R = 0.97 for MSI [Figure 38C]). 

 
Figure 38. Biomarker agreement between ClinBioNGS and TSO500 commercial pipeline. 

(A) Correlation plot of TMB-high values. The x-axis shows ClinBioNGS values, and the y-axis shows those from the 

commercial pipeline. Pearson correlation coefficient (R) and the linear regression line are shown. Red dashed lines at 10 

mut/Mb indicate the threshold used for TMB-high classification. (B) Pie chart showing concordance of TMB-high 

classification between pipelines, with color-coded segments indicating agreement or discrepancy between pipelines. (C) 

Correlation plot of MSI-high values. Red dashed lines at 20% unstable loci indicate the MSI-high classification threshold. 

(D) Pie chart showing concordance of MSI-high classification. 

For TMB-High status, 141 of 193 samples (73.1%) were concordantly classified by both pipelines 

(Figure 38B). Among the 52 discordant cases, 50 were classified as TMB-High only by the 

commercial pipeline (TSO500). Notably, most discordant cases had TMB values close to the 

high/low decision threshold, as shown in the scatter plot. 
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For MSI-High status, 10 of 13 samples (76.9%) were concordantly classified between pipelines 

(Figure 38D). In the remaining three discordant cases, ClinBioNGS classified the samples as MSI-

High while the commercial pipeline did not. All three had MSI scores near the threshold, indicating 

potential classification ambiguity. Importantly, one discordant sample—initially classified as MSI-

Low by the commercial pipeline (17.3% unstable loci) but as MSI-High by ClinBioNGS (21.7%)—

was confirmed to be MSI-High (~75% instability) upon later re-sequencing, supporting the 

ClinBioNGS classification. No additional validation was available for the other discordant samples. 

4.4. Case studies illustrating the extended capabilities of ClinBioNGS 

Beyond controlled benchmarking, the real-world application of ClinBioNGS in clinical and 

translational settings underscores its value in handling diverse and challenging scenarios commonly 

encountered in somatic panel analysis. The following case studies illustrate how the pipeline delivers 

robust performance in routine practice, presenting critical improvements over commercial solutions. 

These examples emphasize several key strengths of ClinBioNGS: 

• Reliable detection and representation of complex alterations, including adjacent InDels and 

arm-level CNAs. 

• Recovery of relevant variants that may be missed or filtered by vendor pipelines due to 

platform-specific limitations or filtering. 

• Improved transparency and interpretability, thanks to comprehensive flagging, 

standardization, and intuitive visualizations. 

• Adaptability to non-standard or research-oriented samples (e.g., xenografts). 

4.4.1. Correction of TMB overestimation in pancreatic PDX samples 

A set of 16 PDX pancreatic tumor samples analyzed with the TSO500 panel showed abnormally high 

numbers of small variants and inflated TMB scores. The likely cause was mouse DNA contamination, 

which is common in PDX models but not accounted for by the commercial pipeline. 

To address this, a pre-processing step was integrated into ClinBioNGS to filter mouse reads prior to 

variant calling. This adjustment resulted in a substantial reduction in variant counts and 

normalization of TMB scores to expected ranges. 

This case highlights the versatility of ClinBioNGS to accommodate complex experimental settings 

and adapt to research-specific requirements. 
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4.4.2. Refined detection of complex EGFR exon 19 deletions in Ion Torrent 

OPA samples 

4.4.2.1. Case 1: Resolution of a multi-event complex InDel 

In one sample analyzed with the Ion Torrent OPA panel, the commercial pipeline reported a complex 

EGFR exon 19 variant (chr7:55242468_ATTAAGAGAAGCAACATC/GCAACA, VAF 1.9%, 

hg19). The OPA viewer suggested multiple adjacent small deletions with higher VAFs (Figure 39A). 

ClinBioNGS resolved this complex signal into three distinct deletions (hg19): 

• chr7:55242465_GGAATTAAGA/G (VAF 26%). 

• chr7:55242479_CA/C (VAF 26%). 

• chr7:55242483_ATC/A (VAF 26%). 

These calls aligned more closely with the read evidence and yielded more consistent and reliable 

VAF estimates, enhancing clinical interpretability. This illustrates the advantage of ClinBioNGS’s 

multi-caller consensus approach in accurately deconstructing complex InDels. 

 
Figure 39. Detection of complex EGFR exon 19 variants in Ion Torrent OPA samples. 

(A) Screenshot from the OPA viewer. (B) Screenshot from IGV visualizing the variants detected by ClinBioNGS. 
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4.4.2.2. Case 2: Recovery of a filtered complex variant 

In another case, an EGFR exon 19 deletion was detected via cfDNA by a Foundation Liquid test. The 

sample was initially analyzed using the OPA panel, but no variant call was returned—the commercial 

pipeline flagged the event as "Complex" and filtered it out. A second analysis with relaxed parameters 

("allowing complex variants") reported a composite variant without a clear VAF: 

• c.2235_2250delinsAATTCCC (chr7:55174772_GGAATTAAGAGAAGCA/AATTCCC). 

Re-analysis with ClinBioNGS identified the following four variants in that region (hg38): 

• chr7:55174771_AGG/A; c.2235_2236del (VAF 47.5%). 

• chr7:55174777_TAAGAGAA/T; c.2241_2247del (VAF 47.4%). 

• chr7:55174785_G/C; c.2248G>C (VAF 47.5%). 

• chr7:55174787_A/C; c.2250A>C (VAF 47.7%). 

Inspection with IGV (Figure 39B) revealed two main read groups: 

• One group showed two interspersed InDels followed by two SNVs, consistent with the calls 

made by both pipelines. 

• The other group contained a full-length deletion spanning the affected region. This allele was 

not reported by any pipeline, likely due to lower read support. ClinBioNGS selects the most 

frequent representation across callers in multi-allelic contexts, so less frequent forms may be 

omitted from the final consensus. 

The patient received first line osimertinib and achieved a partial response and significant clinical 

benefit, demonstrating the relevance of identifying complex variants that align with clinically 

actionable EGFR exon 19 deletion profiles. 

4.4.2.3. Interpretation and implications 

These cases illustrate both strengths and limitations of ClinBioNGS in handling complex InDels: 

• Strengths: ClinBioNGS’s multi-caller consensus approach facilitates the deconstruction of 

complex variant signals and yields clearer representations with reliable VAF estimates—key 

factors for proper clinical interpretation and to define whether patients harboring those 

complex genomic alterations may benefit from targeted therapies. Moreover, it can recover 

complex deletions that commercial pipelines may filter out due to variant complexity or 

flagging systems. 

• Limitations: As individual variant calls are reported per caller, phasing information may be 

lost. When most callers report variants separately, they appear as isolated events in the 

consensus output. Thus, manual review (e.g., IGV) is still necessary in complex regions to 

evaluate allelic phasing and reconstruct the full mutational profile. 
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These examples underscore the multiallelic and complex nature of EGFR exon 19 deletions and 

reinforce their clinical relevance. While ClinBioNGS offers a powerful solution for resolving these 

events, future integration of phasing-aware algorithms—or complementary long-read sequencing 

technologies—may further improve the characterization of such complex alterations. 

4.4.3. Recovery of a relevant germline MSH6 mutation 

A known pathogenic germline frameshift mutation in the MSH6 gene (chr2:47803500_A/AC; 

p.Phe1088Leufs*5; ClinVar ID: 89364) was previously identified through a hereditary cancer 

susceptibility panel at our institution. This variant, known to be heterozygous and classified as 

pathogenic, was expected to be detected in a tumor sample subsequently analyzed with the Illumina 

TSO500 panel. 

However, the TSO500 Local App failed to report the mutation. The reason was that the variant 

position lies within a blacklisted region defined by the commercial pipeline, likely to avoid reporting 

recurrent artifacts. In contrast, ClinBioNGS successfully detected the MSH6 variant in this sample, 

as well as in three additional samples from the benchmarking cohort. In none of these cases was 

reported by the commercial pipeline. 

ClinBioNGS classified the variant as oncogenic and assigned it an “OK” flag. The variant showed 

intermediate VAF values, consistent with expected heterozygous germline origin, and had no strong 

representation in general population databases, further supporting its pathogenic classification. For 

the three additional cases, the absence of matched normal tissue precluded confirmation of their 

germline or somatic origin. 

The commercial pipeline’s blacklisting appears to be related to a different variant at the same position 

(chr2:47803500_AC/A; F1088Sfs*2), which is recurrently detected in TSO500 data (found in our 

TSO500-recurrent variant list). This variant was detected in 456 samples across the benchmarking 

cohort and is flagged as “Recurrent” by ClinBioNGS. This suggests that the position was blacklisted 

due to its association with this alternate, artifact-prone event. 

This case underscores the strength of ClinBioNGS’s transparent and informative flagging system: 

• The truly pathogenic variant was retained and reported with appropriate annotation. 

• The potentially artifactual variant was detected and explicitly flagged as “Recurrent”, aiding 

interpretation without suppressing evidence. 

In contrast to the commercial pipeline’s strategy of outright filtering, ClinBioNGS’s philosophy of 

reporting all potentially relevant variants—alongside contextual flags and quality indicators—

minimizes the risk of missing potentially actionable or clinically relevant genomic alterations. 
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4.4.4. Accurate detection of typical arm-level CNAs in uveal melanoma  

As shown previously (Figure 18), ClinBioNGS successfully identified canonical arm-level CNAs in 

a uveal melanoma case, including 8q AMP and 3p/q, 6q, and 8p DELs. These hallmark alterations 

were clearly visualized in the CNA plots, illustrating the pipeline’s ability to accurately detect both 

focal and arm-level CNAs. No additional data was available regarding orthogonal validation of this 

case, and no other uveal melanoma samples were sequenced with the TSO500 panel during the study 

period, limiting the possibility of further cross-validation. 

4.4.5. Detection of 1p/19q co-deletion in oligodendroglioma  

In a TSO500 case of oligodendroglioma validated by FISH as harboring a hallmark 1p/19q co-

deletion, the TSO500 Local App failed to report any CNA events. In contrast, ClinBioNGS clearly 

identified both 1p and 19q arm-level deletions, as visualized in Figure 40. FISH was performed on 

FFPE tumor tissue using dual-color probes for chromosomal regions 1p36/1q25 and 19q13/19p13 

(Vysis). A total of 100 non-overlapping nuclei were evaluated, with allelic loss defined as a red/green 

signal ratio ≤ 0.8. The observed signal ratios were 0.65 for chr1 and 0.6 for chr19, consistent with 

allelic loss of both 1p and 19q. These results confirm the presence of a canonical 1p/19q co-deletion, 

in agreement with the arm-level events detected by ClinBioNGS (FISH image was not available). 

 
Figure 40. Visualization of 1p/19q co-deletion in oligodendroglioma detected by ClinBioNGS. 

4.4.6. Cross-validation of arm-level CNAs in mesothelioma using sWGS  

A case of malignant pleural mesothelioma was analyzed using both the Illumina TSO500 panel and 

shallow whole genome sequencing (sWGS) in a research setting, providing an opportunity to cross-

validate CNA profiles obtained through targeted and genome-wide approaches. 
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ClinBioNGS successfully detected several arm-level CNAs in the TSO500 data that were concordant 

with those observed in the sWGS analysis, including 11q AMP and 12q, 14pq, and 22pq DELs. 

These hallmark CNAs were clearly visualized in the CNA plots produced by ClinBioNGS and 

matched the copy-number patterns observed in the genome-wide sWGS profile (Figure 41). 

 
Figure 41. Arm-level CNA detection in mesothelioma. 

(A) CNA profile from ClinBioNGS (TSO500 panel). (B) CNA profile from sWGS results. 

This case illustrates the reliability of ClinBioNGS in capturing broad chromosomal alterations even 

when derived from targeted sequencing panels. It also highlights the pipeline’s ability to identify 

biologically plausible, arm-level CNAs with performance comparable to low-pass genome-wide 

methods. 

The consistency with sWGS reinforces the pipeline’s potential utility for tumor types like 

mesothelioma, where chromosomal instability and arm-level alterations are clinically informative 

but may be under-reported in standard panel workflows. 
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5. DISCUSSION 

5.1. Overview and contextualization of ClinBioNGS 

In this work, ClinBioNGS is presented as a novel open-source bioinformatics pipeline specifically 

developed to address the analytical and interpretative challenges associated with somatic NGS cancer 

panels. The pipeline has been designed to enable the comprehensive processing, analysis, and 

interpretation of genomic alterations derived from tumor-only sequencing data. In addition, over the 

course of this thesis, ClinBioNGS has been extensively validated using both public standardized 

datasets and internal clinical cohorts, establishing ClinBioNGS as a reliable and versatile tool for 

precision oncology. 

The development of ClinBioNGS was driven by the increasing adoption of somatic NGS panels in 

routine clinical oncology and the critical need for standardized, transparent, reproducible, and 

scalable bioinformatics workflows that fulfill clinical-grade requirements4–13,18.  

Existing pipelines for somatic NGS panel analysis present important limitations in scope, flexibility, 

and clinical utility. To contextualize the development of ClinBioNGS within the landscape of existing 

solutions, we performed a comparative analysis of representative workflows covering commercial, 

institutional, and open-source pipelines (Supplementary Table 21). Commercial platforms (e.g., 

Archer Analysis, FoundationOne CDx, Illumina TSO500, QCI Interpret, SOPHiA DDM, Thermo 

Ion Reporter, VarSome Clinical) offer standardized, ready-to-use environments with vendor support 

and interactive graphical interfaces, but they are proprietary, limited in flexibility, and often restricted 

to fixed assays. Institutional pipelines such as MSK-IMPACT or DFCI OncoPanel provide clinically 

validated frameworks, but remain panel-specific and typically inaccessible outside their home 

institutions. 

By contrast, academic and open-source workflows (e.g., BALSAMIC, bcbio-nextgen, nf-core/sarek, 

DNAscan2, MIRACUM-Pipe, PipeIT2, SCHOOL, TOSCA) provide transparency and adaptability, 

yet they often lack end-to-end integration, multi-omics support, or clinically oriented annotation and 

reporting. Many rely on static outputs, provide limited visualization capacity, or are no longer 

actively maintained. 

ClinBioNGS was designed to bridge this gap by combining the portability and transparency of open-

source solutions with the comprehensiveness and interpretability demanded by clinical and 

translational contexts. Compared with other pipelines, it uniquely integrates DNA and RNA analyses 

within a single workflow, supports tumor-only data, provides a comprehensive annotation framework 

with clinical prioritization, generates informative QC and variant-specific visualizations, and delivers 
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interactive HTML reports of results. This positions ClinBioNGS as a robust, versatile, and actively 

maintained alternative that extends beyond the limitations of existing solutions. 

5.2. Key innovations and strengths of the pipeline 

ClinBioNGS introduces a series of methodological and practical innovations that distinguish it from 

existing solutions (Supplementary Table 21) for somatic NGS panel analysis. The pipeline was 

designed to achieve a robust balance between flexibility, reproducibility, and clinical applicability, 

addressing many of the recurring challenges in routine genomic diagnostics34,36,40,42. 

5.2.1. Integrated DNA and RNA analysis 

A key strength of ClinBioNGS is its ability to integrate both DNA- and RNA-based analyses within 

a unified, standardized workflow—an uncommon feature among most existing pipelines that often 

focus exclusively on a single data type. This dual capability enables the detection of diverse genomic 

alterations, including small variants (SNVs and InDels), CNAs, gene fusions, splice variants, and 

complex genomic biomarkers such as TMB and MSI. This multi-layered integration enables a more 

comprehensive tumor profiling, enhancing the detection of complex and co-occurring genomic 

events with potential clinical relevance10,36,40–42. 

5.2.2. Standardized and comprehensive annotation framework 

A central strength of ClinBioNGS lies in its unified and fully standardized annotation framework, 

specifically designed to support accurate and clinically meaningful interpretation of somatic 

alterations4,35,36,48. Key features include: 

• Panel-agnostic results: ClinBioNGS applies a consistent analytical strategy across different 

commercial panels, producing harmonized output formats and variant classifications. This 

ensures interpretability and comparability of results regardless of panel design. 

• Consistent genome reference usage: All analyses are performed using the updated GRCh38 

reference genome, which improves alignment accuracy and compatibility with current 

annotation resources9,10,40. For backward compatibility with legacy systems, output files also 

include liftover coordinates to GRCh37. 

• Standardized file formats: The entire pipeline is built around widely accepted bioinformatics 

standards9,38,46 (e.g., FASTQ, BAM, VCF), with fully annotated VCF files generated for each 

variant type (SNVs/InDels, CNAs, fusions, splice variants). This ensures interoperability 

with downstream tools and promotes transparency in the variant review9,42. 
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• Up-to-date gene and transcript annotations: Annotations are based on HGNC-approved gene 

symbols, MANE Select transcripts, and HGVS-compliant nomenclature, in line with current 

clinical reporting best practices. 

• Integration of curated knowledge bases: Multiple public and expert-curated resources—

including GENIE, CIViC, CTAT, and others—are incorporated to enrich variant annotations 

with up-to-date biological, functional, and clinical information. 

• Implementation of international prioritization guidelines: ClinBioNGS integrates 

recommendations from ClinGen/CGC/VICC for oncogenicity classification and 

AMP/ASCO/CAP guidelines for assessing clinical significance, enabling standardized and 

evidence-based variant prioritization. 

This comprehensive and transparent annotation strategy supports robust variant interpretation while 

maintaining full traceability of the underlying evidence35. All annotations are directly accessible 

through the interactive HTML report, empowering users to evaluate variants in detail within a 

clinically oriented context. 

5.2.3. Internal flagging and prioritization system 

ClinBioNGS incorporates a comprehensive internal flagging system designed to enhance 

transparency, interpretability, and clinical relevance in variant reporting34,62. Each detected alteration 

is systematically evaluated and assigned one or more flags based on calling- and context-based 

indicators to help distinguish between well-supported and borderline findings. 

Rather than discarding borderline or lower-confidence alterations through hard filters without any 

explanation in the final output—as commonly done in commercial pipelines—ClinBioNGS retains 

and transparently flags such variants, allowing users to assess variant quality and relevance with full 

contextual awareness. 

For example, a particularly valuable feature of this approach is the systematic flagging of potential 

germline variants, which are compiled in a dedicated section of the final report. This allows for 

focused clinical review of potentially heritable findings31,135, while maintaining the somatic scope of 

the pipeline. 

By reducing the risk of FNs (e.g., discarding rare but relevant variants) and FPs (e.g., reporting 

artifacts as real events), the flagging system supports nuanced interpretation and multidisciplinary 

oversight, which is particularly valuable in complex or borderline cases. 
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5.2.4. Tumor-only analytical strategies 

In routine somatic testing, the lack of matched normal samples poses a significant challenge for 

accurately distinguishing somatic mutations from germline variants and technical artifacts10,12,41. 

ClinBioNGS addresses this limitation by implementing a set of tumor-only analytical strategies 

specifically optimized for this context: 

• Multi-caller consensus strategy for small variant detection: ClinBioNGS integrates the 

output of multiple variant callers to increase sensitivity and robustness, particularly for low-

VAF variants and complex InDels. This consensus approach mitigates the limitations of any 

single tool and reduces the impact of caller-specific artifacts, improving both confidence and 

reproducibility of variant calls10,40,41. 

• Panel-specific pooled reference baselines for CNA and MSI analysis: Instead of relying on 

matched normals, ClinBioNGS leverages curated tumor-only reference datasets specific to 

each panel. These pooled baselines enable effective estimation of CNAs and MSI, allowing 

accurate detection of somatic events even in tumor-only sequencing data. In benchmarking 

analyses, these methods achieved performance metrics comparable to, or exceeding, those 

of commercial pipelines. 

Together with the pipeline’s comprehensive annotation framework and internal flagging system, 

these tumor-only strategies ensure a more reliable and transparent classification of tumor-specific 

alterations in the absence of normal controls. This enables broader applicability of ClinBioNGS in 

real-world clinical settings, where matched normal samples are rarely available. 

5.2.5. Generation of informative plots and interactive reports 

One of the key features that distinguishes ClinBioNGS from other existing tools is its ability not only 

to perform comprehensive analyses, but also to generate dedicated visualizations for each type of 

result. All outputs are integrated into a fully interactive, self-contained HTML report, which greatly 

facilitates the interpretation and exploration of complex genomic data. 

Unlike most academic pipelines—which often provide only static outputs and limited visualization 

capacity—ClinBioNGS delivers intuitive, interactive summaries that enhance accessibility. While 

some commercial platforms offer interactive graphical interfaces, they are typically restricted to 

proprietary environments with limited flexibility and transparency. By contrast, ClinBioNGS 

combines interactivity with openness and adaptability, ensuring reproducible, user-friendly reporting 

across diverse contexts (Supplementary Table 21). 

In clinical practice, this functionality supports multidisciplinary communication, for instance in 

MTBs, and ultimately streamlines the clinical decision-making process for each patient. 
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5.2.6. Modular, portable, and open-source design 

ClinBioNGS is built on a modular architecture implemented in Nextflow, with containerization 

through Singularity images to ensure reproducibility, scalability, and portability across environments 

ranging from local workstations to HPC systems36,53,62,73,74. Its flexible configuration system allows 

seamless adaptation to diverse experimental and clinical setups, as demonstrated by its ability to 

analyze multiple panels from both public datasets and routine diagnostic data across institutions. 

The open-source availability of ClinBioNGS further enhances transparency and adaptability, 

enabling laboratories and research groups to inspect, customize, and extend the workflow to their 

specific needs. Version-controlled profiles and environment-independent execution guarantee 

consistent results regardless of infrastructure, while fostering collaborative development and 

alignment with best practices in clinical bioinformatics34,53,62,65. 

By integrating modularity, portability, and open access, ClinBioNGS stands as a robust, institution-

independent solution suitable for a wide range of applications—from diagnostic workflows in 

clinical laboratories to exploratory cancer research—supporting the evolving needs of precision 

oncology53. 

5.3. Validation and benchmarking performance 

The analytical performance of ClinBioNGS was comprehensively evaluated using both standardized 

public reference datasets and large-scale real-world clinical tumor samples. This dual benchmarking 

approach enabled a robust assessment of the pipeline’s accuracy, reproducibility, and concordance 

across sequencing platforms, commercial panels, and variant classes. Results confirmed that 

ClinBioNGS delivers reliable and consistent outputs in both controlled benchmarking and routine 

clinical contexts, supporting its use in diverse diagnostic and research applications. 

5.3.1. High analytical accuracy in SEQC2 reference datasets 

Benchmarking with SEQC2 public reference datasets provided a rigorous framework for assessing 

small variant detection against established ground truth54,105. The evaluation included six commercial 

pan-cancer NGS panels from different vendors, representing a broad spectrum of panel designs and 

technical challenges. ClinBioNGS achieved consistently high accuracy across all datasets, with 

performance metrics comparable to vendor-provided pipelines. These results validate the robustness 

of its small variant calling strategy and demonstrate its capacity to operate as a truly panel-agnostic 

workflow under standardized conditions. 
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5.3.2. Robust performance across real-world clinical tumor samples 

To complement benchmarking on public datasets, ClinBioNGS was evaluated on retrospective 

internal cohorts encompassing three commercial NGS panels analyzed across different institutions. 

This real-world benchmarking provided a comprehensive assessment of performance across variant 

types and clinical contexts. ClinBioNGS demonstrated high concordance with established 

commercial pipelines, underscoring its readiness to support routine use. 

Observed discrepancies primarily involved borderline variants of limited clinical significance. 

Nonetheless, certain well-supported small variants required closer attention. Several ClinBioNGS-

only calls were located in regions blacklisted by the TSO500 pipeline, while others were omitted by 

OCA and OPA tools due to their absence from predefined SNV/InDel reporting lists. Although not 

immediately actionable, some of these variants—including oncogenic or likely oncogenic findings—

may acquire clinical value as new evidence emerges. Conversely, some TSO500 commercial-only 

calls can be attributed to differences in reference genome versions, such as the known failure to detect 

U2AF1 S34F in GRCh38136, which is used by ClinBioNGS. More broadly, most commercial-only 

alterations were not truly missed by ClinBioNGS. They were excluded from the comparative because 

they were associated with calling-related flags (i.e., primary flags). However, these events would still 

be surfaced for expert review, allowing their borderline nature to be recognized and evaluated in the 

context of available clinical evidence. 

ClinBioNGS identified a large number of CNAs not reported by commercial pipelines, reflecting its 

broader detection scope. For example, the TSO500 Local App reports amplifications in only 59 of 

523 genes, and the OCA pipeline restricts analysis to amplifications, explaining most discrepancies. 

Among genes assessed by ClinBioNGS and commercial solutions, copy ratio values showed strong 

correlation, although slight differences in copy-number estimates were observed—likely due to TP 

adjustments applied by commercial pipelines. ClinBioNGS instead adopts a more conservative 

strategy, avoiding purity correction to ensure stable results when purity estimates are unavailable or 

unreliable. While this may lead to CNA underestimation in low-purity samples, users are encouraged 

to interpret CNA results in the context of tumor cellularity. Future versions will incorporate panel-

specific models for purity-adjusted CNA estimation, leveraging our large tumor cohorts. 

Regarding biomarker classification, ClinBioNGS demonstrated strong concordance with commercial 

pipelines for both TMB and MSI status. Most discordant cases occurred near classification 

thresholds, consistent with the pipeline’s conservative mutation filtering and robust MSI estimation 

calibrated on a broad baseline. In one notable case, an MSI-High classification by ClinBioNGS was 

later confirmed by repeat testing, illustrating the pipeline’s capacity to detect early or borderline 

biomarker signals not captured by commercial tools. 



5. Discussion  129 

 

 

Overall, this multi-panel benchmarking shows that ClinBioNGS achieves performance comparable 

to commercial pipelines in routine analyses while providing enhanced sensitivity, a broader detection 

scope, and improved interpretability in complex or borderline scenarios. Its transparent reporting and 

robust flagging system ensure that even low-confidence or atypical events are highlighted for expert 

evaluation—an essential feature in clinical genomics, where seemingly marginal findings can hold 

diagnostic or therapeutic relevance4,34,35,42,48. 

5.3.3. Extended capabilities in real-world case studies 

Beyond benchmarking and quantitative comparisons, a series of real-world clinical and research 

cases further illustrated the practical value of ClinBioNGS in diverse and challenging scenarios. 

These cases highlight the pipeline’s ability to not only replicate the outputs of commercial pipelines 

but also to enhance the resolution, sensitivity, and interpretability of complex genomic alterations 

that may influence diagnostic, prognostic, or therapeutic assessments. 

Several cases demonstrated the recovery of clinically relevant variants missed by commercial 

solutions, either due to overly strict quality filters, blacklisted regions, or incomplete algorithmic 

support. For example, ClinBioNGS successfully detected a known pathogenic germline mutation in 

MSH6 previously validated by a dedicated hereditary panel, which had been filtered out by the 

commercial pipeline because it fell within a blacklisted region which accumulates recurrent artifacts. 

Unlike a binary reporting strategy, ClinBioNGS flagged this variant appropriately while retaining it 

for expert review, thereby demonstrating the advantage of transparent reporting over hard filtering. 

In other cases, the multi-caller consensus strategy proved instrumental in resolving complex InDels, 

particularly EGFR exon 19 deletions, which were misclassified or filtered out by commercial 

software. The ability to disentangle multiallelic or compound InDel events using multiple callers 

enhanced variant representation and VAF estimation, improving interpretability for therapy 

selection10,40,41. Although the pipeline currently does not retain phasing information across 

consecutive variants, it provides all variant-level details and BAM files to facilitate manual 

inspection when required. 

The broader CNA detection scope of ClinBioNGS also provided added clinical value. In tumors such 

as oligodendroglioma and uveal melanoma, ClinBioNGS successfully identified canonical arm-level 

CNAs that were not reported by vendor pipelines, enabling a more comprehensive molecular 

characterization. Several of these results were concordant with orthogonal analyses by FISH or 

shallow WGS, reinforcing the reliability of the CNA module, even for large-scale chromosomal 

alterations. 



130  5. Discussion 

 

 

Taken together, these case studies showcase the real-world utility of ClinBioNGS in scenarios where 

data complexity, platform limitations, or algorithmic constraints hinder accurate variant reporting. 

They emphasize the value of combining high sensitivity with interpretive flexibility, allowing 

variants of uncertain or borderline confidence to be surfaced with sufficient context for expert review. 

This approach minimizes the risk of excluding potentially actionable findings and reinforces 

ClinBioNGS as a valuable asset for both clinical diagnostics and translational research. 

5.4. Limitations and current challenges 

5.4.1. Inherent challenges in tumor-only somatic NGS panel analysis 

Despite the strengths demonstrated by ClinBioNGS, several intrinsic challenges persist in the 

analysis of tumor-only NGS panel data. These limitations are not specific to this pipeline but rather 

reflect broader obstacles commonly encountered in clinical bioinformatics and somatic variant 

interpretation: 

• Lack of universal gold standards: The absence of universally accepted reference datasets and 

standardized workflows for tumor-only analysis complicates benchmarking and 

harmonization across laboratories34,54,62. The wide variety of available tools, databases, and 

analytical strategies further contributes to variability in implementation and interpretation35. 

• Absence of matched normal tissue and underrepresentation of population diversity: Without 

access to matched samples, it is difficult to definitively distinguish somatic mutations from 

germline variants and to effectively suppress panel- or platform-specific artifacts. While 

population databases assist in filtering common germline variants, rare germline 

alterations—particularly those in underrepresented populations—may be misclassified as 

somatic10,12,41. Conversely, somatic variants present in these databases can be incorrectly 

excluded. Such misclassifications may result in diagnostic inaccuracies or inappropriate 

therapeutic decisions, especially when germline mutations associated with hereditary cancer 

risk are missed137. 

• Impact of TP on CNA detection: The accuracy of CN estimation is influenced by tumor 

cellularity, especially for events near detection thresholds where diluted signals may lead to 

underestimation. This may impact both sensitivity and specificity for detecting low-level 

AMPs or DELs10,47. 

• Low-VAF variant detection (<1–2%): Identifying variants at very low VAFs remains 

inherently difficult9–11,54. While ClinBioNGS’s multi-caller consensus strategy enhances 

detection robustness, tuning for sensitivity must be carefully balanced against the risk of FPs 

in a clinical setting. 
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• Challenges in RNA-based alteration detection: Detection sensitivity for gene fusions and 

splice variants depends heavily on sequencing depth, read quality, and pre-processing 

choices such as deduplication9,10,54,56,57. Subtle differences in thresholds across pipelines can 

result in discordant or missed events, particularly for low-abundance transcripts. 

ClinBioNGS addresses many of these limitations through a comprehensive annotation and 

prioritization system, conservative yet informative flagging of uncertain events, and transparent 

reporting of all detected variants, including those near confidence thresholds. However, certain edge 

cases will inevitably require expert review within the appropriate clinical context to ensure accurate 

interpretation, underscoring the indispensable role of multidisciplinary evaluation in MTBs for 

precision oncology4,34,35,42,48. 

5.4.2. Limitations of the benchmarking approach 

While the benchmarking efforts presented in this thesis provided valuable insights into the 

performance of ClinBioNGS, several important limitations must be acknowledged: 

• Limited reference resources for CNA and RNA validation: Unlike small variants, for which 

high-quality reference datasets such as SEQC2 are available, benchmarking of CNAs and 

RNA-based events remains challenging due to the lack of publicly accessible gold-standard 

datasets for somatic NGS panels. This limits the ability to independently assess these 

genomic alterations under standardized conditions54,62. 

• Constraints in experimental validation: In the clinical routine, the limited availability of 

tumor tissue restricts opportunities for orthogonal validation of discordant calls9–11,54. 

• Differences in genome reference builds: Several observed discrepancies may also arise from 

differences in reference genome versions. While ClinBioNGS applies a consistent GRCh38-

based reference, the commercial pipelines used for comparison were operating on the older 

GRCh37 build during the benchmarking period. Such differences can affect variant 

coordinates, coverage, and mapping quality, particularly in complex genomic regions9,10,40. 

• Pipeline versioning and evolving vendor tools: The benchmarking was conducted using 

commercial pipeline versions available at the start of this study. However, vendor platforms 

are continuously evolving, and more recent versions may now offer improved analytical 

performance. For example, Illumina’s updated DRAGEN138 commercial platform for 

TSO500 provides broader CNA coverage compared to the Local App version used in this 

study. Thus, the comparisons reported here represent a temporal snapshot of performance 

and should be interpreted in that context. 

Overall, while these limitations introduce important caveats, the benchmarking results nonetheless 

provide strong evidence of the robustness and competitiveness of ClinBioNGS across distinct 
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genomic alterations and platforms. As both ClinBioNGS and commercial solutions continue to 

evolve, future benchmarking using updated datasets and tools will be essential to further refine 

performance comparisons and guide pipeline optimization. 

5.5. Perspectives for future developments 

The modular and open architecture of ClinBioNGS positions it for continued evolution in parallel 

with advances in sequencing technologies, data interpretation frameworks, and precision oncology 

workflows. Several promising directions for future development include: 

• Expansion of multi-caller strategies to additional variant types: Extending the current 

consensus approach to CNA and RNA alterations could enhance sensitivity, robustness, and 

variant confidence scoring, particularly for low-abundance or borderline cases40,41. 

• Continuous enrichment of the annotation framework: Regular updates incorporating 

emerging curated resources (e.g., ClinGen135, OncoKB28, COSMIC25) will maintain the 

clinical and biological relevance of variant interpretations. 

• Incorporation of additional scales of actionability: New frameworks, such as ESCAT59, will 

provide more integrative clinical prioritization and evidence grading of alterations. 

• Adoption of updated genome references: Integration of the T2T-CHM1344 reference genome 

may improve alignment accuracy and variant detection in regions poorly represented in 

GRCh38, particularly for complex or repetitive loci. 

• Adoption of new and improved standard file formats: Incorporating support for updated 

formats such as CRAM, a compressed alternative to BAM, will enable more efficient data 

storage and management without compromising compatibility with downstream tools9,43. 

• Enhanced somatic-germline discrimination: Adding support for matched tumor-normal 

pipelines or leveraging panel-specific PoN can improve the classification of rare germline 

variants and mitigate panel-related artifacts in tumor-only data9,10,41. 

• Automated TP and contamination assessment: Implementing modules for estimating TP and 

detecting sample contamination will improve QC metrics and support better interpretation 

of CNAs and low-frequency variants9–11,54. 

• TP-aware CNA recalibration: Providing CN values adjusted by estimated TP could facilitate 

the interpretation of borderline AMPs or DELs and enhance downstream clinical utility. 

• Integration of RNA-based expression analysis: Adding transcript quantification and 

expression imbalance modules could aid in prioritizing fusions and splice variants based on 

functional impact and aberrant expression. 
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• Expanded biomarker profiling: Development of additional modules for emerging 

biomarkers—such as mutational signatures, chromosomal instability, HRD, and complex 

rearrangements—will further support translational and research applications10,40,51,54. 

• Development of interactive query tools for variant registries: Building a visual explorer to 

interactively query, filter, and review aggregated variant data across samples and panels 

would support institutional audits, cohort-level analyses, and the development of internal 

genomic knowledge bases. 

• Support for additional data types and study designs: Broadening compatibility to WES and 

WGS sequencing approaches, cfDNA from liquid biopsies, and long-read sequencing 

platforms (e.g., Oxford Nanopore, PacBio) will extend the pipeline's applicability to a wider 

range of clinical and research scenarios5–7,9,10,13,34,39. 

• Improved data-sharing interoperability: Incorporation of established standards for secure 

data exchange (e.g., GA4GH Beacon65 and related APIs) could facilitate regulated genomic 

data sharing across institutions, enhancing collaboration and multi-center integration62,64. 

These future directions highlight the capacity of ClinBioNGS to remain a dynamic and sustainable 

platform, supporting both clinical diagnostics and research-driven precision oncology in an evolving 

genomic landscape. 

5.6. Final remarks 

ClinBioNGS emerges as an open-source, comprehensive, and flexible, bioinformatics pipeline 

tailored to the analytical and interpretative challenges of somatic NGS cancer panels. By integrating 

DNA and RNA variant detection within a unified workflow—together with standardized annotation, 

detailed flagging, and informative reporting—it provides a robust solution to support precision 

oncology in both clinical and translational settings. 

Its modular and transparent architecture, built on containerized environments and workflow 

management systems, ensures reproducibility, portability, and long-term sustainability. The capacity 

to adapt to diverse sequencing technologies, panel designs, and sample types makes ClinBioNGS 

widely applicable across institutions, fostering harmonization and standardization in somatic variant 

analysis. 

Extensive validation using public benchmark datasets and large-scale real-world clinical tumor 

cohorts confirmed the pipeline’s analytical accuracy, reliability, and concordance with commercial 

solutions. Importantly, ClinBioNGS was able to recover relevant variants and biomarkers overlooked 

by vendor pipelines, underscoring its potential to enhance diagnostic sensitivity and broaden the 

detection of clinically meaningful alterations, particularly in complex or borderline cases. 
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As genomic medicine advances and the complexity of tumor sequencing data increases, tools like 

ClinBioNGS will be essential to ensure that results are not only accurately generated but also 

meaningfully interpreted and effectively communicated to clinicians. By bridging the gap between 

raw sequencing data and clinical insights, ClinBioNGS contributes a scalable and transparent 

bioinformatics solution to the evolving landscape of precision oncology. 
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6. CONCLUSIONS 

This thesis presents the design, implementation, and evaluation of ClinBioNGS, an open-source, 

panel-agnostic, and comprehensive bioinformatics pipeline tailored for the analysis of somatic NGS 

cancer panels. The project was driven by in-depth research to identify and address the key 

computational challenges involved in tumor-only NGS panel analysis, culminating in a robust 

solution suitable for both routine diagnostics and translational research applications. 

The main conclusions of this thesis are as follows: 

1. ClinBioNGS was developed as a portable, open-source workflow that enables standardized 

and reproducible analysis of somatic NGS panel data across diverse settings. 

2. Its modular architecture, implemented using Nextflow and containerized environments, 

ensures flexibility and portability, enabling panel-agnostic execution across heterogeneous 

computing infrastructures. 

3. The pipeline supports the comprehensive detection of DNA and RNA somatic alterations—

including small variants, CNAs, gene fusions, splice variants, and complex biomarkers such 

as TMB and MSI—within a single unified analytical framework. 

4. ClinBioNGS incorporates a multi-caller consensus strategy for small variant detection and 

uses panel-specific pooled references for the analysis of CNAs and MSI, providing robust 

performance in tumor-only data. 

5. It integrates automated modules for variant annotation and clinical prioritization, leveraging 

curated databases and established guidelines to support consistent and clinically relevant 

interpretation. 

6. The workflow includes dedicated systems for QC, variant flagging, and custom filtering, 

ensuring transparency and supporting expert review of potentially actionable findings. 

7. ClinBioNGS integrates a local variant database module to store and retrieve detected variants 

across analyses, facilitating longitudinal tracking and reuse of internal knowledge. 

8. The pipeline results are delivered through self-contained, interactive HTML reports that 

combine intuitive visualizations and comprehensive tables, enhancing interpretability and 

facilitating use in multidisciplinary settings. 

9. All annotations are directly accessible through the interactive HTML report, empowering 

users to evaluate variants in detail within a clinically oriented context. 
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10. Validation with SEQC2 multi-panel public reference datasets confirmed high accuracy in 

small variant detection, supporting the pipeline’s analytical reliability. 

11. Benchmarking on retrospective, real-world clinical datasets from multiple institutions and 

commercial NGS panels showed that ClinBioNGS performs comparably to existing 

commercial solutions, while offering broader detection capabilities and greater 

interpretability, particularly in complex or ambiguous cases. 

12. Real-world case studies further demonstrated the pipeline’s adaptability across both 

diagnostic and research applications, highlighting its added value in resolving challenging 

variants and improving the resolution to assess CNAs. 
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APPENDIX 

A1. Supplementary Tables 

Supplementary Table 1. Software tools required by ClinBioNGS. 

Each entry includes the tool name, version, and its role within the pipeline. Resources are listed in alphabetical order. 

Tool Version Role in ClinBioNGS 

ABRA275 2.24 Realignment of DNA reads around target regions 

ASCETS76 1.1.2 Estimate arm-level CNAs from inferred segment copy ratio 

AWS CLI 2.15.32 Download of reference genomes from the AWS iGenomes repository77 

Bcftools78 1.16 VCF processing and filtering 

BCL Convert™ 4.0.3 Conversion of BCL to FASTQ 

Bedtools79 2.31.0 Processing and manipulation of BED files 

Bioawk80 1 Text manipulation for biological data 

BWA-MEM281 2.2.1 Alignment of DNA reads to the reference genome 

CNVkit47 0.9.9 CNA analysis from DNA reads 

CTAT-splicing82 0.0.2 Detection and annotation of splicing variants from RNA data 

Ensembl VEP83 113 Annotation of small variants 

FastP84 0.23.4 Pre-processing and quality filtering of FASTQ files 

FastQC85 0.12.1 FASTQ QC 

GATK486 4.3.0.0 
File manipulation, deduplication (MarkDuplicates), small variant calling 

(Mutect2127), and BAM QC 

Gencore87 0.17.2 UMI-aware deduplication for paired-end reads 

Mosdepth88 0.3.3 Per-base and region-level read coverage calculation 

MSIsensor-pro89 1.2.0 MSI detection from DNA reads 

MultiQC90 1.22.3 Aggregation and visualization of QC metrics 

Octopus91 0.7.4 Small variant calling from DNA reads 

Pisces92 5.3.0.0 Small variant calling from DNA reads 

R93 4.0.4 Data manipulation, statistical analysis, and generation of tables, plots, and reports 

Samtools78 1.18 Processing and manipulation of BAM and FASTQ files 

STAR-Fusion94,95 1.13.0 Detection of fusion transcripts from RNA data 

TMAP / TVC96 5.12.1 Alignment and small variant calling for Ion Torrent DNA reads 

UCSC bigBedToBed97 377 Conversion of bigBed files to BED format 

UCSC liftOver98 377 Conversion of genomic coordinates between genome builds (e.g., hg19 to hg38) 

UMI-tools99 1.1.2 UMI-aware deduplication for single-end reads 

UMI-transfer100 1.0.0 Transfer of UMI information from separate FASTQ files into read headers 

VarDict101 1.8.3 Small variant calling from DNA reads 

Vt60 0.57721 VCF decomposition and normalization of indels 

Xengsort102 1.1.0 Filtering of mouse-derived reads in xenograft sequencing data 
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Supplementary Table 2. External resources required by ClinBioNGS. 

Each entry includes the resource name, version (if applicable), and its role within the pipeline. Resources are grouped by 

category for clarity. 

Category Resource Version Role in ClinBioNGS 

User-defined 

metadata files 

Sample sheet - Specify DNA and RNA samples 

SampleInfo.csv - 
Provide metadata (e.g., sex, tumor, 

purity, DOID) 

TumorNames.csv - 
Define specific tumor names and 

associated DOIDs121,122 

WhitelistGenes.csv - 
Define tumor-specific gene lists for 

prioritization 

Genome 

resources 

Human reference genome77 GRCh38 
Define reference genome for DNA 

analysis 

BWA-MEM2 indexed genome - 
Enable DNA alignment via BWA-

MEM281 

TMAP indexed genome - Enable DNA alignment via TMAP96 

Mouse reference genome77 GRCm38 Enable mouse read filtering 

Xengsort indexed genome - 
Support Xengsort-based mouse 

filtering102 

UCSC cytoband103 hg38 Annotate gene cytobands 

UCSC arm coordinates hg38 Support CNA arm-level annotations 

UCSC hg38 / hg19 liftover chain98 - Convert genomic coordinates 

MANE104 

annotation 

files 

MANE GTF 1.4 Define MANE transcript structures 

MANE summary - List MANE transcript-gene associations 

MANE genes / exons / coding / introns - Annotate regions based on MANE 

Target region 

files 

TSO500 / SEQC2105 raw manifests hg19 Define panel target regions 

Target 4-column BED hg38 Define final analysis regions 

Target genes - Annotate panel-specific gene content 

Extended BED / Interval list hg38 Apply padding for small variant calling 

Off-target BED hg38 
Support BAM clipping in amplicon 

panels 

Target chromosomes - Enable per-chromosome variant calling 

VCF headers 
VCF headers for consensus, annotation, 

CNA, fusion, splicing 
4.2 Standardize output formatting 

Gene role and 

oncogenicity 

NCG106 resource file 1.7 
Annotate oncogenes and tumor 

suppressors 

Catalog of Validated Oncogenic 

Mutations58 
20180130 List of validated oncogenic variants 

CIViC14 oncogenic evidence 01-Nov-2024 Support for oncogenic classification 

GENIE26 oncogenic mutations 16.1 Previously classified oncogenic variants 

ClinGen/CGC/VICC48 oncogenic  - Previously classified oncogenic variants 

VEP-related 

resources 

VEP cache83 113 Reference data for VEP annotation 

gnomAD24 4.1 Population allele frequencies 

CADD SNVs/InDels123 1.7 Pathogenicity prediction 

REVEL107 1.3 Pathogenicity prediction 

AlphaMissense108 hg38 Pathogenicity prediction 

ClinVar109 VCF 20241103 Pathogenicity annotations 

CIViC14 accepted VCF 01-Nov-2024 Clinical evidence annotations 

Cancer 

hotspots 

Panel-specific hotspot BED hg38 Define user-specific hotspot regions 

GENIE26 whitelist BED hg19 Define known somatic hotspots 

Cancer Hotspots110 V2 Define statistically enriched mutations 
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Problematic 

and high-

confidence 

regions 

Panel-specific blacklist BED hg38 User-defined problematic regions 

UCSC problematic regions103 20240606 Define problematic regions 

GIAB stratification BED55 3.5 Define problematic regions 

CTR regions26,111 hg38 Define high-confidence callable regions 

GENIE26 GENIE mutation, CNA, fusion data 16.1 Annotate variant recurrence in cancer 

Clinical 

evidence 

(CIViC)14 

CIViC variant summaries (raw) 01-Nov-2024 List of CIViC variants 

CIViC molecular profiles (raw) 01-Nov-2024 Variant-to-evidence mapping 

CIViC clinical evidence (raw) 01-Nov-2024 Clinical evidence 

CIViC evidence (processed) 01-Nov-2024 
Tumor-specific curated clinical 

evidence 

RNA 

resources 

CTAT library82 Oct292023 Fusion/splicing detection reference 

CTAT splicing database82 Jun232020 
Annotate cancer-associated splice 

events 

Mitelman Database112 20241105 Annotate fusion recurrence in cancer 

Fusion/Splicing whitelists - 
Curated list of known fusion/splice 

variants113–119 

Panel-specific 

files 

TSO500 / OPA / OCA recurrent 

variants 
2024XX 

Flag panel-specific recurrent small 

variants 

TSO500 / OPA / OCA CNA baseline 2024XX Enable copy number analysis 

TSO500 MSI baseline 20230124 Define baseline for MSI analysis 

Other 

resources 

MSigDB120 MMR gene sets 2024.1 MSI-related annotations 

TVC parameters file96 - TVC configuration for Ion Torrent 

Sequence-accessible regions47 hg38 
Define callable genome for CNA 

baseline 

CNA problematic regions (GIAB)55 hg38 
Exclude regions with unreliable 

coverage 

Microsatellite loci (10–20bp)89 hg38 Identify MSI loci 
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Supplementary Table 3. Standards for oncogenicity classification of somatic variants based on ClinGen/CGC/VICC SOP recommendations. 

This table summarizes the evidence types used by ClinBioNGS to classify small variants by oncogenic potential. Each evidence type is assigned a weight (in points) and linked to specific 

criteria implemented in the pipeline. 

Type Category Points Evidence Description Criteria 

Oncogenicity 

Very Strong +8 OVS1 Null variant in a validated TSG 
VEP “HIGH” impact (excluding “stop_lost”) in a TSG (≥2/3 

evidence in NCG) 

Strong +4 

OS1 
Same AA change as a known “oncogenic” variant (using this 

standard). 

Same AA change as variant labeled “Oncogenic” in GENIE or 

ClinGen/CGC/VICC datasets 

OS2 
Functional studies support an oncogenic effect. AA change is 

not compatible with OS1. 

Variant in CIViC (oncogenic evidence) or Catalog of Validated 

Oncogenic Mutations at nucleotide or AA (not OS1) level 

OS3 
Same AA change as a Cancer Hotspot mutation (≥50 position 

count and ≥10 mutation count). Not compatible with OS1. 

Cancer Hotspots: position count ≥50 and mutation count ≥10 

(not OS1) 

Moderate +2 

OM1 Located in a critical functional domain. Not implemented due to lack of data 

OM2 
In-frame InDel in oncogene/TSG or stop-loss in TSG. Not 

compatible with OVS1. 

VEP “inframe_deletion” or “inframe_insertion” in 

oncogene/TSG, or “stop_lost” in TSG 

OM3 

Same AA change as a Cancer Hotspot mutation (<50 position 

count and ≥10 mutation count). Not compatible with OM1 or 

OM4. 

Cancer Hotspots: position count <50 and mutation count ≥10 

(not OM1 or OM4) 

OM4 
Same AA position, different change than a known “oncogenic” 

variant. Not compatible with OS1, OS3 or OM1. 

VEP “missense_variant” and AA position in GENIE/ClinGen 

“Oncogenic” dataset (not OS1 or OS3) 

Supporting +1 

OP1 All in silico predictors support oncogenicity. Unique predictor term is “likely_pathogenic” 

OP2 Somatic variant in cancer with a single genetic etiology. Not implemented due to lack of data 

OP3 Same AA change as Cancer Hotspot mutation with <10 samples. Cancer Hotspots: mutation count <10 

OP4 Absent or extremely rare in population controls (gnomAD). gnomAD pVAF ≤0.05% 

Benignity 

Supporting -1 

SBP1 All in silico predictors suggest no impact. Unique predictor term is “likely_benign” 

SBP2 Synonymous variant with no predicted effect. VEP impact is “LOW” or “MODIFIER” (not OP1) 

Strong -4 
SBS1 Minor AF between 1% and 5% in gnomAD. 1% < gnomAD pVAF ≤ 5% 

SBS2 Functional studies show no oncogenic effects. Not implemented due to lack of data 

Very Strong -8 SBVS1 Minor AF >5% in gnomAD. gnomAD pVAF > 5% 
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Supplementary Table 4. Standards for clinical variant prioritization based on AMP/ASCO/CAP guidelines. 

This table outlines the evidence categories used to classify variants according to clinical significance, as implemented in ClinBioNGS. Each category includes a description, and the specific 

evidence-based criteria applied within the pipeline. Classification follows tier-based recommendations from AMP/ASCO/CAP guidelines. 

Clinical 

significance 
Category Description Criteria 

Strong 

Tier IA 
Therapeutic, prognostic, or diagnostic evidence from FDA-approved therapies or 

professional guidelines. 

CIViC evidence (therapeutic, prognostic, diagnostic) with 3–5 stars 

and level “A” for the same tumor type. 

Tier IB Evidence from well-powered studies with expert consensus. 
CIViC evidence (therapeutic, prognostic, diagnostic) with 3–5 stars 

and level “B” for the same tumor type. 

Potential 
Tier IIC 

Evidence includes FDA-approved therapies in other tumor types or 

investigational therapies; multiple smaller studies with some consensus. 

CIViC evidence with 3–5 stars and level “A” or “B” in other 

tumors, or level “C” (any tumor). 

Tier IID Evidence from preclinical trials or a few case reports without consensus. CIViC evidence with 3–5 stars and level “D”. 

Unknown Tier III 
Variant not observed in control population databases; found in cancer-specific 

databases without definitive clinical evidence. 

Small variants: Classified as “Oncogenic”, “Likely Oncogenic” or 

“VUS” (ClinGen/CGC/VICC). 

CNAs: Frequency ≥ 0.1% in GENIE. 

Fusions: Found in GENIE or MitelmanDB. 

Splice variants: Annotated as cancer-enriched in CTAT. 

Benign or Likely 

Benign 
Tier IV 

Variant observed at significant frequency in population datasets or absent from 

cancer-specific resources. 

Small variants: Classified as “Benign” or “Likely Benign“ 

(ClinGen/CGC/VICC). 

CNAs: Frequency <0.1% in GENIE. 

Fusions: Not found in GENIE or MitelmanDB. 

Splice variants: Not cancer-enriched. 
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Supplementary Table 5. Reference list of known variants for gene fusions used by ClinBioNGS. 

Each fusion contains the breakpoints, name, variant, and fused genomic region for each partner gene. 

Fusion breakpoints (A::B) Fusion name Variant Fusion range A Fusion range B 

chr2:42295516::chr2:29223528 EML4::ALK (E13::A20) V1 chr2:42169350-42295516 chr2:29192774-29223528 

chr2:42325554::chr2:29223528 EML4::ALK (E20::A20) V2 chr2:42169350-42325554 chr2:29192774-29223528 

chr2:42264731::chr2:29223528 EML4::ALK (E6::A20) V3a chr2:42169350-42264731 chr2:29192774-29223528 

chr2:42264764::chr2:29223528 EML4::ALK (E6ins33::A20) V3b chr2:42169350-42301392 chr2:29192774-29223528 

chr2:42264731::chr2:29223546 EML4::ALK (E6::ins18A20) V3c chr2:42169350-42264731 chr2:29192774-29223546 

chr2:42301392::chr2:29223479 EML4::ALK (E14::del49A20) V4 chr2:42169350-42301392 chr2:29192774-29223479 

chr2:42245687::chr2:29223528 EML4::ALK (E2::A20) V5a chr2:42169350-42245687 chr2:29192774-29223528 

chr2:42245687::chr2:29223645 EML4::ALK (E2::ins117A20) V5b chr2:42169350-42245687 chr2:29192774-29223645 

chr2:42295516::chr2:29223597 EML4::ALK (E13::ins69A20) V6 chr2:42169350-42295516 chr2:29192774-29223597 

chr2:42301392::chr2:29223516 EML4::ALK (E14del12::A20) V7 chr2:42169350-42301392 chr2:29192774-29223516 

chr2:42304551::chr2:29223558 EML4::ALK (E17::ins30A20) V8a chr2:42169350-42304551 chr2:29192774-29223558 

chr2:42304581::chr2:29223593 EML4::ALK (E17ins30::ins65A20) V8b chr2:42169350-42304581 chr2:29192774-29223593 
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Supplementary Table 6. Reference list of known splice variants used by ClinBioNGS. 

Each variant contains the genomic coordinates and the associated variant name, gene, and transcript. 

Splice range Variant  Gene Transcript Splice range (hg19) 

chr7:116771655-116774880 METx14del MET ENST00000397752.8 chr7:116411709-116414934 

chr7:55161632-55171174 EGFRvII EGFR ENST00000275493.7 chr7:55229325-55238867 

chr7:55161632-55170306 EGFRvIIb EGFR ENST00000275493.7 chr7:55229325-55237999 

chr7:55019366-55155829 EGFRvIII EGFR ENST00000275493.7 chr7:55087059-55223522 

chr7:55109959-55155829 EGFRvIIIb EGFR ENST00000275493.7 chr7:55177652-55223522 

chr7:55200414-55205255 EGFRvIVa EGFR ENST00000275493.7 chr7:55268107-55272948 

chr7:55200414-55202516 EGFRvIVb EGFR ENST00000275493.7 chr7:55268107-55270209 

chrX:67686127-67689555 
AR-V1/AR-V2/ 

AR-V3/AR-V4 
AR ENST00000374690.9 chrX:66905969-66909397 

chrX:67643408-67680719 AR-V3 AR ENST00000374690.9 chrX:66863250-66900561 

chrX:67681004-67686009 AR-V3/AR-V4 AR ENST00000374690.9 chrX:66900846-66905851 

chrX:67686127-67692267 AR-V5 AR ENST00000374690.9 chrX:66905969-66912109 

chrX:67686127-67692187 AR-V6 AR ENST00000374690.9 chrX:66905969-66912029 

chrX:67686127-67694672 AR-V7 AR ENST00000374690.9 chrX:66905969-66914514 

chrX:67686127-67690281 AR-V8 AR ENST00000374690.9 chrX:66905969-66910123 

chrX:67686127-67693569 AR-V9 AR ENST00000374690.9 chrX:66905969-66913411 

chrX:67686127-67694878 AR-V10 AR ENST00000374690.9 chrX:66905969-66914720 

chrX:67711690-67722826 AR-V12 AR ENST00000374690.9 chrX:66931532-66942668 

chrX:67721964-67728673 AR-V13 AR ENST00000374690.9 chrX:66941806-66948515 

chrX:67722985-67728673 AR-V14 AR ENST00000374690.9 chrX:66942827-66948515 

chrX:67643408-67685940 AR-V23 AR ENST00000374690.9 chrX:66863250-66905782 

chrX:67546763-67568835 AR-45 AR ENST00000374690.9 chrX:66766605-66788677 

chrX:67569023-67643255 AR-45 AR ENST00000374690.9 chrX:66788865-66863097 

chrX:67546763-67685940 AR8 AR ENST00000374690.9 chrX:66766605-66905782 

chr7:140787585-140924565 BRAFx2-8del BRAF ENST00000646891.2 chr7:140487385-140624365 

chr7:140783158-140924565 BRAFx2-9del BRAF ENST00000646891.2 chr7:140482958-140624365 

chr7:140781694-140924565 BRAFx2-10del BRAF ENST00000646891.2 chr7:140481494-140624365 

chr7:140778076-140924565 BRAFx2-11del BRAF ENST00000646891.2 chr7:140477876-140624365 

chr7:140777089-140924565 BRAFx2-12del BRAF ENST00000646891.2 chr7:140476889-140624365 

chr7:140754234-140924565 BRAFx2-13del BRAF ENST00000646891.2 chr7:140454034-140624365 

chr7:140753394-140924565 BRAFx2-14del BRAF ENST00000646891.2 chr7:140453194-140624365 

chr7:140749419-140924565 BRAFx2-15del BRAF ENST00000646891.2 chr7:140449219-140624365 

chr7:140739947-140924565 BRAFx2-16del BRAF ENST00000646891.2 chr7:140439747-140624365 

chr7:140734771-140924565 BRAFx2-17del BRAF ENST00000646891.2 chr7:140434571-140624365 

chr7:140787585-140850110 BRAFx3-8del BRAF ENST00000646891.2 chr7:140487385-140549910 

chr7:140783158-140850110 BRAFx3-9del BRAF ENST00000646891.2 chr7:140482958-140549910 

chr7:140781694-140850110 BRAFx3-10del BRAF ENST00000646891.2 chr7:140481494-140549910 

chr7:140778076-140850110 BRAFx3-11del BRAF ENST00000646891.2 chr7:140477876-140624365 

chr7:140777089-140850110 BRAFx3-12del BRAF ENST00000646891.2 chr7:140476889-140624365 

chr7:140754234-140850110 BRAFx3-13del BRAF ENST00000646891.2 chr7:140454034-140624365 

chr7:140753394-140850110 BRAFx3-14del BRAF ENST00000646891.2 chr7:140453194-140624365 

chr7:140749419-140850110 BRAFx3-15del BRAF ENST00000646891.2 chr7:140449219-140624365 

chr7:140739947-140850110 BRAFx3-16del BRAF ENST00000646891.2 chr7:140439747-140624365 

chr7:140734771-140850110 BRAFx3-17del BRAF ENST00000646891.2 chr7:140434571-140624365 

chr7:140787585-140834608 BRAFx4-8del BRAF ENST00000646891.2 chr7:140487385-140534408 

chr7:140783158-140834608 BRAFx4-9del BRAF ENST00000646891.2 chr7:140482958-140534408 



 

159 

 

chr7:140781694-140834608 BRAFx4-10del BRAF ENST00000646891.2 chr7:140481494-140534408 

chr7:140778076-140834608 BRAFx4-11del BRAF ENST00000646891.2 chr7:140477876-140624365 

chr7:140777089-140834608 BRAFx4-12del BRAF ENST00000646891.2 chr7:140476889-140624365 

chr7:140754234-140834608 BRAFx4-13del BRAF ENST00000646891.2 chr7:140454034-140624365 

chr7:140753394-140834608 BRAFx4-14del BRAF ENST00000646891.2 chr7:140453194-140624365 

chr7:140749419-140834608 BRAFx4-15del BRAF ENST00000646891.2 chr7:140449219-140624365 

chr7:140739947-140834608 BRAFx4-16del BRAF ENST00000646891.2 chr7:140439747-140624365 

chr7:140734771-140834608 BRAFx4-17del BRAF ENST00000646891.2 chr7:140434571-140624365 
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Supplementary Table 7. Mismatch repair pathway genes used by ClinBioNGS. 

This table lists the MSigDB (v2024.1) gene set collections and their corresponding gene symbols employed by ClinBioNGS to annotate small variants involved in the MMR pathway. These 

genes provide complementary evidence in the assessment of MSI. Collections and gene lists are shown in alphabetical order. 

MSigDB collection Gene list 

GOBP_MISMATCH_REPAIR 

ABL1, AXIN2, EXO1, HDAC10, HMGB1, LIG1, MCM8, MCM9, MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, 

MUTYH, PCNA, PMS1, PMS2, PMS2P1, PMS2P3, PMS2P5, PMS2P6, POLD3, PRKCG, RNASEH2A, RNASEH2B, 

RNASEH2C, RPA1, RPA2, RPA3, SETD2, TP73, TREX1, XPC 

GOCC_MISMATCH_REPAIR_COMPLEX MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2, PMS2P1, PMS2P3, PMS2P5, PMS2P6 

GOMF_MISMATCH_REPAIR_COMPLEX_BINDING ATR, MCM8, MCM9, MLH1, MSH2, MSH6, MUTYH, PCNA, PMS2, TREX1, WRN 

GOMF_MISMATCHED_DNA_BINDING APTX, MLH1, MLH3, MSH2, MSH3, MSH4, MSH5, MSH6, MUTYH, PCNA, PMS1, PMS2, TDG, XPC 

WP_DNA_MISMATCH_REPAIR 
EXO1, LIG1, MLH1, MSH2, MSH6, PCNA, PMS2, POLD1, POLD2, POLD3, POLD4, POLE, POLE2, POLE3, POLE4, 

RFC1, RFC2, RFC3, RFC4, RFC5, RPA1, RPA2, RPA3 

 

 

Supplementary Table 8. Overview of the pan-cancer NGS panels assessed in the SEQC2 validation study and benchmarking in a real clinical setting. 

The table summarizes key technical parameters for each panel, including target region size, input DNA, enrichment strategy, library layout, selection method, and sequencing platform. 

Study Panel Full name 
Target size 

(Kb) 

Input 

DNA (ng) 

Enrichment 

assay 

Library 

layout 

Library 

selection 

Sequencing 

platform 

SEQC2 

AGL Agilent Custom Comprehensive Cancer Panel v2 7,625 30 Capture Paired-end Hybrid Illumina NovaSeq 6000 

BRP Burning Rock DX OncoScreen Plus 1,631 100 Capture Paired-end Hybrid Illumina NovaSeq 6000 

IDT Integrated DNA Technologies xGen Pan-Cancer Panel 780 100 Capture Paired-end Hybrid Illumina NovaSeq 6000 

IGT iGeneTech AIOnco-seq 944 100 Capture Paired-end Hybrid Illumina HiSeq 2500 

ILM Illumina TruSight Tumor 170 527 50 Capture Paired-end Hybrid Illumina NextSeq 550 

TFS Thermo Fisher Oncomine Comprehensive Assay v3 349 20 Amplicon Single-end PCR Ion Torrent S5 XL 

Clinical 

setting 

OCA Oncomine Comprehensive v3 GX5 DNA and Fusions 349 10 Amplicon Single-end PCR Ion Torrent Genexus 

OPA Oncomine Precision GX5 DNA and Fusions 14 10 Amplicon Single-end PCR Ion Torrent Genexus 

TSO500 Illumina TruSight Oncology 500 1,940 40 Capture Paired-end Hybrid Illumina NextSeq550 
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Supplementary Table 9. Summary table with the QC criteria used to select tumor samples for benchmarking in the TSO500, OPA, and OCA panels. 

It includes the type of panel and sample, followed by each metric. 

Panel 
Nucleic 

acid 

Total 

reads 

Aligned reads 

(%) 

On-target 

reads (%) 

Median read 

length 

Median insert 

size 

Median target 

coverage 

Target bases 

≥100X (%) 

Target bases 

≥0.4xMean (%) 

OCA 
DNA ≥2M ≥95 ≥90 ≥80 - ≥500 ≥90 ≥50 

RNA ≥500K ≥75 ≥50 ≥80 - - - - 

OPA 
DNA ≥500K ≥90 ≥85 ≥80 - ≥500 ≥95 ≥80 

RNA ≥250K ≥85 ≥30 ≥60 - - - - 

TSO500 
DNA ≥10M ≥90 ≥70 ≥80 ≥70 ≥200 ≥90 ≥80 

RNA ≥10M ≥80 ≥80 ≥70 ≥70 - - - 

 

 

Supplementary Table 10. Performance metrics from the multi-panel validation of ClinBioNGS small variant detection using SEQC2 reference data. 

For each analyzed sample, variant calling performance was assessed for both ClinBioNGS and the corresponding commercial pipeline. The following metrics were calculated: TP, FN, FP, 

precision, recall, and F1-score. 

NGS panel KP variants ID Pipeline TP variants FN variants FP variants Precision Recall F1-score 

AGL 2824 

SampleA_AGL1_ST01_30ng_LIB4 
Commercial 2790 34 12 0.995717345 0.98796034 0.991823676 

ClinBioNGS 2810 14 3 0.998933523 0.995042493 0.996984211 

SampleA_AGL1_ST01_30ng_LIB3 
Commercial 2779 45 20 0.992854591 0.984065156 0.988440334 

ClinBioNGS 2801 23 4 0.998573975 0.991855524 0.995203411 

SampleA_AGL1_ST01_30ng_LIB2 
Commercial 2788 36 14 0.995003569 0.987252125 0.991112691 

ClinBioNGS 2805 19 1 0.999643621 0.993271955 0.996447602 

SampleA_AGL1_ST01_30ng_LIB1 
Commercial 2798 26 15 0.994667615 0.990793201 0.992726628 

ClinBioNGS 2811 13 2 0.999289015 0.995396601 0.99733901 

BRP 1128 

SampleA_BRP1_ST27_100ng_LIB2 
Commercial 1120 8 11 0.990274094 0.992907801 0.991589199 

ClinBioNGS 1120 8 8 0.992907801 0.992907801 0.992907801 

SampleA_BRP1_ST27_100ng_LIB1 
Commercial 1117 11 6 0.994657168 0.990248227 0.992447801 

ClinBioNGS 1118 10 3 0.997323818 0.991134752 0.994219653 

SampleA_BRP1_ST27_100ng_LIB4 
Commercial 1121 7 5 0.995559503 0.993794326 0.994676131 

ClinBioNGS 1116 12 4 0.996428571 0.989361702 0.992882562 

SampleA_BRP1_ST27_100ng_LIB3 
Commercial 1122 6 5 0.995563443 0.994680851 0.995121951 

ClinBioNGS 1118 10 2 0.998214286 0.991134752 0.994661922 
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IDT 388 

SampleA_IDT1_ST06_100ng_LIB1 
Commercial 378 10 0 1 0.974226804 0.98694517 

ClinBioNGS 381 7 5 0.987046632 0.981958763 0.984496124 

SampleA_IDT1_ST06_100ng_LIB2 
Commercial 379 9 0 1 0.976804124 0.988265971 

ClinBioNGS 382 6 3 0.992207792 0.984536082 0.98835705 

SampleA_IDT1_ST06_100ng_LIB3 
Commercial 381 7 0 1 0.981958763 0.990897269 

ClinBioNGS 382 6 2 0.994791667 0.984536082 0.989637306 

SampleA_IDT1_ST06_100ng_LIB4 
Commercial 382 6 1 0.997389034 0.984536082 0.990920882 

ClinBioNGS 385 3 4 0.989717224 0.992268041 0.990990991 

IGT 353 

SampleA_IGT1_ST08_100ng_LIB4 
Commercial 352 1 0 1 0.997167139 0.99858156 

ClinBioNGS 352 1 0 1 0.997167139 0.99858156 

SampleA_IGT1_ST08_100ng_LIB3 
Commercial 351 2 0 1 0.994334278 0.997159091 

ClinBioNGS 352 1 0 1 0.997167139 0.99858156 

SampleA_IGT1_ST08_100ng_LIB2 
Commercial 352 1 0 1 0.997167139 0.99858156 

ClinBioNGS 352 1 0 1 0.997167139 0.99858156 

SampleA_IGT1_ST08_100ng_LIB1 
Commercial 352 1 0 1 0.997167139 0.99858156 

ClinBioNGS 352 1 0 1 0.997167139 0.99858156 

ILM 444 

SampleA_ILM1_ST10_50ng_LIB4 
Commercial 420 24 2 0.995260664 0.945945946 0.969976905 

ClinBioNGS 431 13 1 0.997685185 0.970720721 0.984018265 

SampleA_ILM1_ST10_50ng_LIB3 
Commercial 423 21 2 0.995294118 0.952702703 0.973532796 

ClinBioNGS 436 8 0 1 0.981981982 0.990909091 

SampleA_ILM1_ST10_50ng_LIB2 
Commercial 418 26 2 0.995238095 0.941441441 0.967592593 

ClinBioNGS 435 9 0 1 0.97972973 0.989761092 

SampleA_ILM1_ST10_50ng_LIB1 
Commercial 417 27 2 0.99522673 0.939189189 0.966396292 

ClinBioNGS 429 15 1 0.997674419 0.966216216 0.981693364 

TFS 237 

SampleA_TFS1_ST24_20ng_LIB4 
Commercial 221 16 1 0.995495495 0.932489451 0.962962963 

ClinBioNGS 225 12 3 0.986842105 0.949367089 0.967741935 

SampleA_TFS1_ST24_20ng_LIB3 
Commercial 217 20 1 0.995412844 0.915611814 0.953846154 

ClinBioNGS 218 19 1 0.99543379 0.919831224 0.956140351 

SampleA_TFS1_ST24_20ng_LIB2 
Commercial 218 19 1 0.99543379 0.919831224 0.956140351 

ClinBioNGS 221 16 1 0.995495495 0.932489451 0.962962963 

SampleA_TFS1_ST24_20ng_LIB1 
Commercial 219 18 0 1 0.924050633 0.960526316 

ClinBioNGS 221 16 1 0.995495495 0.932489451 0.962962963 



 

163 

 

Supplementary Table 11. Patient characteristics in the clinical benchmarking cohort. 

Age, sex, sample type, TP, and tumor type characteristics are summarized across TSO500, OPA, and OCA panels. Most 

represented tumor types (≥10 samples) in any panel are specified. 

Characteristic TSO500 (N = 755) OCA (N = 595) OPA (N = 674) 

Age, years, No. (%)    

<50 103 (13.6) 33 (5.5) 41 (6.1) 

50-60 177 (23.5) 83 (14.0) 104 (15.4) 

61-70 176 (23.3) 127 (21.3) 200 (29.7) 

71-80 170 (22.5) 114 (19.2) 184 (27.3) 

>80 18 (2.4) 32 (5.4) 45 (6.7) 

Missing 111 (14.7) 206 (34.6) 100 (14.8) 

Sex, No. (%)    

Male 443 (58.7) 311 (52.3) 378 (56.1) 

Female 306 (40.5) 242 (40.7) 191 (28.3) 

Missing 6 (0.8) 42 (7.0) 105 (15.6) 

Sample type, No. (%)    

DNA & RNA 587 (77.8) 449 (75.5) 536 (79.5) 

DNA-only 68 (9.0) 88 (14.8) 87 (12.9) 

RNA-only 100 (13.2) 58 (9.7) 51 (7.6) 

TP (%), No. (%)    

<25 112 (14.8) 58 (9.7) 119 (17.7) 

25-50 241 (31.9) 212 (35.6) 226 (33.5) 

51-75 239 (31.7) 197 (33.1) 137 (20.3) 

>75 163 (21.6) 105 (17.7) 88 (13.1) 

Missing 0 (0) 23 (3.9) 104 (15.4) 

Tumor type, No. (%)    

Biliary tract 5 (0.7) 1 (0.2) 21 (3.1) 

Breast 1 (0.1) 29 (4.9) 1 (0.1) 

Central nervous system 97 (12.8) 51 (8.6) - 

Connective tissue 54 (7.2) 1 (0.2) 2 (0.3) 

Head and neck 17 (2.3) 8 (1.3) - 

Large intestine 57 (7.5) 79 (13.3) 112 (16.6) 

Lung 340 (45.0) 207 (34.8) 403 (59.8) 

Ovarian 12 (1.6) 15 (2.5) - 

Pancreatic 10 (1.3) 19 (3.2) 3 (0.5) 

Prostate 13 (1.7) 16 (2.7) - 

Skin 13 (1.7) 46 (7.7) - 

Thyroid 13 (1.7) 5 (0.8) - 

Urinary bladder 12 (1.6) 26 (4.4) - 

Uterine 28 (3.7) 21 (3.5) 1 (0.1) 

Other 81 (10.7) 49 (8.2) 27 (4.0) 

Missing 2 (0.3) 22 (3.7) 104 (15.4) 
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Supplementary Table 12. Comparative analysis of ClinBioNGS and commercial pipeline results across three pan-

cancer NGS panels. 

This table summarizes the number of cancer-related alterations detected by both pipelines or uniquely by either 

ClinBioNGS or the commercial pipeline. Results are categorized by panel and variant type. For each group, the 

ClinBioNGS classification status and the presence of each variant in the CIViC database are considered. 

NGS panel Variant type Detection status ClinBioNGS status CIViC Variants 

TSO500 Small variant 

Both pipelines 

OK 
TRUE 330 

FALSE 632 

Flagged 
TRUE 12 

FALSE 1093 

ClinBioNGS-only 
OK 

TRUE 3 

FALSE 124 

Flagged FALSE 1792 

Commercial-only Absent 
TRUE 6 

FALSE 46 

OCA Small variant 

Both pipelines 

OK 
TRUE 350 

FALSE 405 

Flagged 
TRUE 2 

FALSE 5 

ClinBioNGS-only 

OK 
TRUE 4 

FALSE 32 

Flagged 
TRUE 8 

FALSE 832 

Commercial-only Absent 
TRUE 5 

FALSE 29 

OPA Small variant 

Both pipelines 
OK 

TRUE 400 

FALSE 272 

Flagged FALSE 1 

ClinBioNGS-only 
OK 

TRUE 7 

FALSE 52 

Flagged FALSE 13 

Commercial-only Absent 
TRUE 5 

FALSE 13 

TSO500 

AMP 

Both pipelines 

OK 
TRUE 118 

FALSE 139 

Flagged 
TRUE 545 

FALSE 463 

ClinBioNGS-only 

OK 
TRUE 11 

FALSE 348 

Flagged 
TRUE 689 

FALSE 4996 

Commercial-only Absent 
TRUE 61 

FALSE 14 

DEL ClinBioNGS-only 

OK 
TRUE 86 

FALSE 25 

Flagged 
TRUE 1068 

FALSE 372 

OCA AMP Both pipelines OK TRUE 162 
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FALSE 29 

Flagged 
TRUE 264 

FALSE 104 

ClinBioNGS-only 

OK 
TRUE 12 

FALSE 5 

Flagged 
TRUE 985 

FALSE 356 

Commercial-only Absent 
TRUE 48 

FALSE 16 

DEL ClinBioNGS-only 

OK 
TRUE 66 

FALSE 3 

Flagged 
TRUE 775 

FALSE 38 

OPA 

AMP 

Both pipelines 

OK TRUE 48 

Flagged 
TRUE 167 

FALSE 1 

Commercial-only 

OK TRUE 5 

Flagged TRUE 309 

Absent 
TRUE 115 

FALSE 2 

DEL 

Both pipelines 
OK TRUE 28 

Flagged TRUE 15 

ClinBioNGS-only 
OK TRUE 11 

Flagged TRUE 226 

TSO500 

Fusion 

Both pipelines 

OK 
TRUE 45 

FALSE 23 

Flagged 
TRUE 3 

FALSE 14 

ClinBioNGS-only 

OK FALSE 1 

Flagged 
TRUE 5 

FALSE 36 

Commercial-only Absent FALSE 2 

Splice variant 
Both pipelines 

OK TRUE 22 

Flagged TRUE 10 

ClinBioNGS-only Flagged TRUE 2 

OCA 

Fusion 

Both pipelines 
OK 

TRUE 33 

FALSE 8 

Flagged TRUE 6 

ClinBioNGS-only 

OK 
TRUE 21 

FALSE 51 

Flagged 
TRUE 32 

FALSE 63 

Commercial-only Absent TRUE 1 

Splice variant 
Both pipelines OK TRUE 7 

ClinBioNGS-only OK TRUE 16 

OPA Fusion Both pipelines OK TRUE 21 
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FALSE 1 

Flagged 
TRUE 5 

FALSE 2 

ClinBioNGS-only Flagged TRUE 3 

Commercial-only Absent 
TRUE 4 

FALSE 6 

Splice variant 

Both pipelines 
OK TRUE 9 

Flagged TRUE 8 

ClinBioNGS-only Flagged TRUE 11 

Commercial-only Absent TRUE 1 
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Supplementary Table 13. ClinBioNGS-only “OK” cancer mutations with clinical evidence. 

For each small variant uniquely detected by ClinBioNGS, the following information is provided: variant identifier, mutation name, AD, VAF, assigned flags, CIViC evidence type and level, 

oncogenicity classification, and number of supporting callers. The last column includes the detection status in the commercial pipeline. Results are grouped by NGS panel. 

Panel Variant ID Mutation AD VAF (%) 
CIViC 

Evidence type 

CIViC 

Evidence level 
Oncogenicity Callers Commercial status 

TSO500 

chr11:108365359_C/T ATM_R3008C 10 2.42 Predictive D - Preclinical VUS 2 LowSupport, AD=4, VAF=1.8% 

chr7:55181312_G/T EGFR_S768I 18 1.4 Predictive C - Case study Likely Oncogenic 2 
LowSupport, AD=10, VAF=1.2% 

Confirmed with single-gene test 

chr17:7674252_C/T TP53_M237I 11 1.4 Predictive D - Preclinical Likely Oncogenic 2 LowSupport, AD=49, VAF=1.2% 

OCA 

chr12:25245350_C/T KRAS_G12D 113 1.63 Prognostic B - Clinical trial Oncogenic 3 QualityScore<8, AD=36, VAF=1.8% 

chr12:25245351_C/T KRAS_G12S 117 1.29 Predictive B - Clinical trial Oncogenic 3 ABSENT, AD=24, VAF=1.2% 

chr3:38141150_T/C MYD88_L252P 9 1.9 Predictive B - Clinical trial Likely Oncogenic 3 QualityScore<8, AD=11, VAF=1.8% 

chr17:7674221_G/A TP53_R248W 11 2.4 Prognostic B - Clinical trial Oncogenic 3 QualityScore<8, AD=12, VAF=1.8% 

OPA 

chr7:55191822_T/G EGFR_L858R 62 2.54 Predictive A - Validated Oncogenic 3 QualityScore<6, AD=103, VAF=2.4% 

chr12:25225627_G/A KRAS_A146V 59 2.4 Predictive D - Preclinical Oncogenic 3 QualityScore<6, AD=124, VAF=2.4% 

chr12:25245350_C/G KRAS_G12A 288 17 Predictive B - Clinical trial Oncogenic 3 NO CALL, AD=207, VAF=10.7% 

chr12:25245350_C/T KRAS_G12D 42 2.5 Prognostic B - Clinical trial Oncogenic 3 QualityScore<6, AD=62, VAF=2.4% 

chr17:7674220_C/T TP53_R248Q 56 2.24 Prognostic B - Clinical trial Oncogenic 3 QualityScore<6, AD=182, VAF=2.4% 

chr17:7673802_C/T TP53_R273H 5 3.5 Prognostic B - Clinical trial Oncogenic 3 QualityScore<6, AD=21, VAF=2.2% 

chr17:7673781_C/T TP53_R280K 23 1.75 Predictive D - Preclinical Likely Oncogenic 3 ABSENT, AD=46, VAF=2% 
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Supplementary Table 14. ClinBioNGS-only ”OK” cancer mutations with no clinical evidence. 

Only “Oncogenic” and “Likely Oncogenic” small variants are shown. For each variant uniquely detected by ClinBioNGS, the following information is provided: variant identifier, mutation 

name, alternate read count, allele frequency, and number of supporting callers. Some variants are condensed into one row, and a range of minimum and maximum values are represented. The 

last column includes the detection status in the commercial pipeline. Results are grouped by panel. 

Panel Oncogenicity Variant ID Mutation AD VAF (%) Callers Commercial status 

TSO500 

Oncogenic 

chr20:32434485_C/A ASXL1_Y591* 14 1.3 2 LowSupport 

chr15:44711549_G/C B2M_M1? 10 1.7 2 LowSupport 

chr4:152323033_G/A FBXW7_R658* 17 1.9 2 LowSupport 

chr4:152329731_G/A FBXW7_R393* 19 1.8 2 LowSupport 

chr7:152358671_G/A KMT2C_R56* 6 2.1 2 Blacklist;LowSupport 

4 x chr2:47803500_A/AC 4 x MSH6_F1088Lfs*5 [26,686] [3.8,60.4] [2,4] Blacklist 

chr5:68293123_C/T PIK3R1_R348* 21 1.5 2 LowSupport 

2 x chr10:87960914_G/A 2 x PTEN_W274* [10, 40] [4.9,10.3] [3,4] Blacklist 

chr13:48368549_C/T RB1_R358* 13 1.8 2 LowSupport 

chr13:48379594_C/T RB1_R445* 5 1.9 2 LowSupport 

chr13:48379594_C/T RB1_R445* 8 1.5 2 LowSupport 

chr3:10149804_C/T VHL_R161* 6 2.0 2 LowSupport 

Likely Oncogenic 

chr1:26773716_CGGT…TATA/C ARID1A_c.4004_4005-2del 6 3.8 2 Not found in the VCF 

7 x chr20:32434638_A/AG 7 x ASXL1_G646Wfs*12 [12,127] [2.1,30.8] [2,3] Blacklist 

chr7:140781678_G/A BRAF_R444W 10 2.4 3 LowSupport 

chr9:21971037_C/A CDKN2A_D108Y 10 3.9 3 LowSupport 

chr2:25234373_C/T DNMT3A_R882H 19 1.1 2 LowSupport 

chr17:7673534_CCTG…AAAG/C TP53_c.920-31_993del 93 28.4 4 Not found in the VCF 

OCA 
Oncogenic 

chr9:21971209_C/T CDKN2A_c.151-1G>A 14 100 5 Not found in the SNV/InDel list 

chr12:25245348_C/A KRAS_G13C 49 1.9 3 QualityScore<8 

chr10:87961095_C/T PTEN_R335* 23 1.1 3 Not found in the SNV/InDel list 

chr13:48362847_C/T RB1_R251* 20 1.7 3 QualityScore<8 

chr13:48362859_C/T RB1_R255* 37 2.4 3 Not found in the SNV/InDel list 

chr13:48465238_C/T RB1_R787* 22 1.5 3 Not found in the SNV/InDel list 

Likely Oncogenic 2 x chr7:55174737_G/A 2 x EGFR_E734K [18,26] [1.3,1.8] 3 Not found in the SNV/InDel list 
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2 x chr7:55174729_G/A 2 x EGFR_W731* [25,48] 1.4 3 Not found in the SNV/InDel list 

chr15:90088703_G/A IDH2_R140W 16 2.5 3 QualityScore<8 

chr12:25227349_C/T KRAS_A59T 36 1.3 3 QualityScore<8 

chr12:25245345_C/T KRAS_V14I 25 1.7 3 Not found in the SNV/InDel list 

chr15:66436825_C/T MAP2K1_P124L 22 1.2 3 ABSENT 

chr3:179234296_C/T PIK3CA_H1047Y 20 1.9 3 QualityScore<8 

OPA 

Oncogenic 

chr9:21971209_C/A CDKN2A_c.151-1G>T 382 37.8 5 Not found in the SNV/InDel list 

chr20:58909366_G/A GNAS_R201H 21 2.7 3 QualityScore<6 

3 x chr17:7675052_C/T 3 x TP53_c.559+1G>A [44,417] [2.2,42.3] [3,5] Not found in the SNV/InDel list 

chr17:7675052_C/G TP53_c.559+1G>C 623 34.3 4 Not found in the SNV/InDel list 

chr17:7674858_C/G TP53_c.672+1G>C 1089 72.1 4 Not found in the SNV/InDel list 

chr17:7674858_C/A TP53_c.672+1G>T 80 8.1 4 Not found in the SNV/InDel list 

chr17:7673767_C/A TP53_E285* 383 25.6 5 Not found in the SNV/InDel list 

chr17:7673824_CC/AA TP53_G266* 390 38.3 5 Not found in the SNV/InDel list 

chr17:7673824_C/A TP53_G266* 292 39.0 5 Not found in the SNV/InDel list 

chr17:7675206_G/A TP53_Q136* 142 11.9 4 Not found in the SNV/InDel list 

chr17:7675182_G/A TP53_Q144* 611 54.5 5 Not found in the SNV/InDel list 

Likely Oncogenic 

chr9:21971186_CG/C CDKN2A_R58Efs*88 5 1.2 3 Not found in the SNV/InDel list 

chr9:21971184_CTCGG/C CDKN2A_R58Wfs*87 66 15.4 3 Not found in the SNV/InDel list 

chr10:87952142_C/T PTEN_R173C 41 1.5 3 ABSENT 

chr17:7674239_A/AG TP53_C242Lfs*22 128 16.0 5 Not found in the SNV/InDel list 

2 x chr17:7673809_C/T 2 x TP53_E271K [67,1386] [5.1, 49.1] 4 Not found in the SNV/InDel list 

chr17:7675204_TTG/T TP53_Q136Tfs*12 665 20.8 4 Not found in the SNV/InDel list 

chr17:7675167_AATC…CTGC/A TP53_Q144Pfs*21 563 31.7 4 Not found in the SNV/InDel list 

chr17:7673802_C/A TP53_R273L 8 2.1 3 ABSENT 

3 x chr17:7674887_C/A 3 x TP53_S215I [62,527] [12.5,47.6] [4,5] Not found in the SNV/InDel list 
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Supplementary Table 15. Commercial-only cancer mutations with clinical evidence. 

For each small variant uniquely reported by the commercial pipelines, the following information is provided: variant identifier, mutation name, AD, VAF, CIViC evidence type and level, and 

its detection status in ClinBioNGS. Results are grouped by NGS panel. 

Panel Variant ID Mutation AD 
VAF 

(%) 

CIViC 

Evidence 

type 

CIViC 

Evidence level 
ClinBioNGS status 

TSO500 

chr7:140753334_T/C BRAF_K601E 10 0.87 Predictive B - Clinical trial 
Primary flags=LowVAF;LowCallers 

(Mutect2), Pisces=q20;SB 

chr7:140753336_A/T BRAF_V600E 13 0.9 Predictive A - Validated Not reported, Pisces=q20;SB 

chr7:55174772_GGAATTAAGAGAAGCA/G EGFR_E746_A750del 3 0.32 Predictive C - Case study 
Not reported, Pisces=q20;SB, 

Mutect2=weak_evidence 

chr17:39724728_A/AGCATACGTGATG ERBB2_Y772_A775dup 22 1.13 Predictive B - Clinical trial 
Not reported, Pisces=q20;SB, 

Mutect2=slippage 

chr12:25245350_C/A KRAS_G12V 5 1.14 Predictive B - Clinical trial Not reported, Pisces=q20;SB 

chr17:7675139_C/A TP53_R158L 14 1.53 Predictive D - Preclinical 
Primary flags=LowCallers (VarDict), 

Pisces=q20;SB 

OCA 

chr7:55191822_T/G EGFR_L858R 53 2.7 Predictive A - Validated 
Primary flags=LowCallers (VarDict, TVC), 

Pisces=q20;SB, Mutect2=clustered_events 

chr7:55181378_C/T EGFR_T790M 347 17.4 Predictive A - Validated 
Primary flags=LowCallers (Pisces, TVC), 

Mutect2=base_qual;haplotype 

chr12:25245350_C/T KRAS_G12D 80 4 Prognostic B - Clinical trial 
Primary flags=LowCallers (VarDict, TVC), 

Pisces=q20;SB, Mutect2=clustered_events 

chr3:179218303_G/A PIK3CA_E545K 53 2.7 Predictive C - Case study 
Primary flags=LowCallers (VarDict, TVC), 

Pisces=q20;SB 

chr3:179234297_A/G PIK3CA_H1047R 71 3.5 Predictive C - Case study 
Primary flags=LowCallers (VarDict, TVC), 

Pisces=q20, Mutect2=clustered_events 

OPA 

chr7:140753354_T/C BRAF_D594G 160 2.9 Predictive C - Case study 
Primary flags=LowCallers (VarDict, TVC), 

Pisces=q20;SB 

chr7:55174771_AGGAATTAAGAGAAGC/A EGFR_E746_A750del 234 3.1 Predictive C - Case study 
Primary flags=LowCallers (VarDict, TVC), 

Pisces=q20;SB 

chr7:55181378_C/T EGFR_T790M 4352 38.9 Predictive A - Validated 
Primary flags=LowCallers (Pisces, TVC), 

Mutect2=orientation 

chr7:55181378_C/T EGFR_T790M 440 11.7 Predictive A - Validated 
Primary flags=LowCallers (TVC), 

Pisces=SB, Mutect2=haplotype;orientation 

chr17:7673802_C/T TP53_R273H 36 3.2 Prognostic B - Clinical trial Not reported, Pisces=q20;SB 
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Supplementary Table 16. Commercial-only cancer mutations with no clinical evidence. 

For each small variant uniquely reported by the commercial pipelines, the following information is provided: variant identifier, mutation name, AD, VAF, and its detection status in ClinBioNGS. 

Some variants are condensed into one row, and a range of minimum and maximum values are represented. Results are grouped by NGS panel. 

Panel Variant ID Mutation AD VAF (%) ClinBioNGS status 

TSO500 

chr1:26761012_C/T ARID1A_R693* 9 2.2 Primary flags=LowCallers (VarDict), Pisces=q20 

chr9:21971097_C/A CDKN2A_E88* 17 1.4 Not reported, Pisces=q20 

chr2:25234374_G/A DNMT3A_R882C 7 1.0 Primary flags=LowCallers (Mutect2), Pisces=q20;SB 

chr2:25234373_C/T DNMT3A_R882H 11 1.2 Primary flags=LowCallers (Mutect2), Pisces=q20;SB 

chr20:58909365_C/T GNAS_R844C 12 1.9 
Primary flags=LowCallers (VarDict), Pisces=q20, 

Mutect2=orientation 

chr12:120978847_A/C HNF1A_I27L 12 1.2 Not reported, Pisces=q20;SB 

29 x chr3:49684189_C/T 29 x MST1_G673S [6,59] [2.7,11.3] Not reported, Pisces=q20;SB, VarDict=q10 

chr3:179199088_G/A PIK3CA_R88Q 11 1.1 Primary flags=LowCallers (Mutect2), Pisces=q20;SB 

chr17:7673743_C/T TP53_G293R 8 1.7 Not reported, Pisces=q20;SB 

chr17:7675077_G/T TP53_H179N 3 1.7 Primary flags=LowCallers (VarDict), Pisces=q20 

chr17:7673802_C/G TP53_R273P 9 0.9 Not reported, Pisces=q20;SB 

7 x chr21:43104346_G/A 7 x U2AF1_S34F [10,234] [3.7,27.4] Not reported, VarDict=q10 

OCA 

chr1:26779059_C/T ARID1A_R1721* 17 3.1 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr7:140753332_T/G BRAF_K601N 12 2.9 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr7:140753339_G/A BRAF_T599I 7 3.7 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr9:21971139_C/A CDKN2A_D74Y 233 59 Primary flags=Blacklist 

chr9:21970969_CA/C CDKN2A_L130Rfs*16 32 26.7 Primary flags=Blacklist 

chr9:21974726_CGCCTCCAGCAGCGCCCGC/C CDKN2A_R29_A34del 541 29.1 Primary flags=Blacklist 

chr9:21971187_G/A CDKN2A_R58* 2 4.3 Primary flags=LowAD; LowCallers (TVC), Pisces=q20 
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chr9:21974793_G/T CDKN2A_S12* 157 72.7 Primary flags=Blacklist 

chr9:21974732_CAGCAGCGCCCGCACCTCC/C CDKN2A_V28_E33del 258 13.8 Primary flags=Blacklist 

chr5:68295418_A/T - 598 46.6 Primary flags=Blacklist 

chr9:21971210_T/G - 9 45.0 Primary flags=Blacklist 

chr3:41224607_A/T CTNNB1_D32V 23 2.6 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr17:39725187_C/T ERBB2_H878Y 11 3.0 Primary flags=LowCallers (TVC; VarDict); Pisces=q20;SB 

chr4:1801837_C/T FGFR3_R248C 4 4.2 
Primary flags=LowAD;LowCallers (TVC; VarDict), Pisces=q20;SB, 

Mutect2=clustered_events 

chr5:177095550_G/T FGFR4_V550L 3 3.0 Not reported, Pisces=q20;SB 

chr12:120988846_C/T HNF1A_R114C 4 3.0 Primary flags=LowAD;LowCallers (TVC; VarDict), Pisces=q20;SB 

chr12:120988846_C/T HNF1A_R114C 11 6.9 
Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB, 

Mutect2=orientation 

chr3:179221146_G/A PIK3CA_E726K 163 8.2 Primary flags=LowCallers (Pisces;TVC), VarDict=q10 

chr3:179218307_A/G PIK3CA_Q546R 72 3.6 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr12:112489106_G/A PTPN11_Q510= 9 2.8 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr13:48345108_G/T RB1_E137* 740 37.2 Primary flags=Blacklist 

chr10:43114501_G/A RET_C634Y 6 3.3 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr3:49375540_C/T RHOA_G17E 28 2.5 
Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB, 

Mutect2=orientation 

chr22:23834143_G/A SMARCB1_R374Q 5 3.4 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr19:1220429_A/G STK11_H174R 97 20.0 Primary flags=Blacklist 

chr17:7673795_A/ACAAA TP53_A276Lfs*31 961 48.3 PASS (4 callers) but different insertion representation 

chr17:7674908_T/C TP53_D208G 77 24.5 Primary flags=Blacklist 

chr17:7674233_C/A TP53_G244C 13 2.4 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 
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chr17:7674893_C/T TP53_R213Q 9 2.2 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

OPA 

chr3:41224613_G/A CTNNB1_G34E 325 4.5 
Primary flags=LowCallers (TVC; VarDict), Pisces=SB, 

Mutect2=haplotype;orientation 

chr3:41224622_C/T CTNNB1_S37F 224 3.5 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr4:1804392_G/A FGFR3_G380R 26 5.6 Primary flags=LowAD;LowCallers (TVC), Pisces=q20;SB 

chr5:177095550_G/T FGFR4_V550L 14 5.1 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr5:177095550_G/A FGFR4_V550M 24 5.0 Primary flags=LowAD, Pisces=q20;SB 

chr15:90088703_G/A IDH2_R140W 78 3.0 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr10:87894057_C/T PTEN_P38S 1870 41.3 
Primary flags=LowCallers (TVC; VarDict), Pisces=SB, 

Mutect2=haplotype;orientation 

chr17:7675085_C/G TP53_C176S 1808 29.1 
Primary flags=LowCallers (TVC; VarDict), Pisces=SB, 

Mutect2=base_qual;orientation 

chr17:7674248_T/C TP53_N239D 240 5.9 
Primary flags=LowCallers (TVC; VarDict), Pisces=q20, 

Mutect2=orientation 

chr17:7675071_G/A TP53_R181C 472 15.3 
Primary flags=LowCallers (Pisces; VarDict), 

Mutect2=clustered_events 

chr17:7673782_T/C TP53_R280G 29 3.6 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

2 x chr17:7673776_G/A 2 x TP53_R282W [20,38] [2.9,3.4] Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 

chr17:7673776_G/A TP53_R282W 20 3.4 Primary flags=LowCallers (TVC; VarDict), Pisces=q20;SB 
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Supplementary Table 17. ClinBioNGS-only “OK” cancer CNAs with clinical evidence. 

For each gene, the following information is provided: number of affected samples, estimated absolute CN, CIViC evidence type and level, and detection status in the commercial pipeline. 

Results are grouped by panel and CNA status. 

Panel CNA Gene Samples CN 
CIViC 

Evidence type 

CIViC 

Evidence level 
Commercial status 

TSO500 

AMP 

FOXP1 1 8 Diagnostic B - Clinical trial No CNA gene 

MAPK1 1 11 Predictive D - Preclinical No CNA gene 

MYB 1 5 Prognostic B - Clinical trial No CNA gene 

NCOA3 4 5 Prognostic B - Clinical trial No CNA gene 

REL 1 8 Diagnostic B - Clinical trial No CNA gene 

TOP1 3 5 Predictive B - Clinical trial No CNA gene 

DEL 

ATRX 3 0 Predictive D - Preclinical No CNA gene 

CDKN2A 55 0 Prognostic B - Clinical trial No CNA gene 

IKZF1 3 0 Prognostic A - Validated No CNA gene 

KMT2C 1 0 Predictive B - Clinical trial No CNA gene 

NF1 1 0 Predictive D - Preclinical No CNA gene 

PTEN 10 0 Predictive B - Clinical trial LowValidation (deletions are not reported) 

SMAD4 3 0 Predictive B - Clinical trial No CNA gene 

SMARCA4 3 0 Predictive D - Preclinical No CNA gene 

SMARCB1 1 0 Diagnostic B - Clinical trial No CNA gene 

STK11 6 0 Predictive D - Preclinical No CNA gene 

OCA 

AMP 

BRAF 1 5 Predictive C - Case study ABSENT (CN=4.6) 

CCNE1 1 5 Prognostic B - Clinical trial ABSENT (CN=4.73) 

CDK4 1 10 Predictive B - Clinical trial NO CALL (DIFFERENT_MEAN_SIGNAL; CN=10) 

EGFR 1 5 Predictive B - Clinical trial NO CALL (MAPD>0.5) 

KIT 2 5 Predictive B - Clinical trial NO CALL (MAPD>0.5) 

MDM2 1 5 Prognostic B - Clinical trial NO CALL (MAPD>0.5) 

MYC 2 6, 5 Predictive D - Preclinical NO CALL (MAPD>0.5) 

PIK3CA 2 5 Predictive B - Clinical trial ABSENT (CN=4.7); NO CALL (MAPD>0.5) 

TERT 1 5 Prognostic B - Clinical trial ABSENT (CN=5.38) 

DEL 

ATRX 2 0 Prognostic B - Clinical trial ABSENT (CN≈0) 

CDKN2A 43 0 Prognostic B - Clinical trial ABSENT (CN≈0) 

PTEN 7 0 Predictive B - Clinical trial ABSENT (CN≈0) 

SMARCA4 2 0 Predictive B - Clinical trial NO CALL (SEVERE_GRADIENT) 

STK11 6 0 Predictive D - Preclinical ABSENT (CN≈0) 
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TP53 6 0 Predictive D - Preclinical ABSENT (CN≈0) 

OPA 

AMP 
KIT 3 8, 7, 5 Predictive B - Clinical trial No CNA gene 

PDGFRA 2 8, 7 Predictive D - Preclinical No CNA gene 

DEL 

CDKN2A 9 0 Prognostic B - Clinical trial ABSENT (CN=0.6-3.13) 

PTEN 1 0 Predictive B - Clinical trial ABSENT (CN=0.35) 

TP53 1 0 Predictive D - Preclinical No CNA gene 
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Supplementary Table 18. Commercial-only cancer CNAs with clinical evidence. 

For each gene, the following information is provided: number of affected samples, estimated absolute CN, CIViC evidence type and level, and sample’s TP. CN and TP values include the 

number of samples in parentheses when it is necessary. Results are grouped by panel and CNA status. 

Panel CNA Gene Samples CN 
CIViC 

Evidence type 

CIViC 

Evidence level 
TP (%) 

TSO500 AMP 

ALK 23 3 (n=13), 4 (n=7), 5 (n=3) Predictive C - Case study Median=70 

BRAF 3 3 Predictive C - Case study 80 (n=2), 10 (n=1) 

CDK4 2 4, 13 Predictive B - Clinical trial 60, 10 

EGFR 21 3 (n=11), 4 (n=9), 7 (n=1;TP=20%) Predictive B - Clinical trial Median=60 

ERBB2 8 3 (n=6), 4 (n=1), 7 (n=1;TP=20%) Predictive A - Validated Median=65 

FGFR1 1 3 Prognostic B - Clinical trial 95 

MET 1 4 Predictive C - Case study 50 

MYCN 1 3 Prognostic A - Validated 90 

PDGFRA 1 3 Predictive D - Preclinical 70 

OCA AMP 

ALK 1 6 Predictive C - Case study 20 

BRAF 4 7 (n=2), 8 (n=2) Predictive C - Case study 20 (n=3), 8 (n=1) 

EGFR 3 6 (n=2), 7 (n=1) Predictive B - Clinical trial 20 (n=2), 15 (n=1) 

FGFR2 9 6 (n=4), 7 (n=3), 9 (n=2) Predictive B - Clinical trial Median=20 

KIT 10 5 (n=1), 6 (n=2), 7 (n=5), 8 (n=1), 12 (n=1; TP=8%) Predictive B - Clinical trial Median=20 

KRAS 16 6 (n=8), 7 (n=6), 11 (n=2) Prognostic B - Clinical trial Median=25 

MET 3 5 (n=1), 6 (n=2) Predictive C - Case study 20 (n=2), 30 (n=1) 

PDGFRA 1 8 Predictive D - Preclinical 20 

PIK3CA 1 9 Predictive B - Clinical trial 10 

OPA AMP 

ALK 2 4 Predictive C - Case study 30, 25 

EGFR 17 4 (n=8), 5 (n=7), 8 (n=1), 14 (n=1) Predictive B - Clinical trial Median=12.5 

ERBB2 24 4 (n=12), 5 (n=7), 6 (n=2), 7 (n=2), 11 (n=1) Predictive A - Validated Median=20 

FGFR1 3 4 Prognostic B - Clinical trial 20 

KRAS 27 4 (n=9), 5 (n=11), 6 (n=4), 7 (n=1), 8 (n=1) Prognostic B - Clinical trial Median=15 

MET 11 4 (n=6), 5 (n=2), 6 (n=2), 7 (n=1) Predictive C - Case study Median=15 

PIK3CA 31 4 (n=12), 5 (n=11), 6 (n=2), 7(n=2), 9 (n=1), 10 (n=3) Predictive B - Clinical trial Median=15 
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Supplementary Table 19. ClinBioNGS-only “OK” cancer RNA events with clinical evidence. 

For each RNA alteration uniquely detected by ClinBioNGS, the following information is provided: number of samples, number of supporting reads, CIViC evidence type and level, and 

detection status in the commercial pipeline. Results are grouped by panel and variant type. 

Panel Variant type Variant name Samples Supporting reads 
CIViC 

Evidence type 

CIViC 

Evidence level 
Commercial status 

OCA 

Fusion 

AKAP13::NTRK3 1 48 Predictive B - Clinical trial ABSENT 

BAG4::FGFR1 1 12 Diagnostic A - Validated ABSENT 

CDC27::BRAF 1 12 Predictive A - Validated ABSENT 

EML4::ALK V2 1 17 Predictive B - Clinical trial 57 reads, NO CALL (Sample QC FAIL) 

FGFR3::TACC3 3 902, 27, 11 Predictive C - Case study ABSENT (Read Count ≤40) 

FIP1L1::PDGFRA 4 99, 55, 14, 13 Diagnostic A - Validated ABSENT (Read Count ≤40) 

LMNA::NTRK1 1 64 Predictive B - Clinical trial ABSENT 

NSD3::FGFR1 7 61, 33, 24, 21, 20, 16, 15 Diagnostic A - Validated ABSENT (Read Count ≤1000) 

SLC34A2::ROS1 1 11 Predictive A - Validated ABSENT (Read Count ≤40) 

SND1::BRAF 1 33 Predictive A - Validated ABSENT 

Splicing AR-V7 16 Median: 2164 Predictive B - Clinical trial No calling status 
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Supplementary Table 20. Commercial-only cancer RNA alterations with clinical evidence. 

For each RNA alteration uniquely detected by commercial pipelines, the following information is provided: number of samples, number of supporting reads, CIViC evidence type and level, 

and detection status in ClinBioNGS. Results are grouped by panel and variant type. 

Panel Variant type Variant name Samples Supporting reads 
CIViC 

Evidence type 

CIViC 

Evidence level 
ClinBioNGS status 

OCA Fusion SND1::BRAF 1 187 Predictive A - Validated Not detected 

OPA 

Fusion 

FGFR2::CCDC6 1 3 Predictive C - Case study Not detected 

KIF5B::RET 1 90 Predictive A - Validated Detected after reanalysis (no deduplication) 

MKRN1::BRAF 1 4 Predictive A - Validated Not detected 

SND1::BRAF 1 3 Predictive A - Validated Not detected 

Splicing METx14del 1 7 Predictive A - Validated Primary flags=LowSupport (8 reads) 

 

  



 

179 

 

Supplementary Table 21. Comparative overview of representative bioinformatics workflows for the analysis of somatic NGS cancer panels. 

Workflows are grouped by their availability (i.e., commercial, institutional, or open-source) with clarifying notes on their status (e.g., SaaS, FDA-approved, CE-IVDR, CLIA, RUO). Columns 

summarize the following features: support for tumor-only analysis, DNA–RNA integration, type of genomic profiling, annotation and prioritization strategies, generation of informative plots, 

reporting format, adaptability, deployment complexity, and  support status. The last row corresponds to ClinBioNGS, the pipeline developed in this thesis. 

Workflow / 

Platform 
Availability 

Tumor-

only 

DNA+RNA 

integration 
CGP 

Annotation / 

Prioritization 

Informative 

plots 
Reporting Adaptability Deployment 

Support 

status 

Archer™ Analysis 
Commercial 

(SaaS) 
✔ ✔ ✔ 

Basic annotation; 

no clinical tiering 

Genome 

browser, 

CNA profile 

Interactive 

(GUI web 

explorer) 

❌ Low 

(proprietary, 

fixed assays) 

✔ Easy 

(ready-to-use) 

✔ 

Active 

FoundationOne CDx 

Commercial 

(FDA-

approved) 
✔ ❌ ✔ 

FDA-approved 

AMP/ASCO/CAP-

based tiering 
❌ 

⚠️ Static 

only 

❌ Low 

(proprietary, 

fixed panels) 

✔ Easy 

(sample send-

out) 

✔ 

Active 

Illumina TSO500 
Commercial 

(RUO/IVD) 
✔ ✔ ✔ 

Basic annotation; 

no clinical tiering 

QC, CNA 

profile 
⚠️ Static 

only 

❌ Low 

(proprietary, 

fixed panel) 

✔ Easy 

(ready-to-use) 

✔ 

Active 

QCI Interpret 

Commercial 

(SaaS, CE-

IVDR) 
✔ ✔ ✔ 

Comprehensive 

annotation; 

AMP/ASCO/CAP 

tiering 

QC, genome 

browser, 

CNA profile 

Interactive 

(GUI web 

explorer) 

⚠️ Moderate 

(panel-

agnostic but 

proprietary) 

✔ Easy 

(ready-to-use) 

✔ 

Active 

SOPHiA DDM™ 

Commercial 

(SaaS, CE-

IVDR) 
✔ ✔ ✔ 

Comprehensive, 

proprietary KB; 

AMP/ASCO/CAP, 

ESCAT tiering 

QC, genome 

browser, 

CNA profile 

Interactive 

(GUI web 

explorer) 

⚠️ Moderate 

(panel-

agnostic but 

proprietary) 

✔ Easy 

(ready-to-use) 

✔ 

Active 

Thermo Ion Reporter 
Commercial 

(RUO/IVD) 
✔ ✔ ✔ 

Basic annotation; 

no clinical tiering 

Genome 

browser, 

CNA profile 

Interactive 

(GUI web 

explorer) 

❌ Low 

(proprietary, 

fixed panel) 

✔ Easy 

(ready-to-use) 

✔ 

Active 

VarSome Clinical 

Commercial 

(SaaS, CE-

IVDR) 
✔ ❌ ✔ 

Comprehensive, 

proprietary KB; 

AMP/ASCO/CAP, 

tiering 

QC, genome 

browser, 

“Lollipop” 

graph, CNA 

profile 

Interactive 

(GUI web 

explorer) 

⚠️ Moderate 

(panel-

agnostic but 

proprietary) 

✔ Easy 

(ready-to-use) 

✔ 

Active 

DFCI OncoPanel 
Institutional 

(CLIA) 
✔ ❌ ✔ 

Internal 

AMP/ASCO/CAP-

based tiering 
❌ 

⚠️ Static 

only 

❌ Low 

(institutional 

fixed panel) 

❌ 

Institutional 

use only 

✔ 

Active 

MSK-IMPACT 

Institutional 

(FDA-

approved) 
❌ ❌ ✔ 

FDA-approved 

AMP/ASCO/CAP-

based tiering 
❌ 

⚠️ Static 

only 

❌ Low 

(institutional 

fixed panel) 

❌ 

Institutional 

use only 

✔ 

Active 

BALSAMIC 
Open-source 

(RUO) 
✔ ❌ ✔ 

Basic annotation; 

no clinical tiering 

QC 

(MultiQC) 
⚠️ Static 

only 

✔ High 

(open-source, 

⚠️ Moderate 

(containerized 

✔ 

Active 
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panel-

agnostic) 

but expert 

requirement) 

bcbio-nextgen 
Open-source 

(RUO) 
✔ ❌ 

⚠️ Limited 

(no 

biomarkers) 

Basic annotation; 

no clinical tiering 
❌ 

⚠️ Static 

only 

✔ High 

(open-source, 

panel-

agnostic) 

❌ Hard 

(legacy, 

complex 

install) 

❌ 

Inactive 

since 

2024 

DNAscan2 
Open-source 

(RUO) 
⚠️ Unclear ❌ 

⚠️ Limited 

(no 

biomarkers) 

Basic annotation; 

no clinical tiering 
❌ 

⚠️ Static 

only 

✔ High 

(open-source, 

panel-

agnostic) 

⚠️ Moderate 

(containerized 

but expert 

requirement) 

⚠️ 

Unclear 

(last 

update 

2023) 

MIRACUM-Pipe 
Open-source 

(RUO) 
✔ ✔ ✔ 

Basic annotation; 

no clinical tiering 

CNA profile, 

circos graph, 

cBioPortal 

integration 

⚠️ Static 

only 

✔ High 

(open-source, 

panel-

agnostic) 

❌ Hard (low 

portability, 

some manual 

installation) 

⚠️ 

Unclear 

(last 

update 

2023) 

nf-core/sarek 
Open-source 

(RUO) 
✔ ✔ ✔ 

Basic annotation; 

no clinical tiering 

QC 

(MultiQC) 
⚠️ Static 

only 

✔ High 

(open-source, 

panel-

agnostic) 

⚠️ Moderate 

(containerized 

but expert 

requirement) 

✔ 

Active 

PipeIT2 
Open-source 

(RUO) 
✔ ❌ 

⚠️ Limited 

(SNVs/InDels 

only) 

Basic annotation; 

no clinical tiering 
❌ 

⚠️ Static 

only 

⚠️ Moderate 

(open-source, 

fixed assay) 

⚠️ Moderate 

(containerized 

but expert 

requirement) 

⚠️ 

Unclear 

(last 

update 

2023) 

SCHOOL 
Open-source 

(RUO/CLIA) 
⚠️ Unclear ✔ ✔ 

Basic annotation; 

no clinical tiering 
❌ 

⚠️ Static 

only 

✔ High 

(open-source, 

panel-

agnostic) 

⚠️ Moderate 

(containerized 

but expert 

requirement) 

⚠️ 

Unclear 

(last 

update 

2022) 

TOSCA 
Open-source 

(RUO) 
✔ ❌ 

⚠️ Limited 

(SNVs/InDels 

only) 

Basic annotation; 

no clinical tiering 

QC 

(MultiQC) 
⚠️ Static 

only 

✔ High 

(open-source, 

panel-

agnostic) 

⚠️ Moderate 

(containerized 

but expert 

requirement) 

⚠️ 

Unclear 

(last 

update 

2022) 

ClinBioNGS 
Open-source 

(RUO) 
✔ ✔ ✔ 

Comprehensive 

annotation;  

internal flagging; 

AMP/ASCO/CAP 

QC, coverage, 

and variant-

specific 

visualizations  

Interactive 

(HTML) 

✔ High 

(open-source, 

panel-

agnostic) 

⚠️ Moderate 

(containerized 

but expert 

requirement) 

✔ 

Active 
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A2. Supplementary Figures 

 
Supplementary Figure 1. Selection of CNA reference samples based on coverage variability. 

(A) TSO500, (B), OPA, and (C) OCA panels. Scatter plots display individual samples, with the percentage of "normal" 

bins (log2 within median ± 1 MAD) on the x-axis and the absolute global weighted mean log2 copy ratio on the y-axis. For 

TSO500 (A), samples are highlighted based on their noisiness status (high or low). Samples meeting the reference selection 

criteria—≥90% “normal” bins and absolute weighted mean log2 ≥ 0.1—are marked as selected reference samples: red 

circle in (A) and red-colored points in (B) and (C). 
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Supplementary Figure 2. Overview of other results in the ClinBioNGS report. 

(A) CNA, (B) fusion, and (C) splicing results. Top findings, summary statistics, and CIViC clinical evidence are organized 

into distinct panels. Color coding is used for quick visual reference, and tumor-specific clinical evidence is displayed at the 

bottom. 
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Supplementary Figure 3. ClinBioNGS flagged status in the real-world benchmarking. 

UpSet plots illustrate the recurrence and combination of secondary flags assigned by ClinBioNGS across cancer-related 

(A) mutations, (B) CNAs, and (C) RNA alterations. Each plot includes two accompanying bar charts: one showing the 

distribution of detection status, and another showing the distribution by NGS panel for each intersection group of flags. 
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