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SUMMARY 
 

The human gut microbiome is a dynamic biomarker shaped by diet, lifestyle, and environmental 
factors. This doctoral research, based on the longitudinal recruitment of 1,017 healthy Spanish 
volunteers and the use of shotgun metagenomic sequencing, represents one of the largest studies in 
Spain exploring the diet-microbiome relationship at functional and species levels.  

 
The study demonstrates that adhering to diverse, high-quality diets, rich in vegetables, fruits, 

legumes, whole grains, nuts, and seeds, correlated with increased bacterial diversity and a microbiome 
profile distinct from that associated with inflammatory bowel diseases. This dietary pattern correlates 
with increased beneficial bacterial species such as Akkermansia muciniphila, recognized for its 
protective metabolic properties, while simultaneously reducing the abundance of species 
like Flavonifractor plautii, a flavonoid-degrading bacterium linked to poor dietary quality, 
and Ruminococcus torques, a mucin-degrading bacterium that can compromise the intestinal barrier. 

 
Multifactorial analysis revealed that beyond diet, factors such as smoking, higher body mass index, 

residence in the Mediterranean region, and infrequent bowel movements were associated with 
reduced bacterial diversity. Conversely, older age correlated with both better dietary habits and 
greater microbial diversity, and women exhibit healthier dietary patterns.  

 
Despite Spain's Mediterranean tradition, adherence to the traditional Mediterranean diet, was low 

(median aMED score: 4.0/ 9.0), reflecting a gradual transition toward Western patterns. Only three of 
twelve Global Burden of Disease Study dietary targets were met: vegetables, fruits, and fiber intake. 
Mycobiome exploration through enrichment protocols showed limited associations with dietary and 
bacterial patterns, identifying Saccharomyces cerevisiae as the most prevalent fungal species. 

 
Non-targeted culturomics on selected samples isolated 27 different bacterial species, including 

Bifidobacterium animalis and Bacteroides uniformis. While optimization is required for extremely 
oxygen-sensitive species such as Faecalibacterium prausnitzii, reformulating this method gives access 
to bacterial strains for future mechanistic studies. This work also integrated citizen science through 
personalized reports and open-access reporting, enhancing public engagement and democratization 
of scientific knowledge.   

 
Overall, these findings underscore the need for holistic, personalized approaches that integrate 

diet, lifestyle, and an individual context in microbiome research. 
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RESUMEN 

El microbioma intestinal humano es un biomarcador dinámico influenciado por la dieta, el estilo de 
vida y los factores ambientales. Esta tesis doctoral, basada en el reclutamiento longitudinal de 1.017 
voluntarios sanos españoles y el empleo de secuenciación metagenómica shotgun, representa uno de 
los estudios más amplios en España que exploran la relación entre la dieta y el microbioma a nivel 
funcional y de especies. 

El estudio demuestra que seguir dietas diversas y de alta calidad, ricas en verduras, frutas, 
legumbres, cereales integrales, frutos secos y semillas, se correlacionaron con una mayor diversidad 
bacteriana y un perfil microbiano distinto al asociado con enfermedades inflamatorias intestinales. 
Este patrón dietético se relaciona con un aumento de especies bacterianas beneficiosas como 
Akkermansia muciniphila, reconocida por sus propiedades metabólicas protectoras, al tiempo que 
reduce la abundancia de especies como Flavonifractor plautii, una bacteria degradadora de 
flavonoides vinculada a una dieta de baja calidad, y Ruminococcus torques, una bacteria degradadora 
de mucina que puede comprometer la barrera intestinal. 

El análisis multifactorial reveló que, más allá de la dieta, factores como el tabaquismo, un mayor 
índice de masa corporal, residir en la región mediterránea y frecuencia de deposiciones extremas se 
asociaron con una reducción en la diversidad bacteriana. Por el contrario, una mayor edad se 
correlacionó tanto con mejores hábitos dietéticos como con una mayor diversidad microbiana, y las 
mujeres mostraron patrones dietéticos más saludables. 

A pesar de la tradición mediterránea presente en España, la adherencia a la dieta mediterránea 
tradicional fue baja (puntuación mediana del aMED: 4.0/9.0), lo que refleja una transición progresiva 
hacia patrones occidentales. Solo se cumplieron tres de los doce objetivos dietéticos propuestos por 
la Global Burden of Disease Study: consumo de verduras, frutas y fibra. La exploración del micobioma 
mediante protocolos de enriquecimiento mostró asociaciones limitadas con patrones dietéticos y 
bacterianos, identificando Saccharomyces cerevisiae como la especie fúngica más prevalente. 

La culturómica no dirigida en muestras seleccionadas permitió aislar 27 especies bacterianas 
diferentes, incluidas Bifidobacterium animalis y Bacteroides uniformis. Aunque se requiere una mayor 
optimización para especies extremadamente sensibles al oxígeno como Faecalibacterium prausnitzii, 
la reformulación de este método nos da acceso a especies bacterianas para futuros estudios 
mecanísticos. Este proyecto también integró la ciencia ciudadana mediante informes personalizados y 
difusión en acceso abierto, fomentando el compromiso de la ciudadanía y la democratización del 
conocimiento científico. 

En conjunto, estos hallazgos ponen de manifiesto la necesidad de enfoques holísticos y 
personalizados que integren la dieta, el estilo de vida y el contexto individual en la investigación del 
microbioma. 
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1.1 The Human gut microbiome 
 

 The gut microbiome: not just bacteria 
The human microbiome is extensive and comprises genomes of a wide range of microorganisms such 
as protozoa, bacteria, fungi, viruses, and archaea. Traditionally, bacteria have been the most widely 
investigated microorganisms (1,2). However, significant efforts have recently been devoted to study 
other microbial components, including fungi and viruses (3,4). 

Microbes are located everywhere along the body, however, the gut constitutes one of the largest 
interfaces (approximately 400 m²) where the microbiome interacts with the host immune system (IS) 
and the environment (5). The collections of microorganisms in the gut, referred as the gut microbiota, 
is believed to play a critical role due to the wide range of essential functions that it performs. 

1.1.1.1 Bacteria 
In the gut of healthy human adults, approximately 1013 bacteria with a diversity of more than 4500 

different species including an average of 300-400 species per individual can be found (6,7). Commensal 
bacteria are mainly composed by two dominant phyla (Bacillota and Bacteroidetes) and followed by 
less dominant ones such as Actinobacteria and Proteobacteria, which remain highly stable over time 
(8). 

Among the wide range of functions, commensal bacteria can synthesize de novo essential vitamins 
such as vitamin K, B5, B9 and B12, some of which the human body cannot produce on its own. Folate 
or vitamin B9 are mainly produced by Bifidobacteria and are known to be involved in important 
metabolic pathways, including DNA synthesis and repair (5). Vitamin K is well known for being involved 
in the synthesis of blood clothing factors in the liver and may play a protective role in coronary heart 
disease (9,10). Additionally, B5 and B12 play a key task in the assembly of the neurotransmitter 
acetylcholine and hormone cortisol, required for the correct functioning of the nervous system (11).  

 
Bacteria are also involved in the fermentation of indigestible carbohydrates (CHO) that come from 

diet, mostly fibers and resistant starch, and their transformation into short-chain fatty acids (SCFAs), 
mainly butyrate, propionate, and acetate. These SFCAs are famous for their anti-inflammatory 
properties and serve as the primary energy source for colonic cells, named as colonocytes (12,13). 
Besides, they play crucial roles in IS development, maintaining intestinal homeostasis, and 
strengthening the physical barrier, which helps to prevent the colonization of harmful bacteria through 
both direct and indirect competition (11,14).  

1.1.1.2 Fungi 
Beyond bacteria, fungi, collectively known as the gut mycobiome, represent a small but significant 

part of the human gut microbiome (approx. 0.1%). Ascomycota, Basidiomycota and Zygomycota 
appear to be the most prevalent phyla in the gut of healthy adults. However, unlike bacteria, their 
composition varies significantly between individuals and within the same individual over time (15). 
Functions performed by the mycobiome are still not fully understood, partially due to the challenges 
associated with its identification. Even so, it has been shown that it facilitates fiber and 
oligosaccharides digestion, similar to bacteria, while also modulating both the host and microbial 
metabolism (16,17). Moreover, another of its major roles seems to be the regulation of the IS. Fungal 
antigens, such as β-glucans, are recognized by specific immune cell receptors, triggering defense 
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mechanisms against harmful pathogens while promoting tolerance to commensals.  They also might 
play a central role in protecting the mucosal layer through Th17 cells mediation and in immune 
homeostasis maintenance (18,19). 

1.1.1.3 Viruses 
Human gut is estimated to harbour around 109-1010 viral-like particles/g of feces, comprising a 

diverse range of virus types. These include DNA and RNA, both single and double stranded, ranging 
from plant viruses ingested through the diet to viruses capable of infecting other microorganisms 
(bacteriophages) or human cells (eukaryotic viruses).  

More than 90% of the human virome is constituted by bacteriophages with the ability to infect 
bacteria and archaea. Shotgun sequencing revealed Caudovirales and Microviridae as the most 
abundant viral taxa (4). Most phages can undergo two distinct life cycles: lytic and lysogenic. Briefly, in 
the lytic cycle, the virus infects the cell, replicates, and triggers cell lysis to release new viral progeny. 
In contrast, in the lysogenic cycle, the virus enters the cell and integrates into the host’s chromosome, 
allowing it to persist in a latent state, creating a mutualistic relationship between the phage and the 
bacterial cell. It is now well-established that phages play a crucial role in regulating bacterial 
populations via lytic cycles, thereby preventing bacterial adhesion to mucosal surfaces. Additionally, 
phages help bacteria to adapt to their environment and enhance survival by transferring DNA, such as 
antibiotic resistance genes (ARGs), between cells. Moreover, phages may also promote immune 
tolerance and facilitate commensal colonization (20,21).  

 

 Technical approaches for the analysis of the microbiome  
Microbiome profile is unique to each individual and its composition has been assessed over time 

using different techniques, including fluorescence in situ hybridization (FISH), cultured-based methods, 
16S ribosomal RNA (16S rRNA) sequencing for bacteria, internal transcribed spacer (ITS) sequencing 
for fungi, and RNA arrays. However, in recent years, omics approaches, such as metagenomics and 
culturomics, have emerged as the  leading techniques for microbiome analysis (22–24). 

1.1.2.1 Next Generation Sequencing and marker gene analysis 
Targeted Next Generation Sequencing (NGS) is a culture-independent method that uses primers to 

target and amplify a specific region of a gene of interest. This gene commonly has a hypervariable 
region, which enables the distinction between species or genera, and a conserved region that serves 
as the primer binding site (25). For bacteria and archaea, hypervariable regions V1 to V6 of the 16S 
gene are commonly used (26–30), while for fungi, regions ITS1 to ITS3 regions and/or 18S gene are 
suitable options (17,31–33). However, primer selection can introduce amplification bias, as primers 
may not have equal affinity for all regions, and this method often fails to identify organisms beyond 
the genus level. Additionally, while some programs can infer metabolic functions from taxonomic data, 
the shotgun sequence strategy is preferred for achieving more comprehensive gene coverage and 
greater reliability.  

In contrast, NGS is highly recommended for assessing low biomass samples (e.g., vaginal, saliva, 
tissue etc) as the microbial DNA content is often too low in these samples for shotgun sequencing. 
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Furthermore, large public 16S databases are available, and the cost of sample processing and analysis 
is relatively low compared to the shotgun sequencing approach (25).  

1.1.2.2 Shotgun metagenome analysis  
Shotgun metagenomics is an untargeted technique that involves sequencing the entire collection 

of DNA fragments extracted from a sample. For this purpose, DNA obtained from samples of interest 
is sequenced, without prior amplification, thereby avoiding possible PCR biases.  

Compared to targeted NGS, this procedure enables a more comprehensive view of the microbial 
community, capturing both the taxonomic and functional diversity, as well resolving species and, in 
some cases, strain-level disctinctions. However, after DNA extraction, downstream data analysis is 
time- and resource intensive, making this approach more costly than targeted NGS methods. 
Moreover, contamination by host DNA can occur and less databases are currently available (3,34). 

 

Figure 1. Summary of whole shotgun metagenome analysis workflow and statistical analysis commonly performed in 
microbiome studies. Adapted from (34–36). 
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First, raw DNA sequenced reads obtained from Illumina platform undergo quality control and 
decontamination of the host DNA using pipelines such as KneadData 
(https://huttenhower.sph.harvard.edu/kneaddata) which contains Bowtie2 and Trimmomatic tools 
(37,38). Clean microbial reads are then used to generate functional and taxonomic tables, which can 
be achieved using either read-based or assemble-based approaches. The read-based method 
determines taxonomy by aligning clean reads to curated databases,  commonly utilizing tools such as 
MetaphlAn4 (39) or Kraken2 (40). For functional analysis , the most common softwares freely available 
include HUMAnN4 (41) and MEGAN (42). The assembly-based methods assemble the clean reads 
obtained into longer units called contigs based on overlapping regions, inferring in the end the original 
genome. To achieve this, tools such as MEGAHIT (43) and metaSPAdes (44) are employed. 

Assembled contigs are then annotated using tools like metaGenMark (45) and Prokka (46), while gene 
abundance is quantified using additional alignment tools such as Salmon and Bowtie2 (47). From this 
computational step, functional and taxonomic tables are recovered and used in further analyses 
including α- and β-diversity, correlation and prediction analyses. A brief summary is presented in Figure 
1. 

1.1.2.3 Culturomics  
Metagenomics has revealed the vast biodiversity present within the human microbiota, with 

numerous metagenomics species surpassing the species and strains cataloged in current culture 
collections. However, accessing the uncultivated fraction, also known as “microbial dark matter”, 
which is estimated to represent about 35 to 65% of species, poses a significant challenge. Overcoming 
this obstacle is crucial for moving beyond mere correlations and towards establishing causation with 
cultivable microorganisms (48–50). To achieve this, the systemic cultivation of new strain collections 
is necessary. However, isolating and cultivating microorganisms from human gut requires high-
throughput technique like culturomics.  

1.1.2.3.1 History  
Early culturomics efforts relied on traditional microbiology techniques involving selection and/or 

enrichment, processes known for being both time-consuming and labor-intensive due to the necessity 
of multiple media and culture conditions. These methods were complemented by molecular 
identification (51). Nowadays, culturomics has evolved into a high-throughput approach that enables 
the rapid and efficient cultivation and isolation of microorganisms. It is often combined with matrix-
assisted laser desorption mass spectrophotometry (MALDI-ToF MS) for cost-effective and rapid 
identification. When strain-level resolution or additional information is required, 16S sequencing is 
performed for bacteria (52), while the ITS region is analyzed for fungi (53). 

In 2012, Lagier et al., successfully implemented the first culturomics workflow in stool samples from 
three volunteers, testing 212 different culture conditions. As a results, 174 previously undescribed 
species from the human gut were successfully isolated and identified, demonstrating that new species 
can be cultivated under proper culture condition (51). The same group later expanded the human gut 
repertoire by adding 531 novel species (54). Furthermore, this technique also enables the isolation of 
other microorganisms, including fungi. In 2017, Hamad et al., isolated 10 novel fungi species from stool 
samples of both healthy and patients, demonstrating that culturomics is a suitable technique for the 
discovery and isolation of a wide range of human gut commensals (53).  
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Since then, more research groups have utilized this technique for cultivation and/or discovery of 
species, not detected by metagenomics or not isolated before, potentially having a significant impact 
on human health.  Automation of the current procedure was also attempted to expand existing 
microorganism collections (52,53,55–60). The successful isolation of Facalibacterium prausnitzii and 
Akkermansia miciniphila, two important gut commensals, serves as  a good example for this approach 
(61,62). 

1.1.2.3.2 Targeted vs non-targeted culturomics 
When applying the culturomics technique, two main procedures can be used, with their key 

characteristics summarized in the following table:  

Table 1. Differences between targeted and non-targeted culturomics (56,59,63). 

 Targeted culturomics Non-targeted culturomics 

Definition 
Deliberate isolation of specific groups of 
microorganisms based on prior knowledge 
or hypothesis 

An exploratory approach that enables the 
cultivation of a wide range of 
microorganisms without any specific 
objective 

Method 
Utilization of specific culture media and 
conditions that selectively promote the 
growth of the targeted microorganisms 

Use of a wide range of culture media and 
conditions to try to capture the maximum 
diversity present in a sample 

Advantages 

Enables the acquisition of specific species 
for further study of their morphology, 
interactions with the environment, and 
metabolism. 

An efficient approach for discovering new 
species, while also providing insights into 
the broader ecosystem. 

Limitations 

Relies primarily on previous knowledge and 
may lead to an underestimation of the total 
community if selection conditions are too 
limited. Screening devices are required. 

Due to the need to test different conditions 
and screen a large number of colonies, it 
can be time-consuming 

 

1.1.2.3.3 Performing culturomics: step by step 
Nowadays, culturomics englobes several key steps: sample collection and processing, media 

selection and incubation, microbial isolation, cultivation, identification, and preservation. Briefly, 
samples are collected, homogenized, and subjected to serial dilutions. The diluted samples are then 
plated on different culture media and incubated under a wide range of oxygen levels, temperature, 
and time conditions. For targeted culturomics, selective media and conditions specific to bacteria of 
interest are directly applied, based on prior litterature or experience. Following incubation, microbial 
growth is assessed and distinct phenotypic colonies are isolated and grown individually. Once colonies 
are expanded, isolated species are identified. In routine, MALDI-ToF MS is commonly used for 
identification. However, if this method fails or new species are suspected, an additional step involving 
16S or ITS sequencing is performed. Finally, once pure isolates of interest are obtained, viable cells are 
stored at -80°C in cryogenic tubes containing glycerol (63–65) (Figure 2). 
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1.1.2.3.4 Advantages of culturomics over metagenomics  
Metagenomics has several limitations that can be addressed through culturomics. One of the 

primary challenges is the precise taxonomic assignment of the sequences at the strain level, which is 
hindered by short read lengths and heavily dependent on the quality of reference databases. 
Additionally, metagenomics analysis is often descriptive, generating hypotheses that require further 
validation through in vitro or in vivo studies to establish causality, which necessitates the isolation of 
microorganisms. Many of the dominant or relevant species uncovered through correlation analysis still 
lack a cultured representative strain. Moreover, low-abundant species are often difficult to detect 
using sequencing methods, even when a prior enrichment step is applied (48,52,65).  

 

 Role of the gut microbiome in health and disease 
The equilibrium and healthy diversity state of intestinal microbiome is known as eubiosis and its 

regulation is highly complex (66–68). Disruptions in this regulation can result in dysbiosis, a state 
characterized by alterations in microbiome composition and metabolic capacity. This imbalance leads 
to a decrease in beneficial bacterial products, while promoting the growth of opportunistic and 
pathogenic bacteria (69). Several external factors, such as drug intake, stress and diet, can contribute 
to this homeostasis disruption (70,71).  

It is now well accepted that microbiome plays a key role in non-communicable diseases such as 
Crohn´s disease (CD) and Ulcerative Colitis (UC), two main forms of Inflammatory Bowel Disease (IBD). 
Compared with healthy controls and UC patients, CD patients presented lower bacterial diversity and 

Figure 2. Workflow of targeted and non-targeted culturomics. Created by Biorender 
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a decrease in butyrate-producing bacteria such as Faecalibacterium prausnitzii in combination with an 
increase in Escherichia coli (72,73). Eukaryotic viruses from Pneumoviridae family in combination with 
Caudovirales bacteriophages were also found to be altered in intestinal mucosa of IBD patients with 
an increase in UC patients compared with healthy controls (74). At fungal level, a common fungi, 
Candida albicans, was enriched in IBD patients (75). Microbiota may be involved in other diseases 
including C. difficile infection (76), Celiac Disease (77,78), type 1 diabetes (79), obesity (80,81), chronic 
kidney disease (CKD) (82), etc. 

 

 Factors modulating the gut microbiome  
Various factors have been suggested to influence the composition, structure and function of the 

gut microbiome, with the most relevant ones illustrated in Figure 3. 

1.1.4.1 Genetics 
Some studies suggest that host genetics account for approximately 1.9 - 8.1% of the variation in the 

human microbiome (83,84). Among the numerous genetic associations with microbial composition, 
the ABO and LCT genes appear to be the most consistently linked. The ABO gene encodes a 
glycosyltransferase involved in ABO blood group determination and it is expressed in various cell types. 
Several loci of the gene have been repeatedly correlated with Collinsella, Bifidobacterium and 
Faecalibacterium species (85,86). Similarly, the LCT gene, which plays a key role in lactase synthesis 
has been associated with Bifidobacterium species in multiple studies (86–88). 

1.1.4.2 Age  
The relationship between the gut microbiome and age is complex and dynamic. In early life (up to 

1 year), the bacterial microbiome is dominated by two main phyla: Actinobacteria and Proteobacteria, 
with low bacterial diversity. Over time diversity gradually increases, leading to a more diverse and 
stable adult-like microbiome by the age of 2-3 years old (5). During adulthood, the gut microbiome 
remains relatively composed of Bacillota and Bacteroidetes, followed by less dominant phyla such as 
Actinobacteria and Proteobacteria (89). While the adult microbiome is generally stable, age-related 
changes have been reported in individuals over 65 years old. For instance, at 80 years old, a decrease 
in α-diversity is often noted, likely due to poorer diet and increased frailty (90,91). Unlike bacteria, 
fungal stability varies significantly among individuals and across life stages. In early life, the mycobiome 
is dominated by Candida, Malassezia and Mycospharella at three months, but at 12 months, it shifts 
towards Saccharomyces dominance, accompanied by a decrease in overall fungal α-diversity (92). As 
individuals progress through adolescence and adulthood, mycobiome composition is largely influenced 
by diet and Body Mass Index (BMI) (93). Under favorable conditions, a healthy adult mycobiome is 
dominated by Saccharomyces cerevisiae, Dacryopinax primogenitus, Yarrowia lipolytica, C. parapsilosis 
and C.albicans (94). 

1.1.4.3 Sex 
“Sex” refers to the biological categorization of a species based on reproductive systems and 

functions influenced by chromosomal types or hormones. The terms 'male' and 'female' are employed 
when discussing the sex of human participants or other sex-related variables (95). In contrast, “gender” 
encompasses socially constructed characteristics that define what its means to be a woman and man, 
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including norms, roles and their behaviors. Since gender is shaped by cultural and historical contexts, 
it can vary significantly across different societies and time periods (102). 

In general, the impact of sex on bacterial α-diversity remains controversial. While some studies 
suggest a higher α-diversity in females (96,97), other found no significant differences  (98–100). What 
seems to be more consistent is the fact that sex has been correlated with differential abundant species. 
Specifically, females tend to have a greater abundance of genera such as Akkermansia, Bifidobacterium 
and Bilophila, whereas males are more associated with an increased presence of genera like Prevotella 
(Table 2) (96–101). These differences may be partially driven by sex hormones such as estrogens or 
androgens (102–105), demonstrating the importance of considering sex as biological variable in 
experimental design as well as a possible confounder when performing microbiome studies.  

Table 2. Differential abundant bacterial genera enriched based on sex. 

Males ↑ Females ↑ 
Faecalibacterium (99) Oscillibacter (99) 

Ruminococcus_gauvreauii (99) Anaerostipes (99) 

Mitsuokella (99) Bilophila (98,100) 

Veillonella (100) Akkermansia (97,101) 

Methanobibracter (100) Bifidobacterium (96,101) 

Prevotella (101) Ruminococcus (101) 

Megamonas (101) Flavonifactor  (99) 
Fusobacterium (96,99,101)  
Megasphaera (101)  

 

1.1.4.4 Medication 
Antibiotics are known for being one of the main gut microbiota disruptors as they reduce 

commensal diversity and alter microbial composition, while promoting the overgrowth of 
opportunistic bacteria (106). Several studies have investigated the short and long-term impact of 
different antibiotics (107,108). For instance, ciprofloxacin treatment has been linked to a depletion of 
Faecalibacterium and Alistipes, accompanied by an increase in Bacteroides between 11 and 30 days 
post-treatment  (109). Moreover, azithromycin has been associated with the lowest recovery of pre-
treatment microbial levels compared to other antibiotics (110).  

A further consequence of antimicrobial use resides on the increase of ARGs, collectively known as 
the gut resistome. Healthy individuals may contain approximately 100 unique ARGs, with the most 
common conferring resistance to β-lactams and tetracycline. However, antibiotic treatment increases 
ARG prevalence by selecting resistant bacterial strains (110–112). 

Beyond antibiotics, non-antibiotic drugs can also significantly influence the gut microbiome. Maier 
et al. showed that nearly 24% of human-targeted drugs can inhibit the growth of at least one bacterial 
species in vitro (113). Among these, proton pump inhibitors (PPI), metformin, and laxatives appear to 
exert the strongest effects on the microbiome composition, although further research is required to 
elucidate their impact (114,115). 
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1.1.4.5 Environmental factors 

1.1.4.5.1 Horizontal transmission 
Horizontal transmission refers to the acquisition of  microorganisms from the external environment 

(116). This process occurs through various pathways including person-to-person interactions and 
cohabitation (115,117–119), the ingestion of microbes from food sources (120), and also microbial 
exchange with our pets (121,122). To explore microbiome transmission patterns, Vallés-Colomer et al., 
analyzed 9700 human metagenomes, identifying key contributors to microbial sharing. Among the 
various transmission routes, cohabitation emerged as the dominant factor, with strains- sharing rates 
ranging from 11 up to 71% among individuals living together compared to non-cohabiting individuals 
from the same population. Interestingly, the number of shared microbial species declines with age, 
with younger individuals exhibiting the highest levels of microbial exchange (119). These findings align 
with research by Gracesa et al., who reported that 48.6% of microbial taxa were influenced by 
cohabitation, whereas 6.6% were considered heritable (115). 

1.1.4.5.2 Geography 
Each geographical region is shaped by unique dietary habits, cultural factors, and topographical 

features that may affect gut microbiome composition and function. These effects are particularly 
pronounced when comparing geographical distant regions or contrasting under-developed and 
developed countries. One of the most consistent findings is a reduction in α-diversity, which appears 
to correlate with the degree of industrialization. Hunter-gatherer communities exhibit the highest 
microbial diversity, followed by traditional farming/fishing populations, with the lowest diversity 
observed in highly urbanized, westernized societes (123–126). At compositional level, distinct 
microbial profiles emerge. Hunter-gatherer populations are characterized by a high abundance of 
Treponema, an opportunistic pathogen, along with higher Prevotella, Clostridium, Oscillibacter, 
Lachnospira, and others (124,127). In contrast, Westernized populations show an enrichment in 
Bacteroides, Escherichia, Proteobacteria, Clostridium, Faecalibacterium, Ruminococcus, Dorea, Blautia, 
Roserburia, and Oscillospira (123,125,127). Interestingly, traditional farming or fishing populations 
exhibit a microbiome profile that integrates characteristics of both extremes, with Prevotella and 
Eubacterium who are present in less urbanized regions and Ruminococcus, Blautia, Dorea and 
Clostriudium species, more common in industrialized areas. However, the relative abundance of these 
taxa varies (123,127)(Table 3). However, divergences in microbial composition could be in part 
attributed to their dietary specialization making geography still a variable that needs to be explored in 
further research. 
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Table 3. Differences in α-diversity and bacterial composition and diet based on geography.  

Non-industrialised 
traditional populations  

Rural agrarian populations from low-to-
middle income countries" 

Westernised urban-industrialised 
populations 

Very high α-diversity High α-diversity Low α-diversity 

↑ Prevotella, Treponema, 
Clostridium, Catenibacterium, 
Eubacterium, Lachnospira 
(127) 

↑Bacteroidetes, Ruminococcus, Blautia, 
Dorea, Treponema (127) 

↑ Bacteroides (127) 

↑ Prevotella, Eubaacterium, 
Oscillibacter, Butyricoccus, 
Sporobacter, Succinivibrio 
and Treponema (124) 

↑ Bacteroidetes (Prevotella, Xylanibacter), 
Actinobacteria (123) 

↑ Bacillota, Proteobacteria, 
Shigella, Escherichia, Bacteroides, 
Alistipes (123) 

 
↑ Prevotella, Lactobacillus, Ruminococcus, 
Oscillospira, Eubacterium, Dialister, 
Clostridium (125) 

↑ Bifidobacterium, Bacteroides, 
Blautia, Dorea, Roserburia, 
Faecalibacterium, Ruminococcus 
(124) 

  
↑ Bacteroides, Alistipes, 
Clostridium, Oscillospira (125) 

Diet 

↓ CHO ↓ Animal protein and fat (123) White CHO, sugar, meat and fish 
(124) 

Wild food such as meat, 
honey, berries and tubers 
(124) 

↑ Vegetables, legumes, cereals (123) CHO, vegetables and animal 
protein (125) 

 Rice, bread and lentils (125)  
 

In green the common species between hunter-gatherer and traditional farming or fishing populations are highlighted. 
Orange represents common bacteria among traditional farming or fishing population and western urban populations. 

1.1.4.6 Lifestyle 
Recent evidence suggests that physical activity may influence the human gut microbiome, however 

the lack of proper controls had led to inconsistent findings (128). A few interventional studies claimed 
that exercise was associated with an increase in the abundance of butyrate producers (129–131), 
though its effects on α- and β-diversity remain contradictory (130,132,133). 

Smoking habits have been previously associated with distinct β-diversity profiles, but studies report 
only modest decreases or non-significant changes in α-diversity indices when comparing smokers to 
non-smokers. In terms of relative abundance, smokers generally exhibit higher abundance of 
Bacteroidetes and a reduction in Bacillota and Proteobacteria (134–137). Additionally, smoking has 
been associated with an increased susceptibility to Clostridium difficile infection  (138).  

1.1.4.7 Transit time 
Recently, gut transit time has drawn interest due to its potential impact on the human microbiome 

composition (139–141).  Several studies have associated longer transit time with higher α-diversity 
(140,142,143), possibly because prolonged transit allows for greater substrates availability and 
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fermentation,  such as CHO and proteins, creating a favorable environment for slower-growing species 
(140,144).  

Moreover, although further research is needed to determine the underlying mechanisms, very low 
stool frequency has been linked to an increased risk of cardiovascular and all-cause death (145–147).  

At the microbiome level, certain bacteria appear to be linked to transite time. A. muciniphila or F. 
prausnitzii have been associated with longer transit times and better stool consistency (140,148,149).  
A. muciniphila is a mucin degrading bacteria that plays a role in maintaining gut mucosal integrity 
(62,150). Consequently, its reduction has been proposed as a potential disease biomarker, as lower 
levels have been reported in conditions such as IBD and obesity compared to healthy controls or 
patients in remission (151–154). 

 

Figure 3. Summary of factors capable of influencing gut microbiota composition 
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1.2 Diet 
 

 Dietary assessment methods 
When assessing the food intake of micro- and macronutrients in a population, biochemical markers 

are considered the gold standard option. Unlike dietary recall methods, they do not rely on an 
individual´s memory or reporting accuracy.  Additionally, they can be acquired through non-invasive 
samples such as urine, saliva, blood and stool, making them a practical and objective tool for nutritional 
assessment (155). In this line of research, metabolomics, which comprise mainly two primary 
techniques (Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS)), can be promising for 
objective identification of dietary biomarkers. Both techniques can follow targeted or non-targeted 
approaches. Non-targeted metabolomics captures the full spectrum of metabolites present in a 
sample, including unidentified compounds. However, due to its high cost, complex data analysis and 
statistical challenges, targeted strategies are often preferred (156). To date, numerous nutritional 
studies have focus on identifying metabolomic signatures associated with dietary patterns, specific 
foods, or nutrients (157–161). Nevertheless, identifying universal metabolic markers remains 
challenging as they can be influenced by factors such as disease, stress, or age. Therefore, metabolomic 
approaches are often combined with traditional dietary assessment tools for comprehensive analysis 
(155). 

Traditional methods include a huge variety of approaches (see Table 4). One reliable method for 
assessing dietary intake is the use of dietary records or food diaries. In this approach, participants or 
trained staff record all foods and beverages consumed over a specified period of time (between 2-7 
days), including brand names, weighted portion sizes and cooking methods. However, accurate 
recording requires prior training and familiarity with the process, necessitating a high level of 
motivation from volunteers. Additionally, a single record reflects only short-term intake rather than 
habitual dietary patterns, requiring multiple recordings to estimate usual consumption, an aspect that 
poses challenges for large-scale population studies (162).  

The 24-h dietary recall (24HR) method records the individuals´ food intake over the previous 24h. 
It is a versatile approach, as it can be performed online or offline, either self-administered or with the 
assistance of trained staff, thereby reducing costs. Similar to other dietary assessment methods, details 
such as food preparation methods, brand names, and portion sizes must be recorded, often with the 
aid of visual materials to enhance accuracy. Still, this method has limitations, as it relies, for example, 
on participants’ memory and may be prone to recall bias. To improve the accuracy of habitual dietary 
intake assessment, at least three 24h recalls are recommended (two on random weekdays and one on 
a weekend). Additionally, trained staff professionals are needed for macro- and micronutrients 
quantification, making this method costly for population studies (163). 

For large cohort studies, the Food Frequency Questionnaire (FFQ) is often prefered due to its cost-
effectiveness and ability to be self-administered to capture habitual dietary intake. Moreover, it is a 
tool available in various formats, including quantitative, semi-quantitative, and qualitative versions, 
sometimes incorporating images to aid facilitating food portion size selection. However, like the 24HR, 
the FFQ relies on participants’ memory and requires prior validation for the target population, typically 
through comparison with 24HR or dietary records (164).  
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Table 4. Most commonly used dietary assessment methods. 

 Recalls 
Records or food 

diaries FFQ1 

Options 1 or 7 day 1, 3, 4 or 7-day Previous month or year, 4-day 

Data 
Collection 

Subjective current 
intake over a 
defined timeframe 

Subjective current 
intake over a 
defined timeframe 

Typical intake estimation over a 
span (typically 6 months or 1 
year). Subjective 

Advantages 

Validity, extensive 
participant 
cooperation, and 
accuracy. 

Reliable reference 
technique for 
validation studies 
due to its validity. 

Economical method suitable for 
large-scale epidemiological 
studies. Minimal expertise 
required for quantification or 
data collection. 

Limitations 

An accurate 
assessment 
typically requires 
between 3 to 4 
24HR. Trained staff 
is essential. Relies 
on memory that can 
introduce bias 

Subjects must be 
highly motivated, 
and volunteers may 
inaccurately report 
proportions they 
perceive as correct 
rather than actual 
proportions. 

Tailored to the study 
population and research 
objectives; utilizes a closed-
ended questionnaire; prone to 
low accuracy (due to recall 
bias); necessitates precise 
evaluation of questionnaire 
development. 

 

1 Food Frequency Questionnaire 

 

 Food composition databases (FCDB) and food composition tables (FCT) 
FCDB and FCT are fundamental in nutrition research, providing detailed information on the 

macronutrient and micronutrient content of foods and beverages. Food composition data are typically 
derived from either quantitative chemical food analysis of commonly consumed foods within a country 
or extracted from scientific literature (165). 

FCDB are widely used by researchers, the food industry, governmental institutions, and consumers 
as they enable the calculation of energy and nutrient intake based on dietary assessed data. This, in 
turn, provides valuable insights into the dietary quality of individuals and populations. The primary 
sources of FCDBs include datasets released by national governmental agencies, as well as contributions 
from research institutions and private companies (166). 

In Spain, 18 FCTs/FCDB have been developed to date. Early FCTs were available in book format and 
lacked of updated versions. It was not until 2010 that the Spanish Agency for Consumer Affairs, Food 
Safety and Nutrition (AECOSAN) launched the first official, free access and unified FCDB, known as 
“Base de Datos Española de Composición de Alimentos” (BEDCA; https://www.bedca.net/), designed 
in accordance with European Recommendations However, BEDCA present certain limitations, such as 
a relatively limited number of food items compared to international FCDBs such as the United States 
Department of Agriculture (USDA) database. Additionally, it does not include information on 
commonly consumed dietary supplements, vitamins or recipes (167). 
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In a effort to harmonize European FCDBs, the European Food Information Resource (EuroFIR) 
developed FoodExplorer, a search interface that enables users to access nutritional information from 
33 international FCDB covering data from 31 different countries (168). 

 Dietary Quality metrics or Dietary Quality indices (DQIs) 
Diet corresponds to a highly complex variable that is often simplified through the use of DQIs. The 

indices are nutrition-based metrics designed to assess diet quality by considering the consumption of 
specific nutrients or food groups, either individually or collectively, in terms of healthiness or 
unhealthiness. By summarizing overall dietary patterns into a single measure, DQIs offer an efficient 
way to account for dietary factors without introducing excessive complexity into analytical models. 
DQIs typically evaluate diet quality across three main categories: adherence to dietary guidelines, 
recommended food intake, and dietary variety (169). Various DQIs have been applied in research 
studies focusing on diet, each with distinct characteristics, summarized in Table 5. 
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Table 5. Summary of some of the most common indices used to measure diet quality at population level.  

DQIs1 Full name Developed by Key Components What does it measure Score 

HEI-2015 Healthy Eating Index 
2015 (170–172) 

 USDA2 

13 calorie-adjusted components divided into 
“adequacy” components which are food groups whose 
intake is recommended and “moderation” components, 
whose intake must be controlled. The latest version 
corresponds to HEI-2015 

Degree of alignment with 
Dietary Guidelines for 
Americans to assess overall 
diet quality 

Score A: 100-90 points 
Score B: 89-80 points 
Score C: 79-70 points   
Score D: 69-60 points   
Score F: 59-0 points 

IASE 
Healthy Eating index 
for Spanish 
population (98,173) 

University of 
Alicante, Spain 

Frequency of consumption by means of 10 variables 
that divide diet into “dairy”, “weekly” and “occasional” 
consumption plus diet variety points that refers to diet 
diversity. 

Adaptation of HEI index to 
Spanish population 
recommendations 

Healthy: > 80 points 
Need changes: 80-50 points 
Not healthy: < 50 points   

HFD 
Healthy Food 
Diversity Index (174) 

Christian-
Albrecht’s 
University of Kiel 

Considers consumption of nutrient-dense foods such as 
fruits, vegetables, whole grains, lean proteins, and 
healthy fats to assess overall diet quality. 

Measures diversity and 
nutritional quality of foods 
consumed based on 
German guidelines 

Higher score indicates a more 
diverse and nutritious diet, 
associated with better health 
outcomes. 

MAR Mean Adequacy 
Ratio (151,175) 

University of Oslo 

Assessment of 16 essential micro/micronutrient defined 
as NAR3 which includes proteins, fiber, vit. A, thiamine, 
riboflavin, niacin, vit. B6, 12, vit.C, D, E, folate, calcium, 
potassium, iron and magnesium. Average value of the 
16 NARs is defined as MAR. 

Individual adequacy ratios 
for essential nutrients by 
comparing actual intake to 
recommended intake of 
the country of assessment. 

Higher MAR indicates greater 
proportion of recommended 
nutrient intake, suggesting 
better nutritional adequacy 

PDI Plant-Based Dietary 
Index (176–179) 

Harvard T.H Chan 
School of Public 
Health, US 

Intake of healthy and less healthy plant food groups 
included in the uPDI and hPDI 

Evaluates diet quality 
based on amount of plant-
based foods relative to 
animal-based foods 

Higher score indicates richer 
intake of plant-based foods 
like fruits, vegetables, whole 
grains, nuts, and seeds, and 
lower intake of animal-based 
foods like meat and dairy 

aMED 
Alternative 
Mediterranean score 
(180,181) 

Department of 
Nutrition, 
Simmons College, 
Boston, MA 

Vegetables, legumes, fruits, nuts, whole grains, red and 
processed meat, fish and selfish, MUFA/PUFA4, 
alcoholic drinks 

Measure the adherence to 
a typical Mediterranean 
Diet (MedDiet) 

Higher score indicates a more 
Mediterranean type diet. 
Scores from 0 to 9  
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1Dietary Quality Indices 
2United States Department of Agriculture 
3Nutrient Adequacy Ratio 
4Monounsaturated/polyunsaturated ratio 
5Prevention with Mediterranean Diet 

 

 

 

DQIs1 Full name Developed by Key Components What does it measure Score 

uPDI 
Unhealthful Plant-
Based Diet Index 
(177–179,182) 

Harvard T.H 
Chan School 
of Public 
Health, US 

Evaluation of intake of refined grains, potatoes, and 
sweets within a plant-based diet. 

Version of PDI that focuses on 
intake of less healthy plant-
based items 

Higher score suggests higher 
intake of these less nutritious 
plant-based foods within an 
otherwise plant-based diet. 

hPDI 
Healthful Plant-
Based Diet Index 
(177–179,182) 

Harvard T.H 
Chan School 
of Public 
Health, US 

Intake of healthy foods like fruits, vegetables, whole 
grains, nuts, and legumes within a plant-based diet 

Version of PDI that emphasizes 
consumption of healthier plant-
based foods 

Higher score reflects diet rich in 
these nutrient-dense plant-
based food groups. 

MDI 
Meat index (177–
179,182) 

Harvard T.H 
Chan School 
of Public 
Health, US 

Intake of animal fat, dairy, eggs, fish and shellfish and 
animal-based foods 

Version of PDI that is based on 
the consumption of meat and/or 
meat derived products 

Higher score reflects higher 
consumption of meat. 

MEDAS 

14-item 
Mediterranean Diet 
Adherence Screener 
(183,184) 

PREDIMED5 
Study 

12 questions related to food consumption (olive oil, 
vegetables, fruit, meat, butter, sweetened or carbonated 
beverages, wine, pulsed, fish and shellfish, commercial 
pastry etc) and two questions of food intake habits 

Focuses on Spanish 
Mediterranean diet patterns 

Range: 0 to 14 points 
Good adherence: ≥9 points 
Poor adherence: ≤8 points 
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1.3 Diet and gut microbiota 
 
As mentioned earlier, multiple factors shape the composition of the human gut microbiota, but diet 

has been suggested as a key determinant of interindividual differences (185,186). In this line of research, 
Westernized diets, characterized by high sugar and fat intake, have been linked to gut dysbiosis, whereas 
diets rich in vegetables and fruits are suggested to have anti-inflammatory properties (187). 
Additionally, previous findings indicated that higher DQI scores, which denote better diet quality, have 
been linked to an increase in bacterial α-diversity, with some exceptions like Unhealthful Plant-Based 
Diet Index (uPDI), that shows a negative association due to its focus on less healthy plant-based sources 
(182,183). 

 
The importance of maintaining a healthy diet is further highlighted by a 2017 meta-analysis 

conducted within the Global Burden of Disease Study (GBD), which identified 15 dietary risk factors 
associated with morbidities and mortality worldwide (190). 

 
In order to elucidate the relationship between diet and microbiome, two main types of studies are 

commonly conducted: observational studies monitor participants without altering their diet, allowing 
for the identification of natural associations, whereas interventional studies actively modify dietary 
patterns through supplementation or control diet modifications to assess causal effects (191). In this 
thesis, we primarily focus on observational population studies, as they provide a cost-effective approach 
to gathering preliminary data. These findings can act as a foundation for designing future interventional 
studies aimed at establishing causal relationships between diet and the microbiome (Table 6). 

 The size matters: observation studies at population level 
1.3.1.1 Habitual diet 

1.3.1.1.1 Europe 
Early large-scale observational studies investigating the relation between diet and microbiota were 

conducted by Zhernakova et al. and Falony et al. (185,186). The first study, led by Zhernakova et al., 
analyzed habitual dietary patterns in 1,135 volunteers from the Dutch LifeLies-DEEP Study (LLDeep) 
cohort. Significant associations were observed between microbiota and 60 dietary variables (False 
discovery rate (FDR) <0.1). Notably, high bacterial diversity was linked to the consumption of low-fat 
milk, coffee, tea and red wine, likely due to the polyphenolic content of the latter three. Additionally, 
red wine was associated with F. prausnitzii, a known butyrate producer.  Conversely, whole milk, 
sweetened beverages, snacks, and diets high in CHO were correlated with lower bacterial diversity (186). 
Similarly, Falony et al. explored the association between diet and gut microbiome composition using 
The Flemish Gut Flora Project (FGFP) cohort (n= 1,106). They identified significant correlations between 
10 dietary factors and overall microbiome community variation (β-diversity). Using an independent 
cohort (the previously named LLDeep), they partially validated five of them, more specifically the effect 
of coffee, beer, alcohol, fruits and soda (185).  

Partula et al. confirmed similar dietary-microbiota association in a French cohort (n= 862), reporting 
that sugary drinks and high-fat foods such as fried products were related with lower α-diversity, while 
fish and raw fruits consumption were associated with greater microbial diversity. Expanding on previous 
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studies, they also analyzed β-diversity, identifying cheese, ready-to-eat meals, cooked fruits, raw fruits 
and fried products as responsible from up to 0.77% of the microbiome variation. At the species level, 
their findings diverged from prior research after multiple testing corrections. Notably, dairy products 
and raw fruits were positively associated with Streptococcus salivarius and Lachnospira eligens, 
respectively. In contrast, cheese consumption showed a negative correlation with A. muciniphila, a 
bacterium linked to gut barrier integrity. Additionally, meat, previously suggested to promote 
inflammation, was negatively correlated with Blautia and positively correlated with Clostridium (26).  

More recently, the gut microbiota of the Spanish population was characterized for the first time by 
Latorre-Pérez et al. in a cohort of 530 volunteers from across the country. While no significant 
associations were found at the species level, several noteworthy relationships were identified at the 
genus level. Among different food groups, nuts presented the highest number of microbial associations 
(23 genera), likely due to their high polyphenol and fiber content, which may contribute to gut 
microbiome modulation. The genus Flavonifactor was positively correlated with sweetened drinks and 
inversely with nuts, fruits and some vegetables, showing an opposite direction when compared with 
Akkermansia. Similarly, Ruminococcus was identified as an indicator of meat consumption, with its 
abundance decreasing in response to “healthy choices” such as nuts and vegetables. In contrast, L. 
eligens displayed an opposite pattern (99). More recently, Qin et al. (n= 8,798) expanded on this 
knowledge, identifying a strong positive correlation between Bifidobacterium and dairy consumption, 
further supporting the role of diet in shaping the gut microbiota composition (87).  

1.3.1.1.2 USA and UK 
The American Gut Project (AGP) was launched in 2012 in the US and extended to other countries, 

enabling one of the largest population-based microbiome studies to date (n= 10,699). Findings 
suggested that the number of different plants consumed, specifically more than 30 types per week, was 
more strongly correlated with F. prausnitzii and Oscillospira (both SCFAs producers) than the overall 
dietary classification. Additionally, higher plant diversity in the diet was associated with a reduction in 
some ARGs, highlighting another potential benefit of plant-rich diets  (27).  

Asnicar et al. (n= 1,098) further explored diet-microbiome interactions, finding a positive correlation 
between α-diversity and the consumption of shellfish and white fish (188). Also, a total of 42 species 
were associated with at least five dietary exposures, with the strongest association observed between 
Lawsonibacter asaccharolyticus and coffee/tea consumption. At a broader level, two major clusters 
emerged: one primarily composed of butyrate-producing bacteria associated with healthy plant-based 
food choices, and another dominated by Clostridium species (among other), which were linked to animal 
products and less healthy plant-based choices. As a novel approach, they proposed to use microbiome 
composition to predict health and dietary patterns (188). A similar trend was partially validated by 
Walker et al., (n= 1,423) who found that species richness was most strongly associated with fish, 
vegetables, fruit, tea, and coffee (28). A step further, Berry et al., used gut microbiome composition as 
a part of a model for postprandial biochemical prediction with acceptable results. Findings were 
independenly validated using an independent cohort (192). 
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1.3.1.1.3 China 
China has also contributed to microbiome research and long-term diet studies with a cohort of 1,920 

individuals. Within food groups, positive correlations were found between dairy intake and 
Bifidobacterium, fish and seafood food consumption and Coprococcus, and processed meat and 
Acinetobacter. Conversely, Roseburia showed an inverse association with processed meat (193). Zhang 
et al. included a cohort of 702 participants from six different cities in China. While no significant 
differences in α-diversity across food groups except for eggs was obtained, β-diversity analysis revealed 
that whole grains and vegetables accounted for up to 1.46% of total inter-individual variation. At the 
taxonomic level, healthy food choices such as whole grains positively correlated with Megasphaera, 
while vegetables were negatively associated with Eubacterium coprostanoligenes and Leuconostoc. 
Additional correlations included a negative association between red meat and Weissella, a positive link 
between red meat and Coprobacter, and positive associations between dairy and Anaerostipes, as well 
as refined grains and Lactobacillus. (30).  

Taking the research a step further, Sun et al. (n= 942) also explored the relationship between diet 
and fungi. Blueberries and buttermilk tea exhibited the highest number of fungal associations. 
Specifically, blueberries positively correlated with Tetrapisispora blattae, Sugiyamaella lignohabitans, 
Kazachstania africana, and Kazachstania naganishii, while buttermilk tea was linked to Naumovozyma 
castellii, Botrytis cinerea, and Penicillium chrysogenum. Within the fruit group, grapefruit correlated 
positively with Zygosaccharomyces parabailii and Candida glabrata, Papaya with Saccharomycopsis 
fibuligera, plum with Multicellular and Sclerotinia sclerotiorum; watermelon with Scheffersomyces 
stipitis. Coffee consumption was associated with Saccharomyces paradoxus (3).  

1.3.1.2 Dietary patterns 

1.3.1.2.1 Western diet 
With globalization, the Western-type diet (WD) has spread worldwide. This diet is characterized by 

high consumption of saturated fats, ultra-processed foods, sugars, and salt often accompanied by a 
reduced intake of fiber, fruits, and vegetables (194). Shikany et al., investigated microbiome differences 
between the WD and a “Prudent diet” (rich in vegetables and fruits) in a study involving 517 men from 
the USA. Participants who reported higher adherence to WD presented higher BMI although no effects 
in bacteria richness were reported. At the genus level, Alistipes, Anaerotruncus, Collinsella, 
Coprobacillus, Desulfovibrio, Dorea, Eubacterium, and Ruminococcus were positively associated with the 
WD. In contrast, Coprococcus, Faecalibacterium, Haemophilus, Lachnospira, Paraprevotella, and 
Prevotella showed an inverse correlation (195).   

Similar research has been conducted in Korea to compare dietary patterns. Lim et al. (n= 890) found 
that a traditional Korean diet (characterized by high intake of vegetables, seaweed and soybean) was 
associated with higher relative abundance of Sutterella, Coprococcus, and Paraprevotella. In contrast, a 
WD with consumption of instant noodles, meat, and snacks induced an increase in Lachnospiraceae and 
Dorea and a decrease in Streptococcus and Haemophilus parainfluenzae (196). Another Korean cohort 
(n= 1,199), was investigated the same year, comparing not only WD and traditional diet but also a rice-
based diet. At the genus level, no clear separation between dietary patterns was observed, but 
significant correlations emerged between specific taxa and food groups. For example, Prevotella was 
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positively associated with bread, noodles, fish, nuts and refined grains, while Ruminococcus correlated 
with egg, fruits, milk, noodles and refines grains as well. Finally, Bacteroides was related with bread, 
legumes, seasonings, fast food and noodles (197).  

1.3.1.2.2 Mediterranean diet 
Few studies have assessed the effect of different dietary patterns at the population level. Among 

those available, the Mediterranean Diet (MedDiet) has been consistently associated with positive health 
outcomes and a reduced risk of cardiovascular (CVD) and metabolic diseases (198–201). At the 
population level, adherence to the MedDiet is commonly measured using DQIs. Latorre-Pérez et al. (n= 
530) found that adherence to MedDiet was associated with three bacterial taxa proposed as biomarkers. 
An inversed correlation with Flavonifractor plautii (99), a species  previously shown to decrease with the 
consumption of fruits, nuts, whole grains but to increase with sugary drinks (99,188). F. plautii plays a 
role in flavonoid degradation, potentially reducing their bioavailability (202). A similar inverse 
association was seen with Ruminococcus torques.   

Conversely, L. eligens was positively linked to higher MedDiet adherence and to vegetable and fruits 
consumption, while negatively associated with meat intake (26,99,188). Asnicar et al. observed a similar 
relationship between F. plautti and L. eligens with MedDiet. Other bacterial taxa showing strongest 
associations with foods or food groups included: Roserburia hominis (positively with whole grains), 
Agathobaculum butyriciproducens (positively with coffee, tea, vegetables and nuts; negatively with in 
desserts), Ruminococcus lactaris (positively with vegetables and nuts), H. parainfluenzae (negatively 
with coffee, tea, meat, sugary drinks and alcohol; positively with fruits, whole grains and legumes),  F. 
prausnitzii and Bifidobacterium animalis (both positively correlated with adherence to MedDiet)(188). 
F. prausnitzii is well known for producing SCFAs and has been linked to plant and vegetables 
consumption, as well as red wine, a polyphenol-rich beverage (27,186). In contrast, taxa negatively 
associated with the MedDiet included E. coli, Ruminococcus gnavus, Ruthenibacterium lactatiformans, 
Pseudoflavonifractor and several Clostridium species (C. spiriforme, C. symbosyum, C. leptum, C. 
innoculum), most of which were linked to less healthy dietary choices such as sugary drinks and desserts.  

Despite these findings, population-level studies focusing on specific dietary patterns remain limited. 
Further research is needed to clarify how diets can be used for gut microbiota modulation.  

 

1.3.1.3 Specific components or food groups 
In addition to examining overall dietary patterns, studies have also explored the impact of individual 

foods and dietary components. For instance, moderate intake of red wine is often recommended as part 
of the MedDiet for promoting healthy aging (203). Le Roy et al. (n= 916) in the context of the Twins UK 
cohort, studied the effect of wine and other alcohol beverages on gut microbiota composition and 
diversity. Their findings showed that wine consumption was positively correlated with higher α-diversity 
levels and an increased proportion of three bacterial genera (Phascolarctobacterium, Barnesiella and 
Prevotellaceace). Most importantly, the association with α-diversity was replicated in two independent 
cohorts (FGPF and the AGP), supporting the robustness of these findings (204). 

 



Introduction 

43 

Another example of reproducible results relates to the intake of coffee and its link to L. 
asaccharolyticus, a butyrate-producing bacterium. This association was observed in both caffeinated 
and decaffeinated coffee drinkers (205). However, the implication of L.asaccarolyticus for health and 
disease remain to be fully understood (206–208)
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Table 6. Summary of observational population studies carried out in the context of diet and gut microbiota in humans. 

Author Nº 
participants 

Dietary assessment 
method 

Population Sequencing 
method 

Type of diet 

Habitual diet 
Partula et al., 2019 (26) 862 FFQ1 Adults from France  16S rRNA Habitual 
Zhernakova et al., 2016 (186) 1,135 FFQ1 Dutch cohort  Shotgun  Habitual 
Falony et al., 2016 (185) 3,948 FFQ1 Belgium FGFP2 and Dutch LLDeep3 cohorts  16S rRNA Habitual 

McDonald et al., 2018 (27) >10,699 
FFQ1 and primary 
diet survey Adults from USA, UK and Australia  16S rRNA Habitual 

Yu et al., 2021 (193) 1,920 FFQ1 Adults from two China cohorts  16S rRNA Habitual 
Walker et al., 2021 (28) 1,423 FFQ1 American FHS4 cohort  16S rRNA Habitual 
Latorre-Pérez et al., 2021 (99) 530 FFQ1 Spanish population (99) 16S rRNA Habitual 

Asnicar et al., 2021 (188) 1,098 FFQ1 
PREDICT 15 study in UK and 100 Americans 
for validation  Shotgun Habitual 

Qin et al., 2022 (87) 8,798 FFQ1 FINRISK study in Finland  Shotgun Habitual 
Koponen et al. 2021 (209) 4,930 FFQ1 FINRISK 2002 study in Finland  Shotgun Habitual 
Zhang et al., 2022 (30) 702 FFQ1 TARGET-C86 study in China  16S rRNA Habitual 
Sun et al., 2021 (3) 942 FFQ1 Chinese volunteers  Shotgun Habitual 

Delavy et al., 2023 (31) 821 FFQ1 and electronic 
case report 

French healthy volunteers  Shotgun and ITS3-4 Habitual 

Shuai et al., 2022 (210) 1,244 FFQ1 Middle age and elderly from Chinese GNHS7 
cohort  

ITS2, 16S rRNA and 
Shotgun 

Habitual 

Gacesa et al., 2022 (115) 8,208 FFQ1 DMP8  Shotgun Habitual 
Dietary patterns 

Asnicar et al., 2021 (188) 1,098 FFQ1 
PREDICT 15 study in UK and 100 Americans 
for validation  Shotgun MedDiet9 

Berry et al., 2021 (192) 1,002 FFQ1 PREDICT 15 study in UK and 100 Americans 
for validation  16S rRNA Habitual 

Latorre-Pérez et al., 2021 (99) 530 FFQ1 Spanish population  16S rRNA MedDiet9  

Wu et al., 2021 (197) 1,199 FFQ1 Adults from KNHANES10  16S rRNA 
Korean traditional 
diet vs rice-based vs 
WD11 
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Author Nº 
participants 

Dietary assessment 
method Population Sequencing 

method Type of diet 

Lim et al., 2021 (196) 890 FFQ1 Korean volunteers  16S rRNA WD11 traditional diet 
Shikany et al., 2019 (195) 517 FFQ1 Men from MrOs12 study US  16S rRNA WD11 vs prudent diet 

Shen et al., 2024 (189) 705 FFQ1 BLSA13 Cohort  Shotgun 
Healthy Plant-based 
diet vs unhealthy 
plant-based diet 

Specific components or foods 
Manghi et al., 2024 (205) 22,347 FFQ1 Coffee consumption  Shotgun Coffee 

Le Roy et al., 2020 (204)  916 FFQ1 Alcohol consumption  16S rRNA Beer, cider, red and 
white wine and spirits 

 

 

1Food frequency questionnaire  
2Flemish Gut Flora Project 
3Dutch LifeLies- DEEP Study 
4Framingham Heart Study 
5 Personalized Responses to Dietary Composition Trial-1 
6 Comparative evaluation of novel screening strategies for colorectal cancer 

screening in China  
7 Guangzhou Nutrition and Health Study 
8 Lifelines Dutch Microbiome Project  
9 Mediterranean diet 
10Korea National Health and Nutrition Examination Survey 
11Western-type diet 
12The Osteoporotic Fractures in Men 
13 The Baltimore Longitudinal Study of Aging  



Introduction 

46 

 What´s next? Interventional studies 
Once correlations are identified at the population level, the next step is to demonstrate causality. 

This is typically achieved through gold-standard approaches such as human intervention or animal 
models’ studies. 

Human intervention studies are more limited due to ethical constraints, as harmful components can 
be tested in human trials. Additionally, these type of studies present challenges in controlling variables 
such as inter-individual variability, diet and other potential confounders including lifestyle, medication 
and supplements, demographics (211). Since interventional studies are over the scope of the present 
thesis, just some of them have been introduced in detail. However, a more extense summary, containing 
some of the most recent human intervention studies, can be found in Table 7.  

1.3.2.1 Specific dietary patterns 
Among the limited human intervention studies available, dietary fiber is the one of most extensively 

studied components for gut microbiota modulation.  Defined as non-digestible CHO that escape 
absorption in the small intestine and reach the colon,  dietary fibers serve as substrate for the gut 
microbiota (212). 

Holscher et al., trial showed that 21 g of soluble fiber shifted Bacillota/Bacteroidetes (F/B) ratio while 
a 12-week prebiotic study increased both the F/B ratio and beneficial Bifidobacterium levels (213,214). 
Bifidobacterium produces SCFAs that lower GI tract pH, inhibit pathogenic bacteria, and enhance 
calcium and magnesium bioavailability (215).  

β2-fructan supplementation increased Bifidobacterium, enhanced SCFA production, and reduced 
inflammation (216). Whole grain intervention decreased Enterobacteriaceae while increasing 
Lachnospira, improving stool metrics and SCFA production (217). Higher doses of fiber (50 g/day) 
consumption significantly enriched Bifidobacterium (218). Polyphenol-rich diets increased Clostridium 
leptum while reducing other bacterial species, though with limited analysis (219). 

1.3.2.2 Nuts 
Nuts, containing digestion-resistant compounds rich in fiber, polyphenols, and fatty acids, contain 

compounds that are resistant to digestion and reach the colon, where they can be metabolized by gut 
microbiota (220). Walnut consumption altered gut microbiota composition by increasing certain 
bacteria (Faecalibacterium, Clostridium, Roserburia, Dialister) while decreasing others (Ruminococcus, 
Dorea, Oscillospira), and improved cardiovascular markers (221). A larger study confirmed diversity 
findings but showed different microbial shifts, including increased Bifidobacteria (222). Beyond 
maintaining health, walnuts intake may also serve as complementary strategy to treat CVD. A recent 
article by the American Heart Association highlighted the potential cardiovascular benefits of walnut 
consumption (223).  

Almond studies yielded mixed results with Liu et al. showing increased Bifidobacterium and 
Lactobacillus (224), while Holscher et al. found decreased Bifidobacterium but increased Lachnospira, 
Dialister, Clostridium and Roserburia (225). A more recent human intervention trial conducted in 
California expanded on these findings, observing increased Lachnospira, decreased pathogens, and 
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notably increased α-diversity (226). Mixed nut supplementation studies  showed minimal or inconsistent 
microbiome changes despite cognitive improvements (227,228).  

1.3.2.3 Cocoa and tea  
Cocoa (Theobroma cacao) is rich in polyphenols with global consumption averaging 0.9 kg/year 

(highest in Switzerland at 11.6 kg/year) (229). Its flavonoids may reduce the risk of CVD (230–235) and 
hypercholesterolemia (236). Tzounis et al. found chocolate drinks increased beneficial bacteria 
proportional to flavonoid content (237). While 85% dark chocolate increased microbial diversity and 
improved mood (238), certain chocolate varieties reduced Faecalibacterium and microbial diversity in 
postmenopausal women (239). 

Tea (Camellia sinensis) contains significant polyphenols (100-200 mg flavonoids per 250 mL) and, as the 
world's second most consumed beverage, has attracted attention for health benefits (240,241). While 
unabsorbed green tea polyphenols are converted to beneficial phenolic metabolites by gut bacteria 
(241–245), tea's effects on microbiota composition show inconsistent results compared to chocolate. Li 
et al., study with Oolong tea demonstrated an increase in α-diversity and impact on bacterial 
populations (246). Other studies have reported an increase in Dorea, Faecalibacterium, Roserburia, 
Bifidobacterium spp. and  Eubacterium following green tea consumption (245), although results remain 
inconsistent across different studies (244,247). 

1.3.2.4 Coffee 
Coffee arabica and Coffee canephora are the two most widely consumed coffee species globally, 

valued for their sensory properties and physiological effects. Notably, coffee is rich in antioxidants, fiber, 
caffeine, nicotinic, and chlorogenic acids (248,249). In a human trial involving 16 healthy individuals, the 
consumption of three cups of coffee per day led to a significant increase in Bifidobacterium spp. 
following the intervention period (250). Similar increase in Bifidobacterium was reported in an 
intervention trial involving non-alcoholic steatohepatitis (NASH) and diabetic patients after the 
administration of chlorogenic acid and caffeine, two of the key components of coffee (251). In contrast, 
in a study involving 30 volunteers the intake of a single dose of coffee did not achieve a significant impact 
on gut microbiota, suggesting that the microbiome-modulating effects of coffee may require sustained 
consumption rather than a one-time intake (252).
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Table 7. Summary of intervention studies in humans in which microbiome has been analyzed. 

Author 
Nº 

participants Component  
Dose 

(g/day) 

Study 
duration 
(weeks) 

Microbiome 
analysis 
method 

Comparison 

Oliver et 
al., 2021 
(218)  

20 Diet rich in fiber 40-50 3 Shotgun Individuals before vs after the intervention  

Vanegas et 
al., 2017 
(217) 

81 
Fiber from whole 
grains 35 8 NA Whole grains vs refined grains  

Vetrani et 
al., 2020 
(219) 

78 Diet rich in 
polyphenols  

2.9 8 DGGE1, 
qPCR2 

Diet rich in polyphenols vs rich in PUFA3 vs low polyphenols & PUFA 
vs high in polyphenols and PUFA3  

Specific components 
Clarke et 
al., 2016 
(216) 

30 Fiber 15 10 qPCR2 Placebo vs  
β2-1 fructan group  

Alfa et al., 
2018 (253) 

84 Fiber 30 14 16S rRNA Resistant starch vs placebo in elderly and mid group  

Holscher et 
al., 2015 
(213) 

21 Fiber 21 9 Shotgun  Placebo vs polydextrose vs soluble fiber  

Holscher et 
al., 2018 
(221) 

18 Nuts (walnut) 42 7 
16S rRNA 
and 18S 
sequencing 

Placebo vs walnut supplementation 

Bamberger 
et al., 2018 
(222) 

194 Nuts (walnut) 43 24 16S rRNA Nut-free control diet vs walnut-enriched diet  

Tindall et 
al., 2020 
(223) 

42 Nuts (walnut) 57-99 8 16S rRNA Walnut diet to replace SFA4 vs two vegetable oils  

Liu et al., 
2014 (224) 

48 Nuts (almonds)  56 10 Culture Almond group, control group and almond skin group vs baseline  
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Author Nº 
participants Component Dose 

(g/day) 

Study 
duration 
(weeks) 

Microbiome 
analysis 
method 

Comparison 

Holscher et 
al., 2018 
(225) 

18 Nuts (almonds) 42 20 
16S rRNA, 
Archaea F/R 
and 18S  

Natural/whole roasted/chopped roasted/almonds and almond 
batter vs baseline  

Dhillon et 
al., 2019 
(226) 

73 Nuts (almonds) 56.7 8 16S rRNA Almond group vs control cracker group  

Haskell-
Ramsay et 
al., 2023 
(228) 

79 Nuts (mixed) 30 12 16S rRNA Mixed nut group vs placebo  

Rosas et 
al., 2020 
(227) 

20 Nuts (mixed) 42 3 16S rRNA Mixed nut group vs placebo  

Shin et al., 
2022 (238) 48 Cocoa 30 3 16S rRNA Control vs 85% dark chocolate vs 70% dark chocolate  

Tzounis et 
al., 2011 
(237) 

22 Cocoa 150 mL 4 FISH5 High cocoa flavonol drink (494 mg) vs low-cocoa flavonol drink (29 
mg)  

Wiese et 
al., 2019 
(254) 

30 Cocoa 10 4 16S rRNA 
70% Dark chocolate vs 70% Dark chocolate + 7 mg GAL-MFSA6 vs 30 
mg GAL-MFSA6 vs 30 mg GAL-PUFA7  

Hernández-
González 
et al., 2024 
(239) 

19 Cocoa 100 2 16S rRNA 
100 mg of milk chocolate in the morning vs 100 mg of milk chocolate 
at night vs placebo  

Li et al., 
2023 (246) 

28 Tea (Oolong) 2.5 3 16S rRNA 2.5 g of Oolong tea vs placebo group  

Yuan et al., 
2018 (245) 12 Tea (Green) 400 mL 3 16S rRNA 400 mL 2-weeks intervention + 1-week washout period  
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Author Nº 
participants Component Dose 

(g/day) 

Study 
duration 
(weeks) 

Microbiome 
analysis 
method 

Comparison 

Huang et 
al., 2023 
(244) 

13 Tea (Pu-erh) 300 mL 4 16S rRNA Tea intervention group  

Jin et al., 
2024 (247) 10 Tea (Green) 100 mL 10 qPCR2, 

TRFLP8 Tea intervention group  

Jaquet et 
al., 2009 
(250) 

16 Coffee 10.2 6 
qPCR2, 
DGGE1, 
FISH5 

Coffee intervention group  

Chong et 
al., 2020 
(252) 

30 Coffee 8 3 days 16S rRNA Single dose coffee consumption  

Mansour et 
al., 2020 
(251) 

26 
Caffeine/chlorogenic 
acid 0.4 g 12 qPCR2 

Patients with Diabetes/NASH9: 1. chlorogenic + caffeine; 2. 
chlorogenic + placebo; 3. caffeine + placebo. 4. Placebo  

 

         1Denaturing gradient gel electrophoresis  
2Quantitative polymerase chain reaction 
3Polyunsaturated fatty acids 
4Short Chain Fatty Acids 
5Fluorescence in situ hybridization 
6GA lycopene formulated with medium saturated fatty acids 
7 GA lycopene formulated with polyunsaturated fatty acids 
8 Terminal restriction fragment length polymorphisms 
9 Non-alcoholic steatohepatitis 
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1.4 Contributory Citizen Science 
 

Citizen science is a research approach that actively involves the general population in the collection, 
analysis, and dissemination of scientific data, usually as a part of a collaborative project led by 
professional scientists. Notably, data collection by participants often aligns with Sustainable 
Development European Goals (SDGs) such as quality education, good health and well-being, parterships 
for the goals and reduced inequalities, among others (255). Among the different citizens models 
available, we will focus on contributory citizens science, which specifically involve public as data 
gatherers only, while health departments are in charge of study design, data collection and results 
analysis (256). 

This democratization of science, promotes public understanding, encourages engagement, and 
expands research capacity by enabling non-experts to contribute to gathering valuable data across 
diverse disciplines. Traditional research teams often face challenges in collecting large datasets across 
broad spatial and temporal scales, making citizen science a highly effective solution (257–259). 
Additionally, volunteers gain firsthand experience with the scientific process, improving their critical 
thinking skills and supporting a greater appreciation for evidence-based decision-making. Citizen science 
initiatives can also influence health policies by providing localized data that supports informed decision-
making and helps communities to identify and address risk factors, ultimately strengthening societal 
resilience (255,258).  

Notable examples of citizens science initiatives in microbiome research include the AGP (260) or the 
British Gut (now ZOE programme) (261) and more recently, The Microsetta Initiative 
(https://microsetta.ucsd.edu/). These large-scale projects have been made possible through the 
participation of volunteers who contribute stool samples and dietary information. The collected data 
has facilitated mapping gut microbial variation across diverse populations and has helped explore the 
intricate relationship between human gut microbiome, diet, and health outcomes. 
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2 HYPOTHESIS 
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HYPOTHESIS 

Over the last years, large-scale studies have been conducted in several countries with the aim of 
understanding the effect of habitual diet on health and disease state through the modulation of the gut 
microbiome community. However, to the best of our knowledge, no population studies have been yet 
performed characterizing Spanish diet, demographic data and microbiome using shotgun sequencing 
data. More importantly, correlations derived from these studies doesn´t demonstrate causation, 
manifesting the necessity of isolation of viable species to further support a direct effect and understand 
the mechanisms behind. Additionally, results obtained are commonly shared through scientific 
publication that are accessible just for a minority, without taking in consideration the importance of 
general population, who is a key variable when carrying out this type of studies. 

First, we believe that performing shotgun sequencing in a large cohort of individuals coming from 
different Spanish regions can add valuable knowledge to previous carried studies in Spain. Together with 
dietary data collected at several timepoints, this study will allow us to better understand how national 
dietary recommendations are able to influence the microbiome ecosystem and in turn, health.  

Second, we theorize that isolation of viable species from human gut could be crucial when studying 
causal-effect relationships, providing deeper knowledge about the implication of the microbiome in the 
health-disease context. 

Third, we hypothesize that enhancing open-science through the development of a webpage for 
sharing results could increase awareness of general public about the importance of science and their 
participation. Making science understandable and accessible to everyone might motivate volunteers for 
future participation in population studies. 
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OBJECTIVES 

The main objetive for the present thesis would be to explore the interplay between host-related 
factors, dietary patterns and gut microbial communities, with a particular focus on how national and 
international dietary guidelines shape the intestinal microbiome and their subsequent impact on human 
health outcomes.  

 

As secondary objetives, we plan to: 

First of all, identify how personal traits, geography, diet and quality of diet influence gut microbial 
composition and diversity using a new Spanish cohort and try to use the microbiome data generated to 
predict intake of certain food groups or overall diet quality. 

Second, to identify potential strategies for stratifying healthy individuals according to their gut 
microbiome profiles. 

Third, to isolate viable bacterial species from healthy human gut for future study of their effect on 
health outcomes using in vitro models. 

Fourth, to promote public engagement in scientific research by creating a digital platform for 
communicating study findings to volunteers. 
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4.1 Study design 
 

Population longitudinal study in Spain (POP Sudy) was conducted between December 2020 and 
August 2024 at the Vall d´Hebrón Research Institute (VHIR), Barcelona, Spain. This cohort aimed to 
define what constitutes a “healthy microbiome” at national level and its relationship with diet. 

We used an updated version of our previously developed and validated semi-quantitative short FFQ 
(sFFQ) (98) to assess participants´ dietary intake. Healthy volunteers completed three self-administered 
sFFQs over the course of a year, alongside providing three fecal samples, from which a subset of samples 
collected at baseline was analyzed to determine bacterial and fungal load and composition. 

 

4.2 Study population 
 

A total number of 1017 of healthy volunteers coming from different Spanish Autonomous 
Communities (CCAA) were recruited between December 2020 and August 2024. Enrollment was 
facilitated through announcements on social media and on the official Vall d´Hebron Hospital webpage, 
managed by the Communication Department. The study was conducted in accordance with the 
Declaration of Helsinki and was approved by the local Ethics Committee of Vall d´Hebrón University 
Hospital, Barcelona (reference number: PR(AG)84/2020). All participants conducted written informed 
consent form prior to study entry. Exclusion criteria included individuals under 18 and over 75 years of 
age, as well as those with chronic diseases associated with gut microbiota dysbiosis (e.g., IBD, diabetes 
mellitus, autoimmune diseases). Additionally, participants were required to be antibiotic-free for at least 
three months prior to enrollment to ensure proper microbiota recovery.  

To ensure that the recruited cohort was representative of the general population, we calculated the 
sampling fraction for the four region areas considered (Interior, North of Spain, Mediterranean and 
Islands). We first downloaded the data from the “Instituto Nacional de Estadística” (INE) 
(https://www.ine.es/jaxiT3/Tabla.htm?t=2853&L=0) regarding the number of males and females 
between 18 and 75 years old in each CCAA. We then calculated the population size for the selected 
region areas by summing up the individuals from the corresponding autonomous communities. Using 
these values, we estimated the theoretical percentage for a sample size of 1017 individuals as follows: 
Theoretical percentage = (1017 x population in each region area)/total population in Spain. To evaluate 
how accurately we achieved our recruitment goal, we divided the actual number of individuals recruited 
in each region area by the theoretical values. This resulted in a ratio ranging from 0 to 1, where a ratio 
closer to 1 indicated more accurate recruitment. 
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4.3 Dietary assessment 
 

Habitual diet was assessed three times over a one-year period using an updated version of a web-
based semi-quantitative sFFQ previously developed and validated by the same research group (98). This 
questionnaire focuses on measuring food consumption over the past month. Briefly, the questionnaire 
included 58 food items (see ANNEX 1) divided into 13 sections: vegetables, legumes and potatoes, fruits 
and dried fruits, cereals and derivatives, milk and dairy products, eggs, fish and meat, selfish, oils and 
fats, bakery and pastry, sauces, non-alcoholic drinks, alcoholic drinks, processed food, and others. 
Consumption frequency was classified into six categories: “Never”, “1 or 3 times per month”, “1 or 2 
times per week”, “3 or more times per week”, “once per day”, and “2 or more times per day”. Serving 
size defined as a “standard portion” (based on estimates from “Encuesta Nacional de Alimentación en 
la Población Adulta, Mayores y Embarazadas 2”, ENALIA2 Survey, (262) as well as our own expertise), 
“half of the standard”, and “double of the standard”.  To help participants accurately estimate their food 
intake, we provided standardized color photographs (see ANNEX 2).  Additional information was 
collected on factors that could potentially impact gut microbiota such as age, gender, weight, birth type, 
smoking, blood type, self-reported specific diet, consumption of ready-to-eat food or sweeteners, liquid 
intake and supplements or medication use.  

 
This updated version allowed for automated quantification of micro- and macronutrient intake and 

includes extra questions on chronic illness, stool frequency, pregnancy status, average steps per day (for 
volunteers with a smartwatch), and CCAA. 

 
The questionnaire is available in Spanish, Catalan, English, and French to facilitate its use in 

population-based studies and enhance international collaboration (see ANNEX 3). It can be accessed at 
https://manichanh.vhir.org/sFFQ/login.php 

  

4.4 Analysis of dietary information 
 

Monthly consumption data was transformed into daily consumption frequencies. To do so, we 
calculated the gram per day (g/day) as follows: a reported consumption of 1 or 2 times per week was 
averaged to 1.5 times per week, which, when divided by the seven days of the week, resulted in a daily 
consumption frequency of 0.21. This value was then multiplied by the weight corresponding to the 
standarized serving size. For example, if the serving size for legumes was 150 g, the final intake would 
be 0.21 x 150 g = 31.5 g/day. The conversion factors for other frequencies were: 1 or 3 times per month 
= 0.066; 3 or more times per week = 0.64; once per day = 1; 2 or more times per day = 3. 

Using this g/day information, we then calculated the energy and nutritional value of each item in the 
sFFQ based on our own developed food composition database. All calculations were automated to 
minimize human error during the process. 
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The impact of specific participant characteristics on dietary intake (food groups, food items and food 
nutrients) was calculated through permutational analysis of variance (PERMANOVA), using the adonis2 
function from the vegan R package (https://cran.r-project.org/web/packages/vegan/index.html) and 
employing the Bray-Curtis method. Concretely, the variables analyzed corresponded to age, geographic 
region, workplace (hospital vs. non-hospital), gender, BMI, season, self-reported diet type, smoking 
status, sweetener consumption, menstruation or menopause status (if applicable), and bowel habits. 

 
 The relationship between DQIs and population characteristics was assessed using linear regression 

models implemented in MaAsLin2 while adjusting for potential covariates resulting from PERMANOVA 
analysis (smoke, gender, bowel frequency, region areas, age, season, sweeteners, BMI, workplace, diet 
grouped).  
 

4.5 Development of Spanish food composition database (sFCDB) 
 

We developed our own version of the Spanish food composition database (sFCDB) in 2020 based on 
food codes to facilitate quantification and diminish bias. In order to do so, we integrated data from the 
BEDCA Spanish database (263), Moreira´s table (264), and selected entries from FoodData Central,  
corresponding to the USDA nutritional database (265). When foods or menus items were missing from 
these dabases, we manually added them using specific food tables or homemade recipes provided by 
participants. The initial sFCDB contained 1104 foods and mixed dishes, grouped into 13 food group 
nutrients plus energy per 100 g of food. However, in 2022, we updated the database to include total 
sugar content, which was previously unavailable. Total sugars were estimated using updated versions 
of BEDCA, FoodData Central and Moreiras´ table (263,265). When direct information was unavailable, 
mean sugar value was calculated based on at least five nutritional labels from different supermarket 
products.  

Additionally, we manually added 777 dietary supplements based on participants’ responses to 
question 59 of the sFFQ regarding food supplements and drug intake. Nutritional information was 
sourced from product labels and company-provided data. When possible, values were quantified per 
100 g of product; otherwise, information per recommended daily intake was used. 

 

4.6 Interindividual variability 
 

Leveraging the longitudinal design of the study, we assessed both intra- and inter-individual 
variability in diet at three different timepoints (baseline, six and twelve months) by calculating the Bray-
Curtis similarity index for food items, food groups, and nutrient data. Intra-individual variability refered 
to the distance between baseline and six months (different season) for each participant. Oppositelly, 
inter-individual variability was measured using two different approaches: 1. Global approach that 
consisted on, for a given sample, computing the median of the distances between this sample and all 
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the other samples; 2. Seasonal approach where for a concrete sample, the median of the distances 
between this sample and all other samples was computed taken within the same season. 

4.7 Calculation of DQIs 
 

Diet is highly complex, with substantial variability between and within countries and individuals. 
Furthermore, dietary assessment methods differ widely. To simplify the analysis and enhance 
comparability with other studies, we calculated several DQIs. While numerous dietary indices exist in 
the literature, we selected the most appropriate ones based on previous studies that examined the 
relationship between diet and gut microbiome (98,151,169,188). 

 Healthy Food Diversity Index (HFD-index) 
Some evidence suggests that a more diverse diet is associated with better health and a more diverse 

microbiota (27). The HFD index is a dietary measure designed to capture diet diversity, providing an 
effective way to assess population diet quality. It ranges from 0 to 1-1/n, with 1-1/n (0.99 in our study) 
refers to a very diverse diet, while 0 indicates no diversity.  It can be defined as:  

𝐻𝐹𝐷 − 𝑖𝑛𝑑𝑒𝑥 = 𝐵𝐼 𝑥 
𝐻𝑉

0.26
 

Where: 

𝐵𝑒𝑟𝑟𝑦 − 𝐼𝑛𝑑𝑒𝑥 𝑜𝑟 𝐵𝐼 = (1 − ∑𝑠௜
ଶ) 

𝐻𝑒𝑎𝑙𝑡ℎ 𝑣𝑎𝑙𝑢𝑒 𝑜𝑟 𝐻𝑉 = ෍(ℎ𝑓௜ 𝑥 𝑠௜) 

 

𝑠௜ =  
𝑔𝑟𝑎𝑚𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑓𝑜𝑜𝑑 𝑔𝑟𝑜𝑢𝑝 𝑖

𝑔𝑟𝑎𝑚𝑠 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
 

ℎ𝑓௜ = ℎ𝑒𝑎𝑙𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑓𝑜𝑜𝑑 𝑔𝑟𝑜𝑢𝑝 𝑖 

 

If we observe the ℎ𝑓௜ we can see that the maximum value that can be achieved is 0.26 (see Table 8), 
thus, the division of HV by its maximum ensures that the score obtained is comprised between 0 and 
0.99 (174). As food groups considered by HFD-index differ from our sFFQ, first we reagrouped our sFFQ 
food items into HFD-index food groups and assigned the corresponding ℎ𝑓௜ based on German Guidelines 
(Table 8). 
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Table 8. HFD-index food groups, the corresponding food items in our in house sFFQ and hf value for each food group 
considered. 

HFD-index food groups sFFQ food items hfi 

Vegetables, fruits, leaf salads, juices 1-11, 14-17 0.2628 
Wholemeal products 19, 23 0.2044 
Potatoes 12  0.146 
White-meal products/peeled rice 18, 20, 22, 57 0.0876 
Snacks and sweets 21, 44- 46, 51- 52, 56 0.0292 
Fish/low-fat meat/low-fat meat products 34, 36-39 0.09 
Low-fat milk/low-fat dairy products 25-27, 29-30 0.07 
Milk/dairy products 24, 28, 31 0.05 
Meat products, sausages, eggs 32-33, 35, 58 0.03 
Bacon N/A N/A 
Oilseed rape/walnut oil N/A N/A 
Wheat germ oil/soybean oil 42 0.0056 
Corn oil/sunflower oil 41 0.004 
Margarines/butter 43 0.0024 
Lard/vegetable fat 40,48 0.0008 

 

Next, we calculated the HDF-Index using the provided formula in R studio.  

 

 Healthy Eating Index 2015 (HEI-2015) 
HEI is a measure used to assess how well a diet aligns with the Dietary Guidelines for Americans. 

Over the years, several updates of HEI have been developed, including HEI-1995, HEI-2005, HEI-2010 
and HEI-2015 (170)(Table 9).  

As with the previous case, components assessed in the HEI do not directly align with our sFFQ food 
items requiring a reclassification for index calculation (170,171). Additionally, the HEI-2015 originally 
comprised nine adequacy components that were reduced into eight in our index by combining “Total 
fruit” and “Whole fruit” components. Since our sFFQ cannot distinguish between them, we assigned a 
maximum score of 10 (5 points for each original component).  

As an extra step, we converted gram into cup or ounce equivalents following Food and Nutrient 
Database for Dietary Studies (FNDDS) 2017-2018, provided by USDA Agricultural Service 
(https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-
center/food-surveys-research-group/docs/fndds-download-databases/). We finally calculated the HEI-
2015 index using R Studio. 
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Table 9. HEI-2015 components together with maximum scores per component, values considered for assigning maximum or minimum scores and formula used. 

 

 

1Polyunsaturated fatty acids 
2 Monounsaturated fatty acids 
3Saturated fatty acids 

 

HEI-2015 Components Maximum 
points 

Standard for maximum score 
(maximum points) 

Standard for minimum score of 
zero 

Score calculation in between values 

Adequacy 
Total fruit 10 ≥0.8 cup equiv/1,000 kcal No fruit  10× (cup equiv total fruit per 1,000 kcal/0.8) 

Total Vegetables 5 ≥1.1 cup equiv/1,000 kcal No vegetables 5× (cup equiv total vegetables per 1,000 kcal /1.1) 

Greens and Beans 5 ≥0.2 cup equiv/1,000 kcal 
No dark green vegetables or beans 
and peas 

5× (cup equiv greens and beans per 1,000 kcal /0.2) 

Whole Grains 10 ≥1.5 oz equiv/1,000 kcal No whole grains 10× (oz. whole grains per 1,000 kcal /1.5) 

Dairy 10 ≥1.3 cup equiv/1,000 kcal No dairy 10× (cup equiv total fruit per 1,000 kcal /1.3) 

Total Protein food 5 ≥2.5 oz equiv/1,000 kcal No protein foods 5× (oz. total protein food per 1,000 kcal /2.5) 

Seafood and Plant Proteins 5 ≥0.8 cup equiv/1,000 kcal No seafood or plant proteins 5× (cup equiv total fruit per 1,000 kcal /0.8) 

Fatty acids 10 (PUFA1+MUFA2)/SFAs3 ≥ 2.5 (PUFA1+MUFA2)/SFAs3 ≤ 1.2 10× ((ratio result- 1.2)/(2.5-1.2)) 

Moderation 
Refined Grains 10 ≤1.8 oz equiv/1,000 kcal ≥4.3 oz equiv/1,000 kcal 10 – (10× (oz. refined grains per 1,000 kcal – 1.8 / 2.5 (4.3-1.8)) 

Sodium 10 ≤1.1 g/1,000 kcal ≥2.0 g/1,000 kcal 10 – (10× (g per 1,000 kcal – 1.1) / (2.0-1.1)) 

Added Sugars 10 ≤6.5% of energy ≥26% of energy 10 – (10× ((((g added sugar × 4)/total kcal) ×100)- 6.5)/ (26-6.5)) 

Saturated fats 10 ≤8% of energy ≥16% of energy 10 – (10× ((((g saturated fat ×9)/total kcal) ×100) - 8)/ (16-8)) 
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 Mean Adequacy Ratio (MAR) 
To assess the global nutrient adequacy of our population´s diet, we calculated the MAR, which is 

based on the Nutrient Adequacy Ratio (NAR), itself determined by dividing the mean intake of a nutrient 
by the corresponding Spanish intake recommendation for that nutrient. The result is then multiplied by 
100 to express it as a percentage. The MAR was obtained by averaging all individual NAR values 
(151,175):  

𝑀𝐴𝑅 =
∑ 𝑁𝐴𝑅௡

16
 

 

𝑁𝐴𝑅௡ =
𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑎𝑘𝑒 𝑜𝑓 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑛

𝑆𝑝𝑎𝑛𝑖𝑠ℎ 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑛
𝑥 100 

 

. Table 10 presents the NAR variables and the corresponding columns in the sFFQ as well as the 
Nutrition Reference intakes (NRI) for the Spanish population. If NRI values were unavailable, Adequate 
Intakes (AI) were used as substitutes (266). 

 

Table 10. MAR components along with their corresponding sFFQ columns and NRI values for the Spanish population. 

MAR 

Micronutrient NARn sFFQ Nutrition reference intake 
Spain (NRI1; (266)) 

1. Proteins   NAR1 Total_protein_g 0.83 g/kg 

2. Fiber NAR2 Total_dietetic_fiber_g 25 g/day 

3. Retinol equiv (Vitamin A) NAR3 Vitamin_A_μg_retinol_equiv 
M2: 750 µg RE/day 
F3: 650 µg RE/day 

4. Thiamine NAR4 Tiamin_mg M2: 1.2 mg/day 
F3: 1.1 mg/day 

5. Riboflavin NAR5 Riboflavin_mg M2: 1.5 mg/day 
F3: 1.2 mg/day 

6. Niacin NAR6 Total_niacin_equiv (mg) M2: 17 mg/day 
F3: 14 mg/day 

7. Vitamin B6 NAR7 Vitamin_B6_mg M2: 1.7 mg/day 
F3: 1.2 mg/day 

8. Folates NAR8 Total_folate_μg 330 µg/day 

9. Vitamin B12 NAR9 Vitamin_B12 μg 2.4 µg/day 

10. Ascorbic acid (Vitamin C) NAR10 Vitamin_C_mg 75 mg/day 

11. Vitamin D NAR11 Vitamin_D_μg 12.5 µg/day 
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1Reference nutritional intake, understandable by the general population that covers 97-98% of the population 
2Male 
3Female 
4Adequate intake 

To prevent higher-than-recommended intakes from compensating for lower intakes, each NAR was 
limited to a maximum of 100. A higher MAR score indicates better overall nutrient adequacy for 
individual’s diet.  The MAR calculation was performed using R Studio. 

 Healthy Eating index for Spanish population (IASE) 
The IASE is an index developed by Navarro et al. based on the HEI index and supplemented with data 

from Spanish nutrition surveys. An adaptation of these variables to our sFFQ is presented in  Table 11 
(98,173).  

Next, each variable, was assigned a score based on the frequency of consumption recorded in the 
sFFQ (Table 12). The total score was then calculated by summing all variables, with a maximum score of 
100 points. Based on the final score, individuals were classified into three cateogories: healthy (score ≥ 
80), need some changes (score 80-50) and not healthy (score < 50). Analysis was done using R Studio.  

 

 

 

 

 

 

 

 

 

Micronutrient NARn sFFQ 
Nutrition reference intake 

Spain (NRI1; (266)) 

12. Vitamin E NAR12 Vitamin_E_mg_α-tocoferol 
M2: 13 mg/day 
F3: 11 mg/day 

13. Calcium NAR13 Calcium_mg 950 mg/day 

14. Potassium NAR14 Potassium_mg 3500 mg/day 

15. Iron NAR15 Total_iron_mg 
AI4: M2: 9.1 mg/day 
       F3: 18 mg/day 

16. Magnesium NAR16 Magnesium_mg M2: 350 mg/day  
F3: 300 mg/day 
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Table 11. Adaptation of IASE variables to our sFFQ items divided by consumption frequency. 
 

 

Table 12. Scores of IASE index based on frequency of consumption 

  

 Plant-Based Dietary Index (PDI), unhealthful Plant-Based Diet Index (uPDI) and 
healthful Plant-Based Diet Index (hPDI) 

Plant based diets have been associated  with a lower risk of several diseases (177–179,182). To study 
the effect of such diets in the microbiome, three different plant-based indices were calculated based on 
Satija et al. using our dietary data which corresponds to PDI, uPDI and hPDI. Additionally, we calculated 
the MDI to assess the consumption of meat and meat derived products relative to plant-based foods 
(178). 

To compute these indices, sFFQ responses were first grouped into the 18 food groups proposed by 
the original method. Alcohol as well as vegetable and fats such as margarine were not included in the 
indices but adjusted for during the analysis. For each index, the classified food groups were divided into 
quintiles of consumption (g/day) and assigned positive or reverse scores (Table 13). For positive scores 
(marked in the table as +), volunteers in the highest quintile received a score of 5, while those in the 
lowest quintile received a score of 1. For negative scores (-), the scoring pattern was reversed, with the 
highest quintile receiving 1 point and the lowest quintile receiving 5 points (Table 14). Once plant-based 

IASE Variables sFFQ food items 
Daily consumption 

Grains and derivatives 18-23 

Vegetables 1 - 12 

Fruits 14-16 

Dairy products 24-26, 28-31 

Weekly consumption 
Meats 32-34, 36-39 

Legumes 13 

Occasional consumption 
Cold-processed meats 35 
Sweets 44-46 
Beverage 51-52 

Diet variety 
2 points if you meet daily recommendations and 1 point if 
you meet weekly consumption. 

  Points assigned 
FFQ frequency of 

consumption 
Metadata 
equivalent Daily consumption Weekly 

consumption 
Occasional 

consumption 
No consumption 0 0 0 10 
1-3 times/month 1 2.5 5 7.5 
1-2 times/week 2 5 10 5 
+3 times/week 3 7.5 7.5 2.5 
1 time/day 4 10 2.5 0 
+2 times/day 5 10 2.5 0 
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and animal-based food groups were scored, all points were summed up to obtain the final indices. The 
food group classification and index calculation were performed using R Studio, applying an energy-
adjusted method using residual method.  A higher PDI score indicates greater plant consumption relative 
animal-based food, with a range of score that varies between 18 and 90 points.  

Table 13. Summary of food groups and corresponding sFFQ items for PDI and its variants (hPDI, uPDI and MDI) 

 

Table 14. Summary of points assigned for each of the percentiles of the above classified food groups. 

Food groups sFFQ food items NOTES PDI hPDI uPDI MDI 
Plant food groups - Healthy 

Whole Grains 19, 23, 27×0.56 Remove soymilk + + - - 

Fruits 14-16  + + - - 

Vegetables 1-9, 10-11, 47   + + - - 

Nuts 17  + + - - 

Legumes 13, 27×0.28 Consider soymilk + + - - 

Vegetable oils 40-42  + + - - 

Tea and coffee 49-50  + + - - 
Plant food groups - Less healthy 

Fruit juices 52  + - + - 

Refined grains 18, 20-22, 57  + - + - 

Potatoes 12  + - + - 

Sugar sweetened beverages 51  + - + - 

Sweets and desserts 44-46, 56  + - + - 
Animal food groups 

Animal fat 
43×0.70 Remove 

margarine 
- - - + 

Dairy 24-26, 28-31  - - - + 

Egg 32  - - - + 

Fish or Seafood 36-39  - - - + 

Meat 33-35  - - - + 

Miscelanea o animal based foods 48, 58  - - - + 

   Score  
 Quintile PDI hPDI uPDI MDI 

Plant food groups - 
Healthy 

> P20 1 1 5 5 
P20 - P40 2 2 4 4 
P40 - P60 3 3 3 3 
P60 - P80 4 4 2 2 
< P80 5 5 1 1 

 

Plant food groups - Less 
healthy 

> P20 1 5 1 5 
P20 - P40 2 4 2 4 
P40 - P60 3 3 3 3 
P60 - P80 4 2 4 2 
< P80 5 1 5 1 
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 Alternative Mediterranean score (aMED) 
The aMED  developed by Fung et al.,  (180) is an adaptation of the original MedDiet scale proposed 

by Trichopoulou et al., (181). aMED score ranges from 0 (minimum adherence) to 9 (perfect adherence) 
points by considering 9 food groups, which correspond to 1. For each category, including the fatty acid 
ratio, the median intake (g/day) was calculated. Healthy food groups (vegetables, legumes, fruits, nuts, 
whole grains, fish and fatty acids ratio) were scored with 1 if intake was above the median and 0 if 
consumption was below. For red and processed meats, participants received 1 point for intake lower 
intake below the median and 0 point if intake was higher. Alcoholic beverages followed a different 
scoring approach: For men, one point for consumption between 10-50g/day; For women, one point for 
consumption between 5-25 g/day (Table 15). 

Table 15. aMED components, sFFQ items and criteria for maximum and minimum scores. 

aMED Components Items included Standard for score 1 point Standard for score 0 points 

Vegetables 1-9,11 Greater than median intake (g/day) Lower than median intake (g/day) 

Legumes 10,13 Greater than median intake (g/day) Lower than median intake (g/day) 

Fruits 14-16, 52 Greater than median intake (g/day) Lower than median intake (g/day) 

Nuts 17 Greater than median intake (g/day) Lower than median intake (g/day) 

Whole Grains 19,23 Greater than median intake (g/day) Lower than median intake (g/day) 

Red and processed meats 33, 35 Lower than median intake (g/day) Greater than median intake (g/day) 

Fish and shellfish 36-39 Greater than median intake (g/day) Lower than median intake (g/day) 

MUFA1/SFA2 N/A Greater than median intake (g/day) Lower than median intake (g/day) 

Alcoholic drinks 53-55 Men: 10-50g/day; Women: 5-25g/day Values outside the corresponding 
ranges for men and women 

 

1Monounsaturated fats 
1Saturated fats 
 

 

 

 

 
  Score 
 Quintile PDI hPDI uPDI MDI 

Animal food groups 

> P20 5 5 5 1 
P20 - P40 4 4 4 2 
P40 - P60 3 3 3 3 
P60 - P80 2 2 2 4 
< P80 1 1 1 5 
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4.8 Analysis of individual responses 
 

Finally, we consolidated the information from the three sFFQs. We classified foods and drinks into 
13 groups based on the EUROCODE 2 classification. Nevertheless, we regrouped and subdivided them 
into 24 subgroups foods based on their potential and similar role on the gut microbiota modulation as 
shown in Table 16. 

Table 16. Food groups and sFFQ items based on the EUROCODE and its potential effect on gut microbiota. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.9 Comparison with Global Burden of Disease (GBD) 2017  
 

To compare major food and nutrient consumption assessed within the framework of the GBD study, we 
grouped our sFFQ items into 12 out of the 15 dietary risk factors defined by the GBD. For fruits, 
vegetables, legumes, whole grains, nuts and seeds, milk, red meat, processed meat, sugar-sweetened 
beverages, fiber and calcium, the median intake (g/day) was calculated and compared with the optimal 
and optimal range of intake defined by GBD study. For PUFA, we assessed their percentage contribution 
to total energy intake and compared it with recommended values. Sodium intake was not considered, 

Food groups sFFQ food items 

Alcoholic beverage 53-55 

Appetizers 57 

Biscuits breakfast cereals and cereal bars 20-21 

Chocolates and derivatives 45 

Fats and oils 40-43 

Fish and shellfish 36-39 

Fruit and fruit products 14-16 

Legumes 10, 13 

Meats and eggs 32-34 

Milk and dairy products except fermented milk 24-26, 28-29, 31 

Non-Alcoholic beverage 27, 49-52 

Nuts and seeds 17 

Pastries and sweets breads 44 

Potatoes and other tubers 12 

Ready to eat meals 58 

Sauces and condiments 47-48 

Sausages and other meat products 35 

Sugar and other sweets 46,56 

Vegetables and vegetable products 1-9, 11 

White bread 18 

White grains and white pastas 22 

Wholegrain or whole meal bread 19 

Whole meal grains and whole meal pastas 23 

Yogurt and fermented milk 30 
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as our sFFQ data only captured sodium naturally present in foods, excluding sodium from added salt 
during cooking. Finally, seafood omega-3 and trans fatty acids were not evaluated due to the absence 
of these variables in our metadata. The classification of sFFQ items into the GBD dietary risk factors 
suggested is presented in Table 17. 

 Table 17. sFFQ items grouped by GBD dietary risk factors. Optimal level of intake as well as optimal range suggested 
by GBD is also provided. 

 

4.10 Comparison of our population self-reported intake and the Nutritional 
Reference Intakes for Spanish Population 

 

To assess whether volunteers met the Spanish dietary recommendations, we compared the macro- 
and micronutrient consumption data derived from our sFFQ with the NRI of the Spanish population, 
considering age and gender (266). The difference between reported intake and the required adequacy 
level was computed in comparison with 80% of the Spanish NRI  (267), following the recommendation 
of the ANIBES study (268). 

 

4.11 Sample collection and genomic DNA extraction 
 

 Sample collection 
For Population study (n= 1017), collection kit was optimized (Figure 4) to facilitate stool sample 

collection across Spain. Briefly, the kit contained: 
- One 15mL Falcon tube with 7mL of 95% ethanol, which both inactivates viruses and 

preserves the sample at room temperature during shipment.  
- Instructions for sample collection 
- An informed consent form to be signed (only in the kit at baseline) 
- A spatula for transferring the sample into the tube 
- A small garbage bag 

GBD dietary risk factors sFFQ food ítems GBD Optimal level of intake 
(optimal range of intake)) 

Diet low in fruits Items 14-16 250 g (200–300) per day 

Diet low in vegetables Items 1-8, 11 360 g (290–430) per day 

Diet low in legumes Items 10, 13 60 g (50–70) per day 

Diet low in whole grains Items 19,23 125 g (100–150) per day 

Diet low in nuts and seeds Item 17 21 g (16–25) per day 

Diet low in milk Items 24-26 435 g (350–520) per day  

Diet high in red meat Item 33 23 g (18–27) per day 

Diet high in processed meat Item 35 2 g (0–4) per day 

Diet high in sugar sweetened beverages Items 51-52 3 g (0–5) per day 

Diet low in fiber Fiber_g 24 g (19–28) per day 

Diet low in calcium Calcium_mg 1250 mg (1000–1500) per day 
Diet low in polyunsaturated fatty acids (((PUFA×9)/Energy_kcal) ×100) 11% (9–13) of total daily energy 
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- Gloves 
- A biosecurity bag to ship the sample 
- A pre-labeled mail envelope 
- A prepaid postage stamp, allowing participants to send the sample at no cost 

Participants were instructed to send the samples the same day after collection or to store them 
frozen in a household freezer until shipment was possible. Samples were mailed to our lab at room 
temperature using National post service (Correos, Spain) and, upon arrival, stored at -80ºC until further 
processing.  

 Sample processing and DNA extraction protocol 
In short, to prevent nucleic acid degradation, aliquots of feces (200 mg) were prepared on ice.  

Genomic DNA was then extracted from a randomized subset of 500 baseline samples, following the 
International Human Microbiome Standards (IHMS) guidelines (IHMS website; http://www.human-
microbiome.org/; accessed on  October 9, 2024) and as previously described (269).  For extraction, each 
tube containing a fecal aliquot was supplemented with 800 mg of 0.1 mm sterilized zirconia beads and 
250 μl of guanidine thiocyanate, followed by 40 μl of 10% N-lauroyl sarcosine and 500 μl of 5% N-lauroyl 
sarcosine to perform chemical lysis. Furthermore, guanidine thiocyanate also served as an effective 
SARS-CoV-2 inactivator. Samples were then incubated at 70ºC for one hour followed by mechanical lysis 
using a Beadbeater (Biospec Products ©) to disrupt gram-positive bacterial cell walls. Homogenized 
samples were further processed by washing with Polyvinylpolypyrrolidone (PVPP) and RNA was 
degraded using RNAse. Finally, DNA was precipitated with ethanol and the pellet was resuspended in 
200μl of Tris-EDTA buffer.   

 
DNA integrity was assessed by measuring absorbance ratios 260/280 and 260/230 using the 

NanoPhotometer® NP80 (IMPLEN). For DNA quality visualization, gel electrophoresis was performed 
using 1% agarose gel stained with RedSafe® and ran in 1X Tris Acetate EDTA (TAE) buffer for 1h at 70 V. 
2 μl of DNA was mixed with 3 μl of loading dye and loaded into the solidified agarose wells, and 
InvitrogenTM TracklitTM 1Kb Plus DNA Ladder was used to evaluate DNA size (Thermo Fisher Scientific, 
Lithuania).  
 

Figure 4. Collection kit used by participants in the population study. 
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4.12 Enrichment protocol for fungi samples  
 
To enrich fecal samples for fungi before DNA extraction a centrifugation step was performed on a 

randomly selected, gender-paired subset of samples (n= 100), based on the fact that bacterial and fungal 
cell differ in size. Estimation of centrifuge speed and time was calculated by Stoke´s law considering the 
following formula: 

 

𝐷 = ൮
18𝜂 ln ൬

𝑅௙

𝑅௢
൰

൫𝜌௣ − 𝜌௙൯𝜔ଶ𝑡
൲ 0.5 

Where: 
 

𝐷 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑖𝑛 𝑐𝑚; 4𝑒ି଴ସ fungi and 4𝑒ି଴ସ 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎  
𝜂 = 𝑓𝑙𝑢𝑖𝑑 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦; 0.0089 
𝑅௙  𝑎𝑛𝑑 𝑅௢ = 𝑓𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑖𝑛 𝑐𝑚; 

𝜌௣ 𝑎𝑛𝑑 𝜌௙ =  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎𝑛𝑑 𝑓𝑙𝑢𝑖𝑑 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑖𝑛 𝑔/𝑚𝐿 

𝜔 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 
𝑡 = 𝑡𝑖𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑅௢ 𝑡𝑜 𝑅௙  𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

 
Briefly, 1.5 mL of sterile 1X phosphate buffered saline (PBS) (Sigma-Aldrich) and 10 glass beads of 2 

mm (Merck) were added to 200 mg of fecal samples. Microbial cell walls were then disrupted for 60 s 
using a BeadBeater (Biospec Products®). The resulting homogenate was then filtered through a 40 µm 
cell strainer (Clearline®) to remove unwanted large particles. The filtered content was then centrifuged 
for 3 min at 201 g using the rotor Eppendorf A-4-62. The supernatant was discarded and the remaining 
pellet was resuspended in 15 mL of 1X PBS. To further remove bacterial cells and enrich the fungal 
fraction, the sample underwent a centrifugation step under the same conditions (201 g for 3 min). The 
supernatant was discarded, and the pellet resuspended in 1 mL of 1X PBS. A final centrifugation step (20 
min at 10,000 g) was performed using an Eppendorf Centrifuge 5427R. The final pellet was frozen until 
DNA extraction was performed using standard in-house protocol (see Sample collection and genomic 
DNA extraction section). 

 

4.13 Library preparation, sequencing and profiling 
 

Between 10 and 20 ng/μl of DNA from each sample was sent to Novogene (UK) for library 
preparation and sequencing using the Illumina NovaSeq6000 platform (Novogene, UK).  

 Metagenomic sequencing process yielded an average of 5 Gb of data per sample. Pre-processing 
and decontamination of the sequence reads were conducted using the KneadData v0.7.4 pipeline 
(https://huttenhower.sph.harvard.edu/kneaddata). KneadData employed Trimmomatic for quality 
filtering and subsequently aligned the reads to a human reference genome using Bowtie 2. Reads shorter 
than 50% of the input length and those aligning with the human genome were excluded from further 
analyses. Taxonomic bacterial profiles were derived from the intermediate output of MetaPhlan4 within 
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the HuMANn3 pipeline, while functional profiles were generated from the final output (39). Taxonomic 
profiles, presented in stratified relative abundance from the phylum to Species-level Genome Bin (SGB) 
level, did not require normalization. Instead, species-level stratified abundances were extracted. α-
diversity was assessed using the Chao1 and Shannon indices (269), and β-diversity was evaluated using 
PERMANOVA; adonis2 function, vegan R package. 

Functional bacterial profiles generated by HuMANn3 provided gene families and MetaCyc pathways. 
To ensure data quality, MetaCyc pathways were filtered to exclude unmapped and unintegrated reads, 
and pathways with less than 0.001 abundance or 0.1 prevalence (those accounting for less than 0.1% of 
the total abundance in at least 10% of the samples) were also discarded. Pathways were then sum-
normalized to counts per million (CPM) before further analysis. 

Fungal taxonomic and functional profiles were obtained running FunOMIC2, an unpublished updated 
version of FunOMIC (94). Raw counts were normalized using the Counts Per Million (CPM) method, 
implemented in the "edgeR" package in R. Fungal α- diversity was measured by calculating the Chao1 
index on raw fungal species counts and the Shannon index on CPM-normalized counts. β- diversity was 
evaluated by computing Bray-Curtis distances. 

 

4.14 Bacterial and fungal load 
 

Fungal and bacterial loads were estimated in fecal samples by targeting the V4 region of 16S rRNA 
for bacteria and ITS2 region for fungi. Amplification was performed using a 7500 Fast Real-time PCR 
system (Applied Biosystems, Foster City, CA, USA). The fungal ITS2 region was amplified using ITS2-fungi-
sense (5′-GTG ART CAT CGA ATC TTT-3′) and ITS2-fungi-antisense (5′-GAT ATG CTT AAG TTC AGC GGG T-
3′) primers. The V4 hypervariable region of the 16S rRNA gene (290 bp) was amplified using the following 
primers: V4F_517_17 (5′-GCC AGC AGC CGC GGT AA-3′) and V4R_ 805_19 (5′-GAC TAC CAG GGT ATC 
TAA T-3′). 

The qPCR was performed in a 25 μl final volume, containing Power SYBR green PCR master mix (Fisher 
Scientific, Spain) and 100 nM of each primer.  For the amplification of the hypervariable region V4, the 
reaction conditions were 50ºC for 2 min, 95ºC for 10 min followed by 38 cycles at 95ºC for 15 s and 60ºC 
for 1 min. For the amplification of the ITS2 region, the conditions were 50ºC for 2 min, 95ºC for 2 min 
followed by 40 cycles at 95ºC for 30 s, 55ºC for 30 s, and 72ºC for 60 s, and a final extension cycle of 
72ºC for 10 min. For bacterial load quantification, genomic DNA extracted from the fecal samples was 
diluted at 1/1000 and amplified in duplicate, while for fungi, samples were analyzed in triplicates at 
1/100 to ensure accuracy. Additionally, mean values were calculated. 

Melting curve analysis was performed to confirm amplicon specificity. To quantify microbial loads, 
standard curves were generated using calculated amounts of linearized plasmids containing the 
amplified region of the reference bacterium. Plasmid concentration was measured using a 
NanoPhotometer® NP80 (IMPLEN), and the number of gene copies was calculated based on the 
molecular weight of the plasmid. Serial dilutions of the template DNA were amplified to extrapolate 
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bacterial (from 10-2 to 10-7) and fungal (from 10 to 10-6) copy numbers. Results were expressed as copies 
per gram of stool. 

 

4.15  Development of IBD-similarity index 
 
To assess microbiome alterations associated with IBD, we developed a disease similarity index to 

quantify the grade of resemblance between the gut microbiome composition of healthy individuals (n= 
500) and those diagnosed with non-communicable gastrointestinal diseases, such as IBD. The IBD-
similarity index was defined as one minus the median weighted or unweighted UniFrac distance 
between any given healthy sample and a reference plane of 321 IBD samples from previous studies (208 
from CD patients and 113 from UC patients)(269).  

 

4.16 Culturomics Pilot Study 
 

 Selection of suitable donors for bacterial culture and sampling 
All participants selected for culturomics belonged to POP study and should meet the following 

inclusion criteria:  

- No antibiotic intake in the previous three months 
- Residence or workplace located in Barcelona to ensure timely sample collection and transport 

4.16.1.1  Experiment 1: Collection of healthy human gut species  
This experiment aimed to isolate a collection of bacteria (non-targeted approach) from healthy 

individuals for subsequent testing on human explant tissue and animal models. To select the appropriate 
individuals, IBD-similarity index was calculated for the 500 healthy individuals with available microbiome 
data. Two volunteers with a very low dysbiosis score, high Chao1 and Shannon diversity scores, and 
aMED/hPDI scores above the median value were selected and asked to provide a new single, ethanol-
free sample, stored in their domestic freezer (-20ºC) for up to 24h before being transported in dry ice 
by laboratory staff to maintain the cold chain. Upon arrival at the laboratory, five aliquots of 300 mg 
each were prepared on dry ice and were stored directly at -80ºC until shipment to the INRAE facility 
(France) on dry ice for further cultivation. 

4.16.1.2 Experiment 2: Collection of IBD species 
To investigate the role of microbiome in IBD, this experiment focused on previously reported 

bacterial species that are enriched or depleted in IBD patients, concretely E. coli and F. prausnitzii. One 
healthy volunteer and two CD patients with higher relative abundance of each of the targeted bacteria 
were selected to provide a new single, ethanol-free fecal sample. Again, the fecal samples were stored 
and prepared under the conditions as in Experiment 1 before shipment to INRAE, France. 

  Update of MALDI-TOF database 
Identification of bacterial isolates are often carried out using MADI-TOF technique by comparison of 

the spectra generated by the interested pure culture against a pre-existing database. Our MALDI-TOF 
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default database (MALDI Biotyper Sirius, Bruker) contained spectra from 4320 species. Three additional 
free online spectra databases were added to improve spectra identification and bacterial diversity. 
ClostriTOF v2.0 (270) comprise 142 bacterial strains within Clostridia class, Zenodo v4.2 and EMBALIMB 
v3 enclosed 1,601 and 1,142 bacterial strains coming from Robert Koch Institute (271) and Japan 
collection of microorganisms in collaboration with the Medical Mycology Research Center, Center for 
Conservation of Microbial Genetic Resource (Gifu University) and Institute of Tropical Medicine, 
respectively. 

 Culture media 
All media compositions were given per liter of osmotic water and prepared following the 

recommendations of the Leibniz Institute DSMZ and manufacturers’ instructions: 

Table 18. Recipe of all media used for culture of human derived gut samples. 
 

BD BactoTM Brain Heart Infusion supplemented (L-YHBHI.4) + 10% Rumen fluid 
Ingredient (1000 mL) Concentration  

Main solution (1000 mL)  1x 
Brain Heart Infusion (ref 237500, BD BactoTM) 37 g 
Bacto Yeast Extract  5 g 
Hemine solution 10 mL 
Rumen fluid 100 mL 
Maltose 0.5 g 
Cellobiose 0.5 g 
Almidon soluble 0.5 g 
Cysteine 0.5 mg 
Osmotic water 890 mL 
Agar 15 g for solid media 
Resazurin 1 mL for liquid media 

 

AccuDiaTM Gifu Anaerobic Media (GAM) Broth 
Ingredient (1000 mL) Concentration  

Main solution (1000 mL)  1x 
GAM Broth, Modified powder (ref 05433, Shimadzu AccuDiaTM) 41.7 g 
Resazurin 1 mL for liquid media 
Agar 15 g for solid media 
Osmotic water 999 mL 

 

BD DifcoTM LB Broth, Miller (Luria-Bertani) 
Ingredient (1000 mL) Concentration  

Main solution (1000 mL)  1x 
LB Broth, Miller (Luria-Bertani) (ref 244620, BD DifcoTM) 25 g 
Agar 15 g for solid media 
Osmotic water 1000 mL 
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BD BBLTM MacConkey Agar 
Ingredient (1000 mL) Concentration  

Main solution (1000 mL)  1x 
MacConkey (ref 211387, BD BBLTM) 50 g 
Agar 15 g for solid media 
Osmotic water 1000 mL 

 

DSMZ Medium 1611- YCFA medium modified 
Ingredient (1000 mL) Concentration 

Main solution 1611 (1000 mL)  1x 
Casitone 10 g 
Yeast extract 2.5 g 
Glucose 5 g 
MgSO4 x 7 H2O 0.0448 g 
CaCl2 x 2 H2O 0.0900 g 
KH2PO4 0.4492 g 
K2HPO4 0.4492 g 
NaCl 0.9 g 
Resazurin solution 1 mL for liquid media 
Osmotic water 979 mL 
Hemin solution 20 mL 
NaHCO3 1 g 
L-Cysteine HCl 0.5 g 
Agar 15 g for solid media 

Volatile fatty acids (2.7 ml)   1x 
Acetic acid 1.9 mL 
Propionic acid 0.7 mL 
iso-Butyric acid 90 µl 
n-Valeric acid 100 µl 
iso-Valeric acid 100 µl 

Vitamine solution (500 ml) we take 80 µL per Hungate tube or 
10 mL for 1L 

 20x  

Biotin 0.02 g 
Folic acid 0.02 g 
Pyroxidine hydrochloride 0.1 g 
Thiamine-HCl x 2H2O 0.05 g 
Riboflavin 0.05 g 
Nicotinic acid 0.05 g 
D-Calcium pantothenate 0.05 g 
Vitamin B12 (10x) 0.01 g 
p-Aminobenzoic acid 0.05 g 
Lipolic acid 0.05 g 
Distilled water 500 mL 
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Anaerobic media (DSMZ 1611, L-YHBHI.4 + 10% Rumen fluid (RF) and GAM) were prepared using two 
oxygen exclusion techniques; the Hungate technique for liquid cultures and the anaerobic chamber for 
plate cultures.  

For the Hungate method, main solution for each of the medium (excluding cysteine) was prepared 
as described in Table 18. Resazurin was added as a redox indicator. The media were then deoxygenated 
by boiling in a vessel equipped with a chimney reflux to prevent overflow. Boiling continued until the 
resazurin changed color from blue to pink (oxidation) and to colorless (reduced), indicating oxygen 
removal. The medium was then cooled down with CO2, introduced via a needle jet, to ensure no 
degradation of subsequent reagents will take place.  

At this stage, cysteine and any required volatile fatty acids were added to the solution. The 
deoxygenated medium was then transferred into a 250 mL Schott bottle, influxed with N2, and 
immediately sealed with butyl rubber bungs after the removal of the gassing needle. Bottles were then 
autoclaved at 121°C for 15 min. For liquid in 96-well plates, 200 µl of the prepared medium was 
distributed in each of the wells under anaerobic conditions. The remaining medium was aliquoted and 
stored inside the anaerobic chamber for future subculturing of isolated bacterial strains. 

For agar plate culture, the anaerobic chamber was used. Main solution was prepared according to 
Table 18  and autoclaved at 121°C for 15 min. Notably, resazurin was excluded from solid media 
preparations. After cooling, 50 mL of medium was poured into each rectangular dish (Nunc OmniTray 
Single-Well Plate) under a Class II Biological Safety Cabinet.  Plates were left at room temperature to 
solidify, then placed in the anaerobic chamber to reduce for approximately 48h prior to use. 

 Single-Cell Dispenser (SCD) 
The SCD B. SIGHT (Cytena GmbH, Germany) employs a microfluidic system, that generates 

microdroplets from diluted samples and integrates optical components for real-time cell detection and 
image recording. Upon ejection from the cartridge's nozzle carrying the diluted fecal fluid, droplets 
containing single cells are dispensed into designated plates (agar or liquid), while droplets with no or 
multiple cells are discarded via vacuum. The SCD remained inside the anaerobic chamber throughout 
the entire experimental period and was used for all experiments except E.coli. 

 Bacteria culture and isolation  
4.16.5.1 Escherichia coli 

E. coli is a facultative anaerobe; therefore, its cultivation required slightly different conditions.  

Briefly, 300 mg of fecal aliquots from CD patients with the most elevated levels of E. coli were 
homogenized in 5.7 mL of sterile PBS. Serial dilutions (10-1 to 10-8) were prepared, and 100 µL of dilutions 
from 10-2 to 10-8 were plated onto LB (Luria-Bertani), Miller, and MacConkey agar plates. Media were 
prepared according to the manufacturer’s instructions (see Table 18). 

Plates were incubated at 37°C for 1-4 days under aerobic and anaerobic conditions by using two 
different incubators. Individual colonies were then hand-picked and subjected to multiple rounds of 
streaking on LB, Miller agar plates to obtain pure cultures. 
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4.16.5.2 Faecalibacterium prausnitzii 
For isolation of F. prausnitzii, 300 mg of feces from a healthy volunteer known to hold high level of 

the species were processed inside the anaerobic chamber. The sample was homogenized in 5.7 mL of 
reduced PBS and subjected to serial dilutions (10-2 to 10-6). A 100 µL aliquot of the 10-4 dilution was 
loaded into the B. SIGHT single-cell dispenser (SCD, Cytena GmbH, Germany) and distributed into twelve 
96-well plates containing liquid DSMZ 1611 and L-YHBHI.4, supplemented with rumen fluid (RF).  

Plates were then incubated at 37°C for 1-4 days in anaerobic conditions. Growth was monitored via 
optical density (OD) using the Infinite® 200 PRO plate reader (TECAN). Wells with OD > 0.2 were then 
plated onto agar containing the same media to ensure proper identification, followed by re-cultivation 
in 1 mL of liquid media. Plates were then incubated at 37°C for 1-4 days in anaerobic conditions and 
optical density (OD) measured (Infinite® 200 PRO, TECAN) for growing control. 

4.16.5.3 Collection of human gut species 
Fecal samples (300 mg) from two healthy volunteers were processed under anaerobic conditions. 

Each sample was homogenized with 5.7 mL of reduced PBS and serially diluted (10-2 to 10-6). A 100 µL 
aliquot of the 10-4 dilution was dispensed using the SCD B. SIGHT into 96-well liquid and 384-well agar 
plates containing GAM and L-YBHI.4, supplemented with RF.  For each medium type, one liquid and 
three agar plates were used. 

Plates were then incubated anaerobically at 37°C for 1-4 days. Liquid cultures were monitored for 
growth by OD measurement. Wells with OD > 0.2 were then re-inoculated in 1 mL of the same media 
and spotted onto agar plates for identification. Agar plates were monitored for visible colony formation, 
and growing colonies were transferred to 1 mL of liquid media and re-spotted onto agar for 
identification. 

 Bacterial strain identification 
Identification of pure isolates was carried out using the MALDI-Biotyper Sirius system (Bruker 

Daltonic). Briefly, cell biomass from single colonies was applied onto a MALDI target plate, treated with 
1 µL of formic acid for cell wall disruption and protein extraction. Once the spot dried, 1 µL of MALDI 
matrix (Bruker IVD HCCA solution) was added. Spectra acquisition was performed according to the 
manufacturer’s instructions.  

Isolates with MALDI scores below 1.7, indicating low-confidence identification, were further 
analyzed via 16S rRNA sequencing. Bacterial DNA was extracted using FTA membrane and 700 bp 
including V3 region was amplified as described previously (272).  

 Strain storage 
All identified isolates using the MALDI-Biotyper were cultured in appropriate liquid media to 

generate sufficient biomass. A 750 µL aliquot of each culture was transferred to a cryogenic tube and 
mixed with sterile glycerol at a 1:3 ratio to achieve a final glycerol concentration of 20%. The step was 
prepared inside the anaerobic chamber. All tubes were immediately stored at -80°C to ensure viability 
of the isolated species.  

 



Materials and methods 

84 

4.17 Website development 
 

We built a website dedicated to this study (https://manichanh.vhir.org/POP/en/, username: 
reviewers, password: reviewers), where participants can access an overview of the results of this 
research, as well as their personal information on nutrient intake and dietary indices (based on the 
sFFQ), and, if available, their microbiome sequencing results, including bacterial composition, and 
measures of α-diversity. Nutrient intake data was compared to the guidelines established by the AESAN, 
while DQIs, food groups and α-diversity scores were compared to the population median found in this 
study. Nutrient intake data and DQIs could be visualized across the different time points when each 
participant completed the sFFQ survey, allowing for the tracking of their progression over the 12-month 
period. Participant reports were produced dynamically in the form of a Shiny app 
(https://shiny.posit.co/), which is run in R language and hosted in our local Shiny server. All personal 
results were anonymized and password-protected, ensuring each participant may only access their own 
information.  

 

4.18 Statistical Analysis 
 

Analysis was conducted using RStudio v4.3. Covariates such as gender, age, BMI, geographic region, 
smoking status, season, and workplace were examined for their influence on microbiota variation using 
the PERMANOVA test implemented via the adonis2 function in the vegan package (https://cran.r- 
project.org/web/packages/vegan/index.html) on both weighted and unweighted UniFrac distance 
metrics. 

We evaluated the gut microbiome’s capacity to predict individual food items, food groups, and 
nutrient intakes using both Random Forest classifiers and regressors. For each task, we performed 100 
bootstrap iterations with 5-fold cross-validation (an 80/20 split) between training and test sets to ensure 
robust performance estimates. Classification setup: Frequencies of food items, groups, and nutrients 
were divided into “low” (first quartile) and “high” (fourth quartile) consumption classes. We trained 
Random Forest classifiers on species‑level genome bin (SGB) relative abundances generated by 
MetaPhlAn4. Model discrimination was assessed by the median area under the ROC curve (AUC) across 
the 100 test folds. Regression setup: Continuous intake values were predicted with Random Forest 
regressors, also trained on MetaPhlAn4 SGB relative abundances. Performance was quantified by the 
median Spearman correlation between observed and predicted values in the held‑out data. 

Given the compositional nature of the sequencing data, differential abundance (DA) analysis of the 
microbial community was carried out using MaAsLin2 (Multivariate Association with Linear Models) 
(273). This analysis examined variations in categorical population characteristics, adjusting for 
confounding variables such as gender, BMI, and age. The resulting p-values were adjusted for the FDR. 
Associations were considered significant when the coefficient exceeded 1 (in most cases), and the q-
value was less than 0.05. Spearman correlation and Mann Whitney U tests were employed to associate 
dietary data and numerical traits with microbiome profiles and diversity measures. 
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For functional analysis, Spearman’s correlations between α- diversity indices (Chao1 and Shannon) 
and pathway abundances were calculated and adjusted for FDR. Only correlations with a rho value 
between -0.4 and 0.4 and an FDR < 0.05 were considered significant and retained for further 
examination. Association analyses were then conducted between these pathways and dietary variables 
(food items, food groups, and nutrients) using the Spearman correlation test. 

To investigate changes in potential microbial community pathways based on personal data, linear 
models were used as implemented in MaAsLin2, adjusting for bowel movement (transit time), gender, 
BMI, age, smoking status, geographic region, and season as fixed effects, using MetaCyc pathway 
information. To enhance result interpretation, pathways were grouped into their MetaCyc parent 
categories up to seven levels, with level one representing the broadest biological function and level 
seven the most specific. Pathways with multiple parent categories were duplicated and assigned to each 
relevant parent for visualization and interpretation purposes. 
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5.1 POP Study: a comprehensive cohort for studying diet and microbiome 
 

Out of 4,124 initially interested participants, only 1,241 met the inclusion criteria. A total of 216 
individuals were further excluded for failing to provide either stool samples or complete the online sFFQ, 
while eight individuals were removed due to incomplete dietary information (more than one missing 
question regarding items 1-57). This resulted in a final baseline cohort (sFFQ_0) of 1,017 volunteers. At 
six months (sFFQ_1), 844 participants remained, and by twelve months (sFFQ_2), the cohort size was 
composed by 754 volunteers. The project was officially named the “POP” study (Figure 5).  

 

Figure 5. Spanish map with number of individuals coming from the 17 CCAA. Note that different colors represent the 
four region areas considered for further analysis that are Mediterranean, the Interior, the North and the Islands. 
Classification was done taking into consideration traditional dietary patterns in the Mediterranean country together with 
geographical distribution. 

 Description of the POP cohort  
The median age of the POP cohort was 45.26 (range 19-75 years old) with a BMI of 24.46 ± 8.24 

kg/m2 (median ± SD). Additionally, 61.95% (n= 630) of the volunteers were classified as “normal 
weighted”. Moreover, 54.18% of participants were females (n= 551), including 24.86% who were 
menopausal (n= 137) and 1.45% who were pregnant (n= 8). 
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Most of the participants were born via vaginal delivery (87.41%; n= 889) and had a blood type A 
(34.41 %; n= 350) or O (34.81%; n= 354). The majority were identified as non-smokers (66.27%; n= 674) 
and reported a stool frequency of once per day (49.95%; n= 508).  

Participants belong to all 17 CCAA in Spain: Andalusia (8.36%; n= 8), Aragon (2.46%; n= 25), Asturias 
(1.77%; n= 18), Balearic Islands (2.16%; n= 22), Canary Islands (3.64%; n= 237), Cantabria (1.28%; n= 13), 
Castilla – La Mancha (2.36%; n= 24), Castile and León (3.15%; n= 32), Catalonia (46.21%; n= 470), 
Valencian Community (8.55%; n= 87), Extremadura (1.28%; n= 13), Galicia (3.44%; n= 35), La Rioja 
(0.59%; n= 6), Community of Madrid (7.96%; n= 81), Region of Murcia (2.36%; n= 24), Navarra (0.10%; 
n= 12) and Euskadi (3.34%; n= 34). No participants from Ceuta and Melilla cities were recruited. When 
considering region areas, the sampling fractions obtained were, 1.34 for Mediterranean region followed 
by Islands 0.80, North of Spain 0.74 and Interior having the lowest value, 0.61. 

In terms of dietary habits, 86.23% followed a conventional diet (n= 877), which was considered as a 
diet that doesn´t adhere to specific dietary restrictions.  2.95% were vegetarian (n= 30) and 0.88% strict 
vegan (n= 9). Sweeteners consumption was common (28.81%; n= 293), and 46.31% regularly consumed 
ready-to-eat meals (n= 471) (Table 19). 

Table 19. Description of POP cohort population characteristics. Note that for Intake of supplements or drugs, condition 
and diet type sections in the table, more than one category could be assigned for a single participant. 

 Total 

 Baseline 6 months 12 months 

n 1017 844 754 

Age (years) mean ± SD 45.26 ± 11.81 46.65 ± 11.54 47.39 ± 11.47 

18-29 years, n (%) 126 (12.39) 76 (9.00) 65 (8.62) 

30-39 years, n (%) 189 (18.58) 145 (17.18) 116 (15.38) 

40-49 years, n (%) 320 (31.47) 282 (33.41) 246 (32.63) 

50-59 years, n (%) 255 (25.07) 221 (26.18) 210 (27.85) 

≥ 60 years, n (%) 127 (12.49) 120 (14.22) 117 (15.52) 

   
 

Gender, n (%)    
Male 465 (45.72) 379 (44.91) 332 (44.03) 

Female 551 (54.18) 463 (54.86) 420 (55.70) 

Other 2 (0.1) 2 (0.24) 2 (0.27) 

    
Menstruation, n (%) 551 463 420 

Currently menstruating 141 (25.59) 110 (23.76) 84 (20.00) 

Non-menstruating 273 (49.55) 232 (50.11) 213 (50.71) 

Menopause 137 (24.86) 121 (26.13) 123 (29.29) 

    
Pregnant, n (%) 8 (1.45) 10 (2.16) 6 (1.43) 

    
BMI (kg/m2) mean ± SD 24.46 ± 8.24 24.22 ± 4.36 24.55 ± 7.96 
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 Total 

 Baseline 6 months 12 months 

n 1017 844 754 

Weigth status, n (%)    
Underweight (< 18.5 kg/m2) 38 (3.74) 32 (3.79) 26 (3.45) 

Normal (18.5-24.9 kg/m2) 630 (61.95) 522 (61.85) 470 (62.33) 

Overweight (25-29.9 kg/m2) 257 (25.27) 217 (25.71) 188 (24.93) 

Obese (≥ 30 kg/m2) 92 (9.05) 73 (8.65) 70 (9.15) 

    
Birth type, n (%)    
Vaginal birth 889 (87.41) 727 (86.14) 650 (86.21) 

C-section 98 (9.64) 81 (9.60) 75 (9.95) 

Unknown 30 (2.95) 36 (4.27) 29 (3.85) 

     
Blood type, n (%)    
A 350 (34.41) 282 (33.41) 257 (34.08) 

B 87 (8.55) 70 (8.29) 66 (8.75) 

AB 42 (4.13) 38 (4.50) 32 (4.24) 

O 354 (34.81) 316 (37.44) 275 (36.47) 

Unknown 184 (18.09) 138 (16.35) 124 (16.45) 

    
Rhesus     
+ 655 (64.41) 567 (67.18) 512 (67.90) 

- 133 (13.08) 110 (13.03) 104 (13.79) 

NA 229 (22.52) 167 (19.79) 138 (18.30) 

    
Smoking status, n (%)    
Non-smoker 674 (66.27) 572 (67.77) 499 (66.18) 

Smoker 88 (8.65) 67 (7.94) 59 (7.82) 

Former smoker 255 (25.07) 205 (24.29) 196 (25.99) 

    
Region, n (%)    
Andalusia 85 (8.36) 71 (8.41) 64 (8.49) 

Aragon 25 (2.46) 22 (2.61) 21 (2.79) 

Asturias 18 (1.77) 15 (1.78) 13 (1.72) 

Balearic Islands 22 (2.16) 17 (2.01) 16 (2.12) 

Canary Islands 37 (3.64) 32 (3.79) 27 (3.58) 

Cantabria 13 (1.28) 12 (1.42) 11 (1.46) 

Castilla – La Mancha 24 (2.36) 16 (1.90) 12 (1.59) 

Castile and León 32 (3.15) 32 (3.79) 30 (3.98) 
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 Total 

 Baseline 6 months 12 months 

n 1017 844 754 

Catalonia 469 (46.21) 383 (45.38) 342 (45.36) 

Valencian Community 87 (8.55) 79 (9.36) 68 (9.02) 

Extremadura 13 (1.28) 12 (1.42) 9 (1.19) 

Galicia 35 (3.44) 31 (3.69) 28 (3.71) 

La Rioja 6 (0.59) 5 (0.59) 3 (0.40) 

Community of Madrid 81 (7.96) 57 (6.75) 54 (7.16) 

Region of Murcia 24 (2.36) 19 (2.25) 18 (2.39) 

Navarre 12 (0.10) 9 (0.12) 10 (0.13) 

Basque Country 34 (3.34) 33 (3.79) 28 (3.71) 

Ceuta 0 (0.00) 0 (0.00) 0 (0.00) 

Melilla 0 (0.00) 0 (0.00) 0 (0.00) 

    

Working on health care system    

Yes 308 (30.29) 247 (29.27) 223 (29.58) 

No 694 (68.24) 597 (70.73) 531 (70.42) 

Unknown 15 (1.47) 0 (0.00) 0 (0.00) 

 
 

  
Stool frequency  

  
1-2 times/week 44 (4.33) 35 (4.15) 35 (4.64) 

more than 3 times/week 141 (13.86) 121 (4.34) 103 (13.66) 

1 time/day 508 (49.95) 418 (49.53) 393 (52.12) 

2 times/day 163 (16.03) 147 (17.42) 110 (14.59) 

More than 2 times/day 59 (5.58) 52 (6.10) 47 (6.20) 

Unknown 102 (10.03) 71 (8.41) 66 (8.75) 

   
 

Liquid intake (l), mean ± SD 1.92 ± 0.71 1.92 ± 0.67 1.92 ± 0.68 

   
 

 618 541 499 

Mean steps/day mean ± SD 9127.09 ± 5540.31 9222.73 ± 5416.75 8839.99 ± 4321.77 

   
 

Diet type, n (%)  
  

Conventional 877 (86.23) 721 (85.43) 638 (84.61) 

Strict Vegetarian 30 (2.95) 28 (3.32) 28 (3.71) 

Low in animal protein 26 (2.56) 20 (2.37) 17 (2.25) 

Gluten free 21 (2.06) 21 (2.49) 22 (2.92) 

Lactose free 13 (1.28) 12 (1.42) 12 (1.59) 

Low gluten 12 (1.18) 12 (1.42) 6 (0.79) 
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 Total 

 Baseline 6 months 12 months 

n 1017 844 754 

Low carbohydrates 10 (0.98) 14 (1.66) 15 (1.99) 

Vegan 9 (0.88) 7 (0.83) 8 (1.06) 

Other1 45 (4.42) 38 (4.50) 33 (4.38) 

    

Intake of ready-to-eat meals, n (%)  
  

Yes 471 (46.31) 388 (45.97) 364 (48.28) 

No 546 (53.69) 456 (54.03) 390 (51.72) 

 
 

  
Intake of sweeteners, n (%)  

  
Yes 293 (28.81) 231 (27.37) 204 (27.06) 

No 724 (71.19) 613 (72.63) 550 (72.94) 

   
 

Intake of supplements or drugs, n (%)  
  

None 430 (42.28) 317 (37.56) 248 (32.89) 

Treatment    

Dietary supplements 366 (35.99) 347 (41.11) 335 (44.43) 
Analgesic 48 (4.72) 29 (3.44) 16 (2.12) 
Anti-inflammatory 38 (3.74) 47 (5.57) 38 (5.04) 
Antihypertensive 33 (3.24) 29 (3.44) 39 (5.17) 
Probiotic 30 (2.95) 32 (3.79) 31 (4.11) 
Antianemic 23 (2.26) 23 (2.73) 21 (2.78) 
Antidepressant 22 (2.16) 27 (3.20) 29 (3.85) 
Decrease cholesterol levels or other lipids 22 (2.16) 24 (2.84) 28 (3.71) 
Thyroid therapy 18 (1.77) 18 (2.13) 15 (1.99) 
PPI 17 (1.67) 21 (2.49) 12 (1.59) 
Benzodiazepine 14 (1.38) 13 (1.54) 17 (2.25) 
Antihistaminic 13 (1.28) 16 (1.89) 12 (1.59) 
Anticoagulant 12 (1.18) 8 (0.95) 6 (0.79) 
Other2 94 (9.24) 106 (12.56) 124 (16.45) 

    

Disease, n (%)   
  

Non-reported disease 813 (79.94) 661 (78.32) 563 (74.67) 

Reported disease  
 

 

Hypertension 35 (3.44) 29 (3.44) 33 (4.38) 

Thyroid disease 34 (3.34) 35 (4.15) 34 (4.51) 

Asthma 18 (1.77) 12 (1.42) 7 (0.93) 

Allergy 15 (1.47) 8 (0.95) 14 (1.86) 
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 Total 

 Baseline 6 months 12 months 

n 1017 844 754 

Hypercholesterolemia 13 (1.28) 13 (1.54) 11 (1.46) 

Heart disease  10 (0.98) 11 (1.30) 12 (1.59) 

Anxiety 9 (0.88) 10 (1.18) 7 (0.93) 

Migraine 9 (0.88) 8 (0.95) 8 (1.06) 

Hernia  8 (0.79) 7 (0.83) 9 (1.19) 

IBS 8 (0.79) 8 (0.95) 5 (0.66) 

Osteoarthritis  8 (0.79) 11 (1.30) 9 (1.19) 

Other3 116 (11.41) 118 (13.98) 120 (15.92) 
 

1Other diet type include: hypocaloric, restricted, eastern asian, anti-inflammatory diet, Herbalife diet, paleo diet, 
FODMAP, ayurvedic, low in sugar, low in processed food, dairy free, ketogenic, low in dairy, free of processed food, sugar 

free, salt free, low in salt, low in lactose, low in refined carbohydrates, free of refined carbohydrates and fructose free. 
 
2Other medication include Acne treatment, adrenergic receptor agonist, aldosterone inhibitor, anthelmintic, antianginals, 
antiarrhythmic, antibiotics, antidiabetic, antiemetic, antiepileptic, antiflatulent drug, antifungal, anti-hyperuricemia, 

antimalarial, antimuscarinic, antiplatelets, antipsychotic, anti-rheumatics, antiviral, anxiolytic, aromatase inhibitor, 
bipolar disorder treatment, bronchodilator, cholinergic receptor antagonist, coagulant, corticoids, corticoids, diuretics, 

estrogen modulators, estrogen substitute therapy, eye pressure reduction treatment, gastric reflux treatment, GI 
stimulants, glucagon type 1 agonist, histamine antagonist, immunosupressant, kidney Stone treatment, laxative, 
monoclonal antibodies, mucolytics and antitussive, muscle relaxant, oral contraceptive, osteoporosis and Paget disease 

treatment, pancreatic enzymes, parkinson treatment, postbiotic, prebiotics, progesterone, SGLT2 inhibitor, syndrome of 
Menière treatment, testosterone inhibitors, treatment of excessive sleepiness, triptan, Typhus vaccine, uric acid 

treatment, vasodilator, venotonics, xanthine oxidase inhibitors. 

3Other dsease include Abdominal distension, alopecia, anemia, apnea, Asperger, asthmatic bronchitis, atopic dermatitis, 
Autism, benign prostatic hyperplasia, Bipolar disorder, Birt Hogg Dube Syndrome, brain lesions, cancer, candidiasis, celiac 

disease, Chilaiditi's Syndrome, cholinergic urticaria, chondropathy, chronic fatigue, chronic urticaria, Clostridium difficile,  
constipation, depression, diabetes, diverticulitis, dysmetria, endometriosis, epilepsy, Epstein Barr, esophageal atresia, 

esophagitis, factor V Leiden, fibromyalgia, fructose malabsorption, gallstones, gastritis, GI discomfort, Gilbert syndrome, 
glaucoma, hearing loss, hemorrhoids, herpes, HIV, HPV, hyperuricemia, ictus, idiopathic angioedema, ischemia, kidney 
cyst, kidney stones, lactose intolerance, Lichen sclerosis, lipedema, Lyme disease, Meniere´s disease, menorrhea, Multiple 

sclerosis, muscular dystrophy, NASH, obesity, OCD, ocular hypertension, Parkinson, Parry Romberg Syndrome, persistent 
COVID, phimosis, pituitary adenoma, polycystic kidney disease, polycystic ovary syndrome, pre-diabetes, psoriasis, 

Raynaud’s disease, reflux, refractory endometrium, renal insufficiency, retinal dystrophy, rhinitis, rosacea, scoliosis, SIBO, 
sinusitis, tensional cefalea, thrombophilia, tinnitus, tonsillar Ectopia, urinary incontinence, uterine polyp, vitiligo 
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5.2 Characterization of POP diet 
 

 Individual diet is relatively stable over time  
Given the longitudinal nature of the study, we assessed intra- and inter-individual variability across three 
dietary categories: food groups, food items and macro- and micronutrients. This analysis was conducted 
using Bray-Curtis similarity index, where lower values indicate greater similarity between samples. 

As expected, intra-individual variability (evaluated across the three timepoints: baseline, six and 
twelve months, as well as in pairwise comparisons) showed lower Bray-Curtis values when compared to 
inter-individual variability and seasonal effect.  This pattern was consistent across the three categories, 
suggesting that participants maintained a relatively stable diet over the one-year study period (Figure 
6). 
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B C A 

Figure 6. Intra- and Inter-individual variability of dietary intake across timepoints, baseline vs six months and 
baseline vs one year. We computed the Bray-Curtis dissimilarity index between samples, taking into account A) food 
items, B) food groups, and C) nutrients. Inter_all shows, for each sample, the median of distances between the 
samples and all the other samples. Inter_season shows, for each sample, the median of distances between the sample 
and other samples taken on the same season. Intra shows for each participant the distance between timepoints, 
baseline vs six months and baseline vs twelve months. Differences were tested for significance using Mann-Whitney 
test. 
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 Spanish food preferences 
The median daily energy intake in our cohort was 1,787.03 kcal at baseline, 1,722.34 kcal at six 

months, and 1,703.74 kcal at twelve months.  A detailed breakdown of median daily intake values 
(g/day), along with the 25th and 75th percentiles for food groups, energy, and nutrients across all three 
time points, is available in ANNEX 4. 

Additionally, the most consumed food groups in the POP cohort were: vegetable and vegetable 
products (28%, 26% and 25% in sFFQ_0, sFFQ_1 and sFFQ_2 respectively), followed by fruit and fruit 
products (18%, 18%, 19%), non-alcoholic drinks (16%,16%, 17%), milk and dairy products with the 
exception of fermented products (8%, 9%, 9%), meat including eggs (7%), fish and shellfish (4%), and 
legumes (3%). Additional information on remaining food groups can be found in Figure 7. 
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Figure 7. Percentage of food group most consumed by our population as assessed by sFFQ_0 (n= 1017), sFFQ_1 (n= 844) and sFFQ_2 (n= 754). Food groups whose % of consumption was 
lower than 1% were grouped as “Other” category. 

sFFQ_2 
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 Do we meet the standard recommendations?  
 

5.2.3.1 Adequate and inadequate intake values in Spanish population 
Based on the nutritional intake recommendations for the Spanish population proposed by AESAN 

(266), the proportion of volunteers meeting at least 80% of the recommended intake varied by nutrient: 
98.01-98.70% met the recommendations for protein (0.83 g/kg per day), 53.05-58.21% for fiber (> 25 
g/day), 42.57-46.51% for total fat (20-35% of total energy), and 36.58% for CHO (45-60% of total energy). 
Protein and total fat intake exceeded the recommended values, fiber was accomplished just for half of 
the volunteers while CHO fell below the recommended thresholds.  

For micronutrients (Figure 8), over 70% of participants met standard recommendations, except for 
calcium (39.92-44.84%) and vitamin D (31.83-31.96%). Sodium and iodine intake were not reliably 
assessed, as added salt during cooking was not quantified, making it difficult to determinate adequate 
or inadequate intake for its calculation. 
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Figure 8. Percentage of volunteers in POP cohort who exhibit adequate and inadequate of daily macro- and micronutrient 
intake based on the 80% cut-off of the Spanish population recommendations. Values for sFFQ_0 (n= 1017), sFFQ_1 (n= 844) 
and sFFQ_2 (n= 754) are presented. 
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5.2.3.2 Comparison with GBD-2017 recommendations 
In 2019 the GBD study highlighted sodium, whole grains and low fruit consumption as key risk factors 

for non-communicable diseases and mortality (190). To assess how well our cohort aligned with these 
recommendations, we mapped our initial 58 sFFQ items into 12 out of 15 GBD dietary risk factors (see 
Methods section, Table 17). Sodium was excluded from this analysis due to the lack of a specific question 
regarding salt added during cooking process. 

Our cohort’s intake of fruits (median intake of 225.6 g/day), vegetables (321.98 g/day) and fiber 
(27.32 g/day) fell within the recommended GBD ranges (see Table 20). However, legumes (41.4 g/day), 
wholegrains (22.65 g/day) nuts (9.6 g/day), milk (64 g/day), calcium (874.73 mg/day) and PUFA (6.4 
g/day) presented a suboptimal intake compared to the GBD optimal values and ranges. Conversely, 
there was an excess intake of red meat (27.3 g/day), processed meat (4.72 g/day) and sugar-sweetened 
beverages (6.6 g/day).
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Table 20. sFFQ items grouped by GBD dietary risk factors (n= 2615). Optimal level of intake as well as optimal range suggested by GBD was also provided. 

Statistics Fruits g/day Vegetables g/day Legumes g/day Wholegrains g/day Nuts g/day Milk g/day 

P251 137.39 190.305 19.8 2.64 3.15 0 

Median 225.6 321.98 41.4 22.65 9.6 64 

P752 607.35 522.3 57.15 70 30 200 

GBD3 optimal value 250 360 60 125 21 435 

GBD3 optimal range 200-300 290-430 50-70 100-150 16-25 350-520 
       

Statistics Red meat g/day Processed meat 
g/day 

Sugar-sweetened 
beverages g/day Fiber g/day Calcium mg/day PUFA 

g/day 
P251 8.58 1.49 0 18.71 636.845 5.18 

Median 27.3 4.72 6.6 27.32 874.73 6.4 

P752 27.3 9.45 26.4 38.44 1192.35 7.73 

GBD3 optimal value 23 2 3 24 1250 11 

GBD3 optimal range 18-27 0-4 0-5 19-28 1000-1500 9-13 
 

1Percentile 25 
2Percentile 75 
3Global Burden of Disease 
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5.3 Personal traits, geography and lifestyle influence our food choices 
 

 To investigate the impact of lifestyle, biometric and demographic factors on dietary choices within the 
Spanish population, we used MaAsLin2 models. Our analysis revealed that food groups were influenced 
by all variables, except for workplace. Food items were affected by all covariates, while seven factors 
(Bowel Frequency, Region Areas, Diet Grouped, Season Year, Smoke, Gender and Sweeteners) showed 
association with micro- and macronutrient intake among volunteers (Figure 9). 

 

The use of DQIs represent an alternative and simplified measure of diet quality in population studies. 
Thus, to elucidate the relationship between different DQIs and self-reported population characteristics, 
linear models implemented in MaAsLin2 were used. After adjusting for significant variables obtained by 
PERMANOVA several significant results emerged. 

Age was positively correlated with DQIs indicative of healthier choices (q(IASE)= 0.00151; q(hPDI)= 
1.22e-05; q(aMED)= 0.00679) and negatively correlated with meat and plant protein from unhealthier 
sources (q(MDI)= 0.0480; q(uPDI)= 0.0480). These results suggest that, with age individuals may become 
more careful about their habitual diet (Figure 10). Specifically, older individuals tended to consume more 
fruit and fruit products (q= 0.00411) and nuts (q= 0.00760) but also alcoholic beverages (q= 0.00266) 
and were characterized by a decrease of intake of poorer food groups such as ready to eat meals (q= 

Figure 9. Effect size of the population characteristics on dietary intake. The magnitude of the influence of specific 
characteristics on dietary intake (n= 2615) was calculated using permutational analysis of variance (PERMANOVA), as 
implemented in the adonis2 function of the vegan R using the Bray-Curtis method. Y axis represents the variables while 
X axis refers to the contribution to effect size (R2). Significant results (p < 0.05) where purple colored. 
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1.24e-07), white grains (q= 2.11e-06), pastries and sweet breads (q= 2.34e-06) or appetizers (q= 7.42e-
06). Additional associations can be found in Table 21. 

In contrast, BMI correlated negatively with aMED (q= 0.0023), PDI (q= 0.00505) and hPDI (q= 0.0479) 

scores, suggesting that a poorer diet is associated with an increase in BMI (Figure 10).  One possible 
explanation could be that individuals with higher BMI presented an increased intake of less healthy 
foods, such as white bread (q= 0.00114) and ready to eat meals (q= 0.000411) (Table 21).   

 

Current smokers reported a less healthy diet, as indicated by lower scores on DQIs compared with non-
smokers and former smokers (q(HEI_2015) = 0.00884; q(IASE)= 0.00884) (Figure 11). Smokers also had 
a higher preference for alcohol (q= 0.000107) and lower intake of fruits and fruit derived products (q= 
2.99e-05). In contrast, former smokers also reported higher alcohol consumption (q= 0.00427) but a 
decrease in biscuits and breakfast cereals (q= 0.023) in comparison with non-smokers (see ANNEX 5). 

 

 

 

 

Figure 10. Relationship between DQIs and continuous population characteristics (age and BMI). Correlations were 
calculated using the MaAsLin2 tool (n= 2615). 
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Table 21. Association between food groups and age/BMI. Output from MaAsLin2 (n= 2615). 

 

Females exhibited healthier dietary habits compared to men, reflected by higher values of HEI-2015 (q= 
7.15e-03), hPDI (q= 2.28e-07), PDI (q= 2.41e-07) and aMED (q= 0.000173) and lower values of MDI (q= 
1.31e-07) and uPDI (q= 2.41e-07). Thus, suggesting a better dietary habit of this group which might 
follow a more MedDiet type (more consumption of plant-based sources and lower meat intake). Indeed, 
at the food group level, this pattern is partially supported, with an increased consumption of vegetables 
(q= 4.95e-07), fruit and fruit products (q= 0.00304) and whole bread (q= 0.0237), fish and shellfish (q= 
0.00271) but also higher intake of fats and oils (q= 4.13e-05) and non-alcoholic drinks (q= 0.0244). On 
the other hand, males preferred alcoholic beverages (q= 2.20e-05), white grains and bread (q= 0.0104; 
q= 0.0424) and ready to eat meals (q= 0.0162) (Figure 11, ANNEX 5). 

Geographically, Spain was divided into four different region areas (Mediterranean, North of Spain, 
Interior, and Islands) based on geographical distribution, which were consider that could have an impact 
on dietary patters. The Mediterranean region included Catalonia, Community of Valencia, Region of 
Murcia and Andalusia; The North of Spain was formed by Cantabria, Asturias, Navarre, Basque Country 
and Galicia; the Interior region encompassed La Rioja, Aragon, Castille and Leon, Extremadura, 
Community of Madrid and Castilla-La Mancha. Finally, the Islands included only Balearic and Canary 
Islands (Figure 5). Compared to the Mediterranean region, the Interior of Spain exhibited higher aMED 
(q= 0.0111) scores and lower uPDI (q= 0.0479) values suggesting a healthier diet. This region exhibited 
higher intake of legumes (q= 0.0228) and milk and dairy (q= 0.0479), but lower intake of white grains 
(q= 0.0424) (Figure 11, ANNEX 5).  

Interestingly, regular use of sweeteners was positively correlated with the intake of ready-to-eat meals 
(q= 1.80e-05), sauces and condiments (q= 0.00703), and sausages and other processed meat products 
(q= 0.0251) (ANNEX 5). 

Food group Variable Coef Stderr N p-value q-value 
Ready to eat meals Age -0.40595107 0.06845741 2615 4.1793E-09 1.2422E-07 
White grains Age -0.32352562 0.05991403 2615 8.3821E-08 2.1176E-06 
Pastries and sweet breads Age -0.36038135 0.06708928 2615 9.7694E-08 2.3447E-06 
Appetizers Age -0.34566815 0.06732395 2615 3.3996E-07 7.4174E-06 
Meat and eggs Age -0.171732 0.03702107 2615 3.9973E-06 6.3957E-05 
Potatoes and other tubercles Age -0.21784506 0.04833175 2615 7.3614E-06 0.00010096 
Sauces and condiments Age -0.28975655 0.06552438 2615 1.094E-05 0.00014193 
Alcoholic beverage Age 0.35622271 0.09645022 2615 0.00023306 0.00266356 
Fruits and fruit products Age 0.17750776 0.05007341 2615 0.0004115 0.00411504 
Nuts and seeds Age 0.20383102 0.06122342 2615 0.00090347 0.00760814 
Whole grains Age 0.23300654 0.08116884 2615 0.00418543 0.02911602 
Biscuits and breakfast cereals Age -0.20985783 0.07708515 2615 0.00660265 0.04225693 
White bread Age -0.25045909 0.09379733 2615 0.00770598 0.04742144 
Ready to eat meals BMI 0.1396035 0.03944205 2615 0.00040977 0.00411504 
White bread BMI 0.16507582 0.05171791 2615 0.00143531 0.01167708 
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5.4 Interplay between diet, lifestyle and microbiome 
 

 Increased fungal recovery using an enrichment protocol 
 

To assess the impact of fungal protocol enrichment on recovery rate, we analyzed microbiome 
composition and diversity in a subset of 100 gender-paired individuals, comparing samples with and 
without enrichment (Figure 12). Two enriched samples failed quality control during library construction, 
leaving 98 samples for analysis. The median read count per sample was 25 in enriched samples, 
compared to just two in non-enriched samples. Enrichment significantly increased species detection, 
identifying 141 species versus 45 in non-enriched samples, also increasing diversity metrics such as 
Chao1 and Shannon indices, highlighting the effectiveness of the enrichment protocol.    

Figure 11. Relationship between Eating Quality Indices (DQIs) and population categorical values (smoke, gender, bowel 
frequency and region areas). Analysis performed using the MaAsLin2 tool (n= 2615). 
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 Effect on bacterial and fungal α- diversity 
5.4.2.1 Bacterial α- diversity 

Before assessing the effect of diet and lifestyle on bacterial microbiome (n= 500 baseline), we used 
adonis2 method to identify possible confounder variables. Our analysis revealed that gender, age, and 
BMI were significant factors (p < 0.05) influencing bacterial composition, and therefore, were considered 
in the subsequent analysis (Figure 13).   

 

Figure 13. Effect size of the dietary data on the microbiome data. The magnitude of the influence of DQIs and personal 
traits on the microbiome was calculated using permutational analysis of variance (PERMANOVA), as implemented in the 
adonis2 function of the vegan R and using the Bray-Curtis method (n= 500 baseline). Y axis represents the variables while 
X axis refers to the contribution to effect size (R2). Significant results (p < 0.05) where purple colored.  

To explore the relationship between diet, POP characteristics and α-diversity, Spearman correlation 
test was applied. In general, DQIs representing healthier dietary patterns, such as HEI-2015 (Shannon, 

Figure 12. Fungal profiling comparison between enrichment and non-enrichment protocols (n= 100 baseline). The first 
panel represents the comparison of mapped fungal reads per sample between enrichment and non-enrichment 
protocols whereas the remaining panels indicate α-diversity metrics (Chao1, Shannon and number of 
species) between enrichment and non-enrichment protocols. Significance was tested using paired Wilcoxon test. 
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q= 0.0183), hPDI adjusted (Shannon, q= 0.0183), and aMED (Shannon, q= 0.0210) exhibited positive 
correlations with richness and/or evenness. In contrast, uPDI adjusted showed a negative correlation 
with Shannon (q= 0.0184) and Chao1 (q= 0.0372). These results were further supported by examining 
correlations at the food groups, food items, and nutrients levels. For instance, nuts and seeds (Shannon, 
q= 0.0351), fruits and fruit products (Shannon, q= 0.0037) and vegetables (Shannon, q= 0.0351), 
exhibited the same direction as the healthy DQIs. Conversely, white grains (Shannon, q= 0.0079; Chao1, 
q= 0.0114) and white bread (Shannon, q= 0.0105; Chao1, q= 0.0214) showed correlations aligning with 
the uPDI direction (Figure 14, ANNEX 6). When looking at items, a similar pattern was obtained. While 
item 1 (raw leafy vegetables; Shannon, q= 0.002; Chao1, q= 0.016), item 2 (boiled leafy vegetables; 
Shannon, q= 0.016; Chao1, q= 0.016), item 3 (tomato; Shannon, q= 0.027), item 12 (potatoes; Shannon, 
q= 0.020), item 14 (fresh fruit; Shannon, q= 0.015), item 16 (dehydrated fruit; Shannon, q= 0.031), item 
17 (nuts and seeds; Shannon, q= 0.040), item 36 (bluefish; Chao1, q= 0.016), item 37 (whitefish; Chao1, 
q= 0.032), item 39 (mollusk and crustacean; Chao1, q= 0.021) and item 45 (dark chocolate; Shannon, q= 
0.03) showed positive correlations with diversity, item 18 (white bread; Shannon, q= 0.016; Chao1, q= 
0.024), item 22 (refined cereals; Shannon, q= 0.015; Chao1, q= 0.016), item 41 (sunflower oil; Shannon, 
q= 0.020; Chao1, q= 0.040), item 44 (pastries; Chao1,  q= 0.04), item 46 (confectionary; Shannon, q= 
0.041), item 51 (soft drinks; Shannon, q= 0.021; Chao1, q= 0.020) and item 58 (processed food; Shannon, 
q= 0.021; Chao1, q= 0.015) presented negative tendencies (Figure 15, ANNEX 6). 

Furthermore, cohort characteristics also exhibited correlations with Shannon and/or Chao1 indices. 
Notably, diversity was increased with age (Shannon, q= 0.0129; Chao1 q= 0.0028), which supports the 
previous result (Figure 10) that dietary habits tend to improve with age. In contrast, BMI negatively 
correlated with both α-diversity indices (Shannon, q= 0.0142; Chao1, q= 0.0197). 

Interestingly, bacterial loads positively associated with both richness and diversity (Shannon, p= 9.5e-
07; Chao1, p= 1.8e-07) (Figure 14). 

In addition to continuous variables, the effect of three categorical factors (bowel frequency, smoke 
and seasonality) was assessed using the Mann-Whitney test. 
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In general, higher bowel frequency (classified as > 2 times per day, 2 times per day, 1 time per day, > 3 
times per week, and 1.5 times per week) was associated with lower α-diversity values (p < 0.05). 
Specifically, the group with > 2 times per day defecation frequency showed the lowest diversity with 
diversity increasing gradually until the < 3 times per week category, where it seemed to stabilize, as 
indicated by the non-significant p-value for both Shannon and Chao1 indices (Figure 16).  Additionally, 

a small but significant effect of season on bacterial diversity was also observed, with diversity being 
higher in summer compared to winter (p= 0.048), which could be attributed to the increased 
consumption of fruits and vegetables during the warmer months. Finally, current smokers exhibited 
significantly lower diversity values in both Shannon (p= 0.020) and Chao1 (p= 0.037) indices compared 
to non-smokers (Figure 16). No significant effects were observed for other variables including gender, 
sweetener use, or regional differences. 

Figure 14. Upper part represents correlation between bacterial loads with bacterial α-diversity (Chao1 and Shannon) using 
the Spearman correlation test (n= 500 baseline). Lower part corresponds to an integred heatmap showing the significant 
factors afecting bacterial α- diversity, including food groups, DQIs, nutrients and personal traits (n= 500). Symbols  inside the 
color squares denote significant associations (FDR < 0.05). 
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Figure 16. Population characteristics-microbiome α- diversity association analysis. Figures represent differences in 
categorical population characteristics in relation to bacterial α- diversity (Chao and Shannon indices), analyzed using the 
Mann-Whitney test (n= 500 baseline).  

Figure 15. Correlation between sFFQ food items data with bacterial α- diversity (Chao1 and Shannon) using the 
Spearman correlation test (n= 500 baseline). Symbols inside the color squares denote significant associations (FDR < 
0.05). Item1: Raw leafy vegetables; Item2: Boiled leafy vegetables; Item3: Tomato; Item 12: Potatoes; Item 14: Fresh 
fruit; Item16: Dehydrated fruit; Item17: Nuts and seeds; Item18: White bread; Item22: Refined cereals; Item36: Bluefish; 
Item37: Whitefish; Item39: Mollusk and crustacean; Item41: Sunflower oil; Item 44: Pastries; Item 45: Dark chocolate; 
Item 46: Confectionary; Item51: Soft drinks; Item58: Processed food. 
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5.4.2.2 Fungal α-diversity 
As with the bacterial microbiome, we applied the adonis2 method as the preliminary analysis to 

assess the potential impact of confounding variables on mycobiome composition (n= 100 baseline). No 
significant results were obtained for any of the variables considered as shown in Figure 17. 

 

Figure 17. Effect size of the dietary data on the mycobiome. The magnitude of the influence of diet group and personal 
characteristics on the fungal microbiome was calculated using PERMANOVA, as implemented in the adonis2 function of 
the vegan R and using the Bray-Curtis method (n= 100 baseline). Y axis represents the variables while X axis refers to the 
contribution to effect size (R2).  

We next examined for potential associations between POP characteristics, dietary habits and fungal 
microbiome using PERMANOVA implemented in adonis2 function in R package. After adjusting for 
confounders, only a few significant associations were observed. Similar to bacteria, fungal diversity 
increased with age (p= 0.044) and was higher during summer compared to winter (Shannon, p= 0.017) 
and autumn (p= 0.011). Additionally, diversity decreased with uPDI (p= 0.011), an DQI that focus on 
unhealthy plant-based dietary sources. Food items had a minor impact on diversity, with Item 1, which 
corresponds to raw leafy vegetables, showing a positive correlation with both Shannon and Chao1 
diversity (p= 0.017; p= 0.014 respectively). In contrast, two items (Item 44, pastry and 47, canned tomato 
sauce) were negatively associated with Shannon diversity (p= 0.014 and p= 0.01) (Figure 18). No 
significant correlations were observed at food group or nutrient level. 
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 Effect on bacterial and fungal load 
Encouraged by the interesting results regarding the relationship between bacterial load and the 

increase in bacterial α-diversity, we further examined bacterial and fungal loads, assessed via qPCR in a 
subset of individuals (n= 500 baseline), using Spearman’s correlation and the Mann-Whitney U test. 
However, no significant values were found between bacterial or fungal loads and population 
characteristics, food groups, food items, macro or micro-nutrients intake after FDR correction. 

 Lifestyle and diet also affect our microbiome composition and function 
5.4.4.1 Bacterial composition 
The most prevalent bacterial species in POP cohort (n= 500) included an unknown Lachnospiraceace 
(497 samples), Blautia wexlerae (496 samples), unknown Clostidiaceae (495 samples), unknown 
Clostridia (495 samples), Anaerostipes hadrus (495 samples), Faecalibacterium prausnitzii (493 samples), 
Dorea formicigenerans (491 samples), Blautia faecis (490 samples), Anaerobutyricum hallii (489 
samples) and Fusicatenibacter saccharivorans (488 samples).  

When examining relative abundance (Figure 19), F. prausnitzii accounted for 5.57% ± 4.09% of total 
relative abundance of the sample, followed by Bacteroides uniformis (4.28% ± 4.93%), Prevotella copri 
clade A (4.17% ± 9.48%), Phocaeicola vulgatus (3.72% ± 4.77%), Clostridia bacterium (2.55% ± 3.01%), 

Figure 18. Population characteristics-mycobiome α-diversity association analysis. Figures represent fungal α-diversity in enriched 
samples (n= 100 baseline). Top left figures show Shannon and Chao diversity among different seasons (Mann-Whitney U test). Bottom and 
top right figures represent Spearman correlation between age and adjusted uPDI with Shannon. Item1: Raw leafy vegetables; Item44:
Bakery and pastry; Item47: Canned and commercial tomato sauce. 
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Phocaeicola dorei (2.17% ± 3.54%), Eubacterium rectale (1.72% ± 2.32%), Pervotella marseillensis (1.70% 
± 5.49%), Roserburia faecis (1.55% ± 2.35%) and Alistipes putredinis (1.48% ± 1.57%).  

 

5.4.4.1.1 Interplay between bacterial species, functions and personal traits 
The next step was to explore correlation between distinct microbial profiles and functional pathways 

from MetaCyc with demographic data using linear models implemented in MaAsLin2. Fixed effects 
considered included "Bowel_movement", "Gender", "Smoke", "Region_Areas", "Season_Year". 
Additionally, biometric data (“Age” and “BMI”) were correlated with microbial profiles using corrected 
Spearman correlations.  

After correction, age was associated with 33 bacterial species. A positive correlation was observed 
with A. muciniphila (q= 0.031), while negative correlations were found with Bifidobacterium bifidum (q= 
0.006) and Flavonifractor plautii (q= 0.046). Interestingly, some of the strongest correlations were found 
with unclassified species (Figure 20, ANNEX 7).   

BMI showed linked with 26 bacterial species. Half of these exhibited negative associations, including 
Intestinimonas gabonensis (q= 0.017), Intestinimonas massiliensis (q= 0.026) and some unknown species 
(Ruminococcaceae bacterium D5 (q= 0.015); Bacili bacterium (q= 0.033)). The other half demonstrated 
positive associations, such as with Coprococcus comes (q= 7.69e-05) and R. torques (q= 0.019) (Figure 
20, ANNEX 7).   

Figure 19. Bacterial profiling. Distribution of mapped bacterial reads per sample  
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At functional level, BMI was associated with 39 pathways (26 positive and 13 negative). Higher BMI 
values were linked to a general downregulation of biosynthetic pathways related to amino-acids, co-
factors, CHO, and nucleotides, as well as a reduction in fermentation processes. In contrast, increasing 
functional pathways related to amino acid and carboxylic degradation, as well as peptidoglycan 
maturation involving meso-diaminopimelate were observed. No significant functional changes were 
observed with age (Figure 21, ANNEX 8). 

 

Figure 20. Correlation between age, BMI and bacterial species. Symbols inside the color squares denote significant 
associations (FDR < 0.05). Analysis were performed using the Spearman correlation test (n= 500 baseline). 
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Analyzing categorical variables also revealed significant microbiome changes. The highest number of 
significant associations was found with bowel frequency (Table 22). At compositional level, using “1 
day” as reference value, longer defecation intervals (> 3 times per week) were positively correlated with 
ten species, including A. muciniphila, q= 0.014 and Intestinimonas massiliensis, q= 0.011). In contrast, 
two species (Blautia wexlerae, q= 0.011 and unknown GGB9614_ SGB15049, q= 0.028) correlated 
negatively with longer transit times (1.5 times per week).  On the other hand, one species 
(Ruthenibacterium lactatiformans, q= 0.018) was negatively associated with shorter transit times (> than 
2 times per day). Longer transit times (1.5 times and > 3 times per week) were also linked to greater 
number of pathways, particularly those related to fermentation, lipid biosynthesis, glycan pathways, 
and the degradation and biosynthesis of amine and amino acids. Conversely, shorter transit times (> 2 
times per day) were associated with increased number of CHO degradation pathways (Figure 21). 

 

Figure 21. Differentially abundant pathways at the metagenomic level. Pathways are classified by their functionality according 
to the MetaCyc database and are influenced by several conditions. Differentially abundant pathways were compared between 
low transit time (>3 times per week, 1 or 2 times per week) and the reference (once a day). Positive coefficients reflected 
pathways enriched in low transit time (left side of the figure), while negative coefficients represented their depletion. 
Differentially abundant pathways also depend on BMI, with positive coefficients indicating a higher abundance of pathways in 
individuals with higher BMI (right side of the figure) (n= 500 baseline). 
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Table 22. Significant association (q < 0.05) between bacterial species and categorical variables (bowel frequency, gender, region areas and smoke). Output from MaAsLin2 (n= 500 
baseline) 

Feature Metadata Value Coef Stderr N N.not.0 p-value q-value 
Ruminococcaceae_bacterium_D5 Bowel_movement 1.5_WK 4.37507354 0.882868373 497 220 1.09061E-06 0.002155314 
GGB9694_SGB15204 Bowel_movement >3_WK 1.920275156 0.426136296 497 91 8.80967E-06 0.006964048 
Clostridia_unclassified_SGB15402 Bowel_movement >3_WK 1.501048276 0.348476429 497 130 2.10775E-05 0.01078727 
Candidatus_Geddesella_stercoravicola Bowel_movement >3_WK 1.852320933 0.433039851 497 109 2.39735E-05 0.011147696 
Intestinimonas_massiliensis Bowel_movement >3_WK 2.458752317 0.578402351 497 238 2.68522E-05 0.011171922 
Blautia_wexlerae Bowel_movement 1.5_WK -1.693903398 0.397980557 497 496 2.62513E-05 0.011171922 
GGB9620_SGB15068 Bowel_movement 1.5_WK 3.023575584 0.717451007 497 81 3.13674E-05 0.012397981 
Akkermansia_muciniphila Bowel_movement >3_WK 2.950949946 0.713162815 497 311 4.32493E-05 0.014394309 
GGB45491_SGB63163 Bowel_movement >3_WK 1.363174811 0.329640632 497 74 4.37019E-05 0.014394309 
Cloacibacillus_evryensis Bowel_movement >3_WK 1.558437572 0.382232082 497 50 5.55977E-05 0.017580006 
Ruthenibacterium_lactatiformans Bowel_movement >2_Day -2.439258171 0.601446464 497 468 6.07444E-05 0.018468621 
GGB9694_SGB15203 Bowel_movement 1.5_WK 3.557723051 0.892079508 497 174 7.99665E-05 0.02082335 
GGB9342_SGB14306 Bowel_movement >3_WK 2.663542387 0.673283231 497 289 9.09998E-05 0.021157445 
GGB9524_SGB14924 Bowel_movement >3_WK 2.072198382 0.532808072 497 240 0.000118805 0.025382574 
GGB9614_SGB15049 Bowel_movement 1.5_WK -3.810633114 0.989177801 497 336 0.000137411 0.027852225 
Dielma_fastidiosa Bowel_movement >3_WK 1.231343136 0.332201125 497 65 0.000241448 0.042414368 
GGB3892_SGB5290 Bowel_movement 1.5_WK 1.806174996 0.494634234 497 60 0.000297405 0.047019757 
Ruminococcaceae_unclassified_SGB15309 Gender m 1.716202241 0.395537634 497 62 1.83998E-05 0.010389312 
GGB9635_SGB15103 Gender m 1.971739989 0.474725854 497 114 4.05239E-05 0.014394309 
GGB3118_SGB4130 Gender m 1.068404698 0.264371917 497 66 6.44217E-05 0.018861244 
Allisonella_histaminiformans Gender m 1.78797674 0.446103879 497 124 7.37844E-05 0.020112606 
Prevotella_copri_clade_C Gender m 2.107496662 0.531526648 497 69 8.77882E-05 0.021029258 
Parabacteroides_merdae Season_Year Spring -4.219562239 0.981460453 497 420 2.18338E-05 0.01078727 
Faecalibacillus_intestinalis Season_Year Autumn -1.603682447 0.43050418 497 392 0.000224988 0.041361184 
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The remaining significant correlations were observed with season of the year (two species and 
reduced isoprene biosynthesis) and gender (five species and seven pathways) (Table 22) (ANNEX 8). 

5.4.4.1.2 Gut microbial associations and functions with diet related variables 
Some of the strongest microbial associations with diet were obtained with uncultured or unidentified 

taxa (ANNEX 9). Among the DQIs, the aMED and hPDI adjusted significantly correlated with 14 out of 27 
species, including negative correlations with F. plautii (hPDI, rho= -0.17, q= 0.042; aMED, rho= -0.19, q= 
0.013) or R. torques (hPDI, rho= -0.18, q= 0.023; aMED, rho= -0.23, q= 0.003; PDI, rho= -0.21, q= 0.006) 
and positive with A. muciniphila (aMED, rho= 0.17, q= 0.041), H. parainfluenzae (aMED, rho= 0.17, q= 
0.034) , Intestinimonas gabonensis (hPDI, rho= 0.19, q= 0.011) and Clostridium saccharogumia (aMED, 
rho= 0.17 , q= 0.042; hPDI, rho= 0.19 , q= 0.016). This highlights the impact of diet diversity and quality 
on gut microbiota responsiveness. Other indices, including HEI_2015, IASE, MAR, MDI, PDI and uPDI also 
influenced the human microbiome, although to a lesser extend. Interestigly, white bread food group 
presented the highest number of associations (6 out 34), all negative, including Clostridium 
saccharogumia (rho= -0.20, q= 0.02 and two unclassified Clostridium species (sp AF20 17LB and sp AF36 
4). Fruits and fruit products showed the second highest number of correlations (5 out of 34), all positive 
like Lachnospira eligens (rho= 0.19, q= 0.025). The strongest food group-microbe association was found 
between yogurt and Streptococcus thermophilus (rho= 0.32, q= 0.00137) (Figure 22, ANNEX 9).  

When analyzing food items at a broader level, two distinct clusters emerged, representing foods that 
correlated in opposite directions. Cluster one included items such as white bread, refined grains, 
pastries, soft drinks and processed food (Items 18, 22, 44, 51 and 58), while cluster two consisted of raw 
and cooked leafy vegetables, carrot, fresh fruit, dried fruit, nuts and seeds, blue fish and dark chocolate 
(Items 1, 2, 6, 14, 16, 17, 36 and 45). Less healthy food choices presented negative correlations with 
some Clostridium sp. (example C. saccharogumia, Clostridium sp AF20 17LB) as well as Intestinimonas 
gabonensis, Bacteroides cellullosilyticus, Mediterranibacter butyricigenes and unidentified GGBs.  In 
contrast, healthier food choices correlated negatively with species such as F. plautii, R. torques, R. 
gnavus and positive associations with Roserburia hominis and L. eligens (Figure 23, ANNEX 9).  
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Figure 22. Single Spearman correlations adjusted by BH method between microbial species, DQIs (A) and Food groups (B). Symbols inside the color squares denote significant 
associations (FDR < 0.05) (n= 500 baseline).  
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Figure 23. Single Spearman correlations adjusted by BH method between microbial species and food items (n= 500 baseline). Symbols inside the color squares denote significant associations 
(FDR < 0.05).  Item1: Raw leafy vegetables; Item2: Boiled leafy vegetables; Item6: Carrot, pumpkin and beet ;Item8: Crucifers; Item10: Corn and fresh legumes; Item13: Cooked lentils, cooked 
kidney beans (pinto, white or black), and cooked chickpeas; Item14: Fresh fruit ;  Item16: Dehydrated fruit; Item17: Nuts and seeds; Item18: White bread; Item19: Whole wheat bread ; Item20: 
Breakfast cereal ;  Item22: Refined cooked cereal and pasta; Item24: Whole-milk ; Item29: Low-fat cheese ; Item30: Fermented dairy; Item33: Red meat ; Item34: Lean meat ;  Item36: Bluefish; 
Item39: Mollusk and crustacean; Item40: Olive oil ; Item42: Other oils such as those from corn, rapeseed, and grape seed; Item44: Pastries; Item45: Dark chocolate (> 50% cocoa) and cocoa 
powder; Item50: Coffee (with and without caffeine); Item51: Soft drinks; Item57: Fried potato, nacho, salted tortilla chips, snacks, salted pretzels, potato ring crisps, twiglets, and crackers; 
Item58: Processed food. 
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Surprisingly, Item 42, which includes “Other oils such as those from corn, rapeseed, and grape seed” 
exhibited the highest number of associations and some of the strongest, alongside with Item 50, which 
included coffee with and without caffeine. Specifically, oils correlated with 25 bacterial species while 
coffee was found associated with ten bacterial species including Clostridium phoceensis (rho= 0.42, q= 
0) and Massilioclostridium coli (rho= 0.36, q= 0). More associations are available in  Figure 23 and ANNEX 
9.  

At the nutrient level, two different clusters were identified. Negative correlations were found 
between diverse macro- and micronutrients and R. torques. Conversely, a positive correlation was 
observed with H. parainfluenzae, Clostridium saccharogumia, Lachnospiraceae bacterium and some 
GGBs (Figure 24, ANNEX 9).  

Finally, to assess whether dietary factors influence the functional properties of gut microbiome, we 
conducted linear association analysis between microbial pathways and dietary data. Significant 
relationships were identified between the intake of fruits, vegetables and nuts/seeds, and fiber with the 
L-arginine biosynthesis II and sucrose biosynthesis II pathways (Table 23).  

Upon further analysis of the bacterial species that contributed the most to L-arginine biosynthesis, 
we identified an unclassified taxon, followed by F. prausnitzii, a strictly anaerobic bacteria known for 
producing SCFAs, R. torques, Roseburia faecis and Ruminococcus bromii (amylolitic key-stone specie) as 
the top contributors. 

 

Figure 24. Single Spearman correlations adjusted by BH method between microbial species and different micro and 
macronutrients quantified using the in-house sFFQ (n= 500 baseline). Symbols inside the color squares denote 
significant associations (FDR < 0.05). 



Results 

122 

Table 23. Significant Spearman correlations (FDR < 0.05) between dietary data and microbial composition.  

Var1 Var2 R p-value q-value 

Fibre_g ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.19713608 9.5417E-06 0.00161665 
Fibre_g ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) 0.1854827 3.1713E-05 0.00161665 
Fibre_g PWY-7238: sucrose biosynthesis II 0.18499161 3.3307E-05 0.00161665 
Fibre_g ASPASN-PWY: superpathway of L-aspartate and L-asparagine biosynthesis -0.15595741 0.00048401 0.00882174 
Fruits_and_Fruit_Products PWY66-399: gluconeogenesis III 0.1825066 4.2603E-05 0.00161665 
Fruits_and_Fruit_Products PWY-7238: sucrose biosynthesis II 0.18144171 4.7296E-05 0.00161665 
Fruits_and_Fruit_Products ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.17541306 8.4507E-05 0.0024442 
Fruits_and_Fruit_Products PWY0-1296: purine ribonucleosides degradation 0.16828378 0.00016384 0.00362369 
Fruits_and_Fruit_Products ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) 0.15514214 0.00051854 0.00883281 
Fruits_and_Fruit_Products PWY-7383: anaerobic energy metabolism (invertebrates, cytosol) 0.15187609 0.00068117 0.00987647 
Fruits_and_Fruit_Products PWY-7663: gondoate biosynthesis (anaerobic) -0.1571815 0.00043614 0.00863107 
Fruits_and_Fruit_Products ASPASN-PWY: superpathway of L-aspartate and L-asparagine biosynthesis -0.16966687 0.00014439 0.00361926 
Nuts_and_Seeds ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.18644805 2.8788E-05 0.00161665 
Nuts_and_Seeds PWY-7238: sucrose biosynthesis II 0.18197812 4.4874E-05 0.00161665 
Nuts_and_Seeds ARGSYN-PWY: L-arginine biosynthesis I (via L-ornithine) 0.17109894 0.00012654 0.0033986 
Nuts_and_Seeds GLYCOGENSYNTH-PWY: glycogen biosynthesis I (from ADP-D-Glucose) 0.15574712 0.0004927 0.00882174 
Nuts_and_Seeds PWY-7383: anaerobic energy metabolism (invertebrates, cytosol) 0.15465401 0.00054031 0.00883281 
Nuts_and_Seeds PWY66-399: gluconeogenesis III 0.15341569 0.00059937 0.00939019 
Nuts_and_Seeds PWY0-1586: peptidoglycan maturation (meso-diaminopimelate containing) -0.18402045 3.6684E-05 0.00161665 
Vegetables PWY0-1296: purine ribonucleosides degradation 0.14806063 0.00093049 0.01239487 
Vegetables ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.14248501 0.00144877 0.01602168 
Vegetables PWY-7238: sucrose biosynthesis II 0.12396581 0.00565133 0.04086347 
Item50 PWY-1269: CMP-3-deoxy-D-manno-octulosonate biosynthesis -0.13003411 0.00368482 0.03078871 
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F. prauznitzii, R. faecis, B. uniformis, and Blautia obeum emerged as major contributors of the sucrose 
biosynthesis pathway. Another noteworthy significant correlation was found between item 50 in our 
sFFQ (coffee) and the CMP-3-deoxy-D-manno-octulosonate biosynthesis pathway. As with previous 
correlations, the most prevalent species was unclassified followed by B. uniformis and Prevotella copri 
(Figure 25).  
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5.4.4.2 Fungal composition 
The five most prevalent fungal species in enriched samples (n= 100) were Saccharomyces cerevisiae 

(80 samples), Malassezia restricta (33 samples), Debaryomyces hansenii (25 samples), Penicillium 
roqueforti (21 samples) and Meira nashicola (21 samples).  

When examining relative abundance of these species (Figure 26) S. cerevisiae remained the most 
abundant, accounting for a mean of 50.06%, followed by Penicillium roqueforti (5.77%), Debaryomyces 
hanseii (4.23%), Geotrichum candidum (3.41%) and Rhamphospora nymphaeae (3.34%).  

Figure 25.Top bacterial species with the highest level of contribution in terms of abundance to three functional 
pathways (L-arginine biosynthesis II, sucrose biosynthesis II and CMP-3-deoxy-D-manno-octulosonate biosynthesis) 
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5.4.4.2.1 Interplay between fungal species, functions and personal traits 
Similar to our analysis of the bacterial microbiome, we assessed the effect of demographics and 

personal data on fungal microbiome using MaAsLin2 with "Bowel_movement", "Gender", "BMI", "Age", 
"Smoke", "Region_Areas", "Season_Year" as fixed effects. No significant associations were observed.  

5.4.4.2.2 Associations of fungal species and functions with diet related variables 
No significant associations were found between fungi and DQIs, food groups or food nutrients using 

the Spearman test. However, three food items significantly correlated with six fungal species. Skimmed 
milk (Item 26) showed positive correlation with four fungal species: Talaromyces amestolkiae (q= 
0.0448), Cyphellophora europea (q= 0.0448), Rhizopus delemar (q= 0.0448) and Brettanomyces sp. (q= 
0.0025). Confectionary (Item 46) was positively correlated with Aspergillus penicilloides (q= 0.0099), 
while red meat (Item32) exhibited the only negative correlation and the association with Botryosphaeria 
dothidea (q= 0.0007) (Figure 27).  

Figure 26. Fungal profiling. Distribution of mapped fungall reads per sample (n= 100 baseline) 
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 Fungal-bacterial interplay 
To investigate the interplay between bacteria and fungi, we used the Spearman correlation test. 

Candidatus Metaruminococcus caecorum presented the highest number of associations and the 
strongest positive correlation with Penicillium spp and Penicillium camemberti (q= 4.72e-07 and q= 
7.46e-05, respectively). At fungal level, Penicillium nalgiovense and Geotrichum candidum showed the 
larger number of positive associations with 12 and 11 bacterial species, respectively, followed by 
Penicillium nordicum with ten correlations. 

Additionally, few significant relatiosnhips involving pathobionts were observed, such as the 
association between Candida albicans with an unclassified Clostidria (q= 0.005). Extended data can be 
found in Figure 28 and ANNEX 10.

Figure 27. Correlations between fungal species and food items (n= 100 baseline). Analysis performed using the 
Spearman correlation test adjusted by BH method. Symbols inside the color squares denotes significant associations (FDR 
q< 0.05). Item 26: skimmed milk; item 32: red meat and item 46: confectionary. 
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5.5 Relationship between diet and IBD-type microbiome 
 

To investigate the relationship between diet and IBD-type dysbiosis, a well-known example of 
microbiome disruption in non-communicable diseases, we examined and compared our data with the 
microbiomes of 321 IBD patients, including 208 with CD and 113 with UC. Shotgun metagenomic dataset 
from previous projects was utilized for the analysis (269). We developed the IBD-similarity index, a 
metric that measures divergence from the microbiomes of our 500 healthy individuals from the 
microbiomes of IBD patients, to assess microbial community disturbance (see methods section for 
detailed details). Higher index values indicate greater similarity to microbial profiles associated with IBD. 

Figure 28. Correlations between bacterial and fungal species (n= 100 baseline). The analysis was performed using the 
Spearman correlation test, corrected by BH. Symbols inside the color squares denote significant associations (FDR, q< 
0.05). Results were filtered by r > 0.4 and r < -0.4. 
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Figure 29. IBD similarity index and population characteristics. A). Weighted (W.) and unweighted (Unw.) UniFrac 
distances of our cohort of healthy individuals (n= 500 baseline) colored by IBD-similarity score. IBD-similarity score was 
calculated as 1- median of a healthy sample to all samples in IBD plane (n= 208 CD and 113 UC) and can be a measure of 
how microbiome from a healthy individual resembles to the dysbiotic microbiome of IBD patients, which is widely 
accepted as an example of Non-communicable disease. B) Spearman correlation considering IBD similarity index and two 
different measures of α- diversity (Chao and Shannon). C) Integrated heatmap representing food groups, items, DQIs and 
personal traits that significantly impact the IBD similarity index. The more positive the IBD similarity value, the greater 
the resemblance to the IBD microbiome. Symbols inside the color squares denote significant associations (FDR < 0.05). 
Item 2: Cooked leafy vegetables; Item 3: Tomato; Item 17: Nuts and seeds; Item 51: Soft drinks). 

 

Using this method, healthy individuals from POP cohort were successfully stratified based on their 
degree of similarity to the IBD microbiome, explaining up to 36.3 % and 16.9% of the variance in the first 
principal component when using weighted and unweighted UniFrac distances, respectively (Figure 29A).  

Spearman correlation analysis revealed that high α-diversity was correlated with low similarity to IBD 
microbiome profiles (Figure 29B). Furthermore, lower disruption of the microbiome was correlated with 
higher intake of healty food choices such as vegetables, nuts and seeds or fruits. Conversely, 
consumption of soft drinks (Item 51) was linked to greater microbiome disruption (Figure 29C). 
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Among the dietary quality indices, only the HEI-2015 demonstrated a meaningful connection. Age 
and BMI showed conflicting relationships, with higher BMI associated with more IBD-type disturbance 
while age was negatively correlated.  

Correlation analysis between specific bacterial species, α- diversity, and the IBD-similarity index 
revealed that F. plautii and R. gnavus exhibited the strongest positive correlations with microbiome 
alterations. In contrast, the strongest negative correlations were found with unidentified Clostridia and 
Bacilli species, as well as Methanobrevibacter smithii. Interestingly, all species positively correlated with 
the IBD-similarity index were inversely associated with α-diversity metrics, and vice versa (Figure 30). 
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Figure 30. Significant Spearman correlation of bacterial species with IBD-similarity index (weighted and unweighted) 
and different α- diversity measures (Chao1 and Shannon). Symbols inside the color squares denote significant 
associations (FDR < 0.05) (n= 500 baseline). 
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5.6 Using microbiome as predictor of dietary intake 
 

Using available dietary data and applying the random forest machine learning method to microbiome 
features, we demonstrated a strong connection between the composition of the bacterial microbiome 
and a variety of food items. These food items included dark chocolate (rho= 0.18, AUC= 0.66), 
vegetables (rho= 0.19, AUC= 0.67), fruits (rho= 0.19, AUC= 0.66), coffee (rho= 0.41, AUC= 0.82), nuts 
and seeds (rho= 0.25, AUC= 0.76), and fermented dairy (rho= 0.18, AUC= 0.74). The analysis utilizing 
food groups supported the findings with nuts and seeds (rho= 0.24, AUC= 0.75), fruits (rho= 0.20, AUC= 
0.68), milk and dairy (rho= 0.20, AUC= 0.65), vegetables (rho= 0.19, AUC=0.67), yogurt (rho= 0.17, AUC= 
0.73), and chocolates (rho= 0.16, AUC= 0.66) (Figure 31). However, diet prediction using fungal data was 
not as accurate as bacteria. While some AUC values exceed 0.7, Spearman rho correlations were 
generally weak, with most values around 0.1 (ANNEX 11). Notably, the microbiome showed acceptable 
prediction accuracy for two DQIs, hPDI_Adj (rho= 0.30, AUC= 0.710) and aMED (rho= 0.32, AUC= 0.73) 
(Figure 31). 
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Figure 31. Prediction using machine learning technique (n= 500 baseline). Prediction of different food items (A), 
food groups (B), nutrients (C) and DQIs (D) using bacterial species-level genome bin (SGB)-level features information 
estimated by MetaPhlAn4. Y-axis and X-axis represent median Spearman's correlation and median receiver operating 
characteristic area under the curve (ROCAUC) from the random forest regressor and random forest classifier, 
respectively. 

 

5.7 Website as contributory citizen science project 
 

To raise awareness about the importance of the microbiome and promote a healthy lifestyle, we 
created the project website (https://manichanh.vhir.org/POP/en/) titled “POP Study: dietary habits and 
gut microbiome of the Spanish Population”. The homepage is divided into two main sections: “Study 
Results” and “Your Personal Results”. The website is available in three different languages including 
Spanish, Catalan and English; a French version is planned for the future to facilitate comparisons among 
French and Spanish dietary patterns. 
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 Study results 
The “Study results” section is publicly accessible and consists of four distinct parts. The first section 
provides an explanation of what microbiome is and why it is important. The second part briefly explores 
the relationship between the microbiome and diet and highlights its implications on health.  The third 
section describes the POP Study, its objectives, and its design. Finally, a bibliography is provided to those 
interested in further learning (Figure 32).  

 Your personal results 
 In “Your Personal Results” section, participants who donated stool samples and/or completed the 

sFFQ were able to access to their own results, if available. This section of the website is divided into two 
subsections: “Diet” and “Microbiome”. In the “Diet” subsection, participants can: 1. Check their own 
daily intake of 19 micronutrients and four macronutrients over time sFFQ_0, sFFQ_1 and sFFQ_2), and 
compare them with the recommended values for the Spanish population; 2. Visualize their consumption 
of the 24 food groups included in the sFFQ at different timepoints and compare it with the median 
consumption of all participants; 3. View their scores for various DQIs and see how results compare to 
the median scores in POP cohort (Figure 33A, B, C). To enhance clarity, a brief explanation accompanies 
each result to help participants comprehend their data.   

On the other side, in “Microbiome” subsection, participants can access the information from shotgun 
sequencing data, if available. Specifically, 1. Bacterial composition from kingdom to species level of the 
most abundant species characterized in the stool sample at baseline; 2. Chao1 and Shannon measures 
of α-diversity and the population median (Figure 33D, E); 3. The fungal composition from the kingdom 
to the species level, if fungal enrichment protocol was performed for this participant. The personal 
information can be freely downloaded in a PDF format.  It is important to highlight that microbiome 
results were provided just for knowledge and that any clinical interpretation for participants was not 
given. 

Figure 32. Screenshots of the “Study results” section of the website in English version. 
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Finally, out of the 1,017 participants, 1,016 expressed an interest in receiving their dietary and 
microbiome information upon the completion of the study. As of April 22nd, 823 individual participants 
have accessed their results. Of these, 418 have downloaded the report in PDF format. 

Figure 33. Example of the results presented to the participants in the study website. A) Estimated nutrient intake relative 
to the recommended guidelines by the Scientific Committee of the Spanish Agency for Food Safety and Nutrition (AESAN) 
and estimated energy intake from fats and carbohydrates compared to the recommended range. This graph can be 
viewed for any of the timepoints for which a participant has answered a sFFQ. B) Daily intake of each food group 
compared to the population median. This graph can be viewed for any of the timepoints for which a participant has 
answered a sFFQ. C) DQIs at each time point compared to the population median. Participants can access these results 
for aMED, HEI, hPDI and uPDI scores. D) Alpha diversity metrics for the participant’s sample compared to the population 
median. E) Gut microbiome composition for the participant’s sample, grouped at the desired taxonomic rank. 
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5.8 A step further: let’s isolate viable bacteria 

 Collection of healthy human gut samples (non-targeted culturomics) 
As a preliminary step, we assessed the efficiency of single-cell droplet approach by calculating the 

proportion of droplets that resulted in colony formation or detectable growth. The average growth yield 
per plate was 4.75% ± 2.13 (n= 2), values ranging from 2.69% to 8.01%, depending on the media and 
sample type and donor sample. 

For healthy individuals (ANNEX 12), a total of 261 pure isolates were obtained across both media 
types (GAM and Y-LYHBHI.4 supplemented with RF) and under both liquid and solid culture conditions. 
Among these, 91.37% of isolates were successfully identified to the species or genus level using the 
updated MALDI-TOF database. The remaining 8.63% required further identification by 16S rRNA 
sequencing (Figure 35). 

Across all processed human fecal samples, 27 distinct bacterial species, primarily obligate anaerobes, 
were isolated (excluding those pending 16S-based identification). Donor 1 yiealded a higher number of 
isolates than Donor 2. (Figure 34, Figure 35, ANNEX 13).  

These isolates spanned over four phyla, predominantly Bacteroidota (55%) and Bacillota (22%), and 
12 families. The most abundant families were Bacteroidaceae (33%) and Bifidobacteriaceae (19%). All 
species isolated had previously been cultured; no novel taxa were recovered.  

 

Figure 34. Number and species name of pure isolates obtained from each of the healthy donors as well as the 
combined number using non-targeted culturomics techique. Numbers in cycles indicate the number of different 
species obtained using GAM and Y-LHBHI.4 media or both. 
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 Of the 27 bacterial species identified, 21 (78%) were exclusively isolated using GAM medium, while 
only two (7%) were uniquely recovered using Y-LHBHI.4 + RF. Additionally, Bifidobacterium adolescentis, 
Bifidobacterium longum, Enterococcus faecalis, and Enterococcus faecium were able to grow in both 
media types. A comparison between cultured isolates and metagenomic shotgun sequencing results is 
currently ongoing and was therefore not included in this thesis (Figure 34). 

 

Figure 35. Number of isolated colonies per donor that were identified using MALDI-ToF updated database vs non-
identified colonies subjected to 16S sequencing (A). Oxygen tolerance of identified bacterial species grouped by donor 
(B). Number of unique and shared bacterial species divided by donor (C). 
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 IBD-related species (targeted culturomics) 
For E. coli, a total of 343 colonies were obtained from CD patients (n= 2) using traditional culture 

methods in LB and McConkey media. From them, 40 colonies were selected for obtaining pure isolates 
and further subjected to species identification (Figure 36). 97.5% of these isolates were identified as “E. 
coli” when using the updated version of the MALDI-Biotyper database. Hence, just one required further 
16S identification. E. coli concentration of IBD patients corresponded to 2,03e+05 and 1,40e+05 CFU/g 
of feces respectively. Comparison of isolated vs shotgun sequencing results was not possible since is still 
undergoing. On the contrary, no growth was obtained when targeting F. prausnitzii using the selected 
healthy donor (n= 1). 

 

Figure 36. E.coli colonies from CD patients isolated using McConkey and LB, Miller agar plate
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6.1 The POP Study: A relevant contribution to characterize the association 
between diet and microbiome 

 

This study provides new insight into how personal traits and lifestyle factors, including diet and DQIs, 
can shape the human gut microbiome. It underscores the importance of adhering to both national and 
international guidelines to support a healthy lifestyle and, consequently, a healthier microbiome. 

To explore these relationships, we conducted a longitudinal study involving 1,017 intestinally healthy 
volunteers from different regions of Spain. Participants provided stool samples and completed dietary 
questionnaires at baseline, six and twelve months. To our knowledge, this is one of the largest studies 
in Spain investigating diet and microbiome using shotgun metagenomic sequences, enabling analysis at 
the functional and species levels. 

Previous research, such as the study of Latorre-Pérez et al. with 530 volunteers, used 16S rRNA 
sequencing, which lacked resolution at the species level and omitted functional data analysis (99). 

Due to its Mediterranean location, Spain has traditionally followed the MedDiet, characterized by 
high intake of fruits, legumes, whole grains, vegetables, and nuts, as along with healthy fats from olive 
oil, frequent consumption of fish, moderate dairy products and fermented beverages, and low intake of 
red or processed meats (274).  

However, adherence to the MedDiet has declined over time in Spain, with a gradual shift towards 
more WD patterns (275–277). In our cohort, MedDiet adherence was assessed using the aMED index, 
yielding a median value of 4.0 out of 9.0, confirming a significant divergence from traditional 
Mediterranean dietary habits. 

Some prospective studies have demonstrated potential causal links between specific dietary 
components and non-communicable diseases (278–280). More precisely, the 2017 GBD Study 
emphasized the impact of 15 dietary risk factors across 195 countries, estimating their contribution to  
global mortality and morbidity (190). 

In our Spanish cohort, only three out of twelve GBD dietary targets were met: vegetables (321.48 
g/day), fruits (225.6 g/day) and fiber (27.32 g/day). Notably, vegetables and fruits were the two most 
consumed food groups (25-28% and 18-19% of daily intake, respectively) in our population. However, 
while vegetable consumption approached Spanish recommendations (300 g/day), fruit intake fell short 
of the 400 g/day target (281).  

At the microbiome level, vegetables, especially raw and boiled leafy greens, were associated with 
increase α-diversity, in line with previous large cohort studies (28,205). 

Similarly, fruits showed positive associations with Shannon α-diversity and was linked to an increased 
abundance of Lachnospira eligens, a butyrate-producing capable of fermenting plant pectin and 
stimulaing anti-inflammatory IL-10 production (282–284). This species has been related with lower 
weight and waist circumference (285), higher DQIs (286) and decreased abundance in several disease 
states (287–289).  
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Non-alcoholic beverages, particularly coffee, ranked third in median intake (202.03 g/day). Coffee  
contains polyphenols and alkaloids such as caffeine (290) that may significantly impact human gut 
microbiome. It was associated with ten bacterial species, most notably L. asaccharolyticus (formerly 
Clostridium phoceensis), and had one of the highest prediction values for dietary intake. This confirms 
earlier findings by Asnicar et al., and Manghi et al., (188,205). Additionally, L. asaccharolyticus has been 
linked with 12 coffee biomarkers including quinic acid, a major polyphenol metabolite derived from 
chlorogenic acid (291,292). Machine learning analysis identified coffee (caffeinated and decaffeinated) 
as the most predictive dietary item for microbiome composition, with an AUC > 0.8, validating further 
the findings by Manghi et al. However, the effect of coffee on the microbiome and overall health remain 
unclear due to mixed findings in the literature (112,186,206–208,293). 

Comparison with previous Spanish studies such as ANIBES and ENALIA2 reveals similar dominant 
food group but with different rankings. For instance, non-alcoholic beverages were the top food group 
in both studies, followed by milk and dairy, vegetables, and fruits (287, 307). This shift may indicate a 
growing awareness of healthy eating, although full restoration of the traditional MedDiet remains a 
challenge. On the other side, the decline in dairy intake may be partly due to the rising popularity of 
plant-based beverages, now included in the “non-alcoholic beverages” category, which were less 
prevalent when the ANIBES and ENALIA2 studies were conducted (2013-2015).  

Using individuals sFFQ items instead of broader food groups, distinct clustering patterns emerged. 
One cluster, associated with healthier dietary habits, included raw leafy vegetables, fresh fruit, nuts and 
seeds.  

Nuts and seed were associated with increased α-diversity and presence of Roserburia hominis, 
consistent with previous findings (226,295) possibly due to their high content of fiber and polyphenols. 
Parallely, their intake correlated negatively with F. plautii, a  flavonoid-degrading species linked to poor 
dietary quality, lower DQIs  (99,140) and various disease outcomes such as colorectal cancer, IBD, 
depression and bipolar disorder. Although the underlying mechanisms remain unclear and further 
research is needed, it has been suggested that F. plautii reduce the availability of beneficial dietary 
flavonoids (197, 306–308).  

Machine learning models identified nuts and seeds as the second most predictable dietary variable 
based on microbiome data (AUC= 0.76), Similarly, dark chocolate (> 70% cacao), rich in polyphenols, was 
associated with higher microbial diversity, species level associations were limited due to taxonomy 
uncertainty. Its effect on health has been extensively discussed suggesting dark chocolate intake as an 
effective way of reducing appetite, plasma tryglicerol levels and improving mood (237–239,254). 

In contrast, a second cluster composed of less healthy, Western-style foods (confectionery, white 
bread and grains, sunflower oil, pastries, soft drinks, and processed foods) was associated with 
decreased bacterial α-diversity and negative shifts in microbiome composition. These dietary patterns 
have been linked in animal models to increased inflammation and risk of chronic diseases such as CKD 
and bone disorders (299–302). 

White grain consumption was negatively correlated with Mediterraneibacter butyricigenes, a novel 
butyrate producer (303), while soft drinks positively correlated with F. plautii, reinforcing its association 
with poor adherence to the MedDiet and IBD-type microbiome alteration (99,188).   
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Most participants met the dietary reference intakes for macro- and micronutrients, except for CHO, 
calcium, vitamin D and iodine. In case of fiber, just half of the population met the recommended values. 
These results are in line with previous studies (98,268,304) although iodine in our data may be 
underestimated due to the no accounted use of iodized salt in cooking process. 

Fibers play a crucial role in microbiome modulation, serving as a substrate for colonic bacteria (212). 
While median fiber intake met GBD targets (27.32 g/day), only 53-58% of the participants achieved this 
level. Suboptimal intake was associated with a decrease in α-diversity and an enrichment in R. torques, 
a mucin degrading bacterium that can compromise the gut barrier, facilitating pathogen invasion and 
contributing to conditions like IBD (305–308). Increase fiber intake in Spain should remain a public health 
priority, especially given its established role in reducing disease risk. 

Vitamin D, primarily obtained through sun exposure, is paradoxically low in Spain despite ample 
sunlight. Vitamin D deficiency rises concern, since it is estimated that one third of the population could 
be at risk of its deficiency (309). Dietary sources include oily fish such as salmon and some fortified 
products such as margarine or milk (310). Vitamin D has been implicated in maintaining gut barrier 
integrity, preventing pathogen invasion (114,310,311). In our cohort, unknown Lachnospiraceae showed 
a strong positive correlation with vitamin D intake, consistent with prior findings from a year-long 
randomized control trial (312). Moreover, higher vitamin D intake has been associated with lower 
depression risk in large studies (313).  

General used of dietary supplements, seems to have raised drastically during last years. In 2017, the 
AECOSAN reported 13.3% of general population as habitual consumers of vitamins and mineral 
supplements (262). Nevertherless, COVID-19 lockdown significally increased this proportion up to 21.3% 
(314) which seems to be gradually rising even nowadays. This fact raise concern mainly due to lack of 
scientific evidence regarding effectiveness of some products, despite there is a generalized idea of their 
good effect on health beyond their use in treating deficiencies or concrete health conditions (315) 

Functional analysis identified positive associations between the L-arginine biosynthesis II and sucrose 
biosynthesis II pathways and the consumption of fruits, nuts and seeds, and fiber. L-arginine, a precursor 
for nitric oxide, homoarginine and agmatine synthesis, plays multiple physiological roles (316).  
Agmatine, in particular, is produced and released by colonic bacteria and may inhibit colonocyte 
proliferation and promote microbial diversity (317–320).  

The main bacterial contributors to this pathway, were one unclassified taxon and F. prausnitzii, a key 
butyrate producer that support intestinal homeostasis, suppress inflammation, and is depleted in 
various diseases including IBD, IBS, type 2 diabetes, and cancer (321–327). Butyrate helps keeping the 
anaerobic environment in the colon by enhancing colonocyte oxygen consumption and stabilizing 
hypoxia-inducible factor, while its absence facilitates the buildup of potentially harmful bacteria and 
molecules, such as Salmonella, E. coli, and nitric oxide (NO), respectively (328). 

F. prausnitzii was also identified as the second most dominant species involved in sucrose 
biosynthesis.  Enhancement of this pathway could imply an increase in SCFAs production, although the 
underlying mechanisms remain unclear (329).   
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Another noteworthy correlation was found between item 50 of our sFFQ (coffee) and CMP-3-deoxy-
D-manno-octulosonate biosynthesis pathway.  The acidic sugar 3-deoxy-α-D-manno-2-octulosonate 
(CMP-KDO for ketodeoxyoctonate) is a key component of bacterial lipopolysaccharides (LPS). LPS are 
the primary constituents of the outer membrane of gram-negative bacteria, essential for maintaining 
the structural integrity and cell viability (330). As the previous cases, the most prevalent species 
remained undetermined, followed by B. uniformis, which has been associated with improved metabolic 
disfunction in murine models  (331–334) and UC (335).  

DQIs are commonly used to summarize diet quality and facilitate cross-country dietary comparison 
(98,174,177,178,182,188,336). Indices reflecting healthier diets (HEI-2015, hPDI and aMED) correlated 
positively with Shannon diversity, whereas uPDI_adj, which emphasizes unhealthy plant-based sources 
like refined grains, desserts and sugary drinks, showed a negative correlation.  

Among the eight DQIs calculated, hPDI_Adj and aMED presented the highest number of bacterial 
correlations (14 out of 27 species) and provided the greatest predictive power using microbiome data. 
Observational and interventional studies have highlighted the benefits of a MedDiet in reducing CVD 
risk (180,337,338), improving frailty in the elderly (339) and enhancing the production of SCFAs (198). 
Similarly, hPDI reflects the consumption of healthy plant-based foods, while reducing animal protein 
intake, partially overlapping with MedDiet principles. Higher adherence to plant-based diets has been 
inversely associated with metabolic syndrome (177,178,182). Despite minor differences, both DQIs 
displayed the strongest negative correlations with R. torques and F. plautii and positive correlation with 
H. parainfluenzae or Clostridium saccharogumia, suggesting their potential as microbial indicators of a 
healthy diet. These species also showed the same tendency with typical elements of the MedDiet, 
including fiber, nuts, and vitamin C.  

Importantly, microbiome profiling enables the stratification of healthy individuals based on their 
similarity to an IBD-associated dysbiotic profile. Consistent with previous findings, typical MedDiet food 
groups not only increased α-diversity but also appeared protective against an IBD-like microbiota, 
potentially by reducing “detrimental” species such as F. plautii and R. gnavus. However, further research 
is required to develop a comprehensive “disease score” that incorporates additional non-communicable 
diseases and integrates lifestyle, diet, and microbiome diversity (340,341). 

 

6.2 Fungi microbiome and dietary patterns 
 

Fungal microbiome populations represent a minor cell fraction of the microbiota. For example, the 
fungal-to-bacterial cell ratio in stool samples ranges between 10-9 and 10-4 (93). While fungal 
communities have traditionally been studied via ITS amplicon region, the high variability in gene copy 
number across species and also strains, renders it suboptimal for accurate profiling (342,343). Fungal 
genes comprises less than 0.08% of the total gut metagenome, making sequencing costly and technically 
challenging (94,344). To partially address this limitation, we employed a cost-effective enrichment 
protocol that successfully increased the fungal representation in shotgun sequencing and was coupled 
with our optimized FunOmic pipeline (93,94). 
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This approach succeeded in identifiying the most prevalent fungal species Saccharomyces cerevisiae 
(84.2%) and Malassezia restricta (34.37%), described as part of the core mycobiome previously (15,210). 
However, the time-intensive nature of this procedure may limit its application in large-scale population 
studies, requiering further optimization. 

Unlike bacteria, fungal diversity showed few correlations with dietary variables, the directionality 
mirrored bacterial trends. Few studies have explored diet-fungi relationship, making cross-study 
comparisons difficult. Shuai et al., reported higher fungal diversity associated with fruit intake (210) 
while Sun et al., reported that vegetables and meat influence the gut mycobiome, albeit without 
specifying the direction of the effect (3). These findings suggest that healthy dietary patterns may also 
positively influence the fungal communities. 

At the species level, Aspergillus penicilloides positively correlated with confectionary, foods rich in 
sugars such as candies and nougat. More broadly, Aspergillus species have been linked to total sugars 
and CHO intake and negatively correlated with SCFA levels (345,346).  

Botryosphaeria dothidea presented the strongest negative association with red meat as a common 
opportunistic plant pathogen, its presence may indicate a higher intake of plant-based foods relative to 
animal products (347). 

Finally, we hypothesized that the limited number of observed associations is partly due to the small 
sample size of enriched samples (n= 100), coupled with the patchy distribution of fungal species across 
them. Therefore, these results should be interpreted with caution.  

 

6.3 Influence of personal traits on the Microbiome 
  

In addition to diet, other personal characteristics significantly impact the human gut microbiome. 
Aging was associated with higher consumption of traditionally healthy food such as nuts and seeds, 
whole grains, fruits and fruit products. These findings were supported by two DQIs -IASE and hPDI_Adj 
-suggesting a diet richer in plant-based foods and lower in animal products. This aligns with two previous 
Spanish studies (ANIBES and Latorre-Pérez et al.)(99,294), that found increased vegetables, fruits, and 
oils intake among older individuals. Furthermore, an age-dependent increase in alpha diversity was also 
observed, consistent with findings from Finland, Japan, and the UK (90,188,209). However, aging does 
not always correlate with better diet or microbiome diversity. Claesson et al., (91), compared individuals 
residing in long-term care facilities with community-dwelling volunteers and observed a clear clustering 
of microbiome profiles based on residence type. Vegetables, fruits, and meat consumption emerged as 
the most discriminant dietary factors. Notably, a reduction in microbial diversity among long-term care 
residents was associated with increased frailty measures, underscoring the critical role of diet in 
promoting healthy aging.  

Aging was also linked to an increase in A. muchiniphila, known to improve glucose metabolism and 
metabolic health (131,151,197) though its levels are reduced in CD patients (153). Despite healthier 
diets, older individuals still exhibited lower levels of Dysosmobacter welbionis, potential due to age itself. 
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Dysosmobacter welbionis, a newly described butyrate producer, may offer protection against obesity 
(348).  

Dietary patterns also varied by gender, with women showing better DQIs (349,350), although 
microbial diversity (α and β), remained largely similar between genders, with only modest compositional 
variations (Table 22). At the taxonomic level, Prevotella and Veilloneallaceae, were found more 
abundant in men (100,101), possibly due to hormonal influences (102,104,105). 

Transit time, estimated via stool frequency, support previous reports showing a positive association 
between longer transit time and α-diversity (140,142,143), possibly because it allows greater bacterial 
access to substrates, promoting microbial growth and diversity (140,144). Lower stool frequency (1.5 
times per week) have been previously associated with increased risk of mortality (145–147) and 
decrease in Blautia wexlerae, who may play an important role against obesity and food addiction 
(176,351). Contrary, regular transit times (once per day or >3 times per week) promoted beneficial 
microorganisms like A. muchiniphila (140,151). 

Smoking, a well-known health risk factor diseases (352–355), correlated with reduced α-diversity, 
poorer dietary quality (136,356), and increased alcohol consumption (357,358). Higher BMI, was 
associated with lower DQIs, greater consumption of bread and ready-to-eat meals, decreased bacterial 
richness and evenness (98), and higher prevalence of R. torques, previously linked to obesity 
(98,115,188). 

Finally, regional dietary habits within Spain also influenced food choices. Partially in line with 
previous research claiming variations in adherence to MedDiet among Mediterranean countries (359), 
we demonstrated regional differences in diet and dietary patterns after classifying Spain into four 
regions. Specifically, the Interior region adhered more closely to the MedDiet, particularly through 
higher legume intake. Legumes are nutrient-dense and confer multiple health benefits. However, these 
regional dietary differences did not translate into significant microbiome variations.  

 

6.4 Contributory citizens science project 
 

Interest in diet-microbiome research is rapidly increasing. Yet, findings are often inaccessible to 
participants due to technical jargon and high costs. For instance, participants in the the AGP (260). 
Project ashad to pay around $150-200, potentially biasing samples toward wealthier, more educated 
populations. 

The POP Study incorporated citizen science through four strategies: 

First, we provided accessible explanations of microbiome science and the study’s aims to inform 
participants. 

Second, all participants received a personalized dietary report, comparing their intake to national 
recommendations and the other participants.  Some also received simplified microbiome data with 
explanations, accessible via web portal or PDF format. 
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Third, we commited to disseminating results via open access publication (see ANNEX 14) and a free 
seminar to Promote public engagement and dialogue. 

Fourth, Participation incurred no cost, enabling broader inclusion across socioeconomic 
backgrounds. 

 

6.5 Culturomics 
 

Non-targeted culturomics, aimed at isolating the highest number of microorganisms, has been 
proposed as an effective approach for obtaining viable bacterial species from human gut samples, an 
essential step for advancing studies on bacteria-host interactions (54,60,360,361).  

In non-targeted culturomics, commercially available media are often favored due to greater 
reproducibility, standardization, broad applicability, and reduced preparation time and risk of 
contamination (362–364). Among these, GAM and BHI are commonly used for culturing anaerobic 
bacterial and have yielded promising results (58,60,363,365,366). In our pilot study, we selected these 
two media to cultivate and isolate bacteria from two frozen samples. GAM outperformed supplemented 
BHI, also know as L-YHBHI.4 + RF, yelding 25 (21 unique to GAM and 4 shared) out of the 27 total isolated 
species and achieving higher growth output (5.55% GAM vs. 3.55% L-YHBHI.4 + RF). A previous study by 
Tao et al. also found that GAM supported higher bacterial density than BHI when comparing multiple 
media for ex vivo culture of gut samples (367). Conversely, Ito et al. observed similar performance 
between the two media (362). However, due to the limited number of comparative studies between 
GAM and BHI, definitive conclusions remain elusive. 

The number of different bacterial species isolated in the pilot study was slightly lower than 
those reported in earlier culturomics studies (58,60,363,364). This discrepancy may be attributable to 
the sample collection method. Whereas most prior studies used fresh simples 
(55,58,60,360,363,364,368) we employed frozen aliquots, which may negatively affect cell viability and 
diversity (369,370). Despite fresh samples being more optimal, they are logistically challenging to collect, 
especially for large-scale studies. 

Nevertheless, our pilot study successfully isolated 27 different bacterial species, including 
several of notable relevance to health and disease. For instance, B. animalis, B. adolescentis, and B. 
longum have been suggested to be involved in SCFAs production, immune system modulation, and 
improved digestion (371,372). Their depletion have been proposed as biomarker for condition diseases 
such as IBD (308,373).  

Another species of interest, Bacteroides uniformis, another butyrate producer, have been linked 
to positive outcomes in stroke recovery (206), improved metabolic function in mouse models (331–333) 
and proposed to have a potential therapeutic effect in UC (335). In contrary, C. aerofaciens have shown 
to decrease following Mediterranean diet intervention (339) and may play a role in obesity (374) and 
liver disease (375). 
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Other isolates such as Parabacteroides merdae have recently gained attention. Although some 
studies associate it with unhealthy diets (172,363), the evidence remains inconclusive and often 
contradictory (365,376), underlying the need for viable species isolation to facilitate deeper functional 
analysis. 

Targeted culturomics focuses on isolating specific bacterial species of interest. In our pilot study, E. 
coli was successfully isolated for investigation in the context of IBD, whereas F. prausnitzii was not 
(72,73,269,323). These species are known to play critical roles in IBD pathogenesis. Studies have 
highlighted significant differences in E. coli populations between IBD patients and healthy controls, 
particularly the adherent-invasive E. coli (AIEC), which possess enhanced virulence factors, colonization 
rates (median 3.1 x 105 CFU/g of tissue in CD vs 4.8 x 104 CFU/g of tissue in healthy controls) and the 
ability to invade epithelial cells (377–379). Isolation of viable species is essential for understanding 
disease mechanisms and identifying thrapeutic candidates in ex vivo and in vitro models. The failure to 
isolate F. prausnitzii, an extremely oxygen-sensitive species, could be due to prolongated oxygen 
exposure during sample collection, potentially compromising its viability (380).  

 

6.6 Strenghts and Limitations 
  

 Strenghts 
First, at the time the sFFQ was developed, few sFFQs were freely available to assess the habitual 

intake of food groups and nutrients potentially relevant to the human gut microbiome in the general 
population. The sFFQ used here not only addresses this gap but also includes questions regarding 
personal traits and characteristics, offering a broader understanding of how multiple factors influence 
gut microbiota. Additionally, the short completion time (around 20 min), is a key advantage compared 
to other sFFQs used in population studies, likely encouraging better compliance and continued 
participation at follow-up timepoints. 

Second, despite a limited sample size for metagenomic sequencing (n= 500 baseline), the observed 
associations between dietary components (e.g. vegetables, nuts, coffee, fruits) and microbiome - as well 
as with personal traïts (age, transit time) - were partially consistent with findings from larger cohorts 
(90,99,140,184, 28, 205,206), thereby supporting the validility of the results. 

Third, the POP cohort study represents one of the few longitudinal microbiome studies with a 
relatively large number of participants. This design enables future analyses exploring seasonal effects 
on diet-microbiome interactions. Moreover, the calculation of several standarized DQIs allows 
comparisons with other international studies, despite the use of different dietary assesment methods 
across countries.  

Fourth, microbiome data were obtained via shotgun metagenomic sequencing, a technique that 
yelds higher-resolution information compared to traditional 16S rRNA sequencing. This approach 
enabled taxonomic profiling down to the species level and facilitated funcional pathway analysis. 
Importantly, it was applied to study both bacterial and fungal microbiome communities, providing a 
more comprehensive view of interkingdom interactions and their relation with diet. 
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Fifth, one of the key features of the project was the creation of a dedicated website to raise 
awareness about the impact of diet and microbiome. This initiative aimed to enhance participant 
engagement and promote open, accessible science. It also facilitated smoother data collection and 
strengthened the relationships between the public and research. 

Finally, the study went a step further by isolating a collection of gut bacteria using culturomics, a 
novel cultivation-based technique. The isolation of viable microbes opens the door to testing causal 
relationships through in vivo and ex-vivo models in future studies.  

 Limitations 
Despite these strengths, the study has several limitations. One major limitation is the sample size 

and regional distribution. Although an effort was made to recruit a representative sampling fraction 
across Spanish regions, the Mediterranean area was overrepresented, which may bias results. To 
mitigate this, region areas were included as a covariate in the statistical models. Moreover, while the 
percentage of healthcare workers in the general Spanish population is estimated to be approximately 
2.77%, we observed that in our cohort this percentage rose to 30%. This may suggest a higher level of 
awareness and motivation within this sector regarding participation in scientific research projects. 
However, such an overrepresentation could introduce some selection bias, potentally affecting the 
generalizability of the findings. The implementation of targeted recruitment strategies aimed at 
reaching underrepresented professional sectors—such as through community-based recruitment 
channels—could help improve the representativeness of the general population in future studies. 

Additionally, fungal analyses were conducted with a randomly small subset (n= 100), which may 
explain the limited associations observed with dietary variables and interkingdom relationships. This 
highlights the need to improve fungal DNA enrichment protocols and bioinformatic analysis in the 
context of large-scale studies.  

Second, sFFQ relies mainly on self-reported dietary intake, which is subjected to recall bias and 
misreporting. This may result in over- or underestimation of food and nutrient intakes. Notably, some 
nutrient estimates appeared inconsistent and should be interpreted cautiously, in line with findings from 
our previous study (98). Complementing dietary assessments with objective biomarkers such as urinary 
metabolites could be a valuable strategy, although this field is still evolving.  

Third, the nutritional composition tables used may be insufficient for modern dietary analysis. They 
lack data on additives, cooking methods, preservatives and other food processing variables, all of which 
are increasingly recognized as influencial on health and microbiota composition (381). 

Fourth, while some results align partially with those from other observational studies, it is important 
to emphasize that correlation does not imply causation. Experimental validation is needed to confirm 
these associations. We have begun this process by isolating viable bacteria, which are planned to be 
tested in explant tissue models in our laboratory. 

Fifth, frozen samples collected for culturomics analysis were not suitable enough for viable species 
isolation. Thus, a considerable number of Bacillota was lost during the preservation and transport to 
INRAE facility. In the future, isolation will be carried out using fresh samples instead. 
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 Lastly,  limited funding constrained the sequencing of all collected samples at various timepoints. 
However, we plan to complete these analyses once sufficient financial suport becomes available. 
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CONCLUSIONS 

Despite the limitations, the results present in this doctoral thesis offer valuable insights in how 
personal traits, lifestyle choices and diet exert an effect on gut microbiome, leading to the subsequent 
conclusions: 

 
1. Promoting high diverse and high-quality healthy diets, rich in vegetables, fruits and fiber-rich 

products (legumes, whole grains and nuts and seeds) and reducing intake of less healthy food 
choices like white grains and bread, soft drinks or processed food could lead to an increase in 
bacteria diversity and a less IBD-type microbiome. Accompanied by increase of bacterial species 
often related with health, such as A. muciniphila, and detriment of species associated with poor 
heath outcomes such as F. plautii or R. torques.  
 

2. Other personal traits, geography and lifestyle choices also impact gut microbiome. Among them, 
smoking, BMI, living in the Mediterranean region and extreme fast bowel frequencies were 
correlated with less bacterial diversity and, in some cases, with poorer diets. Highlighting the 
importance of taking all these factors into consideration when performing large-scale 
microbiome analysis. 
 

3. Contributory citizen science constitutes a valid approach for engaging the general population in 
scientific research. This approach not only generated robust scientific data comparable to 
traditional clinical studies but also made possible to recruit a large cohort that would be 
logistically impossible through conventional research methods alone. 
 

4. Culturomics comprise a fast and feasible approach for viable species isolation further study host-
microbiome interactions, although further optimization is needed. 
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FUTURE PERSPECTIVES 

Our study offers new insights into the complex relationship between diet, personal traits and the 
human gut microbiome. However, validation of our findings in an independent cohort will be essential 
to assess  the robustness of the associations observed. Additionally, intervention studies in animal 
models and/or human subjects or ex vivo experiments may be required to demonstrate causality. 
Bacterial isolates obtained through culturomics will be investigated using explant tissue models, and 
parallel studies in rats are also planned. 

 Longitudinal designs provide the opportunity to track the participants over time, which is particularly 
helpful for examining how dietary changes and seasonal variation influence bacterial and fungal 
microbiomes and their potential role in disease development. Due to budgetary constraints, we were 
only able to assess dietary changes after six and twelve months, while microbiome sequencing was not 
feasible at those timepoints. Nevertheless, fecal samples were collected and stored, enabling future 
analyses when funding permits.  

 As previously mentioned, fungal assesment methods require further optimization. Although our 
experimental enrichment protocol improved fungal recovery, its labor-intensive nature highlights the 
need for more efficient alternatives. One promising direction involves enhancing the bioinformatic 
pipeline -- an effort already underway by our bioinformatics team. 

Finally, greater efforts are needed to make scientific reserach accessible and understandable to the 
general públic. Science relies on volunteers, and society relies on science. Promoting clearer and more 
comprehensive dissemination of findings can improve public perception and engagement. In addition 
to the development of our website, we aim to organize a free, open-access seminar where participants 
can ask questions and discuss current knowledge on the microbiome-diet connection. 
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ANNEX 1. List of 58 Food items included in the sFFQ  
 

Food ítems (g/day) 
1.Raw leafy vegetables such as spinach, lettuce, endive, celery, lamb’s lettuce, bean sprouts, and green beans 
2. Cooked leafy vegetables such as spinach, chard, cabbage, celery, asparagus, and bean sprouts 
3. Tomato 
4. Onion, spring onions and leek 
5. Zucchini, aubergine and cucumber 
6. Carrot, pumpkin and beet 
7. Bell pepper and Padrón pepper 
8. Crucifers like broccoli, cauliflower, turnip, cabbage and arugula (rocket) 
9. Food pickled in vinegar such as onion, gherkins, sauerkraut, capers, carrots, chives, and artichokes 
10. Corn and fresh legumes such as beans, peas, and broad beans 
11. Mushrooms in general 
12. Potato except for potato chips and sweet potato 
13. Cooked lentils, cooked kidney beans (pinto, white or black), and cooked chickpeas 
14. Fresh fruit such as orange, grapefruit, banana, apple, pear, nectarine, kiwi, mandarin (2 units), strawberry (6 units), 
watermelon or melon (1 slice), grapes (1 cluster), and natural fruit juice 

15. High-fat fruit such as avocado, olives, and coconut 
16. Dried fruit such as raisins, dried figs and dried cranberries 
17. Nuts and seeds such as walnuts, almonds, peanuts, hazelnuts, pistachios, pine nuts, sunflower seeds and other seeds 
18. White bread such as baguette, farmhouse white bread, sliced bread, and milk bread 
19. Whole wheat bread such as wholemeal baguette bread, whole meal bread, and wholemeal sliced bread 
20. Breakfast cereal such as cornflakes, oatmeal, muesli and others 
21. Normal/whole wheat biscuit and sponge cake 
22. Cooked cereal and pasta such as noodles, macaroni, spaghetti, white rice, couscous, bulgur, and other grains 
23. Cooked wholegrain cereal and pasta such as wholegrain noodles, wholegrain spaghetti, brown rice, wild rice, quinoa, 
and other whole grains 

24. Whole milk 
25. Semi-skimmed milk 
26. Skimmed milk 
27. Plant-based beverage and product such as almond drink, rice drink, oat drink, and soy drink 
28. High-fat cheese such as cured cheese, Parmesan, Manchego, Roquefort, Gruyere, Gorgonzola, and Grana padano 
29. Low-fat cheese such as Mozzarella, Buffalo, Camembert, Cheddar, goat cheese, and cottage cheese 
30. Fermented dairy such as yoghurt, yoghurt drink, Greek yoghurt, and kefir 
31. Dairy dessert such as tiramisu, custard, flan, and ice cream (2 scoops) 
32. Chicken egg, duck egg, and quail egg 
33. Fatty meat such as beef, veal, pork, wild boar, deer, lamb, and horse 
34. Lean meat such as chicken, turkey, and other poultry, rabbit, hare, and kid  
35. Processed meats such as salami, pork sausage, blood sausage, mortadella, fresh sausage, sobrasada (Majorcan 
sausage), bacon, cured ham, and boiled ham 

36. Blue or high-fat fish such as anchovy, eel, elver, tuna, bonito, horse mackerel, salmon, and sardine 
37. White or low-fat fish such as cod, hake, sole, monkfish, whiting and turbot 
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Food items (g/day) 
38. Canned fish in oil such as tuna, horse mackerel, mackerel, and bonito 
39. Mollusks and crustaceans such as mussel, clam, squid, octopus, cuttlefish, and prawn 
40. Olive oil 
41. Sunflower oil 
42. Other oils such as those from corn, rapeseed, and grape seed 
43. Butter and margarine 
44. Pastries such as doughnut, muffins, croissants, “palmera”, churros, cakes, and puff pastry 
45. Dark chocolate (> 50% cocoa) and cocoa powder 
46. Confectionery such as candy bars, gummy sweets, caramels, chewing gum, nougat, and marzipan 
47. Packaged tomato sauce and canned tomato 
48. Other condiments such as mayonnaise, ketchup, mustard, pesto, aioli, and balsamic vinegar 
49. Tea (with and without caffeine) and infusions 
50. Coffee (with and without caffeine) of all kinds 
51. Soft drinks such cola, diet soda, and isotonic or flavored drinks 
52. Packaged fruit juices and nectar (sweetened fruit juice) 
53. Wine or cava (rosé, red, vintage, must, white, muscat) 
54. Beer 
55. Whiskey, vodka, gin, cognac, and rum 
56. Added sugar, honey, jam, and quince 
57. Fried potato, nacho, salted tortilla chips, snacks, salted pretzels, potato ring crisps, twiglets, and crackers 
58. Processed food such as pizza, lasagna, cannelloni, chicken nuggets, and potato omelet 
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ANNEX 2.  Images included in the sFFQ. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Image I. Three meal times used in the sFFQ. The images have been divided into Breakfast (A); 
Lunch (B) and Meal snacks (C).  
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Image II. Series of photographs following ratios 1:2:3 used in the most problematic foods. Images in the middle (B) correspond to standard serving 
size in the sFFQ. 
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ANNEX 3. Old vs updated sFFQ 
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Image  I. sFFQ used in the Pilot Study by means of SurveyMonkey web just available in Spanish 
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Image  II. sFFQ used in the Population Study developed in our lab (English version is shown) 
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ANNEX 4. Median and percentiles in g/day of the different sFFQ (baseline, six and twelve months) food groups, energy and  
nutrients 
 

Food group (g/day) 
sFFQ1 (n= 1017) sFFQ2 (n= 844) sFFQ3 (n= 754) 

P25 Median P75 P25 Median P75 P25 Median P75 
Alcoholic beverage 6.60 28.38 90.30 6.60 28.38 90.30 6.60 28.38 90.30 

Appetizers 1.65 3.30 10.50 1.24 3.30 10.50 1.65 3.30 10.50 

Biscuits breakfast cereals and cereal bars 1.65 6.45 22.50 1.65 5.28 22.50 1.65 6.30 23.10 

Chocolates and derivatives 0.40 1.58 7.68 0.40 2.52 7.68 0.40 2.52 7.68 

Fats and oils 10.00 17.14 30.00 10.00 13.53 30.00 10.00 15.32 30.00 

Fish and shellfish 30.33 54.00 81.30 29.70 54.00 81.30 27.39 51.06 75.63 

Fruit and fruit products 141.80 225.60 608.40 136.40 220.76 604.20 136.40 225.6 605.19 

Legumes 19.80 41.40 57.15 19.80 41.40 63.00 16.7625 36.45 57.15 

Meats and eggs 56.70 85.75 139.50 54.30 84.00 136.58 55.65 84.00 139.97 

Milk and dairy products except fermented milk 24.30 104.95 221.00 25.00 107.16 226.66 25.12 110.5 228.56 

Non-Alcoholic beverage 100.00 207.40 356.60 100.00 196.40 348.95 100.00 199.5 340.05 

Nuts and seeds 3.15 9.60 30.00 3.15 12.60 30.00 3.15 9.60 30.00 

Pastries and sweets breads 0.00 1.65 3.30 0.00 3.30 5.25 0.00 3.30 5.25 

Potatoes and other tubers 9.90 31.50 48.00 9.90 31.50 48.00 9.90 31.50 31.50 

Ready to eat meals 0.00 13.20 19.80 0.00 9.90 19.80 0.00 6.60 13.20 

Sauces and condiments 1.32 2.76 6.84 1.32 2.76 7.89 1.32 2.76 6.11 

Sausages and other meat products 1.49 4.72 9.45 1.49 4.72 9.45 1.49 4.72 9.45 

Sugars and other sweets 0.00 1.32 6.30 0.00 1.05 5.99 0.00 1.32 6.40 

Vegetables and vegetable products 205.50 353.35 551.20 198.52 314.99 521.61 176.17 304.28 488.37 

White bread 0.00 14.70 70.00 2.31 14.70 70.00 2.31 14.70 70.00 
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Food group (g/day) 
sFFQ1 (n= 1017) sFFQ2 (n= 844) sFFQ3 (n= 754) 

P25 Median P75 P25 Median P75 P25 Median P75 
White grains and white pastas 5.30 16.85 25.30 5.30 16.85 25.30 5.3 16.85 25.3 

Wholegrain or whole meal bread 0.00 14.70 44.80 0.00 14.70 44.80 2.31 14.70 44.80 

Whole meal grains and whole meal pastas 0.00 2.64 8.40 0.00 2.64 8.40 0.00 2.64 8.40 

Yogurt and fermented milk 8.25 26.25 125.00 8.25 26.25 125.00 8.25 26.25 125.00 

Energy and nutrients 

Energy (kcal/day) 1366.50 1787.03 2300.91 1352.86 1722.34 2210.98 1287.42 1703.74 2232.29 

Total fat (g/day) 50.83 70.17 95.39 49.55 68.02 91.18 48.91 67.46 96.89 

Total protein (g/day) 62.96 80.99 102.86 61.31 78.43 100.16 58.86 77.93 98.12 

Total water (g/day) 1056.24 1446.74 1874.13 1020.87 1348.21 1784.52 955.9 1326.47 1743.79 

Total fiber (g/day) 19.12 27.60 39.44 18.62 27.40 37.12 18.31 26.40 37.44 

Total carbohydrates (g/day) 132.21 187.50 250.34 129.29 178.12 241.90 127.98 171.93 237.90 

Alcohol (g/day) 0.62 1.97 4.76 0.62 1.97 4.66 0.62 1.85 4.57 

MUFA (g/day) 21.05 30.18 42.30 20.99 29.31 39.54 20.35 29.59 42.03 

PUFA (g/day) 8.93 12.69 17.11 8.78 12.40 16.82 8.71 12.25 16.82 

SFA (g/day) 14.67 20.57 28.44 14.66 20.32 27.75 14.47 20.35 27.73 

Cholesterol (mg/day) 188.76 276.26 379.15 186.51 267.05 376.76 185.77 268.86 381.51 

Vitamin A μg retinol (eq/day) 711.37 1051.82 1493.39 691.70 987.26 1436.48 638.18 961.25 1438.45 

Vitamin D (μg/day) 4.00 7.36 12.59 4.07 7.67 12.40 3.79 7.32 13.05 

Vitamin E (mg α tocoferol/day) 9.67 13.92 19.77 9.58 13.71 18.57 9.27 13.33 19.14 

Folate total (μg/day) 331.73 471.83 660.77 325.09 457.18 627.32 305.24 437.21 639.07 

Total niacin equivalent (mg/day) 45.22 82.51 153.76 46.79 87.83 152.51 45.68 81.79 152.29  
Riboflavin (mg/day) 1.55 1.99 2.68 1.50 1.97 2.63 1.42 1.94 2.57 

Tiamin (mg/day) 1.11 1.53 2.09 1.07 1.48 2.06 1.07 1.47 2.02 
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Food group (g/day) 
sFFQ1 (n= 1017) sFFQ2 (n= 844) sFFQ3 (n= 754) 

P25 Median P75 P25 Median P75 P25 Median P75 

Vitamin B12 (μg/day) 3.67 4.91 6.86 3.70 5.12 7.00 3.62 4.91 7.11 

Vitamin B6 (mg/day) 1.92 2.59 3.51 1.90 2.53 3.47 1.80 2.52 3.42 

Vitamin C ascorbic acid (mg/day) 142.28 231.37 354.56 133.48 228.27 335.45 131.91 227.00 343.86 

Calcium (mg/day) 645.33 899.06 1221.27 640.25 872.98 1164.24 621.30 863.52 1190.04 

Iron (mg/day) 11.91 15.78 21.09 11.56 15.31 20.39 11.24 14.99 20.44 

Potassium (mg/day) 2827.65 3798.22 4966.56 2739.28 3686.23 4761.58 2582.40 3533.12 4760.63 

Magnesium (mg/day) 357.63 472.54 618.85 344.70 461.46 602.43 334.83 463.15 612.42 

Sodium (mg/day) 1106.42 1448.96 1972.86 1091.95 1427.70 1912.09 1049.72 1420.13 1885.9 

Phosphorus (mg/day) 1137.54 1443.64 1832.69 1084.81 1419.78 1794.50 1052.01 1381.24 1780.49 

Iodine (μg/day) 80.40 107.32 143.50 79.77 104.94 137.00 76.38 99.45 139.61 

Selenium (μg/day) 55.46 74.38 97.10 54.47 72.97 95.22 53.94 71.87 96.69 

Zinc (mg/day) 7.31 9.36 12.63 6.91 9.20 12.11 6.86 9.31 12.40 

Sugar (g/day) 49.79 68.12 89.37 48.05 63.92 85.26 47.33 63.25 84.69 
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ANNEX 5. Significant association (q< 0.05) between food groups and categorical variables (Bowel frequency, gender, region 
areas, sweeteners intake and smoke). Output from MaAsLin2 

 

Food group Variable value coef stderr N p-value q-value 
Sausages and other 
meat products Bowel_Frequency 

+ de 3 times 
per week 0.445466295 0.130018659 2,615 0.000622673 0.005534874 

White bread Bowel_Frequency + de 3 times 
per week 

0.539029371 0.174467728 2,615 0.00202804 0.01622432 

Biscuits and 
breakfast cereals 

Bowel_Frequency 2 times per 
day 

0.412387519 0.148223502 2,615 0.005442577 0.036794889 

Vegetables Gender Female 0.351821619 0.067355492 2,615 2.16659E-07 4.95222E-06 
Alcoholic beverage Gender Female -0.948494891 0.194031532 2,615 1.19423E-06 2.20474E-05 
Fats and oils Gender Female 0.330405412 0.069728644 2,615 2.50031E-06 4.13845E-05 
Fish and shellfish Gender Female 0.282608847 0.076713858 2,615 0.000242781 0.002710114 
Fruits and fruit 
products Gender Female 0.361588643 0.099285353 2,615 0.00028562 0.003046613 

White grains Gender Female -0.383607263 0.118591921 2,615 0.001260419 0.010431051 
Ready to eat meals Gender Female -0.42088455 0.136272857 2,615 0.002070452 0.016292079 
Whole bread Gender Female 0.548765475 0.185811653 2,615 0.003221632 0.023790516 
Non-alcoholic 
drinks Gender Female 0.31884346 0.108603992 2,615 0.003410847 0.024435919 

White bread Gender Female -0.505154933 0.186196312 2,615 0.006788412 0.042451216 
Appetizers Region_Areas North Spain -0.776274034 0.207792293 2,615 0.000198252 0.002321002 
Legumes Region_Areas Interior 0.302846289 0.101780386 2,615 0.002999673 0.02285465 
White grains Region_Areas North Spain -0.540023708 0.183794968 2,615 0.003382865 0.024435919 
Fats and oils Region_Areas North Spain -0.301513484 0.107986136 2,615 0.005348892 0.036678114 
Biscuits and 
breakfast cereals Region_Areas North Spain 0.653107292 0.237353769 2,615 0.00604543 0.040302864 

White grains Region_Areas Interior -0.387329081 0.142829504 2,615 0.006809883 0.042451216 
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Food group Variable value coef stderr N p-value q-value 
Milk and dairy Region_Areas Interior 0.485992005 0.182589524 2,615 0.00789879 0.047992651 
Fruits and fruit 
products 

Smoke Yes -0.725710208 0.151048326 2,615 1.68762E-06 2.998E-05 

Alcoholic beverage Smoke Yes 1.20098491 0.268323248 2,615 8.01947E-06 0.000106926 

Alcoholic beverage Smoke Former 
smoker 

0.523539204 0.148649743 2,615 0.000436515 0.004276068 

Biscuits and 
breakfast cereals Smoke Former 

smoker -0.421024784 0.142236626 2,615 0.00311165 0.023337375 

Ready to eat meals Sweeteners Yes 0.510985512 0.103763276 2,615 9.04328E-07 1.80866E-05 
Sauces and 
condiments Sweeteners Yes 0.329752664 0.098289236 2,615 0.000806487 0.007033302 

Sausages and other 
meat products Sweeteners Yes 0.298350927 0.102279307 2,615 0.003567423 0.025181813 
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ANNEX 6. Correlation values between Eating Quality Indices (DQIs), food groups, food items and numerical personal data 
with bacterial α- diversity (Chao1 and Shannon) using the Spearman correlation test (n= 500). Just data with FDR < 0.05 
was represented.  

 

Var1 Var2 p-value q-value R 
Item1 Shannon 1.7626E-05 0.00204459 0.19126924 
Item1 Chao1 0.00108766 0.01615781 0.14611725 
Item2 Shannon 0.00098413 0.01615781 0.14736538 
Item2 Chao1 0.00139291 0.01615781 0.14298807 
Item3 Shannon 0.00419294 0.02702114 0.12822749 
Item12 Chao1 0.00214904 0.02011404 -0.1373484 
Item14 Shannon 0.00053283 0.01545214 0.15481954 
Item16 Shannon 0.00510496 0.03116712 0.1254316 
Item17 Shannon 0.00812632 0.04037908 0.11860345 
Item18 Chao1 0.00357004 0.02436024 -0.1304733 
Item18 Shannon 0.00087883 0.01615781 -0.148766 
Item22 Chao1 0.00118785 0.01615781 -0.1450096 
Item22 Shannon 0.00041122 0.01545214 -0.1578695 
Item36 Chao1 0.00128257 0.01615781 0.14403893 
Item37 Chao1 0.00623302 0.03286503 0.12253922 
Item39 Chao1 0.00301825 0.02188232 0.13278239 
Item41 Chao1 0.00617957 0.03286503 -0.1226652 
Item41 Shannon 0.00200225 0.02011404 -0.1382826 
Item44 Chao1 0.00835429 0.04037908 -0.1181865 
Item45 Shannon 0.00569089 0.03286503 0.12386469 
Item46 Shannon 0.00902851 0.04189229 -0.1170102 
Item51 Shannon 0.0027128 0.02188232 -0.1342315 
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Var1 Var2 p-value q-value R 
Item51 Chao1 0.00225416 0.02011404 -0.1367146 
Item58 Shannon 0.0030038 0.02188232 -0.1328479 
Item58 Chao1 0.00049553 0.01545214 -0.1556795 
Fruits_and_Fruit_Products Shannon 7.80E-05 0.00374 0.17626 
VitC_mg Shannon 0.00021 0.01359 0.16576 
Age Chao1 0.00072 0.00286 0.15129 
hPDI_Adj Shannon 0.0026 0.01838 0.13481 
HEI_2015 Shannon 0.00306 0.01838 0.13258 
aMED Shannon 0.00467 0.021 0.12671 
Chocolates_and_Derivatives Shannon 0.00569 0.03035 0.12386 
Age Shannon 0.00644 0.01288 0.12206 
Nuts_and_Seeds Shannon 0.00813 0.03507 0.1186 
Vegetables Shannon 0.00877 0.03507 0.11745 
Fish_and_Shellfish Chao1 0.01313 0.04849 0.11118 
BMI Chao1 0.01971 0.01971 -0.10457 
BMI Shannon 0.01063 0.01417 -0.1145 
uPDI_Adj Chao1 0.01033 0.0372 -0.11494 
Pastries_and_Sweet_Breads Chao1 0.00835 0.03507 -0.11819 
White_Bread Chao1 0.00357 0.02142 -0.13047 
Ready_To_Eat_Meals Shannon 0.003 0.0206 -0.13285 
Potatoes_and_Other_Tubercules Chao1 0.00215 0.01719 -0.13735 
uPDI_Adj Shannon 0.00164 0.01838 -0.14089 
White_Grains Chao1 0.00119 0.0114 -0.14501 
White_Bread Shannon 0.00088 0.01055 -0.14877 
Ready_To_Eat_Meals Chao1 0.0005 0.00793 -0.15568 
White_Grains Shannon 0.00041 0.00793 -0.15787 
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ANNEX 7. Significant association obtained by Spearman correlations (FDR < 0.05) between age and BMI with bacterial 
species  

 

Var1 Var2 p-value q-value R 
Age GGB9568_SGB14980 3.4556E-07 0.00036836 0.22621922 
Age GGB3570_SGB4777 5.7474E-07 0.0004595 0.22201337 
Age GGB9677_SGB15180 1.8959E-06 0.00121261 0.21180827 
Age Gemmiger_SGB15295 5.8852E-05 0.01459324 0.1791941 
Age GGB9697_SGB15213 6.1779E-05 0.01459324 0.17869139 
Age GGB3617_SGB4891 0.00010704 0.01901723 0.17290006 
Age Desulfovibrio_fairfieldensis 0.00027655 0.03049713 0.16243605 
Age GGB9559_SGB14969 0.00030699 0.03184321 0.16124584 
Age Akkermansia_muciniphila 0.00030867 0.03184321 0.16118334 
Age Roseburia_sp_AM59_24XD 0.0003308 0.03303118 0.16038953 
Age GGB9635_SGB15106 0.0003598 0.03303118 0.15942052 
Age Eggerthellaceae_unclassified_SGB14322 0.00036087 0.03303118 0.15938621 
Age Ruminococcaceae_unclassified_SGB15260 0.00039249 0.03303118 0.15841236 
Age GGB9636_SGB15108 0.00044414 0.03332468 0.15696865 
Age GGB2983_SGB3965 0.00045179 0.03332468 0.15676806 
Age GGB9557_SGB14966 0.00047158 0.03332468 0.15626405 
Age GGB9631_SGB15085 0.00047934 0.03332468 0.15607161 
Age Bacilli_bacterium 0.00076773 0.04589179 0.1504232 
Age Blautia_sp_OF03_15BH 0.00077491 0.04589179 0.15030957 
Age GGB9603_SGB15035 0.0008249 0.04644983 0.14954458 
Age Mediterraneibacter_sp_gm002 0.00082986 0.04644983 0.14947104 
Age GGB9522_SGB14921 0.00084213 0.04644983 0.1492909 
Age Flavonifractor_plautii 0.000747 0.04589179 -0.1507567 
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Var1 Var2 p-value q-value R 
Age Hydrogeniiclostidium_mannosilyticum 0.00052737 0.03588336 -0.154942 
Age Clostridiales_bacterium 0.00047161 0.03332468 -0.1562632 
Age Holdemania_sp_Marseille_P2844 0.00044068 0.03332468 -0.1570603 
Age Enterocloster_aldensis 0.00036894 0.03303118 -0.1591304 
Age Pseudoflavonifractor_capillosus 0.00027332 0.03049713 -0.1625695 
Age Clostridium_sp_SN20 0.00020649 0.0264143 -0.1657233 
Age Dysosmobacter_welbionis 0.00016089 0.02220217 -0.1684831 
Age Clostridia_bacterium_UC5_1_1D1 0.00015868 0.02220217 -0.1686347 
Age Bifidobacterium_bifidum 1.8859E-05 0.00670107 -0.190612 
Age GGB9619_SGB15067 6.4451E-06 0.00343525 -0.2007976 
BMI Clostridium_fessum 7.7009E-09 2.4628E-05 0.2553743 
BMI Coprococcus_comes 4.8078E-08 7.6877E-05 0.24180352 
BMI Blautia_wexlerae 1.5502E-05 0.00619684 0.19251148 
BMI Roseburia_intestinalis 6.3885E-05 0.01459324 0.17834329 
BMI Ruminococcus_torques 9.417E-05 0.01882226 0.17426623 
BMI GGB9512_SGB14909 0.00010414 0.01901723 0.17319359 
BMI Collinsella_aerofaciens 0.00016662 0.02220217 0.16809861 
BMI Phocaeicola_vulgatus 0.00039242 0.03303118 0.15841446 
BMI Eubacterium_ramulus 0.00045909 0.03332468 0.15657973 
BMI Lancefieldella_parvula 0.00056542 0.03690208 0.15411293 
BMI Lacrimispora_celerecrescens 0.00066977 0.04283841 0.15207999 
BMI Dorea_sp_AF24_7LB 0.00077364 0.04589179 0.1503295 
BMI Clostridium_sp_AT4 0.00088268 0.04784403 0.14871221 
BMI GGB9608_SGB15041 0.00084243 0.04644983 -0.1492865 
BMI GGB6649_SGB9391 0.00055554 0.03690208 -0.1543231 
BMI Bacilli_bacterium 0.00047016 0.03332468 -0.1562995 
BMI GGB3643_SGB4948 0.00037796 0.03303118 -0.1588504 
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Var1 Var2 p-value q-value R 
BMI Intestinimonas_butyriciproducens 0.00022378 0.02650548 -0.1648247 
BMI Intestinimonas_massiliensis 0.00021563 0.02650548 -0.16524 
BMI Candidatus_Borkfalkia_ceftriaxoniphila 0.00014566 0.02218212 -0.1695709 
BMI Clostridia_bacterium 0.00014489 0.02218212 -0.169629 
BMI Ruminococcaceae_bacterium 0.00012257 0.02063031 -0.1714437 
BMI Intestinimonas_gabonensis 7.9779E-05 0.01700898 -0.1760199 
BMI GGB9758_SGB15368 5.51E-05 0.01459324 -0.1798744 
BMI Ruminococcaceae_bacterium_D5 5.1179E-05 0.01459324 -0.1806335 
BMI Lawsonibacter_sp_NSJ_51 1.0304E-05 0.00470749 -0.1964108 
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ANNEX 8. Significant association (q< 0.05) between functional pathways and categorical variables (Bowel frequency, 
gender, region areas, sweeteners intake and smoke). Output from MaAsLin2 

 

Feature Metadata Value Coef Stderr N p-value q-value 
TRNA.CHARGING.PWY..tRNA.charging BMI BMI -569.85 99.08 498 1.83E-08 0.000115631 
NONMEVIPP.PWY..methylerythritol.phosphate.pathway.I BMI BMI -412.73 74.03 498 4.70E-08 0.000148817 
PWY.3841..folate.transformations.II..plants. BMI BMI -448.01 83.29 498 1.32E-07 0.000166652 
PWY0.1586..peptidoglycan.maturation..meso.diaminopimelate.containing. BMI BMI 397.21 73.54 498 1.17E-07 0.000166652 
PWY66.399..gluconeogenesis.III BMI BMI -179.72 32.99 498 9.22E-08 0.000166652 
PWY.7383..anaerobic.energy.metabolism..invertebrates..cytosol. BMI BMI -290.96 55.43 498 2.54E-07 0.000268548 
PWY.6609..adenine.and.adenosine.salvage.III BMI BMI -484.62 93.74 498 3.79E-07 0.000343461 
PWY.6163..chorismate.biosynthesis.from.3.dehydroquinate BMI BMI -372.33 75.17 498 1.09E-06 0.000870322 
PWY.7953..UDP.N.acetylmuramoyl.pentapeptide.biosynthesis.III..meso.diami
nopimelate.containing. BMI BMI -410.52 83.42 498 1.28E-06 0.000905666 

PEPTIDOGLYCANSYN.PWY..peptidoglycan.biosynthesis.I..meso.diaminopimela
te.containing. BMI BMI -401.90 87.03 498 5.32E-06 0.002246376 

PWY.6385..peptidoglycan.biosynthesis.III..mycobacteria. BMI BMI -366.56 81.68 498 9.55E-06 0.003074491 
PWY.6387..UDP.N.acetylmuramoyl.pentapeptide.biosynthesis.I..meso.diamin
opimelate.containing. BMI BMI -380.37 84.75 498 9.55E-06 0.003074491 

PWY.6386..UDP.N.acetylmuramoyl.pentapeptide.biosynthesis.II..lysine.contai
ning. 

BMI BMI -371.33 84.09 498 1.31E-05 0.003619992 

PWY.5686..UMP.biosynthesis.I BMI BMI -356.74 82.37 498 1.90E-05 0.004154562 
PWY.7790..UMP.biosynthesis.II BMI BMI -356.74 82.37 498 1.90E-05 0.004154562 
PWY.7791..UMP.biosynthesis.III BMI BMI -356.74 82.37 498 1.90E-05 0.004154562 
PWY.7199..pyrimidine.deoxyribonucleosides.salvage BMI BMI -356.53 83.51 498 2.47E-05 0.005063055 
PWY.6292..superpathway.of.L.cysteine.biosynthesis..mammalian. BMI BMI -134.20 31.95 498 3.33E-05 0.006391338 
PWY0.1296..purine.ribonucleosides.degradation BMI BMI -370.59 88.43 498 3.46E-05 0.006452706 
ARO.PWY..chorismate.biosynthesis.I BMI BMI -260.56 62.32 498 3.61E-05 0.006532945 
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Feature Metadata Value Coef Stderr N p-value q-value 
PWY.8190..L.glutamate.degradation.XI..reductive.Stickland.reaction. BMI BMI 14.72 3.59 498 5.04E-05 0.008639222 
ARGSYN.PWY..L.arginine.biosynthesis.I..via.L.ornithine. BMI BMI -315.74 78.91 498 7.57E-05 0.012291701 
ARGSYNBSUB.PWY..L.arginine.biosynthesis.II..acetyl.cycle. BMI BMI -335.21 84.96 498 9.48E-05 0.015000732 
PWY.822..fructan.biosynthesis BMI BMI 19.45 4.94 498 9.71E-05 0.015000732 
PWY.5088..L.glutamate.degradation.VIII..to.propanoate. BMI BMI 4.10 1.04 498 0.0001 0.015224101 
KETOGLUCONMET.PWY..ketogluconate.metabolism BMI BMI 39.70 10.52 498 0.0001 0.024464112 
P125.PWY..superpathway.of..R.R..butanediol.biosynthesis BMI BMI 34.45 9.15 498 0.0001 0.024764044 
PWY.7446..sulfoquinovose.degradation.I BMI BMI 6.03 1.61 498 0.0002 0.025156109 
PWY.5097..L.lysine.biosynthesis.VI BMI BMI -204.35 54.95 498 0.0002 0.025603777 
PWY.7184..pyrimidine.deoxyribonucleotides.de.novo.biosynthesis.I BMI BMI 111.93 30.16 498 0.0002 0.0258482 
X1CMET2.PWY..folate.transformations.III..E..coli. BMI BMI -179.04 48.57 498 0.0002 0.026203758 
PWY.801..homocysteine.and.cysteine.interconversion BMI BMI 28.49 7.75 498 0.0002 0.026759511 
PWY.6293..superpathway.of.L.cysteine.biosynthesis..fungi. BMI BMI 38.57 10.70 498 0.0003 0.033432436 
PWY.6545..pyrimidine.deoxyribonucleotides.de.novo.biosynthesis.III BMI BMI 103.79 29.10 498 0.0004 0.037450726 
POLYISOPRENSYN.PWY..polyisoprenoid.biosynthesis..E..coli. BMI BMI 109.10 30.81 498 0.0004 0.039379612 
PWY.2942..L.lysine.biosynthesis.III BMI BMI -178.62 50.44 498 0.0004 0.039379612 
PWY.6700..queuosine.biosynthesis.I..de.novo. BMI BMI -338.13 96.11 498 0.0004 0.041672094 
COA.PWY.1..superpathway.of.coenzyme.A.biosynthesis.III..mammals. BMI BMI -233.93 66.75 498 0.0005 0.043220594 
PWY.6859..all.trans.farnesol.biosynthesis BMI BMI 80.44 23.15 498 0.0005 0.046202201 
PWY.7383..anaerobic.energy.metabolism..invertebrates..cytosol. Bowel_movement >3_WK 711.63 153.70 498 5.03E-06 0.002246376 
PWY66.399..gluconeogenesis.III Bowel_movement >3_WK 424.84 91.49 498 4.72E-06 0.002246376 
FUCCAT.PWY..fucose.degradation Bowel_movement 1.5_WK 452.02 107.57 498 3.29E-05 0.006391338 
PWY.6167..flavin.biosynthesis.II..archaea. Bowel_movement >3_WK 79.04 19.33 498 5.29E-05 0.008813521 
PWY.6151..S.adenosyl.L.methionine.salvage.I Bowel_movement 1.5_WK -1477.86 382.44 498 0.0001 0.019287286 
GLUDEG.I.PWY..GABA.shunt Bowel_movement 1.5_WK 351.70 94.04 498 0.0002 0.025156109 
PWY.5104..L.isoleucine.biosynthesis.IV Bowel_movement 1.5_WK 159.30 42.62 498 0.0002 0.025156109 
PWY.5981..CDP.diacylglycerol.biosynthesis.III Bowel_movement 1.5_WK 530.97 141.91 498 0.0002 0.025156109 
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Feature Metadata Value Coef Stderr N p-value q-value 
PWY.7434..terminal.O.glycans.residues.modification..via.type.2.precursor.dis
accharide. 

Bowel_movement 1.5_WK 105.79 28.27 498 0.0002 0.025156109 

PWY.5022..4.aminobutanoate.degradation.V Bowel_movement 1.5_WK 347.97 93.40 498 0.0002 0.025603777 
PWY.6317..D.galactose.degradation.I..Leloir.pathway. Bowel_movement >3_WK -618.31 166.16 498 0.0002 0.025603777 
FUC.RHAMCAT.PWY..superpathway.of.fucose.and.rhamnose.degradation Bowel_movement 1.5_WK 397.73 108.70 498 0.0002 0.028142403 
PWY.7383..anaerobic.energy.metabolism..invertebrates..cytosol. Bowel_movement 1.5_WK 919.90 257.93 498 0.0004 0.037450726 
PWY.6518..bile.acids.epimerization Bowel_movement >3_WK 6.99 1.98 498 0.0004 0.040066536 
P162.PWY..L.glutamate.degradation.V..via.hydroxyglutarate. Bowel_movement >2_Day 24.06 6.94 498 0.0005 0.047003732 
PWY.6527..stachyose.degradation Bowel_movement >3_WK -733.76 212.54 498 0.0006 0.048925417 
BIOTIN.BIOSYNTHESIS.PWY..biotin.biosynthesis.I Gender m -422.26 111.37 498 0.0001 0.023470741 
PENTOSE.P.PWY..pentose.phosphate.pathway Gender m -469.46 126.66 498 0.0002 0.025908806 
FASYN.ELONG.PWY..fatty.acid.elongation....saturated Gender m -509.30 137.86 498 0.0002 0.026203758 
PWY.6519..8.amino.7.oxononanoate.biosynthesis.I Gender m -422.21 114.29 498 0.0002 0.026203758 
PWY.7664..oleate.biosynthesis.IV..anaerobic. Gender m -471.08 132.44 498 0.0004 0.038229832 
PWY.5989..stearate.biosynthesis.II..bacteria.and.plants. Gender m -414.65 118.82 498 0.0005 0.04477563 
PWY.6282..palmitoleate.biosynthesis.I..from..5Z..dodec.5.enoate. Gender m -433.57 124.32 498 0.0005 0.04477563 
PWY.6160..3.dehydroquinate.biosynthesis.II..archaea. Region_Areas Islands 160.15 34.62 498 5.12E-06 0.002246376 
PWY.6349..CDP.archaeol.biosynthesis Region_Areas Islands 150.94 32.64 498 5.16E-06 0.002246376 
PWY.6350..archaetidylinositol.biosynthesis Region_Areas Islands 140.95 30.50 498 5.23E-06 0.002246376 
PWY.6165..chorismate.biosynthesis.II..archaea. Region_Areas Islands 371.22 81.69 498 7.42E-06 0.002763245 
PWY.7286..7..3.amino.3.carboxypropyl..wyosine.biosynthesis Region_Areas Islands 179.28 39.34 498 7.01E-06 0.002763245 
PWY.1861..formaldehyde.assimilation.II..assimilatory.RuMP.Cycle. Region_Areas Islands 959.76 214.03 498 9.71E-06 0.003074491 
PWY.8112..factor.420.biosynthesis.I..archaea. Region_Areas Islands 137.35 30.96 498 1.19E-05 0.003610002 
METHANOGENESIS.PWY..methanogenesis.from.H2.and.CO2 Region_Areas Islands 152.13 34.38 498 1.25E-05 0.003619992 
PWY.5198..factor.420.biosynthesis.II..mycobacteria. Region_Areas Islands 138.45 31.45 498 1.39E-05 0.003685295 
PWY.5209..methyl.coenzyme.M.oxidation.to.CO2 Region_Areas Islands 123.72 28.52 498 1.83E-05 0.004154562 
PWY.8113..3PG.factor.420.biosynthesis Region_Areas Islands 127.74 29.39 498 1.77E-05 0.004154562 
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Feature Metadata Value Coef Stderr N p-value q-value 
PWY.6270..isoprene.biosynthesis.I Region_Areas Islands 1326.38 319.91 498 4.17E-05 0.007342054 
PWY.5188..tetrapyrrole.biosynthesis.I..from.glutamate. Region_Areas Islands 768.98 213.26 498 0.0003 0.033432436 
PWY.6270..isoprene.biosynthesis.I Season_Year Autumn -627.70 146.57 498 2.34E-05 0.004945873 
PWY.6122..5.aminoimidazole.ribonucleotide.biosynthesis.II Smoke Former 620.68 162.14 498 0.0001 0.020827481 
PWY.6277..superpathway.of.5.aminoimidazole.ribonucleotide.biosynthesis Smoke Former 620.68 162.14 498 0.0001 0.020827481 
PWY.7315..dTDP.N.acetylthomosamine.biosynthesis Smoke YES 364.60 95.26 498 0.0001 0.020827481 
PWY0.1261..anhydromuropeptides.recycling.I Smoke Former -322.93 87.56 498 0.0002 0.026203758 
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ANNEX 9. Significant association obtained by Spearman correlations (FDR < 0.05) between DQIs, food groups, micro and 
macro-nutrients and items.  

 

Var1 Var2 p-value q-value R 

Appetizers Eubacterium_rectale 8.42622E-06 0.017059168 0.198303634 

Chocolates_and_Derivatives GGB52930_SGB73859 3.73914E-06 0.013044843 0.205770389 

Chocolates_and_Derivatives Clostridium_sp_AF32_12BH 3.42191E-05 0.037519757 0.184720345 

Chocolates_and_Derivatives GGB3478_SGB4643 1.27109E-05 0.021389027 0.194416283 

Fats_and_Oils GGB9644_SGB15121 2.31809E-05 0.030675584 0.188591886 

Fruits_and_Fruit_Products Bacilli_unclassified_SGB6473 3.89458E-05 0.03946696 0.183416412 

Fruits_and_Fruit_Products GGB4676_SGB6465 1.42661E-06 0.006843467 0.214285085 

Fruits_and_Fruit_Products GGB9758_SGB15368 5.32511E-07 0.005108909 0.222649466 

Fruits_and_Fruit_Products Lachnospira_eligens 1.60431E-05 0.024626762 0.192180229 

Fruits_and_Fruit_Products Lachnospiraceae_bacterium 1.58896E-05 0.024626762 0.192273058 

Legumes Haemophilus_parainfluenzae 3.54164E-07 0.004530465 0.226017717 

Meat_and_Eggs Dorea_formicigenerans 1.91014E-06 0.008144855 0.211742621 

Milk_and_Dairy Lachnospira_sp_NSJ_43 8.47156E-06 0.017059168 -0.198253382 

Nuts_and_Seeds Flavonifractor_plautii 2.60805E-05 0.030796142 -0.187428556 

Nuts_and_Seeds GGB3478_SGB4643 8.09873E-07 0.006215934 0.219130915 

Nuts_and_Seeds Roseburia_hominis 4.54377E-05 0.04359289 0.181850852 

Nuts_and_Seeds Lachnospiraceae_bacterium 1.40747E-07 0.002700662 0.233452048 

Pastries_and_Sweet_Breads Clostridium_saccharogumia 1.28191E-05 0.021389027 -0.194335299 

Pastries_and_Sweet_Breads GGB4713_SGB6526 2.60796E-05 0.030796142 -0.187428874 

Pastries_and_Sweet_Breads GGB9568_SGB14980 5.58225E-06 0.016478804 -0.202122264 

Pastries_and_Sweet_Breads Clostridium_sp_AF20_17LB 1.27571E-06 0.006843467 -0.215250856 

Ready_To_Eat_Meals Bacilli_bacterium 5.42706E-05 0.049587866 -0.180030524 



Annexes 

220 

Var1 Var2 p-value q-value R 

Ready_To_Eat_Meals Intestinimonas_gabonensis 7.35286E-06 0.017059168 -0.199575395 

Ready_To_Eat_Meals GGB9677_SGB15180 1.01642E-06 0.006501037 -0.217199973 

Ready_To_Eat_Meals GGB4584_SGB6338 4.22723E-05 0.041595944 -0.182585749 

Sugar_and_Other_Sweets Lactococcus_lactis 2.6482E-05 0.030796142 -0.187277229 

Vegetables Bacilli_unclassified_SGB6422 3.90803E-05 0.03946696 0.183381562 

Vegetables Clostridium_sp_AF20_17LB 7.68432E-06 0.017059168 0.199164748 

White_Bread Clostridium_saccharogumia 6.85588E-06 0.017059168 -0.200225427 

White_Bread GGB9615_SGB15053 4.59467E-06 0.014693754 -0.203902891 

White_Bread Blautia_stercoris 3.74325E-05 0.03946696 -0.183816771 

White_Bread Clostridium_sp_AF20_17LB 2.22173E-05 0.030450351 -0.189009283 

White_Bread Clostridium_sp_AF36_4 2.08416E-05 0.02962288 -0.189635905 

White_Bread GGB3490_SGB4664 2.05852E-05 0.02962288 -0.189757025 

White_Grains GGB9524_SGB14924 2.74935E-05 0.031032029 -0.186905456 

White_Grains GGB3570_SGB4777 2.43911E-05 0.030796142 -0.188090447 

White_Grains Mediterraneibacter_butyricigenes 9.848E-06 0.017996521 -0.196838297 

White_Grains GGB3490_SGB4664 6.70978E-06 0.017059168 -0.200425082 

White_Grains Lachnospiraceae_bacterium 2.20925E-06 0.008478231 -0.210463714 

Whole_Bread Lachnospiraceae_unclassified_SGB4924 8.89054E-06 0.017059168 0.19780075 

Whole_Grains Haemophilus_parainfluenzae 5.41251E-05 0.049587866 0.180058178 

Yogurt Streptococcus_thermophilus 3.55715E-13 1.36509E-08 0.318441011 

HEI_2015 Faecalibacterium_prausnitzii 6.62798E-05 0.027555146 0.177960539 

HEI_2015 Blautia_glucerasea 7.93407E-05 0.029986462 0.176077926 

HEI_2015 Lachnospiraceae_unclassified_SGB4924 2.76906E-05 0.017813831 0.186834524 

HEI_2015 Lachnospiraceae_bacterium 0.000143502 0.042385469 0.169733715 

IASE Prevotella_SGB1675 8.57479E-05 0.031270908 -0.175259059 

IASE Eubacterium_sp_AF22_8LB 7.41872E-05 0.029096789 -0.176783125 
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Var1 Var2 p-value q-value R 

MAR Lachnospiraceae_bacterium 2.46882E-05 0.017696298 0.187970977 

PDI_Adj Dorea_formicigenerans 2.62874E-05 0.017813831 -0.187350303 

PDI_Adj Ruminococcus_torques 1.66468E-05 0.013309081 -0.191823091 

hPDI_Adj Clostridium_saccharogumia 1.46048E-06 0.003467721 0.214081836 

hPDI_Adj GGB4700_SGB6506 2.85664E-05 0.017813831 0.186525008 

hPDI_Adj Bacilli_bacterium 4.00944E-05 0.020327842 0.183122271 

hPDI_Adj Flavonifractor_plautii 0.000152928 0.042385469 -0.169039178 

hPDI_Adj Intestinimonas_gabonensis 1.37433E-06 0.003467721 0.214608134 

hPDI_Adj GGB9646_SGB15123 0.000128177 0.040991163 0.170960138 

hPDI_Adj GGB9677_SGB15180 8.78454E-06 0.010144678 0.197913312 

hPDI_Adj GGB4579_SGB6329 9.21064E-05 0.033010604 0.174501539 

hPDI_Adj GGB9758_SGB15368 0.000144821 0.042385469 0.169634026 

hPDI_Adj Blautia_sp_AF19_10LB 3.40674E-05 0.019139459 0.184764942 

hPDI_Adj Blautia_massiliensis 4.59832E-06 0.007063502 -0.203895661 

hPDI_Adj Ruminococcus_torques 1.76232E-06 0.003663335 -0.212447356 

hPDI_Adj Clostridium_sp_AF20_17LB 9.98475E-05 0.033841141 0.173643124 

hPDI_Adj Lachnospiraceae_bacterium 8.3555E-06 0.010144678 0.198382532 

uPDI_Adj Prevotellamassilia_timonensis 2.87002E-05 0.017813831 0.186478493 

uPDI_Adj GGB4700_SGB6506 0.000143928 0.042385469 -0.169701474 

uPDI_Adj GGB4585_SGB6340 0.000155412 0.042507309 -0.168862795 

uPDI_Adj GGB4603_SGB6367 5.51394E-05 0.023878811 -0.179866917 

uPDI_Adj GGB9758_SGB15368 0.000144792 0.042385469 -0.169636239 

uPDI_Adj Blautia_glucerasea 1.16469E-05 0.011273014 -0.195249341 

uPDI_Adj Lachnospiraceae_bacterium 4.75725E-06 0.007063502 -0.203586011 

MDI_Adj Dorea_formicigenerans 3.06501E-05 0.017813831 0.185823335 

MDI_Adj Ruminococcus_torques 1.93687E-05 0.01491174 0.19035194 
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Var1 Var2 p-value q-value R 

PDI_Unadj GGB9512_SGB14909 4.33478E-05 0.021454085 -0.182330372 

PDI_Unadj Dorea_sp_AF24_7LB 1.35939E-05 0.011774054 -0.193773848 

PDI_Unadj Ruminococcus_torques 3.65059E-06 0.006513113 -0.205986519 

hPDI_Unadj Bacteroides_cellulosilyticus 7.6781E-05 0.02955643 0.176422613 

hPDI_Unadj Clostridium_saccharogumia 2.17888E-05 0.016175843 0.189200414 

hPDI_Unadj GGB4700_SGB6506 1.16643E-06 0.003467721 0.216021194 

hPDI_Unadj Bacilli_bacterium 9.75019E-05 0.033779548 0.17389641 

hPDI_Unadj Flavonifractor_plautii 5.87258E-05 0.024912936 -0.179216314 

hPDI_Unadj Intestinimonas_gabonensis 1.14784E-05 0.011273014 0.195387873 

hPDI_Unadj GGB9677_SGB15180 7.0496E-08 0.001465401 0.238863229 

hPDI_Unadj GGB3570_SGB4777 0.000140958 0.042385469 0.169928591 

hPDI_Unadj Blautia_sp_AF19_10LB 3.8293E-05 0.019899896 0.183587295 

hPDI_Unadj Blautia_massiliensis 5.01729E-05 0.02317652 -0.180837212 

hPDI_Unadj Ruminococcus_torques 4.94786E-05 0.02317652 -0.180980031 

hPDI_Unadj Enterocloster_clostridioformis 0.000146893 0.042385469 -0.169479041 

hPDI_Unadj Clostridium_sp_AF20_17LB 7.25781E-05 0.029013079 0.177012804 

hPDI_Unadj Lachnospira_sp_NSJ_43 3.07452E-05 0.017813831 0.185792391 

uPDI_Unadj Prevotellamassilia_timonensis 1.24731E-05 0.011273014 0.194596528 

uPDI_Unadj GGB4603_SGB6367 7.20242E-05 0.029013079 -0.177092969 

uPDI_Unadj GGB9758_SGB15368 3.08509E-05 0.017813831 -0.185758116 

uPDI_Unadj Blautia_glucerasea 7.89925E-06 0.010144678 -0.198907397 

uPDI_Unadj GGB3571_SGB4778 0.000108097 0.035109546 -0.17279472 

uPDI_Unadj GGB3490_SGB4664 0.000151935 0.042385469 -0.169110422 

uPDI_Unadj Lachnospiraceae_bacterium 2.62019E-07 0.002624502 -0.228473239 

MDI_Unadj Akkermansia_muciniphila 0.000176108 0.046932775 -0.167488529 

MDI_Unadj GGB9512_SGB14909 1.16837E-05 0.011273014 0.195219379 
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Var1 Var2 p-value q-value R 

MDI_Unadj Intestinimonas_gabonensis 1.23739E-05 0.011273014 -0.194672719 

MDI_Unadj Dorea_longicatena 0.000107848 0.035109546 0.172819432 

MDI_Unadj Dorea_formicigenerans 9.47189E-05 0.033371542 0.174204488 

MDI_Unadj Dorea_sp_AF24_7LB 5.34402E-05 0.023635356 0.180189242 

MDI_Unadj Ruminococcus_torques 9.61104E-07 0.003467721 0.217677283 

aMED Akkermansia_muciniphila 0.000130477 0.041094225 0.17076763 

aMED Haemophilus_parainfluenzae 0.000100936 0.033841141 0.173527512 

aMED Clostridium_saccharogumia 0.000152705 0.042385469 0.169055149 

aMED GGB4700_SGB6506 4.90255E-05 0.02317652 0.181074252 

aMED Bacilli_bacterium 8.32398E-05 0.030898304 0.175572514 

aMED Dysosmobacter_welbionis 0.00018467 0.048591571 -0.166963861 

aMED Flavonifractor_plautii 1.64743E-05 0.013309081 -0.191923843 

aMED GGB9646_SGB15123 5.13119E-05 0.023187398 0.180606913 

aMED GGB9677_SGB15180 3.75991E-06 0.006513113 0.205720396 

aMED Blautia_massiliensis 3.70981E-05 0.019894494 -0.183907314 

aMED Ruminococcus_torques 3.78771E-07 0.002624502 -0.225466566 

aMED Clostridium_sp_AF20_17LB 1.03565E-06 0.003467721 0.217039895 

aMED Clostridium_sp_AF36_4 0.000173284 0.046779898 0.16766684 

aMED Lachnospira_sp_NSJ_43 3.73255E-05 0.019894494 0.183845658 

aMED Coprococcus_eutactus 1.50139E-06 0.003467721 0.213842274 

aMED Lachnospiraceae_bacterium 6.44717E-06 0.008934489 0.20079462 

Item1 GGB9730_SGB15291 2.18839E-05 0.026357906 0.189157672 

Item1 Flavonifractor_plautii 1.46516E-05 0.020588198 -0.193054647 

Item1 GGB9758_SGB15368 6.00477E-05 0.049438112 0.178985953 

Item1 GGB3570_SGB4777 5.3094E-08 0.000307753 0.241044787 

Item1 Lachnospiraceae_bacterium 5.39132E-05 0.046688993 0.180098561 
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Var1 Var2 p-value q-value R 

Item2 Bacilli_unclassified_SGB6422 7.78232E-06 0.013122681 0.199046573 

Item6 Blautia_massiliensis 9.56712E-06 0.015844177 -0.19711106 

Item6 Ruminococcus_gnavus 3.27775E-05 0.033776155 -0.185152102 

Item8 Haemophilus_pittmaniae 4.77569E-05 0.04258723 0.181342511 

Item8 Ruminococcus_torques 1.71118E-05 0.022041473 -0.191556244 

Item10 Massilimaliae_massiliensis 5.67745E-06 0.01066726 -0.201966859 

Item13 Haemophilus_parainfluenzae 5.2203E-06 0.010300865 0.20273715 

Item14 GGB4676_SGB6465 4.04822E-06 0.008532719 0.205052577 

Item14 GGB9758_SGB15368 1.3318E-06 0.003813748 0.214879683 

Item14 Lachnospira_eligens 6.22698E-06 0.010896279 0.201115696 

Item16 Phocea_massiliensis 1.63832E-05 0.021666744 -0.191977496 

Item16 Ruminococcus_torques 6.06265E-06 0.010896279 -0.201362469 

Item17 Clostridium_saccharogumia 2.46207E-05 0.028285692 0.187997996 

Item17 Flavonifractor_plautii 1.27231E-05 0.019499585 -0.194407132 

Item17 GGB9677_SGB15180 5.38138E-05 0.046688993 0.180117546 

Item17 GGB3478_SGB4643 5.46192E-07 0.001809106 0.222438213 

Item17 Roseburia_hominis 2.84835E-05 0.031077815 0.186553919 

Item17 Lachnospiraceae_bacterium 6.21524E-08 0.000339067 0.23983518 

Item18 Bacteroides_cellulosilyticus 2.80595E-05 0.030979655 -0.186703036 

Item18 Clostridium_saccharogumia 5.53448E-06 0.01066726 -0.20220119 

Item18 GGB9615_SGB15053 7.93296E-07 0.00253696 -0.219305833 

Item18 Blautia_stercoris 6.02371E-05 0.049438112 -0.178953336 

Item18 Clostridium_sp_AF20_17LB 2.71082E-05 0.03028995 -0.187045519 

Item18 Clostridium_sp_AF36_4 1.15815E-05 0.018518893 -0.195302856 

Item18 GGB3490_SGB4664 3.10278E-05 0.032699754 -0.18570101 

Item18 Lachnospiraceae_bacterium 2.56633E-05 0.029025191 -0.187588137 
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Var1 Var2 p-value q-value R 

Item19 Lachnospiraceae_unclassified_SGB4924 1.06429E-06 0.003290151 0.21680664 

Item20 Massilioclostridium_coli 1.43742E-05 0.020588198 -0.193238361 

Item22 GGB9524_SGB14924 7.31529E-06 0.012563602 -0.19962305 

Item22 GGB9677_SGB15180 4.13249E-05 0.038628535 -0.182815852 

Item22 GGB3570_SGB4777 4.39597E-06 0.008862857 -0.204305028 

Item22 Mediterraneibacter_butyricigenes 2.89533E-05 0.031223127 -0.186391118 

Item22 GGB3490_SGB4664 1.32673E-05 0.019845705 -0.194006756 

Item22 Lachnospiraceae_bacterium 4.74823E-07 0.001693694 -0.223601735 

Item24 GGB6521_SGB9212 1.64673E-05 0.021666744 0.191927975 

Item24 GGB4751_SGB6580 5.58966E-05 0.047559269 0.179726299 

Item24 Christensenella_sp_Marseille_P3954 2.77448E-06 0.00677134 0.208444974 

Item26 Clostridium_innocuum 5.43703E-05 0.046688993 0.18001163 

Item27 Intestinimonas_gabonensis 4.76337E-05 0.04258723 0.181368916 

Item29 Streptococcus_thermophilus 1.48905E-06 0.004061679 0.213913918 

Item29 Roseburia_sp_AF02_12 2.97529E-05 0.031716617 -0.186119729 

Item29 Megasphaera_sp_BL7 2.01563E-05 0.02492453 -0.18996285 

Item30 Streptococcus_thermophilus 4.06342E-14 5.766E-10 0.330328988 

Item33 Dorea_formicigenerans 4.12749E-05 0.038628535 0.182828131 

Item33 Coprococcus_comes 4.16516E-05 0.038628535 0.182735938 

Item34 Dorea_formicigenerans 1.35703E-06 0.003813748 0.214717585 

Item36 GGB9758_SGB15368 5.97785E-05 0.049438112 0.179032476 

Item36 Lachnospiraceae_bacterium 5.75104E-06 0.01066726 0.201848431 

Item39 GGB9512_SGB14909 3.51949E-05 0.035605735 0.184437755 

Item39 Phocea_massiliensis 3.53209E-05 0.035605735 0.184401812 

Item39 GGB3344_SGB4424 2.30411E-05 0.027395821 0.188651441 

Item39 GGB4566_SGB6305 1.28256E-05 0.019499585 0.194330468 
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Var1 Var2 p-value q-value R 

Item40 GGB9644_SGB15121 1.03846E-05 0.016896269 0.196337212 

Item42 GGB1228_SGB1601 2.68855E-07 0.00113337 0.22826446 

Item42 Bacteroides_oleiciplenus 2.62013E-14 4.85992E-10 0.332649449 

Item42 Bacteroides_sp_AF16_49 0 0 0.466125572 

Item42 GGB6567_SGB9277 3.60051E-05 0.035905239 0.18420869 

Item42 GGB6554_SGB9256 3.21188E-07 0.001241151 0.226817147 

Item42 Brachyspira_aalborgi 3.81552E-05 0.037193721 0.183623718 

Item42 Fusobacterium_gonidiaformans 3.89014E-05 0.037193721 0.183427965 

Item42 GGB9284_SGB14237 2.17495E-08 0.000144078 0.247779232 

Item42 Gemmiger_SGB15292 3.28145E-06 0.007422647 0.206945028 

Item42 GGB3183_SGB4206 2.38923E-07 0.00110791 0.229219687 

Item42 Ruminococcaceae_unclassified_SGB15257 6.16319E-06 0.010896279 0.201210736 

Item42 GGB36331_SGB53806 4.37299E-05 0.040154411 0.182241104 

Item42 GGB9709_SGB15238 1.81946E-05 0.023115115 0.190960759 

Item42 GGB13472_SGB20758 2.38923E-07 0.00110791 0.229219687 

Item42 Clostridia_unclassified_SGB20792 2.67828E-06 0.006713208 0.208758998 

Item42 GGB4569_SGB6311 7.18603E-11 7.40496E-07 0.286871164 

Item42 GGB3717_SGB5040 3.81692E-06 0.008232301 0.205584552 

Item42 Mediterraneibacter_sp_NSJ_55 2.62013E-14 4.85992E-10 0.332649449 

Item42 Roseburia_SGB4939 2.68855E-07 0.00113337 0.22826446 

Item42 Roseburia_sp_MUC_MUC_530_WT_4D 3.89014E-05 0.037193721 0.183427965 

Item42 GGB3751_SGB5099 4.34783E-07 0.001612907 0.224330522 

Item42 Arthrospira_platensis 4.9738E-14 5.766E-10 0.32926198 

Item42 GGB18384_SGB72500 2.38923E-07 0.00110791 0.229219687 

Item42 Eggerthellaceae_unclassified_SGB63096 4.9738E-14 5.766E-10 0.32926198 

Item42 Schaalia_turicensis 5.08713E-05 0.044932409 0.180695424 
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Var1 Var2 p-value q-value R 

Item44 Clostridium_saccharogumia 1.44869E-05 0.020588198 -0.193163344 

Item44 GGB4713_SGB6526 3.2128E-06 0.007422647 -0.207134596 

Item44 GGB9568_SGB14980 1.15761E-06 0.003463192 -0.216086402 

Item44 Blautia_sp_AF19_10LB 1.51746E-05 0.021004767 -0.192717114 

Item44 Clostridium_sp_AF20_17LB 5.31753E-07 0.001809106 -0.222661327 

Item44 Lachnospiraceae_bacterium 3.18602E-05 0.033199732 -0.185436323 

Item45 GGB52930_SGB73859 2.87456E-06 0.006835697 0.20812918 

Item45 Clostridium_sp_AF32_12BH 3.71654E-05 0.036668043 0.183889017 

Item45 GGB3478_SGB4643 1.27761E-05 0.019499585 0.194367402 

Item50 Clostridia_unclassified_SGB14844 1.39709E-08 9.96686E-05 0.251047386 

Item50 GGB9494_SGB14891 3.82299E-10 3.54552E-06 0.276067287 

Item50 Clostridia_bacterium_UC5_1_1E11 2.83904E-08 0.000175532 0.245789219 

Item50 Clostridia_bacterium_12CBH8 5.01923E-10 4.23176E-06 0.274262263 

Item50 Massilioclostridium_coli 0 0 0.359032978 

Item50 GGB9619_SGB15067 1.56142E-05 0.021295502 0.192441784 

Item50 Clostridium_phoceensis 0 0 0.421144582 

Item50 GGB9557_SGB14966 2.72301E-09 2.10448E-05 0.262741288 

Item50 GGB4566_SGB6305 4.19294E-06 0.008641373 0.204734291 

Item50 GGB3570_SGB4777 2.15562E-06 0.00555324 0.210680318 

Item51 Bacilli_unclassified_SGB6428 2.3352E-05 0.027414085 -0.188519515 

Item51 Flavonifractor_plautii 1.65873E-05 0.021666744 0.191857717 

Item51 GGB9677_SGB15180 1.41945E-05 0.020588198 -0.193359209 

Item51 GGB9695_SGB15209 1.83144E-06 0.004852897 0.212111058 

Item51 GGB4603_SGB6367 6.0136E-05 0.049438112 -0.178970725 

Item51 GGB9758_SGB15368 4.51931E-05 0.041091198 -0.181905868 

Item57 Eubacterium_rectale 3.50828E-06 0.00774679 0.206344559 



Annexes 

228 

Var1 Var2 p-value q-value R 

Item58 Bacilli_bacterium 2.47045E-05 0.028285692 -0.187964458 

Item58 Intestinimonas_gabonensis 1.91795E-05 0.024037077 -0.190447642 

Item58 GGB9677_SGB15180 2.95568E-07 0.001191807 -0.227494804 

Item58 GGB4584_SGB6338 2.05377E-05 0.025061997 -0.189779602 

Fibre_g Haemophilus_parainfluenzae 3.13432E-06 0.025058908 0.207356121 

Fibre_g Ruminococcus_torques 1.27984E-08 0.000306969 -0.25168923 

VitD_mcg Lachnospiraceae_bacterium 2.45627E-09 0.000117827 0.263459596 

Biotin_mcg GGB3478_SGB4643 4.90237E-07 0.005879167 0.223336839 

VitC_mg GGB9758_SGB15368 1.00601E-06 0.009651636 0.2172879 

VitC_mg Ruminococcus_torques 4.14408E-07 0.005879167 -0.224726562 
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ANNEX 10. Significant association obtained by Spearman correlations (FDR < 0.05) between bacterial and fungal species 
 

Var1 Var2 p-value q-value R 
Candidatus_Metaruminococcus_caecorum Penicillium.sp. 2.62E-10 4.7231E-07 0.58456333 
Actinomyces_SGB17168 Penicillium.brevicompactum 9.90E-10 1.3041E-06 0.56885733 
Candidatus_Protoclostridium_gallicola Debaryomyces.hansenii 1.34E-08 1.1071E-05 0.53549138 
Candidatus_Metaruminococcus_caecorum Penicillium.camemberti 1.54E-07 7.4587E-05 0.50045167 
GGB9209_SGB14148 Vanrija.humicola 2.26E-07 9.8318E-05 0.49462949 
GGB781_SGB1024 Neurospora.cerealis 3.24E-07 0.00013032 0.48898201 
Fournierella_massiliensis Cladosporium.cladosporioides 1.17E-06 0.00034345 0.46810242 
Fournierella_massiliensis Saccharomyces.sp. 1.18E-06 0.00034426 0.46799392 
Butyricimonas_sp_Marseille_P3923 Bipolaris.maydis 1.23E-06 0.00035294 0.46732267 
Propionibacterium_freudenreichii Penicillium.sp..DTU1 2.23E-06 0.000563 0.45710099 
Candidatus_Schneewindia_gallinarum Aspergillus.penicilloides 2.49E-06 0.00061288 0.45519036 
Odoribacter_laneus Penicillium.nalgiovense 4.43E-06 0.0009663 0.44493496 
Catabacter_hongkongensis Bipolaris.maydis 6.05E-06 0.00122877 0.43923145 
Duodenibacillus_massiliensis Penicillium.nordicum 6.61E-06 0.00131381 0.43759752 
Anaerotignum_lactatifermentans Penicillium.nalgiovense 6.79E-06 0.00133845 0.43709878 
Bifidobacterium_animalis Cladosporium.cladosporioides 7.95E-06 0.00149352 0.43417031 
Anaerofustis_stercorihominis Penicillium.rubens 1.29E-05 0.00213749 0.42505249 
Streptococcus_mutans Pestalotiopsis.kenyana 1.77E-05 0.00271614 0.41878941 
Prevotella_lascolaii Yarrowia.lipolytica 2.03E-05 0.00300633 0.4161654 
GGB9634_SGB15099 Penicillium.nordicum 2.09E-05 0.00306161 0.41559062 
GGB9716_SGB15269 Penicillium.nordicum 2.62E-05 0.00359856 0.411006 
GGB4554_SGB6285 Penicillium.roqueforti 2.66E-05 0.00362345 0.41070525 
Clostridia_unclassified_SGB4447 Candida.albicans 4.19E-05 0.00504945 0.40144611 
Candidatus_Metaruminococcus_caecorum Mucor.lanceolatus 4.33E-05 0.00516482 0.40077553 
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Var1 Var2 p-value q-value R 
GGB9710_SGB15239 Geotrichum.candidum 4.33E-05 0.00516842 0.40073495 
GGB3341_SGB4420 Saccharomyces.cerevisiae 5.25E-05 0.00595425 0.39672018 
Streptococcus_gordonii Yarrowia.lipolytica 6.25E-05 0.00673389 0.39303342 
GGB1538_SGB2121 Geotrichum.candidum 6.26E-05 0.00674486 0.39299183 
Alistipes_inops Penicillium.nalgiovense 7.12E-05 0.00741321 0.3902193 
Massilimicrobiota_timonensis Aspergillus.penicilloides 8.43E-05 0.00840576 0.38656762 
Clostridium_SGB4751 Agaricus.bisporus 8.58E-05 0.00847656 0.38619113 
Prevotella_stercorea Penicillium.nordicum 8.62E-05 0.00848638 0.38610162 
GGB4768_SGB6601 Penicillium.nordicum 8.62E-05 0.00848638 0.38610162 
GGB9636_SGB15108 Yarrowia.lipolytica 8.65E-05 0.00850877 0.38601211 
Clostridia_bacterium_UC5_1_1E11 Aspergillus.penicilloides 9.06E-05 0.0087752 0.38499761 
GGB9186_SGB14125 Saccharomyces.cerevisiae 9.14E-05 0.00881667 0.38482188 
GGB9559_SGB14968 Vanrija.humicola 9.37E-05 0.00896194 0.38427138 
Lentisphaeria_unclassified_SGB9198 Penicillium.roqueforti 9.39E-05 0.0089626 0.38422954 
Ruminococcus_gnavus uncultured.Malassezia.spp..1 9.90E-05 0.00933618 0.38305172 
Bacilli_unclassified_SGB6493 Geotrichum.candidum 9.96E-05 0.00937177 0.38291834 
Raoultibacter_massiliensis Pestalotiopsis.kenyana 1.05E-04 0.00971467 0.38181742 
GGB6606_SGB9340 Penicillium.solitum 1.18E-04 0.0105152 0.3791076 
GGB3817_SGB5182 Vanrija.humicola 1.25E-04 0.01092909 0.37786669 
GGB6522_SGB9214 Yarrowia.lipolytica 1.30E-04 0.0112214 0.3770611 
GGB9603_SGB15035 Agaricus.bisporus 1.30E-04 0.01122679 0.37703872 
Blautia_producta Penicillium.rubens 1.34E-04 0.01146119 0.37637208 
Raoultibacter_massiliensis Botryosphaeria.dothidea 1.53E-04 0.01266695 0.37329122 
GGB1538_SGB2121 Yarrowia.lipolytica 1.58E-04 0.01288991 0.37263035 
Acidaminococcus_intestini Candida.parapsilosis 1.59E-04 0.01294811 0.37247254 
GGB9332_SGB14295 Geotrichum.candidum 1.79E-04 0.01408221 0.36969826 
GGB9045_SGB13947 Penicillium.roqueforti 1.91E-04 0.01470077 0.36823123 
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Var1 Var2 p-value q-value R 
GGB3433_SGB4573 Penicillium.nalgiovense 1.98E-04 0.01502988 0.36739697 
GGB9101_SGB14033 Bipolaris.maydis 2.05E-04 0.01529865 0.36664666 
Streptococcus_infantis Aspergillus.versicolor 2.23E-04 0.01629126 0.36459293 
Blautia_hansenii Bipolaris.maydis 2.26E-04 0.016395 0.36430592 
Streptococcus_anginosus uncultured.Malassezia.spp..1 2.31E-04 0.01658058 0.36384005 
Clostridia_unclassified_SGB4372 Pichia.manshurica 2.35E-04 0.01676136 0.36338522 
Candidatus_Metalachnospira_gallinarum Saccharomyces.boulardii..nom..inval.. 2.38E-04 0.01688587 0.36316157 
Faecalimonas_umbilicata Penicillium.rubens 2.41E-04 0.01699999 0.36285902 
GGB4710_SGB6522 Penicillium.nalgiovense 2.58E-04 0.0178683 0.36125111 
Klebsiella_pneumoniae Saccharomyces.pastorianus 2.63E-04 0.01810537 0.36075385 
Clostridia_unclassified_SGB14844 Aspergillus.penicilloides 2.66E-04 0.01819977 0.36052743 
GGB5980_SGB8599 Penicillium.nalgiovense 2.88E-04 0.0191295 0.35861098 
GGB29535_SGB42321 Geotrichum.candidum 2.96E-04 0.01951485 0.35792372 
Bacilli_unclassified_SGB6540 Penicillium.roqueforti 3.05E-04 0.01991056 0.35723744 
Streptococcus_sp_263_SSPC Pestalotiopsis.kenyana 3.06E-04 0.01992238 0.35719522 
Clostridiales_bacterium_Choco116 Aspergillus.penicilloides 3.08E-04 0.02002722 0.35700889 
GGB3474_SGB4637 Malassezia.arunalokei 3.32E-04 0.02113185 0.35516444 
Ruminococcus_sp_JE7A12 Penicillium.nordicum 3.34E-04 0.02115615 0.35508114 
Opitutales_bacterium Penicillium.nordicum 3.65E-04 0.02250591 0.35292483 
Candidatus_Pararuminococcus_gallinarum Meira.nashicola 3.69E-04 0.02265762 -0.3526588 
GGB9291_SGB14248 Malassezia.restricta 3.73E-04 0.02282003 -0.3524049 
GGB3537_SGB4727 Penicillium.nalgiovense 3.79E-04 0.02305994 0.35202385 
GGB58158_SGB79798 Debaryomyces.hansenii 3.81E-04 0.02314048 0.35189221 
Candidatus_Metaruminococcus_caecorum Penicillium.paneum 3.97E-04 0.0238058 0.35086556 
Clostridiaceae_unclassified_SGB4769 Malassezia.restricta 4.07E-04 0.02418078 -0.3502473 
Paraprevotella_clara Penicillium.chrysogenum 4.21E-04 0.02472814 0.34944742 
GGB9494_SGB14891 Meira.nashicola 4.24E-04 0.0248644 -0.34923 
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Var1 Var2 p-value q-value R 
GGB9634_SGB15099 Geotrichum.candidum 4.26E-04 0.02492885 0.34911437 
Anaerostipes_caccae Mucor.lanceolatus 4.63E-04 0.02633483 0.34709314 
Sellimonas_intestinalis Penicillium.brevicompactum 4.73E-04 0.02670368 0.3465303 
Clostridiales_bacterium_Choco116 uncultured.Malassezia.spp..1 4.75E-04 0.02673033 0.34644268 
Candidatus_Metalachnospira_gallinarum Saccharomyces.sp. 4.77E-04 0.02680857 0.34633427 
Enterocloster_aldensis Penicillium.paneum 4.80E-04 0.02694866 0.34616181 
Intestinimonas_timonensis Saccharomyces.pastorianus 4.85E-04 0.02710239 0.3459166 
Blautia_sp_MSK_21_1 Penicillium.roqueforti 5.16E-04 0.02825223 0.34436269 
Actinomyces_sp_ICM47 Saccharomyces.boulardii..nom..inval.. 5.22E-04 0.02844182 0.34408138 
Gordonibacter_urolithinfaciens Malassezia.restricta 5.26E-04 0.02855782 0.34391861 
GGB9818_SGB15459 Penicillium.nalgiovense 5.29E-04 0.02865344 0.34377133 
GGB3226_SGB4260 Penicillium.chrysogenum 5.39E-04 0.02898958 0.34327053 
GGB3678_SGB4991 Penicillium.rubens 5.42E-04 0.02909068 0.34314981 
GGB9695_SGB15209 Saccharomyces.sp. 5.51E-04 0.02936508 0.34275222 
Clostridiales_bacterium_BX7 Geotrichum.candidum 5.67E-04 0.02992152 0.34201318 
Bacilli_unclassified_SGB6571 Debaryomyces.hansenii 5.79E-04 0.03037089 0.34147125 
Rikenellaceae_bacterium_DSM_108975 Penicillium.nalgiovense 5.82E-04 0.03046042 0.34136146 
Candidatus_Alangreenwoodia_gallinarii Neurospora.cerealis 5.89E-04 0.03071649 0.34103982 
GGB2982_SGB3964 Malassezia.restricta 5.95E-04 0.03090756 0.34078887 
Candidatus_Aristotella_avistercoris Penicillium.chrysogenum 6.13E-04 0.03150191 0.34004043 
Enterocloster_lavalensis Penicillium.roqueforti 6.30E-04 0.03207197 0.33933811 
Sutterella_sp_AM11_39 X.Candida..sake 6.43E-04 0.0324481 0.33884435 
Catabacter_hongkongensis Saccharomyces.sp. 6.49E-04 0.03261434 0.33858704 
Bifidobacterium_longum Candida.parapsilosis 6.70E-04 0.03328553 0.33780299 
Bacteroides_caccae Penicillium.sp. 6.77E-04 0.03351285 0.33753068 
GGB9694_SGB15204 Geotrichum.candidum 6.86E-04 0.03381687 0.33717132 
Alistipes_dispar Penicillium.nalgiovense 7.25E-04 0.03511491 0.335775 
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Var1 Var2 p-value q-value R 
GGB3817_SGB5182 X.Candida..sake 7.36E-04 0.0354123 0.33538388 
Mediterraneibacter_glycyrrhizinilyticus Penicillium.nalgiovense 7.46E-04 0.03573754 0.33501522 
Pseudoflavonifractor_sp_Marseille_P3106 Aspergillus.versicolor 7.74E-04 0.03655856 0.33408621 
Lactonifactor_sp_BIOML_A6 Aspergillus.versicolor 7.76E-04 0.03660469 0.33400788 
Bacteroides_caccae Debaryomyces.hansenii 7.95E-04 0.03715922 0.3334008 
GGB3433_SGB4573 Penicillium.rubens 7.99E-04 0.03731297 0.33324572 
GGB6608_SGB9342 Penicillium.nalgiovense 8.22E-04 0.03796112 0.33252613 
Streptococcus_salivarius Aspergillus.versicolor 8.32E-04 0.03823596 0.33219899 
Prevotella_stercorea Pichia.manshurica 8.42E-04 0.03848658 0.33188317 
GGB3123_SGB4135 Penicillium.chrysogenum 8.44E-04 0.03852986 0.33184293 
Ruminococcaceae_bacterium_AM07_15 Penicillium.nordicum 8.62E-04 0.03906757 0.33126907 
GGB3817_SGB5182 Mucor.lanceolatus 8.70E-04 0.0392095 0.33103817 
Harryflintia_acetispora Mucor.lanceolatus 8.73E-04 0.03927534 0.3309577 
Clostridia_bacterium Candida.parapsilosis 8.82E-04 0.03947472 -0.330696 
GGB9059_SGB13976 Geotrichum.candidum 8.89E-04 0.0396888 0.33048113 
Candidatus_Schneewindia_gallinarum Mucor.lanceolatus 9.07E-04 0.04015662 0.32994844 
Phocea_massiliensis Penicillium.nordicum 9.57E-04 0.04161261 0.32855436 
Eubacterium_sp_AF15_50 Agaricus.bisporus 9.70E-04 0.04195263 0.32819648 
Lactococcus_lactis Debaryomyces.hansenii 9.71E-04 0.04197623 0.32817143 
Hafnia_paralvei Penicillium.nordicum 1.04E-03 0.04395911 0.32633134 
Eggerthella_lenta Bipolaris.maydis 1.08E-03 0.04514226 0.32532649 
GGB9667_SGB15164 Aspergillus.versicolor 1.09E-03 0.04532232 -0.3251674 
Methanomassiliicoccales_archaeon Geotrichum.candidum 1.09E-03 0.04547447 0.3250322 
GGB1407_SGB1930 Meira.nashicola 1.11E-03 0.04605474 0.3245348 
GGB3654_SGB4965 Yarrowia.lipolytica 1.16E-03 0.04748686 0.32343319 
GGB9288_SGB14243 Yarrowia.lipolytica 1.16E-03 0.04752241 0.32340658 
GGB9635_SGB15102 Yarrowia.lipolytica 1.17E-03 0.04775125 0.323232 
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Var1 Var2 p-value q-value R 
Lachnoclostridium_sp_An138 Aspergillus.penicilloides 1.20E-03 0.0484541 0.32253196 
Neobittarella_massiliensis Saccharomyces.sp. 1.21E-03 0.04863447 0.32236887 
Collinsella_aerofaciens Bipolaris.maydis 1.21E-03 0.04873245 -0.3222973 
GGB9636_SGB15107 Geotrichum.candidum 1.23E-03 0.04927319 0.32182723 
Anaerotruncus_colihominis Aspergillus.penicilloides 1.24E-03 0.04944684 0.32167774 
Bifidobacterium_dentium Pestalotiopsis.kenyana 1.26E-03 0.04992047 0.32127305 
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ANNEX 11. Prediction using machine learning technique. Prediction of 
different food items (A). food groups (B) and nutrients (C) using fungal species-
level genome bin (SGB)-level features information estimated by MetaPhlAn4. 
Y-axis and X-axis represent median Spearman's correlation and median 
receiver operating characteristic area under the curve (ROCAUC) from the 
random forest regressor and random forest classifier respectively. 
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ANNEX 12. α-diversity measures (Shannon and Chao1), scores for hPDI and 
aMED indeces and IBD-similarity index scores coming from non-targeted 
volunteers 
 

Donor Gender IBD-score Chao1  Shannon hPDI score aMED score 

Donor 1 Female 0.203873632 303 4.18055368 62 6 

Donor 2 Female 0.209459649 287 4.353425467 60 7 
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ANNEX 13. List and number of bacterial isolates coming from two healthy donors. Bacteria was isolated using non-targeted 
method and two different media (GAM and L-YHBHI.4 supplemented with RF) 
 

All_frozen_combined_species Phylum Family Total_isolates Donor_1_i
solates 

Donor_2
_isolates 

Media_GAM_all_
isolates 

Media_L. 
YHBHI.4_all_isolates 

Agathobacter rectalis Bacillota Lachnospiraceae 1 1 0 1 0 
Alistipes shahii Bacteroidota Rikenellaceae 1 1 0 1 0 
Bacteroides caccae Bacteroidota Bacteroidaceae 14 14 0 14 0 
Bacteroides clarus Bacteroidota Bacteroidaceae 2 2 0 2 0 
Bacteroides fragilis Bacteroidota Bifidobacteriaceae 6 6 0 6 0 
Bacteroides stercoris Bacteroidota Bacteroidaceae 2 2 0 2 0 
Bacteroides thetaiotaomicron Bacteroidota Bacteroidaceae 1 0 1 1 0 
Bacteroides uniformis Bacteroidota Bacteroidaceae 46 7 39 46 0 
Bacteroides xylanisolvens Bacteroidota Bacteroidaceae 1 1 0 1 0 
Barnesiella intestinihominis Bacteroidota Barnesiellaceae 1 1 0 1 0 
Bifidobacterium adolescentis Actinomycetota Bifidobacteriaceae 34 34 0 13 21 
Bifidobacterium animalis Actinomycetota Bifidobacteriaceae 2 2 0 0 2 
Bifidobacterium catenulatum Actinomycetota Bifidobacteriaceae 6 0 6 0 6 
Bifidobacterium longum Actinomycetota Bifidobacteriaceae 24 24 0 15 9 
Butyricimonas faecihominis Bacteroidota Odoribacteraceae 1 0 1 1 0 
Collinsella aerofaciens Actinomycetota Coriobacteriaceae 8 7 1 8 0 
Coprococcus sp Bacillota Lachnospiraceae 1 1 0 1 0 
Enterococcus faecalis Bacillota Enterococcaceae 5 4 1 4 1 
Enterococcus faecium Bacillota Enterococcaceae 2 2 0 1 1 
Escherichia coli Pseudomonadota Enterobacteriaceae 17 15 2 17 0 
No organism identification possible NA NA 22 20 2 18 4 
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All_frozen_combined_species Phylum Family Total_isolates Donor_1_i
solates 

Donor_2
_isolates 

Media_GAM_all_
isolates 

Media_L. 
YHBHI.4_all_isolates 

Parabacteroides distasonis Bacteroidota Tannerellaceae 1 0 1 1 0 
Parabacteroides merdae Bacteroidota Tannerellaceae 2 2 0 2 0 
PhocaeicoIa dorei Bacteroidota Bacteroidaceae 6 4 2 6 0 
Phocaeicola massiliensis Bacteroidota Bacteroidaceae 3 0 3 3 0 
Phocaeicola vulgatus Bacteroidota Bacteroidaceae 50 37 13 50 0 
Solobacterium moorei Bacillota Erysipelotrichaceae 1 1 0 1 0 
Streptococcus anginosus Bacillota Streptococcaceae 1 1 0 1 0 



 

 

ANNEX 14. Publication related to the thesis: Soler et al., 2025 “A contributory 
citizen science project reveals the impact of dietary keys to microbiome health 
in Spain” 
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