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Introduction and Thesis
Overview

This thesis presents a cohesive body of work at the intersection of gravitational-wave
(GW) astronomy and fundamental physics. The direct detection of GWs has pro-
vided anew laboratory for testing general relativity (GR) in the strong-field, dynamical
regime. The research contained herein leverages the growing catalog of GW events to
perform three distinct but complementary tests: probing the astrophysical environ-
ments of compact binaries, performing black hole spectroscopy via ringdown signals,
and constraining cosmological modifications to gravity.

The structure of this thesis reflects this progression from validating foundational as-
sumptions to exploring the frontiers of our theoretical understanding.

establishes the theoretical foundation, reviewing the prediction of GWs and
black holes in GR, the dynamics of compact binary coalescences, and the expanding

universe, which form the bedrock upon which all subsequent data analysis rests.

Chapter 2 and Chapter 3 establish the essential experimental and methodological ground-

work, detailing the principles of interferometric GW detection and the sophisticated
statistical methods, such as matched filtering and Bayesian inference, used to extract
faint signals from noisy data and infer source properties.

The original research begins in [Chapter 4, which addresses a key assumption in GW
modeling: that binaries evolve in isolation. This chapter presents a model-agnostic,
Bayesian search for environmental effects like dynamical friction and accretion in LIGO-
Virgo data. The null result, yielding the first upper limits on ambient density from an
event catalog study, is published as “First Constraints on Compact Binary Environments
from LIGO-Virgo Data” [[I], 2].

focuses on the final state of binary black hole mergers, using the ringdown
phase to perform black hole spectroscopy. The analysis follows the data analysis frame-
work for ringdown signals, as comprehensively reviewed in Black hole spectroscopy: from
theory to experiment” [B]. The systematic analysis of the O4a dataset, which forms the
event catalog basis for the tests in this chapter, is part of the LIGO-Virgo-KAGRA
collaboration paper Tests of GR with GWTC-4 1II. Tests of the Remnants” [#]. My ap-
plication of this framework, which led to the first confident multi-mode detection in
GW250114 and precision tests of the Kerr metric and Hawking’s area law, resulted in



ii

the publications Black Hole Spectroscopy and Tests of General Relativity with GW250114”
and GW250114: Testing Hawking’s Area Law and the Kerr Nature of Black Holes” [P, B].
Investigations of special events GW230814 and GW231123 presented here also con-
tributed to [/, B].

Finally, extends the tests of GR to cosmological scales. Using a hierarchical
Bayesian framework implemented in the icarogw package [9], this chapter constrains
theories of modified gravity by comparing the GW-inferred luminosity distance to the
electromagnetic distance from galaxy catalogs, placing limits on parameters that de-
scribe a running Planck mass and extra-dimensional scenarios. This work has been
published as [[10].

The concluding chapter, Chapter 7, synthesizes these findings, highlighting the con-
sistent agreement with GR across all probes and outlining the promising future of fun-
damental physics with next-generation GW observatories.

The methodologies developed and applied throughout this thesis, from environmental
searches to ringdown analysis and cosmological inference, provide a robust toolkit
for the future, where ever-more-sensitive observations will continue to stress-test our
understanding of gravity.
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GR: Predictions and Tests

1.1 Gravitational Waves

1.1.1 Linearised Theory of Spacetime Dynamics

GWs are perturbations of spacetime, predicted by GR, which propagate at the speed
of light and carry energy and information about dynamical systems. Unlike electro-
magnetic radiation, whose leading contribution comes from a varying dipole moment,
GWs arise from the time variation of the mass-energy quadrupole. This reflects the
tensorial nature of gravity, where spacetime curvature, rather than a force, mediates
the interaction.

The theoretical framework for GW generation follows from considering small pertur-
bations of a background spacetime within Einstein’s field equations [IT]:

Guv = — Ty (1.1)

ol
Here, G, is the Einstein tensor, defined as G, = Ry — % guvR, where R, is the Ricci
curvature tensor and R is the Ricci scalar, T, is the stress-energy tensor, G is Newton's
constant, and c is the speed of light.

In the weak-field limit, where the gravitational field is weak, the spacetime metric can
be treated as a small perturbation about the flat Minkowski metric [[12]:

Suv = N + hyv: (12)

where 1, = diag(-1,1,1,1) and |h;,| < 1. Substituting this ansatz into Einstein’s
equations and expanding to first order in f,, yields the linearized field equations.

The perturbations h,, are not uniquely defined due to gauge freedom: an infinitesimal
coordinate transformation x# — x# + &# modifies the perturbation as hy, — hy, —
d.&y — &, without altering the underlying physics. To extract physical information,
one must impose a gauge condition. The harmonic or de Donder gauge, defined by
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oth w = 0 with h uv = hyy — %r} uvh, reduces the linearized Einstein equations to a wave

equation of the form
- 16mG
Dhyv = oA TyV/ (13)
where O = 9?/c? — V2 is the d’Alembertian operator.
In vacuum regions far from matter sources, the transverse-traceless (TT) gauge pro-

vides a particularly useful choice. This gauge is defined by the conditions hg“T =0

(vanishing time components), 8ih£T = 0 (transverse condition), and k" = 0 (trace-
less condition). These conditions eliminate all gauge freedom, leaving two indepen-
dent components k. and Ky, which represent the physical polarization states of GWs.
In this gauge, the linearized Einstein equations reduce to a simple wave equation:
OKTT =0, (1.4)
This equation admits plane-wave solutions propagating at the speed of light. For a
plane wave with wave vector k* = (w/c, 1?), the linearized field equations yield the
dispersion relation k*'k;, = 0, which implies w = iIEl /c, confirming that GWs travel at
the speed of light.
For a wave traveling along the z-axis, the transversality condition implies that all com-
ponents with z-dependence vanish in the divergence, leaving only the spatial x-y com-
ponents as physically meaningful. The tensor perturbation takes the form

hEVT(t,z) = ha(t —z/c) ey, + hu(t —z/c)ep,. (1.5)

+

The polarization tensors ¢, and e, are defined with respect to an orthonormal basis

uv
{i1,9, k} normal to the propagation direction. For waves propagating along k = %, we
define:
1 0 0
el.; =1;ilj = 0;0; —> [0 =1 0], (1.6)
o o0 o
010
e; =00+ 0;5j — [1 0 0]. (1.7)
oo

In matrix form, for propagation along the z-axis, the complete wave perturbation can

be expressed as:

0 0 0 O
0 hy hyx O
hIT = * * t—2z/c),
100 by —h+0f( fe)
0 0 0 O

where f(t — z/c) represents the waveform profile. The symmetry and traceless condi-
tions ensure that only two independent polarization states survive. The + polarization
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distorts a ring of test particles by elongating it along the x-axis while compressing it
along the y-axis, whereas the X polarization produces the same effect rotated by 45°,
as illustrated in Figure [

L ] .0
. ® ° ° ° . ®
o ° . ° °
° Y ° ° N
° - ° °
° ° ° ° ° ° °
., o:® ° ° ® ® ° ° ° . o-®
4 ®e0-® ....o ® o'0® bd

oy

Figure 1.1: GWs propagating along the z-axis produce distinct oscillatory patterns on test masses ar-
ranged in the x-y plane. The visualization tracks these deformations over time (left to right), with the
polarization dynamics captured in the lower panel. Amplitude variations for the plus and cross polar-
ization modes are quantified in the middle panel [[13].

1.1.2 Quadrupole Radiation and Energy Loss

Building on the linearized theory of Subsection Fection T.T.T, the generation of GWs is
best described by a multipole expansion of the gravitational field.

In the weak-field, slow-motion regime where v <« ¢, GWs are small perturbations
hy, propagating on a flat Minkowski background. Energy-momentum conservation,
d,T#”" = 0, implies that only the TT part of these perturbations carries radiative energy.
Under these assumptions, the far-field solution for the metric perturbation, expressed
through retarded Green functions, takes the form

T > 4G =/ ’
hy(t, X) ~ m/‘/Tyv(t —R/c,X")d%x’,

where R represents the distance from source to observer. The characteristic 1/R de-
pendence reflects the expected falloff of a radiative field propagating in three spatial
dimensions, distinguishing it from the 1/R? behavior of static gravitational fields.

The connection to the source’s mass distribution becomes explicit when the leading
term in the multipole expansion is written in terms of the mass quadrupole moment:

]. - I 1 ..
Lij(t) = = / TO(t, %) x'x d3x, i,j=1,2,3. (1.8)
v
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This tensor quantifies the deviation of the mass distribution from spherical symmetry.
Applying the TT projection to the resulting field yields the quadrupole formula:

hgT(t,R) = %I’?(t - RJ/o), (1.9)
where I;?T is the transverse-traceless projection of the trace-free mass quadrupole ten-
sor and overdots denote time derivatives.

A full description of gravitational radiation requires not only the wave amplitude but
also the energy, momentum, and angular momentum transported by the waves, which
backreact on the source through global conservation laws. Although a strictly local
gravitational energy density cannot be defined in GR, one can construct an effective
stress—energy tensor in the weak-field, short-wavelength (geometric-optics) limit by
averaging over several wavelengths:

4
awy _ € TT TT
<Tyv > - 32nG<aﬂhl] thij 4

Averaging the resulting energy flux over a sphere surrounding the source leads to the

luminosity quadrupole formula (see [[I2] for a full derivation):

o= =~ (i) (1.10)
The negative sign confirms that the source loses energy as it radiates.

GWs are characteristically weak, which is evident from the prefactor in [Equation 1.9.
The strain amplitude is suppressed by G/c* ~ 8x10799s? g~! em™, necessitating source
masses of stellar scale and relativistic velocities to produce a detectable signal.

1.1.3 Compact Binaries as Gravitational Wave Sources

Compact binaries, systems of black holes (BH), neutron stars (NS), or a combination
of both, are among the most efficient sources of GWs. They naturally emit strong ra-
diation because their quadrupole moment varies rapidly, and their orbital velocities
can approach relativistic values before coalescencell. This makes them ideal systems to
which the quadrupole formalism developed in Section 1.1.Z can be applied.

1 To develop intuition for the magnitude of radiated power, consider a generic source characterized by
mass M, size r¢, and internal velocity v.. The quadrupole moment scales as I ~ M rc2, leading to a third
derivative that scales as I ~ Mo3 /r.. Substituting into Equation 1.1 yields

i G Mg
dt  5¢5 2 -
For self-gravitating systems where v? ~ GM/r, this simplifies to
o m
dt  5c5 2 '

This scaling highlights the importance of compactness: as a system of fixed mass becomes denser

(smaller r.), its GW luminosity grows steeply as 72 °.
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The inspiral phase of a compact binary system is driven by the energy balance between
the system’s orbital energy and its emission of GWs. For two compact objects of masses
my and my in a quasi-circular orbit, the Newtonian orbital energy is given by

GuM
2y '

Eowb = — (1.11)

where M = m; + my is the total mass, u = m;my/M is the reduced mass, and [j is the
orbital separation. The GW luminosity in the quadrupole approximation for a binary

system is
> G* u*M?
GW = =75 B
Integrating the energy balance equation dE,,/dt = —Law, yields an evolution equa-
tion for Iy(t):
Io(t) = lon [1 - + " te = 5 ¢ o
0 - O,IH tC 7 c — 256 G3 ‘UMQI

where ¢, is the coalescence time for an initial separation [ ;. This solution describes a
monotonically shrinking orbit with an accelerating inspiral. The system consequently
spends most of its lifetime at large separations, where the orbital evolution is slow.
When the binary is embedded in some astrophysical environments, the dissipative

interaction with the environment requires an additional term in the energy balance

equation. More details will be given in Chapter 4.
The orbital frequency, given by Kepler’s law Qk = \/GM/I3, evolves as

[\
Qk(f) = Qk in (1 - t_) ,

[

which corresponds to an orbital period that shortens as P(t) o« (f, — £)3/8. This accel-
erating frequency sweep produces a GW signal whose frequency and amplitude both

increase with time.

The strain amplitude observed at a distance R is given by

4GS M fow) P
hO(t) = C4 R s

where fow = Qg/m is the GW frequency (twice the orbital frequency for a circular
binary). The inspiral dynamics are primarily governed by the chirp mass,

M = u35M25,
which allows the strain amplitude to be expressed more compactly as

5/3 2/3
() = LM (o)™
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The phase evolution of the signal is

c3

5/8 /
— 5/8

A measurement of the frequency fgw and its time derivative fgw from the chirp wave-
form thus provides a direct estimate of M, the key mass parameter determining the
inspiral dynamics.

[y ‘ﬁ.
0.6 5 ?Dﬂ 5 |
S. o |

— ® (@)
04 £ ﬂH =
-

0.2

GW strain [1072!]

I
()
N
o |- —

20

-60 -40 -20

time [ms]

Figure 1.2: Illustrative GW signal from a coalescing BH binary. The signal evolves through three charac-
teristic phases: inspiral (left shaded region), where the orbital frequency and amplitude increase; merger
(central shaded region), the highly dynamical coalescence; and ringdown (right shaded region), where

the final remnant oscillates and relaxes to equilibrium. The boundaries between phases are approximate
due to the non-linear dynamics in the final stages of coalescence [[2].

As the binary tightens and the orbital velocity v/c increases, higher-order post-Newtonian
(PN) corrections to the quadrupole formalism become significant. These corrections
imprint detailed physical information onto the waveform'’s phase, such as the mass ra-
tio, individual component spins, and, in the case of NS, tidal deformabilities. A detailed
discussion of the PN framework and its application in testing for beyond-GR scenarios,
where specific PN terms capture deviations from the vacuum GR predictions, will be
presented in [Chapter 4. However, as the system approaches the innermost stable cir-
cular orbit (ISCO), the PN expansion breaks down, necessitating numerical relativity
simulations to model the subsequent merger phase.

This merger begins when the separation reaches a few gravitational radii, marking a
transition into a highly dynamical, strong-field regime. Numerical solutions of Ein-
stein’s equations reveal that this phase generates the highest-amplitude GWs. The final
stage is the ringdown, where the remnant, a single, highly perturbed BH, settles into a
stationary state by emitting damped oscillations at its characteristic quasi-normal mode
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(QNM) frequencies. Since these frequencies and damping times depend uniquely on
the mass and spin of the final BH, their measurement enables BH spectroscopy, pro-
viding a direct test of the no-hair theorem. The theoretical framework for this spec-
troscopy is developed in the next section, with its application to testing fundamental
physics detailed in [Chapter 5.

Accurately modeling this full sequence of dynamics is fundamental for detecting and
interpreting GW signals, and will be described in depth in [Chapter 3.

1.2 Theoretical Frameworks for Gravitational Wave Modeling

The accurate modeling of GWs from compact binary coalescence presents substantial
theoretical challenges due to the absence of exact analytical solutions to the two-body
problem in GR. Multiple complementary approaches have been developed, each valid
in different physical regimes and together providing coverage across the entire param-
eter space of binary systems. These methodologies range from perturbative analytical
expansions to full numerical solutions of Einstein’s equations, with hybrid approaches
bridging the gaps between them.

Post-Newtonian th

Effective one-body

Perturbation theo
gravitational self-fol

m,/m,

Figure 1.3: Parameter space coverage of different gravitational waveform modeling approaches. The
vertical axis represents orbital separation (related to orbital velocity), showing that post-Newtonian
methods are valid for well-separated systems, while numerical relativity captures the highly relativistic
merger regime. The horizontal axis shows mass ratio, with perturbation theory applicable for extreme
mass ratios and effective-one-body formalism providing coverage across the full parameter space. Adapted

from [14].

As illustrated in Figure 1.3, each waveform modeling approach has its specific domain
of validity. Numerical relativity simulations excel in the highly relativistic merger
regime but are computationally expensive and typically limited to moderate mass ra-
tios. Post-Newtonian methods provide accurate descriptions during the early inspi-
ral phase when orbits are well-separated but break down as the binary approaches
merger. Perturbation theory becomes applicable for extreme mass ratio systems, while
the effective-one-body approach offers a unified framework that spans the entire pa-
rameter space through analytical insights calibrated to numerical results.
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1.2.1 Post-Newtonian Formalism for Inspiralling Binaries

The post-Newtonian (PN) formalism extends the weak-field approximation introduced
in to include relativistic corrections beyond the leading-order quadrupole
emission. It provides a systematic expansion of the equations of motion and the emit-
ted gravitational radiation in powers of the small parameter [[15]
v?  GM
E~—~— <1, (1.12)

where v is the characteristic orbital velocity, M the total mass, and r the orbital sepa-

ration of the binary system.

In harmonic gauge, the field equations (see Equation 1.3) can be rewritten in the re-
laxed form
16nG
T

[
Oh o ,

(1.13)

where the effective stress—energy pseudo-tensor

ct

A¥Y
167G

T = |g|TH +

includes both the matter contribution T#" and the gravitational self-interaction terms
A"V, The PN expansion is then constructed by iteratively, , expanding botht#" and h*"
in powers of €.

The PN expansion is valid in the near zone, where the field varies slowly (r < Aqgw),
while the far-zone radiation field can be represented as a multipole expansion in 1/R.
The two regimes are connected through an asymptotic matching procedure in an over-

lap region, ensuring global consistency of the solution. This multipolar—post-Minkowskian
(MPM) framework expresses the radiative field in terms of source multipole moments,
which are computed from the PN-expanded energy-momentum distribution.

The relative acceleration of the two compact objects admits a PN expansion of the form

d27 - - - -
W =aN +a1pN + dopN + -+ + ARR, (1.14)

where the Newtonian term dy corresponds to Keplerian motion, and arR denotes radiation—
reaction corrections that first appear at 2.5PN order (~ €°/2). The conservative orbital

energy likewise expands as
Eorb = Exn+Eipn + Egpn + -+,

and balances with the GW luminosity via

dEorb__d_E
at dt’

The inspiral phase of a compact binary system follows from the energy balance be-
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tween the orbital energy and GW emission. For two compact objects of masses m; and
my in a quasi-circular orbit, the Newtonian orbital energy and quadrupole luminosity

are given by . Equation 1.TT and Equation 1.1I0, respectively. Integrating the balance

equation dE,/dt = —Lgw yields the evolution of the orbital separation Iy(t) and the

corresponding coalescence time ¢..

The GW energy flux generalizes the quadrupole luminosity of as a PN
series: JE
7 = IN PN+ Frsen + Fopn + oo, (1.15)

where the half-integer orders originate from hereditary (non-local-in-time) effects such
as tails and memory. Combining the flux and energy expansions through the balance
equation yields the PN evolution of the orbital frequency and, consequently, of the GW
phase.

For a quasi-circular binary, defining the dimensionless PN parameter

(GMQK)2/3 (nGMwa)2/3
X = =|— ,
c3 c3

and the symmetric mass ratio n = u/M, the GW phase can be written as
Qb(f) = (Pc - % (ﬂGMf/CB)_5/3 [1 + aox + a3x3/2 + a4x2 + - ], (116)

where the coefficients a; are known PN corrections encoding effects from mass ratio,
spins, and tails. In practice, waveform models for compact binaries used in data anal-
ysis typically include PN corrections up to 3.5PN order in phase (~ €7/?).

The PN expansion remains accurate as long as v/c < 0.3, corresponding to the inspiral
regime preceding the innermost stable circular orbit (ISCO). Beyond this point, the ex-
pansion ceases to converge, and the system must be modeled using numerical relativity
or effective-one-body approaches.

1.2.2 Stationary Phase Approximation

In GW data analysis (discussed further in Chapter 3), working with the Fourier-domain
representation of the signal is often necessary. Directly computing the Fourier trans-
form of the time-domain waveform is analytically challenging, and numerical evalu-
ation is computationally prohibitive for many applications like parameter estimation.
The stationary phase approximation (SPA) provides an efficient analytical method to
approximate this Fourier transform.

For a waveform with a OPN-order amplitude, the plus and cross polarizations are
generically given by
h+,><(t) = A+/x(t) COS q)+,><(t). (1.17)
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Their Fourier transforms are defined by the integral

fl+,><(f) = [ooA+,><(t) cos[D, «(t)] e2mift g, (1.18)

[o¢]

Rewriting the cosine in terms of complex exponentials yields

hx(f) = % / Asx(t) [e'CmS1mPext) 4 ofCRfEFRx(E)] gt (1.19)

—00

The SPA is based on the observation that the integrand oscillates rapidly, leading to
significant cancellation, except in the vicinity of a point ¢, where the phase is station-
ary. This point is defined by the condition that the first derivative of the total phase
vanishes. For the second exponential term, this condition is

o2nf = &y «(t) = 1 faw(ts). (1.20)

The first exponential term has no stationary point and integrates to a negligible value.
By expanding the phase to second order around t. and treating the amplitude A, x(t)
as slowly varying, the integral can be evaluated as a Gaussian, resulting in the SPA
solution:

on(f) = ) o), (1.21)

Vb, x(t)

where the Fourier-domain phase is given by

W, (f) = 21 ft, — @y (t) — %. (1.22)

The stationary time t. can be expressed as a function of frequency f using [Equation T.20.
The complete phase W( f), known up to 3.5PN order [[16, I7, [§], has the general form:

Tt

W(f)=2nft,—¢pe— —+

T g el p| o, (1.23)

7
=0

where t. and ¢, denote the coalescence time and phase, and the coefficients are defined

as
3 (j-5)/3
pj = 12817(71M) aj, (1.24)
m__3 (j-5)/3 (1) ’
1p]. 128n(ﬂM) a;’. (1.25)

The SPA amplitude depends on A(t.) and the second derivative of the phase, ®(t.),
which is related to the rate of change of the GW frequency:

d(t.) = 1 faw(t.). (1.26)



1.2. Theoretical Frameworks for Gravitational Wave Modeling 11

This frequency derivative can be expressed in terms of the system’s energy balance:

dfew  3x dE/dx

fow(t) = == = 5 S E o)

F (x), (1.27)

where ¥ (x) is the post-Newtonian energy flux (see Equation 1.10).

The resulting SPA waveform, with a OPN amplitude, is known in the literature as the
TaylorF2 approximant [[I9, 20] and is extensively used in the analysis of GW data.

1.2.3 The Effective-One-Body Formalism

The Effective-One-Body (EOB) formalism is an analytical approach that combines per-
turbation theory with post-Newtonian expansion to model the complete evolution of
binary systems, from inspiral through merger and ringdown. Developed to provide a
unified description of binary dynamics, the EOB approach has been successfully vali-
dated against numerical relativity simulations for various scenarios, including the tran-
sition from inspiral to merger, estimation of radiated energy, and the full waveform
construction [21].

The EOB framework rests on several key components: the conservative two-body dy-
namics encoded in a Hamiltonian, the radiation-reaction forces driving the inspiral,
and the emitted gravitational waveforms. The fundamental idea is to map the real
two-body problem onto an effective one-body problem, where a test particle moves in
a deformed metric. This approach treats comparable-mass systems as deformations of
the test-particle limit, building upon established results from perturbation theory.

In practice, the physical system with masses m;, ma and spins Si, Sy is replaced by
an effective description where a particle with mass y = mymsz/(m; + ms) and effective
spin S.(51, S2) moves in a deformed Kerr-like geometry. This effective metric has mass
M = my + my, spin Sker(S1,S2), and is parameterized by the symmetric mass ratio
v = /M (wherev = 1/4 for equal masses), which serves as the deformation parameter.

The mapping between real and effective dynamics can be intuitively understood through
a quantum mechanical analogy: rather than considering classical Hamiltonians di-
rectly, one can examine the energy levels of quantum bound states corresponding to
the Hamiltonian operators. This perspective facilitates the construction of the conser-
vative dynamics within the EOB framework.

Following this mapping, the radiation reaction forces and gravitational waveforms are
similarly translated into the effective one-body picture. The merger-ringdown wave-
form, for instance, incorporates insights from the close-limit approximation, where the
transition from two-body to one-body description occurs near the peak of the BH po-
tential barrier. Through these constructions, the EOB approach achieves its primary
goal: providing complete analytical waveforms for coalescing binary systems that re-
main accurate throughout all evolutionary phases.
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1.2.4 Numerical Relativity

The analytical methods discussed previously represent decades of work by leading
relativists. Numerical relativity (NR) offers a complementary approach by directly
solving the Einstein field equations through numerical evolution of the spacetime ge-
ometry.

Numerical relativity has matured into a robust field that has seen remarkable progress
over the past decades [22, 23, 24]. A pivotal achievement was Pretorius’ [25] first suc-
cessful simulation of a BBH system through multiple orbital cycles. Subsequent devel-
opments have focused on improving the stability, efficiency, and accuracy of numerical
methods.

The principal strength of NR simulations lies in their solution of the complete Einstein
equations without resorting to perturbative expansions. This makes NR an invalu-
able tool for validating post-Newtonian predictions, particularly during the inspiral
phase where different PN approximants begin to diverge. Excellent agreement has
been demonstrated between NR and PN waveforms in regimes where both approaches
are expected to be reliable. Beyond verification, NR enables exploration of previously
inaccessible dynamical regimes, most notably the merger phase and immediate post-
merger evolution. Furthermore, NR simulations of the ringdown phase show strong
consistency with predictions from BH perturbation theory [26, 27, 28].

However, NR simulations come with significant computational demands. Evolving a
dynamical (341)-dimensional spacetime requires sophisticated numerical techniques
and substantial computational resources, with typical simulations requiring weeks on
modern supercomputing systems. While this precludes direct use of NR for GW data
analysis, the information from available NR waveforms has been incorporated into hy-
brid models that enhance and refine analytical PN and EOB approaches. As the pa-
rameter space of compact binaries becomes more densely sampled by NR simulations,
these hybrid models approach the accuracy of full NR solutions while retaining the
computational efficiency of analytical methods. This effort is particularly important
for spinning BBH systems, where merger and ringdown signals fall within the sensi-
tive band of advanced detectors like AdVirgo and aLIGO.

For NS binaries, NR simulations have provided crucial insights into matter effects, in-
cluding tidal deformations, potential disruption of stellar structure, and electromag-
netic signatures arising from interacting magnetic fields. Since this dissertation focuses
primarily on binary NS (BNS) systems with unknown equations of state, NR-tuned hy-
brid waveform models will not be employed in the exploratory studies presented here.

1.3 Black Holes

BHs are a fundamental prediction of GR, describing regions of spacetime bounded by
an event horizon, a causal boundary from within which no information can escape to
distant observers [29]. Notwithstanding their extreme nature, BHs are characterized
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by mathematical simplicity, rendering them principal sources within GW astronomy.
Understanding the theoretical properties of BHs provides the foundation for interpret-
ing observational data and probing fundamental physics within these astrophysical
laboratories.

The theoretical development of BHs spans over a century, from Schwarzschild’s 1916
calculation of the first exact solution to Einstein’s field equations [30], through the re-
alization by Finkelstein in 1958 of the true nature of the event horizon as a one-way
membrane [B1], to Kerr’s 1963 breakthrough describing rotating BHs [B2]. This theo-
retical development, in conjunction with the no-hair theorem, which posits that station-
ary BHs in vacuum are completely described by their mass and angular momentum,
makes BHs uniquely predictable objects whose GW signatures can be calculated with
precision and tested against observations.

1.3.1 The Black Hole Zoo

The simplest BH solution describes a static, spherically symmetric, electrically un-
charged object. The Schwarzschild metric in standard Schwarzschild coordinates (¢, 7, 0, ¢)
takes the form

-1
ds? = — (1 - 1’75) c2dr? + (1 - 775) dr? +r2dQ?, (1.28)

where dQ? = 462 + sin?6 dqb2 represents the metric on the unit 2-sphere, and the
Schwarzschild radius? is defined as

_2GM
-3

=2.95 (A%) km. (1.29)

Ts

The Schwarzschild metric exhibits two coordinate singularities: one at r = r;, which
is a coordinate singularity marking the event horizon, and another at r = 0, which is
a true curvature singularity. The nature of these singularities differs fundamentally.
The event horizon represents merely a coordinate artifact, a boundary beyond which
events cannot influence the external universe, through which infalling matter passes
smoothly without encountering any local pathology. The singularity at r = 0, con-
versely, represents a genuine breakdown of the spacetime geometry where curvature
invariants diverge, signaling the limits of classical GR.

For GW astronomy, the Schwarzschild solution provides the starting point for under-
standing non-spinning BHs and serves as the basis for perturbation theory analyses
that describe how BHs ring down after merger events. The characteristic timescale
associated with a Schwarzschild BH is

rs 2GM M
= = = =49.2 1.
= s s oW (10M@) He: (1.30)

2 This fundamental length scale sets the size of the BH and marks the location of the event horizon. For a
10Mg stellar-mass BH, the Schwarzschild radius is approximately 30 km, while for a supermassive BH
of 106 M, it reaches roughly 3 x 106 km, about 5 times the radius of the Sun.
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which sets the natural frequency scale for the QNM oscillations that dominate the ring-
down phase of binary coalescences.

Astronomical bodies naturally possess angular momentum from their formation and
evolution, making rotation a generic feature of astrophysical BHs. The Kerr solution
describes the spacetime geometry of a rotating, axisymmetric, stationary BH. In Boyer-
Lindquist coordinates (t,r, 0, ¢), which generalize Schwarzschild coordinates to the
rotating case, the Kerr metric reads

ds2=—(1—%)c%?—w(cdtdmdmm .
+ Edr2 +X2d0? + ﬁ [(r2 +a%)? - Aa?sin® 9] dg?, y
A x
where the auxiliary functions are defined as
T =r%+a’%cos?0, (1.32)
A=r’—rgr+a®>=r*- 2212\41’ +a2. (1.33)

The parameter a has dimensions of length and is related to the BH’s angular momen-
tum | through

a=d -
Mc ~ GM’

though it proves more convenient to work with the dimensionless spin parameter

(1.34)

a cJ
= I = A (1.35)

s

which satisfies |a.| < 1 for physically realistic BHs. The bound a. = 1 corresponds
to an extremal Kerr BH rotating at the maximum possible rate consistent with cosmic
censorship, while a. = 0 recovers the Schwarzschild solution.

The event horizon of a Kerr BH is located at the outer root of A = 0:

r+:GC—]2\/I(1+\/1—a3):r—s(1+V1—a3). (1.36)

2

For a non-rotating BH (a. = 0), this reduces to r, = r;, while for a maximally rotating
BH (a. = 1), the horizon shrinks to ry = GM/c? = r;/2. This dramatic reduction in
horizon size for rapidly spinning BHs has important observational consequences, as it
allows matter in accretion disks to orbit closer to the BH before plunging inward.

The Kerr solution exhibits several features absent in the Schwarzschild case. The off-
diagonal dt d¢ term in the metric represents frame dragging, the tendency of a rotat-
ing mass to drag spacetime around with it. This effect becomes increasingly important
closer to the BH and within a region called the ergosphere, bounded by the event hori-
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zon and the surface where gy = 0. Within the ergosphere, no observer can remain
stationary with respect to distant stars; all must orbit in the same direction as the BH's
rotation.

For GW observations, the Kerr solution is fundamental because astrophysical BHs are
expected to be well-described by the Kerr metric with very high precision. The mass
M and spin parameter a. completely determine the spacetime geometry and thus all
observable properties of the BH, including its GW emission during inspiral and ring-
down. The innermost stable circular orbit (ISCO), which marks the inner edge of ac-
cretion disks and sets the final stages of inspiral, has a radius that depends strongly on
the spin:

Fisco = GC—];/I [3 +Zo 7B -Z)(B+ Z1 + 222)] , (1.37)

where

Zi=1+1-ad)"P[1 +a)?+ (1 -a)/?], (1.38)

Zo = \J3a2 + 72, (1.39)

and the minus (plus) sign applies to prograde (retrograde) orbits. For a non-rotating
BH, risco = 6GM/c?, while for a maximally rotating prograde orbit, it approaches
risco = GM/c?, just outside the event horizon.

For completeness, we note the existence of charged BH solutions. The Reissner-Nordstrom
metric [B3, B4] describes a static, spherically symmetric BH with electric charge Q,
while the Kerr-Newman solution [B5] generalizes this to rotating charged BHs. These
solutions are characterized by three parameters: mass M, spin angular momentum J,
and electric charge Q [36, B7, B8].

However, for astrophysical macroscopic BHs, electric charge is completely negligible
and can be safely ignored. Any significant initial charge would be rapidly neutralized
through interactions with the highly ionized plasma pervading astrophysical environ-
ments. The equilibrium charge-to-mass ratio for a BH in a typical interstellar medium
is extraordinarily small, of order Q/M ~ 1073 in geometric units. Consequently, as-
trophysical BHs are excellently approximated by the Kerr solution with only two pa-

rameters: mass and spin.

1.3.2 Stability and Quasi-Normal Modes

A fundamental property of BHs in GR, and in many modified theories of gravity, is
their stability against perturbations. When a stationary BH solution is subjected to an
external perturbation, the resulting dynamics cause the spacetime to relax back to a
stationary BH configuration.

Over six decades of research have established the linear stability of Schwarzschild and
Kerr BHs. The pioneering work of Regge and Wheeler [B9] developed the formalism
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for axial perturbations of the Schwarzschild spacetime, later extended to polar modes
by Zerilli [#0]. Teukolsky [26] generalized the perturbative framework to rotating Kerr
BHs by deriving a separable master equation for massless fields of arbitrary spin. Sub-
sequent analyses have demonstrated that all physical solutions of these equations are
damped, providing strong evidence for the linear stability of Schwarzschild and Kerr
BHs (with ongoing work addressing the extremal limit).

In the time domain, the evolution of a generic perturbation typically follows a charac-
teristic pattern: an initial prompt response determined by the details of the disturbance
is followed by a ringdown phase dominated by exponentially damped oscillations, the
QNMs, and a late-time power-law tail arising from backscattering off spacetime cur-
vature. This behavior confirms BHs as dissipative systems, absorbing energy at the
horizon and radiating it to infinity as they relax to equilibrium.

The QNMs correspond to the characteristic vibrational modes of the BH. Unlike normal
modes of conservative systems, they are damped because the system is open: energy
can flow irreversibly into the horizon or radiate to infinity. Consequently, the eigen-
frequencies are complex:

w=wRr+tiw;, w;<0,

where wg sets the oscillation frequency and w; the decay rate. In the time domain, a
perturbation behaves as
h(t) ~ e cos(wrt + o),

or a superposition thereof. The discrete spectrum is determined by boundary con-
ditions requiring purely ingoing waves at the horizon and purely outgoing waves at
infinity. These conditions ensure the system radiates and absorbs perturbations rather
than sustaining them.

A remarkable property of QNMs is that their spectrum depends only on the intrinsic
parameters of the BH, in GR, its mass M, spin 4, and charge if present. Thus every BH
of a given (M, a) a "sounds” the same. Different initial disturbances excite different
linear combinations of modes, but the frequencies and damping times themselves are
universal. This makes BHs analogous to resonant objects such as bells, whose tone is
determined by their shape.

The computation of QNM frequencies relies on BH perturbation theory. The field equa-
tions are linearized around the background metric, and symmetries permit a separa-
tion of variables into spin-weighted spheroidal harmonics. This reduces the problem to
radial master equations, such as those of Regge-Wheeler, Zerilli, or Teukolsky, which
take a Schrodinger-like form:

d*y 9

— +|w"=V(r)|¥Y =0,

dr? [ ( )]
where 7. is the tortoise coordinate. Imposing the physical boundary conditions trans-
forms this into a spectral problem for w, solvable via continued-fraction methods, WKB
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approximations, or numerical integration.

The QNM spectrum serves the same role in BH physics as atomic spectral lines do
in atomic physics: it provides a discrete set of characteristic frequencies from which
the system’s parameters can be inferred. This forms the basis of BH spectroscopy, the
program of measuring multiple QNMs in the ringdown to infer the BH’s mass and
spin and to test GR by verifying consistency between modes. A detailed treatment of
observational strategies and data analysis methods will be presented in [Chapter 3.

1.3.3 The Area Law and Black Hole Thermodynamics

The irreversible nature of BH evolution is codified in the area theorem: in any classi-
cal process, the total surface area of all event horizons is non-decreasing [41, #2, A3].
This theorem establishes a rigorous gravitational analogue of the second law of ther-
modynamics, with the horizon area serving as a measure of gravitational entropy and
thereby encoding the irreversible character of BH dynamics within GR.

The mathematical structure of BH mechanics can be systematically organized into four
laws [#4], which formally parallel the laws of classical thermodynamics.

The zeroth law states that the surface gravity x remains constant over the event hori-
zon of any stationary BH in equilibrium. For a Kerr BH characterized by mass M and
dimensionless spin parameter 4., this quantity is given by

R
AGM 1 4 142

which reduces to x = ¢*/(4GM) in the Schwarzschild limit (2. = 0) and vanishes in the
extremal limit (2. — 1).

K

(1.40)

The first law establishes a differential relation between variations in the BH mass and
changes in its geometric and angular properties:
xc?

dM = —=dA+Qud] + PudQ, (1.41)

where A denotes the horizon area, Qp the angular velocity of the horizon, | the an-
gular momentum, @y the electrostatic potential at the horizon, and Q the electric
charge. This expression bears a formal resemblance to the first law of thermodynamics,
dE =TdS — pdV + udN, suggesting the physical identification of surface gravity with
temperature and horizon area with entropy.

The second law constitutes the area theorem itself:
0A >0, (1.42)

which was rigorously proven by Hawking [42] under the assumption that matter satis-
fies the null energy condition. This inequality implies that dynamical processes involv-
ing BHs, including coalescence events, must result in a total horizon area that exceeds
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or equals the sum of the initial areas. For a BBH merger producing a remnant with final
mass My and spin a. s from progenitors with areas A; and Ay, this constraint takes the

GMf 2
Af:lGT(( 2 ) (1+‘/1—af’f)2A1+A2. (143)

This inequality constitutes a fundamental consistency requirement that can be sub-

explicit form

jected to direct observational test through GW parameter estimation. Current mea-
surements are consistent with this prediction; detailed quantitative constraints will be
presented in Chapter 5.

The third law prohibits the reduction of surface gravity to zero through any finite se-
quence of physical processes, thereby establishing an analogue of the unattainability
of absolute zero temperature.

The formal analogy between BH mechanics and thermodynamics acquires physical
substance when quantum field theory in curved spacetime is incorporated. Hawking’s
calculation [A3] demonstrated that BHs emit thermal radiation with a characteristic

temperature
ik

H= 2ntkge’

(1.44)

thereby establishing that the surface gravity is indeed proportional to a physical tem-
perature. This result directly implies the existence of a BH entropyf, given by the
Bekenstein-Hawking formula [#5]:

S _ kBC3A
T A

(1.45)

The area theorem provides a fundamental explanation for the irreversibility inherent
in gravitational collapse and BH dynamics. During BBH mergers, although a substan-
tial fraction of the system’s initial mass-energy is radiated away as GWs, the second
law ensures that the total horizon area, and consequently the gravitational entropy,
necessarily increases. This entropy production reflects the conversion of coherent or-
bital kinetic energy into the incoherent degrees of freedom associated with the horizon
geometry.

Any observational evidence for violations of the area theorem, or for systematic devi-
ations from the Bekenstein-Hawking entropy formula, would constitute evidence for
physics beyond GR. Such deviations could arise from quantum gravitational correc-
tions, additional conserved charges, or fundamental modifications to Einstein’s equa-
tions. The precision measurement of masses and spins before and after merger, enabled
by GW astronomy, thus provides a unique empirical probe of these foundational as-
pects of BH physics.

3 This entropy is remarkably large: for a solar-mass BH, Sy ~ 107"k, confirming that BHs represent
the most entropic macroscopic objects of comparable mass in the observable Universe.
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1.4 The Expanding Universe

GR revolutionized the classical notion of spacetime, replacing the idea of a fixed back-
ground with a dynamical geometry determined by the distribution of matter and en-
ergy. This principle is encapsulated in Einstein’s field equations,

&G
Guw +Aguw = —Tw, (1.46)

o4

where A denotes the cosmological constant, corresponding to a uniform energy density
that counteracts gravitational attraction on cosmological scales. When these equations
are applied under the assumption of large-scale homogeneity and isotropy (the cosmo-
logical principle), they predict that the Universe cannot remain static but must either ex-
pand or contract. This theoretical result, first obtained by Friedmann [#6] and Lemaitre
[47], was observationally confirmed by Hubble [#8], establishing cosmic expansion as
a cornerstone of modern cosmology.

1.4.1 The ACDM Model

The ACDM model provides the standard theoretical framework describing our ex-
panding Universe. Its foundation is the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, which incorporates spatial homogeneity and isotropy:

dr?
1—kr2

ds? = —c2dt? + a*(t) [ + erQQ] , (1.47)
where a(t) is the scale factor, k the spatial curvature (-1, 0, +1 for open, flat, and closed
geometries), and dQ? = d0? + sin? 6 d¢p?. Comoving coordinates (r, 6, ¢) remain fixed
for observers following the Hubble flow, while their physical (proper) separation in-
creases proportionally to a(t).

The evolution of a(t) follows from Einstein’s equations applied to a perfect fluid with
energy-momentum tensor T = diag(—pc?, p, p, p). Energy-momentum conservation,
V“TV’u = 0, yields the fluid equation:

p+3H() (p+ %) =0, (1.48)

where H(t) = id/a is the Hubble parameter and Hy its present-day value. Assuming an
equation of state p = wpc?, the solution is

pi oc g~ 3w, (1.49)
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Inserting the FLRW metric into yields the Friedmann equations:
8nG k2 Ac?
H>=—p- — +—, 1.50
3 p a2 3 ( )
i 4nG 3p\  Ac?
—=——|p+t=|+— 1.51
3 ( c? ) 3 (151)

Ordinary matter and radiation (p + 3p/c? > 0) decelerate the expansion, while a posi-
tive A drives acceleration.

From [Equation 1.49, matter scales as p,, « a~3, radiation as p, o« ™4, and dark energy
remains constant (pa = const.). Defining the critical density for spatial flatness,
3H?
=—, 1.52
Pe=3G (1.52)
and the density parameters
P kc? Ac?
= =——— = — 1.
Qm C/ Qk a2H2’ A 3H21 ( 53)

one obtains the constraint Q,, + Qp + Qp = 1.

To connect with observations, we define present-day density parameters €, 0, Qk,o,
and Q4 o using Hy and the current scale factor ag. The relationship between cosmolog-
ical redshift and the scale factor is given by:

42 = 20 (1.54)

alte)

where a(t() is the scale factor when light is observed and a(t.) when it was emitted.
For observations made today, this simplifies to a(t) = 1/(1 + z).

For a matter-dominated universe, the density scales as p/pg = 1/a(t)3. Substituting
this and a(t) = 1/(1 + z) into the Friedmann equation yields the dimensionless Hubble

parameter:
H(z)
Hy

E(z) = = o(1 +2)3 + Qp (1 +2)2 + Qap. (1.55)

Observations indicate €, o ~ 0.3, Qp 0 = 0.7, and Oy ¢ =~ 0, consistent with a spatially
flat, accelerating universe. These values define the ACDM model: a Universe domi-
nated by dark energy (A) with the remaining fraction composed of matter. Despite its
minimal set of six parameters, the ACDM framework provides a quantitatively accu-
rate description of a wide range of independent observations, including the detailed
anisotropy spectrum of the CMB, the characteristic scale of baryon acoustic oscillations,
and the growth of large-scale structure.
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1.4.2 The Hubble Tension

A key challenge in modern cosmology is the persistent discrepancy between early- and
late-time determinations of the Hubble constant Hy, known as the Hubble tension [A9,
50].

As illustrated in Fig. [[.4, measurements of Hy can be broadly grouped into two classes.
Early-Universe probes such as the Planck satellite yield Hy = 67.4 + 0.5 kms™" Mpc™!
[B1], while local, late-Universe measurements from the SHOES collaboration give Hy =
73.2 + 1.3 kms™' Mpc ™! [52]. The resulting ~ 50 tension may signal unaccounted-for
systematics or new physics beyond ACDM.

1.4.3 Cosmological Distances and Gravitational-Wave Standard Sirens

Distance Measures in an Expanding Universe

In cosmology, several distance definitions are employed, each tailored to specific ob-
servables. For photons traveling along null geodesics in the FLRW metric, the comov-
ing distance is:

*cdz c /Z dz’
= = . 1.56
Y= ) H@) T H )y E@) (1.56)

For a flat Universe (k = 0), the luminosity distancefl is

c(1+z)‘/Z dz’
di(z)=1+2)x = , 1.57
e = (v === |5 (157)
which, in ACDM, becomes
di.(z; Ho, Qp) = C(l”)/ dz . (1.58)
Ho Jo {Q,(1+2)+(1-Qn)

This relation encodes the full expansion history of the Universe, making luminosity
distance a cornerstone of cosmological inference.

Another fundamental quantity is the comoving volume, Vc. Under the assumptions of
isotropy and homogeneity, the matter distribution is approximately uniform in comov-
ing coordinates throughout cosmic evolution. Although galaxy clustering introduces
small-scale deviations, these assumptions remain valid on scales larger than about 100
Mpc. The comoving volume element is given by

z ’ 2
e _c L i/ 2N (1.59)
dz Hy E(Z) Hy 0 E(Z')
When normalized, this expression loses its explicit dependence on Hy and can be used

as a prior on galaxy redshift distributions. The empirical connection between redshift
and cosmic expansion was first revealed through early spectroscopic observations of

4 The luminosity distance d; is defined such that the observed flux F from a source of intrinsic luminosity
L follows F = L/ (4nd%), accounting for both geometric dilution and photon energy redshift.
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High Precision Measures of Hg

CMB with Planck

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 + 0.53
Aghanim et al. (2020), Planck 2018: 67.27 £ 0.60

Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 = 0.54

CMB without Planck

Dutcher et al. (2021), SPT: 68.8 + 1.5

Aiola et al. (2020), ACT: 67.9+1.5

Aiola et al. (2020), WMAP9+ACT: 67.6 £ 1.1
Zhang, Huang (2019), WMAP9+BAO: 68.36+23

No CMB, with BBN

Colas et al. (2020), BOSS DR12+BBN: 68.7 1.5
Philcox et al. (2020), P;+BAO+BBN: 68.6 £ 1.1
Ivanov et al. (2020), BOSS+BBN: 67.9 1.1

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 +0.97

Cepheids — SNla

Riess et al. (2020), R20: 73.2+ 1.3

Breuval et al. (2020):

Riess et al. (2019), R19:
Camarena, Marra (2019):

Burns et al. (2018): 73.

Follin, Knox (2017): 73.

Feeney, Mortlock, Dalmasso (2017): 73.
Riess et al. (2016), R16: 73.
Cardona, Kunz, Pettorino (2016): 73.
Freedman et al. (2012): 74.

WwooNN W

Soltis, Casertano, Riess (2020):
Freedman et al. (2020):

Reid, Pesce, Riess (2019), SHOES:
Freedman et al. (2019):

Yuan et al. (2019):

Jang, Lee (2017):

Masers
Pesce et al. (2020): 73.9 3.0

Tully - Fisher Relation (TFR)
Kourkchi et al. (2020): 76.0 2.6
Schombert, McGaugh, Lelli (2020): 75.1 2.8

Surface Brightness Fluctuations
Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 +£2.5

Lensing related, mass model — dependent
Yang, Birrer, Hu (2020): Ho = 73.65*192
Millon et al. (2020), TDCOSMO: 74.2 +1.6
Qi et al. (2020): 73.6:i_§
Liao et al. (2020): 72.8%1%
Liao et al. (2019): 72.2+2.1
Shajib et al. (2019), STRIDES: 74,2‘:§1;§
Wong et al. (2019), HOLICOW 2019: 73.3*1
Birrer et al. (2018), HOLICOW 2018: 72.5‘:5;2
Bonvin et al. (2016), HOLICOW 2016: 71.9+%

Optimistic average

Di Valentino (2021): 72.94 +0.75

Ultra — conservative, no Cepheids, no lensing
Di Valentino (2021): 72.7 £ 1.1
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Figure 1.4: Measurements of the Hubble constant Hy showing the tension between early and late-
Universe probes. The plot displays 68% confidence level constraints from various astronomical missions
and groups. The cyan vertical band indicates the value from the SHOES Team [b2] (Ho = 73.2
1.3 km s=' Mpc™'), representing late-Universe measurements, while the light pink band shows the
Planck 2018 result [51] (Ho = 67.4 + 0.5 km s=* Mpc™') derived from early-Universe observations
within the ACDM framework. This ~ 50 discrepancy constitutes the Hubble tension. Figure adapted

from Ref. [b3].
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galaxies, whose redshifts were found to increase systematically with distance. The
observed redshift is defined as

4

z = Aobs = Aemit (1.60)

/\emit

where Aemit and Agps are the emitted and observed wavelengths, respectively. For re-
cession velocities v < ¢, this relation reduces to

v
~ — 1.61
2~ 2, (1.61)
leading, at small redshifts, to the linear Hubble law
cz ~ Hodp. (1.62)

This relation holds when peculiar velocities are negligible, such that the observed red-
shift is purely cosmological. In practice, z is measured from spectroscopic or photomet-
ric data (after correcting for peculiar motions), while dr, is determined from standard
candles.

1.4.4 Gravitational Wave Propagation in FLRW Spacetime

To understand how GWs propagate through an expanding universe, we must gener-
alize the flat spacetime wave equation to curved FLRW spacetime. The d’Alembertian
operator O in curved spacetime with metric g, takes the form:

1
0= —du(+-88""dv) (1.63)
v e
where g is the determinant of the metric tensor.
The FLRW metric can be conveniently expressed in conformal time 7, defined by dn =
dt/a(t):
ds? = a’(n)[-c%dn? + dr* + r?dQ?) (1.64)

For GW perturbations h;; propagating on this background, we seek solutions to the
wave equation in the form ¢(r,n) = (1/r) f(r,n). This leads to:

83f—f”—2%/f’ =0 (1.65)

where primes denote derivatives with respect to conformal time. By defining g(r,n) =
a(n) f (r,n), the equation simplifies to:

83g—g”—2%g =0 (1.66)

For GWs with frequencies satisfying w? > 1/n? (i.e., wavelengths much smaller than
the Hubble scale), the last term becomes negligible, and the equation reduces to the
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standard wave equation. Solutions take the form:
g(n,r) exiw(n=r/c) (1.67)

Thus, any function of the form g(n—r/c) is a solution, provided its Fourier components
satisfy the high-frequency condition. Normalizing with respect to present time t,, we

find:
glt—rfc)

Calt)

The crucial insight is that the GW amplitude scales as 1/[a(ty)r], where the factor

P(t,r) = (1.68)

1/a(tg) accounts for the cosmological expansion. This modifies the distance depen-
dence compared to flat spacetime, where the amplitude simply scales as 1/r.

Gravitational Waves as Standard Sirens

The amplitude scaling derived above leads directly to the concept of GWs as standard
sirens. Compact binary coalescences offer an independent means of measuring cosmo-
logical distances through GW observations. Unlike electromagnetic standard candles,
GWs encode absolute distance information directly in their amplitude [54, b5].

For a binary inspiral in flat spacetime, the GW strain is

ho(t) = @/\/(5/3(7TfGW(t))2/3 (1.69)

where M is the chirp mass, fqw the frequency, and R the source distance. In an ex-
panding universe, accounting for the amplitude scaling derived above, the observed

strain becomes
4m2/3G5/3

ctdr(z)
with M°> = M(1 + z) and dL(z) the luminosity distance.

ho(tobs) = (MOPS)PI3(q fSbs)23, (1.70)

If an electromagnetic counterpart provides the redshift z, the Hubble constant follows
directly from the distance-redshift relation:

di(z) = = [z+ ~(1-q0)2% +0(z%)] . (1.71)

The first such measurement from the BNS merger GW170817 yielded Hy = 7073* km s 'Mpc!
(b6, b7]. Future detections will refine this constraint and may help resolve the Hubble

tension discussed in Bection 1.4.2.

Moreover, discrepancies between GW- and electromagnetic-based luminosity distances
would indicate deviations from GR’s propagation laws, a topic explored further in

D 0.
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Source-Frame vs. Detector-Frame Masses

The cosmological propagation of GWs introduces another crucial subtlety: the distinc-
tion between source-frame and detector-frame masses. The redshift affects not just the
wave amplitude and frequency, but also the apparent masses of the compact objects.
The chirp mass, defined in the source frame as:

(mimg)?)/ 5
M= ————, 1.72
appears redshifted in the detector frame. The redshifted chirp mass is:
Moz = (1 +2)Mc(m5, m3) = Mc(m{, mg) (1.73)

This relation shows that the chirp mass measured by GW detectors is not the true
source-frame chirp mass, but rather a redshifted version.
The individual component masses are similarly redshifted. We define source-frame

masses mj, m; as the true physical masses at the source, and detector-frame masses

d

my,

mg as the apparent masses measured by the detector. These are related by:
mé = (1+2)ms, md=(1+z)m} (1.74)

This means that without independent knowledge of the redshift z, GW observations
alone cannot distinguish between a nearby low-mass system and a distant high-mass
system if they have the same detector-frame masses. This mass-redshift degeneracy is
fundamental to GW astronomy.

The detector-frame masses are what we directly measure from GW data because they
determine the observed frequency evolution and amplitude. The waveform equations
naturally contain these redshifted quantities because the observed frequencies are red-
shifted (fobs = fsource/(1 + z)), the mass scale that sets the frequency evolution is the
redshifted mass, and the amplitude depends on the combination M, /dr.

To recover the true physical masses at the source (mj, m), we need an independent
measurement of redshift. Several approaches exist: electromagnetic counterpart iden-
tification (as demonstrated with GW170817), statistical association with galaxy cata-
logs (the catalog method), and cosmological inference using population mass distribu-
tions (the spectral siren method). Both the catalog and spectral siren methods rely on
assumptions about the source-frame mass distribution and are detailed in Section p.2.

1.5 Why Test GR with Gravitational Waves?

Albert Einstein’s GR remains one of the most successful theories in modern physics,
having withstood all experimental tests across scales ranging from Solar System dy-
namics to cosmology. Nevertheless, its completeness is challenged by persistent ob-
servational. The requirement for dark matter to explain galactic dynamics and the
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need for dark energy to account for the Universe’s accelerated expansion suggest that
our understanding of gravity may be incomplete. Either 95% of the Universe’s con-
tent is unknown, or GR itself requires modification on certain scales. GW astronomy
provides a unique and powerful avenue to address this fundamental dichotomy by
probing gravity in its most extreme regime.

The historical validation of GR’s radiative properties began with the Hulse-Taylor bi-
nary pulsar, whose orbital decay matched the prediction of energy loss to GWs. How-
ever, such systems operate in the weak-field, quasi-stationary regime. GW observa-
tions, particularly from compact binary coalescences, transcend these limits. They pro-
vide a direct window into the strong-field, highly dynamical regime where the gravita-
tional potential approaches ®/c? ~ 0.1 and velocities reach a significant fraction of the
speed of light. It is in this unexplored territory, illustrated in Fig. [.5, that deviations
from GR are most likely to manifest.
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Figure 1.5: Reach of different gravitational experiments in the space of characteristic spacetime cur-
vature (R ~ M/L3) and gravitational potential (& ~ M/L). For binary systems, the virial theorem
relates M /L to v? /c2, mapping the orbital velocity to the potential strength. Ground-based GW detectors
(e.g., LIGO, Virgo, ET) probe the high-curvature, high-potential regime of merging compact objects, a
domain inaccessible to Solar System, binary pulsar, or cosmological tests. Figure taken from [b8]

The utility of GW for fundamental physics is threefold. First, GWs are exceptionally
clean messengers: owing to their extremely weak coupling to matter, they propagate
virtually unimpeded across cosmological distances and thus retain a faithful imprint of
the underlying spacetime dynamics. Second, they directly probe the tensorial degrees
of freedom of gravity, which are precisely the sector most commonly altered in exten-
sions of GR. Third, observational milestones such as GW170817 have already delivered
stringent, theory-agnostic constraints. The coincident detection of gravitational and
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electromagnetic signals from this event established that GWs propagate at the speed
of light to within one part in 1015, thereby excluding a wide class of modified gravity
models that predict anomalous dispersion or frequency-dependent propagation.
Looking forward, the next generation of detectors will transform this field. High-
fidelity waveforms from millions of sources will enable precision tests of the Kerr met-
ric during BH ringdown, searches for additional polarization states, and measurements
of any dispersion or attenuation in GW propagation over cosmological distances. Fur-
thermore, as sensitivity increases, our idealized waveforms constructed under the vac-
uum assumption will begin to break down; the necessity of having models that account
for realistic astrophysical environments will become crucial for performing unbiased
parameter estimation and the subsequent tests of GR. On the cosmological frontier,
the standard siren approach, introduced in Section Section 1.4.7, provides a powerful,
calibration-free method to measure cosmic expansion. Any discrepancy between the
luminosity distance inferred from GWs (d?w) and that from electromagnetic obser-
vations (df™) would be a direct signature of modified propagation, offering a novel
pathway to resolve the Hubble tension discussed in Section Fection 1.4.2.

GW astronomy is not merely a new observational tool; it is a probe of fundamental
physics. It allows us to stress-test GR in the strong-field regime, to explore the nature
of compact objects, and to measure the geometry of the Universe on large scales. The
following chapters of this thesis are dedicated to developing and applying these tests.
will detail how deviations from GR are encoded in the waveform models
used for detection and parameter estimation. will focus on using BH ring-
down to perform “BH spectroscopy” and test the no-hair theorem. Finally,
will explore how the cosmological propagation of GWs can be used to constrain theo-
ries of modified gravity and dark energy.



Principles of GW Detection

2.1 Introduction

GW detectors are among the most precise scientific instruments ever built. They are
designed to measure a strain 1 ~ 102! induced by passing GWs on a baseline of several
kilometers. The basic detection principle relies on measuring differential variations in
optical path length between two perpendicular arms using laser interferometry. When
a GW passes through the detector, it perturbs the spacetime metric and induces a rela-
tive phase shift between the two light beams propagating in the orthogonal directions.
This phase shift is then converted into a measurable change in the interference pattern
at the photodetector.

The first direct detection of GWs by the LIGO and Virgo collaborations in 2015 marked
a milestone in experimental physics, confirming one of the last predictions of Einstein’s
GR and inaugurating the era of GW astronomy. Modern detectors, such as Advanced
LIGO, Advanced Virgo, and KAGRA, are kilometer-scale Michelson interferometers
equipped with Fabry—Perot arm cavities, power and signal recycling mirrors, and so-
phisticated vibration-isolation systems to suppress seismic and thermal noise. Future
observatories such as the Einstein Telescope and Cosmic Explorer aim to extend this
sensitivity by one or more orders of magnitude through cryogenic operation, under-
ground construction, and advanced quantum noise reduction techniques.

This chapter presents the physical principles that govern interferometric GW detec-
tors. We begin with the general response of light to spacetime perturbations and then
discuss the successive developments that have led from the basic Michelson interfer-
ometer to the dual-recycled Fabry—-Perot configuration used in current observatories.
Finally, the principal sources of noise that limit detector sensitivity are summarized.

2.2 Principles of Detection

The purpose of a GW detector is to measure the tiny perturbation in distance AL be-
tween free-falling test masses induced by the passage of a GW. Since these changes are

28
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extremely small, of order 10718 m for kilometer-scale interferometers, direct mechani-
cal measurement is infeasible. Laser interferometry provides a phase-sensitive means
of detecting these perturbations by comparing the optical path lengths along two or-

thogonal arms.

2.21 Propagation of Light in a Perturbed Spacetime

The propagation of light in vacuum follows null geodesics in spacetime, meaning the
spacetime interval between any two points along its path is zero. For a light ray with
separation vector dx! between two events, this condition is expressed as:

guvdxtdx" =0, (2.1)

where g, is the metric tensor. In the case of a GW propagating along the z-axis, this
equation becomes:

0 = c?dt? — dx? — dy® — dz* + 2hydxdy + hy(dx* — dy?), (2.2)
Y Yy Yy

with h, and hy representing the plus and cross polarization states of the GW.

This formulation reveals that GWs do not alter the direction of light propagation but
rather affect the optical path length, as evidenced by the absence of force-like terms in
the geodesic equation. For light traveling along the x-axis, the expression simplifies to:

0 = c?dt? — dx? + hydx®. (2.3)

Assuming small amplitude perturbations (4 < 1), this can be approximated as:

dx = +cdt (1 + %h+(t)) . (2.4)

Consider a round-trip light travel experiment where a photon is emitted at time ¢,
reflected at distance L, and detected at time t5. The outward journey gives:

5]

L=c(t; —ty) + %c/tO hy(u)du, (2.5)

while the return journey satisfies:

—L=c(t; —t3) — %c /t2 hi(u)du. (2.6)

t

Combining these expressions and defining t, = t as the detection time and to = ¢, as

the retarded time, we obtain:

t
ty=1t— 2L + 1/ h(u)du. (2.7)
c 2

To first order in h, this simplifies to:
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t
tp=1t-— 2L + 1/ h(u)du. (2.8)
c 2 t—2L/c

For a monochromatic GW with frequency f = «/(2n) and strain amplitude h(t) =
hg cos(wt), the retarded time relation becomes:
9L hoL

tr=t-— - + — sinc(wL/c) cos(w(t — L/c)). (2.9)

A similar expression applies for light propagation along the y-axis, though with oppo-
site sign in the final term. This demonstrates how GW detection fundamentally relies
on measuring the optical time delay between light emission and reception after reflec-
tion. This principle forms the basis for modern ground-based interferometric detectors.

2.2.2 Detector Response and Antenna Patterns

The measured GW signal depends not only on the source properties but also on the
relative orientation between the source and the detector. For ground-based interfero-
metric detectors like LIGO and Virgo, the antenna patterns quantify how the detector’s
sensitivity varies with the sky position and polarization of the incoming wave.
Consider an L-shaped interferometer with arms aligned along the £ and 7 axes. The
detector response to a GW with polarization components /1, and hy is given by:

h(t) = F(0, , ) hi(t) + Fx(0, ¢, P)hx(t), (2.10)

where F, and Fx are the antenna pattern functions that depend on the source’s sky
location (0, ¢) and polarization angle ¢. A scheme of the angles is shown in [Figure 2.1

Detector plane

Figure 2.1: Coordinate systems defining the relative orientation between the GW source and the detector.
The angles (0, ¢) specify the sky location of the source relative to the detector’s arms, while 1 represents
the polarization angle that rotates the wave’s principal axes. This geometric relationship determines the
antenna response functions that modulate the measured signal amplitude.
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The antenna patterns for an L-shaped interferometer are:

1
FL(0,0,¢) = 5(1 + cos? 0) cos 2¢ cos 2¢ — cos O sin 2¢ sin 20, (2.11)

Fx(0,0,¢) = %(1 + cos? 0) cos 2¢ sin 21 + cos O sin 2¢) cos 21). (2.12)

These functions satisfy 0 < |[F4| < 1and F2 +F2 < 1. The detector is most sensitive when
the source is located perpendicular to the detector plane (0 = 0, ), where the response
reaches its maximum. Conversely, there are blind spots along directions parallel to the
detector arms where the antenna response vanishes.

For a compact binary coalescence with inclination angle ¢, the total response can be

written as:

h(t) = F(6, ¢, 1, )A(t) cos[D(t) — ¢p(6, ¢, ¥, 1)], (2.13)

where the combined antenna pattern is:

(1 + cos? )2

FO,p,¢,1) = \/Fi(e,qb,gb)T +F2(6, ¢, ¢) cos? 1. (2.14)

and the polarization phase ¢p accounts for the relative weighting of the two polariza-
tion components and is given by:

F(6,¢,9)(1 + cos? 1)
AF (0, ¢, ) cost

@p(0,9¢,1, 1) = arctan [ (2.15)
When the source location is unknown, the root-mean-square detector response aver-
aged over all angles is \/@ = 2/5, indicating that the typical sensitivity is 40% of the
maximum possible value.

In the frequency domain, particularly within the stationary phase approximation, the
detector response modifies the waveform as:

h(f) = FO, ¢, ¢, DA(f)e™Nior@onn), (2.16)

This formulation is essential for parameter estimation, as the antenna patterns intro-
duce degeneracies between the source’s intrinsic parameters (masses, spins) and its
extrinsic parameters (sky location, orientation).

2.2.3 Michelson Interferometer

The simplest interferometric configuration capable of detecting such time delays is the
Michelson interferometer. A schematic layout is shown in [Figure 2.2.

A laser source emits monochromatic light at frequency w;, with wavenumber k; =
wr/c and wavelength A = 2mt/k;. The electric field of the laser beam is described by:

E(t, %) = Ege~font+iks (2.17)
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Figure 2.2: Schematic diagram of a Michelson interferometer. A laser beam is split into two perpendic-
ular arms, reflected by mirrors, and recombined at the beam splitter before detection.

The interferometer splits the laser beam into two perpendicular arms of lengths L, and
Ly. After reflection from end mirrors, the beams recombine at the beam splitter at time
t, having originally been separated at times t(()x) =t—2Ly/c and t(()y - 2L, /c. The
returning fields are:

E, = _%Eoe—muzik@x, (2.18)
E, = %Eoe—iwmkm‘ (2.19)

The superposition at the output port yields:

Eyu = Ey +Ey = _Z'Eoe—ith+ikL(Lx+Ly)Sin(kL(Ly —Ly)), (2.20)
Pout = |E0ut|2 = E(2) Sin2(kL(Ly - Lx)) (221)

This demonstrates the interferometer’s sensitivity to differential arm length changes.
When accounting for GW effects, the returning fields acquire additional phase modu-
lations:

E@)(t) = _% E i (t=2Ls/c)+iBx(t) (2.22)

EW)(t) = %EoeiwL(t—QLy/c)+iA¢y(t)/ (2.23)
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where the GW-induced phase shifts are:

wr Ly

Ay (t) = ho

. sinc(wgLy/c) cos(wg(t — Ly/c)), (2.24)

Ay (1) = —ho—

sinc(wgLy/c) cos(wg(t — Ly /c)). (2.25)

For nearly equal arm lengths L, ~ L, ~ L, where L = (Ly + L,)/2, the net phase
difference becomes:

CL)LL

A(1)tota1(t) = A¢x(t) - Aqby(t) ~ 2hg c

sinc(wgL/c) cos(wg(t —L/c)). (2.26)
The total output field and power in the presence of GWs are then:

Ewor(t) = E®(t) + EV(t) = —iEge 7 Lt=2L) gin(dg + A, (1)), (2.27)
P(t) = |Ewotl® = Po [1 = cos(2¢0 + 2A¢x(1))] , (2.28)

where Py = |Eg|? is the input power and ¢, represents the operating point phase bias
optimized for maximum sensitivity.

The power detected at the output port, given by [Equation 2.28, is proportional to the
laser power Py. To maximize the power variation induced by a GW, one should max-
imize the phase shift A¢,. This occurs when wgL/c = 7/2, yielding an optimal arm

length:
T
Lopt = —. 2.2
opt 26‘—)G ( 9)
Given that wg = 27 fgw, this can be rewritten as:
c 100Hz
Lot = —— ~ 750km . 2.30
P A fow ( fow ) (230)

This length scale presents significant technological challenges, motivating modifica-
tions to the basic Michelson design to achieve comparable sensitivity with shorter arms.
The solution involves incorporating Fabry-Perot cavities in each arm, which resonantly
enhance the effective optical path length through multiple reflections.

2.2.4 Fabry-Perot cavity

A Fabry-Perot cavity represents the simplest form of optical resonator, consisting of
two partially reflective mirrors separated by a well-defined distance L, as illustrated in
??perot_schematicfig:fabry_perot_schematic

. The operation of such a cavity relies on the interference of multiple reflected waves
between the two mirrors, creating standing wave patterns when specific resonance con-
ditions are met. Consider a Fabry—Perot cavity of physical length L with mirror am-
plitude reflectivities r; and 2 and transmissivities f; and f2, as shown schematically in
??perot_schematicfig:fabry_perot_schematic



34 2. Principles of GW Detection

. For an incident field E, the steady-state transmitted and circulating fields are given

by:

B tthEikL
Etrans - WEO/ (231)
Ecire = WEO- (2.32)
ry r
E. E
inc laun ~ E
® - < - trans
”~ ”~ ”~
E a Ereﬂ,l ) ( ERT Ecirc )
« 2 <
Eback Eb-circ

Figure 2.3: Electric fields in a Fabry—Pérot resonator [b9]. The electric-field mirror reflectivities are
r1 and ro. Indicated are the characteristic electric fields produced by an electric field Eiy incident upon
mirror 1: E,eq 1 initially reflected at mirror 1, Eyaun launched through mirror 1, Ecirc and Ey._circ circu-
lating inside the resonator in forward and backward propagation direction, respectively, Ert propagating
inside the resonator after one round trip, E¢yans transmitted through mirror 2, Epaci transmitted through
mirror 1, and the total field E,.q propagating backward. Interference occurs at the left- and right-hand
sides of mirror 1 between E,eq,1 and Epack, resulting in Eyeq, and between E\yuy and Ery, resulting in
Ecire, respectively.

The power stored inside the cavity follows from the circulating field intensity:

2
tl

1+ 72r2 = 2ry7r9 cos(2kL)’

Peirc = |Ecircl2 =Py (233)
The resonance condition corresponds to constructive interference after each round trip,

occurring when:
2kL =2mm, m eZ. (2.34)

As shown in [Equation 2.33, the circulating power exhibits resonant enhancement when
the denominator becomes small. This occurs precisely at the resonance condition given
by Equation 2.34, where the cosine term equals unity. The characteristic behavior of the
cavity response is illustrated in Figure 2.4, which shows the magnitude of the complex
enhancement factor |1/(1 — r179e%*1)| as a function of the phase accumulation 2kL.
The periodic peaks in correspond to successive longitudinal modes of the
cavity, separated in frequency by the free spectral range (FSR):

Cc

The cavity finesse, which represents the average number of round trips a photon makes
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e 2kL=2mm

11/(1 = ryryeiL)|

2kL

Figure 2.4: Resonant behavior of a Fabry-Perot cavity showing the magnitude of the enhancement factor
[1/(1 = riree2*L) as a function of phase accumulation 2kL. The red dashed lines and markers indicate
the resonance conditions where 2kL = 2mm for integer m, corresponding to constructive interference
after each round trip. The sharp peaks demonstrate the frequency selectivity of the optical cavity.

before escaping, is given by:
TiNT172

F =

i (2.36)

At resonance, the circulating field reaches its maximum amplitude while the reflected
power is minimized, making this the optimal operating point for GW detection. The
spectral characteristics of the cavity are quantified by the FSR and finesse, with higher
reflectivities leading to narrower linewidths and greater peak enhancement.

The linewidth, or full width at half maximum of the resonance peaks, relates to the

finesse through:
- 4v

-

For high-reflectivity mirrors typical in GW detectors, the storage time of photons within

v (2.37)

the cavity becomes:
1 2L
T=—=F . —,
ov cTt

(2.38)
which can be experimentally measured by observing the exponential decay of trans-
mitted power when the input laser is suddenly blocked.

The crucial enhancement for GW detection comes from the phase shift induced by a
GW of amplitude h(t) = hg cos(wgt) on the cavity length AL(t) = (Lho/2) cos(wct). This
produces an effective phase modulation of the intracavity field:

4 2
Apy = %kLALx = ?TkLLho cos(wgt), (2.39)

demonstrating that the Fabry—Perot resonance enhances the GW-induced phase shift
by a factor 27 /m relative to a simple Michelson interferometer.

For typical parameters in advanced detectors, with F = 450 and L = 4km as in LIGO,
the effective optical path length reaches approximately 1000 km. This resonant en-
hancement makes the detection of GWs feasible with terrestrial-scale instruments, trans-
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forming kilometer-scale arms into effectively hundred-kilometer-scale interferometers

capable of measuring strains below 10723 Hz /2,

2.3 Advanced Gravitational Wave Detection with Dual-Recycled

Interferometers

2.3.1 Signal Extraction Principles in Fabry-Pérot Interferometers

As shown in the previous section, the detection of GWs relies on measuring minute
phase shifts, Apgw(t), induced in laser light circulating within interferometer arms.
However, direct phase measurement presents significant challenges since photodetec-
tors respond only to optical power, making it impossible to distinguish between GW-
induced signals and laser amplitude noise.

This limitation is addressed through null instrument operation, where the interferom-
eter is maintained at a dark fringe condition (red dot in ??outputfig:IFO_output

) such that output power vanishes in the absence of GW signals. While this config-
uration eliminates the DC background, it introduces another challenge: at the exact
dark fringe, the power-phase derivative dP/d¢ becomes zero. Consequently, for GW-
induced phase shifts Apgw(t) « h (see Equation 2.24), the resulting power variation
scales as AP ~ h. Given typical GW strains of h ~ 1072, this would require detecting
power variations of order 107*2, which is experimentally infeasible.

1.0 1

Q
Q4 0.6 1

-
-
Q~| 0.4 4

0.2 1

Figure 2.5: Interferometer output characteristics showing normalized power versus phase shift. The
dark fringe operating point (red) ensures minimal output power in the absence of GWs, optimizing
SNR for weak detections [p0].

The standard solution employs heterodyne readout through phase modulation. In-
put laser light is modulated at frequency wmoq using electro-optic modulators, di-
electric crystals whose refractive index varies with applied electric fields I:fapphed =



2.3. Advanced Gravitational Wave Detection with Dual-Recycled Interferometers 37

Eo cos(wmodt) [61]. The modulated electric field becomes:

Ein(t) — Eoe—i[th+rSin((udet)] (240)

where wy is the laser frequency and I' < 1 the modulation depth. For small I, this
expands to:

Ein(t) = Eo [Jo(T)e™ M + Jy(T)e™ (@1t @mod)t — Jy(T)e~ /(@1 Wmod)t 4 Q(ei1#2¢meat )|
(2.41)
generating carrier (wr) and sideband (wr + Wmod) components. These spectral com-
ponents interact differently with Fabry-Pérot cavities, with reflected fields given by:

, r ‘ T ‘
B(t) = E, ]g(I“)RCe‘“"Lt+i§]1(I“)R+e‘l(“’L+“’m°d)t+i§]1(1“)R_e‘l(“’L‘“’m°d)t (2.42)

where R., R4, and R_ represent cavity reflectances for carrier and sidebands respec-
tively. When the interferometer is tuned such that the carrier satisfies the dark fringe
condition (a — b = nAr), GW passage perturbs the arm lengths, disrupting the perfect
nulling. The resulting photodetector signal contains a component linear in & oscillating
at wmogq, which is extracted via demodulation.

2.3.2 Enhanced Sensitivity Through Optical Recycling and Squeezed Light

Modern GW detectors incorporate several optical enhancements to achieve the sensi-
tivity required for astrophysical observations. illustrates a comprehensive
dual-recycled interferometer configuration featuring multiple subsystems:

e Power Recycling Mirror (PRM): Positioned before the beam splitter, this mir-
ror system reflects light returning toward the laser back into the interferometer
arms, significantly increasing circulating power by reusing photons that would
otherwise be lost.

e Signal Recycling Mirror (SRM): Located at the output port, this mirror assem-
bly enables tuning of the interferometer’s frequency response, allowing optimiza-
tion of sensitivity across specific frequency bands of astrophysical interest.

e Input Mode Cleaner (IMC): Following laser injection, the IMC filters higher-
order spatial modes, reduces beam jitter, and suppresses frequency fluctuations
before light enters the main interferometer, ensuring optimal beam quality.

e Output Mode Cleaner (OMC): Positioned before detection, the OMC filters higher-
order modes from the signal while reflecting control sidebands. A Faraday isola-
tor prevents backscattered light from re-entering the interferometer.

Squeezed Light and Filter Cavity: Quantum noise imposes a fundamental sensitiv-
ity limit in GW detectors, manifesting as shot noise at high frequencies and radiation
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pressure noise at low frequencies (see Pection 2.4.T)). The standard quantum limit
represents the optimal trade-off between these competing quantum effects. The fun-
damental principle behind squeezed light enhanced interferometry involves injecting
squeezed states of light into the detector’s dark port to improve sensitivity beyond the
quantum noise limit. Although no bright laser light enters through this port, the quan-
tum fluctuations of the vacuum field do enter the system and become superimposed
with the electromagnetic output field containing the GW signal. By replacing these
vacuum fluctuations with continuous injection of squeezed vacuum states, the mea-
surement uncertainty can be strategically manipulated [p2, 63 ].

The quantum noise of light can be understood through two complementary proper-
ties: amplitude fluctuations and phase fluctuations. According to quantum mechanics,
these two types of noise are fundamentally linked—reducing one necessarily increases
the other. The lowest possible noise level, where both amplitude and phase fluctua-
tions are equally small, corresponds to ordinary vacuum noise. Squeezed states break
this symmetry by making one type of fluctuation exceptionally quiet while accepting
more noise in the other.

The most common method for generating these squeezed states involves using nonlin-
ear optical crystals that can convert laser light into quantum-correlated photon pairs
through a process called parametric down-conversion. When placed inside an opti-
cal cavity, this system can continuously generate the squeezed light needed for GW
detection. This method has become standard in current-generation detectors.

However, a fundamental challenge exists: reducing high-frequency shot noise makes
low-frequency radiation pressure noise worse, and vice versa. The solution is frequency-
dependent squeezing, which uses an additional optical component called a filter cavity.
This cavity acts like a frequency-dependent rotator that changes the squeezing proper-
ties across different frequencies. At high frequencies (above about 100 Hz), it reduces
shot noise, while at low frequencies (below 100 Hz), it automatically switches to re-
ducing radiation pressure noise instead.

The filter cavity works by imposing a frequency-dependent delay on the squeezed light,
with the amount of rotation determined by the cavity’s specific design parameters. This
solution enables detectors to surpass the standard quantum limit across a broad fre-
quency band used for GW observations, significantly improving their ability to detect

faint cosmic signals.

The combination of heterodyne readout techniques with advanced optical subsystems,
power and signal recycling, mode cleaning, and quantum squeezing, enables the sen-
sitivity required for GW astronomy. This integrated approach forms the foundation of
current-generation detectors like LIGO and Virgo, allowing them to detect spacetime
strains as small as 1072% across a broad frequency range.
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Figure 2.6: Comprehensive schematic of a dual-recycled Michelson interferometer with Fabry-Perot
arm cavities, incorporating input/output mode cleaners and squeezed light technology for enhanced
GW detection.
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2.4 Sources of Noise in GW Detectors

Ground-based interferometric detectors are subject to multiple noise sources that fun-
damentally limit their scientific capabilities. Each noise component typically domi-
nates within specific frequency bands, necessitating targeted design optimizations and
operational strategies to effectively mitigate their impact on detector sensitivity.

The detector output can be modeled as:
s(t) = h(t) +n(t), (2.43)

where h(t) represents any GW signal present and n(t) encompasses all noise contri-
butions. While detector noise may exhibit non-stationary and non-Gaussian charac-
teristics over long timescales, it can typically be treated as stationary during short ob-
servation intervals. Under this assumption, we define the expectation operator (-) as
averaging over time periods where signals remain approximately constant. The noise
satisfies (n(f)) = 0, and stationarity implies that the correlation function (n(t)n(t’))
depends only on the time difference t — t’. Fourier transformation yields:

AN (f) = // dtdt’ (n(en(e e I = So(f — F1Su(f), (244)

where S,(f) represents the one-sided noise power spectral density. This quantity
serves as the standard measure of interferometer sensitivity, directly determining sig-
nal detectability against the noise background. The following subsections analyze the
principal noise sources affecting detector performance.

2.4.1 Shot Noise

Shot noise constitutes a fundamental limitation arising from the quantum nature of
photons. For a laser beam with average photon arrival rate corresponding to N, pho-
tons detected during time T, the measured optical power is:

1
P = =Nyhwr. (2.45)

Photon detection represents a discrete counting process where individual photon ar-
rivals constitute independent events. This process follows Poisson statistics, with prob-
ability distribution:

1
N!

where N denotes the detected photon count and N its expectation value. For large N,

p(N;N) = —NNe N, (2.46)

this distribution approaches Gaussian statistics with standard deviation VN, yielding
photon number fluctuations:

AN, = /N, (247)
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These fluctuations manifest as optical power noise:

1 p
(AP)shot = _ANyha)L = hoL . (2.48)
T T
Conversely, the GW signal induces power variations:
. Prp
(AP)ow = Peirc|sin(2o)| =~ (2.49)
provided a simplified expression for the phase shift. A more complete

treatment accounts for the sensitivity degradation that occurs when the GW frequency
is comparable to the photon storage time within the cavity:

4F k1 L 1
|prp| = ho , (2.50)
T NI+ (ffp)?
with the pole frequency approximated by [p1]:
c
fr= L (2.51)

The SNR (SNR), quantifying signal distinguishability from noise, becomes:

— (AP)GW — PcircT 87:141’10 1 (2 52)
P (AP)shot ¥ 2w, A 1 +(f/fp)2. ‘

For a periodic signal with amplitude /o observed for duration T, the SNR relates to the

f T

Higher circulating power generally reduces shot noise, thereby improving sensitivity.

noise spectral density as [p1]:

Notably, this noise originates from fundamental quantum principles and cannot be
overcome without employing quantum techniques such as light squeezing, discussed

in Eectlon 2.3.2.

2.4.2 Radiation Pressure Noise

Radiation pressure noise represents another quantum mechanical limitation in GW
detectors. This phenomenon arises from the momentum transfer when photons reflect
from mirror surfaces, creating fluctuating forces due to statistical variations in photon
arrival. A laser beam with circulating power P exerts an average force F = 2P /c
on mirrors, with fluctuations given by:

2Vhwi Peirc

AF = ——mM—,
c\NT

(2.54)
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The corresponding spectral density of this fluctuating force becomes:

51/2 _ 2Vhaw Pirc

: - (2.55)

Applying Newton’s second law F = m#% (assuming no external forces or damping),
the Fourier-space relationship F(f) = —m(2n f)?x(f) yields the displacement spectral
density:

51/2 2 Vhiwy Peirc

T (2.56)

Photons incident on the beam splitter distribute randomly between the two arms with
anti-correlated statistics. Under operating conditions, radiation pressure contributions
from both arms add incoherently, introducing a factor of 2, while correlated fluctua-
tions cancel.

Converting to equivalent strain noise using the transfer factor L for Michelson interfer-
ometers gives:
4V2hwi Peire

1/2 —
S (fhraa = mL(27 f)2c2’

(2.57)

Incorporating Fabry-Pérot cavity effects, where mirror vibrations at frequency f de-
tune the cavity and reduce circulating power by [1 + (f/ f,)?], modifies the expression
to:

SV2F  [hPeire 1

1/2 _
Si'"(frad = mL(QTCf)Q cAF 1+ (f/ff’)2

(2.58)

Like shot noise, radiation pressure noise stems from fundamental quantum proper-
ties of light and represents an inescapable limitation without quantum enhancement
techniques such as squeezed light with filter cavities.

2.4.3 Standard Quantum Limit

The combined quantum noises establish a fundamental sensitivity boundary indepen-
dent of technological advancement. This quantum noise manifests Heisenberg’s un-
certainty principle in action: photon position measurements inevitably impart recoil
momentum to the mirrors. The total quantum noise spectral density combines both

contributions:
o\ 1/4 9 1/2
N AT A N L (1 ! f_) (f_o‘* T 1) ’
(2.59)
where:
f0=g Q;Cﬁ (2.60)

Minimizing quantum noise at specific frequencies yields the standard quantum limit
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(SQL):
Sy (f)sau = ﬁ\/% (2.61)

This represents the optimal spectral density achievable at each frequency when circu-
lating power is optimized. The envelope of these minima defines the ultimate quantum

noise limit:

1/2 _1 1
Si'“(f Jopt = 2SSQL(f) [\/K(f)+ K(f)], (2.62)
with:
K(f) = ——rLPeir (2.63)

TmLQa)Q(a)g + w?)’

2.4.4 Displacement Noise

Displacement noise encompasses all non-GW, non-radiation pressure effects that alter
test mass positions. Since strain is defined as i = AL/L, any length variation appears
as an equivalent GW signal.

Seismic Noise

Ground motion, particularly below 10 Hz, constitutes a significant noise source from
natural phenomena (ocean waves, earthquakes, wind) and human activities (traffic,
machinery). Seismic displacement typically follows a power-law spectrum:

1 Hz
f

with y ~ 2 above 1 Hz. The amplitude A depends on local seismic quietness. Since

x(f) :A( )y m Hz /2, (2.64)

typical levels preclude GW detection, sophisticated suspension systems are essential.
A simple pendulum with resonant frequency f attenuates strain noise by f2/f? for
f > fo, while N-stage pendulums provide (f2/f*N suppression. Typical systems
place resonances around 10 Hz to enable detection above this threshold.

Newtonian Noise

Gravity-gradient noise arises from fluctuating Newtonian gravitational forces due to
mass density variations in the surrounding environment. Microseismic activity par-
ticularly affects mass density distributions, altering the gravitational field interacting

with test masses. The gravitational potential fluctuation from density variations is:

op(t, X)

%o — %

5o(t, %) = -G / av (2.65)
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Primary density fluctuation sources include [64]:

Spseis(t, %) = =V - (pson(¥)E(, X)), (2.66)
- Patm -
OPpress(f, X) = OPatm(t, X), 2.67
Pp (t, x) )/fiatmpt( ) ( )
6ptemp(tr J_C)) = _F;—,aﬂéTatm(t/ 3_5)/ (268)
atm

where pgi is soil density, E (t, X) represents seismic displacement, patm and Tytm denote
air pressure and temperature, and y ~ 1.4 is the adiabatic index. Barred quantities
indicate averages. These combined contributions can limit low-frequency sensitivity
below 10 Hz.

Newtonian noise presents a near-fundamental limitation resistant to conventional at-
tenuation. Mitigation strategies include underground detector construction in quieter
environments or real-time noise monitoring and subtraction.

2.4.5 Thermal Noise

At mid-to-low frequencies, thermal motion of mirror atoms and suspension compo-
nents creates unpredictable displacements. Brownian molecular fluctuations generate
mechanical dissipation modeled via the fluctuation-dissipation theorem:

AkgTR[Y ()]

Sx(a)) = 0)2

, (2.69)

where Y(w) is mechanical admittance, kg Boltzmann’s constant, and T temperature.

For a damped harmonic oscillator m# + px + kx = F, the admittance becomes:

—imw? + ﬁa)2 +ikw

Y(w) = k—mw?e T prar (2.70)
yielding displacement spectral density:
4kpT
Se(w) = s1F (2.71)

(k — mw?)? + B2w?’

Viscous damping sources include eddy currents from mirror magnets and residual
gas damping. Structural losses within materials introduce complex elasticity k(1 +i¢),
where ¢ is the loss angle:

| 4ksTko
w? (k — mw?)? + k2¢?

Sy(w) = (2.72)

For suspended mirrors forming pendulums, the elastic constant combines gravitational
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and wire contributions:
ke .
k=kell+ zk—cf)w = ko(1 +iy), (2.73)
8
where ¢, is the pendulum loss angle (~ 107° for Virgo suspensions). Above pendulum

resonance, thermal noise approximates:

4kpT,

Sx(w) = a)gmw4 w,

(2.74)

with w( the pendulum resonance frequency.

Thermo-optical Noise

Laser illumination causes mirror substrate heating and compression, with heat transfer
to cooler regions reducing restoring forces. Thermoelastic noise approximates [65]:

_ 8kgTa?(1+ 0)*kT
w?n32Cpry

Sx(w)

(2.75)

where « is thermal expansion coefficient, 0 Poisson’s ratio, ¥ thermal conductivity, C
specific heat per unit volume, p material density, and ry laser beam radius.
Thermorefractive noise from laser-induced refractive index changes is [b6]:

Sx(w) =

2
4kgT 4TI (dn), (276)

w? n(pC)2ry \dT
where [ is optics length and dn/dT the thermo-refractive coefficient.

Coating Thermal Noise

Despite minimal mass fraction, coating thermal noise often dominates due to higher
dissipation concentrated at the reflection surface. The approximation [65]:

BT [ivo () =

where E is Young’s modulus, ¢ the dissipation loss angle, and I = 1.873 for Gaussian

5:(f) =

beams. As a dominant noise around hundreds of Hz, mitigation strategies include
cryogenic operation, reduced coating mechanical losses, and increased beam spot size
for power dilution.

2.4.6 Residual Gas Noise

Ultra-high vacuum (UHV) operation minimizes gas-related noise from molecular col-
lisions with mirrors and laser phase shifts from density variations along the beam path.
Residual gas also enhances scattered light and optical absorption.
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Despite UHV conditions (~ 107 mbar), remaining molecules contribute noise:

— (47’(0()2 /L p(Z) —2n fw(z)/vo
Sgas(f) = ™ ; w(z)e dz, (2.78)
where a is optical polarizability, v average molecular speed, p number density, and
w(z) beam radius. Common species include Hy, H,O, N3, CO, and CO,. Hydrocarbon-

free environments prevent condensable organic deposition on optics.

2.4.7 Scattered Light Noise

Scattered light noise affects low-to-mid frequencies and requires careful mitigation.
Photons deviating from intended paths due to surface imperfections or residual gas
can reflect from unintended surfaces and recombine with the main beam, mimicking
GW signals.

Current detectors implement robust scattering suppression in main Fabry-Pérot cavi-
ties, though strong microseismic activity or less-shielded optical systems can still ex-
perience sensitivity limitations. Detailed treatment follows in subsequent chapters.

2.4.8 Overall Sensitivity Curve

The combined effect of all noise sources determines the overall sensitivity profile of GW
detectors. [Figure 2.7 illustrates the projected sensitivity for Advanced LIGO based on
theoretical noise models and design parameters, showing individual noise contribu-
tions and their combined effect on the detection threshold.

The actual performance during observing runs demonstrates the evolution of detector
capabilities. compares the measured strain sensitivity between the O3b and
O4a observing periods for both LIGO Hanford (LHO) and LIGO Livingston (LLO)
observatories, highlighting the substantial improvements achieved through technical
upgrades.

The significant sensitivity improvement observed in O4a stems from several key en-
hancements. Quantum noise reduction was achieved through the implementation of
frequency-dependent squeezing, while scattered light mitigation involved the removal
of septum windows that previously transmitted ground vibrations. Additional im-
provements included damping of baffle resonances and replacement of alignment dither
systems with camera-based servos at LHO, which eliminated spectral features around
20 Hz. The persistent difference in sensitivity between the two observatories, particu-
larly noticeable around 100 Hz at LLO, reflects site-specific conditions and component
variations.

While design sensitivity curves represent theoretical projections, actual detector per-
formance during observation periods incorporates various technical noise sources that
emerge during operation. These include:

e Laser frequency noise: Residual phase noise from laser frequency instabilities
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Figure 2.7: Theoretical sensitivity curve for Advanced LIGO displaying individual noise contributions
and the total design sensitivity, based on fundamental physical limits and instrument parameters [67].

that leaks to detection ports through optical asymmetries despite active stabi-
lization systems.

e Laser intensity noise: Power fluctuations at dark ports that remain significant at
spectral extremes despite control system mitigation.

e Alignment sensing noise: Limitations in mirror alignment detection systems
that constrain positioning accuracy and dominate low-frequency noise budgets.

e Beam pointing noise: Fluctuations in beam alignment affecting optical mode

matching, manifesting as spectral peaks from mechanical resonances.

The continuous refinement of detector sensitivity through systematic noise identifi-
cation and mitigation has been crucial for expanding the astrophysical reach of GW
astronomy. The progression from O3b to O4a sensitivity demonstrates how technical
innovations and operational optimizations translate directly into improved scientific
capabilities, enabling the detection of fainter GW signals from more distant cosmic

sources.
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Figure 2.8: Evolution of detector sensitivity between O3b and O4a observing runs for LIGO Hanford
and LIGO Livingston. The enhanced broadband performance in O4a results from multiple technical
improvements including quantum squeezing implementation, scattered light mitigation, and advanced

control systems.



Analysis of GW Data

3.1 Searches and the Identification of GW Transients in the
Data

The detection and characterization of GW represent one of the most challenging signal
processing problems in modern physics. As shown in previous sections, typical astro-
physical signals produce strain amplitudes of order 102! to 1072 in ground-based de-
tectors, buried deep within instrumental noise that can be orders of magnitude larger.
This chapter describes the sophisticated statistical and computational methods devel-
oped to extract these faint cosmic signals and infer the properties of their astrophysical
sources.

The analysis of GW data proceeds through two complementary stages: detection, which
identifies potential signals in the noisy detector output, and parameter estimation, which
extracts physical information from confirmed detections. Detection pipelines employ
matched filtering techniques that leverage our precise theoretical knowledge of ex-
pected waveform morphologies, while parameter estimation uses Bayesian inference
to quantify uncertainties in source properties and test fundamental physics.

The development of these analysis methods has evolved in parallel with detector tech-
nology. Early searches focused on identifying individual events through computation-
ally efficient techniques, while modern analyses must handle the high event rates of
advanced detectors and provide rapid alerts for multimessenger follow-up. This chap-
ter covers the theoretical foundations of both detection and parameter estimation, the
practical implementation of these methods in current observatories, and the milestones
achieved through successive observing runs.

3.1.1 Matched Filtering

The detection problem for GWs from compact binary coalescences involves discrimi-
nating astrophysical signals against a dominant background of instrumental noise in
laser interferometers. Typical strain amplitudes of order 1072! to 107 are buried deep

49
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within instrumental noise that can be orders of magnitude larger. However, the de-
terministic nature of GWforms predicted by GR enables their detection despite this
signal-to-noise deficit. Although merger times are stochastic, the functional form of the
waveform is known with high precision. Since the GW emission from compact binary
coalescences is fully specified by a limited parameter set, including component masses,
spins, and orbital orientation, the resulting strain templates can be computed with high
precision. This enables the implementation of optimal filtering techniques, where the
data are cross-correlated with theoretical waveforms to identify signals matching the
expected morphology.

Matched filtering has long been known to be the optimal linear technique for detecting
a known signal embedded in stationary, Gaussian noise [68, £9].

The detection methodology proceeds by comparing the detector output s(t) to a theo-
retical template through a noise-weighted inner product, defined for frequency-domain

00 = E*
(a|b) = 4Re/0 %f()f)df, (3.1)

where S, (f) represents the detector’s one-sided noise PSD. The matched-filter signal-

quantities as:

to-noise ratio (SNR) for a template / is given by:

(s1h)
V@ Th)

where s denotes the detector output strain data as defined in Eq. ??. When the data con-

pmf(s | h) = (3.2)

tain the true signal h(¢; Xtrue), filtering with a perfectly matching template hemplate(t; ;\)
yields an expected SNR of:

(h | htemplate)
\/(htemplate | htemplate)

(p)= (33)

which achieves its theoretical maximum exclusively when the template identically matches
the signal:

| (f)P
5u(f)

This expression shows that the detectability in each frequency band depends not only

Poptimal = (h | h) =2 /0 df (34)

on the intrinsic waveform amplitude |/2( f)| but also on the noise PSD S,,( f).

The practical implementation of matched filtering is demonstrated in Figure B.1, which
shows the SNR time series obtained by applying Eq. (B.2) to GW150914 data from the
LIGO Hanford detector. The analysis used a BBH template with component masses
of 36Mp, revealing a clear SNR peak of p ~ 19 at the merger time. This exceeds the
background fluctuations by a significant margin, illustrating how matched filtering
can extract weak GW signals from noisy detector data. The temporal structure of the
SNR evolution follows the expected signal morphology, with increasing values during
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inspiral, a sharp peak at merger, and rapid decay during ringdown.
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Figure 3.1: SNR time series from matched filtering analysis of GW150914 data.

3.1.2 Template Banks and Parameter Space Coverage

In practical search scenarios, the true source parameters Atrue are a priori unknown.
Consequently, rather than employing a single template, the data are systematically fil-
tered against a comprehensive template bank {h(A;)} that provides discrete coverage of
the continuous parameter space manifold. Although the waveform manifold exhibits
continuity in component masses and spins, computational constraints mandate restric-
tion to discrete sampling points. These templates must be strategically placed such that
any astrophysical signal within the targeted parameter space generates a sufficient SNR
when correlated with its nearest template neighbor.

The match quantifies the optimal achievable overlap between a signal and a template,
obtained by maximizing their normalized inner product over extrinsic parameters (time
and phase offsets):

M(A, AX) = max (h(A) | h(A + AX)), (3.5)

extr
This maximization is restricted to extrinsic parameters because waveforms related by
time and phase shifts represent identical physical templates. The match ranges from 0
(orthogonal waveforms) to 1 (identical waveforms after optimal alignment).
For templates that are close in parameter space, the match can be approximated by a
Taylor expansion:

M, AR) = 1= giAAAN, (3.6)

where the template-space metric is defined as

1 M

. 3.7
2 IANOAN |10 (3.7)

8ij =

This metric endows the waveform manifold with a geometric structure, allowing dis-

tances between neighboring templates to be expressed as

ds? =1- M= g ANVAN. (3.8)
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This geometric interpretation forms the basis of template bank construction methods,
which aim to place templates such that no point in parameter space lies farther than a
chosen distance, or mismatch, from the nearest template.

The mismatch is defined as
MM(A, AX) =1 - M(R, AR), (3.9)

and directly measures the fractional loss in SNR due to imperfect matching between the
true signal and the template. Template placement algorithms are typically designed
to ensure MM < 3% everywhere in the search space, guaranteeing minimal loss in
detection efficiency and preserving the effectiveness of signal vetoes.

The fitting factor serves as the standard metric for quantifying template bank quality,
representing the proximity of true signals to the template manifold in terms of the
fraction of SNR recovered when filtering data with an approximate family of templates.
For a given signal h., the fitting factor is formally defined as:

FF () = max M(, i(R)). (3.10)
Aebank
The fractional reduction in recovered SNR is quantified by 1-% ¥ (h.). When ¥ ¥ (h.) <
1, this indicates that the signal lies outside the optimally covered parameter space re-
gion, with the fitting factor representing the maximum achievable cross-correlation
with available templates.

3.1.3 Multi-Detector Network Analysis

While template bank construction addresses the coverage of the intrinsic parameter
space, real searches must also account for the distributed nature of the detector net-
work. The full power of GW searches emerges in the network configuration of detec-
tors. By coherently combining data from multiple observatories, the network SNR is
constructed as

Net
2 _ 2

Phetwork = Z Pir <311)

i=1
where p; is the SNR in detector i. Coherent network analysis enables valuable consis-
tency checks via residual analysis and x2-tests, while the construction of null streams
that cancel genuine signals but preserve instrumental artifacts offers powerful discrim-
ination against detector glitches. Furthermore, source localization is achieved through
time-of-arrival differences between detectors, where the time delay between detectors

i and j constrains the source direction through:
dij - f

Atjj = P (3.12)
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where 21']' is the baseline vector between detectors and 7 is the unit vector pointing
toward the source, enabling rapid sky localization crucial for multimessenger follow-
up observations.

3.1.4 Significance

However, a high network SNR is not in itself sufficient to claim astrophysical origin,
as instrumental noise transients can masquerade as coherent signals. Assessing the
significance of candidate events requires robust background estimation to account for
the non-Gaussian and non-stationary nature of detector noise. The most widely used
method is time-slide analysis, in which artificial relative time shifts are applied between
detectors. This destroys genuine astrophysical correlations while preserving the statis-
tical properties of the noise, allowing one to estimate the rate of accidental coincidences.
The false alarm rate (FAR) is then defined as

N; background
FAR = 28
Tbackground

where Npackground is the number of background triggers exceeding a given significance

threshold in an effective background time Tyackground- The inverse false alarm rate
(IFAR),

1
IFAR = —,
FAR
represents the expected time between false alarms of comparable significance and pro-
vides a direct measure of the confidence in a candidate event. In current searches,

detection thresholds are typically set to require IFAR > 1yr.

Finally, the development of low-latency analysis has been critical for multimessenger
astronomy. Online pipelines now deliver GW candidate alerts within minutes, en-
abling rapid follow-up by telescopes across the electromagnetic spectrum. These low-
latency analyses balance the need for speed with robustness, performing preliminary
parameter estimation within hours and producing refined results with full Bayesian
inference over the following days or weeks. Achieving this capability has required in-
novations in streaming data processing at kilohertz rates, efficient searches over tem-
plate banks with up to 106 waveforms, and the automation of data quality monitoring.
Together, these efforts make it possible not only to detect GWs in real time, but also
to trigger the global network of observatories that together form the multimessenger
infrastructure of modern astrophysics.
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3.2 Parameter Estimation

3.2.1 Bayesian Framework

The determination of astrophysical source properties from GW observation, includ-
ing component masses, spins, and orbital parameters, constitutes an inverse problem
wherein one infers causal parameters from the data. This class of inference problem is
optimally addressed through Bayesian statistical methodology, which provides a rig-
orous mathematical foundation for parameter estimation.

Bayesian analysis provides a systematic way to combine prior expectations with the in-
formation contained in the data while rigorously quantifying uncertainties throughout
the analysis. In contrast to frequentist approaches that define probability through hy-
pothetical repeated sampling, the Bayesian interpretation treats probability as a quan-
titative measure of rational belief conditioned on available information. This epistemo-
logical foundation renders Bayesian methods particularly appropriate for GW astron-
omy, where astrophysical events are intrinsically non-reproducible, and where the in-
ference must accommodate sophisticated waveform models and realistic detector noise
characteristics.

The mathematical basis for this approach is established by Bayes’ theorem, which pre-
scribes the mechanism for updating prior knowledge into posterior understanding
through conditional probability. Denoting the source parameters by 6 and the ob-
served detector data by d, the theorem specifies the posterior probability distribution
as:

p(d|6, H) p(6|H)
pdH) 7

Each constituent term in Bayes’ theorem admits a distinct epistemological and mathe-

p(6ld, H) =

(3.13)

matical interpretation:

e The posterior probability distribution p(6|d, H) encapsulates our refined un-
derstanding of the source parameters following assimilation of the experimental
data, representing the complete solution to the inverse problem by encoding all
available information about 0 after observational constraints have been applied.

e Thelikelihood function p(d|0, H) quantifies the probability of obtaining the spe-
cific observational dataset d under the assumption of particular parameter values
0, thereby measuring how well the theoretical model explains the observed data
for any given parameter configuration.

o The prior probability distribution p(0|H) embodies our pre-existing knowledge
or physical assumptions regarding plausible parameter values before incorpora-
tion of the current data, incorporating constraints from astrophysical population
studies, theoretical considerations, or previous experimental results.

e The Bayesian evidence p(d|H) serves as an essential normalization constant en-
suring proper probabilistic calibration of the posterior distribution, while simul-
taneously providing a quantitative measure of the model’s overall explanatory
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power through marginalization over the entire parameter space.

The evidence term, obtained through marginalization over the entire parameter space,
guarantees that the posterior probability distribution maintains unit integral:

par) = [ piao, ) p(o15) do. (3.14)

Beyond its role as a normalization factor, this quantity assumes critical importance in
the context of model selection, as it facilitates rigorous comparison between competing
theoretical hypotheses through the computation of Bayes factors, thereby providing
a principled mechanism for evaluating the relative explanatory power of alternative
models.

In practical implementations of parameter estimation, the primary objective centers
upon characterization of the posterior probability distribution. Given that the evidence
remains invariant for a fixed model and dataset, the posterior distribution exhibits pro-
portionality to the product of the likelihood function and the prior distribution:

p(Old, H) « p(dlf, H) p(OIH). (3.15)

This fundamental proportionality relationship establishes the theoretical foundation
for sampling algorithms, such as Markov Chain Monte Carlo methods and nested sam-
pling techniques, that systematically explore the complex topology of the posterior

distribution to extract parameter constraints and credible intervals.

3.2.2 Application to Tests of General Relativity

The Bayesian framework finds one of its most powerful applications in the rigorous
testing of fundamental physical theories. Within the context of GW astronomy, this
allows us to ask a precise question: are the observed data more consistent with signals
described by Einstein’s GR, or do they provide evidence for a beyond-GR model?
This is naturally formulated as a problem of Bayesian model selection between two
competing hypotheses:

e The GR hypothesis (Hgr) postulates that the data contain a signal perfectly de-
scribed by a waveform model derived from General Relativity.

e The modified GR hypothesis (Hnodcr) postulates that the signal is described by
a parameterized extension of the GR waveform, allowing for possible deviations.

The model comparison hinges on the computation of the Bayes factor, which is the
ratio of the evidences for the two models:

GR _ p(d|HmodGR)

modGR — P(d|HGR) (3'16)

A Bayes factor BS\E 4cr > 1 indicates support for the modified GR hypothesis given the
data.
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To construct a generic Hmodacr hypothesis, the parameter space of the GR model is ex-
tended by introducing test parameters {6 x;}. These parameters quantitatively measure
deviations in the gravitational waveform, for instance, by allowing the coefficients of
the post-Newtonian phase expansion to vary independently of the binary’s intrinsic
parameters like its mass and spin.

A sophisticated approach involves formulating HpyoqGr not as a single model with a
fixed number of extra parameters, but as a composite of several sub-hypotheses, Hj.
Each sub-hypothesis Hj corresponds to a different subset I of the test parameters being
active (non-zero). This strategy automatically embodies Occam’s razor: it prevents
the model from being penalized for unnecessary degrees of freedom, ensuring that
evidence for a deviation is only claimed if the data genuinely require it.

The methodology detailed in is a concrete implementation of this Bayesian
model selection framework, designed to perform a generic and robust test of GR using
GW signals from compact binary coalescences.

3.3 Sampling Algorithms

Exploring the posterior distribution is a computationally demanding task, as the pa-
rameter space is typically high-dimensional, with fifteen or more parameters required
to describe a generic binary merger. Modern analyses employ a variety of advanced
sampling algorithms to efficiently explore these complex posteriors. The Metropolis-
Hastings algorithm constitutes the foundational methodology for Markov Chain Monte
Carlo sampling approaches. The algorithm initiates from an arbitrary starting point 0y
within the parameter space. Ateach iteration 1, a candidate parameter vector 0" is gen-
erated from a proposal distribution g(6%|0,,), which governs the transition mechanism
between states. The acceptance probability for this proposed move is computed as:

S (1 P(G*Id)q(enle*)) 317)

" p(6.41d)q(6716,,)

If the proposal is accepted according to this probabilistic criterion, the chain advances
to the new state with 0,41 = 0%; otherwise, the chain remains at its current position
with 0,41 = 0,. Crucially, the evidence normalization constant present in the posterior
distribution cancels in the acceptance ratio, thereby requiring only the evaluation of the
likelihood-prior product rather than the fully normalized posterior density.

3.3.1 Nested Sampling

Nested sampling is a computational technique that simultaneously performs parame-
ter estimation and calculates the Bayesian evidence. Unlike traditional Markov Chain
Monte Carlo methods that sample the posterior directly, nested sampling transforms

the multidimensional evidence integral into a one-dimensional problem.
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Algorithm Principle

The fundamental idea involves reformulating the evidence integral by introducing a
new variable. Define the prior mass X(A) as the fraction of prior volume where the
likelihood exceeds threshold A:

X(A) = / p(O1H)do, (3.18)
{L(6)>1}

where L(0) = p(d|0, H) denotes the likelihood. This quantity decreases monotonically
from X =1 (when A is minimal) to X = 0 (when A exceeds all likelihood values).

The evidence can then be expressed as a one-dimensional integral:

1
zZ=pa)= [ L) ax, (3.19)

where L(X) represents the inverse function giving the likelihood level corresponding
to prior mass X.

The nested sampling algorithm executes through a carefully structured iterative proce-
dure that systematically explores the parameter space while simultaneously computing
the Bayesian evidence:

1. Initialization: The algorithm commences by drawing an ensemble of N sample
points, termed “live points,” from the prior probability distribution p(8|H). This
initial population provides a representative sampling of the entire prior volume
and establishes the starting configuration for the subsequent iterative exploration.

2. Iteration: At each algorithmic step indexed by i, the following sequence of oper-
ations is performed:

e Identification of the live point 8; possessing the lowest likelihood value
L; = p(d|0;, H) within the current ensemble, thereby determining the lowest
likelihood threshold for the subsequent sampling step.

e Archival recording of this point 0; along with its associated likelihood value
L;, preserving this information for subsequent evidence computation and
posterior distribution reconstruction.

e Replacement of the discarded point with a new sample drawn from the prior
distribution, subject to the stringent constraint that its likelihood must ex-
ceed the established threshold L;, ensuring progressive exploration of higher
likelihood regions.

e Incorporation of the discarded point into the accumulating evidence esti-
mate, with each such point contributing a weighted term to the final evi-
dence calculation.

3. Prior mass evolution: Each iteration induces a systematic contraction of the ac-
cessible prior volume. For an ensemble of N live points, the expected reduction
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in prior mass at step i follows the statistical relationship:
X =e INX;_y, (3.20)

commencing from the initial condition Xy = 1, which yields the asymptotic ex-

pression X; = e /N for the diminishing prior volume.
4. Evidence calculation: The Bayesian evidence Z is numerically approximated

through the weighted summation:

M
i=1

where the weighting factors w; = X;_1 — X;;1 represent the differential prior mass
intervals associated with each discarded point, and M denotes the total number
of iterations performed throughout the algorithm’s execution.

5. Termination: The algorithm proceeds iteratively until the residual prior volume
contributes negligibly to the cumulative evidence estimate, typically determined
when the product of the maximum likelihood among remaining live points and
the surviving prior mass falls below a predetermined fractional tolerance thresh-
old.

Posterior Samples

Beyond computing evidence, nested sampling naturally generates posterior samples.
Each discarded point 0; receives posterior weight proportional to L;w;. After normal-
ization, these weights provide a representation of the posterior distribution suitable
for parameter estimation.

The method offers several advantages: efficient handling of multimodal posteriors, si-
multaneous parameter estimates and evidence calculation, and focused computational
effort on high-likelihood regions while maintaining thorough exploration.

3.3.2 Likelihood Function

The likelihood quantifies how well a model with parameters 0 explains the data 4.
Given the data model of Eq. ??, where the detector output consists of a signal plus
noise, constructing the likelihood requires understanding both expected signals and
the stochastic nature of detector noise.

Noise Characterization

The noise process is typically modeled as Gaussian and stationary, meaning it is fully
described by its mean (assumed zero) and its covariance. For discrete time samples ¢;
and ¢}, the covariance matrix is defined as

Cij = (n(t)n(t))), (3.22)
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where () denotes an average over noise realizations. The covariance matrix encodes
the expected correlations between noise at different times: each element C;; gives the
expected product of noise values at times t; and ¢;. Stationarity implies that C;; depends
only on the time difference |t; — t;|, not the absolute times.

In the frequency domain, stationarity implies that different frequency components of
the noise are uncorrelated. The noise is then characterized by its one-sided PSD S, (f),
which describes how the noise power is distributed across frequencies. The PSD is
related to the covariance matrix via Fourier transformation.

Likelihood Construction

Assuming Gaussian stationary noise, the residual r(t) = d(t) — h(t; 0) between data
and model follows a multivariate Gaussian distribution. The likelihood becomes:

1
P, ) = @mN2[det C]12 |72 Z iy (3:23)

where N is the number of data samples, C is the noise covariance matrix, and CZ._].1
denotes its inverse.

The exponential argument represents a weighted least-squares measure of model fit.
The covariance matrix inverse weights different time samples according to expected
noise levels, samples with lower noise contribute more strongly to parameter con-
straints.

Taking the logarithm gives the time-domain log-likelihood:

1 1 N
lnp(dle, H) = ~3 Z riCylri - 5 Indet C — = In(270). (3.24)
i

Frequency Domain Formulation

Practical implementations typically work in the frequency domain due to computa-
tional efficiency. Transforming to frequency components d(f), i(f;0), and 7i(f) via
Fourier transform, the likelihood simplifies when noise is stationary.

The noise covariance matrix becomes diagonal in the frequency domain, different fre-

quency bins are uncorrelated. The likelihood takes the form:

d h . 2
p(d|6, H) « exp —-Z| (fk)s (;k];k79)| Af], (3.25)

where the sum runs over frequency bins fi, and Af is the frequency resolution.
Using the previously defined noise-weighted inner product (Eq.B.1)), the log-likelihood
can be written compactly as

Inp(d|@, H) = const — %(d — h|d - h). (3.26)
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This formulation makes explicit how detector sensitivity (through S, (f)) weights dif-
ferent frequency components when constraining parameters. Frequencies with better
sensitivity (lower S,,) contribute more information.

The constant term contains normalization factors independent of 6 and can be ignored
during parameter estimation. This formulation highlights that the contribution of each
frequency component to the likelihood is naturally weighted by the detector sensitivity:
frequencies with lower S, (f) contribute more strongly.

3.4 Prior Distributions

The specification of prior probability distributions constitutes a fundamental compo-
nent of Bayesian parameter estimation. Priors encode our pre-existing knowledge of
source properties and observational constraints, while ideally remaining as uninfor-
mative as possible in regimes where such knowledge is limited. Careful selection of
priors ensures that the resulting posterior distributions faithfully reflect both the data
and well-motivated physical assumptions, avoiding undue bias while maintaining sen-
sitivity to the information content of the observations.

3.4.1 Intrinsic Parameters Priors
Mass Priors

The choice of mass priors reflects the underlying physical understanding of the binary
components and the aspects of the signal to which detectors are most sensitive. Com-
monly, priors are chosen to be uniform either in the individual component masses
(my, mg2) or in derived combinations such as the chirp mass M. and the mass ratio
q = mg/m; (with m; > my by convention). For studies that aim to characterize astro-
physical populations, priors may be chosen either in the detector frame or in the source
frame, depending on whether cosmological redshift effects are to be incorporated.

Spin Priors

The specification of spin priors depends both on astrophysical considerations and on
the desire for minimally informative assumptions where knowledge is uncertain. The
dimensionless spin magnitude of each component, x; = cS;/ (Gm?), is bounded be-
tween zero and unity by the Kerr limit. In practice, several standard choices are em-
ployed. Spins may be treated isotropically, with uniform magnitude and random ori-
entation on the sphere, or they may be restricted to align or anti-align with the orbital
angular momentum. Astrophysically motivated constraints may also be imposed; for
example, BHs formed through stellar collapse are expected to satisfy x < 0.9.

Two effective spin combinations are particularly relevant for GW analyses. The effec-
tive inspiral spin,

_ My )X1COS 61 + Mg X2 COS 62

= p 3.27
Aeft mi + moy ( )
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where 0; is the angle between each spin and the orbital angular momentum, captures
the leading-order influence of spin on the inspiral rate. The effective precession spin
Xp encodes contributions from spin components in the orbital plane and is the primary
driver of precession-induced modulations in the waveform.

3.4.2 Extrinsic Parameter Priors

Extrinsic parameters describe not the intrinsic properties of the binary system, but
rather how it is positioned and oriented relative to the observer and the detector net-
work. Fully specifying these parameters requires accounting for the relation between

three reference frames:

e The source frame, where the binary’s orbital angular momentum defines the z-
axis.

e The Earth frame, where the source location is expressed in right ascension and
declination.

e The wave frame, aligned with the direction of GW propagation and defining the
polarization basis.

Figure 3.2: Coordinate systems for GW parameterization. Left: Binary system in the source frame
showing inclination « and azimuthal angle . Right: Celestial coordinates in the Earth frame with
right ascension a and declination 6. The wave frame (not shown) connects these systems through the
polarization angle V), following standard GW data analysis conventions.

The geometric relation between the source and Earth frame is illustrated in Fig. B.2.
The angles (1, ¢) describe the position of the observer in the source frame, while («a, 0)
locate the source in the Earth frame. The final rotation between the source and wave
frames defines the polarization angle 1, following the conventions adopted by the LVK
Collaboration.

Sky Location

The sky position of the source in the Earth frame is given by right ascension a and

declination 6. A non-informative prior corresponds to assuming sources are uniformly
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distributed over the celestial sphere, which leads to

p(a) oc const, p(0) « cosd. (3.28)

Luminosity Distance

The luminosity distance Dy is typically assigned a prior that is uniform in comoving
volume, consistent with a homogeneous distribution of sources on cosmological scales.
For a flat universe, this implies

p(Dr) « D}, (3.29)

up to a maximum distance determined by detector sensitivity or astrophysical consid-
erations.

Binary Orientation

In the source frame, the observer’s direction is parameterized by the inclination angle
t, defined as the angle between the orbital angular momentum and the line of sight,
and the azimuthal angle ¢. Symmetry dictates that the observer’s direction relative to
the source should be isotropically distributed, yielding

p(cost) o< const, p(¢) o const. (3.30)

Only ! typically enters the waveform amplitude explicitly, while ¢ may be partially
degenerate with phase parameters depending on detector response.

Polarization and Coalescence Parameters

The rotation between the source and wave frames defines the polarization angle v,
which is conventionally assigned a uniform prior

W~ U0, n). (3.31)

The coalescence phase ¢ and coalescence time ¢. similarly receive uniform priors over
their allowed ranges, ensuring no preferred arrival phase or time is assumed a priori.

3.4.3 Calibration Uncertainties

The reconstructed strain data used in parameter estimation is obtained by applying a
modeled detector response function Ryodel(f, f) to the raw detector output. However,
the true response function R(f,t) is not known with perfect precision, and discrep-
ancies between the modeled and true response introduce systematic calibration errors
that propagate into astrophysical parameter estimates.
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These calibration uncertainties are conventionally parameterized by a complex correc-

tion factor:

R(f, 1)
Rmodel(f/ t)

where 0A(f,t) and 0¢(f,t) describe frequency- and time-dependent amplitude and

n(f,t) = = [1+6A(f, t)] e, (3.32)

phase errors, respectively. During contemporary observing runs, typical uncertainties
are of order 0A ~ 10% in amplitude and 6¢p ~ 10° in phase, though the precise values
vary across the detector’s sensitive frequency band.

The relationship between the observed strain and the true GW signal is consequently
modified as:

htrue(f/ t) = T](f, t) hobs(f/ t)/ (333)

making 7(f,t) an additional nuisance parameter that must be accounted for in the
likelihood evaluation.

Calibration uncertainties predominantly affect parameters that depend on the over-
all amplitude or phase evolution of the GW signal. Luminosity distance and binary
inclination are particularly sensitive to amplitude errors 0A, while phase-dependent
quantities such as coalescence phase and sky localization can be biased by phase er-
rors 8¢. Intrinsic parameters like chirp mass are generally more robust to calibration
uncertainties but may still be affected through parameter correlations in the posterior
distribution.

In practical inference frameworks, calibration errors are incorporated by assigning in-
formed priors on n(f,t) derived from laboratory measurements, instrumental char-
acterization, or injected calibration lines. Depending on the computational approach,
these priors may be marginalized analytically, yielding an effectively broadened like-
lihood, or sampled explicitly alongside astrophysical parameters, enabling complete
propagation of calibration systematics into the final posterior distributions.

3.5 Waveform Models for GW Data Analysis

The accurate detection and parameter estimation of GW signals from compact binary
coalescences relies critically on the availability of high-fidelity waveform models. These
models must accurately capture the complex physics of binary dynamics across the
entire inspiral-merger-ringdown sequence while remaining computationally efficient
enough for practical data analysis applications. Following the first direct detection of
GWs in 2015 [[/0], the development of waveform models has evolved into a sophisti-
cated field balancing physical accuracy against computational constraints.

As advanced GW detectors continue to improve in sensitivity and the catalog of ob-
served events grows [//1], systematic biases from waveform modeling uncertainties
are becoming increasingly important relative to statistical errors. Current analyses
typically employ multiple waveform families to assess systematic uncertainties, with
consistency between different models serving as an important validation of parameter
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estimation results. However, as demonstrated in recent studies [[/2], combined anal-
yses of multiple events can reveal subtle preferences for particular waveform families

that may indicate underlying systematic biases.

This section describes the three principal waveform families used in contemporary GW
data analysis: surrogate models built from numerical relativity simulations, effective-
one-body waveforms derived from analytical gravity, and phenomenological models
constructed through hybrid approaches.

The choice of waveform model in GW data analysis involves careful consideration of
the signal properties, computational constraints, and required accuracy. For high-mass
systems where the merger and ringdown contribute significantly to the detected sig-
nal, models with accurate merger descriptions (such as EOB or surrogate models) may
be preferred. For longer signals where computational efficiency is paramount, phe-
nomenological models often provide the most practical solution.

3.5.1 Surrogate Waveform Models

Surrogate waveform models represent a data-driven approach to waveform generation,
constructed through interpolation over precomputed numerical relativity simulations.
These models offer exceptional accuracy within their domain of validity, as they inherit
the fidelity of full numerical solutions to Einstein’s equations without introducing an-
alytical approximations beyond the numerical discretization inherent in the original
simulations.

The construction of surrogate models typically involves several key steps: (1) selection
of a dense sampling of the binary parameter space (masses, spins, etc.), (2) generation
of high-accuracy numerical relativity waveforms at each parameter space point, (3)
identification of reduced-order basis representations to handle the high-dimensional
data, and (4) development of accurate interpolation schemes across the parameter

space.

The NRSur7dg4 model [/3] represents the state-of-the-art in surrogate modeling for
precessing BBH systems. This time-domain model extends earlier surrogate construc-
tions to higher mass ratios, covering systems with g < 6 and total masses M 2 66 Mo,
with precise validity boundaries depending on the mass ratio. The model includes
all subdominant harmonic modes up to I < 4 in the co-precessing frame, providing
comprehensive mode content for accurate waveform representation.

The principal advantage of surrogate models lies in their high accuracy, as they directly
encode numerical relativity results. However, this comes at the cost of limited parame-
ter space coverage due to the computational expense of generating sufficient numerical
relativity simulations. Additionally, surrogate models can be computationally inten-
sive to evaluate compared to purely analytical approaches, though they remain signif-
icantly faster than generating new numerical relativity waveforms from scratch.
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3.5.2 Effective-One-Body Waveforms

Effective-one-body (EOB) waveforms provide an analytical approach to waveform mod-
eling that bridges the gap between post-Newtonian theory and numerical relativity. As
discussed in Section [[.2.3, the EOB framework maps the two-body problem onto an ef-
fective one-body problem, where a test particle moves in a deformed BH metric.

The SEOBNRv4PHM model [/4] represents a state-of-the-art implementation of the EOB
approach for precessing systems with higher-order modes. Built from the aligned-spin
SEOBNRv4HM model [75], this time-domain waveform includes subdominant harmonics
(I,m]) = (2,1),(3,3),(4,4),(5,5) in the co-precessing frame and is valid for mass ratios
1 <4 <50.

The EOB approach offers several advantages: it provides a physically motivated de-
scription of the binary dynamics throughout the coalescence process, maintains con-
sistency with analytical results in various limits (post-Newtonian, test-particle, etc.),
and can be extended to new physical scenarios through systematic improvements to the
underlying Hamiltonian and radiation reaction models. However, EOB waveforms are
typically computationally expensive to generate compared to phenomenological mod-
els, making them challenging for large-scale parameter estimation studies.

For the SEOBNRv4PHM model specifically, the precessing sector is not directly calibrated
to numerical relativity simulations, relying instead on the twisting-up procedure ap-
plied to the aligned-spin baseline. This represents a potential limitation in regions of
parameter space where precession effects are strong and not fully captured by this ap-
proximate mapping.

3.5.3 Phenomenological Waveforms

Phenomenological waveform models take a hybrid approach, combining analytical in-
sights from post-Newtonian theory and BH perturbation theory with numerical rela-
tivity calibrations. These models are constructed using piecewise closed-form expres-
sions for different phases of the coalescence (inspiral, intermediate, and ringdown),
making them computationally efficient while maintaining good accuracy.

The IMRPhenomXPHM model [/6] represents a frequency-domain phenomenological ap-
proximant that includes both precession and higher-order modes. Built from the non-
precessing IMRPhenomXHM model [7] through a twisting-up procedure [78, /9], this
model includes subdominant modes (I, |m|) = (2, 1), (3, 3), (3, 2), (4, 4) in the co-precessing
frame. The model is formally valid for spin magnitudes up to 0.99 and mass ratios
g <1000, though its recommended usage is limited to g4 < 20 due to calibration against
numerical relativity simulations.

A complementary time-domain approach is implemented in the IMRPhenomTPHM model
[B0], built from the non-precessing IMRPhenomTHM model [81] using a distinct twisting-
up procedure optimized for time-domain construction. This model includes harmonics
(I,Im]) = (2,1),(3,3),(4,4),(5,5) and is valid for secondary masses my > 0.5My and
spin magnitudes |x1,2| < 0.99 for g < 200, with recommended usage up to g < 20.
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The primary advantage of phenomenological models is their computational efficiency,
particularly for frequency-domain models like IMRPhenomXPHM that enable rapid eval-
uation of noise-weighted inner products during matched filtering. However, this effi-
ciency comes at the cost of some physical intuition, as the piecewise construction may
not maintain the same level of physical consistency as EOB approaches throughout the

entire coalescence process.
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Figure 3.3: Comparison of GWform models. Top: Time-domain waveforms from EOB (SEOBNRv4,
blue) and phenomenological (IMRPhenomXPHM, dark blue) approaches for an equal-mass binary with
spin x = 0.9. The inset shows a detailed view of the late inspiral and merger region, highlighting the
subtle differences between the two models as they approach coalescence. Bottom: Higher-order mode
decomposition of the phenomenological waveform IMRPhenomXPHM for a mass ratio q = 5.7 system,
showing individual mode contributions normalized to the peak amplitude of the full waveform. The (2, 2)
mode dominates the signal, while higher harmonics (3, 3) and (4, 4) contribute significantly during the
merger and ringdown phases.

3.6 Milestones in GW Catalogs Through O4

The past decade has seen GW astronomy mature into an established observational field.
Systematic improvements in detector sensitivity across observing runs have enabled
detailed studies of compact binary populations, their astrophysical origins, and strong-
tield gravitational physics.
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Figure 3.4: Cumulative GW detections across observing runs from O1 through O4. The exponential
growth in detection rates reflects steady improvements in detector sensitivity and the maturation of data
analysis pipelines. The transition from isolated discoveries in O1 to near-daily detections in O4 marks
GW astronomy’s emergence as a routine observational tool for astrophysics [[82].

3.6.1 GWTC-1: The Dawn of GW Astronomy

The first observing run (O1, September 2015-January 2016) marked humanity’s entry
into the era of GW astronomy. On September 14, 2015, just days after Advanced LIGO
began its first science run, the detectors captured GW150914—a BBH merger with com-
ponent masses of 36 Mo and 29M;, at a luminosity distance of approximately 410 Mpc.
This landmark detection provided the first direct evidence for GW, confirmed the exis-
tence of stellar-mass BBHs, and demonstrated that BHs with masses exceeding 25Mg
exist in nature. The signal was so clear that it could be seen by eye in the filtered de-
tector data, with a combined signal-to-noise ratio exceeding 24.

Ol yielded two additional detections: GW151226, a lighter system with masses ~ 14Mg
and ~ 8M, that completed at least 55 orbital cycles in the LIGO band, and the marginal
candidate LVT151012. These early detections immediately revealed that BBH mergers
occur at rates sufficient to enable population studies and that stellar-mass BHs span a
wider mass range than previously observed through X-ray binaries.

The second observing run (O2, November 2016—-August 2017) expanded the catalog
with eight additional BBH mergers, but its most transformative contribution came on
August 17, 2017, with GW170817, the first detected BNS merger. With component
masses of approximately 1.46My and 1.27Mo, this event occurred at a mere 40 Mpc,
making it the closest and most thoroughly studied GW source to date. The multi-
messenger observation campaign that followed stands as a watershed moment in as-
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tronomy: a short gamma-ray burst detected by Fermi and INTEGRAL 1.7 seconds af-
ter merger, followed by the discovery of an optical/infrared kilonova in NGC 4993,
and subsequent observations across the entire electromagnetic spectrum from radio to
X-rays over weeks and months.

GW170817 delivered an extraordinary scientific harvest. The GW signal, combined
with the kilonova observations, provided direct evidence for the r-process nucleosyn-
thesis of heavy elements in NS mergers, resolving a decades-old mystery about the
cosmic origin of gold, platinum, and other heavy elements. The time delay between
the GW arrival and the gamma-ray burst placed stringent constraints on violations of
Lorentz invariance and the photon mass. Perhaps most remarkably, the combination of
GW distance measurement and electromagnetic redshift determination enabled a com-
pletely independent measurement of the Hubble constant: Hy = 70*3* km s™! Mpc™,
offering a new approach to resolving the tension between early- and late-universe mea-
surements.

The Virgo detector joined the network in August 2017, enabling true three-detector
observations for the first time. GW170814, observed by all three instruments, demon-
strated the power of the global network for source localization, reducing the sky area
uncertainty by more than an order of magnitude compared to two-detector observa-
tions. GWTC-1, released in 2019, reported 11 confident detections from O1 and O2: 10
BBH mergers and 1 BNS merger, establishing GW astronomy as a permanent fixture
in the astronomical toolkit.

3.6.2 GWTC-2 & GWTC-3: Population Emergence

The third observing run represented a quantum leap in both detector performance and
scientific output. Divided into O3a (April-October 2019) and O3b (November 2019-
March 2020, curtailed by the COVID-19 pandemic), this run benefited from substantial
sensitivity improvements. The BNS range increased from approximately 80 Mpc in O2
to 120-140 Mpc in O3, corresponding to a factor of ~2-3 increase in the observable
volume of the universe. This enhanced sensitivity, combined with nearly a full year
of observing time, enabled the detection of dozens of mergers and the emergence of
genuine population statistics.

GWTC-2, covering O3a, added 39 new detections, while GWTC-3 brought the cumu-
lative total to 90 GW events. This growing sample revealed the rich diversity of the
compact binary population and challenged theoretical predictions in several impor-
tant ways. The BH mass distribution showed unexpected features, including a possi-
ble gap or suppression around ~45-50 My and a dearth of systems in the predicted
”pair-instability mass gap” above ~65 M. The distribution of mass ratios indicated
that Nature produces binaries across the full spectrum from nearly equal masses to
highly asymmetric pairs.

Several individual detections from O3 deserve special mention for their unique contri-
butions:
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e GW190412: The first conclusively asymmetric BBH merger, with masses of ap-
proximately 30 Mg and 8 M, (massratio g ~ 0.27). The strong asymmetry enabled
the first unambiguous observation of higher-order multipole moments beyond
the dominant quadrupole in a GW signal, providing independent confirmation
of the binary nature of the source and enabling tests of general relativity inacces-
sible in more symmetric systems.

e GW190425: A BNS merger with an unusually high total mass of approximately
3.4 Mo, significantly heavier than the Galactic population of BNSs. The system’s
formation channel remains uncertain, with proposed scenarios including dynam-
ical formation in dense stellar environments or substantial mass transfer between
progenitor stars. This event expanded the known diversity of NS systems and has
implications for equation of state constraints.

e GW190521: A massive BBH merger bringing together components of approxi-
mately 85Mp and 66 M to form a ~150Mp remnant, the first clear detection of an
intermediate-mass BH. Both progenitors likely lie in or near the theoretically pre-
dicted pair-instability mass gap, where stellar evolution models predict no BHs
should form directly from stellar collapse. The event has spurred numerous the-
oretical investigations into hierarchical merger scenarios, Population III star for-
mation, and alternative formation channels. The signal also exhibited tentative
evidence for orbital precession and a possible AGN electromagnetic counterpart,
though both remain debated.

e GW190814: An extremely asymmetric merger pairing a ~23My BH with a com-
pact object of mass ~2.6Mp. The lighter component occupies the “mass gap”
between the heaviest known NSs (~2.1-2.2Mg) and the lightest previously con-
firmed BHs (~5My), making it either an unusually massive NS that challenges
equation of state models or an unexpectedly light BH that demands explanation
from stellar evolution theory.

e GW200105 and GW200115: The first confident detections of NS-BH (NSBH) bi-
nary mergers, detected within 10 days of each other in early January 2020. These
events completed the trio of possible compact binary types (BBH, BNS, NSBH)
observable through GW and provided the first observational constraints on the
NSBH merger rate. The component masses and lack of electromagnetic counter-
parts suggest both NSs were likely tidally disrupted inside their companion BHs’
event horizons, preventing the formation of massive accretion disks that might
power detectable electromagnetic emission.

By the conclusion of O3, GW astronomy had clearly transitioned from novelty to ma-
turity, with the sample size enabling meaningful statistical inference about formation
channels, mass distributions, and spin alignments across the compact object popula-

tion.
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3.6.3 GWTC-4: The Era of Routine Discovery

The fourth observing run marks a paradigm shift in GW astronomy, the transition
from remarkable individual discoveries to systematic population surveys. O4a (May
24,2023-January 16, 2024) alone contributed 128 new GW candidates with astrophysi-
cal probability exceeding 0.5, bringing the cumulative total to 126 confident detections.
This corresponds to a detection rate of approximately one event every two days of ob-
serving time, representing a roughly 58% contribution to all GW observations through
2024. At this rate, the sample doubles on timescales of months rather than years, en-

abling increasingly precise population statistics and rare-event studies.

Solar Masses

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Figure 3.5: Mass spectrum of compact binaries detected in GWTC-4. Individual detections are shown
as points, with colors distinguishing BHs (blue) from NSs (orange). Arrows trace the progenitor-to-
remnant mass evolution through merger. The population now spans from ~1.2Mq NSs to BHs exceeding
100Mo, revealing rich structure including apparent gaps, pile-ups, and extending into the theoretically
forbidden pair-instability regime.

Beyond the sheer volume of detections, O4 has produced several events of exceptional

scientific significance:

e GW230529: Detected on May 29, 2023, this merger involved two compact objects
with masses firmly in the lower mass gap, the mysterious desert between the most
massive NSs and the least massive BHs. With component masses constrained
to 1.2-2.0 My and 2.4-4.0 Mo, GW230529 represents either a pair of unusually
massive NSs, light BHs, or potentially a mixed system. Despite being detected
only by LIGO Livingston with modest signal-to-noise ratio (~11), its occupancy
of this theoretically puzzling mass range makes it invaluable for constraining the
maximum mass of NSs and the minimum mass of BHs formed through stellar
collapse. The event directly probes the nuclear equation of state at supranuclear
densities and the explosion mechanisms of core-collapse supernovae.

o GW230814: GW230814 was detected on August 14, 2023 with a signal-to-noise ra-
tio of 42.4, making it the loudest GW signal in the GWTC-4.0 catalog. The signal
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was recorded by the LIGO Livingston observatory and corresponds to a binary
black hole merger with component masses m; = 33.73:3M@ and mo = 28.2f§:fM@,
with small effective inspiral spin xes = —0.017005. The high signal-to-noise ratio
enabled the first confident detection of an ¢ = |m| = 4 mode in the inspiral sig-
nal. This detection supports tests of consistency between theoretical predictions
and the observed waveform. Most tests show agreement with general relativity,
though some deviations appear in the ringdown portion of the signal. Simula-
tions indicate that similar deviations can arise from detector noise effects in gen-
eral relativity signals. This observation demonstrates that single-detector signals,
even with high signal-to-noise ratios, provide limited constraints on fundamental
physics without multiple observatory data.

o GW231123: GW231123 was detected on November 23, 2023 by both LIGO obser-
vatories with a network signal-to-noise ratio of 22.5. The signal corresponds to
a binary black hole merger with component masses 137*22Mg, and 103725 M at
redshift 0.397)27 and luminosity distance 0.7-4.1 Gpc. Both black holes have high
spins: 0.9*019 and 0.8079-2 respectively. The primary black hole mass lies within
or above the pair-instability mass gap (60-130 M), while the secondary spans
this gap. An independent ringdown analysis supports the formation of a mas-
sive remnant around 200 M. Parameter estimates show systematic uncertainties
between different signal models. This observation indicates black hole formation
through channels beyond standard stellar collapse, and that intermediate-mass
black holes can form via GW driven mergers.

e GW250114: The current record-holder for signal strength, detected on January
14, 2025, with an estimated network signal-to-noise ratio of approximately 80,
three to four times louder than any previous detection and rivaling GW150914
in its clarity and scientific impact. The exceptional data quality of GW250114 en-
abled the first precise observational confirmation of the exponentially damped
oscillations in the ringdown phase, where the remnant BH settles to its final state
through characteristic QNMs. These ringdown oscillations are among the clean-
est predictions of general relativity in the strong-field regime, depending only
on the remnant’s mass and spin, and GW250114’s pristine signal allows multi-
ple ringdown overtones to be resolved for the first time. This landmark detec-
tion pushes tests of BH spectroscopy and no-hair theorem violations to unprece-
dented precision, while its occurrence during O4 underscores how far detector
sensitivity and analysis techniques have advanced.

The statistical power of GWTC-4 transforms questions that could previously only be ad-
dressed through individual events into population-level studies. We can now robustly
measure the BH mass function across cosmic time, constrain the fraction of systems
formed through isolated binary evolution versus dynamical capture in dense stellar
environments, infer the typical natal kicks imparted during BH formation from the ob-
served spin orientations, and trace the metallicity evolution of massive star formation
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through the mass distribution of merging BHs. The steady accumulation of detections
at approximately one event every two days means that rare subpopulations, extremely
asymmetric binaries, highly spinning systems, precessing orbits, now contain sufficient
members for dedicated study.

As O4 continues into its second phase (O4c), extending through November 2025, the
catalog will continue to grow. The combination of increasing sample size, improving
detector sensitivity, and refined analysis techniques positions the field to address fun-
damental questions about stellar evolution, compact object formation, the expansion
history of the universe, and the validity of general relativity across scales and regimes
inaccessible to any other observational probe. The transformation from discovery to
routine observation represents not an ending but a new beginning for GW science.



Environmental Effects in
LIGO-Virgo Compact Binary Mergers

Compact binary mergers are conventionally modeled as isolated systems in a vacuum,
an effective and widely adopted approximation that forms the basis for current wave-
form models [T, 83, B4, 85]. While this simplification has been crucial for rapid pa-
rameter estimation, it inherently neglects the astrophysical environments where these
binaries form and evolve. A growing body of evidence suggests that a significant frac-
tion of compact binaries may originate in dense or gas-rich environments, including
globular clusters (GCs) [86, 87, B8, 89, 90], nuclear star clusters (NSCs) [P1, 92, 93],
young massive clusters, and active galactic nucleus (AGN) accretion disks [94, D5, P€,
97, 98, B9, 100, 10T, 102, 103, 104]. In such environments, binary dynamics can be al-
tered, inducing orbital eccentricity, modifying mass ratios and spin orientations, and,
in some cases, generating detectable electromagnetic counterparts [[100, 105, 10T].

The principal mechanisms for these environmental effects are accretion [[106, 107, 108]
and dynamical friction (DF) [I09, 110, 111, 112, I13, 114]. Accretion can steadily in-
crease component masses and influence spins, while DF, the gravitational drag force
arising from a binary’s motion through ambient matter, can alter the orbital decay
rate [[I15, 105, 101, T02]. Both processes can induce subtle yet potentially measurable
deviations in the GW phase and amplitude. Such deviations not only impact param-
eter estimation but could also bias high-precision tests of GR if unaccounted for [[I15,
105, 103, T04].

This chapter presents a systematic, Bayesian search for these environmental signatures
in LIGO-Virgo data, incorporating all events from GWTC-1 and selected low-mass
events from GWTC-2. We develop a model-agnostic framework to constrain the den-
sity of matter surrounding compact binaries, providing the first observational limits
derived from a unified analysis of the detected population.

73
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4.1 Astrophysical Environments

Compact binaries form and evolve in diverse astrophysical settings, each capable of im-
printing characteristic signatures on their dynamics, masses, spins, and emitted GWs.
The primary environments considered are dense stellar systems, gas-rich regions, and
dark-matter halos. In these contexts, gravitational interactions, accretion, and dissipa-
tive forces can accelerate binary assembly, modify orbital parameters, and introduce
subtle deviations in waveform morphology. A detailed understanding of these envi-
ronments is therefore essential for both interpreting the observed BBH population and
identifying environmental signatures in the data.

Dense stellar systems, such as GCs, NSCs, and young massive clusters, are character-
ized by frequent dynamical encounters. Here, BBHs can form dynamically via binary-
single exchanges, three-body interactions, or gravitational capture [87, 93]. These
processes often yield systems with measurable eccentricity in the LIGO-Virgo band
and isotropic spin orientations. Furthermore, the presence of intermediate-mass BHs
(IMBHs) can facilitate hierarchical mergers through Kozai-Lidov oscillations [P3].
Gas-rich environments, most notably AGN disks, offer a distinct formation channel.
Stellar-mass BHs or NSs embedded in these disks can form binaries through gas-driven
migration and dissipative capture, which rapidly hardens the orbit [[100, I0T, I02]. Ac-
cretion in these environments can spin up the binary components, and DF may produce
measurable waveform dephasing, leading to so-called ”dirty waveforms” [[03]. Simi-
lar mechanisms may operate in dense star-forming regions, where protostellar multi-
ples evolve within gaseous molecular clouds [I16].

Beyond baryonic matter, dark matter (DM) can also influence BBH evolution. The adi-
abatic growth of a BH within a dark matter halo can create a dense spike in the density
profile [117, I18]. More diffuse substructures, such as minihalos, exert a weaker in-
fluence unless the binary remains embedded for a prolonged period [119]. Although
current GW detections rarely permit localization within a specific environment, statis-
tical trends in masses, spins, or eccentricities, such as those suggested for GW190521,
can provide indirect evidence of environmental effects [100, I0T]. Incorporating these
environmental effects (EEs) is thus critical for accurate parameter estimation, robust
tests of GR, and the correct astrophysical interpretation of the observed BBH mergers.

4.2 Environmental Effects

In astrophysical channels such as those involving dense stellar systems or gas-rich en-
vironments, the binary’s evolution can take place within a medium capable of exert-
ing additional long-range forces on the system. These interactions modify the inspi-
ral through sustained exchanges of energy and angular momentum between the bi-
nary and its surroundings. Their impact is most pronounced during the early inspiral
phase, when the orbital separation is large and the cumulative effect of environmental
forces can produce measurable deviations from predictions based on vacuum wave-
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form models. Two physical mechanisms dominate the environmental impact on binary
evolution: DF and mass accretion. DF arises when the gravitational potential of each
compact object perturbs the surrounding medium, generating an overdense wake be-
hind it. The gravitational pull from this wake exerts a drag force that extracts orbital
energy and angular momentum independently of GW radiation reaction. The corre-
sponding energy loss rate can be expressed as

4mpM?1(v,n) 1 — 31
v n '

Epp ~ (4.1)
where p is the local medium density, M = m + mj is the total mass, n = mymg/M 2 the
symmetric mass ratio, v = (nM; f )1/3 the characteristic orbital velocity, M; = (1 + z)M
the redshifted total mass, f the GW frequency, and I(v, n) an environment-dependent
function determined by the properties of the medium. Mass accretion onto the bi-
nary components alters their masses during the inspiral, modifying the gravitational
binding energy and consequently the orbital decay rate. Two regimes are typically con-
sidered. In Bondi-Hoyle-Lyttleton accretion (BHLA), relevant for collisional media, the
compact object moves supersonically through a uniform medium and gravitationally
focuses upstream material. The resulting mass growth rate is

4npM32A 1 -5n(1 —1)
03 P

MpprA ~ , (4.2)

where A ~ O(1) is a phenomenological factor. In contrast, collisionless accretion (CA)

describes environments with large mean free paths, leading to

16tpM? 1 - 3n
v n

~

CA ~

(4.3)

The magnitude of these effects depends on the local density, composition, and velocity
structure of the surrounding medium, as well as on the binary parameters.

4.2.1 Waveform Modeling with Environmental Effects

Within the PN framework, environmental modifications to the GW signal manifest pri-
marily as corrections to the inspiral phase. Since both DF and accretion are more effec-
tive at large orbital separations, their contributions enter at negative PN orders, dom-
inating the early inspiral. CA contributes at the —4.5PN order, whereas BHLA and
DF contribute at the —5.5PN order. For a quasi-circular inspiral in a diluted environ-
ment, where environmental effects are subdominant to the leading vacuum radiation
reaction, the frequency-domain GW phase can be written as

O(f) = E(f) + % 5y 0, (4.4)
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where ¢V?¢ is the standard vacuum phase, 6@y is the environmental dephasing param-
eter, v = (MM, f )13, and k specifies the PN order of the correction (k = -9 for CA
and k = —11 for DF and BHLA). The dephasing parameter can be related to physical
properties of the environment through

5Dy = —prpM?, (4.5)

with p = p for CA, p = Ap for BHLA, and p = Ip for DF. The dimensionless coefficients
B, which encapsulate the dependence on the binary’s mass ratio and the PN structure
of the effect, are given by

CA _ 125m(1 - 3n)

= , 4.
-9 357n2 (4.6)
125m[1 - 5n(1 —n)]
BHLA _
-11 - 1824174 7 (4.7)
257(1 - 3n)
DF _
211 = ENITER (4.8)

The environmental phase shift modifies the frequency evolution of the signal, and thus
the number of GW cycles observed in a given frequency band. As illustrated in Fig. §.T,
these phase accumulations manifest as progressive dephasing between environmental
and vacuum waveforms throughout the inspiral. If neglected in template construc-
tion, these effects can introduce significant waveform mismatches, potentially biasing
parameter estimation and reducing detection efficiency. Accurate modeling of 6@y and
its dependence on astrophysical conditions is therefore essential for probing binary en-
vironments with GW observations.

4.2.2 The Mismatch Metric for Environmental Effects

Having defined the general mismatch metric, MM, in Eq. B.9, we now apply it to
quantify the detectability of environmental modifications to GWforms. Specifically,
we compute the mismatch between an environmentally modified waveform, ke, and
its vacuum counterpart, Hyac-

In the context of weak environmental influences, where effects like dynamical friction
and accretion are subdominant to GW emission, the waveform accumulates a small,
cumulative dephasing. This dephasing can be modeled as a PN, like correction to the
Fourier-domain phase, proportional to the small parameter pM? < 1. The mismatch
directly measures the observable consequence of this accumulated phase difference.
The characteristic behavior of the mismatch is illustrated in Fig. 2. The functional
dependence of MM on the medium density p and the dephasing parameter 0Py re-
veals key observational insights. For a given detector sensitivity curve, the mismatch
typically shows symmetric peaks around zero dephasing. However, the correspond-
ing waveform durations are asymmetric: a negative dephasing parameter shortens
the in-band signal, while a positive one lengthens it. Analyses using the aLIGO de-
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Figure 4.1: Time-domain gravitational waveforms demonstrating environmental dephasing effects for a
representative binary system. The vacuum waveform (black dashed) is compared against waveforms mod-
ified by collisionless accretion (CA, red) and combined dynamical friction /Bondi-Hoyle-Lyttleton accre-
tion (DF/BHLA, blue). The progressive phase shift accumulates during the inspiral, with CA (—4.5PN)
introducing earlier deviations due to its less negative PN order compared to DF/BHLA (—5.5PN). All
waveforms are generated using the IMRPhenomPv2model with identical binary parameters, highlighting
how environmental effects can be captured through the dephasing parameter 6@y in Eq. .5,

sign sensitivity curve have demonstrated that low-mass systems, such as binary NSs,
are particularly sensitive to even minute environmental dephasing. This is because
they sweep through many more GW cycles in-band, allowing small phase deviations
to accrue more significantly and thereby produce larger mismatches. By computing
MM(hyac, heny), we establish a direct, observational criterion: a mismatch significantly
exceeding the 3% threshold indicates that environmental dephasing would be detectable,
with low-mass binaries offering the most promising signals for distinguishing these ef-

fects from vacuum inspirals.

4.3 Bayesian Framework

We employ a Bayesian framework to measure the environmental dephasing parameter
0Py and to assess its statistical significance. The analysis follows a model-agnostic
philosophy, in which deviations from the vacuum predictions of GR are encoded as an
additive phase correction at a specified PN order k. This framework is implemented
using the TIGER pipeline [I20]. We use the phase model defined in Eq. f.4:

3

(Penv(f) = (Pvac(f) + % 0Dy vk_S/

where f is the GW frequency, 1 is the symmetric mass ratio, v = (M, f)!/3 is the
characteristic orbital velocity, and k specifies the PN order at which the environmental
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Figure 4.2: Right: Mismatch as a function of the ambient medium density p for a GW150914-like
binary, calculated using the event’s actual noise power spectral density. The vertical line indicates the
approximate 90% upper bound on p from our analysis (see Fig. ??) for dynamical friction (DF) and
black hole mass loss accretion (BHLA). The curves hk ., and hivl correspond to the environmentally
perturbed waveform at linear order in pM? and the full numerical solution, respectively. Left: Mismatch
between vacuum (Nyac) and environmentally modified (heny ) waveforms as a function of the dephasing
parameter 0Dy for a set of non-spinning, equal-mass binaries. The solid and dashed lines represent the
effects of cloud accretion (CA, k = —9) and the combined effects of BHLA or DF (k = —11), respectively.

effect enters. For example, k = —9 corresponds to CA, while k = —11 describes both DF
and BHLA. We test two competing hypotheses:

o Hac: the vacuum model, in which no environmental effects are present (6@ =
0);

o Heny: the environmental model, in which 6@y is a free parameter describing
phase deviations at PN order k.

A zero-centered uniform prior is adopted for 6@, wide enough to encompass physi-
cally plausible values while ensuring numerical stability and convergence of the sam-
pling algorithm. This choice is particularly relevant for low-mass systems, whose longer
inspiral durations make them more sensitive to cumulative dephasing.

The relative statistical support for the two hypotheses is quantified via the Bayes factor,

d 7—{emV
BenY — p( | )

vac p(d | anc) 7 (49)

where p(d | H) denotes the marginal likelihood of the data d under hypothesis H.
Both Bayes factors and posterior distributions are computed using nested sampling
algorithms.

Waveform generation (see Fection 3.5) is performed with the IMRPhenomPv2 model for
BBH systems, which incorporates spin precession, and with IMRPhenomPv2_NRTidalv2
for BNS systems, which also includes tidal deformability. A lower frequency cutoff of
20 Hz is adopted in all analyses, except for GW170817 where a cutoff of 23 Hz is used

due to data-quality limitations.
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The posterior distributions of 6@y provide direct constraints on the magnitude of envi-
ronmental dephasing. For high SNR events with long inspiral phases in the detectors’
sensitive band, the posteriors typically differ from the prior, enabling the derivation of
meaningful upper bounds on environmental effects. In contrast, for low-SNR events
or those dominated by the merger-ringdown regime, the resulting constraints remain
largely prior-dominated.

4.4 Results

Applying the framework outlined in the previous section to events from GWTC-1 and
selected events from GWTC-2 catalogs yields no statistically significant evidence for
environmental effects. As shown in Table 1|, the logarithmic Bayes factors log;q Biay
are negative in all cases for both k = —9 and k = —11 dephasing parameters, revealing
that none of the observed GW signals provide support for deviations from the isolated,
vacuum model. Nevertheless, the resulting upper limits translate into astrophysically
relevant constraints on the density and composition of the medium surrounding com-

pact binaries.
4.4.1 Evidence for Environmental Effects

Table £ reports the computed Bayes factors for each analyzed event. For GW170729

Table 4.1: Logarithmic Bayes factors log,y Boay for the environmental versus vacuum models, for PN
orders k = =9 and k = —11.

Event logyg Blac (k=-9) log;o Beid (k =—11)
GW150914 -2.09 -3.30
GW151226 -4.20 —-5.52
GW170104 -1.29 -3.33
GW170608 -4.95 -6.17
GW170809 -1.91 -2.59
GW170814 -3.17 -2.81
GW170817 —5.45 —6.47
GW190425 —-10.0 -11.6
GW190924 -5.5 -6.4

and GW170823, the posterior distributions of the dephasing parameter 6@ were unin-
formative, closely mirroring the prior due to the low inspiral SNR. By contrast, GW151012
and GW170818 analyses failed to converge, likely owing to difficulties navigating a
challenging posterior landscape.

4.4.2 Upper Limits on Environmental Density

Since no statistically significant environmental effect was detected, the posterior dis-
tributions for 5@ are used to place upper bounds on the effective ambient density
p. These bounds represent the maximum density that could be present without pro-
ducing observable dephasing in the detected signals. To compute these limits, we
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map posterior samples of 6P to density using Eq.E.5, restrict to physically motivated
0P < 0 values, and extract their 90% credible upper quantiles. The resulting con-
straints, shown in Fig. .3, span p < (2Xx10%)—(2Xx 10°%) g/cm? across most events. While
such densities are far above those expected in typical astrophysical environments, they
nevertheless exclude extreme scenarios, for instance, binaries embedded in highly com-
pact gas configurations analogous to stellar fragmentation channels. The tightest con-
straint arises from GW170817, whose long inspiral enables sensitivity to even small
cumulative phase shifts, yielding p < 21 g/cm?, comparable to the density of gold. A
clear trend emerges: low-mass binaries (e.g., GW170817, GW151226, GW170608), with
many inspiral cycles in band, provide the strongest constraints, whereas high-mass
mergers with limited inspiral leverage return only weak, essentially non-informative

bounds.
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Figure 4.3: 90% credible upper bounds on environmental density p for CA, BHLA, and DF , de-
rived from posterior distributions of 0®x. The tightest constraints are from low-mass events, especially
GW170817.

4.4.3 Systematic Effects and Parameter Biases

Even for environmentally perturbed signals that remain statistically indistinguishable
from vacuum waveforms—indicated by Bayes factors log,, Bih: < 0—the use of vac-
uum models in parameter estimation can nonetheless introduce systematic biases in
the inferred intrinsic binary parameters. These biases, summarized in Fig. f.4, exhibit

consistent trends across all cases. First, the chirp mass is systematically overestimated
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when environmental dephasing is present but unmodeled: the parameter estimation
process, constrained by vacuum templates, compensates for the enhanced orbital de-
cay by inferring a higher total mass. Second, the mass ratio tends to be underestimated
under the same incorrect vacuum assumption. Third, the effective aligned spin, xes,
is biased toward higher values when environmental effects are neglected. Our analy-
sis shows, however, that for the current population of detected events, environmental
effects are too weak to produce statistically significant biases or to compromise tests
of general relativity. The consistent absence of evidence for environmental dephasing
(log1g Boae < 0 across all sources) confirms that existing vacuum waveform models
remain sufficient for astrophysical inference and fundamental physics tests at present
detector sensitivities.
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Figure 4.4: Posterior distributions for the chirp mass (M), mass ratio (q), and effective spin (xcg)
recovered using vacuum templates (Nvac) compared to environment-aware templates (hepy ) with non-
zero 0Q_y1. The analysis uses injected GW170817-like waveforms modified by dynamical friction effects
across a range of environmental densities (bottom x-axis), analyzed with the aLIGO design sensitivity
curve. The top x-axis shows the logarithmic Bayes factor log,q BShe comparing the evidence for environ-
mental versus vacuum models. Small red markers indicate the true injected parameter values, revealing
systematic biases in parameter recovery when environmental effects are present but unmodeled.

These systematic trends nonetheless highlight the importance of accounting for po-
tential environmental influences in precision GW astronomy. This consideration is es-
pecially relevant for low-mass systems, whose extended in-band inspiral makes them
particularly susceptible to subtle dephasing effects. As detector sensitivity continues
to improve, mitigating such systematic uncertainties will become essential for reliable
astrophysical and fundamental-physics inference.
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4.5 Prospects

To assess the detectability of environmental effects with current and future observa-
tories, we performed a series of injection studies. Figure f.§ summarizes the results,
contrasting the capabilities of Advanced LIGO with the potential of next-generation
detectors.

Our analysis with the Advanced LIGO (aLIGO) design sensitivity, using zero-noise
injections, reveals distinct detection thresholds across different binary masses. The
logarithmic Bayes factor, plotted as a function of ambient density (Fig. .5, left), shows
that dynamical friction (DF) becomes detectable for effective densities of order p >
(10,4 x 10%,10°) g/cm?® for GW170817-, GW170608-, and GW150914-like systems, re-
spectively. Cloud accretion (CA) requires densities roughly one to two orders of mag-
nitude larger to produce a comparable imprint, consistent with its weaker dephasing
efficiency. While aLIGO can already place meaningful constraints—for instance, rul-
ing out the dynamical fragmentation channel that requires densities > 107 g/cm3—the
detection of more tenuous environments, such as thin accretion disks or dark matter
overdensities, remains beyond its reach.

Third-generation ground-based observatories will substantially improve this sensitiv-
ity. The Einstein Telescope (ET), with a planned low-frequency cutoff of ~ 5 Hz, will
probe DF and Bondi-Hoyle-Lyttleton accretion (BHLA) in environments as dilute as
p ~ 1073 g/cm? (Fig. 5, right). This sensitivity would enable the detection of binaries
embedded in dense nuclear accretion disks, superradiant boson clouds, or regions of
dark matter overdensity.

Decihertz observatories such as B-DECIGO promise an even more transformative leap.
Their low-frequency reach (~ 0.1 Hz) allows for precision measurements during the
long inspiral phase, potentially constraining environmental effects down to g ~ 107!2g/cm?.
This would cover most astrophysically motivated scenarios, including accretion-disk
models, bosonic field condensates, and cold dark matter spikes around massive black
holes.

Our Bayesian forecasts yield density thresholds that are two to three orders of mag-
nitude more conservative than earlier Fisher-matrix estimates. This discrepancy high-
lights the importance of a complete analysis: the Bayesian evidence naturally incor-
porates an Occam’s razor penalty for the more complex environmental model, ac-
counts for degeneracies with intrinsic binary parameters, and rigorously handles real-
istic noise properties. Consequently, while Fisher matrix calculations provide a useful
first estimate, our full Bayesian inference offers more reliable and robust projections
for future detectability.

4.6 Conclusion

Our systematic search for environmental effects in LIGO-Virgo data has yielded no

significant detections, confirming that current vacuum waveform models remain ade-
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Figure 4.5: Left: Logarithmic Bayes factor log,q BShy as a function of ambient density p, showing the
detectability of environmental effects using the aLIGO design sensitivity curve. The curves represent
results for GW150914-, GW170608-, and GW170817-like injections in zero-noise realizations. The
BHLA curve is omitted as it closely follows the DF trajectory. Right: Required signal-to-noise ratio
(SNR) to achieve log,y BShy = 3 as a function of density, for the Einstein Telescope (ET, cyan band)
and B-DECIGO (gray band). Dots represent the expected SNR for each system if observed by these
future detectors. The BHLA curve is omitted due to its similarity with DF.

quate for astrophysical inference and GR tests with present sensitivities.

Despite this null result, we have established the first population-wide upper limits
on ambient density, with the most stringent constraint from GW170817 ruling out
p 2 21 g/cm? for dynamical friction. While sub-threshold environmental effects could
potentially bias parameter estimation, our analysis shows they remain undetectable in
current observations.

Looking ahead, third-generation detectors will improve sensitivity by 9-15 orders of
magnitude in density reach, transforming environmental searches from setting upper
limits to direct detection and characterization of binary formation environments.

This work establishes the foundational methodology and current observational bounds

for environmental GW astronomy, paving the way for future studies as detector sensi-
tivity continues to improve.



Ringdown Data Analysis of O4
data

5.1 Overview of the BH Spectroscopy Program

The BH spectroscopy program, introduced in Section T.1.3, aims to use the ringdown
signal of a BH as a direct probe of its nature. As already mentioned in Section 1.3, the
no-hair theorem dictates that an isolated, stationary BH in GR is uniquely described
by its mass and spin. The final vibrations of the remnant BH, as it settles into this Kerr
state, are described by a spectrum of QNMs, a direct consequence of BH stability as
detailed in Bection 1.3.2. The primary goal of spectroscopy is to measure these modes:
a detection of the fundamental mode allows for an estimate of the mass and spin, while
the measurement of a second, distinct mode provides a test of the Kerr hypothesis, as
any deviation could indicate new physics. In practice, however, translating this theo-
retical concept into a robust GW data analysis pipeline is fraught with challenges. The
idealized model of extracting clean, damped sinusoids from the data becomes highly
non-trivial when confronted with real signals of low SNR, complex morphology, and
significant uncertainties from the preceding inspiral and merger phases. This chapter
lays the foundation for the ringdown analyses presented in this thesis. We begin by
establishing the core methodological framework in Fection 5.2, detailing the statistical
and computational principles of ringdown data analysis. We then delve into ringdown
parametrizations (see Fection 5.3) used to model the QNM spectrum, a discussion of
the ringdown systematics (see Pection 5.4) arising from modeling choices and data
quality issues, and a review of the detection criteria (see Fection 5.4.3) employed to
claim a robust QNM detection. All ringdown analyses presented here were conducted
using the pyRing pipeline, which implements the Bayesian time-domain framework
for ringdown inference [[121], 122]. Following this methodological basis, we summarize
past observational constraints and present new results from ringdown analyses of se-
lected O4a events. We highlight key findings for special events such as GW230814 and

84
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GW231123 and conclude with a detailed analysis of GW250114, the loudest ringdown
observed to date. For this event, we report the first clear observation of two distinct
QNMs and perform a test of the BH area law, obtaining the most stringent bound on
its validity to date.

5.2 Formulation of Ringdown Data Analysis

The detection and characterization of ringdown signals in GW data can be pursued
through two distinct paradigms: a full-signal analysis that models the entire binary co-
alescence (inspiral, merger, and ringdown), or a ringdown-only analysis that isolates
and studies the post-merger damped sinusoids. In this work, we focus on the latter,
aiming to characterize the remnant BH by fitting only the data following the merger.
The primary objective of a ringdown-only analysis is to model the post-merger relax-
ation of the BH using a superposition of QNMs, as predicted by perturbation theory.
Conceptually, this involves selecting a start time t;, and analyzing the subsequent data
segment. A common but flawed implementation is to simply zero-out the data before
to and perform a standard frequency-domain analysis. This method suffers from the
Gibbs phenomenon, where the abrupt start time introduces spurious power across all fre-
quencies. Furthermore, the Fourier transform of a damped sinusoid has a finite width,
causing the ringdown’s power to “leak” into frequency bands associated with the in-
spiral, and vice-versa. This frequency-mixing obscures the physical interpretation of
the results and can bias parameter estimates [122]. To overcome these limitations, we
employ a rigorous time-domain formalism, which is detailed in the following sections.

5.2.1 Bayesian Inference for Ringdown Analysis

We apply the general Bayesian framework of to ringdown signals, analyz-
ing only post-merger data d4, ¢,+7]. The posterior distribution for ringdown parame-
ters 0 is:

p(6ld, H) oc p(d|6, H) p(6I'H), (5.1)

where the likelihood p(d|0, H) must account for the truncated time segment, introduc-
ing boundary correlations in the noise covariance matrix.

5.2.2 Time-Domain Likelihood for Truncated Data

Standard frequency-domain analyses require data segments where signals are isolated
from edges to allow smooth windowing. For ringdown analysis, however, the signal
begins at the segment boundary t, creating a challenge (Fig. Figure 5.1): windows ex-
tending before t; contaminate the ringdown with inspiral-merger content, while win-
dows starting at or after ¢y corrupt the crucial ringdown onset. We overcome these
limitations using a time-domain approach that operates directly on the truncated seg-
ment [to, to+T]. For wide-sense stationary noise, the covariance matrix C is a symmetric
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Figure 5.1: Frequency-domain challenges for ringdown analysis. Taken from Ref. [123].

Toeplitz matrix with elements C;; = p(|t; — t;|). The log-likelihood is:
1
log p(d|0) = -5 (d —h(0))" C!(d - h(8)) + constant. (5.2)

Fig. shows this method in practice, with clean truncation at t( separating
ringdown from preceding phases.

Autocorrelation Function Estimation

We estimate the autocorrelation function (ACF) from off-source data under wide-sense
stationarity using standard procedures [[124]:

1. Select a long stationary segment (T ~ O(10%) s)

2. Divide into N sub-chunks (T; = 4 s typically)

3. Compute ACF estimates for each sub-chunk

4. Average to produce final low-variance ACF estimate

For discrete data n; of length N, we use the unbiased estimator:

N-m-1

C(m) = ! Z NjNjym, (5.3)

N-m £
j=0

truncated to length T encompassing the ringdown signal.
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Figure 5.2: Whitened waveform reconstruction demonstrating clean truncation at t.
Computational Implementation
For efficiency, we factorize the covariance matrix using Cholesky decomposition:
C=LL", (5.4)

enabling computation of whitened quantities x = L™'x. This transforms the likelihood
evaluation into a simple inner product:

t - T
iyl =xTCy =17y, (55)
with corresponding matched-filter SNR:
to+T
(xly)
SNR(x, y)|;"" = i (5.6)

[< | >|t0+T

5.2.3 Data Conditioning

Data conditioning, the selection of analysis segments and application of preprocess-
ing steps like downsampling, filtering, and line cleaning, is essential before Bayesian
inference on GW data. These steps reduce computational costs and improve likeli-
hood evaluation quality, with particular importance for ringdown analyses. Public
LVK data releases provide strain data at 4096 Hz or 16384 Hz, both high-pass filtered
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at 8 Hz, with additional anti-aliasing applied to the 4096 Hz data. Calibrated data
include built-in calibration filters and instrumental line subtraction. While data clean-
ing effects are well-characterized for frequency-domain analyses, their impact on time-
domain ringdown likelihoods requires special attention. Previous work has quantified
effects of downsampling, filtering, and line cleaning in ringdown contexts [125], while
other studies have compared noise estimation strategies [126]. Once the ringdown
start time t( is determined, two critical choices must be made: the segment duration
and the sampling rate. Although one might expect the segment duration to match the
signal’s intrinsic decay timescale, this proves insufficient in practice. Detector noise is
colored and Gaussian, creating temporal correlations that extend the effective segment
length required for proper whitening. These correlations are particularly pronounced
when narrow spectral lines are present in the noise PSD. Using segments that are too
short artificially broadens posterior distributions, leading to overestimates of statistical
uncertainty [[27]. The choice of sampling rate involves a trade-off between compu-
tational efficiency and analysis fidelity. Lower sampling rates reduce computational
costs but risk undersampling the signal. A practical guideline suggests that down-
sampling is safe when the Lorentzian peak associated with the fastest-decaying mode
becomes negligible at the Nyquist frequency.! However, the downsampling method
itself introduces complications: standard anti-aliasing filters can distort frequencies
well below the Nyquist limit, and when significant signal power exists near Nyquist,
these filters can produce template-data mismatches that measurably alter posterior dis-
tributions [[125, 126]. These considerations explain why standard LVK ringdown anal-
yses typically adopt conservative sampling rates (e.g., 4096 Hz in O3) [I28, 129, 130,
I31]. Alternative approaches include avoiding filtering entirely or constructing the
autocorrelation function from a modified PSD that excludes affected frequency com-
ponents [125].

5.3 Ringdown Parameterizations

The GW signal during the ringdown phase can be modeled as a superposition of QNMs,
characteristic damped oscillations of the remnant BH. Different ringdown models param-
eterize these modes in terms of inferable parameters 0, with the choice of parameteri-
zation critically impacting the scientific inference. Restrictive models reduce flexibility
and risk biasing results if their underlying assumptions are violated. Conversely, more
general parameterizations can reveal additional physics but incur increased statistical
uncertainty from additional degrees of freedom [[I29, 132, 133, 122, 124, 134, 135].

1 The Nyquist frequency fNyq = fs/2 defines the maximum unambiguous frequency for sampling rate

fs-
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5.3.1 Damped Sinusoids

The most agnostic approach, labeled Damped Sinusoids, represents the signal as a su-
perposition of exponentially damped oscillations:

Iy —ile= ) hy, = Ajetho)ltemanifitto)io) (5.7)
j

This parameterization captures the general features of ringdown signals without as-
suming relationships between modes, making it suitable for testing fundamental BH
properties or searching for deviations from GR predictions. It can be motivated theo-
retically by the boundary conditions of BH perturbations [[[36, 137] or observationally
by the exponentially decaying behavior of measured signals [129, [28]. In the station-
ary relaxation regime, where QNM amplitudes and the remnant mass and spin have
stabilized, one can assume constant amplitudes A;. The free parameters { f]-, Ti, Aj, P ]-}
fully describe the signal within this model.

5.3.2 Kerr Template

Assuming the remnant is a Kerr BH, the QNM spectrum is uniquely determined by its
mass My and spin a s Fection T.3.T. The strain can be expressed as:

00 1 0o
e — iy = 2 DD U + i) (5.8)

with
o = Al S, ) 10100 69
hl_mn = Al_mn —251_7’1”([/ (P) e_i[(t_tO)d);m”_(P;”’”]r (510)

where @imn = Wimn + 1/ Timn is the complex ringdown frequency, expressed as a func-
tion of the remnant BH mass and spin, @jun = @1mn(Mp, a¢). The amplitudes A;—'mn and
phases ¢F = characterize the excitation of each mode. For binaries with spins aligned
with the orbital angular momentum, reflection symmetry implies A~ = (—l)lAlt;n,
halving the number of free parameters per mode. Here | denotes the inclination of the
BH final spin relative to the observer’s line of sight, while ¢ is the azimuthal angle in
the BH frame. _5S;,,, are the spin-weighted spheroidal harmonics and ¢ is a reference
start time. Following the conventions of Lim et al. [I38], m > 0 indices denote co-
rotating modes, while counter-rotating modes are labeled by m < 0. Counter-rotating
modes are weakly excited in the post-merger phase for typical LIGO-Virgo-Kagra bi-
naries [[[39], though their potential relevance remains debated [[140, 138]. This Kerr
parameterization reduces the free parameters to {My, af, Aiun, Pimn} and has been ex-
tensively applied to numerical relativity simulations [[141, 142]. The model encodes the

essential features of Kerr perturbations while retaining sufficient agnosticism to extract
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significant information from ringdown signals.

5.3.3 KerrPostmerger

For times near the merger, constant-amplitude QNM models face significant limita-
tions due to nonlinearities and transient effects that dominate the early post-merger
phase. The KerrPostmerger model (introduced in [143]) addresses these limitations
by incorporating time-dependent amplitudes and phases calibrated to numerical rela-
tivity simulations. This approach models the entire post-peak emission using a spher-
ical decomposition of dominant modes (up to I = 5) with a resummation strategy
that captures nonlinear contributions and overtone effects. The model employs phe-
nomenological time-dependent functions:

A = Ap(t;my, ma, X1, X2),  @Pim = Qum(t; my, ma, x1, X2), (5.11)

and crucially accounts for time delays between different mode peaks. By including pro-
genitor information (masses m, my and spins xi, x2), it bridges IMR and ringdown-
only analyses, enabling inference of initial binary parameters from the ringdown sig-
nal. This framework allows extraction of larger SNR from extended portions of the
post-merger signal, though with reduced sensitivity to certain exotic deviations from
Kerr relaxation compared to more agnostic models. The KerrPostmerger approach
forms the basis for IMRPhenomTPHM [B80] and has been systematically characterized
in GWTC-3 analyses [[133].

5.4 Systematic Challenges in Ringdown Analysis

BH spectroscopy from binary mergers faces fundamental systematic challenges that
limit the precision and physical interpretation of measurements. These arise from the
complex physical transition from merger to ringdown and the practical difficulties of
analyzing real detector data.

5.4.1 The Start Time and Dynamical Remnant Problem

The primary systematic uncertainty arises from the ill-defined nature of the ringdown
start time fg,,t. Unlike a sharp phase transition, the onset of the ringdown regime
represents an approximate selection of the relaxation epoch rather than a physically
distinct boundary. A more fundamental challenge stems from the intrinsically dy-
namical nature of the post-merger system. During the ringdown phase, we observe
not a stationary Kerr BH subjected to well-defined perturbations, but rather a highly
dynamical spacetime evolving toward equilibrium. The mass and spin of the remnant
BH vary continuously during the early stages of this relaxation process. This distinc-
tion separates the problem of fitting the post-peak waveform with phenomenological
damped sinusoids from the task of extracting the true physical vibrational spectrum
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of the BH. These challenges originate in the complex physical evolution of BBH coa-
lescence. The system undergoes an inherently non-linear transition from dynamical
merger to quasi-stationary ringdown. Following inspiral, the waveform reaches its
amplitude peak as the two horizons merge, producing an enormous burst of gravita-
tional radiation dominated by non-linear effects. A dynamical horizon forms, far more
complex than a stationary Kerr BH, which subsequently relaxes toward equilibrium.
As the system evolves past the peak, the remnant approaches a quasi-stationary state
characterized by QNM ringing. This physical evolution creates the fundamental ten-
sion between SNR, which favors early times, and theoretical validity, which requires
later times when the system has stabilized. As illustrated in Fig. [Figure 5.4, the choice
of tsare dramatically affects both the quality and interpretation of ringdown fits. At
early start times (tstare = OM), strong nonlinearities and evolving remnant parameters
lead to poor agreement with perturbative predictions. By fs.rc = 15M, the fits improve
substantially but systematic residuals remain visible. At tsiari = 30M, the Kerr model
provides excellent agreement with numerical relativity, demonstrating that the system
has reached the perturbative regime, but this comes at the cost of substantial SNR loss.

5.4.2 Practical Start Time Selection

In our ringdown analyses with pyRing, the analysis start time is defined relative to
a reference time t;, determined through a robust statistical procedure. We begin by
drawing N = 10, 000 samples from the GR IMR parameter estimation posteriors, gen-
erating corresponding waveforms for each sample. For each waveform, we compute
the peak time of the strain k2 + hZ, building a distribution of ¢, values. For most
events, we use the NRSur7dq4 waveform [/3]; when unavailable, we employ IMR-
PhenomXPHM [76]. We employ different start time strategies depending on the ring-
down model: KerrPostmerger: As shown in Fig. Figure 5.3, we use the 90% credible
interval of the peak time distribution (gray shaded region) divided into 9 segments
(green vertical lines) to define our start time grid. The reference time th is computed
as the peak of the /3 mode, consistent with its NR calibration. A critical optimization
ensures that the spacing between start times exceeds the ringdown sampling rate, pre-
venting redundant analyses while maintaining adequate coverage of the uncertainty
range. Damped Sinusoids and Kerr: For these models, we use a two-tiered grid ap-
proach: a wide grid with 5M steps from —10M to 20M relative to t(, supplemented by
a finer grid with 2M steps centered around ¢, to provide enhanced resolution near the
expected validity regime. We analyze multiple starting times across all models to verify
consistency with GR predictions, but report results at a single characteristic time t,,or,
set by each model’s regime of validity: t,om = 10M for Damped Sinusoids and Kerr
templates, and t,om = OM for KerrPostmerger due to its phenomenological nature.
Due to the truncated time-segment formulation [123], the sky location is fixed to the
maximum-likelihood value from the full IMR analysis. As illustrated in Fig. Figure 5.4,
the choice of tg,t dramatically affects the quality and interpretation of ringdown fits
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Figure 5.3: Reference time distribution for KerrPostmerger analysis. The histogram (red bins) and
KDE (solid line) show the distribution of to values computed from 10* waveform samples using IMR
posteriors. The distribution is shifted so that to = 0 corresponds to the reference peak time (vertical
dashed line). The gray shaded region indicates the 90% credible interval used for the start time grid.
Green vertical dashed lines mark the 9-segment grid within this interval, with spacing optimized to
exceed the ringdown sampling rate to ensure distinct analyses. Time is shown in both geometric units
(bottom axis) and seconds (top axis) relative to the final mass M.

across all waveform characteristics. At fgat = 0M, both the waveform components
and derived quantities (amplitude and frequency) show poor agreement with per-
turbation theory predictions, reflecting strong nonlinearities and rapidly evolving BH
parameters. By tgare = 15M, the fits improve substantially but systematic residuals
remain visible, particularly in the frequency evolution. At tstart = 30M, the Kerr model
provides excellent agreement with numerical relativity across all four panels, demon-
strating that the system has reached the perturbative regime, but this comes at the cost
of substantial SNR loss from discarding the early post-merger signal. For typical SNRs
in current observations, these residual systematics are smaller than statistical errors.

5.4.3 Assessing Mode Detectability

A primary objective of BH spectroscopy is the detection of multiple QNMs in the
ringdown signal. A principled approach to this problem can be formulated within
a Bayesian framework. Define the hypotheses H, and H,, as the statements “n” or
“m” detectable modes are present in the ringdown. The odds ratio between the two

hypotheses is then

o _pELID  pHDpIH,D _ pHDZe _ p(H D
e p(Hy | d, I) p(Hy | 1) p(d | Hp, 1) - p(Hy |1) Zy, B p(Hp | 1)

Bum, (5.12)
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where Z,, and Z,, are the Bayesian evidences for the respective models, and B, ,; is
the Bayes factor (BF). If O, ,, > 1, then H, is more probable, and vice versa. For hy-
potheses with equal prior probability, p(H,|I) = p(Hu|I), the odds ratio reduces to
the BF. Adding modes to a ringdown template increases the dimensionality of the pa-
rameter space. Even if the additional parameters improve the fit, the expanded prior
volume naturally penalizes the evidence through the Occam factor [144]. Hence, un-
less an additional mode contributes substantially to the signal relative to the dominant
(I,m,n) = (2,2,0) mode, multi-mode templates are typically disfavored, especially at
low SNR. One strategy to mitigate this effect is to adopt NR-informed parameteriza-
tions of mode amplitudes as functions of the progenitor parameters (see Section
fion 5.3), allowing additional modes without increasing the effective dimensionality.
This approach assumes the correctness of GR in the background information I [[I29,
132, [33], which enables “weaker” spectroscopic tests by permitting deviations in the
spectrum, though these are less agnostic than models with free amplitudes. Using
BFs to assess additional modes becomes nontrivial when dealing with nested models.
For instance, a model with an additional mode reduces to a simpler model if the ex-
tra mode’s amplitude is zero. In such cases, the BF strongly depends on the choice of
priors, particularly for mode amplitudes, including regions not constrained by the like-
lihood [[145, 146]. Consequently, support for a new mode can be arbitrarily diminished
by enlarging the maximum allowed amplitude. The lack of physical guidance in set-
ting priors exacerbates this issue. Owing to these subtleties, some studies avoid Bayes
factors as detection statistics and instead rely on posterior-based criteria.For example,
one may assess the significance of a nonzero amplitude using the ratio of the poste-
rior mean (or median) to its standard deviation, or by computing the credible level of
zero. The BF is related to the posterior support at zero, being the ratio of posterior to
prior at that point[[147]. Tracking the evolution of the amplitude posterior across dif-
ferent fitting times provides an additional safeguard against mismodeling: if the data
are poorly described by any QNM model, a nonzero amplitude may appear at a given
tstart, but it will not evolve consistently with the expected QNM decay rate..

Noise Systematics

Detector noise can significantly impact evidence calculations and mode-detectability
criteria, particularly for low-SNR ringdowns [[I48, 149]. Likelihood functions typi-
cally assume stationary, Gaussian noise, assumptions that are often violated in real
data [I50]. Additional modes can inadvertently fit nonstationarities, increasing false-
detection probability. Incorporating multiple detectors helps mitigate this effect. The
influence of noise can be assessed through injection studies: a simulated signal isadded
to (i) Gaussian noise and (ii) real noise surrounding the GW event. Repeating the
second step at different times effectively samples the detector noise process, enabling
quantification of its impact on detection metrics [[129, [32]. These studies can be com-

putationally expensive due to noise variability, signal-parameter uncertainties, and the



5.5. Ringdown Observations and Multi-Mode Searches 95

need to consider different QNM combinations and starting times.

5.5 Ringdown Observations and Multi-Mode Searches

5.5.1 The First Ringdown: GW150914

The ringdown of GW150914 provided the first definitive detection of a BH QNM. The
high SNR of the event allowed for the isolation of the post-merger waveform and the
extraction of the fundamental (I, m,n) = (2,2,0) mode’s characteristic frequency and
damping time:

fago0 = 250 Hz,  Tg90 =~ 4 ms. (5.13)

The LIGO-Virgo-KAGRA (LVK) collaboration performed a single-QNM analysis start-
ing at times tstar = 3 ms = 10M after the waveform peak. As shown in Fig. Figure 5.5,
the measured frequency and damping time became consistent with the predictions of
general relativity (GR) for sufficiently late start times, validating the QNM model. The

robustness of this detection was later confirmed with more sophisticated time-domain
signal
noise

methods. A decisive Bayes factor B ~ ¢!46 favored a ringdown signal over pure
noise, while no statistically significant evidence was found for the presence of addi-

tional modes (overtones or higher harmonics) in this event [122].
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Figure 5.5: Two-dimensional posterior distributions for the frequency and damping time of the fun-
damental (2,2,0) QNM inferred from GW150914 data using single damped sinusoid fits at various
analysis start times (dashed contours). The results demonstrate that for sufficiently late start times
(approximately tyeqx + 10M ), the ringdown-only analysis converges to values consistent with the full
inspiral-merger-ringdown (IMR) analysis (solid contour). This agreement validates the QNM model’s
applicability during the late-time ringdown phase. Adapted from [[122].
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5.5.2 Population Studies in GWTC-3

The GWTC-3 catalog enabled the first population-wide studies of ringdown signals.
Of the 90 compact binary coalescences, 48 met the criteria for testing GR, and 22 of
those had sufficient ringdown SNR for detailed spectroscopic analysis. The primary
analysis frameworks is the time-domain pyRing pipeline. The pyRing pipeline, which
uses the truncated time-domain likelihood described in Section Section 5.2.2, typically
follows a hierarchical strategy: starting with agnostic Damped Sinusoids (DS), then
Kerr templates, and finally NR-informed models. Analyses are performed over a grid
of start times to verify that parameter estimates stabilize and become consistent with
GR predictions at late times. For the fundamental (2, 2,0) mode, the results across the
22 events are consistent with the predictions of BH perturbation theory. The inclusion
of the first overtone in Kerr templates often improves the recovered SNR by capturing
more of the early post-merger signal.

5.5.3 The Search for Higher-Order Modes

A key goal of BH spectroscopy is the detection of multiple, distinct QNMs. The LVK
collaboration has performed extensive searches for higher-order modes—such as the
(3,3,0),(3,2,0),and (2, 1,0) harmonics—using the pyRing pipeline. These searches in-
volve rigorous model selection between templates of increasing complexity. To avoid
spurious detections, physical constraints (like equatorial reflection symmetry) and em-
pirical bounds on amplitude ratios (e.g., A;mn/A220 < 0.9) are typically imposed.
Despite these efforts, no statistically significant evidence for higher-order modes was
found in the GWTC-3 population. An apparent higher-mode detectionin GW191109_010717
was later attributed to noise non-stationarity. A few events, like GW200224_222234,
showed weak, marginal hints of secondary modes, but the evidence was highly sensi-
tive to the analysis start time and prior choices.

The Case of GW190521

GW190521, a massive, short-duration merger, has been a prime candidate for higher-
mode searches due to its potentially asymmetric mass ratio. Some studies using ag-
nostic Damped Sinusoids models reported features compatible with the (3, 3, 0) mode.
However, the Bayesian evidence for this additional mode was highly sensitive to the
waveform model, amplitude priors, and start time. When physical constraints on am-
plitudes and symmetries were enforced, the preference for additional modes typically
vanished. This highlights the challenge of distinguishing faint physical signals from

systematic modeling effects.

5.5.4 Summary of Challenges

The robust detection of higher-order modes in the current LVK catalog remains elusive

due to several interconnected challenges:
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e Low SNR: For most events, the ringdown SNR is too low for a conclusive multi-
mode detection.

e Systematic Sensitivities: Results are highly sensitive to the analysis start time t,,
prior choices for mode amplitudes, and the specific ringdown model used.

e Short Ringdowns: Massive mergers like GW190521 have ringdowns with few
observable cycles.

e Model Limitations: Current QNM models struggle to accurately capture the
early, non-linear post-merger dynamics.

In summary, while the fundamental (2, 2, 0) mode has been consistently observed and
is in agreement with GR, the detection of a clear, unambiguous higher harmonic re-
quires louder signals and more robust analysis techniques. The following sections
present new results from the O4 observing run, where several promising candidates
have emerged.

5.6 Post-Merger Analysis of O4a Data with pyRing

This section presents the results of a systematic ringdown analysis for selected events
from the O4a observing run, conducted within the pyRing framework. The analysis
employs the time-domain likelihood and hierarchical template methodology detailed
in previous sections to characterize remnant BHs and test the predictions of GR.

5.6.1 Event Selection and Configuration

We focus on events with confident ringdown signatures identified in the O4a data.
Candidate selection follows the criterion log;q 8 % 1 for KerrPostmerger templates,
where 8B denotes the signal-versus-noise Bayes factor. This threshold ensures that the
included events exhibit distinguishable ringdown signals while maintaining computa-
tional feasibility. We employ the hierarchical analysis strategy outlined in Section
fion 5.3, progressing from the agnostic Damped Sinusoids modelto the GR-constrained
Kerr template, and finally to the NR-calibrated KerrPostmerger model. Analysis start
times follow the procedures established in Fection 5.4.2, with results reported at char-
acteristic validity times t,om = 10M for DS and Kerr templates, and tnom = OM for
KerrPostmerger, consistent with its phenomenological nature and NR calibration. The
selected events are analyzed with each of the three template families at their nominal

start times, as summarized in Table [[able 5.7].

5.6.2 Consistency of Remnant Properties

A primary outcome of this analysis is the robust agreement between remnant proper-
ties inferred from ringdown-only signals and those derived from full inspiral-merger-
ringdown (IMR) studies. As summarized in Fig. and Table [Table 5.7, the
posterior distributions for the final mass My and dimensionless spin x s obtained us-

ing the Damped Sinusoids, Kerr, and KerrPostmerger templates all show significant
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Event Redshifted Final Mass (1 + z)M¢/ Mg Final Spin x¢ log1g @ww%
IMR Kerr KerrPostmerger IMR Kerr  KerrPostmerger  Kerr KerrPostmerger
GW230601_224134 GW230601524134 199.7822725  179.09+13-1 GW230601,24134 0.83*0-15 0.8675:97 -0.73 —0.06
GW230609_064958 GW230609964958 81.75735%32 93.53"13 % GW230609064958 0.4170-36 0.8170-19 -0.68 0.11
GW230628_231200 GW230628231200  88.2373550 87.17*55% GW230628231200 0.807)-1% 0.86709% -0.42 0.20
GW230811_032116 GW230811¢32116 74.31712%58 74.54*1112 GW230811(32116 0.567)-35 0.807919 -1.22 0.12
GW230814_061920 GW230814061920 177.4075135  192.39*37-10 GW230814061920 0.6170-39 0.8279-0% -1.29 0.46
GW230824_033047 GW230824¢33047 166.3873397  160.22+13-74 GW230824¢33047 0.78*0-L7 0.83+098 -0.98 —0.04
GW230914_111401 GW230914;11401 143.8873350  144.91*13-39 GW230914,11401 0.66*023 0.811099 -1.15 0.23
GW230919_215712 GW230919,15712 75.51*12889  60.39+15%.56 GW230919,15712 0.57%0-36 0.8270-19 -0.94 —0.14
GW230922_020344 GW230922(20344  75.16722-:97 85.78*5% GW230922(20344 0.3770-31 0.8179-99 -0.91 0.17
GW230922_040658 GW230922040658 227.507%59%  238.63+10-73 GW230922040658 0.62*0-2% 0.81+099 -0.96 0.17
GW230924_124453 GW230924,24453  79.3673 50 72.5218 14, GW230924,24453 0.76*0-25 0.82+099 -1.35 0.00
GW230927_043729 GW230927¢43729 218.76*192580  91.29*11.74 GW230927¢43729 0.43*0-35 0.81%0-19 -0.74 -0.02
GW230927_153832 GW230927,53832  44.287 1539 47.87+380 GW230927,53832 0.6575:27 0.8379-0% -0.77 0.14
GW230928_215827 GW230928,15827 154.287703-10  133.09+16-22 GW230928,15827 0.6470-3 0.8379-02 -0.91 0.06
GW231001_140220 GW231001,40220 171.5575, 7% 214.22730-97 GW231001;40220 0.2470-2 0.8079-19 -0.49 0.55
GW231028_153006 GW231028;53006 250.8372592  226.83*10-05 GW231028,53006 0.81*0-92 0.8070:08 0.01 -0.07
GW231102_071736 GW231102,71736 152.057550  164.83*1221 GW231102¢71736  0.76*015 0.80*097 -0.70 -0.01
GW231108_125142 GW231108,25142  45.4379}-36 50.25*5-76 GW231108,25142 0.4070-3 0.8379-99 -0.82 —0.02
GW231206_233134 GW231206233134 126.59725-29 99.05 %%, GW231206233134 0.9075:97 0.8379-0% -1.17 0.10
GW231206_233901 GW231206233901  86.11%37 5 80.65*7- L8 GW231206233901 0.59*0-29 0.77+0-1% -1.00 0.04
GW231213_111417 GW231213,11417  86.60755-73 104.5377599 GW231213,11417 0.5570-32 0.8170-%9 -1.23 0.01
GW231223_032836 GW231223(32836 118.03*7507  127.57+18:5° GW231223(32836 0.477045 0.80*012 -0.91 0.01
GW231226_101520 GW231226,01520  96.91* 1575 86.20*2-39 GW231226,01520 0.7270-16 0.757912 -1.15 0.02

Table 5.1: The median

(HMs) in the data.

and symmetric 90% credible intervals of the redshifted final mass and final spin, inferred from the full IMR analysis [151] and the pyRing
analysis with two waveform models (Kerr and KerrPostmerger) at their nominal validity time tnom. A value of logio BEM > 1 indicates support for higher modes
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overlap with the results from full IMR analyses. This consistency, observed across mul-
tiple independent waveform models, reinforces the validity of the ringdown phase for
remnant characterization. The evolution of the Bayes factor with analysis start time is
summarized in Fig. p.7, illustrating how evidence for higher modes varies across the
posterior support of tg.y for different template families.

5.6.3 Tests of GR via the Ringdown Spectrum

We performed a parametric test of GR by introducing fractional deviations to the funda-
mental (2,2,0) QNM: 6 fggo (constrained to [—1, 1]) and 67229 (constrained to [—0.9, 1])
[129]. Using uniform priors for these deviation parameters, we conducted the analysis
with the KerrPostmerger model including all higher modes to mitigate false deviations
from unmodeled mode content. We hierarchically combined deviation measurements
from all analyzed O4a events (Table [[able 5.1)), adopting a multivariate Gaussian dis-
tribution for the population [[52]. Note that while pre-O4 events were analyzed with
KerrPostmerger in [I33], those results employed a peak-time approximation that can
induce non-negligible shifts; a reanalysis will be incorporated in future work. The hi-
erarchical constraints yield:

O fano = 0.117022. %999 = 0.1819:26 (5.14)

The inferred deviations are centered close to zero, consistent with GR expectations
within statistical uncertainties. To capture potential event-to-event variation, we fur-

ther model the population distribution with hyperparameters:

L +0.22, .
s oo = 0.11751%5; 05 fang < 80.4

otase = 0187038 G5, < 97.4 (5.15)
_ 0.26
péfQQoé’fQQo - 0'18_—'—0.26

As shown in Figure Figure 5.8, both deviation parameters are consistent with zero—the
value predicted by GR—within their 90% credible intervals, though the distributions
show slight positive tendencies. We quantified consistency with GR using the Q¢
quantile [I53], estimating uncertainties via bootstrapping with 1000 synthetic catalogs
[154]. Applying a stricter selection criterion (log;, 8 > 8) increases agreement with GR
but introduces higher variance due to the reduced event set. The results are consistent
with GR, though the combined posterior shows that the GR value (0,0) lies near the
edge of the 90% credible region, indicating that future data with higher sensitivity may
provide more stringent constraints.

5.7 Special Events

This section presents detailed ringdown analyses of three significant events from the
O4 observing run. These case studies demonstrate the application of BH spectroscopy,
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Figure 5.6: Comparison of final mass, final spin, fundamental mode ringdown frequency and damping time at their nominal validity time t,om for all events analyzed by
pyRing. Different posterior colors represent the templates used in the analysis: DSwith a single mode (blue), precessing Kerr with the highest evidence mode combination
(yellow), and KerrPostmerger (green) using all available higher modes. The DS analysis provides results for fooo and t220. IMR parameter estimation median values
(solid vertical black lines) with 90% credible intervals (dashed vertical black lines) from [151] are shown alongside the corresponding ringdown estimates, assessing
consistency with GR expectations.
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Figure 5.8: 90% contours for the posterior probability distribution of frequency deviation § fasg and
damping time 0Tq90 for the analysis with a KerrPostmerger template including all HMs and fractional
deviations on the (2,2, 0) mode (light curves), along with the hierarchically combined results (heavy
curves), including with the log,o B > 8 constraint. The events plotted and hierarchical distribution are

the O4a events listed in Table [[able 5.1|

detailed in Fection 5.]), to test fundamental theoretical pillars established in
specifically the Kerr metric (Section 1.3.T), the no-hair theorem, and the laws of BH

thermodynamics (Section 1.3.3).

5.71 GW230814: A High-SNR Laboratory for Ringdown Systematics

Detected by LIGO Livingston with a remarkable SNR of 42.4, GW230814 was the loud-
est signal in the GWTC-4.0 catalog. This BBH merger, with component masses m; =
33.73:3M@, My = 28.2f§:%M@, and low effective inspiral spin x.g = —0.0lfgzgg, provided
an excellent dataset to probe the ringdown phase with high precision.

Anomalous Features and Systematic Investigations

The pyRing analysis revealed an unusual bimodal structure in the posterior distribu-
tions for the fundamental (2,2, 0) QNM parameters. As shown in Fig. Figure 5.14, fits



5.7. Special Events 103

starting at late times (~ 41 ms post-peak), where the exponential ringdown model is
most reliable, yielded two distinct solutions:

e A primary component at f ~ 68 Hz, consistent with the fundamental QNM fre-
quency predicted by the remnant’s mass and spin.

e A secondary component at f ~ 45 Hz, with a larger amplitude, potentially cor-
responding to an unexpectedly excited higher angular mode.

4 J
1.00 e — | —— KerrPostmerger (-0.31) 1
§ —— pPSEOBNR
s St NN —— ]
0.50 F--F-----—----—- et SR e -

5} 220

Figure 5.9: Fractional deviations (6 fggo, 0%220) from the GR-predicted QNM parameters for
GW230814. Contours show 90% credible regions from the pPSEOBNR (dashed-dotted maroon) and
pyRing KerrPostmerger (solid black) analyses. The black square marks the GR prediction.

This bimodality propagated to the inferred remnant properties, creating tension with
the full IMR results. To determine the origin of these features, we performed extensive
injections of GR signals into real detector noise. These studies revealed that similar
anomalous deviations occur in ~ 32% of cases for the damping time and ~ 20% for the
frequency, indicating they are consistent with statistical fluctuations and noise artifacts

rather than a violation of the Kerr hypothesis.

5.7.2 GW231123: Confirming an Intermediate-Mass Black Hole

GW231123, observed with a network SNR of ~ 22.5, is a compelling candidate for the
most massive BBH merger detected to date. The system comprised two highly spinning
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BHs (x1 = 0.901“8:}8, X2 = 0.801“8:%(1]) with masses 137“:%§M@ and 103f§gM@, resulting in

a total mass of 189-266M, that significantly exceeds that of GW190521.

Ringdown of a Massive Remnant

The signal’s morphology was dominated by the merger-ringdown, with only ~ 5 inspi-
ral cycles in the sensitive band. The ringdown itself began unusually late, ~ 19 ms after

the polarization peak, a characteristic of extremely massive systems. The ringdown
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Figure 5.10: Posterior distribution for the frequency and damping time of the fundamental mode in
GW231123 from a single damped sinusoid fit (90% credible region), compared to the IMR prediction.
The damping time axis is truncated for clarity.

analysis, summarized in Fig. Figure 5.10, also indicated a bimodal structure. Crucially,
unlike GW230814, both posterior components robustly inferred a final mass > 200Mg
across all analysis start times. This provides strong, model-agnostic evidence for the
formation of an intermediate-mass BH, consistent with the Kerr paradigm.

5.7.3 GW250114: A Landmark for BH Spectroscopy and Thermodynamics

GW250114 marks a watershed moment in GW astronomy. Detected with an unprece-
dented network SNR of ~ 80, this nearly equal-mass (m; = 33.6Mo, may = 32.2Ms),
low-spin (x < 0.26) binary provided the data quality necessary for transformative
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tests of fundamental physics.

The First Confident Multi-Mode Detection

Applying the agnostic Damped Sinusoids model (Fection 5.3), we achieved the first
unambiguous detection of two QNMs. Figure [Figure 5.1T illustrates the evolution of
the mode amplitudes with start time:

e The fundamental (2,2, 0) mode was confidently detected (> 7¢) for start times
up to 20M post-peak.

o The first overtone (2, 2, 1) was significant at > 4o for start times between 6M and
9M, contributing for approximately one cycle before decaying away.
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Figure 5.11: Recovered strain amplitudes for the fundamental mode (top) and first overtone (bottom)

in GW250114 as a function of analysis start time. Error bars show 90% (thin) and 50% (thick) credible
intervals. The overtone is significantly detected for start times between 6M and IM.

Precision Test of the Kerr Metric and No-Hair Theorem

The detection of two modes enabled a direct test of the Kerr spectrum, a key prediction
of the no-hair theorem (Bection 1.3). As shown in [Figure 5.12, the measured frequen-
cies of the fundamental mode and overtone were consistent with the unique spectrum
of a Kerr BH (Bection T.3.T)). We constrained deviations of the overtone frequency from
the GR prediction to 6 fao1 ~ 0.1, verifying the Kerr metric to within ~ 30% precision—
the most stringent multi-mode constraint to date.
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Figure 5.12: Left: Measured QNM frequencies (90% credible regions) for GW250114 compared to the
Kerr spectrum (black band). Right: Posterior for the fractional deviation of the overtone frequency from
its Kerr prediction. The results are consistent with GR.

The Most Stringent Test of the Area Law

Leveraging the signal’s strength, we performed the most robust test yet of Hawking’s
area law (Bection 1.3.3), which states that the total event horizon area cannot decrease.
By independently estimating the initial and final BH areas from different segments of
the signal, we confirmed an increase in total horizon area with 4.80 credibility ([Fig]
ire 5.13). This result provides the strongest experimental support for this cornerstone
of BH thermodynamics, demonstrating that GW observations can directly probe ther-
modynamic laws in the most extreme curvature regime.

5.8 Conclusion

This chapter has demonstrated the maturation of BH spectroscopy through system-
atic, event-by-event ringdown analysis using the pyRing pipeline. Our time-domain
Bayesian framework has enabled robust tests of GR across multiple significant detec-
tions from the O4 observing run.

The three special events analyzed here showcase the diverse science accessible through
ringdown studies: GW230814 provided a high-SNR laboratory for understanding sys-
tematic uncertainties, GW231123 confirmed the formation of an intermediate-mass BH
through consistent remnant mass estimates, and GW250114 delivered the first confi-
dent multi-mode detection enabling precision tests of the Kerr metric and Hawking’s
area law.

Collectively, these analyses find no evidence for deviations from GR in the ringdown
phase. The consistency between ringdown-only and full IMR parameter estimates
across all events reinforces the validity of the Kerr BH paradigm. The detection of
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Figure 5.13: Test of Hawking’s area law with GW250114. Top: Fractional area increase for different
pre-merger data truncations. Bottom: Posterior distribution for the area difference, showing a 4.80
confirmation of the area increase law.
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Figure 5.14: The 90% credible regions for the posterior probability distribution of the fractional devi-
ations in the frequency and damping time of the (2,2,0) QNM, (8 fago, 5%a20) for GW230814. The
contours and corresponding marginalized posteriors are shown for the pSEOBNR (dashed—dotted ma-
roon, see Section 3.3) and pyRing KerrPostmerger (solid black, see Section 3.4) analyses. The black

square denotes the GR prediction 6 faap = 0%220 = 0.
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multiple QNMs in GW250114, combined with the 4.80 confirmation of the area law,
represents a fundamental advance—demonstrating that GW observations can now per-
form direct tests of fundamental BH properties.

As detector sensitivity continues to improve, the event-by-event approach established
here will naturally evolve into population-level studies. The methodological founda-
tion laid in this chapter positions us to transform future high-SNR detections into a
precision spectroscopic survey of BHs in the strong-gravity regime.



Testing modified gravity with
dark sirens

6.1 Modified GW Propagation

GWs provide a unique opportunity to test GR on cosmological scales, complement-
ing traditional electromagnetic probes. While electromagnetic observations primarily
constrain the background expansion history (the evolution of the scale factor a(t) and
Hubble parameter H(z)), GWs are sensitive both to the expansion and to the propaga-
tion of tensor perturbations through the large-scale structure of spacetime. This dual
sensitivity makes them particularly powerful for testing modified gravity theories that
predict deviations in the dynamics of GW propagation.

In many modified gravity theories, the GW propagation equation acquires additional
friction-like terms that affect amplitude attenuation over cosmological distances. These
effects appear observationally as a discrepancy between the GW luminosity distance,
d?w inferred from the waveform amplitude, and the electromagnetic luminosity dis-
tance d;™ derived from traditional probes. A statistically significant deviation between
the two would constitute direct evidence for departures from GR. To quantify such de-
viations, we first review the standard GR prediction.

6.1.1 GR Framework

In GR, tensor perturbations on a Friedmann-Lemaitre—Robertson-Walker (FLRW) back-
ground obey the propagation equation in Fourier space:

b’ +2HRK +k2h =0, (6.1)

where primes denote derivatives with respect to conformal time 7, k is the comoving
wavenumber, and 1 represents the Fourier amplitude of the tensor perturbation.

This equation implies that the luminosity distance inferred from GW and electromag-

110
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netic observations are identical:
dSW(z) = dPM(z). (6.2)

This equivalence is a direct prediction of GR and provides a null test for possible devi-
ations arising in modified gravity theories.

6.1.2 Modified Propagation Equations

Many extensions of GR predict modifications to Equation 6.2. These modifications
typically introduce additional friction terms that alter the amplitude damping of GWs
as they propagate across cosmological distances. The modified friction term changes
the observed amplitude of GWs, producing a redshift-dependent deviation between
the GW and electromagnetic luminosity distances. Below, we discuss three classes of
models that capture distinct physical mechanisms responsible for such deviations.

Running Planck Mass Models

In several extensions of GR, particularly scalar-tensor and f(R) theories, an additional
friction term arises from a time-dependent, or ‘running,” Planck mass M.(a) [[I55, 156,
157, 158, 159]. The quantity M.(a) determines the effective gravitational coupling

1

Get = ——5—,
T SnM2(a)

so that variations in M. directly modify the propagation of tensor perturbations.
In conformal time, the equation governing the propagation of GWs becomes

B +2H[1-6(n)] ' + kR =0, (6.3)

where primes denote derivatives with respect to conformal time. The function 6(n)
quantifies deviations from GR through the logarithmic derivative of the effective Planck

mass,

1d1ln M2

o(n) = 2 dina

In the GR limit, M. is constant, 6 = 0, and the standard propagation equation is recov-

(6.4)

ered.

The modified friction term alters the amplitude of GWs as they travel through the ex-
panding Universe. This results in a mismatch between the GW and electromagnetic
luminosity distances, given by

di™ (z) [ / 5(z') ]
= exp|— dz'|. (6.5)
0

dM(z) 1+z

Thus, a nonzero 6(z) encodes how changes in M.(z) translate into an apparent ampli-
fication or dimming of the GW signal relative to GR expectations.
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It is convenient to define a dimensionless parameter describing the rate of Planck-mass

evolution,
dln M2
VM = = =206(n), 6.6
M= ) (6.6)
which is often written as cp; = —v)s in the literature. Positive vy values (cpr < 0) cor-

respond to an effective Planck mass that increases with redshift, enhancing the gravi-
tational coupling in the past and making GWs appear brighter than in GR. Conversely,
negative vy (cp > 0) implies a weaker past coupling and a dimmer signal. A widely
used phenomenological parametrization assumes that the friction term scales with the
fractional dark-energy density,

Op(z) _ M 1
QA,O B 2 (1 + Z)3Qm,0 + QA,OI

0(z) = —cm (6.7)
where Q;, and Q4 are the present-day matter and dark-energy density parameters, as
defined in Section T.4.1. This simple form captures the key feature that deviations from
GR become significant only at late times, when dark energy dominates. The model

depends on a single constant c;s, making it efficient for data-analysis applications.

With this parametrization, assuming a flat ACDM cosmology, the ratio of GW to EM
luminosity distances can be expressed analytically as

iV(z)

dPM(z)

JQu(1+2)3+Qp
1+z

M
n
20,

exp , (6.8)

explicitly showing how the deviation depends on the cosmological background and
becomes more pronounced as dark energy grows.

Although the c)s parametrization provides a simple and phenomenologically useful
framework for modified GW propagation, it does not accurately capture all modified-
gravity scenarios, for instance, certain f(R) models [I60]. Nonetheless, its single-
parameter nature allows efficient exploration of deviations from GR and has been widely
adopted in analyses using both bright and dark standard sirens [[[61, 162]. This frame-
work thus provides a consistent and testable link between cosmological gravity modi-
fications and GW observations.

Extra-Dimensional Scenarios

In theories that extend spacetime beyond four dimensions, such as braneworld or Dvali-
Gabadadze-Porrati (DGP) models [[163, 164], GWs can partially propagate, or “leak,”
into the higher-dimensional bulk. This leakage leads to a scale-dependent suppression
of the observed GW amplitude relative to GR predictions. A convenient phenomeno-
logical parametrization of this effect relates the GW and electromagnetic luminosity
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distances as [[164, 165]

D-4
2n

ACHINEREY) o

d{JM(z) - (1+2)R,

where D is the total number of spacetime dimensions, R, denotes the (comoving)
screening scale that marks the transition between the four- and higher-dimensional
regimes, and n controls the sharpness of this transition.! At distances much smaller
than the screening scale, di’™ < (1+2)R,, gravity is effectively confined to four dimen-

d?w &~ d?M is recovered. At larger distances,

sions and the general-relativistic limit
dFM > (1 + z)R,, the gravitational field begins to probe the extra dimensions, leading
to an amplitude suppression that scales as d~°~?/2. The GR limit is restored when
D = 4, irrespective of R.. These models thus introduce a scale-dependent deviation in
GW propagation that complements potential modifications to the cosmological back-
ground expansion. The parameter triplet (D, R, 1) encapsulates the main phenomeno-
logical features of higher-dimensional scenarios and can be constrained through joint
GW-EM standard siren analyses or, in the absence of counterparts, via dark-siren pop-

ulation studies.

Phenomenological &, Parameterization

A widely used, model-independent description of modified GW propagation is given

by
di(z)

dM(z)

1-Ep
(1+2z)"’

[11

o+ (6.10)
where E( and n are free parameters, and the GR limit corresponds to &g = 1 (regard-
less of n). This formulation captures the key phenomenology of many modified grav-
ity theories while remaining agnostic about their microphysical origin. Atlow redshift
(z < 1), the two luminosity distances coincide, dE’W & dEM, in agreement with lo-
cal gravity tests. At high redshift (z > 1), the ratio asymptotes to 7V — Zod™,
corresponding to a constant amplitude rescaling. Values g < 1 imply a reduced effec-
tive damping, GWs appear brighter for a given dEM, whereas &g > 1 indicates addi-
tional attenuation. The parameter 1 controls the redshift-dependent transition between
these regimes. Although purely phenomenological, this parametrization reproduces
the behavior of many explicit modified gravity models. In particular, nonlocal gravity
theories with actions containing terms o« m?RO72R predict 9 ~ 0.97 and n ~ 2.5.
In Horndeski and scalar-tensor frameworks, where the Lagrangian includes terms
G4(¢, X)R, the parameters (Eg, ) encode the time evolution of the effective Planck
mass M3, . o Gy. Similar correspondences arise in Degenerate Higher-Order Scalar-
Tensor (]jHOST) and certain f(R) models, where the modified friction term in the
tensor propagation equation drives the amplitude variation. From an observational

1 The parameter 1 is defined differently from the convention used in [[164].
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standpoint, modifications to GW propagation generally produce more pronounced ef-
fects than changes in the dark energy equation of state. This is because degeneracies
among cosmological parameters such as Hy and Q,, can mask variations in wpg(z),
whereas modified propagation directly alters the ratio dLGW /dF™ by a factor E, in-
dependently of such compensations. For typical models with |wpgr(z) + 1| ~ 0.1 and
|Eo — 1| ~ 0.03, the propagation effect can therefore dominate the observable signal.
Sensitivity to these parameters depends on the redshift range of the observed sources.
At low redshift (z < 1), deviations scale approximately as Ady/dp ~ (1 — Eg)nz, lim-
iting the constraining power of nearby events such as GW170817. The intermediate
redshift regime (z ~ 0.5-2) offers optimal sensitivity for next-generation detectors like
the Einstein Telescope, where deviations become significant while systematic uncer-
tainties remain moderate. At high redshift (z > 1), the ratio approaches a constant
Eo, providing a clean probe of asymptotic propagation effects. Although degenera-
cies between E( and n can hinder constraints near the GR limit, a sufficiently broad
population of sources across redshift can break these degeneracies and reveal the evo-
lution encoded in n. A comparative summary of these parameterizations is provided
in [[able 6.1}

Table 6.1: Comparison of modified gravity parametrizations for GW propagation. The three models
probe complementary aspects of modified gravity through distinct physical mechanisms and observa-
tional signatures.

Model Free Parameters GR Limit Primary Signature

(Eg, n) Ho, 1 Ho=1 Phenomenological friction;
constant ratio d°"W /dFM at
high-z

Extra Dimen- D,R.,n D=4 Screening scale; distance-

sions dependent transition be-

tween dimensional regimes

cM  (Running cm cm=0 Dark energy coupling; late-
Planck Mass) time modification during
dark energy domination

6.2 Methodological Framework

This section outlines the hierarchical Bayesian framework for cosmological inference
using GW observations. The central challenge is the mass—redshift degeneracy, which
prevents direct inference of the source redshift from GW signals alone. We focus on two
complementary strategies to break this degeneracy: the spectral siren method, which
constrains cosmology through the source-frame mass distribution, and the galaxy cat-
alog method, which statistically assigns redshifts using external galaxy surveys. The
icarogw code implements a unified framework that links the compact binary coales-
cence (CBC) merger rate to galaxy number density, enabling a joint hierarchical anal-
ysis over cosmology and population parameters.
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6.2.1 Source-Frame Mass Model: The Spectral Siren Foundation

The spectral siren method infers cosmological parameters by assuming a functional
form for the source-frame mass distribution, leveraging the redshift relation m? = (1 +
z)m?®. In this work, we adopt the Power Law + Peak (PLP) model [166] as our primary
population model, which has been used in previous GW catalog analyses [[167].

This empirically motivated model provides a parametric approximation of the observed
BH mass distribution, which shows two prominent features: a broad peak at lower
masses (~ 10My) and a distinct Gaussian peak around ~ 35Mo, superimposed on a
power-law continuum. The PLP model captures these features by combining a power-
law component with a Gaussian peak, while also incorporating a smooth low-mass
cutoff and a high-mass cutoff. The model is characterized by eight population param-
eters. The PLP model is characterized by eight population parameters:

Table 6.2: PLP population parameters and their descriptions

Parameter Description

a Spectral index for the power-law component of the
primary mass distribution

B Spectral index for the power-law mass ratio distri-
bution

Mmin, Mmax Minimum and maximum masses of the power-law
component

Ag Fraction of the population in the Gaussian compo-
nent

g, Og Mean and width of the Gaussian component
around ~ 35Mg

Om Range of mass tapering at the lower end for smooth
cutoff

The joint mass distribution factorizes as:
p(my, molA) = p(mi|A)Sy(mi|A) X p(mafmy, A)Sy(ma|A), (6.11)

where p(ma|m1, A) is the conditional distribution of the secondary mass and Sy (m|A)
is a smoothing function (see [[[66] for details).

6.2.2 The Galaxy Catalog Method and Completeness

The galaxy catalog method statistically associates GW events with galaxies from astro-
nomical surveys to build a probabilistic redshift prior. A critical limitation is catalog
completeness, defined as the probability that a galaxy at a given redshift, luminosity,
and sky position is included in the survey:

Nobserved (Z/ M)

C(z,M) =
(Z ) Ntrue(zl M)

(6.12)

Because most surveys are flux-limited, completeness decreases with redshift, and high-
redshift catalogs provide limited constraining power. To correct for incompleteness,
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Figure 6.1: Qualitative representation of the source-frame mass model of BHs (Power Law + Peak) used
in this work. The model is empirically motivated, reflecting observed features in the mass distribution.
The mass ranges shown are not to scale. Adapted from [[L68].
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the observed galaxy density is adjusted using the Schechter function, an empirical
model for the galaxy luminosity function. Population assumptions enter this method
in two key ways: (i) they introduce systematic preferences among host candidates at
different redshifts, and (ii) they inform the completeness correction. A crucial parameter
is €, which describes how the probability of a galaxy hosting a CBC depends on its lumi-
nosity (€ > 0 implies that brighter galaxies are more likely hosts). In the limiting case
of zero catalog completeness, the galaxy catalog method reduces exactly to the spec-
tral siren approach. Since CBC mergers trace the underlying galaxy density, incorrect
modeling of the Schechter function can bias the inferred merger rate and cosmological
parameters such as H.

The GLADE+ Catalog

For this analysis, we use the Galaxy List for the Advanced Detector Era Plus (GLADE+)
catalog [[69]. GLADE+ is a homogenized compilation from six major surveys, con-
taining over 22 million galaxies and 750,000 quasars, with completeness extending to
~ 130 Mpc. A key advantage of GLADE+ is its inclusion of near-infrared (K-band)
observations. Emission at ~ 2.2 um is less affected by dust and traces older stellar
populations, making it a robust proxy for stellar mass. Consequently, GLADE+ pro-
vides reliable stellar mass estimates, which are crucial for weighting galaxies by their
expected merger rates in our statistical dark-siren framework.

6.2.3 Hierarchical Likelihood for GW Events

We observe a set of Now GW events over an observing time Tg,s, where each event i
yields data x; in the form of strain time series or parameter-estimation samples. The
population is described by a set of hyperparameters A = {A,, A;}, comprising pop-
ulation parameters A, that describe source characteristics such as mass distributions
and merger rates, and cosmological parameters A, that include the Hubble constant
Hp, modified gravity parameters such as &y, and other cosmological quantities. Since
GW detections follow an inhomogeneous Poisson process, the joint likelihood for the
observed events takes the form:

New

£(Gy |2 e[| [ a0 dz pw(ri 16,240 50 () 1
i=1

Ao dz dt, (A) 1+2z’ (6.13)

where N (A) represents the expected number of detectable events given the hyper-
parameters A, accounting for selection biases in the detection process. This expression
consists of a Poisson term for the total number of detections and a product of likeli-
hoods for each individual event, marginalized over the unknown source parameters
and redshift. This formulation explicitly links population-level properties, encoded
in A, with cosmological parameters A., allowing the entire analysis to remain self-
consistent under hierarchical inference. The term pgw(x; | 6,z, Ac) denotes the GW
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likelihood for event 7, conditioned on source parameters 0 such as masses, spins, and
orientation, along with redshift z. The quantity dNcpc/(d0 dz dt,) describes the in-
trinsic merger rate density in the source rest frame, expressed per unit redshift, source
time, and source parameters. The factor 1/(1 + z) accounts for cosmic time dilation
between source time and detector-frame time, a crucial relativistic correction. In prac-
tical implementations, one often employs a scale-free formulation of the likelihood by
marginalizing over Ny, typically assuming a 1/Ney, prior. This approach yields an
expression that does not depend explicitly on Ny, while still properly accounting for
selection biases. The resulting hierarchical likelihood takes the form:

Lt | Ay [ L0 PG 16.2) (@21
X oc ,
/d@ dz Paet(0,2; A) Tipop(6, 2 | A)

i=1

(6.14)

where Pgct(0, z) represents the detection probability or selection function, and mpep
denotes the prior predictive distribution for the source parameters and redshifts. This
formulation marginalizes over the overall rate normalization Ry, reducing sensitivity

to its absolute value.

6.2.4 Modeling Compact Binary Coalescence Merger Rates and Populations

A fundamental component of the hierarchical framework is the model for the com-
pact binary coalescence merger rate density as a function of redshift, mass, and other
source parameters. Two complementary approaches are commonly employed in the
literature. The spectral siren parametrization expresses the merger rate per comoving

volume as:
dNcBc dVe

do dz dt dz dQ’

where R represents the local merger rate, {(z) describes the redshift evolution of the

= Ro l,b(Z;Ap)ppop(Q | Ap) (6'15)

merger rate normalized such that 1(0) = 1, and pp0p(0) gives the normalized distri-
bution of source parameters, typically assumed to be independent of redshift in the
simplest models. The comoving volume element 4V, /(dz dQ)) provides the crucial link
between redshift and spatial volume. Alternatively, the galaxy-informed parametriza-
tion, also known as the galaxy density method, assumes that mergers occur within
galaxies and expresses the merger rate in terms of galaxy number densities and prop-
erties such as luminosity or stellar mass. Formally, this approach writes:

dANgal

M, 2) T aan’

dNcBe / P dNcBc (6.16)

10 dQdz dt, ANy dO dt;

where M represents galaxy properties (e.g., absolute magnitude, stellar mass), dNga1/(dz dQ dM)
gives the galaxy number density corrected for catalog incompleteness, and dNcgc /(dNgar-

dO dts) describes the merger rate per galaxy, which may depend on both M and z.

The key insight unifying these approaches is that the galaxy-informed method en-
compasses the spectral-siren approach in the limit of a fully complete galaxy catalog.
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This unified treatment provides a consistent framework for cosmological inference that
leverages all available information, from the intrinsic CBC population to the observed
galaxy distribution, while remaining robust to catalog incompleteness and population
uncertainties.

6.2.5 Treatment of Selection Bias Through Detection Probability

The detection probability Pgct(0, z) quantifies the probability that a source with param-
eters (0, z) would be observed, meaning it passes the detection threshold established
by the analysis pipeline. This probability depends on various factors including the
source’s distance, masses, orientation relative to the detectors, and the instrumental
sensitivity characteristics. In the hierarchical likelihood framework, this term enters
as a normalization factor in the denominator, serving to correct for selection biases
by ensuring that inferences are conditioned only on the events we actually observed.
Mathematically, the expected number of detectable events is given by:

dNcBc

dodz dt;’ (6.17)

Nexp(A) = Tobs/ dodz Pdet(er Z)
or equivalently, it appears in the denominator of the scale-free likelihood as the inte-
gral f A0 dz Paet(0, z) tpop(0, z | A). This normalization ensures that parameter infer-
ences remain unbiased despite the fact that we only detect the loudest, most observ-
able events, preventing systematic errors that would otherwise arise from ignoring the
population of undetected sources. This normalization prevents inferences from being
biased towards the types of loud, nearby sources that are easiest to detect.

6.2.6 Marginalization Over Host Galaxy Redshift for Dark Sirens

For dark sirens, events without electromagnetic counterparts, the redshift must be
inferred statistically by marginalizing over possible host galaxies using information
from galaxy catalogs. The posterior distribution for the hyperparameters A, obtained
through Bayes’ theorem, includes integrals over redshift space:

Li(A) = / dz p(z | galaxy catalog, Q)/ dOpaw(xi | 0,z) Mpep(6,z | A),  (6.18)

where p(z | catalog, Q) represents the redshift probability distribution conditional on
sky position Q, constructed from catalog galaxies with appropriate modeling of cata-
log incompleteness. These individual event likelihoods L; are then incorporated into
the hierarchical likelihood product across all events, with proper division by the se-
lection normalization as described previously. In practice, the galaxy density method
extends this framework by tying the merger rate per galaxy directly to galaxy number
densities, allowing simultaneous treatment of catalog incompleteness and host uncer-
tainty. This method offers a natural framework for handling incomplete catalogs and
provides a principled approach to redshift marginalization that properly accounts for
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uncertainties in galaxy identification and characterization.

6.3 Results: Testing Modified Gravity with GWTC-3 BBHs

We apply the hierarchical Bayesian framework introduced in to constrain
the three phenomenological models of modified gravity described in Fection 6.1.2. The
analysis uses 42 BBH events from GWTC-3, selected with signal-to-noise ratio SNR >
11 and inverse false alarm rate IFAR > 4 years.

6.3.1 Analysis Configuration

To mitigate strong degeneracies betweeen the Hubble constant and modified gravity
parameters (Section 6.2), we fix the Hubble constant to Hy = 67.7 km s~' Mpc ™ in all
analyses. Given the current sample size, simultaneous inference of Hy and modified
gravity parameters remains statistically limited. The BBH population model follows
the Power Law + Peak mass distribution with Madau-Dickinson redshift evolution
[170]. Population hyperparameters are allowed to vary within the prior ranges listed
in [Table 6.3. For each modified gravity scenario, we perform two complementary anal-

Table 6.3: Prior distributions adopted for modified gravity parameters. U (a,b) denotes a uniform
distribution between a and b, while Log-U indicates a log-uniform distribution.

Model Parameter Description Prior Range
Ho 2o Deviation amplitude U (0.1, 50)
Eo nz, Redshift power-law index U(Q,10)
Extra Dimensions D Number of spacetime dimen- U (3.6,8)

sions
Extra Dimensions  np Scaling exponent Log-14 (0.1, 100)
Extra Dimensions R, Screening distance Log-

U (10,10%) Mpc

Running Planck M Planck mass evolution parame- U (-10, 50)

ter

yses: (1) a spectral siren approach (Section 6.2.1), which extracts cosmological informa-
tion solely from the source-frame mass distribution, and (2) a catalog+spectral method
(Bection 6.2.2), which incorporates redshift information from the GLADE+ galaxy cat-
alog, weighted by K-band luminosity (e = 1).

6.3.2 Results: Constraints on Modified Gravity Parameters

Running Planck Mass Model

The marginalized posterior distribution for the running Planck mass parameter cys is
shown in [Figure 6.2. The parameter quantifies deviations in the effective Planck mass,
which would alter the amplitude—distance relation of GWs described in [Equation 6.7.
Both analyses yield results consistent with GR within 10, with no significant evidence
for a time-varying Planck mass:
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— Catalog+Spectral

Cm

Figure 6.2: Marginalized posterior distribution for the running Planck mass parameter cp;. The blue
solid line represents the catalog+spectral analysis incorporating galaxy survey information, while the
green dashed line shows the spectral-only analysis. The vertical black dashed line marks the GR prediction
(cm = 0). Shaded regions indicate 68.3% and 90% credible intervals.

e ¢ (Catalog+Spectral): 1.0:3):2
e ¢y (Spectral Only): 1.67%2

The similarity between the two approaches reflects that most GWTC-3 BBHs lie at red-
shifts z > 0.1 where galaxy catalog incompleteness becomes significant, making both
methods rely primarily on the mass distribution.

Ho Model

displays the joint and marginalized posteriors for the phenomenological Eg
model parameters, which describe deviations in the GW luminosity distance relative

to the electromagnetic one through the relation in Equation 6.10.
We find:

o (Catalog+Spectral): 1.44*}-37

e =) (Spectral Only): 1.37fé:gg
e nz,: The redshift-evolution parameter remains unconstrained within its prior
range [1, 10] for both analyses, reflecting the limited leverage of current BBH data

in distinguishing redshift-dependent deviations.

The E( posteriors peak near unity, consistent with GR. The lack of constraint on the
redshift-evolution parameter ng, reflects the limited leverage of the BBH sample in
distinguishing potential redshift dependencies of deviations.
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Figure 6.3: Joint and marginalized posterior distributions for the o model parameters. The 2D contours
show 68.3% and 90% credible regions, with blue representing catalog+spectral and green representing
spectral-only analyses. The vertical black dashed line in the E¢ panel marks the GR value (Eg = 1).
Diagonal plots show marginalized 1D posteriors with 68.3% credible intervals annotated.

Extra Dimensions Model

The extra-dimensional scenario tests modifications to the GW amplitude due to leak-
age into higher-dimensional space, described by the luminosity distance ratio in
fion 6.8. The corresponding posteriors are shown in [Figure 6.4.

We observe broad, highly degenerate posteriors across all three parameters, with strong
correlations between D, np, R;:

e D: Spans most of the prior range [3.6, 8]
e R.: Extends across [10,10°] Mpc with strong degeneracy
e np: Broad posterior distribution

When R, < 100 Mpc, deviations would be apparent in nearby events, allowing D to be
constrained to values consistent with GR. For larger R, deviations occur at higher red-
shifts where population-model uncertainties dominate the inference. The correlated
behavior of D, R, and np indicates that compensatory effects between parameters can
reproduce similar observational signatures. Breaking these degeneracies will require
(1) larger event catalogs, (2) improved host-galaxy localization, or (3) bright siren ob-
servations with directly measured redshifts.

6.3.3 Comparison: Spectral vs. Catalog+Spectral Methods

summarizes the modified gravity parameter constraints from both approaches.
Across all models, catalog+spectral and spectral-only analyses yield statistically con-
sistent results. The consistent results between methods highlight a fundamental chal-
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Figure 6.4: Posterior distributions for extra dimensions model parameters (D, np, R.). The plots
display 2D contours at 68.3% and 90% credible levels, with marginalized 1D distributions along the
diagonal. Blue contours: catalog+spectral; green contours: spectral-only. The vertical dashed line in
the D panel indicates the GR value of four spacetime dimensions.

Table 6.4: Comparison of modified gravity parameter constraints from different analysis approaches.
Values show maximum a posteriori estimates with symmetric 68.3% credible intervals where well con-

strained.

Model Parameter Catalog+Spectral ~ Spectral Only

Running Planck cMm 1.0%28 16752

Eo Eo 1447587 1.37+136

o ng, Unconstrained Unconstrained

Extra Dimensions D Weakly con- Weakly con-
strained strained

Extra Dimensions R, [Mpc] 10-10° 10-10°

Extra Dimensions  np Broad posterior Broad posterior
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lenge: at redshifts z > 0.1 where most GWTC-3 BBHs reside, galaxy catalog incom-
pleteness diminishes the additional constraining power of catalog information.
Future improvements are expected as (i) detector sensitivity increases, enabling de-
tection of more nearby BBH mergers where catalogs such as GLADE+ are highly com-
plete, and (ii) forthcoming wide-field surveys extend to fainter magnitudes, enhancing
completeness at larger distances.

Our analysis of GWTC-3 BBHs finds no evidence for modified gravity in any of the
three frameworks tested. All results are consistent with GR within statistical uncer-
tainties. These represent the tightest constraints from dark siren analyses to date.
Population hyperparameters controlling the BBH mass distribution are summarized in
[[able 6.5. Their consistency across models confirms that the inferred GR consistency
is robust against population model uncertainties.

Table 6.5: BBH population hyperparameters for different modified gravity analyses. All values represent
maximum a posteriori estimates with 68.3% credible intervals. The mass distribution follows the Power
Law + Peak model. Consistency across rows demonstrates robustness of population inference to modified
gravity assumptions.

Model Analysis a B Mmin [Mo]  pg [Mo] o [Mo] Ag
Type

Eo C+S 3.74754) 0.8%12 498705 329702 - 0.019*9-042
Extra Dim. C+S 3.80754% 0.6712 5377055 331721 23730 0.017%3-931
Running Planck  C+S 3.727559 041703y 5.08755F 329727 - 0.018*9 7
Eo S 3.714040 0.741 5147070 333727 37732 0.018%0-935
Extra Dim. S 3.867032 0.7117 513083 33.0+2.3 24730 0.01670-532
Running Planck S 3.7975:36 0.7%12 5.2270-50 32,728 3.0124 0.017+0.032

Looking ahead, third-generation detectors such as the Einstein Telescope and Cosmic
Explorer will provide orders of magnitude more detections, improved sky localization,
and enhanced redshift inference through expanded catalogs and bright-siren events,
significantly strengthening constraints on deviations from GR.

6.4 Conclusion

We have applied a hierarchical Bayesian framework to constrain three phenomenolog-
ical models of modified gravity using 42 BBH events from GWTC-3. Our analysis com-
bines spectral siren information from the source-frame mass distribution with galaxy
catalog data from GLADE+, providing complementary approaches to break the mass-
redshift degeneracy.

Across all tested models—running Planck mass, phenomenological &, and extra-dimensional

scenarios—we find no statistically significant evidence for deviations from general rel-
ativity. The running Planck mass parameter is constrained to cy; = 1.032, the &g
fé'ég, and extra-dimensional parameters remain weakly constrained

within their prior ranges. All results are consistent with GR predictions within mea-

parameter to 1.44

surement uncertainties.
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The consistent outcomes between spectral-only and catalog+spectral methods high-
light a fundamental limitation of current dark siren analyses: at redshifts z > 0.1 where
most BBHSs reside, galaxy catalog incompleteness reduces the additional constraining
power of external galaxy data. Consequently, both approaches rely primarily on the
source-frame mass distribution for cosmological inference.

These results represent the most comprehensive constraints on modified gravity from
dark sirens to date. Future observations with third-generation detectors and deeper
galaxy surveys will significantly enhance sensitivity to potential deviations, potentially
revealing new physics beyond general relativity or further strengthening its empirical
foundation.



Discussion and Conclusions

The advent of GW astronomy has opened an unprecedented testing ground for funda-
mental physics. This thesis has leveraged this new observational window to perform
stringent tests of GR and probe the nature of compact objects. The collective results
from searches for environmental effects, black hole spectroscopy, and modified grav-

ity, presented in [Chapter 4, Chapter 5, and Chapter 6, paint a coherent picture: GR

remains robust under a diverse array of novel and extreme probes. Although the anal-
yses explored distinct physical regimes, they converge toward a common conclusion:
the standard model of isolated compact binaries evolving under GR provides an excel-
lent description of current GW observations.

e Environmental effects: In Chapter 4, a Bayesian search for matter-induced de-
phasing yielded no detections. This null result supports the validity of the vacuum-

binary approximation for the observed population and establishes the first population-

level upper limits on ambient density. The most stringent constraint, derived
from GW170817, excludes p 2 21 g/cm? for dynamical friction.

e Black hole spectroscopy: In Chapter 5, the analysis of O4 data marked a mile-
stone in observational black hole spectroscopy. The confident detection of two
quasinormal modes in GW250114 enabled a direct test of the Kerr metric, con-
straining deviations at the ~ 30% level. The same event provided a 4.8¢ con-
firmation of Hawking’s area theorem, offering the first empirical validation of a
cornerstone of black hole thermodynamics.

e Modified gravity and cosmology: In [Chapter §, a hierarchical Bayesian analysis
of dark sirens constrained phenomenological modifications to GW propagation.
The inferred parameters, the running Planck mass, cp1 = 1.0f§:2, and the devia-
tion parameter, By = 1.44*} 3%, are fully consistent with GR, providing indepen-
dent constraints on gravitational dynamics at cosmological scales.

Together, these findings highlight the remarkable internal consistency of GW obser-
vations with the predictions of GR. Far from being a mere null result, this agreement
establishes a quantitative baseline for the next era of GW cosmology and fundamen-

126
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tal physics. The methodologies developed throughout this work lay the groundwork
for the next generation of GW science. Third-generation detectors such as the Einstein
Telescope and Cosmic Explorer will transform these early tests into precision measure-
ments. They will convert current upper limits on environmental effects into potential
detections, enable statistical black hole spectroscopy across thousands of events, and
use large samples of dark sirens to probe modified gravity at the sub-percent level. Al-
though GR has withstood every test presented in this thesis, it is ultimately a classical
theory, and its reconciliation with quantum mechanics remains one of the greatest chal-
lenges in physics. The ultimate goal of these efforts is not confirmation, but discovery.
As detector sensitivity and observational reach continue to expand, we probe regimes
where quantum gravitational effects may become apparent. Any deviation from GR,
however small, would be a monumental discovery, guiding us toward a deeper and

more complete quantum theory of gravity.
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Right: Mismatch as a function of the ambient medium density p fora GW150914-

like binary, calculated using the event’s actual noise power spectral density!

|I'he vertical line indicates the approximate YU7% upper bound on p from our

pnalysis (see Fig. 7¢7) tor dynamical friction (DF) and black hole mass loss

accretion (BHLA). The curves kil and k™! correspond to the environmen-

tally perturbed waveform at linear order in pM? and the full numerical solu-

[ion, respectively. Left: Mismatch between vacuum (/... ) and environmen

ftally modified (h.,,) waveforms as a function of the dephasing parametes

pDy for a set of non-spinning, equal-mass binaries. The solid and dashed

[lines represent the effects of cloud accretion (CA, k = —9) and the combined|
pffects of BHLA or DF (k = —11), respectively] . . . . .. ... ... .....

a3
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hware templates (/.,,) with non-zero 6®_;;. The analysis uses injected|
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