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Abstract

Quantum computing is one of the most intriguing challenges for physicists in this
century. The possibility to explore new quantum phenomena and solve complex
problems is fascinating, and many efforts are in place by the international com-
munity to achieve a functioning quantum processor. Among the different types
of quantum computers, quantum annealers are perhaps the most promising in the
middle term. Today, existing quantum annealers are limited by qubit coherence
times, despite their complexity, and they are able to perform coherent quantum
annealing processes only for a short time and cannot overcome classical computers.
The main goal of this thesis is to advance towards the development of a coherent
quantum annealer based on superconducting flux qubits by introducing a novel
dispersive readout method. In this thesis, the first formulation and experimental
results of a persistent current readout (PCR) circuit, composed of a dc-SQUID
resonator, are presented.

Experiments on single, uncoupled flux qubits were realized with conventional dis-
persive readout methods to establish a benchmark for the PCR. A profound analysis
on coherence time is fundamental to understand and, eventually, mitigate noise
sources affecting the qubit. Although the best measured value of 7 is ~ 40 us, the
qubits exhibit low coherence times, probably due to flux and environmental electric
noise. Moreover, due to uncontrolled parameters during the fabrication process, the
qubit gaps resulted to be too low to perform any characterization at the sweetspot.
After analyzing the conventional dispersive readout, which is based on a resonator
capacitively coupled to a qubit, other couplings are investigated. In particular, we
investigate the galvanic coupling between a qubit and a resonator, and between two
qubits. We show that, assuming a small shared inductance, the coupling Hamilto-
nian reduces to the classical energy stored in the coupling inductor itself. The first
system has interesting applications for exploring different coupling regimes, such as
the ultrastrong coupling regime, whereas the second system is relevant for studying
a qubit coupled to a strongly nonlinear object.

Similarly, the Hamiltonian of two qubits sharing part of the loops is derived. Apply-
ing the same methodologies, the coupling Hamiltonian is reduced to the classical
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energy stored in the shared inductance, in the limit of low coupling inductance,
as in the previous case. This system is the simplest coupling between two qubits.
Despite the limited practical value, the Hamiltonian describes the qubit behaviour
when coupled to another strongly non-linear object, giving interesting insights for
other inductive coupling. Building on these results, the PCR system is defined as
dc-SQUID-based resonator coupled to a flux qubit via mutual geometric inductance.
The dc-SQUID acts as a non-linear inductor, whose inductance depends on the
qubit persistent current state. Fixing the dc-SQUID operational point, a change
in the qubit persistent current causes a shift in the resonator frequency. Moreover,
adjusting the flux in the de-SQUID loop, it is possible to decouple the qubit from
the readout circuitry, leading to an improvement of the qubit coherence times, while
the readout is idle. Moreover, the Hamiltonian of the whole system is derived and
particular emphasis is given to the two-photon contribution and the dispersive shift
is calculated.

To experimentally demonstrate the PCR, a single qubit device is designed and fab-
ricated. On the chip, the flux qubit is coupled inductively to the dc-SQUID resonator
and capacitively coupled to a coplanar waveguide (CPW) resonator. The presence
of the CPW permits to perform the conventional dispersive readout measurements,
being a benchmark for the PCR. Unfortunately, due to device imperfections, it was
not possible to perform any qubit characterization. Nevertheless, the dc-SQUID
shift due to the inversion of the qubit persistent current when crossing the sweetspot
was observed through a flux period measurement. This result constitutes proof of
the concept of the PCR we are presenting, pointing to a new way to design quantum
annealers.



Resumen de la tesis

La computacién cuantica es uno de los desafios mas fascinantes para los fisicos
en este siglo. La posibilidad de explorar nuevos fendmenos cuanticos y resolver
problemas complejos es apasionante, y la comunidad internacional esta realizando
muchos esfuerzos para lograr un procesador cuantico funcional. Entre los distin-
tos tipos de ordinador cudnticos, el “quantum annealer” es probablemente el mis
prometedor a medio plazo. A pesar de ello, los quantum annealers existentes en
la actualidad estan limitados por los tiempos de coherencia de los cubits, por lo
que no son capaces de llevar a cabo procesos de quantum annealing coherentes en
tiempos breves y no logran superar un ordinador clasico.

El objetivo principal de esta tesis es avanzar hacia el desarrollo de un quantum
annealer coherente basado en cubits de flujo superconductores, mediante la intro-
duccién de un nuevo método de lectura dispersiva (dispersive readout). Por ende,
se presenta la primera formulacién, en conjunto con los resultados experimentales,
de un circuito de lectura de corriente persistente (persistent current readout — PCR),
compuesto por un de-SQUID con una capacidad en paralelo.

Se realizaron experimentos con cubits de flujo individuales desacoplados, utilizando
métodos convencionales de lectura dispersiva basados en un resonador acoplado ca-
pacitivamente a un cubit, con el fin de establecer una referencia para los resultados
obtenidos del PCR. Para identificar las fuentes de ruido y reducir sus efectos sobre
los cubits es necesario un andlisis exhaustivo de los tiempos de coherencia. Aunque
los valores medidos de 77 fuera de los puntos de simetria de los ctibits son altos,
aproximadamente 40 s, los tiempos de coherencia de los dispositivos fabricados res-
ultaron ser bajos. Estos resultados probablemente se encuentran asociados al ruido
de flujo. Asimismo, errores imprevistos en el proceso de fabricacién impidieron la
caracterizacion de los ctbits en sus puntos de simetria, debido a que los valores de
los gaps obtenidos fueron demasiado bajos.

Posteriormente, tras analizar la lectura dispersiva convencional, se estudian otros
tipos de acoplamiento. Especificamente, se investiga el acoplamiento galvanico
entre un cubit y un resonador, y entre dos cubits. Suponiendo una pequefia in-
ductancia compartida, se demuestra, para ambos casos, que el hamiltoniano de
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acoplamiento se reduce a la energia cldsica almacenada en el inductor de acoplami-
ento. Por tanto, el primer sistema presenta aplicaciones interesantes para explorar
distintos regimenes de acoplamiento, como el régimen de acoplamiento ultra fuerte
(ultrastrong), mientras que el segundo sistema es relevante para estudiar un cibit
acoplado a un objeto fuertemente no lineal. A partir de estos resultados, el sis-
tema PCR se define como un resonador, cuya inductancia es constituida por un
dc-SQUID, acoplado a un cubit de flujo mediante inductancia geométrica mutua. El
dc-SQUID actiia como un inductor no lineal, cuya inductancia depende del estado
de la corriente persistente del cuibit. Al fijar el punto de trabajo del dc-SQUID, el
cambio de direccién de la corriente persistente del cibit provoca un desplazamiento
de la frecuencia del resonador. Ademds, es posible desacoplar el ctibit del circuito de
lectura, ajustando el flujo en el lazo del dc-SQUID. De esta forma, el cubit se aisla
de los ruidos provenientes del sistema de lectura, ocasionando una mejora en los
tiempos de coherencia, mientras que el resonador estd inactivo. Asimismo, se deriva
el Hamiltoniano de todo el sistema, prestando especial atencién a la contribucién
de dos fotones, para realizar el célculo del desplazamiento dispersivo (dispersive
shift) del resonador.

Para demostrar experimentalmente el PCR, se disefia y fabrica un dispositivo de
un sélo qubit acoplando inductivamente al resonador dc-SQUID y capacitivamente
a un resonador de guia de ondas coplanar (coplanar waveguide — CPW). La pres-
encia del CPW permite realizar medidas con el método convencional de lectura
dispersiva, cuyos resultados sirven como punto de comparacién para el PCR. Desa-
fortunadamente, debido a imperfecciones en el dispositivo, no fue posible realizar
ninguna caracterizacién del qubit. No obstante, se observo el desplazamiento de la
frecuencia del dc-SQUID causado por la inversion de la corriente persistente del
qubit, cuando pasa por el punto de simetria, mediante la medida del periodo. Este
resultado constituye la validacién preliminar del PCR que se presenta en la presente
tesis, demostrando una nueva forma de disefiar los quantum annealers.



Resum de la tesi

La computacié quantica és un dels reptes més intrigants pels fisics d’aquest segle.
La possibilitat d’explorar nuos fendomens i resoldre problems complexos €s fascin-
ant, i la comunitat international esta realitzant nombrosos esforcos per a aconseguir
un processador quantic coherent. Entre els diferents tipus de computacié quantica,
el “quantum annealing” és probablement el més prometedor a mitja termini. Ac-
tualment, els “quantum annealers™ que ja existexen estan limitats pels temps de
coherencia dels qubits i no poden realitzar processos de quantum annealing coher-
ent.

L’objectiu principal d’aquesta tesi és avancar en el desenvolupament d’un quantum
annealer coherent basat en qubits de flux superconductors, mitjancant la introducci
d’una nova metodologia de “dispersive readout”. En aquesta tesi, es presenta la
primera formulacid, juntament amb els resultats experimentals, d’un nou circuit de
“persistent current readout” (PCR), compost per un “dc-SQUID” amb una capacitat
en paral-lel.

Per a aquesta tesi, es van realitzar experiments amb qubits de flux desacoblats,
mitjancant els metodes convencionals del “dispersive readout”. Els resultats con-
stitueixen una referéncia pels resultats del PCR. Per identificar i reduir els efectes
de les fonts de soroll que afecten els qubits, és necessaria una analisi profunda dels
temps de coherencia. Tot i que els valors de 71 mesurats lluny del punt de simetria
dels qubits sén alts, els temps de coherencia dels dispositius fabricats van resultar
baixos. Probablement, aquest resultat és degut al soroll de flux. Aixi mateix, el
procés de fabricacio va tenir faltes, reflectits en els valors baixos dels “gap” dels
qubits i, per aix0, no es van poder realitzar mesures de caracterizacié en els seus
punts de simetria.

Després d’analitzar el dispersive readout conventional, basat en un ressonador aco-
blat a un qubit per mitja de una capacitat, s’investiguen altres tipus de acoblaments.
En particular, s’investiga I’acoblament galvanic entre un qubit i un ressonador i entre
dos qubits. Mostrem que, suposant una petita inducancia compartida, I’Hamiltonia
d’acoblament es redueix a I’energia classica emmagatzemada en el mateix inductor
d’acoblament. El primer sistema té aplicacions interessants per a tractar diferents
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regims d’acoblament, com ara I’acoblament ultrafort, mentre que el segon sistema
és rellevant per a I’estudi d’un qubit acoblat a un objecte fortament no-lineal
Basant-nos en aquests resultats, el sistema PCR es defineix com un ressonador, la
inductancia del qual esta constituit per un de-SQUID, acoblat a un qubit a traves de
la inductancia geometrica mutua. El dc-SQUID actua com un inductor no lineal,
amb I'inductancia que depen de I’estat del qubit, expressat en la base de les corrents
persistents. Fixant el punt de treball del dc-SQUID, el canvi de direcci6 de la corrent
persistent del qubit provoca un desplagcament de la freqiiencia del ressonador. Fent
servir un dc-SQUID, és possible desacoblar el qubit del circuit de readout, causant
un milloria dels temps de coheréncia. Aixi mateix, es deriva I’Hamiltoni4 de tot
el sistema, amb particular eémfasi a la contribucié a dos fotons en 1’Hamiltonid
d’acoblament. Finalment, es calcula el dispersive shift del ressonador.

Per a demonstrar experimentalment el PCR, es va dissenyar i fabricar un dispositiu
d’un sol qubit acoblat inductivament al ressonador del PCR i capacitivament a
un ressonador de guia d’ones coplanar (CPW, de les seves sigles en angles). La
presencia del CPW ens permet realitzar les mesures convencionals en el regim
dispersiu, els resultats del qual costituiexen una referencia pel PCR.
Malhauradament, per imperfeccions en el dispositiu, no va ser possible realitzar
cap cataracteritzacio del qubit. Malgrat aixo, es va observar el desplacament de
la freqiiencia del dc-SQUID degut a I’inversi6 de la corrent persistent del qubit,
a traves de la mesura del periode. Aquest resultat constitueix la validacié prelim-
inar del PCR que presentem, i mostra una nova manera per dissenyar quantum
annealers.
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Introduction to quantum computing

The idea of simulating a quantum system with quantum-based computers started
to be common among physicists already in the 80’s [1, 2] and novel concepts
such as the Shor’s algorithm were developed [3, 4]. Among the different pos-
sible realizations of a quantum computer [5, 6, 7, 8], in this thesis we focus on
superconductor-based quantum processors [9, 10, 11, 12], with a particular em-
phasis on quantum annealers [13, 14].

To introduce the main concepts of quantum computing, it is necessary to introduce
superconductivity. In Sec. 1.1, the principal elements of quantum processors, in
Sec. 1.2. In Sec. 1.3, the circuit quantum electrodynamics (cQED) architecture
[12, 15], which is extensively employed in this thesis, is introduced. Finally, in
Sec. 1.4, the basic aspects of quantum annealing are given.

1.1 Elements of superconductivity

In 1911, Heike Kamerlingh Onnes observed that the Hg resistance vanishes below
4.2 K, discovering in this way a new physical phenomenon: superconductivity. The
efforts in understanding superconductivity, brought the discovery of a second key
property, the so-called Meissner effect [16]. The effect consists of the magnetic
field expulsion from the superconducting material while transitioning to the super-
conducting state, i.e. a superconductor behaves as a perfect diamagnet.

Later, in 1961, it was experimentally demonstrated that the magnetic flux generated
by a current flowing through a superconducting ring is quantized [17], after having
been hypothesized [18]. Such magnetic flux quantum is defined as ®y = h / 2e.
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Meanwhile, in 1962, Brian Josephson theorized about the presence of a supercurrent
flowing through two superconductors separated by a thin insulating barrier [19, 20],
due to tunnelling of the superconductor wave function. This tunnelling current was
firstly measured in [21]. Such effect was later named in Josephson’s honour.

To explain these four fundamental properties (zero resistivity, Meissner effect, flux
quantization, Josephson effect), several theories have been proposed throughout
the 20th century [22, 23, 24, 25]. Nevertheless, for what concerns us, the Ginzburg-
Landau theory [23, 26], dispite being a phenomenological model, is sufficient to
allow us to introduce several key concepts. This theory is a macroscopic description
of superconductors through the definition of a macroscopic quantum state ¥

Y =pll2ee (1.1)

where p is the charge carrier density of the “superelectrons”! in the material,
which is the order parameter of the superconducting phase transition, whereas ¢ =
2nd /P is the normalized phase common to all superelectrons, with & the magnetic
flux [28]. Thanks to the definition of such a macroscopic wave function, the main
properties of a superconductor could be explained. For brevity, only the Josephson
effect will be discussed, being the fundamental element of superconducting quantum
computers.

1.1.1 Josephson effect and Josephson junctions

(V)
>

— R I L —

Figure 1.1: Josephson junction schematic with a voltage bias. The module of ¥,
and Wy are represented by yellow and blue fillings.

Let us consider two superconductors separated by a thin insulating barrier connec-
ted to a voltage source V (Fig. 1.1). Being both superconductors described by a
macroscopic quantum state, it is possible to write the Schrodinger equations of both

I'The superelectrons are defined as charge carrier with Q = 2e. Later, they were found to be Cooper
pairs [27].
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leads of the junction in Fig. 1.1

9

lh% = —eV‘PL—i—K‘PR
ih%3k = VW + KWy,

where Egr — E; =2¢V and K is the tunnel coupling between the two superconductors.
Separating the real from the imaginary parts and using Eq. (1.1), we obtain two
equations,

J=J.sing
{ 20 2y (1.2)

where J. = 2K./prPpr / A is the maximum current density through the junction,
whereas ¢ = Qr — @y is the phase difference across the junction. If the junction has
a constant cross-section, the first equation reduces to I = I.sin ¢, where I, is the
critical current. Equation (1.2) are called the Josephson equations and the physical
phenomenon is called the Josephson effect.

The Josephson equations can be related taking into account that % = «% a—‘f, leading

to
Vel ol
- Jat bl
where
Dy
L= ———. 1.3
/ 2wl .cos @ (1.3)

Hence, a Josephson junction can be considered as a nonlinear inductor, with in-
ductance Ly, as defined in Eq. (1.3). The energy stored in such inductor is given
by

, 3/
E((p):/OIth’:LJIZ: 2(;;

(I1—cos@)=E;(1—coso). (1.4)

with E; = Pl /27.
Note that the phase depends on the magnetic field [22]

2
V<p:q)7;<A+ZZ)J) . (1.5)

Assuming a thick superconductors ([ I-di= 0), Eq. (1.5) leads to

O(x+dx) — o(x) = fA.dl
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where A is the vectorial potential, i.e. V X A = H. This dependence affects the
current across the junction, leading to
o TP
sin G
P
D

1(®) =1

where @ is the magnetic flux applied on the junction surface. To obtain these results,
the fluxoid relation was used. [28, 22], for which the magnetic flux is quantized,
being ¥y the magnetic flux quantum.

Furthermore, due to its geometry, a real junction also has self-capacitance C;, which
must be taken into account in applications in electrical circuits. Josephson junctions
are the fundamental element of superconducting quantum circuits, as shown in
Sec. 1.2. In Fig. 1.2, a circuit symbol of a real Josephson junction is shown.

—P— —

Figure 1.2: Capacitively shunted Josephson junction as a circuit element.

1.2 Quantum circuits

Due to the intrinsic quantum nature of the superconductors, a superconducting
circuit behaves as a macroscopic quantum object, i.e. as a quantum circuit. Follow-
ing [15, 29], the energy of circuital elements, such as capacitors, inductors, and
Josephson junctions, can be described as functions of the superconducting phase
variables ¢x across its ends.

The Kirchhoff equations of the circuit can be seen as the Euler-Lagrange equations
[30, 31] of the circuit and in this way the system Lagrangian can be found. Thus,
applying the Legendre transformation, it is possible to define the Hamiltonian of
the circuit. In Table 1.1, the currents through the principal circuit elements are
presented as a function of the phase difference, where each element is assumed
between nodes A and B.

C 1=C(ps— Pp)
L I = ¢Az¢3

Josephson junction | I = Ipsin (%(@\ - ¢B)>

Table 1.1: The currents through the principal circuit elements as function of the
phase difference across nodes A and B.
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Figure 1.3: LC resonator circuit diagram.

Note that only the Josephson junction has a nonlinear relation with respect to the
phase, thus it can used as source of anharmonicity.
Hereby, the main features of the principal quantum circuits are presented.

1.2.1 LC resonator

As explained in Sec. 1.3, the LC resonator is a fundamental element in quantum
circuits and it is one of the simplest. Following [15, 29, 32], the Hamiltonian of the
LC circuit in Fig. 1.3 is

He=1+ (1.6)

where § = 2ef is the conjugate variable of ¢ = (P /27)¢. In particular, [, 7] = i.
Similarly to the quantum mechanical oscillator Hamiltonian, Eq. (1.6) can be
rewritten as

Hc=ho <5ﬁa+;> (1.7)

where the annihilation and creation operators, [d,4'] = 1, are defined as

. /] . [hCw
a_<\/2C(D+l\/ > n) (1.8)

with @ = (LC)~ 12 The spectrum defined by Eq. (1.7) is harmonic, since all the
elements in the circuit have a linear relation with the phase. In real-life circuits, LC
resonators are usually realized with coplanar waveguide [33] or lumped-element
circuits [34].
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Figure 1.4: Dc-SQUID circuit diagram.

1.2.2 dc-SQUID

A first anharmonic superconducting quantum circuit is the dc-SQUID, which can
be realized as a loop with two Josephson junctions, as shown in Fig. 1.4. The name
stands for “direct current superconducting quantum interference device”, whose
meaning is explained at the end of this section.

Defining the current flowing through the left and right junctions as i; = I; siny,
and i, = I sin ), respectively, it is possible to define the bias current I, and the
circulating current I.;, as

{ I, = lysiny, + alysiny, (1.9)

I L Iosinyl—alosinyz

circ — )
where itis assumed I) = Iy L =aly, s = I, / I} and 7; is the phase difference
across the junction i. If a # 1, the device is called asymmetric de-SQUID.
Introducing the semi-sum and the semi-difference phases

o= %57’2
) (1.10)
{ o =152

Eq. (1.9) can be rewritten as

{ I = Io[sin (@1 + @) + orsin (@1 — ¢_)] (1.11)

Lire = %[sin (9, + ¢_) —asin (¢, —¢_)]

Considering a # 1, it possible to re-express the results in Eq. (1.11) using the
relation

Asin(§ + &) £ Bsin(E —§) =Csin(E+0) .



1.2 Quantum circuits 7

Thus, Eq. (5.14) can be re-expressed as

{ I, = Iy (¢-)sin(@1 + B(¢-)) (1.12)
Leire = 1S,.(9- ) sin(@y +8(-)) |
with
(@) = Io\/ 1+ 02 +2acos(203) (1.13)
c _ b ,
() = E\/1+a2—2acos(2(p,), (1.14)
[3(¢_):arctan{ilgtan¢_] ) (1.15)
5((p):arctan[14__atan(p} , (1.16)

where I (I;,.
current).
In case of a symmetric dc-SQUID, i.e. & = 1, Eq. (1.17) reduces to

) is the critical current for the dc-SQUID bias current (circulating

I, = 2Iycos @_sin @ ‘ (1.17)
Leire = Ipsin P_cos Q4
Following [28, 35, 36],
i =Q_ = n% (1.18)
¢i=0-= % .
Pe = @1 = Pso + Ppc (1.19)

where ®, is the applied magnetic flux, @sp is the normalized phase of the dc-
SQUID, whereas ¢pc is the phase due to the bias current.

The behaviour of I; and I;,. as function of the external flux ® = 27 f for different
« values are presented in Fig. 1.5. In Fig. 1.5a, the dc-SQUID critical current of the
bias current is suppressed for f = 0.5, while the critical current of the circulating
current is at its maximum, as shown in Fig. 1.5b. Note that the critical currents can
be suppressed to zero, if we are in the symmetric case.

Building on Eq. (1.17), Eq. (1.18), and Eq. (1.19), a dc-SQUID can be used as a
magnetometer, being able to measure the changes of the magnetic flux ®, when
biased by a direct current (dc). The interference pattern generated by sweeping the
external magnetic flux permits to measure small magnetic field variations and gives
the name to the device (Superconducting QUantum Interference Device).

As for the single Josephson junction, a dc-SQUID can be considered as a non-linear
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1,/21p

(a) (b)

Figure 1.5: (a) The behaviour of the normalized bias current I, as a function of
the applied flux & = 27z f and three values of the junction asymmetry. (b) The
behaviour of the normalized circulating current I, as a function of the applied flux
& =27 f and three values of the junction asymmetry.

inductance, under certain assumptions. A profuse discussion of this case and its
consequences is presented in Sec. 5.1.
Following [35], the Hamiltonian of a dc-SQUID is

Hio = E.q* + E;cos ;cos @, (1.20)

where Ec = ¢?/2Csp is the charging energy, ¢; and @, are the phase operators
related to Eq. (1.18) and Eq. (1.19), and E} is the Josephson energy of a single dc-
SQUID junction, as defined in Eq. (1.4). A dc-SQUID has an anharmonic spectrum.
In Sec. 5.1, a more detailed discussion on the dc-SQUID is presented, being a
fundamental part of this thesis.

1.2.3 Qubit

To realize a quantum computer, it is necessary to define a “quantum bit”, i.e. a
quantum system with only two states, playing the role of the logic 0 and 1 of
the classical computation. To realize this quantum system, called qubit [3], in a
physical platform, the system has to show a strongly anharmonic spectrum, in order
to isolate two quantum levels from the rest. In fact, if the first two energy levels
are well separated from the higher levels, it is possible to reduce the system to
a bidimensional Hilbert subspace, defined by the so-called computational basis.
Usually, but not always (see Sec. 3.1), the computational basis coincides with the
ground and the first excited state, {|g),|e)} of the qubit. In this basis, a generic
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qubit state is defined as
|¥) =alg)+Ble)  with o> +[B]P=1,
and its Hamiltonian reduces to
Hy=———0¢, (1.21)

where @, is the qubit transition frequency between the ground and the excited state
and o, = |e) (e| —|g) (g| is the Pauli matrix defined in the computational base.
Clearly, Eq. (1.21) is only valid for a qubit isolated from the environment. In real-
life cases, external noises cause a loss of information in the qubit state, which takes
place over characteristic times, called coherence times. Depending on the effect on
the qubit state, we can distinguish an energy relaxation time 77 and a dephasing
time 7>. More details are given in Sec. 3.4.3 and Sec. 3.4.4.

Usually, superconducting qubit realizations are based on Josephson junctions cir-
cuits. Other implementations rely on so-called superinductors, which behave as
a large arrays of Josephson junctions [37, 38]. The simplest qubit circuit is a LC
resonator, with the inductor replaced by a Josephson junctions.

C— NJJ

<

Figure 1.6: Charge qubit circuit diagram.

The device in Fig. 1.6 is known as charge qubit, whose Hamiltonian is given by
S = AE . 7* —Ejcos @,

with E, the charging energy and E; the Josephson energy.

The name refers to the fact that the qubit state is determined by the accumulation of
charge carriers. The first realizations of this circuit were under the name of Cooper
pair box and were characterize with a ratio E;/E, =~ 1. The Cooper pair box was
strongly limited by charge noise. A successive version of this qubit, called transmon
[11], included a larger capacitance, i.e. E;/E. > 1, leading to a low sensitivity to
charge noise.
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Furthermore, recalling Eq. (1.20), a dc-SQUID can be operated as a qubit, under
suitable circumstances. In particular, dc-SQUIDs were used in phase qubit imple-
mentations [39]. Phase qubits are characterized by E; > E, ans its first realizations
were based on a single Josephson junction in an inductive loop, biased by a current.
The phase qubit states are defined by the local minima of the potential energy with
respect to the phase variable.

Between the charge and the phase qubit, the so-called flux qubit is characterized
by E;/E. ~ 100. Flux qubits are composed of a loop with three [40, 9] or more
Josephson junctions [41]. The qubit state is defined by the direction of the macro-
scopic current circulating in the qubit loop. A more comprehensive presentation of
a flux qubit is given in Sec. 3.1.

1.3 Circuit Quantum Electrodynamics

As a two-state quantum system, a qubit can be regarded as an artificial atom, with
properties which in a specific parameter range can be designed and fabricated to
meet the requirements. This consideration has inspired the so-called circuit quantum
electrodynamics (cQED) [12], where the common cavity-atom system of quantum
optics is replaced by the superconductor-based qubit-resonator system to investigate
light-matter interactions.

The total Hamiltonian of a qubit coupled to a resonator can be expressed as

ho,
T = hwr&Td — TGZ +e%m s

where %, is a generic interaction Hamiltonian. The Hamiltonian defines a Hilbert
space with basis {|g),|e)} ® |n). Thus, a generic quantum state is defined as |¥)

%) = Y (culg,n) +dule,n)).

n

Typically, the whole Hamiltonian is simplified in order to reduce it to the famous
Jaynes-Cummings model Hamiltonian .7

ha,
% herTA—TG +hg( G +a(7+)

where [6,6_] = o, are the ladder Pauli matrices and g is the so-called coupling
strength. Hence, a generic dressed state of the system can be defined as

|‘P>:Z cos |g, >+sin&

> le,n—1) (1.22)
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with 6, = arctan(2g/n/8), where 6 = ®, — @, is the detuning [42]. When || >
|g|, the system is in the so-called dispersive regime, where the changes of state of
the artificial atoms change the frequency of the resonator [43].

In this regime, the state of the qubit can be “read” by observing the resonator
frequency shift, without probing directly the qubit. This measurement method is
known as dispersive readout measurement.

Due to the coupling with the resonator and, thus, with the environment, the qubit
is affected by noise, causing an energy relaxation decay and dephasing processes
of the quantum state. Hence, studying the interactions between the resonator and
the qubit can provide information about the nature of the decoherence processes.
Understanding these processes is fundamental to design devices with high coherence
times, which is necessary for quantum computing.

1.4 Introduction to quantum annealing

Historically speaking, the first implementation of quantum computing was proposed
as the quantum version of classical computing, i.e. a quantum processor where
quantum bits are manipulated by discrete quantum logic gates. Digital quantum
computing, or gate-based quantum computing, is widely implemented by the sci-
entific community and major industry players of the field, such as Google or IBM.
In principle, a gate-based quantum processor can perform any algorithm if provided
with enough resources. For this reason, a digital quantum computer is a candidate
for the realization of a universal quantum computer. A throwback of this quantum
computing technology is the necessity of error-correction routines.

Later, a second approach to quantum computing was proposed, where the qubits
are manipulated by continuously changing the energy landscape, i.e. by continu-
ous variation of the frequencies and the interactions between the qubits. In other
words, in analog quantum computing, the system is initially described by the initial
Hamiltonian, /%, which is modified until the final Hamiltonian, .77, is reached.
Based on this concept, adiabatic quantum computing was developed. Adiabatic
quantum computing is based on the adiabatic theorem, which affirms that if a system
sits in a given state and evolves slowly enough, it will remain in that state. This
approach is demonstrated to be equivalent to the gate-based quantum computing;
thus, it leads to a universal quantum computer. Nevertheless, the exact definition of
the parameters necessary to build an adiabatic quantum processor is not obvious,
leading to few promising results, so far.

In this framework, quantum annealing offers a mid-term solution in which comput-
ing universality is sacrificed in favor of a pragmatic approach to quantum computing.
In a quantum annealing processor, as known as quantum annealer, the state is pre-
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pared in the ground state of a well-known Hamiltonian .74 and then the Hamiltonian
is adiabatically transformed to the final .7/}, whose ground state represents the solu-
tion to a specific problem, i.e. a given processor can compute only problems that
can be encoded in the given .7#7. In other words, taking a liner time interpolation
between %) and J77,

=1 s

where T is the total time of the annealing schedule, i.e. the time necessary to
perform the annealing algorithm. It is clear that the qubit coherence times have to
be larger than T to perform a coherent annealing schedule.

Valuable realizations of quantum annealers have been achieved employing flux
qubits, whose coherence times have been shown up to 100 us [44, 45, 46, 47, 48].
Hence, it is fundamental to enhance qubit coherence times to realize a coherent
quantum annealer. Thus, it is fundamental to understand and mitigate the main
decoherence processes, one of them being the coupling to the readout resonator. In
this thesis, we will focus on qubit interactions with resonating circuits, leading to
the definition of a novel persistent current readout circuit, that aims to minimize the
impact on qubit coherence.

1.5 Thesis overview

Based on the concept so far presented, the aim of this thesis is to present a novel
readout for quantum annealing able to enhance the coherence time of the qubit.
As a first step for a better understanding of the qubit interactions, in Ch. 3, the
Hamiltonians of an isolated flux qubit and of a flux qubit capacitively coupled
to a linear resonator are presented and discussed. Particular emphasis is given to
corrections to the dispersive shift estimate presented in [49]. Then, the chip design
and its realizations are described, along with the experimental results. More details
on the fabrication process and measurements are presented in Ch. 2.

The focus on a single flux qubit capacitively coupled to a resonator leads to the
analysis of different qubit couplings in Ch. 4. In detail, in Sec. 4.1 the Hamiltonian of
a flux qubit galvanically coupled to a resonator is presented, whereas the interaction
between two flux qubits galvanically coupled to each other is discussed in Sec. 4.2.
The analysis presented in Ch. 4 is preparatory to the presentation of a novel readout
circuit. The persistent current readout presented in Ch. 5 consists of a dc-SQUID
based resonator that couples to the flux qubit via mutual geometric inductance,
permitting the direct detection of the persistent current state of the qubit. Being
dc-SQUID based, one of the most important features of this readout resonator is
the possibility to decouple it from the flux qubit, by biasing the dc-SQUID to a
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flux-insensitive point. The system is first studied in a semiclassical framework
in Sec. 5.1, to later derivate the dc-SQUID resonator Hamiltonian. Finally, the
quantum optics model of the whole system is presented and discussed.

In Ch. 6, a chip design for persistent current readout benchmarking is presented. In
the end, the experimental results of the persistent current readout are given. Even
though it was not possible to fully characterize the qubit, the proof of concept of the
persistent current readout is presented. Further steps are discussed in Ch. 7, where
the future perspectives of this thesis are presented.






Experimental methods

In this chapter, we outline the experimental methods used along this thesis. In
Sec. 2.1, we present the software used to simulate the different components of the
chips designed. Then, the process to fabricate chips is described in Sec. 2.2. Once a
chip is fabricated, it is placed in the experimental setup presented in Sec. 2.3 and
measured with the techniques described in Sec. 2.4

2.1 Design software

The design process of a chip is not linear: usually a chip is firstly designed, then
simulated, and, according to the results, the design is adjusted. This process is
repeated until the simulations lead to the desired circuit parameters.

Working in the cQED framework, inductances, capacitances and and microwave
transmission lines are the main components to be simulated. The different simula-
tion software packages used in this thesis are presented hereinafter in this section.

FastHenry is a frequency-dependent impedance extraction software from a generic
3D conductive structure, developed in the Massachusetts Institute of Technology
[50]. Although the software was initially developed for normal conductors circuits,
later versions permit the simulation of superconducting circuits, by solving the
London equations [22].
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To simulate a circuit, it is necessary to define —— -
* Default units will be micrometers
the structure through nodes and the segments -units un
between them. Thus, fixing the frequency range » pefault neight will be 10nm and width
20nm.
of the simulation, the input and output ports of .default nwine=7 nhinc=7 h=0.01 w=0.02
each circuit component, and the London penet- + mickness is somn
. . . .default z = 0.05
ration depth, the software provides the imped-
. * Make it superconductor
ance matrix between the ports. If two ports are  .aeauit 1ambda=o.150
connected by a conductor, FastHenry evaluates « Let's aefine wire 4

o . . nQA_1 x=0 y=0
the galvanic inductance between the two point. uqa_2 x-o0 y=-s

If the ports are located in different Structures, " eerns aoa i aos.o wire &

it computes the mutual geometric IndUCtanCe  freq snin=1 50155011 tnax=1.59155011 ndec=1
between the structures. FastHenry is the only **¢

finite-element solver that takes into account the

kinetic inductance [34]. Figure 2.1: Example of code for
In our simulations, since the results are given as a FastHenry simulation.

Z = joL = j(2rf)L, the frequency f is fixed

at f=1 / 27 . In this way, the matrix elements

provides directly to the inductances written in Henrys. In this work, FastHenry
plays a fundamental role, particularly to design the chip presented in Ch. 6, where
it is used to compute the mutual inductance between two loops. An example of a
FastHenry code is presented in Fig. 2.1.

COMSOL is a finite element analyser software that simulates a large set of physics
phenomena [51]. In this thesis, COMSOL is mainly used to estimate the capacit-
ances on a chip. To perform a simulation, the whole structure has to be accounted
for, including the substrate and the air surrounding the chip. Defining the conductors
on the chip as ports, it is possible to evaluate the Maxwell capacitance matrix of
the system. For a network of three conductors, the Maxwell capacitance matrix is
defined as

choc ol Ci1+Cin+Ci3 —Ci2 —Ci3
Gy | = —C2 Cio+Cn+Co3 —C3 )
cil Y C —Ci3 —Cx3 Ci3+C+Cs3

where C;; is the capacitance between conductor i and ;.

We define the elements of the chip as ideal conductors and not as superconductors,
since there would be no differences in capacitance estimation. COMSOL is used to
simulate the capacitances in Ch. 3 and Ch. 6.
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Sonnet is an RF model software simulator for planar circuits [34, 52]. As in
COMSOL, Sonnet needs the physical properties of the whole structure to simulate
the chip response, such as the effective relative electric permittivity. In Ch. 3 and
in Ch. 6, Sonnet is used to simulate the transmission parameter S| of the readout
coplanar waveguide (CPW) resonator. In Sonnet it is possible to effectively take into
account the kinetic inductance of superconductors introducing a surface inductance
[34].

2.2 Fabrication

The fabrication processes of the chips presented in this thesis were carried out in
different facilities. At the Institute of Photonic Sciences (ICFO), optical and electron
beam lithography, as well as resist deposition and development, were performed in
the Nanofabrication Laboratory (NFL) cleanroom. The metallization and lift-off
processes have been carried out in the IFAE cleanroom, using a metal evaporator
made available by Qilimanjaro Quantum Tech. In the following part of this section,
we are presenting the different processes carried out in these facilities.

In general, qubit device fabrication can be divided in two main steps: the device
patterning and the metal evaporation. The first step consists in shaping a polymer
by either optical or electron beam lithography. In fact, since qubit designs contain
structures with dimensions in > 1 gm and in < 1 um ranges, different patterning
processes are needed. For structures in the > 1 yum dimension range, the chip
patterning is carried out through a photolithography process, whereas structures
below 1 um dimension range are patterned through electron beam lithography
(EBL).

The patterned chip is then covered by a metal layer deposited by evaporation,
performed in a PLASSYS evaporator. Then, a lift-off process is realized, returning
the chip with the metallic structures.

Generally, the device patterning and metal evaporation steps are repeated three times
to fabricate the flux qubit devices used in this thesis. In the first iteration, the bigger
structures (i.e. ground planes, resonators, capacitors, etc...) are patterned through
photolithography and, for this reason, we are referring to this layer as “optical layer”.
Then, the sub-micron structures, such as the Josesphson junctions, are patterned
with EBL. The last iteration is dedicated to the contact structures that connect
the different metal layers. This step is fundamental to connect the microscopic
structures with the sub-micron structures. Prior to depositing the contacts, an Ar
milling stepis performed [53] to avoid spurious parasitic Josephson junctions at the
contacts. The three patterns are aligned using different sets of alignment markers.

In the following sections, the different patterning techniques and the evaporation
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processes are presented.

2.2.1 Optical lithography

In this thesis, photolithography processes have been realized employing a Maskless
Aligner Heidelberg MLA150 (MLA) in the NFL cleanroom at ICFO. Using a
375 nm laser, the MLA is able to expose an arbitrary layout on a photoresist,
eliminating the necessity of a mask fabrication, hence the name. Laser writers also
operate without a mask, although the MLA is much faster. Moreover, the critical
dimension of the employed MLA is 0.6 um, which is smaller if compared to the
typical resolution of laser writers of 1 ym.

The optical layer is exposed on a ~ 2 um-thick AZ nLOF 2020 negative resist.
The adhesion is guaranteed by a prior TI prime adhesive deposition. Details on
fabrication recipes can be found in App. A.

As a preliminary step for any kind of lithography, it is necessary to perform a dose
test to find the best operation parameter to obtain structures with the designed
dimensions. An example of dose test is presented in Fig. 2.2.

Figure 2.2: MLA dose test structures after Al evaporation.

It is important to note that AZ nLOF 2020 is developed by AZ 726 MIF. This
developer etches aluminium, leading to possible degradation of any pre-existent
structure. For this reason, an optical layer obtained with the process so far described
cannot be patterned after the EBL layer evaporation and the contact layer deposition
is necessary.

For this reason, AZ 5214E positive photoresist has been characterized for the
contact layer. This resist is developed by AZ Developer, a chemical that does not
affect aluminium and can be safely used on pre-existent structures.
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2.2.2 Electron beam lithography

As explained in the preamble of this section, to pattern structures smaller than the
MLA critical dimension, < 0.6 pm, it is necessary to use electron beam lithography
(EBL). The EBL used in this thesis is a CRESTEC CABL-APS50E/RD located
at NFL cleanroom at ICFO. It is a 50 kV EBL, with 2nm as the minimum beam
diameter. In qubit device production, dose tests have been performed for two write
fields: 600 um, for large structures as the Josephson junctions leads, and 120 um,
for the smaller structures such as the Josephson junctions themselves.

In order to obtain well-defined borders of the nanostructures and avoid problems
at the junctions due to the lift-off process, a double-resist stack is used, composed
of a first layer of PMGI 630 nm-thick and a second layer of CSAR60 240 nm-thick.
More details on the fabrication recipe can be found in App. A.

In Fig. 2.3, an example of Josephson junctions patterned with the described EBL
process is shown.

Figure 2.3: SEM image of a Josephson junction patterned with CRESTEC CABL-
AP50E/RD to calibrate the oxidation step during the evaporation process.

4
4

2.2.3 Metal evaporation

Patterned devices are placed in a Plassys metal evaporator for the metallization
process in our clean-room at IFAE. The evaporator, which is automated, is composed
by two high-vacuum chambers: a loadlock and a process chamber. The loadlock is
equipped with a microwave source, in order to perform surface descumming, and
an Ar ionizing gun, to perform Ar milling [53].
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The evaporation for the optical layer is performed vertically with no angle. In order
to evaporate Josephson junctions in the Manhattan style [54], it is fundamental to
characterize the angle evaporation, as well as the oxidation process. The structures
in Fig. 2.3 are used to do such calibration.

The evaporation is followed by a lift-off process soaking the chip in 75°C N-Methyl-
2-pyrrolidone (NMP), stirring at 200 r.p.m., for two hours. While the lift-off is
taking place, an ionizer fan is used to eliminate static electricity, to avoid short-
circuited junctions.

Once the device is completed, it is covered with a photoresist and diced at the
Post-Processing laboratory (PPL) at ICFO. Then, the device is cleaned and is ready
to be characterized.

2.3 [Experimental setup

In this section, the experimental setup for qubit characterization at the QCT labor-
atory at IFAE is presented. In the first part, the sample packaging for the devices
described in Ch. 3 and in Ch. 6 is presented. The dilution fridge used to perform all
the measurements presented in this thesis is described in the last part of this section.

2.3.1 Sample packaging

Once a chip is fabricated, it is placed on a ceramic printed circuit board (PCB). The
two experiments presented in this thesis are performed using two different PCBs:
a 6-port PCB, designed by IFAE group, to carry out the measurements presented
in Sec. 6.2, and a 12-port PCB, designed by the group of Prof. M. Weides at the
University of Glasgow, used to obtain the results in Sec. 3.4. The PCB traces are
connected to the chip through Al wirebonds. Each PCB trace is soldered to an SMA
connector for the 6-port PCB in Fig. 2.4b, or to an SMP connector for the 12-port
PCB in Fig. 2.4a. A thin layer of Apiezon N grease is spread under the chip to
enhance the thermal connection between the PCB and the chip.

The PCB is then fixed to a sample box. In order to have good thermal connection
and to permit measurements under a magnetic field, the sample boxes are made
out of electrolytic Cu. The two sample boxes are designed with a mount for a
superconducting coil on the top of the box to perform measurements at different
values of the magnetic field.

2.3.2 Dilution fridge

To perform measurements with superconductors, cryogenic systems are needed to
reach temperatures lower than the superconducting critical temperature 7. Historic-
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Figure 2.4: (a) Design of the PCB used to obtain the results in Ch. 3. (b) Design
of the PCB used to obtain the results in Ch. 6. In both PCBs, the blue part is
the ceramic substrate, while the orange part is Cu. The small holes are internally
metallized with Cu, in order to electrically connect the two sides of the PCB and
establish a proper grounding, whereas the big holes are for fastening screws.

ally, temperatures below 1 K were reached with evaporation refrigerators, which
are able to cool down to 300mK. Nevertheless, temperatures in the order of few
mK are desirable to reduce the effects of the thermal noise on the qubit. Thus, dry
and wet dilution refrigerators started to be employed for qubit measurements, since
they are able to reach temperatures below 20 mK. The difference between these
two types of cooling system resides in the necessity for the wet refrigerators of
a pre-cooling step based on liquid helium, whereas dry dilution refrigerators rely
on a pulse tube helium compressor. Around 20 mK, the Johnson—Nyquist noise
frequency is < S00MHz, thus qubits with higher transition frequencies are weakly
affected by it. In this thesis, the measurements have been performed in a Bluefors
dry dilution fridge at a base temperature of ~ 20 mK.

In Fig. 2.5, the schematic of the wiring inside the dilution refrigerator used to
achieve the results presented in this thesis is shown. In a closed circuit, not repres-
ented in Fig. 2.5, a mixture of *He and 3He is pumped in order to reach the mK
regime. Pumping on “He, the system is cooled down to < 4K, that is a necessary
preliminary step. Then, the mixture of “He and *He is pumped to reach < 1 K. Thus,
around 870 mK, the two phases separate in a “He-rich phase, which is called diluted
phase, and a *He-rich phase, which is called concentrated phase. The equilibrium
at the mK is ensured by the continuous exchange of *He between the two phases.
This phase separation is achieved in the mixing chamber stage of the fridge (MXC
in Fig. 2.5). The exchange of *He takes place between the MXC stage, in which the
concentrated phase is present, and the still plate, where the majority of the diluted
phase is present. The two stages are connected by heat exchangers that pre-cool the
diluted phase.

The inside of the fridge is under 10~°bar vacuum, in order to thermally isolate
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Figure 2.5: Dilution fridge scheme used to perform the measurements presented in
this work [49].

the inner parts, including our devices, from the external environment. Moreover,
three levels of magnetic shielding are placed around the sample box. A first Pb
shield is anchored to the still stage, which both isolates the system from the external
magnetic field and from some environmental radioactivity. The other two magnetic
shields made of high magnetic permeability material are placed inside and outside
the vacuum can shield, which is the outermost layer of the dilution refrigerator.

The sample box is thermally anchored to the MXC stage, since the MXC is the
coolest stage of the cryostat. The sample is connected to the external environment
through coaxial cables. Due to the different temperature stages, the cables are
made of NbTi from the MXC to the 4K stage and of CuBe from 4K stage to room
temperature stage (RT in Fig. 2.5), to let the lowest heat flow between the plates.
The coaxial cables are divided in five input lines and one output line. The input
cables pass through several passive attenuators, resulting in a total attenuation of
—50dB, without taking into account the losses due to the cables. The output line
passes through a first amplification stage, where a low-temperature high-electron-
mobility transistor (LT HEMT in Fig. 2.5) provides 40dB of amplification. At room
temperature, the signal is further amplified by two Pasternack RF amplifiers, each
with ~ 17 dB of gain, and a RT HEMT, with ~ 44 dB of gain . All types of lines are
filtered with low pass (LBP in Fig. 2.5) filters that eliminate noise with frequency
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> 8 GHz. The transmission of a single cable is presented in Fig. 2.6. The dip in the
transmission around 6 GHz is due to a faulty connection.

=50 MK
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-80

-90
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Figure 2.6: Cable transmission at room temperature (orange) and at mK regime
(blue). This measurement was performed without amplification stages on an input
line connected to the output one.

It is important to point out that circulators are located between the device output
and the output lines. These elements avoid the backward injection of noise from the
output lines, especially from amplifiers, but they impose a limitation on the setup
bandwidth, since they work in the 4 — 8 GHz range.

Finally, DC cables connect the MXC stage to RT, for V — I characteristics meas-
urements. Two of these lines are used to drive the superconducting coil, in order
to generate a magnetic field on the sample. The coil cables are made of NbTi with
CuNi cladding from MXC to 4K and phosphor bronze from 4K to RT.

More details on the dilution refrigerator setup can be found in [49].

2.4 Measurement techniques

In this section, several measurement techniques are presented, which will later be
used in Ch. 3 and Ch. 6 to perform qubit measurements. The different methods
are listed in same order as performed in the experiments. As the chip is finalized,
the first step is to validate the quality of the fabrication through estimates of the
Josephson junction critical currents at room temperature.

Once the device is cold, a first spectroscopy on the readout resonator is necessary
to confirm the presence of qubits. Then, the qubit spectrum is measured, which
allows to measure the dispersive shift of the resonator (see Sec. 3.4.2) and the qubit
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coherence times (see Sec. 3.4.3 and Sec. 3.4.4).

2.4.1 Room temperature resistance measurements

The cooling down process of a dilution refrigerator lasts ~ 24 h, thus it is important
to validate the chip quality at room temperature prior to cooling it down. Recall-
ing the seminal work presented in [55], it is known that the critical current of a
Josephson junction can be estimated through the Ambegaokar—Baratoff formula

A
Ic = ;
2€RN

(2.1)

where A is superconducting gap of the material, e is the electron charge and Ry is
the resistance of the junction in the normal state.

In order to probe the junctions with low enough current, the chip is placed in a
manual probe station with a home-built current supply. To ensure the quality and
safety of the measurements, the probe station is provided with a vibration isolating
table while the chip is held on the probe station stage through vacuum suction.
Then, the probes are connected to a voltage meter through a circuit that biases
junctions at 10mV, which ensures low bias currents. In Fig. 2.7, a simplified
diagram of the circuit is presented.

Figure 2.7: Simplified circuit diagram for Josephson junctions resistance measure-
ments. Ry represents the Josephson junction.

In Fig. 2.7, Ry is the Josephson junction, Ry is the scale resistance (1kQ, 100kQ
and 10MQ), R, = 50Q and R; is a potentiometer to trim the bias voltage. The
value of Ry is obtained from the circuit gain.

2.4.2 Frequency domain measurements

Once the system is cooled to the mK range, a first characterization is performed
in frequency domain. To carry out this measurement, a vector network analyzer
(VNA) is used. This instrument sends a continuous microwave signal and measures
the transmitted and reflected signals at the same frequency, the S;; parameters



2.4 Measurement techniques 25

[33]. The response of the system to a single tone gives information on the readout
resonator transmission, which is fundamental to validate the qubit presence. This
spectroscopy measurement is performed at low power, near the so-called single
photon regime, to avoid higher order transitions in the qubit and resonator response.
To reach this power level, a passive attenuation between 40 dB and 60 dB is placed
at the output of the VNA.

Once the readout resonator spectroscopy is performed, the qubit spectrum is ob-
tained through a two-tone spectroscopy. In this technique, an rf-tone is combined
with the VNA tone through a splitter. While the VNA is probing the resonator
frequency on resonance, the rf-tone is swept to excite the qubit. Variations in the
resonator transmission returns information on the qubit spectrum when the rf tone
matches the qubit frequency.

The VNA used in this thesis is an Agilent E5S071B, with a range 300 kHz — 8.5 GHz,
while the rf-source is a Rohde&Schwarz SGS100A SGMA, with a range 1 MHz —
12.75 GHz, even though the circuit bandwidth is limited to 8 GHz by the LBP filters
and circulators.

2.4.3 Time-domain measurements

Once the qubit spectrum is obtained with the techniques presented in Sec. 2.4.2, it
is possible to perform time-domain measurements. These measurements consist in
probing the qubit with microwave pulses. For this reason, it is necessary to use an
arbitrary waveform generator. In this thesis, the instruments used are two Keysight
M3202A PXIe AWG mounted in a M9010A PXIe Chassis. More details on the
time-domain measurements setup can be found in [49].

The first step to characterize the qubit is by measuring coherent Rabi oscillations.
Without any external stimulus and kg7 < fiw, the qubit sits at its ground state. If a
pulse at the qubit frequency is sent to the system, the qubit is brought to the excited
state with a probability P, = 1 — P,, depending on the duration and amplitude of
the pulse. Varying the amplitude of the pulse, P, starts to oscillate according to the

2
PA) = —2 i (KdTA) , 2.2)

Rabi formula

T QA2 2h

with Q the Rabi frequency, A = wg — @, the detuning between the resonator fre-
quency @, and the qubit frequency @,, A the amplitude of the pulse, T' the pulse
period, k the coupling, and d the qubit electric dipole. From this measurement, it is
possible to define the 7 pulse amplitude as the one returning P, = 1 on resonance,
i.e. the amplitude that allows the qubit to fully pass from the ground to the excited
state. An example of a Rabi oscillation measurement is presented in Fig. 2.8a.
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Figure 2.8: (a) An example of a Rabi oscillation measurement, where the amplitude
for a w pulse is indicated [49]. (b) Example of a 71 measurement, with the 7 pulse
defined through the Rabi oscillation measurement [49].

Once the qubit is excited to |1), the state population P, decays exponentially to |0),
due to environmental noise. This process is described by the formula

P(t)=e i =e M (2.3)

where 71 (I'y) is the energy relaxation time (rate).
T; is a fundamental benchmark for quantum computing [56], as any quantum
algorithm has to run faster than the energy relaxation time of the qubit, or at least
faster than the error correction schemes. A common technique to characterize 7
consists of sending a 7 pulse to the qubit and, after a waiting time &7, probing
the resonator with a readout pulse. 77 is obtained by fitting the exponential decay
of Py as function of dt, as depicted in Fig. 2.8b. Nevertheless, it is found that 7
fluctuates over time, thus 77 is to be estimated by the first moment of the histogram
distribution of several measurements [56, 57]. Typical values of 7] for flux qubits
ranges from tens to hundreds of us [44, 45, 46].
However, the environmental effect on the qubit can also be reflected in qubit
frequency fluctuations, which are due to dephasing processes, i.e. loss of information
on the qubit phase. Assuming an exponential decay, the dephasing decay or total
decoherence is defined as r

1

L= +T, (2.4)
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Figure 2.9: An example of a Ramsey measurement with the envelop fitted by an
exponatial to obtain Tog is highlighted [49].

where I'; is the energy relaxation decay rate, since it also induces a loss in phase
information, and I'y is the pure dephasing decay rate. The corresponding time
=1 / I, can be estimated by performing the so-called Ramsey measurement.
This technique consists of sending two 7 / 2 pulses separated by a variable waiting
time &7 and then probing the resonator with a readout pulse. For short waiting times,
the state oscillates given that the 7 /2 pulses are slightly off-resonant. Nevertheless,
as energy decay and dephasing processes become significant, the final state evolves
into an incoherent superposition of the two qubit states. After sufficiently large
ot, the qubit state is found to be with no phase information. An example of a
Ramsey measurement is depicted in Fig. 2.9. T>g, where the R stands for Ramsey, is
estimated by fitting the envelop of the oscillations resulting from the measurement
to an exponential. Once 77 and Tk are obtained, it is possible to measure the pure
dephasing time T, with Eq. (2.4). Note that, in case of infinite pure dephasing time,
Tor is limited by 27;. For flux qubits, typical values of T>g range from ~ 20 us
[44, 47] to values close to the the 277 limit [46], whereas T;, ranges from few us
[47, 48] to ~ 20us [46]. More details on the theory of time-domain measurements
can be found in [49].
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In the remaining part of this thesis we will be focusing on flux qubits, already
presented in Sec. 1.2.3. This type of qubits is characterized by a persistent current
flowing around the loop, and the current direction is used as the qubit computational
basis states. In this chapter, we analyse the first generation of flux qubit devices
from the QCT group at IFAE, as part of the AVaQus project.

Following Sec. 1.3, the physics of a flux qubit capacitively coupled to a resonator
is presented in Sec. 3.1. Using the theoretical derivation of the qubit Hamiltonian,
a chip design is presented in Sec. 3.3. In Sec. 3.4, an overview of the fabrication
process is presented, and finally the experimental results are discussed. The contents
of this section were developed together as part of Dr. Lopez-Nufiez’s Ph.D. thesis
[49].
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3.1 Flux qubit Hamiltonian
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Figure 3.1: a) A 4-Josephson junction shunted flux qubit circuit diagram. b) Qualit-
ative representation of the spectrum of the qubit from a) [49].

As explained in Sec. 1.2.3, a flux qubit is generally a loop with at least an inductor
and a Josephson junction. As a particular case, a persistent current (PC) qubit is
formed by three [40] or more Josephson junctions [41] connected in a supercon-
ducting loop, one of which is o-times smaller than the other junctions, which are
nominally identical. From now on, we are referring to PC qubit as the flux qubit.
To enhance the flux qubit performance, in ref. [46] it was proposed to lower the
critical current of all junction while keeping a high E;/E, ratio, combined with a
shunt capacitance in parallel to the o junction. As the critical current is lowered,
the qubit is less sensitive to flux noise, leading to better coherence times. On the
other hand, adding a shunt capacitance leads to a smaller effect of the charge noise,
since the charging energy E. of the & junction diminishes and more energy is stored
in a higher quality dielectric (Si) than the junction (AlOy). Furthermore, the Cg,
fabrication is more reliable, allowing a more stable prediction of the qubit transition
frequency @,. In this section, a 4-Josephson Junction (4JJ) flux qubit is taken into
account, with its circuit diagram is depicted in Fig. 3.1a. Following Sec. 1.3, this
system is described by

lJ

1

1
H = EZITMAL?—EJ

3 3
cos(@;) + acos < (p,-—27tf>] , (3.1)
= =1

where E; is the Josephson energy of the big junction (see Sec. 1.1.1), ¢, =
27, / &, is the normalized n-th junction phase, g is the vector of variables con-
jugated to {@;}, f = ®/Py, and P is the external flux applied to the loop. In
Eq. (3.1), the first term represents the kinetic energy term, while the term between
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brackets represents the potential energy of the system. In the last cosine term, the
fluxoid quantization is applied, i.e. 9y = 27f — ¥ @;. When f — 0.5, the potential
becomes less sensitive to the external flux and, depending on ., the qubit potential
can fall in different regimes, as shown in Fig. 3.2. It is clear that the position of the
minimum of the potential energy depends on .

Double well “Quarton” Single well

NI 3

Figure 3.2: Flux qubit potential energy in the different & regimes at the sweetspot,
f=05Ifa<l1 / N, the potential does not show the two local minima that defines
the persistent current states [49].

Considering N as the number of the Josephson junctions, if @ > 1 / N, the system is
in the double-well regime, where the potential presents two local minima, as shown
in Fig. 3.2. In fact, each local minimum defines a quantum state of the system, in
which the persistent current through the loop flows clockwise or counter-clockwise,
respectively. Due to tunneling across the barrier, both wells hybridize, leading to
superpositions of current states as the eigenstates of the system. Thus, the qubit
quantum state can be defined on the so-called current basis {|O),|O)}. At f =0.5,
the ground state |g) is an equal superposition of the PC states, which means that the
average value of the persistent current is null. Furthermore, as the applied external
flux moves away from f = 0.5, |g) ~ |©), with f > 0.5 (or ~ |©), for f < 0.5). For
f < 0.5 (or f>>0.5), the system falls outside the double-well regime. The specific
value of f for the different regimes depends on the persistent current /,,.

The first term of Eq. (3.1) is given by

1
§¢7TM_1¢7 =4Ec

[(2}/4- 1) (n% —I—n% + n%) —2y(nny +nyn3 —|—n3n1)] ,
(3.2)

where Ec = €?/2C; and ¥ = (aC; +Cyy) /C;, with C; the capacitance of a big

Josephson junction.

If the system is reduced to the computational subspace, i.e. it is described only by

the first two PC states {|O), |} }, the Hamiltonian in Eq. (3.1) can be reduced to

1
3y+1
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[9, 58]

AA he
H==20 o,

5 (3.3)

with the gap A as the qubit frequency at f = 0.5, and &€ = 2I,,(f — %)tbo as the
magnetic energy bias. Let’s point out that, for f = 0.5, the Hamiltonian is .7 =
— hAo; / 2.InFig. 3.1b, A and I, are shown graphically.

If the system is rotated to the energy basis {|g), |e) }, Eq. (3.3) reduces to

- s (3.4)

where @, = V'A? + € is the qubit frequency.

The system in Fig. 3.1a is the fundamental circuit of the work in this thesis. The
first step is to study a system composed by a flux qubit capacitively coupled to a
linear resonator acting as the qubit state detector, as it is the basic circuit used for
quantum computing, analog and digital [46, 59], to characterize flux qubits.

i
Con=—r a[X ® E Cr= ELR
0

Figure 3.3: Flux qubit-resonator system

3.2 Flux qubit-resonator system
In this section, we analyze the physics of a 4JJ flux qubit capacitively coupled

through C, to a harmonic oscillator, as shown in Fig. 3.3. The system Hamiltonian
can be written as '

Hior = Hq+ Hp+ e,

IThe full derivation can be found in [49]. Nevertheless, here we report the main results described
therein, with several corrections to the original work.
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where the correct forms of wg and x¢, with respect to ref. [49], are given.

The qubit and the resonator Hamiltonians define two Hilbert subspaces, such that a
general quantum state of the circuit can be written as |¥) = Y, , i, |i,n), where i)
is an eigenvector of .7, while |n) is an eigenvector of 7#%. The total Hamiltonian,
omitting the hat symbol on the operators, can be written as

%”/h—wR(aa+ >+Za), H—Zg,] (jl (@ —a)=s+V, (3.8
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where h; is the qubit energy of state |i) and the coupling coefficient g;; is given by

gij = (i| xkc (n1 +n2+n3) |j) . (3.9)

This coupling represents the dipolar electric interaction between qubit and resonator
and depends on the qubit electric dipole moment [61].

From Eq. (3.8), it is clear that 77 is a non-diagonal Hamiltonian. Whenever
|g| < |@,; — wg|, a perturbative approximation is possible, which reduces the total
Hamiltonian to a diagonal Hamiltonian, known as the dispersive Hamiltonian. This
perturbative regime is conventionally used when the resonator acts to read out the
qubit state in cQED [42, 46]. More details on the derivation of Egs. (3.1) and (3.8)
can be found in [49], even though @wg and k¢ are here corrected.

3.2.1 Dispersive regime

Usually, the readout process of a qubit is performed when the resonator and the
qubit frequencies are well separated, i.e. when the system is in the dispersive
regime, |g| < |@, — wg|. In this regime, it is possible to perform a perturbative
approximation of the Hamiltonian in Eq. (3.8) around the parameter A = g / A,
where g = go1, as defined in Eq. (3.9), and 6 = W, — g [43]. A possible method
to achieve the dispersive Hamiltonian is to apply the so-called Schrieffer-Wolff
(SW) transformation, which rotates the Hamiltonian to a diagonal form. The whole
derivation is presented in App. B and the results are here presented.

The resulting transformed Hamiltonian is

A= <wR—z_xl-|i> <i\) alat ¥ 252 ) G (3.10)
where

xi= Y (kij—kji) , (3.11)
J
’gij‘z

iy = ——oul___
T o~ (0 - o)

Equation (3.10) describes how the resonator frequency is shifted by }'; x; due to the
qubit energy levels. Note that the dispersive contribution from the counter-rotating
terms is also included with the terms where ®; < @;. Considering the computational
basis of the qubit, i.e. {|g), |e)}, Eq. (3.8) reduces to

),
%”:(L)Rcfra—jqcz—ig (aT—a) oy = (3.12)
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Figure 3.4: The dispersive shift of the readout resonator (in red) is simulated with
different approximations of . x’ (in green) is the dispersive shift if only the qubit
states of computational basis {g, e} are considered. x” (in blue) is the approximation
to the first three qubit energy levels and ' (in orange) is the approximation to the
first four qubit energy levels. This simulation is performed with the parameters of

qubit #0 in Table 3.2 and Table 3.1.

where geg = i8] = —&ge, Wy = W — W, and [0, 0_] = 0;. Eq. (3.12) is the quantum
Rabi model (QRM) Hamiltonian. Applying the rotating wave approximation (RWA),
i.e. neglecting counter-rotating terms (rotating with wg + @p), Eq. (3.13) is obtained
[35, 62]

),
A BVA) — geata— 7‘103 —ig(a'o_+aoy) . (3.13)

In this two-state basis, in the dispersive regime ,the dispersive shift reduces to

20
X' = keg = kee = I8 R (3.14)

2 2"
R_wq

Equation (3.14) is not a good approximation of the effective dispersive shift, since
the contribution of the higher levels of the qubit is in general not negligible. In
Fig. 3.4, Eq. (3.14) is represented by the green curve '. If compared to the effective
dispersive shift, calculated directly as 2y = (E|. 1) — Ej,0)) — (E|g,1) — E|g,0)) (red
line in Fig. 3.4), Eq. (3.14) returns an underestimation of the effect of the qubit
on the resonator frequency. However, by considering more qubit energy levels in
Eq. (3.11), x converges to the effective dispersive shift. In Fig. 3.4, x” and x"”
are calculated taking into account three and four qubit energy levels, respectively.
The peak at f = 0.5, despite being the point were @, — g is maximum, is due to a
maximum of the qubit’s electric dipole [61].
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3.3 Chip design

In this section, we describe the device layout used to carry out the characterization
of our first generation of flux qubits.

(b)

Figure 3.5: a) Chip design of multiple single flux qubits, numbered 0 — 7. b) Zoom
in on a single qubit with its CPW resonator and the global feedline [49].

In order to measure qubits as the one depicted in Fig. 3.3, the chip in Fig. 3.5a
was used. This device is composed by 8 single flux qubits, each qubit coupled to
a dedicated coplanar waveguide resonator and a flux bias line (FBL), as shown in
Fig. 3.5b. In the following, the qubit and CPW resonator designs are presented and
discussed in Sec. 3.3.1 and Sec. 3.3.2, respectively.

3.3.1 Readout resonator design

Since we require a strong capacitive coupling between the qubit and the CPW
resonator, a quarter wave (A / 4) resonator is used [34]. This kind of CPW resonator
is characterized by having a shorted end, which we inductively couple to the feedline,
and an open end, capacitively coupled to the qubit. Since the first resonance mode
is at quarter wavelength, the electric field has a maximum on the open end [33].
Therefore, the resonator end close to the qubit is designed as a capacitor pad to
enhance the coupling capacitance. The designed CPW resonator is presented in
Fig. 3.5b.
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Figure 3.6: Sonnet simulation of the transmission of the designed CPW resonators
on the device shown in Fig. 3.5a [49].

Following from [33], the bare frequency of a A / 4 CPW resonator is defined as

c 1
Ve 4l

with [ = 7L/4 being the resonator length, ¢,,, = 1/2 (&1 + &) ~ 6.255, with g
and & the relative dielectric permittivities of air and Si, respectively. As explained
in Sec. 2.1, the resonators are simulated with Sonnet software. The simulated
transmission of the complete resonator set is presented in Fig. 3.6. The resonances
in Fig. 3.6 are designed to be sufficiently separated, i.e. to avoid crosstalk between
measurements, given the bandwidth of each resonator and the acquisition electronics.

Saa = (3.15)

A comprehensive summary of the design parameters is presented in Table 3.1.

3.3.2 Qubit design

The qubits in the device in Fig. 3.5a are divided in four groups of two qubits. Four
qubits are designed with a lower frequency at the symmetry point than the other four.
Moreover, these two groups are divided into “floating” flux qubits and “grounded”
flux qubits, which differ in design. In Fig. 3.7a, a floating flux qubit is depicted, in
which the qubit shunt capacitor plates are not referenced to ground. On the other
hand, in the grounded flux qubit design, the shunt capacitance is defined between a
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# | Length (mm) | fo (GHz) | f3,4 (GHz)
0 3.835 7.762 7.514
1 3.804 7.824 7.565
2 3.774 7.886 7.630
3 3.745 7.948 7.681
4 3.716 8.010 7.743
5 3.688 8.072 7.795
6 3.659 8.134 7.863
7 3.632 8.196 7.913

Table 3.1: Design parameters of the 8 resonators on device in Fig. 3.5a. f; /4 is the
theoretical bare resonance, fy is the simulated one [49].

=

I

Figure 3.7: a) Design of a floating flux qubit. b) Design of a grounded flux qubit
[49].

(@

reference plate and the ground plane, as shown in Fig. 3.7b.

Although the physical shunt capacitance is the one connected to the ¢ junction, the
effective shunt and coupling capacitance, as defined in Sec. 3.2, must be extracted by
analyzing the entire capacitance network of the circuit. The optimal parameters are
obtained through COMSOL simulations (see Sec. 2.1). A more detailed treatment
of the capacitive network analysis is presented in Sec. 6.1.4 for a device involving a
flux qubit and a dc-SQUID resonator.

The qubit loops are designed with an area of 81 um?, while the the big Josephson
junction are designed with /. = 109 nA. The small junctions are designed with
o = 0.55 > 0.33 (therefore in the double-well regime), with I, ~ 41 nA.

In Table 3.2, the main design qubit parameters are presented.
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# | A(GHz) | Cy (pF) | Cc (PF) | Type

0 2.2 8.7 4.4 Grounded
1 2.2 8.6 29 Floating
2 2.2 8.7 44 Grounded
3 2.2 8.6 2.9 Floating
4 1.2 12.9 4.0 Grounded
5 1.2 12.5 24 Floating
6 1.2 12.9 4.0 Grounded
7 1.2 12.5 24 Floating

Table 3.2: Qubit design parameters, where A is the qubit frequency at the symmetry
point [49].

3.4 Device characterization

In the following subsections, the experimental results obtained with the chip de-
signed in Sec. 3.3 are presented.

The chip is fabricated on a high-intrinsic Si substrate 500 um thick. The optical
layer pattern was exposed by photolithography, with a Heidelberg MLA150 on
negative resist, and later Al was deposited with a Plassys evaporator. More details on
this fabrication process are given in Sec. 2.2. In Fig. 3.8a, the detail of a fabricated
resonator #2 with its qubit is shown.

(a) (b)

Figure 3.8: Optical images of resonator #2, (a), and its coupled grounded flux qubit,
(b), [49].

The qubit loop patterning and deposition is carried out by the Royal Holloway Uni-
versity of London (RHUL). The Josephson junctions are patterned with Manhattan
style [54, 63] using two different evaporation angles. The contacts between the
capacitor plates and the qubit loop are guaranteed by evaporating patches, which
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are deposited with a standard perpendicular evaporation in a final step. In Fig. 3.8b,
the optical image of a grounded qubit is presented.

The sample is placed in a 12-port
Cu box. The feedline and the FBLs
are connected through SMP con-
nectors to the available fast fridge
lines. A superconducting coil is
mounted on the box lid in order
to generate a magnetic field to the
chip. The coil is connected with
low resistivity DC lines to a float-
ing current/voltage source. The coil
bias is filtered interposing a 7-filter
between the voltage source and the
DC lines. In Fig. 3.9, the sample
box with the superconducting coil
mounted below the mixing cham-
ber is presented. More details on
the setup are given in Sec. 2.3. In
the next subsection, the results of
the measurements performed with
the 8-resonator chip are presen-
ted.

Figure 3.9: The Cu sample box with coil
mounted in the fridge mixing chamber stage.

3.4.1 Spectroscopy measurements

The first step in qubit characterization is through resonator spectroscopy. A wide
frequency scan performed with a VNA identifies all resonators. This way, the
transmission of each resonator is monitored as the applied magnetic field changes,
until a so-called avoided level-crossing appears in each resonator. Such an avoided
level-crossing is a point where the qubit has the same frequency as the resonator.
An example is shown in Fig. 3.10, where two consecutive avoided-level crossings
can be seen. Hence, the qubit frequency is below the resonator frequency within the
two avoided-level crossings.
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Figure 3.10: Avoided-level crossings detected through resonator spectroscopy [49].
The expected qubit frequency is represented by the dotted lines.

In a second characterization step, two-tone spectroscopy is performed to obtain
the spectrum from each qubit. The resulting measurement of a specific floating
qubit can be seen in Fig. 3.11, where the qubit transition frequencies are labelled.
In fact, it is possible to observe not only the |0) — |1) transition but also higher-
level transitions. It is interesting to point out the transition ®;, / 2, which implies
a qubit initially in |1), possibly due to thermal population, as it is clear from the
inverted shape of the transition with respect to @p; and its positive phase signal.
Unfortunately, the qubit frequency cannot be probed at the symmetry point, since
its value A/2m =~ 250 MHz is low enough so that the qubit is thermally populated
and the readout cannot resolve the qubit states. Also, the linewidths are too broad
to perform coherent dynamics, due to thermal and 1 / f noise. This gap value
is far off what was designed. This was observed in all qubits of this device. A
probable explanation is that the ratios between the Josephson junctions, as well
as the qubit persistent currents, were off-target due to uncontrolled parameters in
the fabrication process. In fact, the persistent current is found to be higher than
predicted (I, = 58.6 nA vs. I,S,im =41 nA), as well as the ratio between the small
and the big junction areas (¢ ~ 0.65 vs. Qs = 0.55), all leading to lower qubit

gaps.
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Figure 3.11: Qubit spectrum of a floating flux qubit. The qubit gap is A/27 ~
250 MHz, while I,, = 58.6 nA, with a ~ 0.65 [49].

3.4.2 Resonator dispersive shift

Once the qubit spectrum is identified, it is possible to quantify the dispersive shift
of the resonator. Recalling Eq. (3.10), the dispersive shift is defined as

2x = (Eje,1y = Epe0)) — (Ejg,1) — Ejg0)) -

Hence, experimentally, 2y is the difference in resonator frequency when the qubit
is in the ground state and when it is in the excited state. Figure 3.12a presents
the measurement to quantify of the dispersive shift, where the CPW resonance is
measured with the qubit in the ground state and in the excited state. The latter meas-
urement is obtained by combining the resonator spectroscopy with a tone resonant
with the qubit frequency. The difference between the two resonance frequencies
returns the dispersive shift y.

Thus, since the dispersive shift depends on the qubit frequency, the same measure-
ment is repeated for different values of the applied magnetic field. As suggested
by Eq. (3.11), the dispersive shift decreases in magnitude as the qubit reaches the
symmetry point, as it is observed in Fig. 3.12b, due to the increment of the detuning
A = o, — @,. Nevertheless, we are expecting a peak in the dispersive shift at the
sweet-spot (see Fig. 3.4), due to the dependence of the electric dipole coupling with
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the qubit flux [61].
Due to the difficulty to clearly measure the frequencies near the symmetry point, no
data have been collected in that range.
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Figure 3.12: a) Measurement procedure to obtain the dispersive shift at f = 0.455.
b) Extracted values of y between the avoided level crossing and the symmetry point
[49].

3.4.3 T relaxation time

Here, we present the 77 energy relaxation time measurements with the spectrum
shown in Fig. 3.11. The qubit is excited by a 7 pulse and, after a time delay &¢, a
readout pulse is sent to the resonator. As 8t increases, the amplitude measured with
the digitizer decreases, as shown in Fig. 3.13a. The signal level is already calibrated
as qubit population.

In order to investigate how 77 changes as a function of the applied external flux and
taking into account its fluctuations [56, 57], each measurement is performed over
100 times and each repetition consist of a 5000 points average. Due to environmental
microscopic fluctuations around the qubit, 77 changes with time and the extrapolated
T values are sorted in histograms, which we fitted as Gaussians [57, 46]. In
Fig. 3.13b, the expectation values of the fitted Gaussians are plotted together with
the weighted average of the exponential fits as a function of the applied magnetic
flux. Clearly, the discrepancies between the two curves are due to the number
of repetitions of each measurement. With enough repetitions, the average should
coincide with the mean of the Gaussian [64].
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Figure 3.13: a) Measurement procedure of 77. b) 71 behaviour as a function of the
applied flux [49].

As the qubit frequency approaches the resonator, 77 is dominated by the so-called
Purcell effect [46], with a decay I'p (in the two-state qubit approximation) given by

2 /
e (5 e P
Wr — Wy Wr — Wy

where k is the resonator linewidth. With the measured values of ¥ and wg — @,
hip=1 / I'p = 28 us, which is consistent with the measured 77 at f = 0.47 in
Fig. 3.13b.

As f— 0.5, the qubit frequency enters the regime in which #A ~ kgT and thermally
activated excitation and decay enhance the qubit decay rate. Furthermore, at the
symmetry point, the electric dipole of the qubit is at its maximum value, which also
maximizes the decay rate I'y = 1/7;.

Even though it is not possible to measure the coherence times at the symmetry

point, which is the most reported in the literature of flux qubits, the obtained

results are encouraging, as 77 values are comparable with the typical ones for

flux qubits [65, 46]. This is not surprising since, following [46], the flux noise

scales as I'? o< | (1] dp.7#|0) |* &< (A/ @, )*. Assuming A /27 ~ 300 MHz, we can
extrapolate a value of T/ at f = 0.5 as

* A (D;
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with 77" = 25.6 us and @, /2w = 6 GHz estimated at f = 0.47. The result in
Eq. (3.16) is far from the highest 77 values reported, but it is in line with the
results in ref. [46] with the state-of-the-art C-shunted flux qubits. Unfortunately,
the qubit frequencies at the gaps resulted lower than the expected designed values,
leading to difficulties to characterize the qubit at the symmetry point, which is
otherwise the most interesting flux value.

3.4.4 T, dephasing time
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Figure 3.14: a) Tog measurement at f, = 6.4 GHz. b) Ramsey fringes plot, i.e.
Ramsey measurements, as the one in a), repeated varying the qubit pulse frequency
[49].

As a last characterization step of the qubit, 7, measurements are performed to meas-
ure dephasing rates. Recalling Eq. (2.4), T} and T, both defined from exponential
decays, the dephasing time 7, is defined as

1 1 1

5o + TTP . (3.17)
In the qubit studied, qubit coherence could only be characterized far away from
f=0.5, but, due to high- and low-frequency flux noise, Ty was strongly impaired.
Even the 1 / f noise still has a significant amplitude at 6 GHz [65].
Nevertheless, the Ramsey fringes measurement was performed to obtain information
by the noise source, as shown in Fig. 3.14b. The actual qubit frequency f; is found
when no Ramsey oscillations are detected. From Ramsey measurements, the qubit
linewidth is found to be ~ 40 MHz at f = 0.46.
Very short pulses have been generated to obtain Fig. 3.14a, with a resulting Tog =
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13.4+ 1.2 ns, which is low compared with literature values [44, 47, 48].

The main source of noise points to flux noise, although Ramsey fringes would
have to be measured at the sweet spot to fully characterize the qubit noise sources.
A second source of noise may come from the environmental electric noise in
the laboratory, which at the time of performing the measurements had not been
eliminated.

3.5 Outlook

In this chapter, the first generation of flux qubits was presented and discussed. The
qubit design and its subsequent characterization was performed, with a particular
emphasis on the time-domain measurements. Unfortunately, due to uncontrolled
parameters in the fabrication process taking place in different cleanrooms, the
measured value of qubit gap A and [, were far from the designed values. In par-
ticular, A was designed to be in the range 1.2 — 2.2 GHz, whereas the measured
gaps are ~ 250 MHz. Hence, measuring the specturm around the sweet spot proved
challenging , due to the qubit large linewidth and thermal excitations between the
first two qubit energy levels.

Moreover, I, is ~ 43% higher than the designed value, making the qubit more
sensitive to flux noise. Likely, this is one of the reason of the low T>g measured and
the reason for the low A.

Besides, the measurements in this chapter give indications to the production of a
new generation of qubits with enhanced properties. It is clear that higher qubit gap
frequencies, with lower /,,, would give us the opportunity to study the origin of
the noise and to characterize the coherence times at the sweet spot. Moreover, the
coupling between the qubit and the resonator needs to be enhanced, increasing the
dispersive shift y, leading to a larger signal.

Since the fabrication process is probably the cause of the deviation from the nominal
values, a more controlled fully in-house fabrication process is necessary to obtain
measured values close to the targeted ones.

For these reasons, we are working on a similar chip fabricated in a single-step
exposition by the University of Glasgow. The chip design has been modified fol-
lowing the indications just presented. The new devices will be made of Nb instead
of Al. Nb has a higher critical temperature, leading to a negligible contribution
of quasiparticle noise. Moreover, Nb transmons have shown promising results on
coherence time measurements [66], though there is still no published results of
Nb-based flux qubits, except very primitive ones obtained at MIT in early 2000’s
[67].

The sample packaging can also be improved to obtain better coherence times as
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well. The flip-chip architecture points to the right direction by physically separating
control lines and readout circuitry from the qubit chip [68]. This approach should
reduce crosstalk from the rest of elements on the chip, thereby increasing the qubit
coherence and control.






Galvanic couplings in qubit circuits

In the previous chapter, the Hamiltonian of a qubit capacitively coupled to its
readout resonator was treated within the dispersive regime. Their interaction led to
an energy correction for both qubit and resonator Hamiltonians.

In this chapter, two galvanically coupled systems are studied. Here, the term “gal-
vanically” is used to describe a coupling realized through a physical shared inductor
between the coupled systems.

Sec. 4.1 contains the analysis of a qubit galvanically coupled to a resonator, while,
in Sec. 4.2, a system of two galvanically coupled qubits is described.

The content of this chapter is preparatory for Ch. 5, where the concept of the per-
sistent current readout is presented. The study of the two extremal cases of galvanic
coupling, particularly a linear resonator and a strongly non-linear object, is useful
to achieve a better comprehension of what is presented later in this thesis.

4.1 Qubit-resonator system

Flux qubits galvanically coupled to linear resonators have been widely used to study
the physics of the interaction between an artificial atom and an electromagnetic field
[69, 70, 71, 72]. Particularly, large linear inductors shared between the qubit and
the resonator are used to reach a large coupling strength g, such as in the ultrastrong
coupling regime, where g / wr > 0.1 [62], o, being the resonator frequency.

First, let’s point out that, different from Ch. 3, in this section a three-Josephson
junction qubit is specifically taken into consideration. To be galvanically coupled,
the qubit has to share an inductor, corresponding to a portion of its loop, with the
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resonator [73, 62]. Such a system is depicted in Fig. 4.1. In the figure, the two
systems are coupled through an inductor, namely L., and its branch variable, ¢.

¢s | Lg L 02 alX| =—=Cs |

(073 0

Figure 4.1: A three Josephson junction flux qubit galvanically coupled to a resonator.

Using the circuit tree defined in Fig. 4.1, the total Hamiltonian of the system can be
written as follows:

. [(2m\° 1 1 c,
=25\ L s 8024 L (pat pa2 4 Y2
(q’o) 2C, [( 1+ P4) +Y(P3+P4) + RP6 +

C
—Ejcos(@y) — Ejcos(¢3) — aEjcos(Ps — @) — @3+ 27f)+
L ( @0\ 5 (@) 1 . .,
+2Lc <27r> (P4+<27t> m(%*“lh) ; (4.1)

where ¢; = 21 ¢; / @y, Cy is the capacitance of the big Josephson junctions, L. is the
shared coupling inductance, Lg and Cy, are the resonator inductance and capacitance,
respectively, o = I / I with I, (1) is the critical current of the small (big) Josephson
junction, y = ot +Cs/Cy and 27 f = dy is the external magnetic field. The inductor
L. form a high-frequency oscillator mode of frequency

1

N vV aCyL, ’
which can be considered in its ground state.
Therefore the inductor variable 4 adapts rapidly to the system variations and can
be assumed to be in a quasi-steady state, (A. $ = 0, with respect to the rest of
variables [74, 75, 73]. This choice allows us to neglect the kinetic energy terms
related to coupling inductance (proportional to @) in the Eq. (4.1) and rewrite the
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Hamiltonian as:

~ 21 1 R | Cy . R
= ( ) [p%+p%+’pz}—acos<<pl>

Dy 2Cj Y Cr
—Ejcos(3) —aEjcos(Ps — ¢ — Gz +271f)
L (D" o (Do Lo 0
oL <2ﬂ> <p4+<2n> 2L, (Pt 0 (4.2)

Eq. (4.2) can be further simplified if we assume the variable @4 to be small enough to
expand the cosine terms around it. The most obvious implication of this assumptions
is that the energy stored in the coupling inductor has to be much smaller than the
energy stored in the resonator inductor, i.e. L, < Lg.

The resulting Hamiltonian looks

~ 27 1 1 C R n
s ( ) [A2+Yﬁ§+ Jﬁé] _ Eycos(1) — ¥Es cos(@3)

(O 2CJ C
—aEjcos(— Q) — ¢3 +2nf) — s Eysin(—P; — @3 + 27 f)
1 [Py 1
oL <2ﬂ> oi+5 (<p6+q>4) : (4.3)

The Taylor expansion of the cosine has been stopped at the second order in @4.
In Eq. (4.3), the Hamiltonian can be divided into three terms: a qubit, a resonator
and a interaction Hamiltonian

N 2r\?% 1 1
W= Z= - A2 A2
1 <‘1’0> 2Cy [p * e

— Ej[cos(@r) +cos(3) + crcos(— @y — @5 +27f)] (4.4)
o (20N 1 o1 (o)’
" o @\’ [Le+Lc @} 1 .
Aoy = —aQuEysin(— @ — @3 +21f) + (M) LLs 2+LR<P6<P4
(4.6)

As pointed out in [75], since we assumed that ¢4 is in a quasi-steady state in
comparison with the other variables of the system, it is convenient to assume the
potential defined in Eq. (4.6) to be in its minimum with respect to the coupling
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inductance variable ¢4. In other words,

8904%:/1/1 )
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This approach is known as the Born-Oppenheimer approximation [75, 74, 76, 73].
As a consequence of the quasi-steady nature of @4, it can now be substituted by (f)j‘l
in Eq. (4.6):

. 21\?* LgL VR
Koy == 2<¢0> Lo @ Ersin’ (=1 — s +22)+

Lc (p6
L +Lg2Lg

+ a(pﬁE] sm( @1 — (ﬁg + 27Z?f) . (4.8)

Recalling what has been said in Ch. 1 and Ch. 3, the Josephson terms can be
rewritten in terms of the current operator, [, = (270 /P ) atE; sin(— @y — @3 + 27 f)

oe 1 LgL &\> L. @ @
. Rhe o (20 9% + 32l 4.9)
21 L.+ Lg2Lg

Equation (4.8) can be now separated into a term o< /2, which renormalizes the qubit,
a term o< (/362, which renormalizes the resonator inductance energy, and a coupling
term.

To further simplify Eq. (4.9), we introduce the creation and annihilation operators
for the resonator degree of freedom. In this way, the resonator Hamiltonian defined
in Eq. (4.6) can be reduced to the usual form of a quantized harmonic oscillator:

pe = lzﬂ h‘%cR (a"-a)
(p6 \/ 2COCR (a )

with w? = I.Co c , where L;,; = Lg + L..
Moreover, lets point out that the momentum operator pg is related to the charge
operator Q through the following expression

(4.10)

A 2T

:gopﬁ-

! @} is the operator form of the scalar ¢} defined in Eq. (4.7)
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This relation allows us to define the root mean square current operator as

1 P

N aQ 27 ap6 ho + At
I, = L2 — Q@ , (4.11)

r = at (DO 8; = m(&"i_d) Irms(a -l-a)

\/ zth and where, in the last step, d(¢) = @(0)e~'®" and the following

Hamiltonian relation have been used

s 1 [P >

De o s -
Now, it is possible to redefine the whole interaction Hamiltonian in terms of current
operators. In fact, substituting Egs. (4.10) and (4.11) in Eq. (4.9), we obtain:

with I, =

2 1 LRLC »2 1 L LR 29 L LR A A
oy = —— I Ik I, . 4.12
n 2L +Lg? 2L.+Lg" +LC+LR (4.12)

Hence, recalling Eq. (4.6), the total Hamiltonian %A?,,, = C%Zq + %%g + %% can be
written as [73]

- 2 1 l
2w = == 4.13
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i Loms (4.14)

L. +LR

Please note that, if L. — 0, the system Hamiltonian reduces to two separated
Hamiltonians with no interaction. Such a situation would be as if the shared inductor
would disappear, leaving the qubit and the resonator circuit isolated. Finally, the
coupling Hamiltonian can be written with the usual quantum Rabi model notation
[62]%:

H = hg( +a)o;,

where the coupling strength g is defined as [73]

LL Legslol,
R ik = —elfpms (4.15)

8= Lo+ Lx h

2Here, the qubit Hamiltonian is written in the current basis.
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which is the classical magnetic energy stored in the effective inductance L.y =
L.Lg / (L. 4 Lg) . Nevertheless, since we are imposing the case Lg >> L., the effect-
ive inductance can be reduced to L. and the coupling strength reduces to [73]

_ Lclplrms
8= o

which is the semiclassical definition of the qubit-resonator coupling strength usually
found in the literature [62, 77]. Therefore, we found that under the condition
L. < Lg, we can define the qubit-resonator coupling strength g in the classical
approximation of the energy stored in an inductor L. with current 1, + I,.,,; passing
through it

1 1 1
&= 3 Le(Iy+ Ims)? = Lol I + 5Lclj + ELC.I,ZmS . (4.16)

4.2 Qubit-qubit system

While in the previous section the system was composed by a qubit and a linear
resonator, now a qubit-qubit system coupled through a linear inductance is taken
into account. This kind of system is interesting because it makes us consider a qubit
coupled to a non-linear element. The circuit in Fig. 4.2 can be seen as one of the
simplest ways to couple two qubits, nevertheless it is not very practical from the
quantum computing point of view, since the coupling is fixed by a physical shared
inductance L.

JJ JJ3
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CI)I = 27Tf1
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b, = 27'L'f2
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JJi JJs

Figure 4.2: Circuit of two three-Josephson junction qubits galvanically coupled
through a shared inductance L.

Figure 4.2 shows two three-Josephson junction flux qubits, each one with an applied
external flux fi, f>, galvanically coupled through a shared inductance L.
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The Hamiltonian of this system can be written as follows:

~ D ZC] 1 AD 1 AD A2 A2
%:(275> 2|:<2+051)(PL++ 54‘052 <PR++(PL,+‘PR,

_ P oo O Pev o Pre

E, [2003 > cos > +2cos > cos >

+0u cos(27fi 4+ @ — @, ) + crcos(2mfo — P — Py, )]
CI)O 2CJ AD A /A A @2

(50) G [+ ez 20ut 00+ 2.

where

Y 6 Lo
{‘PLi P10 (4.17)

G = P34
The subscript L (R) stands for left loop (right loop).
For L < Ly, the shared inductor variable ¢y has a capacitive and a magnetic energy
that together form a high frequency LC resonance. Thus, ¢, can be considered as

a “fast” degree of freedom, which means that rapidly adapts to the system and its
average value can be considered constant [75]. Hence, all (f)L-terms can be neglected

~ q)o 2Cj 1 AD 1 A2 A2 A2
%:(27[> 2|:<2+O‘1>(p“+ 5‘1'0‘2 (PR++(pL,+(pR, +

—E; |:2C0S(p£+COS(p£+200$(P§rCOS %—k
+oncos2ufi + @ — ) + arcos2nfa — G — Py, )] +

@)\’ ¢}

e | T 4.18
+<27r) 2L (4.18)

As in Sec. 4.1, the inductor variable is considered to be in a quasi-steady state
[74, 75]. The Hamiltonian in Eq. (4.18) can be separated in

2 CI]O 2 CJ 1 A A (PA <PA _
! 2 2 L+ L
= — - — _
Hy, < ) [( + oc1> o+ (pL] E; [2 cos cos ,

s Do \>Cy (1 52 A2 P P
%;_<27r> 2[<2+a2> o, +0. | —Es 2cos%cos% ,

- %o 2(IA)—‘%—E [o cos2fi+ P — @, )+ (4.19)
m=\ox ) 2o~ e '

+opcos(2mfs — @ — ¢, )] - (4.20)
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Following the same strategy as in Sec. 4.1, it is assumed that |/($?) < ¢ and,
thus, the cosine terms in the interaction Hamiltonian can be expanded with respect
to @r. The resulting Hamiltonians look

A CI)O ZCJ 1 AD AD

Ai=(50) G| (G )it +oz|+ @21)
o ¢L+ ¢L— D
E; 2005—2 cos—2 +ajcos(2nfi— ¢, )| .

X b, 2CJ 1 Y A2

%I’;z(m) 2[<2+o¢2) ¢, +0; |+ (4.22)
) b 0 »
Ej |2cos 5 cos = +opcos(2mfo—Pr.)|

o (P 9 . PN .

Aoy = o) 3l E;@plonsin2nfo — @, ) — oy sin2ufi — @, )] . (4.23)

Following [75], the Born-Oppenheimer approximation is applied to the interaction
term. Hence,

a(py%nt (PZ = 0
@)\ ¢;
<0> & — EJ [061 sin(27tf1 — (PL+) + 0o sin(277:f2 — (pR+)] =0
2n L
2\ 2 . .
=@ = <(Do> Ejlonpsin(2wf — @r, ) — oy sin2nfi —¢,,)] . (4.24)

Since we are assuming L < Ly, i.e. ¢ quickly adapts to the system variations,
@r, can be substituted by the solution ¢; defined in Eq. (4.24). In this way, the
Hamiltonians in Eq. (4.23) can be redefined as
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Let’s note that, in the limit L — 0, there is no coupling and the two qubit Hamilto-
nians are exactly the ones of two uncoupled three-junction flux qubits.
Here again, the previous results can be written in terms of current operators:

2 - - r A A
. D\ Cs (1 2 x -
Ai=(5e) G {(5ren) 082 |- p 2o fos Ty
+aycos(2mfi — ¢, )] — LI (4.25)

~ b, 2CJ /1 22 ;\2_ [ ? P
%R:(M> > _(24-062) o, +0; | —E; 2008%008%4‘

+opcos(2mfr — Pr. )| — Lf;R ,
He =Ly, 1, . (4.26)

In the two-state approximation, £, = I56% (I, = IR6F) is the persistent current
operator in the left (right) loop, written in the respective qubit current base. Finally,
the coupling strength can be defined as

- (4.27)

n

which is the classical expression of the magnetic energy in an inductor with current
15+ IR, A similar result can be found in [78], where the two qubits are coupled
through mutual inductance.
Therefore, we have found that, under the assumption of L < Ly, it is possible to
express the coupling term of the qubit-qubit Hamiltonian system with its classical
approximation.






Persistent current readout: Theory

In Ch. 4, the interaction between a flux qubit coupled through a shared inductor L to
other circuits was analysed. It was shown that, under low coupling strength condi-
tions, the interaction can be expressed in the classical approximation (LIyupicircuir)-
These results are used in this chapter to present the persistent current readout (PCR)
of a flux qubit. Such a novel readout circuit is particularly intended for quantum
annealing, where the qubit Hamiltonian has to be projected on the persistent current
state basis (see Ch. 1). In Sec. 5.1, the readout circuit is presented in a semiclassical
and phenomenological fashion to shed light on the differences between the existing
PCR circuits. Then, in Sec. 5.2, the circuit quantization of the persistent current
readout is presented and, in Sec. 5.3, the quantum optics model is derived and
discussed.



60 Persistent current readout: Theory

5.1 The persistent current readout

circ Ip
at ol N MM N M Lo

_
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N
Figure 5.1: Circuit diagram of a four-junction flux qubit mutually coupled to a
capacitively shunted asymmetric dc-SQUID.

The main principle of the persistent current readout (PCR) developed in this thesis
is to employ a resonator where a portion of its inductance is replaced by an asym-
metric de-SQUID (see Sec. 1.2.2), inductively coupled to a flux qubit. Through
changes of the resonance frequency, the SQUID resonator detects the persistent
current state of the qubit. With respect to the circuits discussed in Ch. 4, there
is no physical inductor shared between the two circuits: the resonator, which is
a capacitively shunted dc-SQUID, is coupled to the qubit via mutual geometric
inductance M (see Fig. 5.1).

Since the first proposal of the persistent current (PC) qubit [40], dc-SQUIDs have
been the preferred dectors to measure the PC qubit states. In the first experimental
demonstration of this kind of qubit [79], a dc-SQUID was coupled to the flux qubit
by mutual inductance. A ramp of current was applied to the dc-SQUID in order to
measure its switching current /i, which was a function of the total magnetic flux
through it. A similar approach is presented in [80], where a dc-SQUID was shunted
by a capacitance to optimize the I, detection. By contrast, in [81], a C-shunted
dc-SQUID was used to detect the persistent current qubit state by driving it with
an AC current and measuring the AC voltage response of the SQUID. However,
this readout system needed a first characterization of the switching current. All
these initial flux qubit experiments were based on the switching current distribution,
which typically has an intrinsic amplitude larger than or comparable to the variation
induced by two PC qubit states. For this reason, these techniques need robust stat-
istics to accurately detect the qubit state and are strongly affected by circuitry noise
[81].

In [82, 83], a dc-SQUID-based resonator was used to detect the current state of a
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flux qubit by employing the bifurcation readout technique. This technique, which
had equivalent implementations in hybrid charge-flux qubits [84, 85], consists of
strongly driving the de-SQUID resonator to its non-linear regime with a high-power
microwave drive close to the resonance frequency of the SQUID. Under specific
power conditions, the resonator show hysteric behaviour and can fall into two
different oscillation states (/ and /), with different amplitudes and phases of os-
cillation. The dc-SQUID drive amplitude and frequency have to be tuned so that
each oscillation phase is connected to a qubit PC state. Although this readout does
not depend on I, and the fidelity of this technique was high, the qubit coherence
was impaired by the low resonator frequency used and the biasing circuit noise.
In addition, high-amplitude driving may result in beating effects and quasiparticle
generation.

Finally, in [59, 47], a first example of a persistent current readout for quantum
annealing was designed as a CPW resonator with an rf-SQUID as a termination. As
noted in [59], this readout circuit has the disadvantage of always being coupled to
the qubit and thus the noise coming from the readout circuit induces a reduction in
the qubit coherence times. As a solution, a tunable coupler was added between the
flux qubit and the rf-SQUID. Despite showing a successful decoupling of the qubit,
the coupler leads to an increase in the number of lines needed to operate the system,
thus increasing the cost of the scalability of this type of readout .

In this thesis, the implementation of an unbiased dc-SQUID resolves many lim-
itations of the previous instances. By employing a dc-SQUID-based resonator,
decoupling from the qubit is possible by setting the dc-SQUID in its flux-insensitive
flux bias point (i.e. & = 0). On the other hand, the dc-SQUID on-chip circuitry
contains no dissipative elements that could affect the qubit coherence, it needs no
I,, calibration (as in [81, 83, 80]), and it is operated without high-power driving (as
in [82]).

The PCR method we propose is based on the circuit of the device shown in Fig. 5.1.
In this system, due to mutual inductance M, a current circulating in the qubit loop
I, generates an external magnetic flux to the SQUID, A® = MI,. A variation in
the qubit persistent current Al,, causes a change in the effective inductance of the
SQUID, AL, leading to a change in the dc-SQUID resonator frequency, A®, where
® is defined as

1
VLCg'’

=

with L the dc-SQUID inductance and Cy its shunt capacitance. Note that, here, L
does not take into account the geometric inductance of the dc-SQUID. In Ch. 6, the
actual dc-SQUID inductance is considered L;o; = Lg + L.
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The change of frequency can be detected following the usual dispersive readout
methods from cQED. To understand the mechanism behind this particular readout
system, we have to first focus on the dc-SQUID itself. As reported in [36], a dc-
SQUID can be regarded as a non-linear inductor. In the implementation of the PCR
developed in this work, the dc-SQUID has no direct current bias other than any
possible current noise from the measurement circuitry, which can be considered
much smaller than the critical current of the SQUID junctions at the operational
flux bias point.

Let’s consider the dc-SQUID as a single junction obeying the second Josephson
equation [36]:

_ hidg,
" 2e ot

S.D

where ¢, is phase difference across the dc-SQUID, as presented in Sec. 1.2.2. On
the other hand, such a circuit element can be regarded as an inductor, which has the
well-known relation between the voltage at its ends and the current flowing through
it, V=L4.

Recalling Eq. (1.17), the bias and circulating currents in a dc-SQUID are defined as

{ I, = Ipsiny; + alpsiny, (5.2)

1 _ Ipsinyy—oaldpsiny, ’
circ — f

where o quantifies the asymmetry of the dc-SQUID junctions and Iy is the junction
critical current. Thus, introducing the semi-difference and semi-sum phases,

_ Y%
0= "75—
) (5.3)
{ ¢ ="7"

it is straightforward to obtain the following relation by combining Eq. (5.1) and
Eq. (5.14)

Dy do, o0,
31 o =L[2cos@.cosp, — (1 —a)cos(@, — ;)] or

which brings the form of L

Dy
L= 27l [2cos @ cos @, — (1 —a)cos(@, — @;)]

Using trigonometric relations, it is possible to reduce the previous formula to

Dy

L= 2l (o) cos(B(o) 1 9.) G4
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where

1—
B(p)=tan"! [mitan(pl} , L(9)= Io\/l +a?+20cos(2¢,) .

Furthermore, Eq. (5.4) can be rewritten as [36]

L % (5.5)

2m\[12(1) — I
Since we are in the limit of a negligible bias current I, the inductance defined in
Equation (5.5) can always be considered positive. Thus, a capacitively shunted
dc-SQUID can be considered as a non-linear LC resonator, whose inductance is
defined by Eq. (5.4) and Eq. (5.5).
For a more intuitive presentation of the main characteristics of such a resonator, let
us consider a symmetric dc-SQUID (o = 1). In this case, Eq. (5.4) is reduced to

~ 4mlycos @.cos @,

(5.6)

As shown in Sec. 1.2.2, ¢, is associated with the phase difference between the two
SQUID junctions. Following refs. [28, 35, 36]

T

[0} ¢0M1p+nf:&+nf, 5.7)

2
where 27t f = &, / @, is the normalized applied flux to the dc-SQUID and ¢, =
+2nMl, / ®, is the normalized flux generated by the persistent current flowing
through the qubit loop. Let us point out that, in the case of a global magnetic field,
the applied flux on the dc-SQUID is not equal to the flux applied on the qubit. The
two fluxes respect the relation
S = Ja , (5.8)
Aso  Aq
where Agp, A, and f, are the area of the SQUID, the qubit loop area, and the qubit
flux, respectively.
As it is clear from Eq. (5.6) and Eq. (5.7), if the applied flux is fixed, the resonance
frequency depends only on the qubit persistent current state. Hence, a dc-SQUID-
based resonator can be used to directly measure the persistent current direction, i.e.
the qubit state in the current basis.
From Eq. (5.6), the frequency shift of the dc-SQUID resonator for a fixed external
flux f can be calculated as

1 1 _
Aoy = (\/Lic — \/L+7C> ~ P, tan(wf) , (5.9)
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where

®
L= 0 , (5.10)

4rlycos (nfj: (I,%MI,,) cos @,

and

DoCr —1/2 N BoCr —1/2
@ 4nlycos (mf)cos @, ~ \4nlycos (mf)cos Ppc

1
LoCr '’

:

(5.11)

where we are approximating cos @, = cos(@sg + ¢pc) =~ cos Ppc + Psg Sin Ppc ~
cos Ppc, with @gp the de-SQUID phase and @pc the phase generated by the bias
current, which is assumed low, i.e. opc/Po < 1. In Eq. (5.11), Ly is defined as

_ D
"~ 4xlycos (mf)cosPpc

Ly (5.12)
Let’s point out that for f = 0 (i.e. no external flux injected in the dc-SQUID),
Awy =0, as the de-SQUID is to first order flux insensitive at that point.

In summary, it is demonstrated that, under the assumption of negligible bias cur-
rent, a shunted dc-SQUID can be considered as a resonator with a flux-dependent
non-linear inductor. It is important to point out that this result is achieved in a
semiclassical framework, as the SQUID is not quantized.

5.1.1 SQUID noise mitigation

So far, the effect on the qubit from external current passing through the dc-SQUID
on the qubit has not been discussed. In the same way in which the circulating current
in the qubit injects a magnetic flux into the dc-SQUID loop, any circulating current
through the SQUID would induce a flux in the qubit, causing a back-action, which
can be a source of decoherence due to noise coming from the SQUID measuring
circuitry.

In order to cancel the back-action effect from external bias noisy currents, note
that the two branches of the SQUID have a mutual-inductance asymmetry with
respect to the qubit, i.e. the two branches couple differently to the qubit. Hence, it
is desirable to have the sum of the two fluxes lead to zero flux injection to the qubit

M, 1. +MI; =0, (5.13)
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where M, (M;) is the mutual inductance between the right (left) branch of the
SQUID and the qubit loop, and I, (;) is the current flowing through branch / (r).
From Sec. 1.2.2,

I, = Ipsiny,

LI =1 sin Y

where 7; is the phase across junction i = [, r. From Kirchhoff’s equations, two other
quantities can be introduced:

I,=1+1 L=+
{ b l+r:>{ 1= 5+ 7 (5.14)

_ =1 _1
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where 1), is the bias current applied to the SQUID and J is the circulating current of
the SQUID.
Substituting Eq. (5.14) in Eq. (5.13), the following relation is obtained

M, + M,
; L+ (My—M,)] =0=>1I,+al =0, (5.15)
where a = 2%. Please, note that in the case of a dc-SQUID symmetrically

surrounding the qubit, as in [35], the two mutual inductances will be equal, M, = M;,
thus Eq. (5.15) is reduced to I, = 0.

Introducing the semi-sum (¢,) and the semi-difference (¢;) of the phases, Eq. (5.15)
can be rewritten as:

1
€Os @; Sin @, +acos @, sin ; = 0 = tan @; = —;tan 0, , (5.16)

where @; depends on the external flux through the SQUID (see Eq. (5.7)), and hence
it can be externally adjusted. In Sec. 1.2.2, it was shown that ¢, can be adjusted
with [;,. In the circuit presented Sec. 5.1, there is no possible way to change 1.
When the condition in Eq. (5.16) is satisfied, in the limit of a small bias current, i.e.
I, = 0, there is no back-action on the qubit when the dc-SQUID is at f = 0, since
J =0, as it is clear from Eq. (5.15). Alternatively, a bias current can be injected by
employing the circuit in Fig. 5.2. In this modified SQUID circuit, the circulating
current in the extra loop with a large inductance L, represents the bias current
of the dc-SQUID loop. Thus, it is possible to adjust I, by changing the flux fj.
Moreover, if L, > Lj, the presence of the parallel inductance does not affect the
SQUID resonance frequency. This approach was already implemented with phase
qubits [86, 87, 39], but it is not taken into consideration in this thesis.
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o =2rf
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Figure 5.2: Dc-SQUID capacitively and inductively shunted. Tuning the flux f in
the inductance loop, it is possible to tone the dc-SQUID bias current /.

In order to mitigate the effect of the back-action of the dc-SQUID, ¢; can be
adjusted by an additional external flux threading the dc-SQUID. As will be detailed
in Sec. 6.1, this is possible by the presence of a dedicated flux bias line coupled to
the dc-SQUID.

In conclusion, it is demonstrated that it is possible to uncouple the qubit external
flux from the dc-SQUID circulating current. In this way, the qubit Hamiltonian
would be exactly the one described in Eq. (3.1) and Eq. (3.3) of an isolated qubit,
aside from a small renormalization of the qubit parameters, since there is no SQUID
flux interfering with the qubit while the measurement is not taking place. In addition,
a Purcell filter can be added to mitigate the noise to the SQUID resonator further
[88].

5.2 Circuit quantization of the PCR

The analysis performed so far was made in a semi-classical framework. In this
section, the Hamiltonian of the whole qubit-SQUID system is derived. As shown
in Sec. 4.1 and Sec. 4.2, when the coupling inductance is small compared to the
uncoupled system energies, the total Hamiltonian can be written as the sum of
three terms: a coupling term, a qubit term, and a SQUID term. Since the qubit
Hamiltonian was already described in Ch. 3, the first part of this section is dedicated
to the circuit quantization of an asymmetric dc-SQUID. Then, the total circuit
Hamiltonian is presented and discussed.

5.2.1 Asymmetric dc-SQUID quantization

Following form Sec. 4.1 and Sec. 4.2, in this section we will introduce several
approximations to simplify the complexity of the total Hamiltonian, in order to
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discuss the effect of the interaction between the qubit and our readout resonator.
To be as general as possible, we consider an asymmetric dc-SQUID, as in Fig. 5.1.
The quantized Hamiltonian of this circuit can be written as [35, 89]

2\? 1
, (2« 22y 1 oA A
Ao =(22) g [+ 102+ )~ (1= Dpep]

—2Ejcos Q,cos @i+ E;(1—ot)cos (P — @) (5.17)

where

c (5.18)

Y= 2 Sl and {@ - <P1+iP2
with Cg the capacitance of the SQUID shunt, C; and E; = ®yI; /27 the capacitance
and Josephson energy of a junction, and the asymmetry o = [ / I, <1, with I} and
I, the critical currents of the dc-SQUID Josephson junctions. For o = 1, Eq. (5.17)
represents the Hamiltonian of a capacitively shunted symmetric dc-SQUID. The
operators p;, P are conjugated to @;, @, i.e. [@;, pr] = iSjx.

In order to introduce the effect of the qubit, as presented in [35], the external and
internal phase variables can be re-expressed as
{ﬁ?e:(?SQ‘f‘(PDC ’ (5.19)

Gi=5+nf

where @, is the operator form of the scalar @, (defined in Eq. (5.7)), @pc is the phase
generated by the SQUID bias current, 27 f = & / @, is the frustration, and Qsp
is the phase operator describing the quantum fluctuations of the SQUID resonant
mode [35, 36]. Substituting Eq. (5.19) in Eq. (5.17), the total Hamiltonian becomes

~ 2T 2 1 R R A
g (cpo) [(r+ )P+ 52) — (1 V)sos]

8YCy
—2E;jcos (Pso + @pc) cos (@ + 7 f)
+E;(1—a)cos(Pso+¢pc — P —7f) . (5.20)

where p; is the conjugate variable of ;.

Now, some approximations must be made. As in Sec. 4.1 and Sec. 4.2, the ﬁé—term
is a renormalization of the qubit Hamiltonian (see Eq. (4.13) and Eq. (4.25)), while
the p,psp is a coupling term between the qubit and the SQUID induced by the
capacitances of the two systems, which can be neglected given the small geometric
coupling capacitance in this kind of circuits [90]. Therefore, the Hamiltonian now
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looks like:

) 2\ y+1 . .
a%”SQ2< )YPSQ—l—e%’i,( )—2EJCOS((pSQ+(PDC)COS((Pq+7Tf)+

Do) 8YCy
+E;(1—a)cos(@Pso+ @pc — Py —7f) . (5.21)
where the qubit Hamiltonian renormalization term %’éfren) is
(ren) 21\ 2 Y+1
" = = 52 5.22
a @) 8yc, P4 (5:22)

ji%](re") renormalizes the qubit kinetic energy term, leading to a modification of the
qubit properties (A and 7).

Equation (5.21) can be further simplified. Since Cgr must be large enough to avoid
a too high SQUID resonance frequency, we have E; > E. for the dc-SQUID.
Following [11, 91, 35], this means that the SQUID quantum fluctuations of the

phase operator @sp are small, i.e. q,%o, / (¢S2Q> = %0, / % CLS < 1, with L the dc-

SQUID inductance!. Moreover, since the typical values of M and I » are, respectively,
in the 1 — 10 pH and 10— 100 nA range, (@,) < Py. For these reasons, it is possible
to expand the cosine product in the Taylor series in Eq. (5.21).

Retaining terms up to the second order in ¢, and @5, the approximated Hamiltonian
looks like

2 2n 2')/""1 2 2(ren)
o~ () Y52 4
SQ (CDO) 8YCJPSQ+ q

. . - | I
+ Ej[Fs@so + Fy@q + Fiq@qPso + EFsz (PS2Q - ﬂzq‘PSZQ(Pq} , (5.23)

where the following scalar functions are introduced

Fy =2cosmfsingpc+ (1 —a)sin(nf — ¢pc) , (5.24)
F, =2sinzmfcosppc — (1 —a)sin(nf — ¢pc) , (5.25)
Fyy = (1—a)cos(nf— @pc) —2sinmfsin @pc , (5.26)
Fpo =2cosmfcosppc— (1 —a)cos(nf—@pc), (5.27)
Fo, = (1—a)cosmfsin@pc+ (14 o)sinzfcos Ppc - (5.28)

11 is defined in Eq. (5.5). Since it has been derived in a semiclassical framework in the symmetric
case, Lgp will be defined in Eq. (5.34) as the effective dc-SQUID inductance and will substitute L in
our approximations.
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Note that, in the case of a symmetric dc-SQUID with a low bias current, i.e. ot = 1
and @pc — 0, Egs. (5.24) to (5.28) are reduced to

F=0, (5.29)
F,=2sinmfcos Ppc , (5.30)
Fyy =0, (5.31)
Fo =cosmfcos@pc, (5.32)
Fp, = 2sinfcos Qpc - (5.33)

Furthermore, the term o< (p_%Q in Eq. (5.23) can be rewritten as

1 5 @i ., (@) P
~EjFpfl = —LFap2, = —
2B 2950 an 2050 1) sy’

where we defined the effective SQUID inductance

Lsp = —20
T 2nLFy

(5.34)

After some trigonometry, Eq. (5.27) can be written as

hFp =I(nf)cos(B(nf)+ ¢nc),

where

B(nf)=tan"! [1_“

1_i_OCtanﬂ:f} , I(mf) :11\/1+Oc2+2acos(27rf) .

Hence, Eq. (5.34) is a special case of Eq. (5.4), in which there is no flux injection to
the SQUID (¢, = 0) and @, = ¢pc, i.e. (Psp) < ¢pc. Hence, following Eq. (5.5),
we can define the effective SQUID inductance to be positive, Lgp > 0.

Going back to the Hamiltonian in Eq. (5.23), it is possible to recognize the Hamilto-
nian of a quantum harmonic oscillator

. 2r\? 1 @)\ > P50
=) — P+ —
R <CI)()> 2CSQPSQ+(27T> 2LSQ

_ MG

Y+1
The term proportional to @sp in Eq. (5.23) can be added as a displacement in the
potential of the SQUID (¢sg — (ng)z. A similar argument follows for @, for the
qubit.

where

CSQ
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At this point, it is possible to introduce the creation and annihilation operators of a
C-shunted dc-SQUID treated as a harmonic oscillator

Pso = 32/ 592 (a' +a) ith o= (5.35)
A . thQ Wso AT N W S0~ L C ’ )
Pso =igiy/ =572 (@' - a) V/LsoCso

and, as in Eq. (4.11), the current operator of the SQUID can be defined as

N 8Q 2 8133Q ho +
Ir _ = — = q q) =
ot (on ot 2LSQ (a +a)

I &g .

= IrmS(CA’Jr +a)= @EQDSQ ) (5.36)
which implies
o 2xLsp -
dso ="l (5.37)
0

Now, substituting Eqgs. (5.35) and (5.37) and ¢, = %MIAP in Eq. (5.23), the approx-
imated Hamiltonian looks like

N ; 1 5
%Q ~ ha)SQ <a1a+ 2) +%(ren)
1 ~a 2T s
+ 5 <ng}l,LSQIrlp - aOngqur Ip) 5 (538)
where A = 2751)1%1 L = LM, This Hamiltonian contains two interaction terms to the qubit,
one proportional to the resonator current, the other one to the current squared.
Hence, in this section, it has been shown that the shunted dc-SQUID Hamiltonian

can be described as a resonator Hamiltonian with an interaction term, in which the
qubit degree of freedom plays an essential role.

5.2.2 Persistent current readout quantization

Following [35], the Hamiltonian of the whole system in Fig. 5.1 can be written as the
sum of the qubit Hamiltonian, as defined in Sec. 3.1, and the SQUID Hamiltonian
expressed in Eq. (5.38):

H = Hy+ Hig . (5.39)

In Eq. (5.38), it is possible to recognize a pure resonator term and two interaction
terms. Thus, the whole Hamiltonian can be expressed as

H = ) + Sy + I, (5.40)
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where %%{ = ,%%, + %%Uen) is the renormalized qubit Hamiltonian and

. 1
Sk = hag (&Taurz), (5.41)
5 1 ~a 27 25
M. =~ | FyALsohd, — = Fp AL, | . (5.42)
2 o, 1

Now, the interacting part is clearly understood as a coupling term that hybridizes
the qubit and the dc-SQUID resonator states. Moreover, it is interesting to notice
differences and similarities between Eq. (5.42) and the results presented in Ch. 4.
Using the definition of A and Eq. (5.34), it is easy to rewrite:

LLQF . (I=a)cos(mf — @pc) —2sinfsin opc

1
~ALsoFyy =M =
P 2L, M 2cosfcos Ppc — (1 — o) cos(mf — opc)

=M,y
(5.43)

Hence, the first term can be identified as a dipolar interaction term [92, 93].
%(1) = efffrip )

where M, is an effective mutual inductance, similarly to Eq. (4.15). Let us point
out that, for o« = 1 and @pc = 0, M, s = 0 and, consequently, e%%(]) =0.

The I? term of Eq. (5.42) cannot be neglected: as expressed in Eq. (5.32), Fyy =0
in the case of a symmetric dc-SQUID with no bias current, which implies that the
coupling Hamiltonian is reduced to o< I?I},.

Therefore, the total Hamiltonian in Eq. (5.39) is reduced to Eq. (5.40), with %%q
and e%% defined in Eq. (5.41) and Eq. (5.42), respectively, under the assumption of
no flux injected into the qubit by the external current biasing the dc-SQUID.

5.3 Quantum optics of the persistent current readout

Finally, we have all the elements to understand the effects of the interactions in
Eq. (5.42) on the spectrum of the coupled qubit-SQUID system. Let us approximate
the qubit as a two-state system. Following [62], the two-level approximation of the
current operator in the energy basis can be written as

i 1<8A AA)

=1, —6,——6

P )4 Z X )
(Oq (Oq

where, recalling from Ch. 1 and Ch. 3, %A is the energy gap between the first
two states of the qubit at f = 0.5, he = 21,(®; — Py /2) and @, = VA?+ 2. Let’s
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consider a flux qubit operated at the symmetry point, i.e. € = 0. The current operator
is reduced to

I, =—1,6,.

Now it is possible to write Eq. (5.40) in terms of Pauli matrices and annihilation

and creation operators?:

+ ),
A |h = wspa’ a+ TqGZ —gi1(a"+a)o, — g2(a" +a)’0o; (5.44)
where
_ Mesplplims _ MIploms (1 —a)cos(mf — @pc) —2sinmfsin Ppc
81 h A 2cosmfcosPpc— (1 —at)cos(mf—@pc)’
1 LSQ T 2 T (2) 2
82 = —%F;Zq L; & —lnslp = _F%MeffLSQIrmslp -
» - (I—o)cosmfsingpc+ (14 o) sinzf cos ope
= MLSQIrvaP )
by 2cosmfcospc — (1 — o) cos(mf — @pc)

with Me( f} Fo,M 7% LSQ M %4 If the dc-SQUID is operated at its flux-insenstive
points (f =0,0. 5) w1th no blas current (¢pc = 0)) the coupling strengths g, g2 =0.
For a symmetric dc-SQUID (o = 1), g1,g> = 0 also for f = 0. In other words, under
these conditions, the qubit and the dc-SQUID resonator are decoupled.

Moreover, if an unbiased symmetric dc-SQUID is considered (i.e. o = 1 and
¢pc =0)

g1 =0 (5.45)

9 = —— MLgpl?, I, tan 7 f = (5.46)

(p SQ A(Di
h@() rms q2 ﬂf — T T A5

2
where Aw. was already defined in Eq. (5.9), with Cg = Cgp.

Introducing the ladder operators [6y,6_] = o, and expanding (a' +a)?, Eq. (5.44)
reads

,
A h=0sod a+ Do.—g (a +a)(o +0.)

— 2 [(aT2 +a*)(o_+0.)+(2a'a+1)(o + c+)} , (5.47)

which is a quantum Rabi model (QRM)-like Hamiltonian of the system in Fig. 5.1
[94].
This result can be further simplified by the rotating wave approximation (RWA) [35],

2For clarity, from now on, the hat on operators is omitted.
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which is valid when g; /wsp < 1 and g2/ wsp < 1, where we neglect the counter-
rotating terms, (i.e. rotating with 2@sp + @,), and the terms proportional to ala(c_+
o_), (i.e. rotating with @,). The final form of the approximated Hamiltonian of the
whole system is, then,

o, .
A [h~ wspa’ a+ TqO'Z —gi(o_a"+0ra)— gz(c_aT2 +0.d%). (5.48)

With the form of the Hamiltonian as in Eq. (5.48), it is clear that the qubit-SQUID
coupling is formed by single- and two-photon interaction terms. The Hamiltonian in
Eq. (5.48) describes a two-photon Jaynes-Cummings (TPJC) model [95]. A similar
solution can be found in [35], where a symmetric SQUID is used instead.
Therefore, in Eq. (5.48), we can clearly see the effect of the interaction between the
qubit and the readout circuit, from a quantum optics point of view.

5.3.1 Dispersive shift in the persistent current readout

With Eq. (5.48), the effect of the qubit state on the frequency of the resonator can be
calculated. The dispersive Hamiltonian for a qubit capacitively coupled to a readout
resonator was found in Eq. (3.10). Clearly, that result cannot be used here due to
the different nature of the qubit-resonator interaction. Still, we can apply the same
approximations as in Sec. 3.2 to reach a similar result.

For simplicity, let’s start by analyzing the case of an unbiased symmetric dc-SQUID,
i.e. g1 = 0. Since in our experiment |g>| < |Wsp — @y, it is possible to transform
Eq. (5.48) to express the TPJC Hamiltonian in the dispersive regime.

In order to calculate the dispersive 2-photon Hamiltonian, we use the Schrieffer-
Wolff (SW) transformation. The detailed calculation is presented in App. C.

The resulting Hamiltonian is

!

[0)
Hopr/h= 05— x (a'a+1)0.]a’a+ 7’102 , (5.49)
where
ng:wSQfZX, a);:a)q72x,
g Ao

C20s0—0, 4Qwso—w,)’

In Eq. (5.49) it is stated that the SQUID-resonator frequency is shifted by y [c,(a’a+
1) +2]. At the same time, the qubit frequency is shifted by x[a‘a(a’a+ 1) +2]. It
is interesting to note that, while there is a linear term in (aa), which returns an
ac-Stark effect contribution to the resonator frequency, the (a’a)? term is a cross-
Kerr term with the same order of approximation as the linear term. Equation (5.49)
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defines the dispersive TPJC Hamiltonian, which conserves the number of the total
excitation, C = n+ o, + 1 [96]. For a general multi-photon Jaynes-Cummings
Hamiltonian, the total excitation number is C = n+ (m/2)(o, + 1), where m is
the number of photons mediating the interaction. Physically, this means that two
resonator photons are required to induce a transition in the qubit state. Hence, the
Hamiltonian can be represented as a block-diagonal matrix

E)

E;
E, 0 0
A= 0 Ef , (5.50)
E; 0
0 0 Ef

where each block defines a Hilbert subspace .77-") with basis {|.4",g), |4 —2,e)},
where ./ is the number of total excitations

(AN ,g|C| N, g) =N =(N—=2,e|]C|N —2e) . (5.51)
The eigenvalues of each subspace .7°") can be expressed as
E, =-9%7%
El =ws— “’q;zl , (5.52)
E5 = wso(N 1)+ % [osg = G+ (A= A)]

where A, ¢ | N ,g) =E", |A,g) and Hpp| N —2,e) =E |4 —2,e). Note that
A0 and #(V) are one-dimensional subspaces with basis {|0,¢)} and {|1,¢)}.
This result follows from the assumption that only the TPJC interaction plays a role
in the effective Hamiltonian. Under this assumption, the resonator has to lose two
photons from |n, g) to excite the qubit to |n — 2,e), where n is now the number of
photons in the resonator. As a consequence, it is not possible to excite the qubit if
there are n < 2 photons in the resonator.

A graphical representation of the energy levels of the system is depicted in Fig. 5.3.
Furthermore, defining the general system state as |¥) = |n, g/e), it can be shown
that the resonator frequency shift A@y;s), is

A@yips = 0% — 0 = (Ej1o) —Ee) — (EjLg — Ejog) = 4% (5.53)

This shift must not be mistaken for the frequency shift presented in Eq. (5.9), as it
is the shift of the energy states. In fact, so far in this section, the energy basis of
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Figure 5.3: Energy levels of the qubit-PCR system in the symmetric unbiased case.
Solid lines represent the bare energy levels (i.e. uncoupled system). Dashed lines
in the center represent the dressed energy levels (i.e. coupled system). The dashed
lines are labelled with the energies as defined in Eq. (5.50).

the qubit is always used, whereas the resonator frequency shift defined in Eq. (5.9)
depends on the direction of the current flowing through the qubit. In order to obtain
the shift due to the current change, Eq. (5.49) should be rotated to the current basis.
In the current basis

Gz(energy) _ iGZ(current)_l_AG)gcurrent) . (5.54)
q @y

The rotated Hamiltonian is

%.(;}”mm)/h _ |:w.§Q —x (a-{-a+ 1) (:;Gz(current) + Ag}gcurrent)>:| da (5.55)

4 2
(D, £ UTT A UTT
+J <Gz(cu ent)_i_ic)gm enl)> : (5.56)
2 w, Wy

where 6. = |0) (0] — [5) (O] and 6™ = |0) (O] + |3) (©]. Thus, the
frequency shift can be calculated

ke > E
wéé) - wé(g) = (Ejoy —Epey) = (Ejne) —Ejos) = 4)(5[1 : (5.57)
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If the system is far from the symmetry point (@, — €), Eq. (5.57) reduces to

4y = 2 o, w , as in Eq. (5.53) at the symmetry point. From Eq. (5.57), the dc-
SQUID resonance frequency is not affected by the qubit at its symmetry point.
However, we are considering the system in the RWA, whereas the neglected terms
in Eq. (6.47) and in Eq. (5.23) could lead to small modifications of Eq. (5.57),
resulting in y # 0 at f =0.5.

Considering an asymmetric dc-SQUID, i.e. g; # 0, it is possible to calculate the
dispersive Hamiltonian with the same procedure used for the unbiased symmetric
dc-SQUID case. The effective total Hamiltonian is, in this case,

f (1)
o 0, —x
AN = |0hy— xVo. — 2 (afa+1) Gz} dat Lo, (58)
where
2
4 s — @,

(2) g%

= 5.60

X 2(1)5Q—(1)q ( )

It is important to notice that, from Eq. (5.43) with I, ~ 0, g1 < g2. Even though
the effect of the system on the energy levels is small, it has a strong impact from
the symmetry point of view. In fact, due to the presence of the JC terms, Eq. (5.58)
shows no continuous symmetries; thus it is not possible to divide the total Hilbert
space in subspaces, but the eigenstates can still be found numerically.
Consequently, it is demonstrated that the total Hamiltonian can be described as
the sum of the qubit Hamiltonian, a resonator Hamiltonian and a qubit-resonator
coupling Hamiltonian. Furthermore, it is shown that, under the approximation of
low coupling, a dispersive Hamiltonian can be defined and, from that, the dispersive
shift on the resonator is found. Moreover, the resonator frequency shift depending
on the qubit state is derived from both a semi-classical and a quantum mechanical
point of view. The PCR is shown to be decoupled from the flux qubit by tuning
the applied external field in the SQUID. This feature is very useful in quantum
annealing routines, as it decouples the qubit from the readout noise. In the end,
differences between the Hamiltonians based on a symmetric and an asymmetric
dc-SQUID resonator are shown and discussed.
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Building on the results presented in Ch. 5, the first experimental results obtained
on the persistent current readout (PCR) were presented in this chapter. In Sec. 6.1,
the chip design is introduced, in which, as discussed in Sec. 5.1, the considerations
regarding the dc-SQUID resonator and its back-action on the qubit are taken into
account. Then, in Sec. 6.2, the characteristics of the fabricated chip are presented,
including a discussion regarding the differences with respect to the device design.
In Sec. 6.3, we present the CPW spectroscopy measurements, whereas in Sec. 6.4,
the focus is on the SQUID resonator signal. In Sec. 6.5, we discuss the effects of the
qubit presence on the de-SQUID resonator transmission and the proof of concept
of the PCR.

Several chips have been fabricated along the duration of this thesis. The results
presented in this chapter have been obtained on a chip fabricated by QuantumWare,
thanks to the support of Qilimanjaro Quantum Tech.

The details about the design software, the fabrication processes, the experimental
setup, and the measurement techniques are presented in Ch. 2.
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6.1 Chip design

Figure 6.1: Entire chip design circuit to implement the PCR: a coplanar waveguide
(CPW) resonator and a dc-SQUID resonator, both coupled to the same qubit.. In
the top part, a feedline is capacitively coupled to the dc-SQUID resonator finger
capacitor. In the bottom part, a CPW resonator is inductively coupled to its feedline.
In the central part, two FBLs are coupled via mutual inductance to the qubit and
dc-SQUID loops.

In this section, we detail the chip layout to implement the first generation of PCR.
In order to demonstrate the results presented in Ch. 5 and compare them to the
conventional dispersive readout method, two experiments are placed on the same
chip using two dedicated feedlines, as shown in Fig. 6.1. In Fig. 6.2a, we show the
dc-SQUID resonator, which is capacitively coupled to the top feedline of the device
and inductively coupled to the qubit, in order to perform PCR measurements. In
Fig. 6.2b, we show the coplanar waveguide (CPW) resonator capacitively coupled
to the qubit to perform conventional dispersive readout measurements, as those
presented in Sec. 3.4.

Since the same qubit is probed by both readout methods, the results can be compared
and analyzed. Any difference in the operation of the readout methods is interesting
for future applications, such as quantum annealing (Sec. 1.4).

It is important to state that this device is designed with a Nb optical layer and
Al-based Josephson junctions, while the device in Sec. 3.4 was fully made of Al.
In order to analyze the device functionality, the main parts of the chip are separately
discussed in the following subsections.
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(b)

Figure 6.2: Designs of the two different experiments for PCR benchmarking. (a)
The PCR readout circuit with a zoom in on the qubit and dc-SQUID loops. (b) The
CPW resonator readout circuit.

6.1.1 dc-SQUID resonator

As presented in Fig. 6.2a, the dc-SQUID resonator is composed by a de-SQUID
shunted by an interdigitated finger capacitor. In this first generation, the dc-SQUID
is designed with symmetric Josephson junctions with critical current /. = 180nA.

For clarity, the effective circuit diagram of the dc-SQUID resonator is depicted in
Fig. 6.3.

1
B2 G
L
% LSQ —— Cg
Lg/2 Cg |

\
b
Figure 6.3: Effective circuit diagram of the dc-SQUID resonator. L is the total
inductance of the branches, while Lgp is the dc-SQUID inductance. C, is the
capacitance to the ground, whereas C, is the capacitance to the feedline for S
measurements.
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The total inductance of the dc-SQUID resonator is given by the sum of the dc-
SQUID inductance Lgp and the geometric inductance L, from the connecting arms
to the finger capacitor. Hence, the resonance frequency is given by

1
W59 = —F/———— -
V/Cr(Lg + Lso)

The geometric inductance of the dc-SQUID resonator is simulated with FastHenry
and it is found to be Ly = 0.118nH. Using the design value of /. and taking into
account Eq. (5.6), the SQUID inductance is calculated to be Lgp = 1.418nH at
fso = 0. These values impose a constrain on the capacitance Cg value, since it
has to be designed to yield a resonance frequency within the bandwidth of the
experimental setup (4 — 8 GHz). Using COMSOL, the finger capacitor is designed
with Cg = 0.72pF, resulting in a maximum frequency of @sg / 2w =5.755 GHz at
fso=0.

Another key parameter for the qubit’s persistent current state detection is the mutual
inductance M between the dc-SQUID and the qubit loop. Taking into account the
junction dimensions, the dc-SQUID loop is placed in proximity to the qubit with a
minimum distance of 1.5 um, leading to M = 10pH.

In order to quantify the PCR efficiency, we define the frequency difference of the dc-
SQUID resonator given by the two qubit persistent current states, AWsg = \a)gg —
cog)Q] In Fig. 6.4, the simulated behaviour of the average dc-SQUID resonance
frequency (5o /27 = (@4 + ®_) /47 = V50 and the difference in the dc-SQUID
frequencies due to the two qubit states Aw / 21 = |0y — o_| / 27 = Avsg are shown
with respect to fso. We find that the dc-SQUID resonator measurable frequency is
in the range of 4 — 5.755 GHz with f within —0.36 to 0.36.

Recalling Eq. (5.8), the flux in the qubit loop is proportional to the flux in the
dc-SQUID, thus it is key to design the dc-SQUID loop area Agp with the correct
proportion with respect to the qubit loop area A,. For this reason, the design of the
qubit and the dc-SQUID loop areas must satisfy the following: to have the average
dc-SQUID frequency Vso within the setup bandwidth, the frequency shift Avgp
large enough to distinguish the two qubit states, and the qubit to be in its sweet-spot.
Since @gp /Asp =B = @, /A,, with Dgp (Pp) the magnetic flux in the dc-SQUID
(qubit) loop, we impose

(6.1)

Iso
fq
where f; = 0.5 and fg, = 2.7 (see Sec. 5.1). To understand the reasons why the

dc-SQUID working point is chosen to be 2.7, some considerations have to be
made. From Fig. 6.4, it is clear that the sensitivity of the dc-SQUID is higher as

& = foQ —)ASQ :Aq

= =5.4A
A, Aso a
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Figure 6.4: Simulated behaviour of Vgp (in red) and Avsg (in blue) with respect
to fsp. In this plot, M = 10pH and I, = 100nA are assumed. The dotted lines
represent the setup bandwidth limits.

fso — £0.5, since Aw — . However, wsg — 0 at f — 0.5, i.e. the dc-SQUID
resonance frequency falls outside of the setup bandwidth. Moreover, since we are
interested in studying the dc-SQUID resonator response around the qubit sweet spot,
the SQUID resonance frequency needs to be higher than 4 GHz to perform a flux
sweep around the qubit working flux. Choosing a too large slope of Awsp vs. f is
not convenient as the sensitivity to flux noise would increase. For these reasons, the
working point of the de-SQUID is chosen to be f, =n=+0.3. Later, for fabrication
convenience, n 1s chosen to be 3, thus fg‘Q =3-0.3=2.7. In Fig. 6.5, the first
4 periods of the dc-SQUID resonance and the working point of the dc-SQUID
resonator where the qubit is at the sweetspot are shown. Figure 6.5 indicates the dc-
SQUID resonator frequency Vg, = 4.622 GHz at the working point. At the same flux
bias, the frequency shift due to the qubit state is calculated to be Avg, = 2.86 MHz,
which is measurable with conventional cQED methods.

6.1.2 Coplanar waveguide resonator readout

As mentioned in the introduction of this section, a linear CPW resonator is placed
in the lower part of the device to perform the conventional cQED dispersive readout
measurements.

To compare the different readout properties of the two methods, the two resonators
are designed with similar resonance frequencies at the operating SQUID flux. As
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-0.5 0.0 05 1.0 15 20 25 3.0 35
fsq

Figure 6.5: Four periods of the average frequency of the dc-SQUID resonator. The
dashed lines indicate the working point, f = 2.7, V5, = 4.622 GHz, where the qubit
is expected to be in its symmetry point.

for the single-qubit experiment presented in Ch. 3, the CPW resonator is chosen
to be a quarter-wave resonator, to capacitively couple to the qubit. Thus, recalling
Eq. (3.15), the resonance frequency is given by

c 1
A /Eeff 4] ’

the length / = 5265.81 m is chosen to yield a frequency close to vg, =4.622 GHz.
As in Sec. 3.3, the chip is designed on Si, therefore €,7r =~ 6.255. Starting from the
design in Fig. 3.5b, the length is adjusted by increasing the segments between the
windings and the calculated frequency is vepw = 4.748 GHz. In Fig. 6.2b, the final
design of the CPW is presented. Then, the CPW resonator is simulated in Sonnet,
under the assumption of a lossless metal without taking into account the effect
of the kinetic inductance. This choice was made assuming the kinetic inductance
contribution to be negligible, due to the thickness (200 nm) of the device. The
simulated transmission is characterized by a resonance frequency Vg, = 5.559 GHz
and an internal quality factor Q = f / Af =~ 6700, in a first approximation. This

Vepw = (6.2)

value is different from the estimate in Eq. (6.2), since it returns the loaded resonator
frequency. The value of Vcpy is higher than the dc-SQUID resonance at the working
point. Nevertheless, Vs has to be fixed thanks to a local magnetic field, generated
by a dedicated FBL, to perform qubit spectroscopy. Hence, it can be fixed close to
Vepw, in order to compare results of the two readout methods at the same frequency.



6.1 Chip design 83

6.1.3 Flux qubit circuit

LI

Figure 6.6: Qubit and dc-SQUID loops. The qubit ¢ junction is directly connected
to the shunt capacitance. The dc-SQUID loop surrounds part of the qubit loop and
is connected to the dc-SQUID shunt capacitance through a geometrical inductance
L,.

As in Sec. 3.4, the qubit is designed as a four-junction flux qubit with a shunt
capacitor. As shown in Fig. 6.6, the qubit loop is surrounded by the dc-SQUID,
which is 1.5 um at its closest point to the qubit.

The big qubit Josephson junctions are designed with critical current /. = 180 nA,
while the small Josephson junction is designed to have o = 0.55, thus the critical
current is I, = 100 nA.

The qubit shunt capacitor is designed to lead to a qubit frequency lower than CPW
resonance Vepw = 5.559 GHz.

Following the discussion in Sec. 3.4, in order to simulate the qubit spectrum, we
have to calculate the effective shunt and coupling capacitance, given the complete
capacitance network, shown in Fig. 6.7a. Although the circuit in Fig. 6.1 is more
complex than the one described in Sec. 3.4, the same approach to the capacitors
network is applied and presented in Sec. 6.1.4. Once the capacitances are designed,
a COMSOL simulation is performed to obtain the capacitance matrix, which is used
to calculate the effective shunt and coupling capacitances. Then, the qubit spectrum
is simulated. By iterating this process, the parameters for the capacitance designs
are obtained. The qubit spectrum with the final parameters is presented in Fig. 6.11.
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6.1.4 Capacitance network
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Figure 6.7: Capacitor circuits diagram. In (a), the whole system is described as a
capacitor network with the voltage V on the CPW (node 3). In (b), the desirable
circuit diagram is depicted.

As shown in Fig. 6.6, the qubit loop is directly shunted by a parallel-plate capacitor.
Nevertheless, as was shown in Sec. 3.3, it is the entire capacitance network that
determines the qubit response. By analysing such a network, it is possible to obtain
an effective shunt capacitance Cy; and an effective coupling capacitance C,, as
defined and shown in Figure 6.7b. In other words, in order to simulate the qubit
response it is necessary to reduce the circuit in Fig. 6.7a to the diagram in Fig. 6.7b,
in which Cy;, and C, are the only effective capacitances involved.

The first step to reduce the capacitor network is to define its nodes, which are the
plates of the qubit shunt capacitor (1,2, in green), the CPW resonator conductor
(3, in red), the surrounding ground plane (4, in gray) and the two finger branches
of the SQUID shunt capacitor (5,6, in blue). Thus, the capacitor network from the
chip in Fig. 6.1 is described by the circuit diagram in Fig. 6.7a, in which all nodes
are connected to each other by a capacitor C;;, where i and j are the node labels. It
is important to point out that, for the capacitance network analysis, the voltage is
placed in node 3, which means that we are measuring through the CPW resonator.
In the case of measuring through the SQUID-resonator, the voltage should be placed
between ports 5 and 6. Nevertheless, due to the inductive nature of the coupling
between the qubit and the dc-SQUID, the coupling capacitance would be negligible.
It can be shown that, in the case of measuring through the dc-SQUID resonator,
Csn = Crp.

For clarity, in Fig. 6.8 the circuit in Fig. 6.7a is represented as a hexagon in which
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all the vertices are connected and the voltage is neglected.

Figure 6.8: The circuit diagram in Fig. 6.1 is here rearranged in a hexagon shape.

It is possible to reduce the complexity of this diagram by applying the star-mesh
transformation [97, 98], which allows to delete a node by redefining the remaining
capacitances. Here, in Fig. 6.9, this technique is applied to node 6.

5 5

. NN

6
ZANA
3 3 2

Figure 6.9: Star-mesh transformation applied to node 6 .

After the transformation, each remaining node, from 1 to 5, is connected by two
capacitances in parallel: C;; and Cj;, with i, j = 1...5. The new capacitance Cj; is
defined as follows

5
1 CiCi
Zii=ZigZis ), 7 = Cjj= o o (63)
k £k6

Y NG
In this way, the circuit diagram in Fig. 6.8 can be reduced to a fully connected
pentacle, with the capacitance between nodes i and j defined as Clj =C;j+C] ;- This
process can be iterated to reduce the entire capacitor network to a single capacitance
between nodes 1 and 2, which is the Thévenin capacitance Cyy,.
By applying the Kirchhoff law to the circuit in Fig. 6.7a, it is possible to define the
Thévenin voltage Vrj,. Thus, Fig. 6.7a is reduced to the circuit diagram in Fig. 6.10.
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Figure 6.10: Thévenin reduction of the circuit in Fig. 6.7a.

Since we are interested in finding the qubit shunt and the coupling capacitance, it is
necessary to find a relation between the Thévenin reduction in Fig. 6.10 and the
desired circuit in Fig. 6.7b. Hence, applying the Thévenin theorem to Fig. 6.7b, we
find the relations

C.
Csh + Cc

Crn =Cop +Ce , Vrn = v,

where V is the voltage in Fig. 6.7b.

With these results, it is possible to extrapolate the capacitances and design the chip
with the optimal parameters for readout. The final design parameters for the qubit
are presented in Table 6.1 and the expected spectrum is depicted in Fig. 6.13.

Con 4.0 fF
Ce 0.3 fF
A/2m | 4.878 GHz
1, 69.94 nA

Table 6.1: Qubit design values.

As said above, if the readout is performed through the dc-SQUID resonator, the
coupling capacitance is negligible (C, ~ 10 aF) and Cy;, = C;;, = 4.3fF.

6.1.5 Flux biasing and test structures

As discussed in Sec. 5.1.1, it is necessary to design a flux bias line (FBL) to locally
apply a magnetic field to the SQUID in order to mitigate the dc-SQUID back-action
to the qubit. Moreover, the presence of a FBL for the dc-SQUID can help in per-
forming more precise measurements. In fact, if a global magnetic field is applied, a
local field on the SQUID-resonator can fix its frequency while performing a sweep
of the qubit frequency with the global flux. For these reasons, two FBLs are placed
in the center of the chip and reach the hole in the ground plane in which we placed
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Figure 6.11: The simulated qubit spectrum with parameters presented in Table 6.1,
where A/27 = 4.878 GHz.

the qubit and the dc-SQUID loops. The FBLs are designed as shorted 50 Q2 CPWs
that work as flux antennas.

Finally, test structures are placed on the chip, consisting of single Josephson junc-
tions, with the dimensions of the qubit a-junction, connected on both sides to a
lead. These junctions are used for the room temperature (RT) estimate of the junc-
tion critical current. These structures are fundamental to validate the chip before
installing it in the cryostat.

6.2 Device description

In this section, we present the experimental results obtained from the device presen-
ted in Sec. 6.1. Details on the measurement techniques and the experimental setup
are presented in Ch. 2.

The chip in Fig. 6.12 is a Si substrate with a Nb optical layer of nominal thickness
200 nm, while the Josephson junctions are Al/AlOy /Al junctions. A magnification
of the qubit and the dc-SQUID loops is showed in Fig. 6.12b.

To obtain a prediction of the dc-SQUID resonance frequency range and the qubit
gap, the critical current is estimated at room temperature, probing the test structures
present on the chip. The results showed that the average critical current of the small
junctions was 41 + 9% higher than the designed value. Since we have no direct
information on the critical current of the qubit big junctions, it is necessary to
calculate the current density J/"**’ to provide an estimate. Thus, using ImagelJ [99],



88 Persistent current readout: Experiments

(a) (b)

Figure 6.12: In (a), the microscopic image of the device is presented. In (b),
the SEM image of the dc-SQUID and qubit loop. The brighter details are the Al
Josephson junctions.

the effective dimensions of the junctions are measured from SEM images.

The critical current I;"*“ for the big junction is calculated as I["*“* = A™¢® J7® with
the current density J"¢% = 3.134-0.23 uA/um? obtained from the test Josephson
junctions, whereas the designed value was Jo7 = 2.3 uA/um?. The characteristics
of the Josephson junctions are summarized in Table 6.2.

Junction AP (um?) | A™es (um?) | 177 (nA) | I (nA)
Big junction 0.0784 0.0764 4+ 0.0009 160 239+ 18*
Small junction 0.0437 0.045040.0015 100 141+9

Table 6.2: Expected and measured values of the characteristics of the Josephson
junctions. The symbol “*” stands for extrapolated value, i.e. not measured.

Hence, it is possible to simulate the expected qubit spectrum with the parameters
defined in Table 6.2. The result is presented in Fig. 6.13, returning the values
reported in Table 6.3. Since a = 0.59 instead of o;.; = 0.55, the estimated qubit
persistent current turned out higher than the designed value, namely 7, = 120.53 nA,
leading to a qubit frequency A/27 = 3.01 GHz lower than the designed value.
Nevertheless, the predicted qubit frequency, which is under the CPW resonator
frequency, allows to perform the conventional readout measurements. In addition,
the higher qubit persistent current leads to a larger shift in the PCR frequency,
implying a better resolution in the qubit state detection.
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0.49 0.50 0.51

Figure 6.13: Qubit spectrum expected from the RT estimate of /..

o 0.59
A/2m | 3.01 GHz
I, |120.53nA

Table 6.3: Qubit parameters extracted from the room temperature estimation of 7,
with A/2m = 3.01 GHz and [, = 120.53 nA

Similarly, the expected response of the dc-SQUID resonator is calculated and
presented in Fig. 6.14. With the measured values of /. presented in Table 6.2, at
the working point, the frequency of the dc-SQUID resonator is Vsg = 4.628 GHz,
whereas the expected dc-SQUID frequency difference between the two qubit states
of Avgp = 3.27MHz. Although the predicted Vsp is higher than the designed value,
it is still within the setup bandwidth. Conversely, the expected frequency of the
dc-SQUID resonator is higher than the vcpy . Eventually, the predicted Av is larger,
leading to a better resolution of the qubit state detection.

6.2.1 Sample packaging

As explained in Sec. 2.3, the chip is mounted in a Cu sample box, placed in a
Bluefors SD dilution fridge and connected to the external environment through
coaxial cables.

Mounted on the top of the sample box, a superconducting coil generates a global
magnetic field on the chip. The coil is driven through a voltage/current source with
a m-filter that is interposed between the source and the sample.



90 Persistent current readout: Experiments

=30

Vepw =

- /
/i

1
N
o

Avsq [MHZ]

A
|
A2T =

26 2.8 3.0 3.2 3.4
fsq

Figure 6.14: Expected dc-SQUID response at the working point with the measured
critical current in Table 6.2. In orange, the qubit frequency v, is shown as a function

of fSQ.

6.3 CPW resonator transmission

Since the CPW resonance frequency is independent of the magnetic field, it is, in
principle, a more direct way to identify the qubit presence by seeing avoided-level
crossings between the resonator and the qubit, as in Sec. 3.4. Hence, the qubit can
be first characterized through the CPW resonator by performing the usual dispersive
measurement presented in Sec. 3.4, and then, in a second stage, through the PCR.

As a first step to characterize the qubit, it is fundamental to find and optimize
the CPW resonance. Once the resonance is found and the transmission signal is
optimized, it is possible to perform a sweep of the global magnetic flux to detect
the evidence of the qubit presence, i.e. the avoided-level crossing.

Following such a procedure, a VNA scan through the CPW resonator feedline is per-
formed. In Fig. 6.15a the transmission of the CPW resonator is shown with zero ap-
plied magnetic field. The resonance frequency is measured to be Vepy = 5.118 GHz,
thus there is a large difference of ~ 400 MHz between the measured CPW frequency
and the simulated value.

In order to find the qubit-induced avoided-level crossings, as in Sec. 3.4, the reson-
ator transmission measurement is repeated for different values of the driving current
applied to the superconducting coil. This measurement is shown in Fig. 6.15b. Here,
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Figure 6.15: In (a), the CPW resonator transmission at zero field. In (b), the CPW
resonator transmission as function of the applied coil current. Given the low signal
level from the resonator, the system is underdamped.

the CPW resonator transmission is measured in the interval —8 to 8 mA with a
fixed step of 20 uA. Unlike Fig. 3.10, in Fig. 6.15b there is no sign of avoided-level
crossings, but a weak modulation of the transmission with the flux can be clearly
discerned. The small oscillations in Fig. 6.15b seem to have a 2 mA period. As
discussed in Sec. 6.5, the dc-SQUID period is also ~ 2mA, thus the oscillations
in the CPW resonance could be caused by a direct coupling of the the two readout
resonators. In Fig. 6.16, the correspondence between the oscillations in the CPW
transmission and the dc-SQUID transmission is shown.

5.119
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5.117.
2 2

551 (d B)
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4.60
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4.50'
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Figure 6.16: Correspondence between the CPW transmission oscillations (upper
plot) and the dc-SQUID transmission (lower plot).
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Even though the absence of avoided-level crossing seems to be a clear evidence
of no qubit presence below the resonator frequency, it is also true that the CPW
resonator is underdamped, as seen in Fig. 6.15a and, therefore, giving a very poor
signal to detect any qubit response. A possible explanation for such a different
Q factor from the expected value can be related to the impedance mismatch due
to the wrong spacing in the CPW design, which is the same for the Al resonator
designed in Sec. 3.3, whereas the fabricated chip is made of Nb. Another effect
of this design error is noticeable in the resonance frequency difference between
the expected values and the measured vcpy . Under these circumstances, it is not
possible to obtain any information about the qubit from the CPW resonator.

6.4 dc-SQUID resonator
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Figure 6.17: dc-SQUID transmission between —1 mA and 1 mA

The same procedure described in Sec. 6.3 is performed on the dc-SQUID trans-
mission line. In Fig. 6.17, the variation of the dc-SQUID frequency with respect
to the applied magnetic field is shown. The first to notice is that the maximum
frequency, vgng“x =4.61 GHz, is more than 1 GHz lower than the designed value, and
almost 2 GHz below the frequency expected from the test junction measurements.
A possible explanation to this discrepancy is that the effective dc-SQUID shunting
capacitance is larger than the estimated value, possibly due to the contribution of
extra thickness in the Nb device. Another possibility is the contribution of the capa-
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Figure 6.18: dc-SQUID transmission between —4 mA and 4 mA

citance network to the effective dc-SQUID shunting capacitance Csp. It is possible
that the whole capacitance network leads to a larger effective Cgg. This possibility
was firstly discarded during the design process due to the large difference between
the finger capacitor Csgp, which is ~ 1 pF, and the rest of capacitances, in the order
of few fF. A thicker film than expected may lead to a bigger contribution from the
network. For this reason, the extra thickness contribution is the most probable cause
of the low dc-SQUID frequency.

Even though the resonance frequency is expected to go down to zero at fgo = 0.5, as
shown in Fig. 6.4, in Fig. 6.17 it is not possible to clearly measure the transmission
of the dc-SQUID resonator below ~ 4 GHz due to limitations in our experimental
setup. As the frequency approaches the circulator cut-off frequency 4 GHz, the
SNR diminishes until the resonator transmission is indistinguishable from the back-
ground noise. There is also a possible effect of dissipation from the juncitons. As the
effective dc-SQUID 1. becomes smaller as fso — 0.5, the resonator internal quality
factor decreases, and so does the signal, as the resonator becomes progressively
more underdamped.

As in the case of the CPW resonator, the same measurement presented in Fig. 6.17
is performed on a larger current span, in order to find any avoided level-crossing.
In Fig. 6.18, we present a measurement of the dc-SQUID resonator transmission
for different values of the driving current applied to the superconducting coil.
Clearly, the measurement does not show any avoided-level crossing. In Sec. 6.1, it
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is stated that the areas of the loops are designed to have f7 = 0.5 while f5, =2.7.
Thus, a possible explanation for the lack of avoided-level crossings is that the
dc-SQUID resonance frequency is below the setup cut-off frequency at f,, since
the de-SQUID has a lower maximum frequency. Moreover, the qubit is believed
to display a minimum frequency v, = 2.895 GHz lower than the simulated value,
v;im = 4.581 GHz, and a higher persistent current, I, = 102.97 nA, due to the un-
targeted areas and current density of the Josephson junctions. This reinforces the
possibility that any avoided level-crossing takes place below the cut-off frequency.
Furthermore, trapped magnetic fluxes in proximity of the two loops can move
differently the qubit and the dc-SQUID responses to the external magnetic field,
thus additionally moving the operational point. In principle, the working point can
be re-adjusted using a local magnetic field generated by a DC current through one
of the two FBLs. Nevertheless, the field generated by the FBL was insufficient
to move the qubit symmetry point in correspondence to vsg > 4 GHz. Moreover,
if there are errors in the capacitance simulation, as suggested by the dc-SQUID
measured resonance frequency, it is possible that the effective shunt capacitance
of the qubit is lower than the simulated value, leading to a higher qubit frequency,
where it may not cross the dc-SQUID resonator.

Although there is no sign of the qubit presence in spectroscopic measurements
conducted so far, an indirect way to detect it is discussed in the next section.

6.5 Qubit signal

Following Sec. 5.1, on either side of the qubit symmetry point, the dc-SQUID res-
onator feels two different values of the qubit flux depending on the qubit persistent
current

D7 = Dgp + M, .

Hence, the qubit persistent current state can be detected by detecting a change in
the periodicity of the dc-SQUID.

Such a period can be determined by measuring the dc-SQUID transmission at a
fixed value v_éQ while sweeping the external magnetic flux fso. When the SQUID
frequency coincides with the measured frequency, Vso = véQ, the de-SQUID trans-
mission has a dip, otherwise it is at the transmission baseline. In this way, dips in
transmission return the flux positions for which vgp = ng. Given the cosine-like
SQUID frequency response as function of flux, every flux period will show two
dips when scanning the flux while monitoring the transmission of a weak probe at a
fixed frequency below the SQUID maximum frequency. If within one period the
qubit crosses the symmetry point, the qubit will generate a sudden change of flux
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of &2M1,, the sign will be given by the geometry of the circuit. Let’s assume the
distance between two consecutive values of the SQUID frequency from consecutive
periods to be 7. If the qubit crosses the symmetry point between these two consec-
utive resonances, the period will change by T'+=2M1,,. Fig. 6.19 shows a schematic
of the case where the qubit crosses the sweet spot where fsp = 0.5 and the change
in periodicity is assumed to be —2M1,,. The dashed line represents the fixed value
Vso-

From now on, we are going to refer to this measurement as “period measurement’.
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Figure 6.19: Periodicity of a dc-SQUID resonator transmission at a fixed frequency.
The qubit symmetry point is assumed within the green band.

Figure 6.19 shows a measurement of the periodicity of the dc-SQUID resonances.
Any dc-SQUID frequency could be used to perform a period measurement. Never-
theless, since we want to use the periodicity to detect the qubit, recalling Sec. 5.1
and Fig. 6.4, the maximum SQUID frequency cannot be used since the dc-SQUID
resonator is uncoupled from the qubit. Also, we want a good SNR, thus we have to
choose vsp > 4.2 GHz, which is the visible range in Fig. 6.17. For these reasons,
the measurement in Fig. 6.20 is performed by fixing the frequency at 4.595 GHz.

In Fig. 6.20, the distances between alternate minima are annotated. We can divide
the periods into two values: 7"”") =204.6 0.8 mV and T\""") = 206.24+0.7 mV.
Here, the uncertainty of these averages is taken as oz = % where N is the total
number of periods of each group and Ax is the deterministic uncertainty of the peak
position, calculated as the average of the half width at half maximum (HWHM) of
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Figure 6.20: Period measurement between O V and 1 V. In the figure, the period 7'y
and 7T are displayed. The qubit symmetry points are within the green bands.

the deeps. The two estimates are separated within the uncertainties, thus it can be
stated that there are two different periods. Based on the locations where the period
changes, the qubit symmetry point is expected to be in the green bands in Fig. 6.20.
The estimate of the position of the qubit symmetry point cannot be more accurate,
since with this measurement we can only observe the effect of the qubit presence
between non consecutive dips.

Therefore, we can certify the qubit existence with the period measurement, even
though we cannot determine its resonance frequency nor the exact position of the
sweet spot. This result constitutes a proof of concept of the PCR. Yet the full demon-
stration remains to be completed in future devices with better adjusted parameters.

6.6 Outlook

The transmission spectra of the CPW and the dc-SQUID resonator have been
presented. Since the CPW turned out to be underdamped due to a design flaw on
the Nb chip, as shown in Fig. 6.15a, it is not possible to see any qubit evidence in
frequency domain.

The next device generation is already been designed with a larger coupling surface
between the CPW and the qubit shunt capacitor, and a proper coupling of the CPW
resonator to the dedicated transmission line, so that Q. > Q,,. The new design
proposed for the CPW is presented in Fig. 6.21.
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Figure 6.21: New CPW design for an enhanced coupling between the resonator and
the qubit.

Furthermore, the presence of oscillations in the CPW spectrum provides evidence
about the coupling between the linear resonator and the dc-SQUID. The interaction
between the two readout system could impact the readout quality of both resonators.
For this reason, it is fundamental to understand the origin of the possible coupling
between the CPW and the dc-SQUID resonators, and minimize it.

Despite the design flaws and the off-target I. values, the dc-SQUID behaves as
expected: a resonator with a flux-dependent resonance frequency. Nevertheless,
there is no avoided-level crossing and it is not possible to perform qubit spectro-
scopy, as was performed in Sec. 3.4 with a linear resonator. Still, the existence of
two different values for the periodicity of the dc-SQUID resonance frequency is
measured at a given flux range, indicating the presence of the qubit. This result
constitutes a good starting point for the next generation of devices. Even if the
present measurements do not permit the qubit to be characterized and to study the
properties of this new readout method, the results shown prove the variation of the
dc-SQUID resonance frequency depending on the qubit state, which is the main
concept of the PCR.

For future iterations of the device, FBLs have to be designed with higher mutual
inductance with the dc-SQUID and qubit loops. In this way, it is possible to move
the working point along the dc-SQUID spectrum. This possibility is fundamental
to decouple the dc-SQUID resonator from the qubit, a key element to scale this
readout to a large-scale quantum processor.






Conclusions and further perspectives

The main aim of this thesis is to present a novel readout method for quantum
annealing.

First, the flux qubit physics is described both for isolated qubit and the qubit-
resonator system. In particular, the dispersive Hamiltonian of a qubit capacitively
coupled to a readout resonator is shown. Starting from this result, a 8-flux qubit
chip was designed and fabricated. The experimental results presented are encour-
aging, as 71 > 40 us is demonstrated, despite the low estimation of 7; at the qubit
sweet spot and the decoherence time measured (7> = 13 ns) away from the sweet
spot. In addition, the difficulties to perform quantum control measurements at low
frequencies did not allow us to obtain information about the noise mechanisms and
how this affects the coherence time of the qubit, thus more tests are needed. More
iterations have to be made to reach the desired results. For this reason, a Nb-based
generation is in fabrication process.

Moreover, different coupled systems were investigated in this thesis. Specifically,
the cases of both a qubit galvanically coupled to a resonator and to another qubit
were described. A good understanding of these interactions gives indications for
new flux qubit and readout systems designs.

The results obtained on the galvanic coupling lead us to ideate a novel persistent
current readout circuit. Such a circuit is composed of a dc-SQUID based resonator,
with an inductance that depends on the qubit persistent current state. This persistent
current readout (PCR) is analyzed both in the semiclassical and in the quantum
framework. The Hamiltonian description of the PCR leaded to the definition of a
dispersive-like Hamiltonian, which is presented and discussed. As an interesting
result, the interactions between a flux qubit and a dc-SQUID based resonator can
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be approximated to a two-photon Jaynes-Cummings mechanism, opening new
intriguing scenarios for the study of the light-matter interaction. Moreover, the
employment of a dc-SQUID returns the possibility to decouple the qubit from the
readout circuitry, leading to an enhancement of coherence times, making the PCR
particularly feasible for quantum annealing.

In order to test the advantages of the new system, a device design based on a single-
qubit coupled inductively to the PCR and capacitively to the CPW is presented.
Unfortunately, due to errors in the fabrication process, the measured parameters
were away from the designed values, leading to the impossibility to compare the
two readout methods and to characterize the qubit. Besides that, the variation of the
dc-SQUID resonator period demonstrates the qubit presence, constituting the proof
of concept of the readout mechanism proposed.

An interesting step forward to improve the results obtained so far could be to imple-
ment the PCR in a flip-chip architecture. By separating the dc-SQUID resonator
circuitry from the flux qubit, it would be possible to minimize the de-SQUID back-
action and to separate the flux controls of the two loops, leading to a mitigation in
crosstalk. These results should increase the coherence times of the flux qubit.
Moreover, the dc-SQUID resonator can be redesigned, including a shunt inductor
to the dc-SQUID, in order to control I, by adjusting the flux in the extra loop. In
this way, it would be possible to mitigate the back-action of the dc-SQUID on
qubit. Furthermore, it would be interesting to place a Purcell filter between the PCR
resonator and the feedline. The Purcell filter screening, together with the possibility
to decouple the PCR from the qubit, could lead to coherence times good enough to
perform simple single-qubit annealing routines.

Nevertheless, the addition of a Purcell filter would increase the dimensions of the
chip, which are already limited by the necessity of a large interdigitated finger
capacitor. To overcome this limitation, the possibility to replace the finger capacit-
ors with parallel plate capacitances, as the ones in ref. [100], should be taken into
account to design multi-qubit chips for quantum annealing.
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Fabrication recipe

Optical lithography recipes
Ti prime: 2000 r.p.m. for 30 s
Bake: 2 min at 120°C
AZ nLOF 2020: 4000 r.p.m. for 1 min
Pre-exposure bake: 1 min at 110°C
Exposition: 840 mJ /cm? with —2 defocus
Post-exposure bake: 1 min at 110°C
Development: 1 min in AZ 726 MIF + 10 s in DI water

N, blow dry

Electron beam lithography recipe
PMGI: 1000 r.p.m. for 1 min
Bake: 5 min at 190°C
CSAR62: 3000 r.p.m. for 1 min

Bake: 1 min at 150°C
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Appendix A. Fabrication recipe

Exposition 120 um write field: 100 pA with 0.08 us
Exposition 600 um write field: 2 nA with 1.5 us

CSARG62 development: 1 min in CSAR62 developer (AR 600-546) + 30 s
CSARG62 stopper (AR 600-60) + 30 s in DI water + 30 s in IPA

N, blow dry

PMGI development: 55 s in PMGI developer (1:3.5 MR-351:H,0) + 30 s in
DI water + 30 s in IPA

N, blow dry



Schrieffer-Wolff approximation

The system can be described by the following Hamiltonian:
Hoor = G +V (B.1)
= wya’a+ Y o k) (k|
k
V=Y giili) (il (@ —a).
ij
(B.2)

It is known that to obtain a dispersive Hamiltonian, one has to perturbatively expand
in g Equation (B.1) with the Schrieffer-Wolff (SW) transformation:

H =UHU =S He5,

with S is anti-hermitian, thus the SW is an unitary transformation '. Using the
Baker-Campbell-Hausdorff formula:

1
A :%‘i‘[swjﬁot]—i_i[s? S, o] + - ..

=%+{V+[&%]H{[s,v]+%[S,[S,V]]}+..., (B.3)

INote that since S is anti-hermitian
.
U=eS U= =¢5

thus, using the Glauber’s formula
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where it has been ordered them in terms of g. .74 is the diagonal part of ¢ and
¢, the off-diagonal.

Under this transformation, we are requesting that in the new Hamiltonian the
off-diagonal terms have to be null to the first order. In operators terms:

[S, 760 = -V, (B.4)
that can be put in Equation (B.3):
y 1
H :%+§[S,V]. (B.5)

The generator S of such transformation can be find within few steps, as explained
in [101].
First of all, we calculate the commutator 1 2 defined as

n =, 7],

that in our case is

n=[4.V]=0Ygj(ldad]~[daa)+ Y gk ki) (] = i) (k) (k) =

ik
= COngij (a'+a) +Z<wigif i) (| — w;gi; i) (i]) (a" — a) =
- Z [gij (0 + 0 — ;) [i) (] a' +Z gij (0 — 0;+ )) |i) (j]]a. (B.6)

From this result we can define S as a linear combiantion of the operators in Equa-
tion (C.4)

S= ZAij i) <j|aT+ZBij i) (jla .
i,j i,j

2This will ensure us an anti-hermitian operator, since it is a commutator of hermitian operator

[A,B]" = (AB—BA)" = (AB)" — (BA)' = B'AT —ATB" = BA—AB= —[A, B
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Thus,

[S,56) = Y |@Ajla’,a"a]|i) {jl + oByjla,a’ ] |i) J|+ZkaU i) (jIk) (k| = &) {kli) (j1) a"+

—Z“’kBu (k) k| = k) k[d) (j]) a

_Z —0:A;j i) ]|a + @,B;j i) (jla+A;j (o, wt)|><j|aT_Bij(wj_wi)|i><j|a}:

—Z i (0= 0= o) [i) (jla" —Bjj (0; — o — o) [) {jla] =
th/ —a). (B.7)
From Equation (B.7), it can be obtained

Putting this result together, it can be obtained

=Y ¥ cisgul(li) (k) (11— 1) 1) (7)) (a* +a? —aa” —a'a) =

i,j k|l

" 1
=2 X (1 -1 (a5 ) = ®5)

:—2<Zkl, Lkl J') (““* >
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where terms ' and a? have been neglected and
2
i)
o+ 0 —;’

xi=) (kij—kj) -

J

P s oo — .. * J—
kij = cijgji = cijg;; =

Thus, the total Hamiltonian is

(a), Zx, )a a+Z






Schrieffer-Wolff approximation for PCR

For simplicity, let’s start analyzing the case of an unbiased symmetric dc-SQUID,
i.e. g1 =0. Since |g2| < wgp, @y, it is possible to find another form to express the
TPJC Hamiltian in the dispersive regime, i.e. |g2| < @, 0, |0, + @)

In order to calculate the dispersive Hamiltonian, we use the Schrieffer-Wolff (SW)
transformation:

H =UHUT =S e, (C.1)
with § anti-Hermitian. As a consequence, it is well known that
U:es—>U%:eS?:e_S,
and thus, applying the Glauber’s formula! [102], we have

UU =S¢5 = eS+(_S)e%[S’_S] =1.

This condition ensures the SW transformation to be unitary.
Moving back to Eq. (C.1), it possible to employ the Baker-Campbell-Hausdorff
(BCH) formula:

P :%JF[S,,%”H%[S, S, 7] + ...

Glauber’s formula defines the product of two operators as

1
AB — ATB IAB]
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Since we want to reduce the Hamiltonian in Eq. (5.48) to a diagonal Hamiltonian,
we can impose

S, 7] = —Irp (C.2)

where 77 is the diagonal part of the TPJC Hamiltonian, whereas .77 p is the off-
diagonal part, i.e. the interacting term. From now on, # = 1 is used.
In this way, the BCH formula is reduced to

1
%ff:%—’_i[s)%f’]' (C3)

In order to calculate the dispersive Hamiltonian, the first step is to find S.
Following [101], since it has to be anti-Hermitian, let’s define the commutator

n = [, #rp),
which in our case is
1N = —0s08> ([a'l'a,az]cnr + [aTa,aTz]G_) — W82 <a26+ - aT26_> =
= g2(0, — 205p)a*0 — g2 (0, — 2050)a’ o . (C.4)

Hence, S is
2
S=Aa" 6_+Bd’c, .

Thus, imposing Eq. (C.2):
2
S, 7] = —A (@, —2ws0)a’ o4 + B(20sg — @,) >0y =
=g (a*zc, +a26+) ,
from which we find:

A=_B—_ 8 g __ 8 (a*zc_—a%_) . (C.5)
W, — Z(DSQ ZwSQ — Wy

From this result, we can calculate the commutator

2
$.707) = 5 [ora 0 |~ a0 o] =
=2y [aTa (aTa—i—l) GZ—|—2aTa+GZ—|—2} , (C.6)
with
A

N Z(OSQ—O)q N ZCOSQ—COq ’

Similarly, it can be done considering both JC and TPJC contributions. The resulting
off-diagonal terms can be neglected, as they are of higher-order approximation.
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