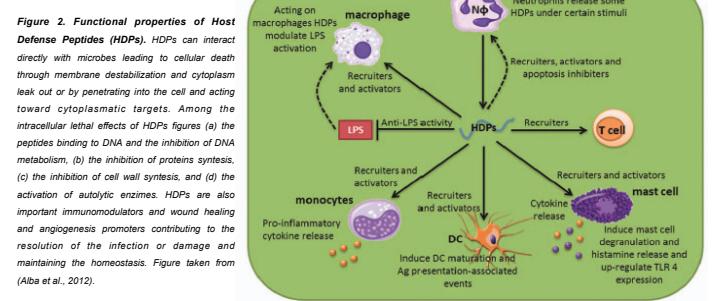
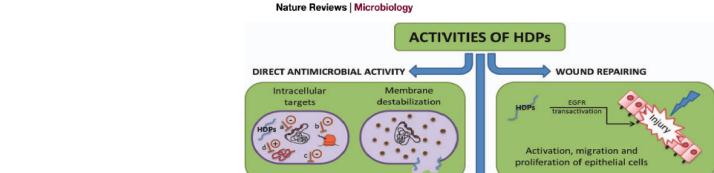
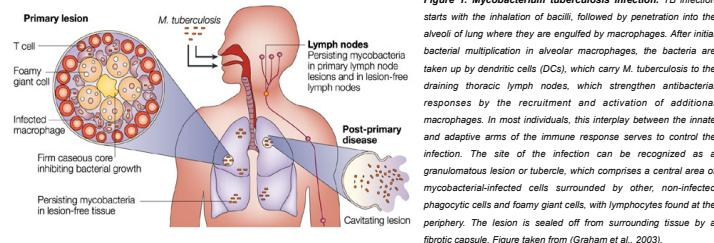


β Defensins as a novel treatment against tuberculosis

Laura Luque Sastre




Microbiology Degree, Universitat Autònoma de Barcelona

Introduction

Tuberculosis (TB) remains one of the most lethal and ancient infectious diseases causing 2 million deaths and 8-10 million new cases of active tuberculosis worldwide annually. Moreover, the incidence of multidrug-resistant strains is increasing and there is not an efficient treatment.

A good alternative against conventional antibiotics are **Antimicrobial Peptides (AMPs)** as they are produced by most living organisms and they exhibit potent cytotoxic activity against bacteria, fungi, viruses, and parasites. AMPs are relatively short (<40), quite cationic and adopt amphipathic structures that present discrete hydrophobic and hydrophilic regions when they are associated with anionic interfaces.

Human β-defensins (HBD) are one of the most important natural occurring antimicrobial peptides in TB infection. HBD-2 is transported into mycobacteria-containing macrophage phagosomes to exert mycobactericidal and mycobacteriostatic activity. HBD-3 and HBD-4 participate in *Mycobacterium tuberculosis* clearance by bacterial lysis and they are associated with long-term control of mycobacterial proliferation.

Initial hypothesis and aims of the project

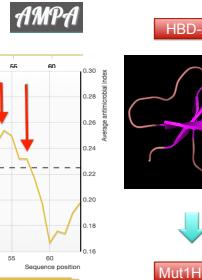
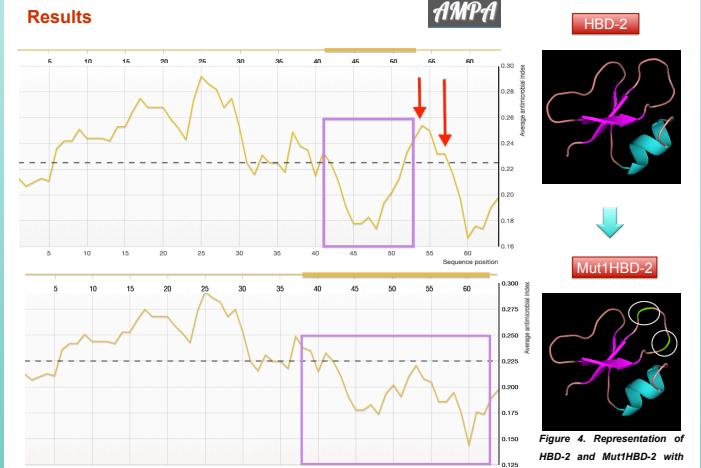
HBD-2, HBD-3 and HBD-4 participate in the immunopathogenesis of experimental tuberculosis and their synergy with antituberculous drugs suggests that they may be a promising complement to antituberculous chemotherapy.

Aims:

- Optimize HBD-2, HBD-3 and HBD-4 to get a higher antimicrobial activity which will help to reduce the localised infected area by *Mycobacterium tuberculosis*.
- The optimized peptides must have the same properties and structure as natural HBDs that enhance the interaction with the bacil cell wall.

Materials and Methods

HBDs Optimization



AMPA: AMPA is an automated web server for prediction of protein antimicrobial region, which uses an antimicrobial propensity scale derived from high-throughput screening results that generate an antimicrobial profile and an antimicrobial index (AI), which can be calculated providing a fair assessment of the tendency for such amino acids to be present in an AMP sequence. As low half maximal inhibitory concentration (IC_{50}) values correspond to high activity, amino acids with a low index are the most favoured to be part of an AMP.

AMPA server provided an interactive antimicrobial profile of the query sequences, they were analyzed and the single mutations were deliberately made always considering the conserved residues, the AI of each amino acid and the secondary structure of each AMP. Arginine was the residue chosen for all the single mutations because of its AI value and its cationic properties.

Collection of Anti-Microbial Peptides (CAMP): CAMP is a very useful online database to compare different important proprieties of HBDs and the optimized peptides. This information will help to discriminate between the all the optimized peptides candidates.

Define Secondary Structure of Proteins (DSSP) software: DSSP was used to confirm that the secondary structure of the optimized peptides were the same as the natural HBDs. As the secondary structure of AMPs contribute in the interaction with *M. tuberculosis* cell wall.

Results

Name	Antimicrobial stretch	Propensity	Net charge	Hydropathy	Aliphatic index	Instability index
HBD-2	41 - 53 (12)	0.221	+7	0.60	92.81	41.32
Mut1HBD-2	38 - 63 (24)	0.186	+9	0.48	92.81	41.46
Mut2HBD-2	39 - 63 (24)	0.176	+10	0.42	92.81	45.23
HBD-3	28 - 46 (18)	0.214	+12	0.00	95.97	55.16
Mut1HBD-3	25 - 46 (21)	0.197	+15	-0.24	90.15	69.69
Mut2HBD-3	25 - 46 (21)	0.203	+15	-0.17	95.97	63.14
HBD-4	32 - 54 (22)	0.221	+7	-0.38	92.08	48.00
Mut1HBD-4	28 - 65 (25)	0.194	+14	-0.51	90.69	44.22
Mut2HBD-4	30 - 71 (41)	0.194	+12	-0.50	90.69	47.64

Table 1. Comparison of HBDs and optimized peptides proprieties. Data taken from AMPA and CRAMP web servers.

Conclusions

The optimized peptides have very similar properties to natural HBDs, but they have a lower propensity value, a higher net charge and a longer antimicrobial stretch, suggesting that they might have a higher activity thereby enhancing the reduction of the localised infected area by the bacil. *In vitro* activity assays should be done to confirm these computational results.

References

- Shin, D. M. and E. K. Jo. (2011). Antimicrobial Peptides in Innate Immunity against Mycobacteria.
- Klüver E, Adermann K, Schulz A. (2006). Synthesis and structure-activity relationship of beta-defensins, multi-functional peptides of the immune system.
- Torrent M, Di Tommaso P, Pulido D, Nogués MV, Notre Dame C, Boix E, Andreu D. (2012). AMPA: an automated web server for prediction of protein antimicrobial regions.