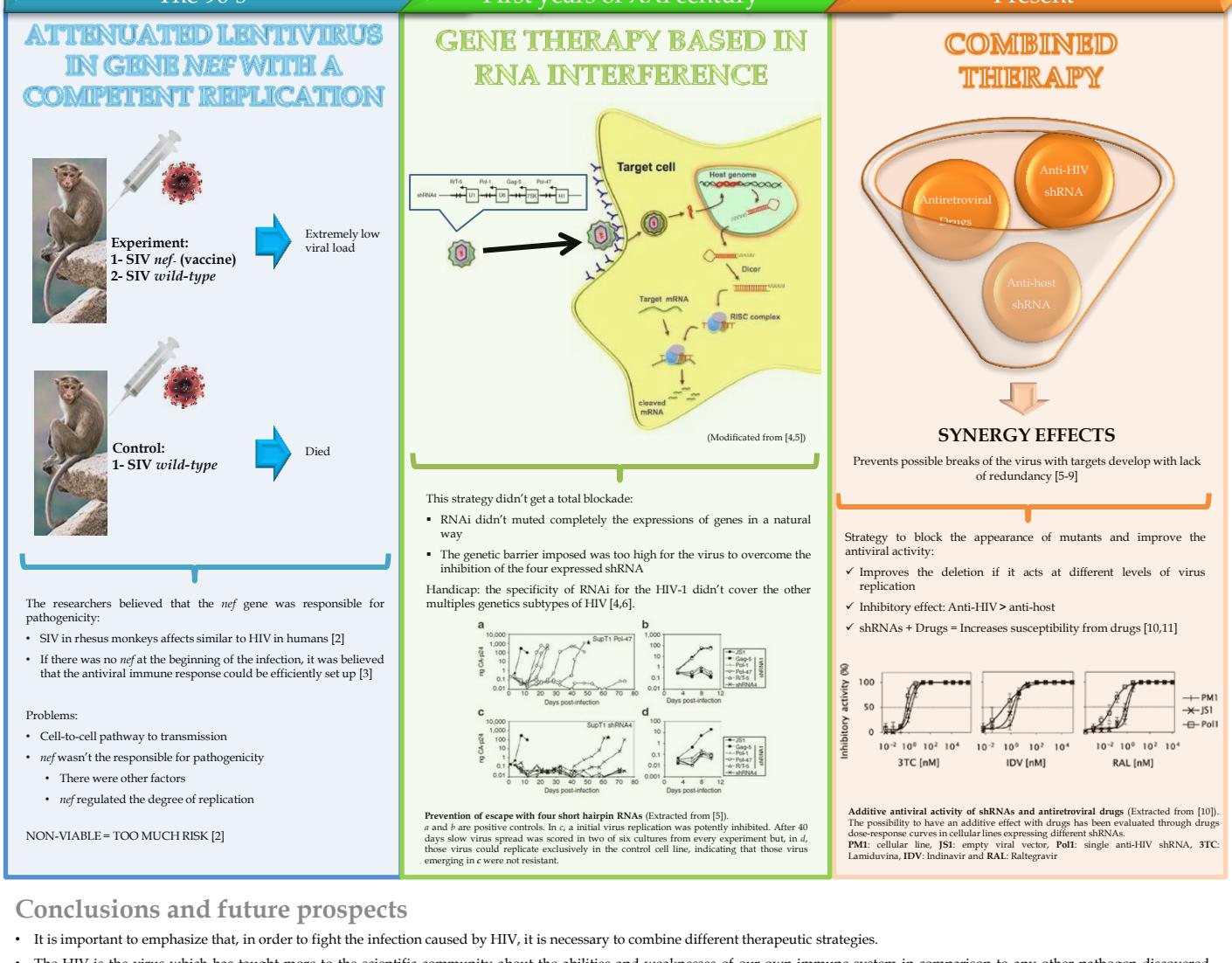


Prevention and molecular treatment of AIDS with lentivirus: A historical perspective

Núria Pedreño López


"Thirty years after the first described AIDS case, fifteen years after the advent of Highly Active Antiretroviral Therapy, miracles continue"*

Introduction

Currently, viral vectors are the most efficient vehicle on the transfer of genes to their infectivity in a high proportion of cells and with a very good capability of carrying transgenes in its modified genome genetically. In addition, note the potential to produce adverse effects in the application to humans, their immunogenicity and the risk to produce homologous recombination or toxicity.

The most widely used viral vectors are developed from adenovirus, retrovirus, vaccinia virus, AAV, poxviruses and lentivirus among others. Because of the long history of the characterization of viral particles and its genome, infectivity to the target cell, transgenic capacity and accessibility to establish cellular lines helpers for the production of recombinant virus stock to infect target cells [1]. Lentivirus is the type of retrovirus responsible for the acquired immunodeficiency syndrome (AIDS) and has been seen it has very interesting properties for the establishment of these vector systems.

In recent years, these HIV-based vectors have been studied and tested for the efficacy of gene transfer, furthermore to its biological safety to exclude the possible reconstitution of a competent pathogenic replication in infected patients.

Conclusions and future prospects

- It is important to emphasize that, in order to fight the infection caused by HIV, it is necessary to combine different therapeutic strategies.
- The HIV is the virus which has taught more to the scientific community about the abilities and weaknesses of our own immune system in comparison to any other pathogen discovered. According to the WHO, there are approximately 34 million infected people in the world, but the high cost of antiretroviral drugs makes impossible the distribution to these developing countries. For that reason, the best option would be the development of replication competent and secure viral vector that allows *in vivo* the release of anti-HIV genes that confer resistance or selective death to the infected cells [12,13,14].
- The best alternative in order to cure the infection is through interference RNA and, specifically, through short-hairpin RNA but, before its use, appropriate vectors that are stable and will allow a lasting expression of these RNA will be needed. Because of this, lentivirus has been chosen for its effectiveness and biological safety in gene transfection, but still need to improve different aspects before it becomes clinically viable shRNA-based therapy [1].
- The HIV-1 uses a error-prone replication machinery that allows a quick adaptation to new conditions, being the cause of making drug-based therapies fail because they allowed the emergence of resistant viral mutants [15].
- RNAi seems to provide a promising strategy to fight chronic infections like AIDS and, as previously thought, using combined therapies from antiviral drugs and RNAi is giving the expected results [10,16].
- The future prospects that are expected from these strategies are very wide and if clinical phases are passed successfully, use RNAi to treat other worldwide diseases such as tuberculosis or malaria will be imminent.