A trip to the nutrigenetics of Hyperhomocysteinemia

Míriam Javier Torrent, Degree in Genetics.
Universitat Autònoma de Barcelona (UAB). 08193 Bellaterra, Catalonia, Spain.
miriam.javier@e-campus.uab.cat

Introduction

Nutritional genomics is a science studying the interactions existing between genes and diet to prevent diseases through nutrition. It includes nutrigenomics and nutrigenetics, which have become a powerful tool of preventive medicine. For its part, nutrigenetics focuses on studying how individual differences in genome cause different responses compared to food, and it analyzes how, these genetic variants confer a susceptibility to certain diseases, trying to prevent them through personalized nutrition.

From the perspective of the nutrigenetics, the study of Hiperhomocysteinemia (HHcy) becomes interesting because it is an independent risk factor for cardiovascular diseases (CVD), which are the leading cause of death in Spain. Genetic defects in MTHFR and CBS genes, among others, and deficiencies in certain vitamins, such as vitamin B6, B9 and B12 can cause HHcy since they are involved in homocysteine (Hcy) metabolism as enzyme cofactors.

Key words: CBS; hiperhomocysteinemia (HHcy); homocysteine (Hcy); nutrigenetics; MTHFR; Vitamin B₆; Vitamin B₉; Vitamin B₁₂

Hcy metabolism¹

Hcy is produced in all cells as an intermediate of the methionine cycle. Once formed, Hcy is catabolized via two metabolic pathways: remetilation, to form methionine and transsulfuration, resulting in cysteine (Fig. 1).

Under normal conditions, among 40-50% of Hcy is remetylathed, between 40-50% is converted into cysteine, and a small amount is exported. When there is an increase in the production of Hcy or a decrease in its catabolism, it results in an excess of Hcy export to the extracellular space, leading to HHcy.

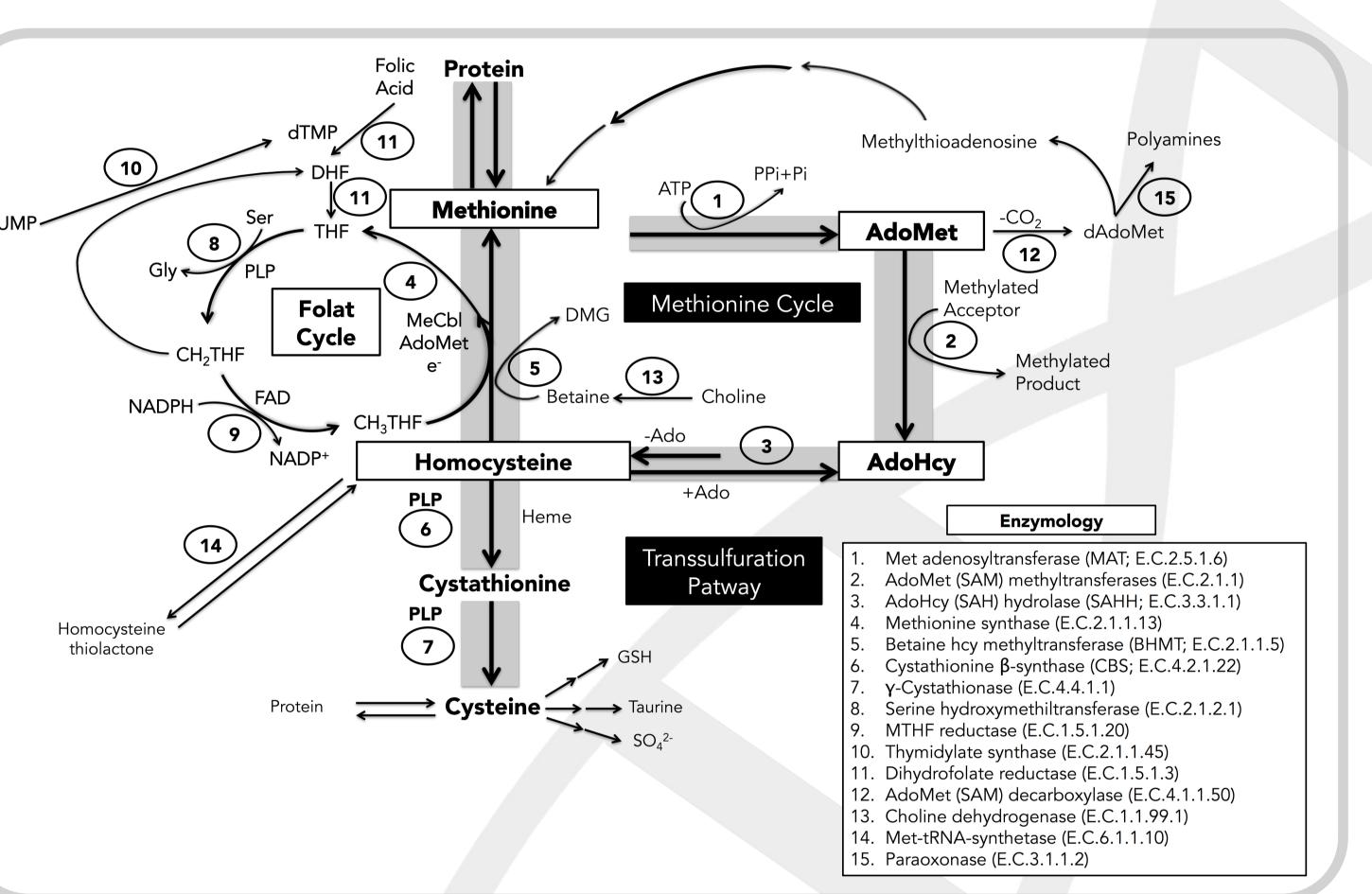


Fig.1. Homocysteine metabolism in liver and kidney¹.

Nutrigenetics of HHcy

Genetic factors determining of HHcy³

- CBS deficiency*
- MS deficiency*
- MSR deficiency*
- MTHFR deficiency*
- MTHFR 677TT genotype

- MTHFR 129CC genotype

*Involved in homocystinuria

^Involved in homocystinuri pathogenesis.

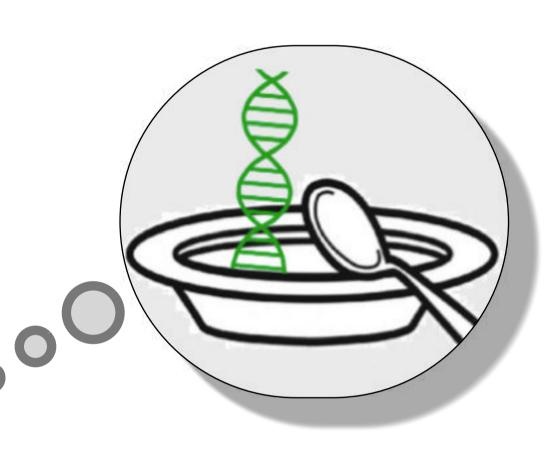
CBS 844ins68 genotype

individuals

Most common genetic Protective effect of defect associated with 844ins68 in heterozygous

MTHFR 677TT genotype

moderate HHcy


Nutritional factors

Deficiencies in three B-group vitamins have been reported to cause HHcy^{4,5}:

Deficiencies in vitamin B6 (PLP) and methionine supplementation functioned synergistically to cause an accumulation of tHCy because Hcy formation overcome

its metabolism.

• Deficiencies in vitamins B9 (folate) and B12 (cobalamin) also cause increase of tHCy levels. Vitamin B12 deficiency is the main cause of HHcy in vegan people.

metabolism

Pathophysiology of HHcy

High levels of Hcy cause adverse effects on cells due to⁵:

- Inducing oxidative stress by generating Reactive Oxygen Species (ROS);
- Altering gene expression;
- Increasing stress in the endoplasmic reticulum;
- Activating the biosynthesis of cholesterol.

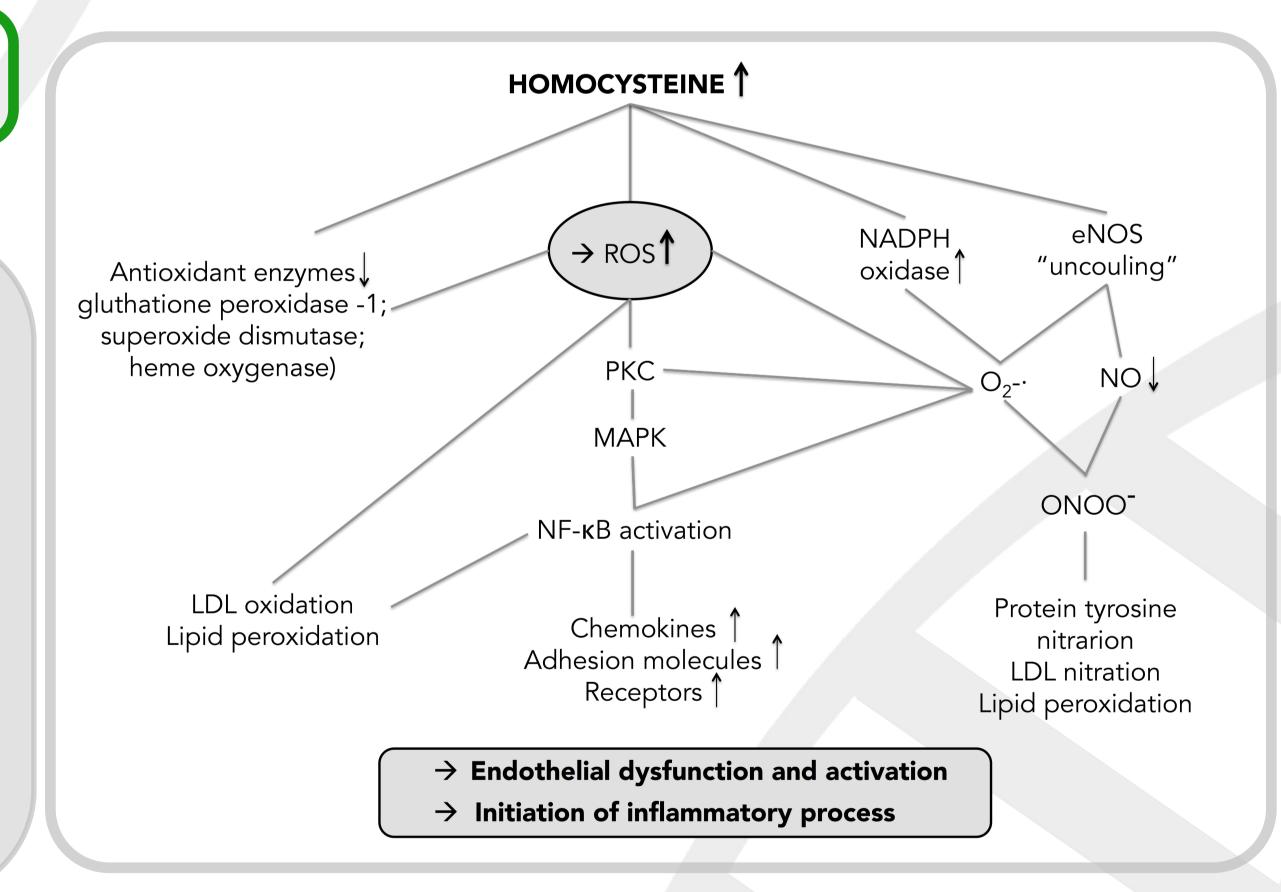


Fig. 2. HHcy leads to induce endothelial dysfunction and initiate inflammatory processes².

Elaboration of genetic profile

Obtaining a DNA sample Genotyping DNA chip

There is an increasing number of centers and laboratories that perform nutritional genomics studies:

- A search of the most convenient choice according to our needs has to be performed.
- The scientific reliability of the center should be always be reviewed.

Elaboration of personalized diet

Evaluation of

genetic variants

Expected Results

After the creation of the information campaign aimed to both the general population and populations at risk of CVD, it is expected to:

- Have an overview of the importance of advances in genomics.
- Recognize nutrigenetics as a key tool in preventive medicine.
- Know the main aspects of HHcy and their relationship with CVD.
- Acquire the ability to evaluate nutrigenetic services currently offered.

Materials & Methods

Creation of a blog

- "La genètica, una ciència desconeguda?"

- "La genòmica nutricional, un pilar base de la medicina preventiva"
- "La hiperhomocisteïnèmia i la seva nutrigenètica"
- "On puc realitzar-me un estudi nutrigenètic?"

En aquest blog trobareu informació sobre tots conceptes necessaris que cal conèixer per tal d'entendre què és la genòmica nutricional i perquè és tant important dins la medicina preventiva. També parlarem sobre la nutrició personalitzada i dels serveis que s'ofereixen a Catalunya per prevenir malalties cardiovasculars. DIMARTS 21 DE MAIG DE 2013 On puc realitzar-me un estudi nutrigenètic? Tal i com s'ha anat veient, per tal de poder elaborar dietes personalitzades, primer s'ha d'obtenir el perfil genètic de cada individu. A l'hora de buscar un centre que l'elabori, és molt important conèixer quin serà el més adient en funció de les nostres característiques.

References

Publications

- 1. DiBello PM, et al., 2010. The nutrigenetics of hyperhomocysteinemia: quantitative proteomics reveals differences in the methionine cycle enzymes of gene-induced versus diet-induced hyperhomocysteinemia. Mol Cell Proteomics, 9(3):471-485.
- 2. Papatheodorou L, et al., 2007. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal, 9(11):1941-58.
- 3. Yakub M, et al., 2012. Polymorphisms in MTHFR, MS and CBS Genes and Homocysteine Levels in a Pakistani Population. PLoS One, 7(3).
- 4. Yamamoto K, et al., 2012. Folic acid fortification ameliorates hyperhomocysteinemia caused by a vitamin B_6 -deficient diet supplemented with L-methionine. Biosci Biotechnol Biochem, 76(10):1861-5.
- 5. Yamamoto K, et al., 2013. Involvement of 5-methyltetrahydrofolate in the amelioration of hyperhomocysteinemia caused by vitamin b(6) deficiency and L-methionine supplementation. Biosci Biotechnol Biochem, 77(2):378-80.