Lactococcus lactis: a new typhoid vaccine

Marcos Valenzuela Ortega (marcosvalenz@gmail.com)

Introduction

Typhoid fever, caused by Salmonella enterica serovar Typhi, is a severe world health problem, and current vaccines are quite defective. In this work a completely new vaccine is proposed, based on the immunologic properties of Lactic Acid Bacteria. This vaccine is designed with the necessities of the population affected by the disease, including safety, economically viable production and biological containment system.

1. The Disease

Typhoid fever is still a serious problem worldwide. Even though it’s controlled in first world countries, 216,000 deaths and 22 million cases are estimated per year (1). Cases of typhoid fever are more frequent in children and infants. The host response is complex. To control de bacteria, it requires a T-cell response but also the production of antibodies (even though it’s an intracellular pathogen).

Flagellin is a target of innate and adaptative immunity. This protein is recognized by innate immunity (through TLR-5). It’s also pointed to be recognized by T-cell and antibodies against flagellin are believed to be protective. However, Salmonella has a flagellar phase variation between the two distinct flagellins FlIC and FlJB. Thus, Salmonella flagellins can be protective, but both flagellins must be present in the vaccination.

Salmonella Typhimurium is the murine model. Salmonella enterica serovar Typhi is the causative agent of typhoid fever but only infects humans. S. enterica serovar Typhimurium is the laboratory model in murine infection.

The two licensed vaccines are very defective. Meanwhile the attenuated strain Ty21a vaccine is not available for children under 6 years old, the capsular Vi polysaccharide vaccine elicits poor response in infants. Both vaccine have a poor rate of protection and require periodical re-vaccination.

2. Lactococcus lactis

Recombinant bacteria as vaccine vector have been studied since the early 1990’s. Including pathogenic and non-pathogenic bacteria expressing heterologous antigens. Because of the hazard of reversion to a virulent state, non-pathogenic bacteria are a better candidate to treat typhoid, where children are the most affected subpopulation.

Lactic acid bacteria and Lactococcus lactis have been studied as vaccine vectors for long and there have been several protection trials in animal models (2). Their benefits are:

✓ Safety. They have been used for thousands of years in dairy food production and they are generally recognized as safe (GRAS).

✓ Mucosal administration. They can elicit an immune response through the natural route of infection of the pathogen. In addition, this avoids the use of needles and medically trained personal for its administration.

✓ Inexpensive production. As the bacteria are administered whole and alive, the downstream process in its production is much simpler than in other vaccines.

The immune response is hard to predict. The main drawback of Lactic acid bacteria vaccines is the dependence of many variables in the immune response elicited. This includes: strain, subcellular location of the antigen, the antigen itself, the animal model, and the route and regime of vaccination.

A biological containment system is needed using a genetically modified organism as vaccine vector. Thermolabile synthase gene (thyA) deletion is a bactericidal auxotrophy, so the generated strain requires a thymine or thymidine supplementation to survive. The gene substitution proposed is based on the work of Biswas et al. (3).

Bibliography:

3. The vaccine

1. Plasmid Construction

![Figure 2](Figure 2. Salmonella typhi/Photography: J.P. Duguid and J.F. Waksman)

2. Bacteria recombination

The resultant plasmid will be transformed into L. lactis. The integration will be forced through temperature restriction of replication and selection. The excision will be improved through plasmid replication.

3. In vitro analysis

- Confirmation: • Protein synthesis. • Enough bacterial growth. • Biological containment.

4. Animal immunization

- As the immune response is hard to predict, immunization must be empirically found.
- Variables: amount (CFU/mice) and frequency of dose, route (oral/intranasally).

5. In vivo analysis

- Quantification: • Antibodies (serum and mucosA) • Cytokines (from ex vivo splenocytes and lymphocytes)

6. Prophylactic analysis

- Lethal challenge: (with virulent Salmonella Typhimurium) • Monitorization of mortality • Organ examination.

The Benefits of this vaccine

- Safety
- Oral
- Economical
- Effective?