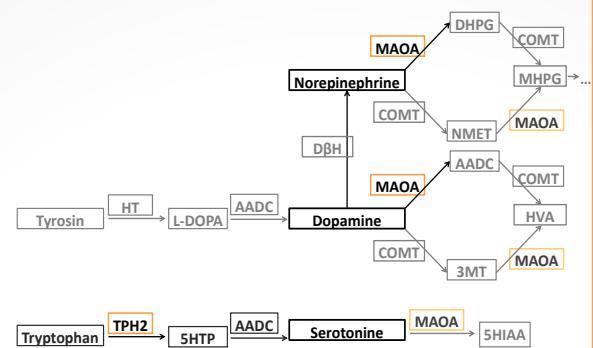


ANIMAL MODEL FOR SCHIZOPHRENIA

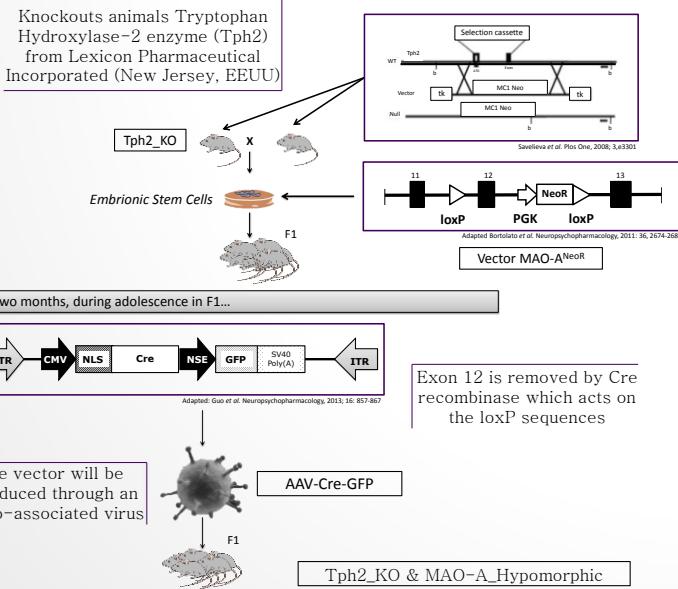

Gemma Riquelme-Alacid¹

¹Genetic Degree. Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.

INTRODUCTION

BACKGROUND

- Biogenic amines: dopamine (DA), serotonin (5-HT) and norepinephrine (NE) have been used empirically to find a treatment for various mental illnesses in recent decades.
- Schizophrenia (SZ) is one of the most common and devastating conditions for it has limited knowledge of their origin and mechanisms.
- Monoamine oxidase-A (MAO-A), is the key enzyme for the degradation of the three biogenic amines and suggested that plays a critical role in social behavior. Its catalytic activity is located in exon 12.
- SZ is characterized by an increased concentration of DA and NE, while the concentration of 5-HT is smaller patients.
- The enzyme tryptophan hydroxylase-2 (Tph2), is responsible for the passage of tryptophan to 5-HT in the central nervous system.
- The circuits of the brain during adolescence is of obvious importance for the development of the SZ.



AIMS

- The central hypothesis of this study is based on:
 - The implications of biogenic amines for the clinical development of the SZ for obtaining a murine model for such mental pathology.
 - Needed two hits in neurotransmission: one is located during embryonic development, followed by further disruption during adolescence.
- The main aim is:
 - To increase the levels of DA and NE while lowering the 5-HT, causing major disturbance during adolescence.
 - As specific aims, set out:
 - Start from knockout mice Tph2 enzyme.
 - F1 of these mice will insert a MAO-A vector, whose exon 12 will be flanked by two LoxP sequences.
 - During adolescence mouse will proceed to insertion a Cre vector for the removal of exon 12 of MAO-A.
 - Check that the amendments effectively recreate the disease through neurochemical and behavioral analysis.

MATERIALS AND METHODS

ANIMALS & TARGETING VECTOR

ASSAYS (F1)

Test and behaviour measured	Relevance to Schizophrenia	Translationability
Latent Inhibition (LI) 	LI disruption: Model of the positive symptoms and model of negative symptoms	Human LI tasks substantially differ from animal analogues
Prepulse Inhibition (PPI) 	This deficiency is common in SZ patients and considered an endophenotype of the disease	Difference between animal and human PPI tests are minimal
Object and spatial recognition memory 	Recognition memory is impaired in SZ	Human analogues are available in the CANTAB
Morris water maze 	Used to model flattening, a negative symptom of SZ and	No human analogue
Neurochemical analysis 	<ul style="list-style-type: none"> Study of the three biogenic amines in post-mortem brain tissue. GFP protein expression and confirmation of the action of Cre recombinase Comparison of concentrations in animals genetically unmodified and modified through a statistical test ($p < 0.05$) 	Adapted Benyamin et al. Cell Tissue Res., 2013

EXPECTED RESULTS

- Expected from significant changes between the control mice and mice modified as previously described.
- In the neurochemical analysis of brain tissue, are expected to find an increased DA and NE, while it should be a decrease of 5-HT, compared with control animals.
- In performance tests, it is conjectured find behavioral changes in animals Tph2_KO & MAO-A Hypomorphic to assimilate the behavior described in SZ.

DISCUSSION

- The importance of this work is that there are currently no animal models that recreate the symptoms of SZ.
- The SZ is a serious mental illness is a major health expenditure on an annual basis and can not live a normal life or the patient or relatives.
- It is a disease for which no treatment has been found effective palliative and definitive treatment whose understanding and improve the lives of not only the patient but also of society in general.