DESIGN OF A BIODIESEL PRODUCTION FROM ALGAE PLANT

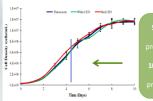
PART 2.Upstream & Production

Carceller A., Esteban L., López A. and Sala. A

BIOPROCESS: Dunaliella tertiolecta

WHY DO WE USE IT?

Environmental friendly


Osmoregulation

$CH_{1.83}O_{0.48}N_{0.11}$

ı	Microalgal species	Oil content(% dw)	
	Dunaliella tertiolecta	36-42	

Fatty acid	Chain length: no. of double bonds	Oil composition (w/total lipid)
Palmitic acid	16:0	12-21
Palmitoleic acid	16:1	55-57
Stearic acid	18:0	1-2
Oleic acid	18:1	58-60
Linoleic acid	18:2	4-20
Linolenic acid	18:3	14-30

OTHER OPTIONS

-<u>Chlorella protothecoides</u> → As It said in a paper of 2006, Chlorella protothecoides has a great potential for the production of liquid biofuels. Its lipid content is: 5-55 % of dry weight. <u>Problem:</u> few studies are published actually and its lipid content varies up to the conditions.

-<u>Schizochytrium</u> → Members of the genus produce significant amounts of docosahexaen commercially as a source of oil for biofeeds and biomass. Lipid content: 33 % of dry weigh

its lipid content; is 26% of dry weigh but this and its lipid productivity

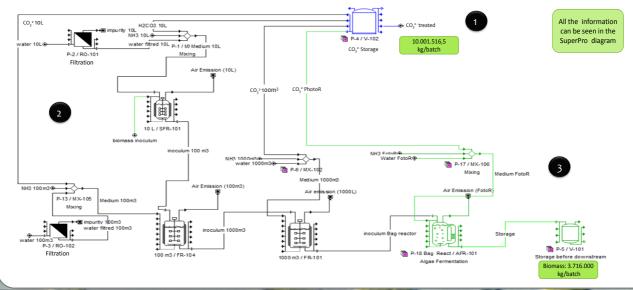
PHOTOBIOREACTOR

fallout, relatively safe from invading microorganisms and where temperatures are controlled with an enhanced CO₃²-fixation that is bubbled through culture medium.

to produce biomass that can be converted into biofuels.

 $H_2CO_3 + 0.11NH_3 \rightarrow CH_{1.83}O_{0.48}N_{0.11} + 1.13 O_2 + 0.25 H_2O_3$

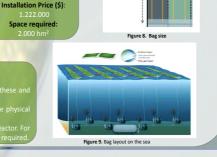
large flexible plastic bags floating on


achieve optimal light exposure maintain optimum temperature

If the bags break:

PRODUCTIVITY

FLUX DIAGRAM OF UPSTREAM AND BIOPROCESS



SCALING ITERATIONS

Real Scaling			
Total Volume (useful)	Scaling	<u>Unit number</u>	
10 (9.26) L	x10 ⁴	1	
100 (99.19) m ³	x10	1	
1000 (992.39) m ³	x10	1	
1 m ³	x10 ⁴ *	1.709.880	

Figure 7. Table with the scaling process applied. * This scaling value refers the pass from a 1000m¹ reactor to the total volume of the 1709880 bags.

Why do we scale up?

QUANTITY OF CO₃²⁻ REQUIRED

Quantity CO32- required

Cost of CO32- storage

(The tank it's not real it's a way

Selected References

- Mansour Shariati and Mohammad Reza Hadi, Microalgal Biotechnology and Bioenergy in Dungliella. A: Argelo Carpi, Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, InTech, 2011. -Vishwanath Patil, Khanh-Quang Tran and Hans Ragnar Giselrød, Towards Sustainable Production of Biofuels from Microalgae, Int J Mol Sci. 2008 June; 9(7): 1188-1195.

STAGE'S Summary: Productivity
Biomass/batch):

- -Ashley juanika belle b.S., Laboratory evaluation of Dunaliella tertiolecta as a candidate algal species for tertiary wastewater treatment of nitrogen and phosphorus-laden effluents impacting marine environments, Dillard University, 2004
- -M.E.D. Garcia, meng chen, k.Y. Simon ng, steven o. Salley, Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel, Applied Energy, 2011,(88) 3324–3330.
- -http://www.algaeindustrymagazine.com/low-cost-algae-production-is-it-finally-with-us/