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1. INTRODUCCIO
1.1 ANALISI DE SUPERVIVENCIA

S’anomena analisi de la supervivencia ' al conjunt de técniques que permeten estudiar la variable
“ temps fins que ocorre un esdeveniment ” i la seva dependéncia d’altres possibles variables
explicatives.

En ciéncies de la salut, els estudis longitudinals sén, els que aporten informacié més precisa
sobre la evolucid dels subjectes, pero a la vegada sén els més costosos i els de més complexitat en
quant al seu tractament estadistic. L’analisi de la superviveéncia aplicat a les ciencies de la salut
esta format per un conjunt de tecniques estadistiques apropiades per estudis de seguiment en els
gue interessa analitzar la variable temps transcorregut fins que es produeix un esdeveniment que
pot presentar-se durant el periode d’observacid, aixi com I'efecte sobre la variable d’'un conjunt
de factors pronostics, utilitzant per exemple, el model de regressié de riscos proporcionals de Cox
gue s’exposa més endavant.

El terme supervivencia es deu a que en les primeres aplicacions d’aquesta téecnica I'esdeveniment
terminal era el “fallo ” d’'un element o la mort de l'individu. Tot i aix0, el temps de supervivéncia
pot ser, per exemple, el temps transcorregut des de l'inici d’un tractament fins la desaparicid del
trastorn, el temps que un pacient ha estat lliure de recaigudes després d’un tractament o en
general, el temps transcorregut des d'un determinat moment fins que s’ha produit
I'esdeveniment d’interés.

Els antecedents més llunyans de I'analisi de la supervivencia es poden situar en la elaboracié de
les taules de vida que va presentar John Graunt® a Londres al 1662 i I'elaboracié de les taules de
mortalitat que va publicar Edmund Halley (1659- 1742)° a partir del registre de funerals i
naixements de la ciutat de Breslau. L’analisi de la supervivencia tal i com es coneix avui en dia, té
les seves arrels en la enginyeria, i esta encaminat a analitzar la duracié i fiabilitat dels diferents
elements que formen una maquina. La segona Guerra mundial, va accelerar el desenvolupament
d’aquestes tecniques per aplicar-les a la industria militar.

En ciéncies de la salut, I'increment en I'Gs d’aquestes técniques comenga a la decada dels anys
seixanta, especialment gracies al metode d’estimacié de la supervivéncia proposat per Kaplan i
Meier I'any 1958 *, i en la actualitat s’ha convertit en una de les técniques més utilitzades en
medicina i epidemiologia. El motiu d’aix0, és, que aquesta metodologia pretén analitzar temps
de supervivencia valorats en unes condicions molt més flexibles que les requerides en les proves
classiques.

L’altre impuls destacable per I'analisi de la supervivencia es produi entre els anys 1972 i 1975 °*,
quan Sir David Roxbee Cox presenta el model de regressié més utilitzat en el context dels estudis
de supervivéncia , el model de Cox o model de riscos proporcionals, i pocs anys després,
relacionat amb aquest primer, presenta el desenvolupament de la funcié de versemblanca parcial.



1.2 EL MODEL DE COX

Sigui T una variable aleatoria que indica el temps fins a un esdeveniment € (i.e, mort, recuperacio
d’'una malaltia, diagnostic de SIDA, etc), i sigui x = (xq, X3, ..., Xp) covariables fixes, és a dir,
variables explicatives recollides en I'origen de I'estudi. Al conjunt de tots els factors pronostics o
covariables associades a un individu el denotarem per x = (x1,X;, ..., xp) i ens referirem a ell
com a perfil de I'individu.

v
-+

X1,X2,..Xp

Definim la funcié de risc basal hy(t) , com la funcié de risc que correspondria a un individu amb
valors a les covariables iguals a 0, és a dir, amb perfil x=0. El model general de Cox relaciona la
funcio de risc h(t|X) en el moment t d’un individu amb perfil X amb la funcié de risc el mateix
moment d’un individu amb perfil X=0 mitjangant I'expressid:

h(t1X) = p(X)he(t)

on la funcié Y(X) és no negativa i hy(t) no s’especifica paramétricament. Y(X) pot interpretar-
se com el hazard ratio en el moment t d’un individu amb perfil x; respecte un individu amb X=0.
Es poden considerar diverses parametritzacions i , les més habituals en la forma log lineal,
W(X,B) = eB'X , la forma lineal Y(X,B) = 1 + B'X i la forma logistica ¥(X, B) = In(1 + e5'%).
La parametritzacidé log-lineal, és per bones raons, la més popular. Notem, que en particular,
aquesta parametritzacid assegura que A(t|Z) és no negativa sense necessitat d’afegir restriccions
als parametres.

El model basic de Cox estableix la seglient regressié multivariada entre el risc instantani de
presentar I'esdeveniment i les covariables.

h(th) — eB'XhO (t) — 631X1+ B2Xoy .t BpohO (t)

En aquest model se suposa que la rad entre les funcions de risc es mantenen constants al llarg del
temps ja que es verifica:

h(tlX)
ho(t)

On el terme de la dreta només depen dels valors de les covariables i no del temps t. Segons

eB1X1+ BaXoy .t BpXp

aquest model, la distribucié de l'error no esta especificada. El factor ePX1t B2Xzs .+ BpXp
correspon al risc instantani relatiu ( d’ara endavant hazard ratio en la seva formulacié en angles)
d’un individu amb perfil X; respecte d’un individu amb perfil X; =0 i expressa quantes vegades és
més gran el risc de tenir un esdeveniment amb un perfil X que amb un perfil X=0.



Una forma equivalent de plantejar el model és mitjancant la transformacié logaritmica. En aquest
cas, el model s’expressa mitjangant I'equacio:

In (h(t|X)

ho(t)) =P1Xy + B2 Xy + .+ Bp Xy,

I'a la quantitat n = B1X; + BX; + ...+ BpX, se la coneix com I'index pronostic o risk score. En
aquest model no hi ha terme constant ja que aquest I'absorbeix hy(t).

Ara bé el fet que els individus puguin experimentar diversos episodis del mateix esdeveniment
durant un periode d’observacié fa que sigui necessaria I’ aplicacié d’una metodologia diferent de
la utilitzada en I'analisi de supervivéncia estandard per a fenomens en queé hi ha un Unic episodi
possible.

1.3 ANALISI DE SUPERVIVENCIA DE FENOMENS RECURRENTS

A diferéncia de les tecniques classiques de supervivéncia que suposen que un esdeveniment
d’interes només es pot produir una sola vegada en una mateixa observacié, en I'ambit de les
ciencies de la salut, existeixen multiples fenomens recurrents, aquells que poden repetir-se en
més d’una ocasié en un mateix individu. Exemples d’aquest tipus poden ser la incapacitat laboral
en treballadors o la ocurréncia d’atacs d’asma.

A I'analitzar fendmens recurrents el principal problema del model de Cox es deu a que aquest
model esta pensat per fenomens que només poden passar una vegada, de manera que si les
diverses ocurréncies d’'un mateix episodi es tracten com independents , pot donar lloc a
I'incompliment de la hipotesi de riscs proporcionals . Aquest fet, es deu fonamentalment ,a
I’existéncia simultania o per separat del seglients fenomens:

Heterogeneitat individual: alguns individus tenen un risc més alt o inferior en presentar una

ocurréncia a causa d’efectes desconeguts o no registrats.

Dependéncia d’ocurréncia: I’ ocurréncia d’'un esdeveniment modifica el risc d’una nova ocurréncia

en l'individu que préviament ja n’ha experimentat.

Els suposits en qué es basa el model de Cox, es relacionen estretament amb els de la distribucié
de Poisson, aixi, a priori, ha d’existir una estabilitat en el fenomen que s’estudia. En el cas de la
Poisson, temporal i entre les observacions: el risc de tenir un episodi ha de ser constant sobre el
temps i entre individus un cop fixades les seves caracteristiques (o sigui les covariables). El model
de Cox estandard assumeix aquest ultim, mentre que incorpora el primer en escala temporal i en
la proporcionalitat de riscos. Un segon suposit que s’ha de complir en la Poisson i en el model de
Cox és la independéncia de ocurréncia: el risc d’ocurréncia d’un esdeveniment és independent al
numero previ d’ocurrencies de cada individu.

L’ existéncia d’heterogeneitat individual, situacid que rep el nom de fragilitat o propensio, i/o
existéncia de dependéncia d’ocurréncia, situacid de contagi, implica la violacié del suposit
d’independéncia entre els temps d’ocurréncia que estableix el model de Cox.



Amb el proposit de solucionar aquest problema aparegueren el model de Andersen-Gill (AG)”’,
gue no és més que una generalitzacié del model de Cox, perdo amb la diferencia que la hipotesi
d’aquest model suposa que les multiples observacions d’ un mateix individu sén independents,
condicionades a les variables explicatives. A la practica, aquesta limitacié pot conduir a
estimadors esbiaixats i ineficients , ja que per logica, les observacions d’un mateix individu solen
estar positivament correlacionades ®.

Amb el fi de trobar una solucié apareixen a final dels anys vuitanta els models marginals i els
condicionals en I'analisi de la supervivencia multivariant.

1.3.1 MODEL DE ANDERSEN-GILL

Dins dels models de regressid condicionals , el més popular és un model basat en processos
comptadors proposat per Andersen i Gill (AG) .

AG adopta I’ assumpcid classica del model de riscos proporcionals de que el risc de tenir una
ocurréncia en un individu és independent a les ocurréncies prévies que aquest mateix individu ja
ha patit. Es a dir, que la funcié de risc basal és comu per totes les ocurréncies i les multiples
observacions de cada subjecte sén independents, condicionalment al vector de covariables.

D’una altra manera, AG, considera a cada individu com un procés comptador amb processos
multiples i “increments” (temps entre esdeveniments successius), essencialment independents
donada la historia de totes les variables observables fins als temps d’ocurréncia de
I’esdeveniment,

En aquest model, la funcio de risc per a I'i-essim individu en el temps t té la seglient expressio:
hi(t) = ho(t)eXi ©OF

On hy(t) és la funcié de risc basal, B és un vector de parametres desconeguts i X; (t) és una
matriu de covariables, el valor de les quals pot canviar al llarg del temps.

Aguest model és una extensid del model de Cox i posseeix dues caracteristiques essencials:

- Tota la influencia dels esdeveniments previs sobre les recurréncies futures, si hi sén, son el
resultat de les covariables dependents del temps.

- Les covariables tenen un efecte multiplicatiu en la taxa instantania del procés comptador.

La primera de les caracteristiques, fa que aquest model sigui també conegut com un dels models
de reparacions perfectes, ja que les recurrencies no depenen d’ocurréencies previes.

La segona caracteristica, fa que aquest model també sigui conegut com el model d’intensitat
multiplicativa.

En aquest model, els individus es divideixen en difrents registres segons els intervals d’observacié
i cada registre es tracta com si fos un un individu diferent. Les varaibles explicatives sén fixes dins
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de cada episodi pero, si poden canviar el seu valor al llarg del periode ( per exemple, passar de ser
fumador a no ser-ho, etc) , poden variar entre els registres d’un mateix individu; aixi, el risc que es
compleixi la hipotesi de riscos proporcionals és el risc de cada esdeveniment o recurréncia per un
individu determinat i aquest risc no esta afectat per esdeveniments o recurencies anteriors del
mateix individu.

Figura 1.Tractament dels individus segons el model d’AG.

A - L
5 13
B - - -
7 11 17
C L ]
14
temps
0 5 10 15 20 dies

En aquest exemple (figura 1) es pot observar tres individus diferents, I'individu A, amb un
esdeveniment als 5 dies i un final d’estudi als 13 dies, I'individu B, amb 3 esdeveniments , i
I’Gltim, individu C, on s’observa que durant els 14 dies de seguiment no ha experimentat cap
episodi.

El model AG, compara doncs, aquells individus que estan sota un mateix conjunt a risc. Per
exemple, als 12 dies, comparara els 3 individus, ja que aquests 3 estan a risc de patir un
esdeveniment en aquest temps determinat.

1.3.2 MODEL DE FRAGILITAT

’

La idea de fragilitat és una forma comode d’introduir efectes aleatoris, I’ associacié i
I’heterogeneitat no observada en els models de dades de supervivéncia. En la seva forma més
simple, una fragilitat és un factor de proporcionalitat aleatoria no observada que modifica la
funcié de risc d’un individu o d’un conjunt d’individus. El concepte de fragilitat es remunta al
treball de Greenwood y Yule (1920)° sobre la “ propensié a accidents”. El propi terme de fragilitat
va ser introduit per Vaupel (1979)" en els models de supervivéncia univariant i el model va ser
promogut la seva aplicacié a les dades de supervivencia multivariant en un article de Clayton

(1978) “sobre la incidéncia de les malalties croniques en families.

Els models de fragilitat son extensions del model de riscos proporcionals, més conegut com el
model de Cox. Normalment, en la majoria d’aplicacions cliniques, I'analisi de supervivéncia suposa
implicitament una poblacid homogenia . Aixo significa que tots els individus de la mostra, estan
subjectes, en principi, a un mateix risc si comparteixen caracteristiques (és a dir, tenen els
mateixos valors a les covariables). Moltes vegades perd, no es pot suposar que aquest risc sigui
homogeni per a tots els individus, sind que hi ha diferents grups amb riscos diferents inclus
compartint un conjunt de caracteristiques.



En els models de fragilitat univariants es pretén modelitzar la dependéncia entre els diferents
temps de recurrencia introduint un Unic efecte aleatori multiplicatiu, comd a totes les
observacions d’un mateix individu ( i, per tant, invariant en el temps), o diferent per a cadascun
dels individus. Aixi, la fragilitat es pot entendre com una variable aleatoria no observable, i per
tant, no inclosa en el model, la qual es la causant de la dependéncia entre les recurrencies.

S’han estudiat moltes alternatives per a la distribucié de probabilitat de la variable de fragilitat,
com per exemple, la distribucié gamma, la distribucié positiva estable i la distribucié gaussiana
inversa, entre d’altres. Pero, el més utilitzat és un model de fragilitat amb distribucié de
probabilitat gamma de mitjana unitaria i variancia desconeguda.

Existeixen diverses formualcions amb models de fragilitat, entre els que destaquem el shared
frailty ( fragilitat compartida) , el joint frailty (fragilitat conjunta) i unshared frailty (fragilitat
individual), que és el que teoricament es podria adaptar millor per al nostre problema.

En el model de fragilitat individual, suposem que tenim una mostra de | individus on algunes
observacions tenen major risc a causa de I'heterogeneitat no observada , és a dir, variables
importants per al fenomen que s’estudia, pero que no es tenen en compte ( normalment, perquée
no es registren).

La seva funcié de risc es pot especificar de la seglient manera:
hi(t) = hovieXitOF

On v; és un efecte aleatori individual que normalment s’especifica mitjangant una distribucié
gamma amb E(v;)= 1i Var (v;) = 6. Donat que el model de fragilitat capta variabilitat causada
per variables desconegudes, en el cas de fenomens recurrents amb presencia de dependéncia
d’ocurréncia i desconeixement dels episodis previs soferts per cada individu, es podria hipotitzar
que part de la variabilitat introduida pel fet de desconeixer els episodis previs de cada individu es
tindria en compte mitjangant el terme de fragilitat.

1.3.3 MODEL DE PRENTICE,WILLIAM AND PETERSON (PWP)

El model de Prentice, Williams i Peterson, meétode (PWP, 1981)" és un model marginal respecte
I’estimacid de parametres, perd condicional respecte la construccié del conjunt d’individus a risc.
Aguest model permet que el risc basal varii entre diferents ocurréncies. Es tracta, doncs, d’'un
model de riscos proporcionals amb estrats dependents del temps, on la dependéncia entre
recurrencies es controla estratificant pel nombre de vegades que I'esdeveniment d’interes ha
passat anteriorment.

Aixi dons, el model PWP inclou en el conjunt de risc per la recurréncia k-e€ssima, Unicament els
individus que han experimentat k-1 recurréncies.

Prentice, William i Peterson proposen dos models semi-parameétrics de riscos proporcionals:

Temps des de l'inici de I'estudi, on la funcid de risc subjacent s’inclou com una funcié del temps
des de I'inici de I'estudi:

10



i (t) = hoy (H)eXi OF

Temps des de la ultima recurréncia, on la funcié de risc subjacent és una funcié del temps des de
la recurrencia anterior al temps de la fallada.

i (t) = hog (t — ty_y)eXi(OF

S’observa que, en definitiva, es tracta de models AG estratificats, degut a que tenen un conjunt de
risc condicional i el risc basal és especific per cada recurrencia. Aquest model es diferéncia de AG
en dos aspectes:

El conjunt de risc per a la k — éssima recurréncia es limita a individus que han experimentat les k-1
primeres recurrencies. Aixi doncs, la funcid de risc subjacent i els parametres de la regressid
poden variar entre les diferents recurréncies.

El principal problema de PWP es troba en la forma de construir els conjunts a risc, ja que
comporta una perdua d’aleatorietat, donat que els individus amb més risc van sortint de I'estudi.
Aquesta perdua sera més gran a mesura que ens anem movent a estrats superiors. En aquests
casos, la consisténcia de les estimacions depén de la inclusid de totes les variables rellevants.

Evidentment, a priori, aquests models haurien de ser els més escaients en el cas de preséncia de
dependencia d’ocurréncia. A I'estratificar per I'episodi a risc (k) s’obté un risc basal especific que
pretén acomodar la dependeéncia d’ocurréncia. El problema pero, que justifica el treball, és quan
el valor de k és desconegut, situacié freqlient en algunes disciplines com la salut publica .

Figura 2. Tractament dels individus segons el model de PWP

5
A{—. 13

B |[—— =

C{ @

0 5 10 15 20 dies

Si observem ara, I'exemple de com tracta els individus el model PWP respecte el model d’AG
veiem que és forga diferent. Si mirem la figura 2, veiem la mateixa representacié que en el model
AG, pero estratificat. En aquest cas, el model PWP, al dia 9 per exemple, no comparara els 3
individus, sind que comparara només l'individu A amb I'individu B, ja que aquests sén els que
estan a risc de patir un segon episodi, en canvi, no es podra comparar amb l'individu C, ja que
aquest, encara no ha presentat el primer episodi.
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2. JUSTIFICACIO

En I'ambit meédic o de les ciéncies de la salut, sol ser freqlient I'interes per I'analisi de la
supervivencia en fenomens recurrents. En aquest cas, és necessari utilitzar una metodologia
diferent a la utilitzada en I’analisi de supervivencia estandard. El principal problema que comporta
els estudis d’aquest tipus de fenomens és que els diversos episodis d’'un mateix individu estan
correlacionats i el risc basal pot ser diferent en funcié dels episodis previs que s’hagin patit.

El model PWP sembla ser el model més adequat en aquest context: té en compte que els episodis
d’un mateix individu no sén independents, per una banda, i permet estimar un risc basal especific
segons el nombre d’episodis previs que s’han presentat per altra. Perd sovint, les ocurréncies
prévies dels esdeveniments d’interés que ha tingut un individu no sén conegudes i per tant, el
model PWP no es pot aplicar.

El que es pretén en aquest treball és, doncs, valorar el rendiment de les diverses alternatives al
model PWP en el context de I'analisi de supervivencia per a fenomens recurrents, quan es
desconeix el nombre d’ocurréencies previes de I'esdeveniment d’interés.

3. OBIJECTIU I HIPOTESIS
OBJECTIU:

Valorar el rendiment de les diverses alternatives al model PWP en el context de I’analisi de la
supervivencia per a fenomens recurrents, quan es desconeix el nombre d’ocurréncies previes de
I'esdeveniment d’interés.

HIPOTESIS:

1- Els models amb risc basal comuU sobreestimen els coeficients en una situacid de
dependencia d’ocurréncia creixent.

2- Els models de fragilitat podrien captar part de I'efecte de la dependéncia d’ocurréncia a
través de I'efecte aleatori individual.

3- Els models basats en el temps d’exposicid compleixen amb major freqiiéncia la
proporcionalitat de riscos en relacié als models analegs basats en el temps d’estudi.

4-la consideracio del temps d’exposicié com a covariable podria permetre una estimacio
menys esbiaixada dels coeficients.

5- A major dependéncia d’ocurréncia pitjor rendiment dels models examinats en aquest
treball

6- Quan major sigui el valor del parametre beta, major la sobreestimacié de I'efecte per part
dels models amb risc basal comu.
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4. METODOLOGIA
4.1 SIMULACIO

4.1.1 GENERACIO DE POBLACIONS

13 s’han creat 3 escenaris diferents ,cadascun

Mitjancant el paquet complex.surv.data.sim de I'R
amb un total de 250.000 individus i un seguiment de 20 anys ( 7305 dies). El que determina la
diferéncia entre les poblacions generals és la hy,(t) , la variacié de la qual permet construir
poblacions on el hazard basal, i per tant, el hazard ratio en funcid dels episodis previs, és distint.
Aixo fa que existeixi una dependéncia d’ocurrencia, on I'ocurréncia d’un esdeveniment modifica el

risc d’'una nova ocurréncia en l'individu que préviament ja n’ha experimentat.

Cadascuna de les funcions s’han creat a partir de 3 exponencials, on a partir d’aqui hem pogut
calcular el hazard per a cadascun dels episodis.

El hazard s’expressa com:

hiy (t) = exp(Box + B1X1 + P2X2)x Z;

On hy(t) = exp(—py) i Z; és una covariable continua que segueix una distribucié Normal amb
mitjana 1 i desviacié tipica 0.2, que s’utilitza per introduir heterogeneitat individual.

En totes les simulacions realitzades s’ha fixat que f; = 0.2, [,= 0.7, essent aquests parametres
sempre iguals en les poblacions generades i independents de I'episodi al que s’esta a risc.
Assumim també en cadascuna de les poblacions simulades, que el 100 % dels individus no estava
en risc abans del seguiment.

Un cop obtingudes les poblacions, hem fet una petita descriptiva del episodis i la densitat
d’incidéncia, per cadascuna de les poblacions.

La incidencia és el nombre de casos nous en una determinada malaltia o esdeveniment que
apareixen en un periode de temps i expressa la forga en qué una malaltia té per canviar 'estat de
salut d’'una poblacid a l'estat d’'una malaltia per unitat de temps en relacié a la poblacid
susceptible en aguest moment.

Noti que en les poblacions generades s’ha establert una dependéncia d’ocurréncia creixent, és a
dir, s’"ha suposat que el risc d’experimentar I'esdeveniment augmenta a mesura que es van
presentant episodis. S’ha escollit aquest patrd donat que és el que habitualment es troba en els
fenomens relacionats amb la salut.
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Poblacié 1

beta Hazard Hazard HR
( taxa/dia) (taxa/setmana)
Bor = 8.109 0.0003 0.0021
Boy = 7.927 0.0004 0.0025 1.20
Bos = 7.521 0.0005 0.0038 1.80

La primera poblacid, es caracteritza per tenir la dependéncia d’ocurréncia més baixa entre les
poblacions generades. Veiem que el risc de patir el primer episodi és de 0.0003 per individu/
unitat de temps (que suposa que és un dia), i el segon, un cop l'individu ja n’ha experimentat un
és de 0.0004. Aixi doncs, el hazard ratio de patir el segon episodi envers el primer és de 1.20 (o dit

d’altra manera, el risc basal de patir I'’esdeveniment és un 20% major). Si mirem ara, el risc de
patir un tercer episodi quan s’ha observat el segon, creix fins a 0.0038, amb un hazard ratio de

1.80 en relacié al primer episodi.

Taula 1: casos observats poblacié 1

N2 episodis totals N % casos
0 99336 39.73
1 62533 25.01
2 34882 13.95
3 20422 8.17
4 12464 4.99
5 7694 3.08
6 4785 1.91
7 2986 1.19
8 1754 0.70
9 1205 0.48
>=10 1939 0.78

Es pot observar a la ( taula 2) poblacié 1 que el 39.73 % dels individus no pateixen cap episodi
durant el seguiment, i un 25.01 % només 1, de manera que més de la meitat de la poblacié com a

molt, haura tingut un episodi.

Taula 2: densitat incidéncia poblacié 1

N episodis a risc Densitat incidéncia IC (95%)

1 3.68 (3,66 —3.70)
2 4.95 (4,92 — 4.99)
3 8.42 (8,35 —8.49)
4 9.22 (9,12 -9.32)
5 9.73 (9,60 —9.86)
6 10.19 (10,01 -10.37)
7 10.88 (10,64 —11.12)
8 11.34 (11,02 -11.66)
9 11.92 (11,51 -12.34)

>=10 12.97 12,62 —13.32)

* densitat incidéncia per 10.000 persones/dia
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Si ens fixem ara, en la densitat d’incidéncia (taula 2), s'observa que aquesta és creixent si el
nombre d’episodis en risc també creix. Es pot observar que la densitat d’incidencia creix
fortament durat els 3 primers episodis a risc, i a partir del quart, aquest comenca a mantenir-se
constant. Per exemple, veiem que en un dia, per cada 10.000 individus a risc del primer episodi
en un dia 3.68 tindrien un episodi. En canvi, si observem la densitat d’incidencia quan el nombre
d’episodis és >10 el nombre de casos ja serien 12.

Poblacié 2
beta Hazard Hazard HR
( taxa/dia) (taxa/setmana)
Bor = 8.109 0.0003 0.0021
Boz = 7416 0.0006 0.0042 2.00
Bos = 6.500 0.0015 0.0105 5.00

Si comparem ara la segona poblacié envers la primera, veiem que la dependéncia d’ocurréncia
creix considerablement, es pot observar, que el risc de patir un primer episodi és de 0.0003, igual
gue en la primera poblacid, mentre que patir un segon episodi quan ja se n’ha patit un, duplica
aquest risc amb 0.0006. Si observem finalment, el risc de patir un tercer episodi el risc ja és 5
vegades superior al risc de presentar el primer.

Veiem dons, que en aquest cas, aquesta dependéncia, és molt més elevada que en la primera
poblacié.

Taula 3 : casos observats poblacié 2

N2 episodis totals N % casos

0 99627 39.85
1 54459 21.78
2 31457 12.58
3 20359 8.14
4 13551 5.42
5 9094 3.64
6 6188 2.48
7 4319 1.73
8 3011 1.20
9 2194 0.88

>=10 5741 2.30

Es pot observar que el 39.85 % dels individus no pateixen cap episodi durant els 20 anys de
seguiment, i un 21.78 % només 1, de manera que més de la meitat de la poblacié com a molt,
haura tingut un episodi.
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Taula 4: densitat incidéncia poblacié 2

N2 episodis a risc Densitat incidéncia IC (95%)

1 3,67 (3,65 —3.69)
2 8,78 (8,73 —8.84)
3 25,55 (25,35 - 25.75)
4 27,05 (26,80 —27.30)
5 28,43 (28,11 —28.75)
6 29,60 (29,20 -30.00)
7 31,04 (30,55 -31.53)
8 32,50 (31,90 -33.11)
9 34,39 (33,63 —35.15)

>=10 37,71 (37,21 -38.20)

* densitat incidéncia per 10.000 persones/dia

Si ens fixem ara en la densitat d’incidéncia, s’observa que aquesta és creixent si el nombre
d’episodis en risc també creix. Veiem dons, que en un dia, per cada 10.000 individus, 3.67
tindrien un episodi. En canvi, si observem la densitat d’incidéncia quan el nombre d’episodis és
>10 ens trobem un nombre bastant més elevat d’individus, amb un total de 37,71.

Poblacié 3
beta Hazard Hazard HR
( taxa/dia) (taxa/setmana)
Bo; = 8.109 0.0003 0.0021
Bo2 = 7.010 0.0009 0.0063 3.00
Bos = 5.912 0.0027 0.0189 9.00

Finalment, la tercera poblacié és la que presenta una dependéncia d’ocurréncia més gran. En
aquest cas, veiem que el risc entre un episodi i I'altre es triplica cada vegada fins a obtenir un HR
de 9, entre el risc de tenir el tercer episodi i el primer.

Taula 4: casos observats poblacié 3

N2 episodis totals N % casos

0 99180 39.67
1 51979 20.79
2 33079 13.23
3 21141 8.46
4 13897 5.56
5 9277 3.71
6 6258 2.50
7 4379 1.75
8 2995 1.20
9 2038 0.82

>=10 5777 2.31
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Si observem ara taula de percentatge de casos segons els episodis (taula 5), observem, que
gairebé un 40 % dels individus no han patit cap episodi, i un 20.79% només un durant els 20 anys
de seguiment, pero la quantitat de repetidors augmenta.

Taula 6: densitat incidéncia poblacié 3

N episodis a risc Densitat incidéncia IC (95%)

1 3,68 (3,66 —3.70)
2 13,90 (13,82 -13.99)
3 62,98 (62,50 — 63.47)
4 66,72 (66,10 — 67.34)
5 69,88 (69,10 — 70.66)
6 73,43 (72,45 - 74.41)
7 76,58 (75,36 — 77.80)
8 78,63 (77,15 -80.11)
9 83,03 (81,19 — 84.87)

>=10 92,65 (91,46 —93.85)

* densitat incidéncia per 10.000 persones/dia

Si observem ara les densitats d’incidéncia en la poblacid 3 (taula 6), s’observa que creix
considerablement a partir del tercer episodi. Per exemple, si observem la incidéncia quan esta
en risc el segon episodi, s’observa que la taxa d’incidéncia és de 3,68 per cada 10.000
persones/dia . En canvi, per al tercer episodi, s'observa que aquesta taxa s’ha quadruplicat, ja que
ara, per cada 10.000 individus, 62,98 tindrien tres episodis.

Els hazards usats en aquest treball s’"han escollit de forma que puguin reproduir un esdeveniment
real. Concretament, el risc basal del primer episodi de cada poblacid, 0.0021 episodis per unitat
d’observacié-setmana, es correspon al hazard que troben Koopmans et al.', per al risc de patir
una incapacitat laboral de llarga durada en una cohort de 53.830 treballadors holandesos. Els
hazards ratios utilitzat entre els riscos basals segons episodis previs, tot i que arbitraris, podrien
correspondre precisament a episodis d’incapacitat laboral de diversos motius, tal i com descriuen
Reis et al.”” en una cohort de treballadors d’un hospital universitari.
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4.1.2 GENERACIO DE MOSTRES

D’entrada, per a cadascuna de les poblacions generades en el punt anterior, el que voliem, era
agafar 3 tipus de dissenys d’estudis diferents, corresponents a diferents talls durant els 20 anys de
seguiment.

El que voliem aconseguir era el seguiment de diferents individus durant un periode de temps,
pero sense saber el nombre d’episodis previs (k) que havien obtingut, de manera que vam
considerar com el nostre punt de tall 0, els 15 anys, obtenint aixi , individus en que havien
experimentat episodis, perd que nosaltres desconeixiem. Un cop establert els 15 anys com el
comengament de seguiment, es va obtenir els altres talls, corresponents als 16, 18 i 20 anys, de
manera que aixi, es van crear 3 bases de dades diferents per a cadascuna de les poblacions. Una
amb 1 any de seguiment (inici de seguiment als 15 anys, final als 16), I'altra amb 3 anys de
seguiment (inici de seguiment als 15 anys, final als 18), i finalment una base de dades amb 5 anys
de seguiment (inici de seguiment als 15 anys, final als 20), amb aix0, s’aconsegueix tenir tres
cohorts d’'una mateixa poblacié amb temps de seguiment distint, amb individus que s’incorporen
durant el seguiment (a partir dels 15 anys) i altres que quan comencem a seguir-los (al nostre
temps 0, als 15 anys reals d’exposicid) ja tenien una historia previa on havien pogut presentar
multiples ocurréncies de I'esdeveniment d’interes, si bé a la practica aquests episodis eren
desconeguts.

Figura 3. Procés per obtenir les poblacions

Data (individus amb esdeveniments

ahans dels 15 anys)

l start2=0
L 2 —e
I B1
start2=0

™. data2 (individus amb
gsdeveniments després

— — start2 =start2- 15ams

dels 15 anys)

—

BMA

15 anys 16 anys 1Banys 20 anys

Els temps, es van haver de re-escalar segons els diferents talls, aixi dons, mitjangant un funcié
propia (veure annex), varem re-calcular tots els temps, de manera que el temps inicial als 15 anys
fos el 0, i I'stop maxim de cada base de dades, fos el temps de seguiment maxim.

Per veure més clar aquest procediment, podem veure un petit exemple a continuacio:

Suposem que tenim un individu que ha comencgat el seguiment als 5 anys i s’ha seguit fins al final
de I'estudi (figura 4). El que volem, és obtenir una poblacié on no observem alguns esdeveniments
previs (k), de manera que establim I'inici de seguiment als 15 anys. Observem doncs, que aquest
individu, ha tingut 2 episodis previs, que nosaltres, més endavant desconeixerem .
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Si agafem el tall als 16 anys, el seu primer episodi sera al t=0.5 ja i no al 15.5, ja que li hem de
restar els 15 anys de seguiment, i acabaria als 16 anys, perquée és el maxim que observem.

En alguns dels models proposats en aquest treball, hem tingut en compte pero, el temps
d’exposicié inicial de cada individu, en aquest cas, seria 10 anys, que sén els anys que han passat
entre el comengament de seguiment i els 15 anys.

En el cas dels talls als 18 i 20 anys, el comencament de I'episodi seria el mateix pero el final,
correspondria com a maxim al final del seguiment.

Figura 4: exemple obtencié dels diferents talls

Comencem a observar a partir de t=15

Temps exposicio previ

0 5 8 12 15 16 17 18 19 20
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Un cop obtingudes les subpoblacions, vam crear un programa per agafar les diferents mostres
(veure annex, Generacio de mostres amb els models considerats) , de manera que vam agafar
500 mostres de cada subpoblacid amb 500 i 1000 individus. finalment, es va obtenir un
resultat final de 6 bases de dades diferents per a cadascuna de les poblacions de I'estudi, 3
per cada tall ( 1 any, 3 anys, 5 anys) i cadascuna amb 500 i 1000 individus. (figura 5)

Figura 5 : obtencid de les diferents cohorts
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4.1.3 PROGRAMARI
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Les poblacions s’han generat amb el paquet complex.surv.data.sim de I’'R™. Aquest paquet,
cobreix diferents situacions, incloent esdeveniments recurrents i esdeveniments multiples. La
rutina principal de la simulacié permet a l'usuari introduir un nombre arbitrari de distribucions,
cadascun corresponent a un nou esdeveniment o episodi, amb els seus parametres, escollint
entre una Weibull (i una exponencial com un cas particular) , log-logistica i una distribucié log-
normal

Per a les simulacions, s’ha utilitzat un programa propi, creat especialment per aquest treball, que
s’especifica en I'annex. Dins d’aquest programa, s’usa I'ajust de models de supervivéncia per a
fendmens recurrents que es troben inclosos en el paquet survival de I’'R™.

4.2 AVALUACIO DEL RENDIMENT DELS MODELS

4.2.

[y

MODELS CONSIDERATS

Els models considerats en aquest treball es mostren a la taula 7. Si bé en la situacié plantejada en
qgué es desconeix el nombre d’episodis previs és impossible usar el model de PWP, en aquest cas,
hem calculat com a referéncia i validacio en les mostres simulades.

Taula 7. Models considerats

hix (t) = hoy ()eXiP
R () = hoy () eXiF+i

hi(t) = ho(t)e*if
hi(t) = ho(t)eXiP+2i
hi(t") = ho(t")e*i
hi(t") = ho(t")eXib+7
hi(t) = ho(t)v;e*if
hi(t) = ho(t)v;e*if*
hi(t") = ho(t"ve*iP
hi(t") = ho(t")v;eXif+z
hy(t) = ho(t)eXiP+tini
hy(t) = ho(t)eXif+7ittini
hi(t) = ho(t)v;eXiP+tini

hi(6) = ho(E)ue i+t
On hy(t) = e7Po, X; B s6n el vector de covariables i coeficients, z; és la heterogeneitat individual
de cada individu iv; la fragilitat.
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t’ correspon al temps d’exposicio, i t'ini és el temps inicial d’exposicié. El temps d’exposicio s’usa
en alguns models donat que, de vegades, si bé el nombre d’ocurrencies préevies és desconeguda,
no ho és el temps que fa que I'individu esta exposat, encara que no es tingui informacié detallada
de tot el periode (per exemple, en salut laboral, pot no saber-se el nimero d’incapacitats previes
que ha patit un treballador abans d’iniciar el seguiment, pero si el temps des de que esta
contractat a I'empresa, que es pot correspondre amb I'inici de I'exposicid).

Recordem que el temps d’exposicid inicial correspon al temps real, que va comencar l'individu a
la poblacid. Observem dons, per exemple, la diferéncia entre el model AG i AGe, recau en que el
model AG fixa el temps 0 en els 15 anys, mentre que el model AGe utilitza com escala temporal
I’exposicid , de tal manera, que 'individu representat a la figura 6 comenca el seu seguiment als 5
anys i aixi consta en les dades, on el seu primer registre comenca en aquest temps, no el zero.

Figura 6. Exemple temps exposicid

AGe [ !
AG
o o o o o
Temps exposicio inicial
0 5 8 12 15 16 17 18 19 20

Després de realitzar les diferents simulacions, s’"han emmagatzemat les estimacions requerides
per avaluar els diferents escenaris .

La comparacio dels resultats de I'ajust dels models amb els valors reals utilitzats per a simular les
dades, proporciona una mesura del rendiment i la precisid associada al procés de simulacié. Les
mesures més utilitzades per comprovar I'acompliment sén I'avaluacid del biaix, precisid i
cobertura. Collins'/, va posar de relleu la importancia d’examinar més d’un criteri d’acompliment
com ara l'error quadratic mitja (MSE), la cobertura i I'amplitud dels intervals de confianca, a més
de biaix, ja que els resultats poden variar segons els criteris. En general, I'expectativa de les
estimacions simulades és d’interés principal, i per tant, la mitjana de les estimacions de totes les
estimacions s’utilitza per calcular la precisié de mesures, com ara el biaix. En jutjar I'acompliment
dels diferents métodes, hi ha una compensacié entre la quantitat de tendéncia i la variabilitat.

Taula 8. Criteris d’avaluacio per als métodes de supervivéncia
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Criteri d’avaluacié Formula

BIAIX
Biaix §=08—
Percentatge biaix
= * 100
PRECISIO
MSE (error quadratic mitja) B - P)? + SE(B)?
COBERTURA Proporcié de vegades que 100(1-a)% interval de confianga
PROPORTIONAL HAZARD
Ph Proporcié de vegades que es compleix PH >0.05
4.2.2 BIAIX

El biaix és la desviacid en una estimacié de la quantitat veritable, que pot indicar el rendiment
dels metodes que estan sent avaluats. Una avaluacié del biaix , és la diferencia entre I'estimacié

de la mitjana i el valor real, § = E — [ ( taula 1). La quantitat de biaix que es pot considerar
problematic pot variar entre %SE(ﬂA)iZSE(ﬂA). Una altra opcié és calcular el biaix com un

percentatge del valor real (taula 8) que proporciona el valor vertader no igual a zero.
4.2.3 PRECISIO

L’error quadratic mitja (MSE) d’un estimador és una de les maneres de quantificar la diferéncia
entre els valors implicits en un estimador i els valors verdaders de la quantitat que s’estima. L’
MSE és una funcidé de risc que correspon al valor de la pérdua de l'error al quadrat o perdua
quadratica. L'MSE mesura la mitjana dels quadrats dels errors.

L’'MSE proporciona una mesura util de la precisid global, ja que incorpora les dues mesures de
biaix i la variabilitat. L’arrel quadrada de I'MSE transforma la part posterior de I'MSE en la mateixa
escala que el parametre.

La llargada mitjana de I'interval de confianga del 95% de I’estimacid dels parametres es considera
sovint com a una eina d’avaluacié en els estudis de simulacid. Si les estimacions dels parametres
son relativament no esbiaixades, els intervals de confianca més estrets impliquen estimacions
més precises, el que comporta millors resultats en I'eficiencia i la poténcia estadistica.

4.2.4 COBERTURA
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La cobertura d’un interval de confianca és la proporcid de vegades que l'interval de confianca
obtingut conté el valor del parametre real. Un excés de cobertura, on les taxes de cobertura estan
per sobre del 95%, suggereix que els resultats sdn massa conservadors. En canvi, quan les taxes de
cobertura sén inferiors al 95% , és inacceptable, ja que aix0 indica un excés de confianca en les
estimacions. Un possible criteri per a I'acceptabilitat de la cobertura, és que la cobertura no ha de
caure aproximadament fora de 2SE de la probabilitat de cobertura nominal (p), SE(p) =

Jp(1 —p)/B, o n B equival al nombre de simulacions.

4.2.5 RISCOS PROPORCIONALS

Una assumpcio clau per poder utilitzar el model de Cox (en el qual es basen tots els models usats
en aquest treball) és que es compleixi la propietat de riscos proporcionals. Hi ha varies formes de
verificar la propietat de riscos proporcionals de les dades. En el nostre cas, per estudiar aquesta
propietat, utilitzarem un test basat en residus de Schoenfeld 2.

5. RESULTATS
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Model

PWP
PWPZ
AGc
AGcl
AGe
AGel
FRAC
FRAc1
FRAe
FRAel
AGexp

5.1 RENDIMENT DELS MODELS

A les seglients taules, podem observar les estimacions de les [ per a cadascun dels models

proposats, juntament amb els criteris d’avaluacié esmentats anteriorment, com el biaix, al

cobertura, la longitud de l'interval, I'error quadratic mitja i el percentatge d’individus que

compleixen I'assumpcio de riscos proporcionals.

Taula 9. Resultats poblacié 1, 1 any, n=500

Estimacio

B1

0.191
0.198
0.245
0.248
0.308
0.313
0.245
0.247
0.309
0.312
0.252

AGexpl 0.255
FRAexp 0.289
FRAExp1 0.293

Estimacio

B2

0.650
0.667
0.836
0.838
1.055
1.063
0.836
0.838
1.058
1.061
0.860
0.863
0.985
0.987

%
biaix
B4
-4.715
-0.977
22.379
23.756
54.042
56.367
22.267
23.672
54.386
56.234
26.118
27.541
44,542
46.325

%
biaix
B:
-7.157
-4.745
19.362
19.782
50.692
51.789
19.455
19.668
51.190
51.608
22.853
23.357
40.732
40.965

Cobertura

B1

94.0
93.4
92.4
92.8
87.0
86.2
93.4
92.8
88.0
77.2
91.8
92.8
89.0
87.8

Cobertura

B2

92.2
92.6
82.4
80.4
22.6
18.0
83.0
81.0
23.8
12.2
74.0
72.2
37.2
33.0

long

B1

0.391
0.383
0.465
0.451
0.494
0.474
0.468
0.456
0.508
0.402
0.454
0.439
0.467
0.447

long

B2

0.419
0.413
0.480
0.469
0.515
0.498
0.480
0.469
0.519
0.426
0.471
0.458
0.490
0.474

MSE
B1

0.010
0.009
0.016
0.015
0.028
0.028
0.016
0.015
0.029
0.028
0.016
0.015
0.022
0.022

MSE
B2

0.014
0.012
0.034
0.034
0.143
0.148
0.034
0.034
0.147
0.147
0.040
0.041
0.098
0.098

PH
B1

95.0
95.4
88.6
89.2
78.0
80.2
91.0
91.6
92.8
93.8
90.4
91.6
93.4
93.7

Com sabiem des d’un principi, els millors models que estimen millor, sén els models de Prentice,

William and Peterson en qué té en compte els episodis previs que han tingut els individus. Es per

aix0, que volem comparar, si amb els altres models proposats podriem obtenir bons resultats per

estimar aquestes betes.

En la poblacié 1, amb 1 anys i 500 mostres de 500 individus (taula 9), es pot observar que la millor

alternativa seria utilitzar el model de fragilitat. S’observa que tot i tenir un biaix del 20% la cobertura

i I'assumpcid de riscos proporcionals és proper al 90%. Aquest model obté resultats lleugerament

millors als d’AG. Per altra banda, es pot observar que els pitjors models, serien els models d’AG amb

temps d’exposicid.

La cobertura mostra valors clarament diferents, en general, segons la beta estimada. Aixi, la beta

major, aquella que representa un major efecte de la covariable, mostra taxes de cobertura

clarament inferiors.

Taula 10. Resultats poblacié 1, 1 any, n=1000
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PH
B2

94.6
95.0
87.2
89.2
57.0
57.0
89.6
90.6
68.8
69.2
88.8
89.6
93.4
93.6



Model Estimacié Estimacio % % Cobertura Cobertura long long MSE MSE PH

B1 B2 biaix biaix B1 B2 B1 B2 B1 B2 B1
B4 B:

PWP 0.188 0.641 -6.011 -8.393 94.8 86.6 0.277 0.296 0.005 0.009 93.6
PWPZ 0.191 0.658 -4.373 -5.989 95.8 90.2 0.271 0.292 0.005 0.007 94.2
AGc 0.240 0.823 19.930 17.572 92.2 68.8 0.329 0.339 0.009 0.023 87.2
AGcl 0.239 0.826 19.381 18.052 91.8 65.6 0.319 0.331 0.008 0.023 89.8
AGe 0.303 1.039 51.373 48.467 78.4 5.0 0.350 0.364 0.019 0.124 71.6
AGel 0.302 1.048 51.190 49.731 78.4 3.4 0.336 0.352 0.018 0.129 75.6
FRAc 0.240 0.824 20.228 17.731 92.4 67.4 0.332 0.339 0.009 0.023 89.0
FRAc1 0.238 0.826 19.194 17.797 91.6 66.0 0.322 0.331 0.008 0.023 90.2
FRAe 0.303 1.043 51.345 49.052 80.6 5.4 0.360 0.367 0.019 0.127 89.0
FRAel 0.301 1.046 50.280 49.475 67.2 1.0 0.283 0.299 0.018 0.129 88.6
AGexp 0.247 0.848 23.374 21.132 92.4 56.6 0.321 0.333 0.009 0.029 8838
AGexpl 0.246 0.852 22.929 21.658 91.6 52.6 0.310 0.323 0.008 0.030 91.0
FRAexp 0.284 0.973 42.217 39.069 84.8 12.8 0.331 0.347 0.014 0.083 92.8
FRAExp1l 0.282 0.975 41.208 39.325 83.8 11.2 0.317 0.335 0.013 0.083 93.3

Si mirem ara, la mateixa poblacié, amb el mateix tall, pero amb un total de 1000 individus (taula 10),
es pot observar practicament els mateixos resultats que en la taula anterior. S'observa dons, que els
models de fragilitat, seria la millor alternativa, per a poder analitzar aquest tipus de dades.

Taula 11. Resultats poblacié 1, 3 anys, n=500

Model Estimacié Estimacio % % Cobertura Cobertura long long MSE MSE PH

B1 B2 biaix biaix By B2 B1 B2 B1 B2 B1

B1 B;

PWP 0.185 0.652 -7.465 -6.861 95.4 90.4 0.390 0.416 0.010 0.014 95.0
PWPZ 0.189 0.669 -5.447 -4.498 95.0 93.2 0.382 0.411 0.009 0.013 95.2
AGc 0.236 0.832 18.095 18.896 93.8 80.8 0.463 0477 0.015 0.033 88.2
AGcl 0.236 0.835 17.805 19.240 94.4 80.2 0.450 0.467 0.013 0.033 894
AGe 0.295 1.052 47.468 50.287 89.0 24.0 0.493 0.513 0.025 0.142 77.2
AGel 0.295 1.060 47.526 51.472 89.2 20.0 0.473 0.496 0.023 0.147 79.4
FRAC 0.237 0.833 18.637 19.059 94.2 79.8 0.467 0.478 0.015 0.034 91.2
FRAc1 0.236 0.835 18.149 19.261 94.4 79.8 0.455 0.467 0.014 0.033 914
FRAe 0.296 1.056 47.928 50.915 89.6 25.4 0.508 0.518 0.026 0.147 90.4
FRAel 0.295 1.059 47.510 51.328 80.0 13.2 0.402 0425 0.024 0.148 904
AGexp 0.242 0.859 21.056 22.773 93.8 72.6 0.452 0469 0.015 0.041 88.38
AGexpl 0.242 0.863 20.782 23.214 94.8 71.0 0.438 0.456 0.013 0.041 91.2
FRAexp 0.279 0.985 39.695 40.734 91.4 38.4 0.467 0.490 0.021 0.099 93.0
FRAExp1 0.278 0.987 39.215 41.003 89.6 33.2 0.447 0473 0.019 0.099 934

En el cas d’observar la poblacié 1, perdo amb un interval de 3 anys (taula 11), s’observa que els
resultats obtinguts amb una mostra de 500individus son similars als anteriors . Veiem que els
resultats obtinguts amb els models AGc i els models de fragilitat, els resultats sén molt semblants.
S’observa que el biaix esta entre el 17 i 19 % , i tenen una cobertura superior al 90 % en I'estimacié
del ;. Es pot observar també, que aquells models que consideren el temps, com el temps
d’exposicié inicial, son els que presenten uns pitjors resultats.
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PH
B2

93.6
93.8
82.6
83.4
36.4
39.6
83.8
85.0
46.0
47.2
85.4
85.2
92.0
92.5

PH
B2

93.0
93.6
86.8
87.2
52.4
51.8
87.4
87.8
66.4
64.4
86.2
87.2
94.2
94.6



Taula 12. Resultats poblacié 1, 3 anys, n=1000

MSE
B1

0.005
0.004
0.008
0.007
0.017
0.017
0.008
0.007
0.018
0.017
0.008
0.008
0.013
0.012

MSE
B1

0.010
0.010
0.016
0.015
0.027
0.027
0.016
0.015
0.028
0.027
0.016
0.015
0.022

MSE
B2

0.009
0.007
0.023
0.023
0.127
0.132
0.024
0.023
0.130
0.130
0.030
0.030
0.085
0.084

MSE
B2

0.015
0.013
0.030
0.030
0.136
0.140
0.030
0.030
0.141
0.141
0.036
0.036
0.094

PH
B1

93.2
93.6
86.2
88.2
74.4
78.2
87.6
89.0
90.2
92.0
87.4
88.6
914
92.3

PH
B1

94.4
94.2
87.4
89.0
75.8
79.6
88.2
90.4
90.6
90.2
87.6
89.2
93.6

Model Estimacié Estimacio % % Cobertura Cobertura long long
B1 B2 biaix biaix B1 B2 B1 B2
B4 B
PWP 0.186 0.643 -6.994 -8.109 95.8 88.4 0.276 0.294
PWPZ 0.189 0.658 -5.283 -5.973 96.6 90.4 0.270 0.290
AGc 0.239 0.825 19.363 17.845 95.2 69.2 0.329 0.338
AGcl 0.238 0.826 19.249 18.043 94.6 68.6 0.319 0.330
AGe 0.300 1.044 49.999 49.207 80.6 4.2 0.350 0.363
AGel 0.301 1.052 50.462 50.242 79.2 2.8 0.335 0.351
FRAC 0.239 0.826 19.305 17.969 95.6 68.6 0.331 0.338
FRAc1 0.238 0.825 18.843 17.874 94.2 69.0 0.322 0.331
FRAe 0.299 1.048 49.498 49.712 80.4 4.2 0.360 0.366
FRAel 0.298 1.048 49.119 49.754 68.4 1.6 0.283 0.299
AGexp 0.246 0.850 22.795 21.489 93.2 57.8 0.321 0.332
AGexpl 0.245 0.852 22.555 21.714 93.4 56.4 0.310 0.323
FRAexp 0.281 0.978 40.461 39.745 84.8 11.4 0.331 0.347
FRAExp1l 0.280 0.977 40.077 39.596 84.0 9.4 0.317 0.335
Amb 500 mostres de 1000 individus (taula 12), observem per la mateixa poblacid, encara més
I’evidéncia de quins models no sén els més adequats, per aquests estudis. S'observa aqui, que els
models d’AG i els models de fragilitat amb temps d’exposicié, no compleixen la hipotesi de riscos
proporcionals en I'estimacié del 3, aproximadament el 60% d eles vegades. Per altra banda, veiem
que els mateixos models pero amb el temps observat, sdn els que presenten uns resultats més bons
en comparacié amb els altres.
Taula 13. Resultats poblacié 1, 5 anys, n=500
Model Estimacié Estimacio % % Cobertura Cobertura long long
B4 B2 biaix biaix By B2 B1 B2
B1 B
PWP 0.193 0.640 -3.460 -8.515 95.4 90.6 0.393 0.421
PWPZ 0.198 0.656 -1.082 -6.344 95.0 92.6 0.384 0.415
AGc 0.244 0.823 21955 17.589 92.8 83.2 0.466 0.481
AGcl 0.245 0.825 22.715 17.867 92.8 82.8 0.452 0.470
AGe 0.305 1.045 52.437 49.239 88.2 24.2 0.495 0.516
AGel 0.308 1.053 54,100 50.357 84.8 21.0 0.476 0.499
FRAc 0.245 0.824 22.415 17.716 93.2 83.2 0.470 0.480
FRAc1 0.245 0.824 22.561 17.780 93.0 82.6 0.457 0.470
FRAe 0.307 1.051 53.473 50.145 86.6 25.2 0.510 0.521
FRAel 0.307 1.052 53.537 50.342 75.8 13.2 0.402 0.426
AGexp 0.249 0.848 24.586 21.108 92.6 77.6 0.455 0.472
AGexpl 0.251 0.850 25.506 21.484 93.0 76.0 0.440 0.460
FRAexp 0.288 0.978 44.115 39.773 88.6 41.4 0.469 0.492
FRAExp1l 0.289 0.978 44362 39.776 87.2 37.2 0.449 0.476

0.021

0.093

94.2

Finalment, amb un tall de 5 anys (taula 13), podem observar que els resultats no varien respecte a les

altres “subpoblacions”. Altra vegada, veiem que els models que millor ajusten les nostres dades, sén

els models de AG i el model de fragilitat sense temps d’exposicid. El biaix en aquest cas, esta al
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PH
B2

94.2
95.6
83.4
83.4
32.8
32.6
85.2
85.6
42.8
42.6
85.0
87.0
94.2
94.7

PH

93.8
94.2
86.4
86.8
52.8
55.0
88.8
89.4
67.2
67.2
87.4
88.0
92.0
92.5



Model

PWP
PWPZ
AGc
AGcl
AGe
AGel
FRAc
FRAc1
FRAe
FRAel
AGexp

voltant del 20 % i la cobertura al 80 %, mentre que els mateixos models, perd amb temps d’exposicid,

el biaix arriba fins al 50 %, de manera que no podem acceptar com a bo aquests models.

Taula 14. Resultats poblacié 1, 5 anys, n=1000

Estimacio

B1

0.192
0.198
0.244
0.245
0.305
0.308
0.244
0.245
0.305
0.307
0.250

AGexpl 0.252
FRAexp 0.287
FRAExp1 0.288

Amb 1000 individus (taula 14), observem el mateix, pero amb una cobertura del §3,

Estimacio

B2

0.642
0.659
0.824
0.828
1.044
1.055
0.825
0.828
1.048
1.053
0.851
0.855
0.978
0.981

%
biaix
B4
-4.010
-1.206
21.814
22.616
52.632
54.076
21.923
22.423
52.721
53.503
25.061
25.966
43.548
44,158

%
biaix
B:
-8.298
-5.846
17.707
18.260
49.190
50.684
17.916
18.254
49.754
50.385
21.532
22.128
39.667
40.113

Cobertura

B1

96.2
96.8
93.8
93.2
80.4
76.4
93.6
92.8
80.8
67.0
92.8
92.2
84.0
83.4

Cobertura

B2

89.0
91.2
70.0
69.8
3.4
1.6
68.6
68.2
3.6
1.0
56.8
53.8
11.2
8.4

long

B1

0.278
0.272
0.330
0.321
0.351
0.337
0.333
0.323
0.360
0.282
0.322
0.311
0.332
0.318

long

B2

0.296
0.292
0.340
0.332
0.365
0.353
0.340
0.332
0.368
0.300
0.334
0.324
0.348
0.336

MSE
B1

0.005
0.004
0.008
0.008
0.018
0.019
0.008
0.008
0.018
0.018
0.009
0.008
0.014
0.014

MSE
B2

0.009
0.007
0.022
0.023
0.126
0.133
0.023
0.023
0.130
0.132
0.029
0.030
0.085
0.086

PH
B1

94.4
94.6
85.6
86.6
78.4
81.8
86.2
88.0
91.8
90.8
85.4
88.0
93.0
93.2

molt més

inferior que amb 500 individus. Destaguem dons, aquesta cobertura ens es models d’AG i de fragilitat

amb temps d’exposicié en qué no arriba ni al 4 %, la qual cosa significa, que com a molt, un 4% de les

vegades, el valor real del parametre esta dins de I'interval de confianca.

RESULTATS POBLACIO 2

Taula 15. Resultats Poblacié 2, 1 any, n=500
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PH

93.8
94.4
84.6
84.6
36.0
36.2
84.6
84.8
45.6
46.0
85.2
85.2
93.4
94.1



Cobertura

B2

91.6
94.0
48.6
44.2
5.2
2.6
40.2
36.4
4.6
0.2
23.8
16.4
13.8
9.4

long

B1

0.354
0.338
0.558
0.542
0.608
0.586
0.604
0.591
0.692
0.395
0.544
0.522
0.586
0.563

long

B2

0.370
0.358
0.554
0.542
0.625
0.609
0.587
0.576
0.672
0.430
0.550
0.533
0.578
0.561

MSE
B1

0.009
0.008
0.026
0.024
0.049
0.050
0.030
0.029
0.059
0.058
0.030
0.029
0.036
0.034

MSE
B2

0.011
0.009
0.092
0.099
0.332
0.377
0.128
0.128
0.406
0.422
0.157
0.176
0.218
0.225

PH
B1

92.6
94.4
64.2
66.0
45.4
47.2
72.0
74.8
78.6
78.2
68.0
72.2
85.0
87.6

Si observem la segona poblacié (taula 15), veiem a simple vista, que els resultats obtinguts son

pitjors que els de la primera. Veiem doncs, que mentre els valors estimats de 3; de la primera

poblacié rondaven a 0.28, podem observar, en el tall d’ 1 any, estimacions de ; superiors a

0.376, com el cas de model de fragilitat amb temps d’exposicid, arribant a un biaix del 87%.

Per altra banda, els models d’AG i fragilitat, tot i ser els millors models en comparacié amb els

altres, el biaix obtingut esta entre el 35 i 45 %, molt superior als de la primera poblacid. Cal

observar també, que tot i tenir una cobertura del (3; superior al 90 %, en estimar [3, aquest

Model Estimacié Estimacio % % Cobertura
B4 B, biaix biaix B4
B4 B2
PWP 0.185 0.657 -7.652 -6.124 93.8
PWPZ 0.186 0.674 -6.842 -3.743 94.4
AGc 0.275 0.971 37.274 38.798 90.2
AGcl 0.274 0.984 37.021 40.553 90.2
AGe 0.361 1.256 80.691 79.383 82.6
AGel 0.368 1.295 84.019 85.012 78.8
FRAC 0.286 1.027 43.035 46.703 91.2
FRAc1 0.286 1.029 42,948 47.071 90.8
FRAe 0.372 1.312 86.249 87.469 82.4
FRAel 0.376 1.328 87.776 89.818 54.4
AGexp 0.308 1.072 53.940 53.225 87.4
AGexpl 0.311 1.098 55.632 56.912 86.4
FRAexp 0.322 1.144 61.023 63.373 87.0
FRAExp1 0.324 1.154 61.950 64.854 87.0
cobertura es redueix a la meitat.
Taula 16. Resultats Poblacié 1, 1 any, n= 1000
Model Estimacié Estimacio % % Cobertura
B4 B2 biaix biaix B4
B4 B2
PWP 0.194 0.650 -2.817 -7.075 96.2
PWPZ 0.196 0.666 -1.942 -4.855 97.4
AGc 0.294 0.967 47.032 38.156 85.6
AGcl 0.292 0.977 46.168 39.591 85.6
AGe 0.376 1.255 87.827 79.253 65.2
AGel 0.382 1.292 90.852 84.581 61.6
FRACc 0.308 1.021 53.825 45.834 86.6
FRAc1 0.307 1.020 53.368 45.751 86.2
FRAe 0.389 1.310 94.665 87.199 65.6
FRAel 0.390 1.323 95.148 88.989 33.8
AGexp 0.324 1.068 62.142 52.635 76.6
AGexpl 0.326 1.093 63.214 59.097 75.4
FRAexp 0.339 1.141 69.640 62.991 75.6
FRAExp1 0.339 1.148 69.688 64.056 73.8

Cobertura

B2

89.6
92.2
22.6
17.0
0.2
0.2
12.6
12.4
0.2
0.2
4.0
2.0
1.8
0.8

long

B1

0.251
0.239
0.395
0.384
0.431
0.416
0.426
0.416
0.481
0.282
0.385
0.369
0.414
0.398

long

B2

0.263
0.254
0.393
0.385
0.445
0.434
0.414
0.406
0.468
0.304
0.390
0.379
0.408
0.396

MSE
B1

0.004
0.003
0.014
0.017
0.042
0.043
0.021
0.020
0.049
0.048
0.024
0.024
0.029
0.028

MSE
B2

0.007
0.005
0.081
0.086
0.320
0.363
0.114
0.113
0.388
0.402
0.145
0.163
0.205
0.211

PH
B1

92.2
93.0
63.2
64.0
41.8
44.2
71.6
71.4
68.2
69.0
66.8
70.0
85.0
86.4

Si observem ara, la mateixa poblacié amb el tall d’ un any, pero amb un total de 1000 individus

(taula 16), veiem que el percentatge de biaix ha augment respecte a la mostra amb 500 individus.

Observem dons, biaixos del 90 % en I'estimacio del B,, com el model de fragilitat amb temps
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PH
B2

94.4
95.2
67.0
65.2
25.2
20.2
55.2
56.6
154
15.0
66.0
67.4
85.2
86.3

PH
B2

93.0
94.4
56.2
55.6
104
5.4
37.6
39.0
1.2
1.6
57.4
56.4
84.0
82.2



d’exposicié. S'observa també, que I'assumpcid de riscos proporcionals no arriba al 50 % en la
meitat dels models.

Taula 17. Resultats Poblacié 2, 3 anys, n=500

Model Estimacié Estimacio % % Cobertura Cobertura long long MSE MSE PH
B1 B2 biaix biaix By B2 B1 B2 B1 B2 B1
B1 B
PWP 0.184 0.656 -7.754 -6.214 94.2 91.6 0.354 0.370 0.009 0.011 91.8
PWPZ 0.186 0.674 -6.848 -3.848 94.4 94.2 0.334 0.358 0.008 0.088 93.8
AGc 0.276 0.971 37.851 37.851 90.8 49.0 0.558 0.555 0.025 0.092 62.8
AGcl 0.275 0.984 37.700 40.646 90.4 44.6 0.542 0.542 0.024 0.099 64.8
AGe 0.364 1.256 81.843 79.406 83.4 4.8 0.608 0.626 0.049 0.332 45.0
AGel 0.371 1.295 85.320 84.997 79.2 2.0 0.585 0.609 0.050 0.376 47.4
FRAc 0.287 1.028 43.758 46.820 91.4 40.2 0.604 0.587 0.030 0.128 71.2
FRAc1 0.287 1.031 43.665 47.327 90.8 36.0 0.590 0.576 0.029 0.129 73.8
FRAe 0.375 1.311 87.409 87.303 83.2 4.4 0.692 0.672 0.058 0.403 77.6
FRAel 0.378 1.329 88.895 89.932 53.2 0.2 0.394 0.430 0.058 0.422 77.6
AGexp 0.309 1.072 54.871 53.154 87.8 24.4 0.544 0.551 0.030 0.156 66.8
AGexpl 0.313 1.098 56.562 56.883 86.8 16.6 0.522 0.534 0.029 0.176 71.2
FRAexp 0.323 1.143 61.874 63.246 87.4 13.4 0.586 0.577 0.035 0.217 85.2
FRAExp1 0.326 1.154 62.811 64.904 87.4 9.2 0.563 0.560 0.034 0.226 86.2
En quant al tall de 3 anys (taula 17), veiem que els resultats son molt semblants als corresponents
a 1 any. Els models d’AG i model de fragilitat, son els que donen millors resultats, tot que el biaix,
segueix sent molt alt per a cada estimacio de B, i B,. Es pot observar també, que la cobertura per
B,supera el 80% en tots els models, menys el model de fragilitat amb temps d’exposicié amb
heterogeneitat, que només és del 53 %.
Taula 18. Resultats Poblacié 2, 3 anys, n=1000
Model Estimacié Estimacio % % Cobertura Cobertura long long MSE MSE PH
B4 B2 biaix biaix B4 B2 B4 B2 B4 B2 B4
B4 B,
PWP 0.189 0.649 -5.312  -7.235 94.6 87.4 0.251 0.262 0.004 0.007 93.4
PWPZ 0.192 0.665 -4.001 -4.925 94.8 90.8 0.239 0.254 0.004 0.005 95.2
AGc 0.288 0.968 43.810 38.239 85.8 26.0 0.395 0.393 0.018 0.082 65.8
AGcl 0.287 0.978 43.393 39.705 86.0 19.4 0.384 0.384 0.017 0.087 67.0
AGe 0.368 1.255 83.968 79.288 66.6 0 0.431 0.445 0.040 0.321 43.0
AGel 0.374 1.292 87.240 84.628 63.6 0 0.416 0.434 0.042 0.363 45.4
FRAc 0.300 1.021 50.239 45.931 87.8 14.6 0.427 0.415 0.020 0.115 71.2
FRAcl1 0.299 1.022 49.679 46.033 87.2 12.2 0.417 0.407 0.019 0.114 72.8
FRAe 0.381 1.304 90.344 86.332 68.0 0 0.483 0.469 0.047 0.381 68.6
FRAel 0.381 1.319 90.614 88.402 36.8 0 0.282 0.304 0.046 0.397 69.8
AGexp 0.316 1.069 57.975 52.752 79.6 3.6 0.385 0.390 0.023 0.146 67.2
AGexpl 0.319 1.093 59.637 56.148 75.8 1.6 0.369 0.379 0.023 0.164 67.6
FRAexp 0.331 1.139 65.361 62.662 78.0 1.2 0.415 0.408 0.027 0.204 80.8
FRAExp1l 0.331 1.148 65.395 63.947 76.0 0.4 0.399 0.396 0.026 0.211 81.6

En la taula 18, corresponent a la segona poblacié amb un tall de 3 anys i 1000 individus, veiem
que els models d’AG i fragilitat amb temps d’exposicid sén es que presenten pitjors resultats
vistos fins ara. Observem, que la cobertura de B, és 0, de manera, que en cap cas, el valor real de

B,esta dins de I'interval de confianga.
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Taula 19. Resultats Poblacié 2, 5 anys, n=500

Model Estimacié Estimacio % % Cobertura Cobertura long long MSE MSE PH
B1 B2 biaix biaix B1 B2 B1 B2 B1 B2 B1
B4 B:
PWP 0.185 0.657 -7.652  -6.123 93.8 91.6 0.354 0.370 0.009 0.011 92.6
PWPZ 0.186 0.674 -6.842 -3.743 94.4 94.0 0.338 0.338 0.008 0.009 944
AGc 0.274 0.971 37.274 38.798 90.2 48.6 0.558 0.558 0.026 0.092 64.2
AGcl 0.274 0.984 37.021 40.553 90.2 44.2 0.542 0.542 0.024 0.099 66.0
AGe 0.361 1.256 80.691 79.383 82.6 5.2 0.608 0.625 0.049 0.332 454
AGel 0.368 1.295 84.019 85.012 78.8 2.6 0.586 0.609 0.050 0.377 47.2
FRACc 0.286 1.027 43.035 46.703 91.2 40.2 0.604 0.587 0.030 0.128 72.0
FRAc1 0.286 1.029 42,948 47.071 90.8 36.4 0.591 0.576 0.029 0.128 74.8
FRAe 0.372 1.312 86.249 87.469 82.4 4.6 0.692 0.672 0.059 0.405 78.6
FRAel 0.375 1.329 87.776 89.818 54.4 0.2 0.395 0.430 0.058 0.422 78.2
AGexp 0.308 1.072 53.940 53.225 87.4 23.8 0.544 0.550 0.030 0.157 68.0
AGexpl 0.311 1.098 55.632 56.911 86.4 16.4 0.522 0.533 0.029 0.176 72.2
FRAexp 0.322 1.144 61.023 63.373 87.0 13.8 0.586 0.577 0.036 0.218 85.0
FRAExp1l 0.324 1.154 61.950 64.855 87.0 9.4 0.563 0.560 0.034 0.226 85.6
Per dltim, amb un tal de 5 anys (taula 19), s’observen resultats semblants als de la segona
poblacié. Les estimacions de les B son molt esbiaixades, i la cobertura del B, molt baixa en tot els
models. Per altra banda, s’observa que la hipotesi de riscos proporcionals no es compleix en els
models d’AG i fragilitat amb temps d’exposicié al 80 % dels casos.
Taula 20. Resultats Poblacié 2, 5 anys, n=1000
Model Estimacié Estimacid % biaix % biaix Cober- Cober- long long MSE MSE PH
B4 B2 By B2 tura B, tura 8, B1 B2 B1 B2 B1
PWP 0.191 0.654 -4.491 -6.533 95.8 89.4 0.251 0.263 0.004 0.007 924
PWPZ 0.193 0.670 -3.644 -4.262 96.2 91.4 0.239 0.255 0.004 0.005 93.2
AGc 0.286 0.971 43.043 38.739 86.0 19.6 0.396 0.394 0.083 0.083 63.8
AGcl 0.285 0.982 42.274 40.284 85.8 15.4 0.385 0.386 0.089 0.089 65.4
AGe 0.369 1.261 84.723 80.114 68.2 0.4 0.432 0.447 0.326 0.326 42.0
AGel 0.376 1.299 87.841 85.518 63.6 0.2 0.417 0.435 0.370 0370 424
FRACc 0.298 1.027 49.138 46.718 85.6 12.2 0.427 0.415 0.118 0.118 71.2
FRAc1 0.298 1.027 48.859 46.743 85.2 9.4 0.418 0.407 0.117 0.117 734
FRAe 0.383 1.318 91.582 88.322 67.4 0.2 0.482 0.469 0.397 0.397 67.0
FRAel 0.385 1.332 92.636 90.241 35.6 0.2 0.283 0.305 0.413 0.413 68.0
AGexp 0.318 1.074 59.150 53.401 77.2 2.6 0.385 0.391 0.149 0.149 68.8
AGexpl 0.321 1.098 60.363 56.866 75.8 1.6 0.370 0.379 0.167 0.167 70.8
FRAexp 0.333 1.149 66.480 64.180 76.6 1.4 0.415 0.409 0.212 0.212 844
FRAExp1 0.334 1.157 66.968 65.336 75.8 0.8 0.399 0.397 0.219 0.219 85.2

Amb 1000 individus (taula 20), es destaca el fet que el biaix de B, sigui superior en la meitat de
models al 100%, cosa totalment inacceptable. Igual que en tots els escenaris anteriors, els models
amb millors resultats, son els models d’AG i fragilitat sense temps d’exposicid.

En comparacié a la primera poblacié, com hem dit anteriorment, veiem que s’obtenen pitjrs
resultats, atribuits a la dependéencia d’ocurréncia.
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Model

PWP
PWPZ
AGc
AGcl
AGe
AGel
FRAc
FRAc1
FRAe
FRAel
AGexp

Aquest fet, el podrem constatar a partir de la tercera poblacid, en qué aquesta dependéncia

encara és més forta.

RESULTATS POBLACIO 3

Taula 21. Resultats poblacié 3, 1 any, n=500

Estimacio
B1
0.181
0.184
0.283
0.287
0.333
0.344
0.344
0.339
0.449
0.445
0.307

AGexpl 0.316
FRAexp 0.300
FRAExp1 0.299

Model

PWP
PWPZ
AGc

Estimacio
B2
0.644
0.661
1.016
1.034
1.231
1.276
1.246
1.256
1.647
1.668
1.121
1.160
1.097
1.115

% biaix
B1
-9.658
-8.008
41.647
43.532
66.279
71.934
71.778
69.361
124.57
122.28
53.712
58.242
50.146
49.685

% biaix
B2
-7.996
-5.523
45.198
47.649
75.808
82.356
78.014
79.380
135.269
138.353
60.172
65.718
56.656
59.352

Cober-
tura 3,
95.0
94.0
93.0
92.6
89.6
87.2
90.4
90.0
88.8
53.8
91.0
90.6
92.8
91.6

Cober-
tura 3,
91.6
92.6
50.2
45.6
11.8
8.0
25.6
24.0
8.2
7.6
27.2
18.4
29.0
24.8

long
B1

0.351
0.332
0.652
0.641
0.680
0.668
0.840
0.825
1.163
1.073
0.650
0.636
0.645
0.627

long
B2

0.367
0.351
0.641
0.634
0.693
0.690
0.786
0.776
1.041
1.050
0.654
0.648
0.626
0.613

MSE
B1
0.009
0.008
0.031
0.032
0.043
0.046
0.064
0.061
0.129
0.126
0.035
0.037
0.033
0.032

MSE
B2
0.012
0.010
0.126
0.136
0.313
0.363
0.344
0.355
0.982
1.021
0.205
0.238
0.184
0.199

PH

B1
89.8
93.6
44.2
45.4
39.0
38.4
58.4
58.0
54.2
56.2
44.6
47.4
74.2
75.7

Si observem la tercera poblacio,(taula 21)s’observa de nou, pitjors resultats que la poblacié anterior.
Veiem doncs, una sobreestimacid de les betes en els models de fragilitat amb temps d’exposicid,
amb valors superiors a 0.40, per a 3, i valors superiors a 1.6 per a [,. Aquests models, a més,

presenten un biaix de més del 40% i una cobertura inferior a la dels altres models estimats.

Per altra banda, es pot observar que la proporcionalitat de riscos no es compleix en la majoria de
models. En aquesta cohort, els que millor es comporten sén els models de fragilitat amb la covariable
temps d’exposicid, on es compleix la proporcionalitat de riscos un 70% de les vegades.

Taula 22. Resultats poblacié 3, 1 any, n=1000

Estimacio
B1
0.184
0.187
0.282

Estimacio

B2
0.645
0.663
1.023

% biaix
B1
-8.198
-6.551
41.079

% biaix
B2
-7.911
-5.229
46.397

Cober-
tura 34
92.6
93.6
88.4

Cober-
tura 3,
87.8
93.0
19.0

long

B1

long

B2

MSE
B1

MSE
B2

0.249 0.260 0.005 0.007
0.235 0.249 0.004 0.005
0.461 0.453 0.022 0.119

PH

B1
91.0
94.4
42.0
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AGcl 0.284 1.043 42.004  48.998 88.2 14.6 0.454 0.449 0.021 0.131 45.0
AGe 0.339 1.245 69.448 77.829 79.6 0.4 0.482 0.493 0.035 0.321 386
AGel 0.350 1.292 75.027 84.518 76.4 0 0.473 0.491 0.037 0.365 37.2
FRACc 0.348 1.256 74.080 79.410 83.8 2.4 0.585 0.548 0.044 0.331 49.6
FRAc1 0.345 1.266 72.606 80.841 84.0 1.8 0.575 0.541 0.042 0.341 4938
FRAe 0.457 1.645 128.40 135.008 72.6 0 0.770 0.701 0.101 0.931 454
FRAel 0.452 1.665 125.87 137.844 27.4 0 0.372 0.367 0.097 0.967 49.6
AGexp 0.310 1.130 55.056 61.412 84.4 4.2 0.459 0.463 0.027 0.199 45.8
AGexpl 0.318 1.169 58.952 67.003 81.6 2.6 0.450 0.460 0.028 0.234 46.8
FRAexp 0.302 1.100 51.038 57.169 87.4 5.2 0.453 0.439 0.023 0.173 73.0
FRAExp1 0.303 1.119 51.297 59.876 88.4 2.8 0.441 0.430 0.021 0.187 735
Si observem ara la mateixa poblacid, perd6 amb 1000 individus (taula 22), s'observa que aquests
resultats no han millorat, sind tot al contrari, les estimacions de les betes sén pitjors, igual que la
cobertura, que en alguns models, | cobertura del B, és, la qual cosa significa, que el 0% de les
vegades, el valor real de a ; estara dins de I'interval de confianga. El millor model, doncs, seria el
model d’'AG, tot i que no presenta un rendiment excel-lent, ja que s’observa que la cobertura del 3,
és inferior al 20% no es compleix en la meitat de les vegades la proporcionalitat de riscos.
Taula 23. Resultats poblacié 3, 3 anys, n=500
Model Estimacié Estimacié6 % biaix % biaix = Cober- Cober- long long MSE MSE PH
B1 B2 B4 B2 tura (3, tura 3, B1 B2 B1 B2 B1
PWP 0.184 0.655 -7.808 -6.452 94.4 89.4 0.352 0.368 0.008 0.012 91.8
PWPZ 0.190 0.674 -4.978 -3.768 95.4 92.6 0.335 0.354 0.007 0.010 94.0
AGc 0.284 1.035 42.132 47.901 92.4 47.8 0.652 0.642 0.033 0.142 49.0
AGcl 0.292 1.053 46.130 50.494 91.6 43.2 0.643 0.636 0.033 0.153 464
AGe 0.339 1.247 69.741 78.085 87.8 17.6 0.680 0.694 0.047 0.336 40.2
AGel 0.354 1.295 77.071 85.070 85.0 9.0 0.669 0.693 0.051 0.392 39.2
FRAc 0.361 1.260 80.602 79.949 89.2 23.6 0.841 0.786 0.068 0.362 56.6
FRAcl1 0.361 1.273 80.395 81.861 89.8 19.2 0.826 0.776 0.064 0.374 58.0
FRAe 0.442 1.640 121.20 134.230 89.2 8.2 1.164 1.041 0.131 0.972 54.8
FRAel 0.448 1.659 12393 137.047 58.8 6.6 0.940 0.971 0.129 1.006 59.2
AGexp 0.310 1.138 54.837 62.628 90.4 28.6 0.649 0.656 0.037 0.224 4838
AGexpl 0.323 1.179 61.312 68.455 88.0 22.0 0.638 0.652 0.039 0.261 47.0
FRAexp 0.304 1.105 51.817 57.878 92.0 29.8 0.645 0.625 0.034 0.194 75.0
FRAExp1 0.307 1.124 53.674 60.592 92.4 25.0 0.628 0.613 0.033 0.207 75.4

Si observem ara la poblacié 2 perd amb un tall de 3 anys (taula 23), s'observa, que els resultats han
millorat una mica envers només un any de seguiment. S’observa pero, que continuen sobreestimant-
se els parametres , ja que els biaixos oscil-len entre els 40 i 80%, superant més del 120% en els
models de fragilitat amb temps d’exposicio . s’observa també, que la cobertura del $, és molt baixa
en tots els models. En quant a la proporcionalitat de riscos, veiem que no es compleixen, tan sols en
el model de fragilitat amb covariable temps d’exposicid, i tot i aixi, aproximadament només en el 70%
de les vegades.

Taula 24. Resultats poblacié 3 , 3 anys, n=1000
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Model Estimacié Estimacid % biaix % biaix Cober- Cober- long long MSE MSE PH

B1 B2 B1 B2 tura B, tura 8, B4 B2 B1 B2 B1
PWP 0.182 0.645 -9.152 -7.860 92.0 86.8 0.248 0.258 0.005 0.007 90.0
PWPZ 0.185 0.663 -7.393 -5.232 93.8 90.8 0.235 0.248 0.004 0.005 92.6
AGc 0.280 1.019 39.869 45.618 88.4 20.6 0.461 0.453 0.020 0.114 48.2
AGcl 0.283 1.037 41.358 48.106 89.6 16.2 0.454 0.448 0.020 0.126 49.0
AGe 0.336 1.232 67.789 75.973 80.4 1.0 0.482 0.491 0.034 0.297 39.2
AGel 0.345 1.276 72.496 82.336 78.2 0.6 0.474 0.489 0.036 0.347 384
FRACc 0.346 1.245 73.095 77.798 84.8 3.4 0.587 0.550 0.043 0.317 53.2
FRAc1 0.342 1.254 71.212 79.146 87.2 2.2 0.576 0.542 0.040 0.326 53.6
FRAe 0.441 1.629 120.42 132.703 78.8 0.2 0.774 0.704 0.093 0.905 46.2
FRAel 0.440 1.649 119.96 135.608 30.4 0 0.374 0.367 0.089 0.942 49.8
AGexp 0.307 1.121 53.482 60.086 84.4 4.6 0.459 0.462 0.025 0.189 484
AGexpl 0.314 1.158 57.062 65.420 83.4 2.0 0.450 0.458 0.026 0.223 484
FRAexp 0.295 1.089 47.339 55.641 89.0 6.2 0.453 0.439 0.021 0.164 70.6
FRAExp1 0.296 1.108 47.760 58.342 89.6 4.8 0.441 0.430 0.020 0.179 71.8

Si observem ara, la poblacié anterior pero amb un total de 1000 individus (taula 24), s’observen
resultats molt semblants als anteriors. Veiem doncs, que els models d’AG i els models de fragilitat
amb la covariable temps d’exposicid, sén els que estimen millor les betes. S’observa també, que la
cobertura, no supera al 90% en el B; i un 20% en el cas de la $,. S'observa també, que la
proporcionalitat de riscos, no supera el 50% en la majoria del models, només el model de fragilitat
amb temps d’exposicié com a covariable, en que és d’'un 70 % per 31 i un 50 % per 3,

Taula 25. Resultats poblacié 3, 5 anys, n=500

Model Estimacié Estimacid % biaix % biaix Cober- Cober- long long MSE MSE PH

B4 B2 By B2 tura B, tura 8, By B2 By B2 By
PWP 0.182 0.649 -9.141 -7.319 94.0 90.0 0.349 0.366 0.009 0.013 924
PWPZ 0.183 0.666 -8.301 -4.900 93.8 92.0 0.332 0.354 0.008 0.010 93.2
AGc 0.267 1.028 33.480 46.901 94.2 50.6 0.648 0.638 0.030 0.135 41.8
AGcl 0.269 1.043 34.654 49.016 93.0 47.0 0.638 0.635 0.029 0.144 424
AGe 0.320 1.243 60.135 77.591 90.8 12.6 0.675 0.690 0.043 0.327 39.8
AGel 0.331 1.289 65.711  84.139 88.8 8.0 0.663 0.689 0.045 0.378 39.2
FRAC 0.339 1.255 69.302  79.336 90.8 22.8 0.838 0.784 0.062 0.355 55.6
FRAc1 0.337 1.262 68.308 80.350 91.0 21.0 0.823 0.774 0.060 0.360 57.4
FRAe 0.452 1.630 126.23  132.905 89.8 9.2 1.161 1.035 0.131 0.955 59.4
FRAel 0.450 1.648 124.79 135.396 54.4 7.4 1.025 1.112 0.127 0.983 58.4
AGexp 0.294 1.131 46.967 61.632 93.0 26.4 0.645 0.652 0.034 0.214 448
AGexp1l 0.302 1.168 51.213 66.911 91.4 18.2 0.633 0.648 0.035 0.247 45.2
FRAexp 0.290 1.103 44.888  57.593 94.4 27.6 0.644 0.624 0.030 0.190 72.6
FRAExp1 0.291 1.119 45,588  59.897 92.6 23.8 0.627 0.611 0.029 0.201 73.2

Finalment, si observem el tall de 5 anys (taula 25), veiem que la cobertura ha augmentat en molts
models. El millor model, és el model d’AG ja que té una estimacié menus esbiaixada dels parametres
i una coberta més elevada. Si observem pero, la proporcionalitat de riscos, veiem que en aquest cas,
nomeés és de 40 % i 50% per a cada parametre.
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Podem destacar també, el model de fragilitat amb temps d’exposicid, ja que és el que presenta
pitjors resultats. El biaix, en aquest model, arriba al 130% , i la cobertura de 3; només és del 54.4%.

Taula 26. Resultats poblacié 3 , 5 anys, n=1000

Model Estimacio
B4
PWP 0.182
PWPZ 0.185
AGc 0.281
AGcl 0.284
AGe 0.334
AGel 0.347
FRAC 0.341
FRAc1 0.339
FRAe 0.439
FRAel 0.440
AGexp 0.308

AGexpl 0.317
FRAexp 0.296
FRAExp1 0.298

Estimacio

B2
0.646
0.664
1.027
1.043
1.237
1.283
1.250
1.258
1.632
1.647
1.127
1.165
1.097
1.113

% biaix
B4
-9.248
-7.455
40.331
42.130
67.130
73.455
70.354
69.385
119.63
120.01
53.896
58.382
48.211
48.783

% biaix
B:
-7.681
-5.208
46.683
48.941
76.700
83.294
78.641
79.650
133.102
135.334
61.032
66.372
56.745
59.040

Cober-
tura 34
92.6
92.6
87.8
86.6
78.6
75.4
85.6
84.4
77.4
28.8
81.6
80.0
88.2
88.6

Cober-
tura 3,
86.6
89.8
19.8
15.8
1.6
0.4
4.2
3.0
0
0
6.4
3.0
7.8
5.6

long
B1

0.249
0.235
0.461
0.453
0.481
0.473
0.586
0.574
0.772
0.374
0.459
0.450
0.452
0.440

long
B2

0.259
0.249
0.452
0.448
0.489
0.488
0.548
0.541
0.700
0.367
0.461
0.458
0.438
0.429

MSE
B1
0.004
0.004
0.022
0.022
0.035
0.038
0.040
0.040
0.093
0.091
0.027
0.028
0.021
0.021

MSE
B2
0.008
0.006
0.121
0.131
0.306
0.357
0.326
0.331
0.912
0.939
0.198
0.231
0.171
0.183

PH

B1
92.2
93.8
48.8
46.8
36.0
34.4
53.0
55.0
45.6
46.6
48.0
46.8
72.2
72.5

Per acabar, observem la taula 26 que correspon a la poblacié 3 amb un tall de 5 any i 1000 individus.

Igual que en la taula anterior, es pot observar que el millor model és el model proposat per Andersen

Gill, ja que és el que presenta un biaix més baix, i una cobertura més alta.

Cal destacar, també, que una altra opcid, seria el model de fragilitat amb la covariable temps

d’exposicié. En aquest cas, tot i no tenir els millor estimador dels parametres, si que té un
percentatge més elevat de compliment de proporcionalitat de riscos.
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B2
89.0
91.6
49.6
46.4
31.2
24.2

1.6
1.6

0

0
50.4
48.2
54.2
55.2
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6. DISCUSSIO

S’ha observat que els models amb risc basal comu sobreestimen els coeficients en una situacié de
dependencia d’ocurréncia creixent. Donat que el hazard basal s’incrementa en funcié dels episodis
previs, part de I'efecte de la dependeéencia d’ocurréencia és falsament atribuit als coeficients estimats.
A més, s’ha observat que quan major és la magnitud del parametre, major és el biaix que presenten
les estimacions dels models amb risc basal comu. Aixo es deu a que quan major és el parametre, més
rapid presenten I'esdeveniment els individus que posseeixen aquesta caracteristica en relacié als que
no, i per tant passen a estar més rapidament a risc d’'un nou episodi amb major hazard basal que els
individus no exposats. Per tant, altra vegada, com que no es té en compte el hazard especific, encara
augmenta més la sobreestimacié. Per tant, no sembla que els models amb risc basal comu, en les
seves diverses variants, siguin alternatives consistents per a I'analisi de fenomens recurrents davant
la presencia de dependencia d’ocurréncia i desconeixement dels episodis previs patits per cada
individu.

A priori, pensavem que els models de fragilitat podrien captar part de I'efecte de la dependéncia
d’ocurréncia a través de I'efecte aleatori individual. En general no sembla que aixo sigui aixi, si no
més aviat al contrari: hem vist, que la diferéncia d’aquests models amb els analegs sense fragilitat
augmenta com més dependeéncia d’ocurréncia hi ha, perd també s’ha pogut observar que a més
dependéencia d’ocurréncia, sén precisament els models amb fragilitat els que obtenen una pitjor
estimacid. Aquest patrd, pero, és diferent en el cas concret del model de fragilitat amb el temps
d’exposicié com a covariable, on sembla que les estimacions sén menys esbiaixades a mesura que
augmenta la dependéncia d’ocurréncia.

Una altra hipotesi que hem rebutjat és que en els models basats en el temps d’exposicié es compleix
amb major freqiiencia la proporcionalitat de riscos en relacié als models analegs basats en el temps
d’estudi. Sembla que en els models AG é més aviat al contrari mentre que en el model de fragilitat es
manté similar. Hem vist doncs, que aixd no es compleix, ja que no sén els models basats en el temps
d’exposicid, siné el model de fragilitat amb temps d’exposicié com a covariable els que presenten
I"'assumpcié de proporcionalitat de riscos més alta, tot i que es segueixen sobreestimant els
parametres.

Malgrat aquestes diferencies entre els diversos models, en general no sembla que pugin ser models
raonables per a estudiar fendmens recurrents en les circumstancies que es proposen en aquest
estudi. Presenten biaixos en percentatge que anirien entre el 20% i el 140%, amb cobertures que sén
del tot inacceptables en el cas de parametres que representen un efecte major i que s’agreuja en el
cas que augmenti la dependéncia d’ocurrencia. També el compliment del suposit de proporcionalitat
es veu generalment en entredit, especialment a 'augmentar la dependéncia d’ocurrencia.
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7. CONCLUSIONS

1- Els models amb risc basal comu sobreestimen els coeficients en una situacié de
dependencia d’ocurréencia creixent.

2- En general els models de fragilitat no capten I'efecte de la dependéncia d’ocurréncia
a través de I'efecte aleatori individual. Només en el cas concret del model de fragilitat
amb el temps d’exposicid com a covariable, sembla que les estimacions sén menys
esbiaixades a mesura que augmenta la dependeéencia d’ocurréncia, tot i que segueixen
sent ineficients.

3- Els models basats en el temps d’exposicidé no compleixen amb major frequiiéncia la
proporcionalitat de riscos en relacié als models analegs basats en el temps d’estudi.

4- En general, a major dependéencia d’ocurrencia pitjor rendiment dels models
examinats en aquest treball.

5- Quan major és el valor del parametre beta, major la sobreestimacio de I'efecte per part
dels models amb risc basal comu i pitjors resultats en quan a la cobertura i
proporcionalitat de riscos. Aixi doncs, a major dependéncia d’ocurréncia, el rendiment
dels models empitjora considerablement.
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9. ANNEX
9.1 GENERACIO DE POBLACIONS

sim.data2 <- rec.ev.sim(n=250000, foltime=7305, dist.ev=c('weibull','weibull','weibull'),
anc.ev=c(1,1,1),beta0.ev=c(8.109,7.416,6.500),  dist.cens=c('weibull','weibull','weibull'),  anc.cens=c(1,1,1),
betaO.cens=c(8.9, 7.9, 6.8), beta=list(c(-0.2,-0.2,-0.2),c(-0.7,-0.7,-0.7)), x=list(c("bern", 0.5),c("bern", 0.5)),
z=c("normal",1,0.2))

9.2 GENERACIO DE POBLACIONS AMB DIFERENTS TALLS

dades <- read.csv("Pob1.csv", header =TRUE, sep = ";", quote="\"", dec=",",)

# Manipulo la poblacié corresponent i en faig 3: 1,3,5 anys

texp<-subset(dades,dadesSreal.episode==1,)

texpStexp<- 5478.75-texpSstart2

texpStexp[texpStexp<0]<-0

texpo<-chind(texpS$nid,texpStexp)

colnames(texpo)<-c("nid","temps.exposicio.inicial")

dat<-data.frame(texpo)

dades2<-merge(dades,texpo,by="nid",all.x=TRUE)

dades<-dades2

data<-subset(dades,dadesSstop2>5478.75 & dadesSstart2<=5478.75) # individus que ha tingut
esdeveniments als 15 anys de seguiment

data2<-subset(dades,dadesSstart2>5478.75) ## ind amb esdev despres dels 15 anys

dataSind<-1 ## creem un index per despres saber els que han tingut esdeveniments previs i els que no

dat<-cbhind(data$nid,dataSind)

colnames(dat)<-c("nid","ind")

dat<-data.frame(dat)

datafinal<-merge(data2,dat,all.x=TRUE)

datafinal<-rbind(data,datafinal) ## ajuntem tots els individus

datafinal<-datafinal[order(datafinal$X),]

# creem dues bases de dades diferents segons index
b1<-(subset(datafinal,datafinalSind==1))
bna<-(subset(datafinal,is.na(datafinalSind)))
b1S$start2<-b1Sstart2-5478.75
b1Sstop2<-b1Sstop2-5478.75
b1Sstart2[b1Sstart2<0]<-0
bnaSstop[bna$stop>1826.25]<-1826.25
bnaSstart2<-bnaS$start
bnaSstop2<-bna$stop

final<-rbind(b1,bna)
finalSdif<-finalSstop2-finalSstart2

tempo<-subset(final,finalSnid==lag(finalSnid,1)[1] & finalSstart2<lag(finalSstop2,1)[1],)
# data x,x,x, 1 element = poblacio

# 2 element = 1,2,3 segons anys en els que tallem (1,3,5)
# 3 element =1 ( late entries) 0 ( sense late entries)
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# Preparo les poblacions amb els diferents talls
#### 5 anys
datal3i1<-final

###H# 3 anys
datal2l<-subset(datal31,datal31Sstart2<1095.75) ## individus amb start2< 3 anys
datal21Sstop2[datal21Sstop2>1095.75]<-1095.75
datal21Sstatus[datal21Sstop2>1095.75]<-0

## 1 any
datalll<-subset(datal31,datal31Sstart2<365.25) ## individus amb start2< 1 anys
datal11S$stop2[datall11$stop2>365.25]<-365.25
datalllSstatus[datall1Sstop2>365.25]<-0

9.3 GENERACIO DE MOSTRES AMB ELS MODELS CONSIDERATS

nsamp <- 500# Numero de mostres que s'agafaran de cada poblacié i de cada mida considerada (500,2000 i 1000)
sizes <- ¢(5000)

HHHH R R R R R R R R R
# MOSTRES : seleccionem mostres de 500, 1000 i 2000 individus
HHHHHHHHHH
for (i in 1:length(sizes))
{
for (j in 1:nsamp)
{
nid<-sample(unique(datal21Snid),sizes|i]) ## selecciono els individus de la mostra
mostra<-data.frame(nid)
mostra<-merge(mostra,final,by="nid")
mostra<-mostra[order(mostra$X),]
### categoritzem els individus que han tingut mes de 3 episodis.
mostraSreal.episode[mostraSreal.episode>3]<-3

#1 ) MODEL pwp

modPWP<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + strata(real.episode) + cluster(nid) ,data=mostra)

modPWPZ<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + strata(real.episode) + cluster(nid)+ z ,
data=mostra)

#2 ) MODEL AG calendari

modAG.c<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + cluster(nid) ,data=mostra) # amb heterogeneitat

modAG.cl<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + cluster(nid) + z ,data=mostra) # sense
heterogeneitat

#3 ) MODEL AG exposicio
modAG.e<-coxph(Surv(start+temps.exposicio.inicial,stop + temps.exposicio.inicial,status)~as.factor(x) + as.factor(x.1) +
cluster(nid) ,data=mostra) # amb heterogeneitat
modAG.el<-coxph(Surv(start+temps.exposicio.inicial,stop + temps.exposicio.inicial,status)~as.factor(x) + as.factor(x.1) +
cluster(nid) + z ,data=mostra) # sense heterogeneita

#4 ) MODEL FRAGILITAT calendari

modfra.c<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + frailty (nid) ,data=mostra) ## distr= gamma
modfra.cl<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + frailty (nid) + z,data=mostra) ## distr= gamma
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#5 ) MODEL FRAGILITAT exposicio

modfra.e<-coxph(Surv(start+temps.exposicio.inicial,stop + temps.exposicio.inicial,status)~as.factor(x)+ as.factor(x.1) +
frailty (nid),data=mostra)

modfra.el<-coxph(Surv(start+temps.exposicio.inicial,stop + temps.exposicio.inicial,status)~as.factor(x) +as.factor(x.1) +
frailty (nid) + z,data=mostra)

6 ) MODEL AG + exposicio

modAG.exp<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + cluster(nid) + temps.exposicio.inicial
,data=mostra)

modAG.expl<-coxph(Surv(start2,stop2,status)~as.factor(x) + as.factor(x.1) + cluster(nid) + temps.exposicio.inicial +
z,data=mostra)

7 ) MODEL AG+FRAGILITAT + EXPO
modfraexp<-coxph(Surv(time,status)~as.factor(x) + as.factor(x.1) + frailty (nid)+ temps.exposicio.inicial,data=mostra)
modfraexpl<-coxph(Surv(time,status)~as.factor(x) + as.factor(x.1) + frailty (nid)+ temps.exposicio.inicial+ z,data=mostra)

PWP.coef<-(summary(modPWP))Scoeff[,1]
PWP.secoef<-(summary(modPWP))Scoeff[,4] ## correcte
PWP.n<-(summary(modPWP))Sn

PWP.intinf<- summary(modPWP)Sconf.int[,3]
PWP.intsup<- summary(modPWP)Sconf.int[,4]

PWP.p<- cox.zph(modPWP)Stable[,3]

PWPZ.coef<-(summary(modPWPZ))Scoeff[,1]
PWPZ.secoef<-(summary(modPWPZ))$coeff[,4]
PWPZ.n<-(summary(modPWPZ))Sn
PWPZ.intinf<- summary(modPWPZ)Sconf.int[,3]
PWPZ.intsup<- summary(modPWPZ)Sconf.int[,4]
PWPZ.p<- cox.zph(modPWPZ)Stable[,3] ## p

AGc.coef<-(summary(modAG.c))Scoeff[,1]
AGc.secoef<-(summary(modAG.c))Scoeff[,4] ### correcte
AGc.n<-(summary(modAG.c))$n

AGc.intinf<- summary(modAG.c)$Sconf.int[,3]

AGc.intsup<- summary(modAG.c)$Sconf.int[,4]

AGc.p<- cox.zph(modAG.c)Stable[,3]

AGc1.coef<-(summary(modAG.c1))Scoeff[,2]
AGcl.secoef<-(summary(modAG.c1))Scoeff[,3]
AGcl.n<-(summary(modAG.c1))Sn
AGcl.intinf<- summary(modAG.c1)Sconf.int[,3]
AGcl.intsup<- summary(modAG.cl)Sconf.int[,4]
AGcl.p<- cox.zph(modAG.c1)Stable[,3]

AGe.coef<-(summary(modAG.e))Scoeff[,1]
AGe.secoef<-(summary(modAG.e))Scoeff[,4]
AGe.n<-(summary(modAG.e))Sn

AGe.intinf<- summary(modAG.e)Sconf.int[,3]
AGe.intsup<- summary(modAG.e)Sconf.int[,4]
AGe.p<- cox.zph(modAG.e)Stable[,3]

AGel.coef<-(summary(modAG.el))Scoeff[,1]

AGel.secoef<-(summary(modAG.el))Scoeff[,4]
AGel.n<-(summary(modAG.e1))$n
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AGel.intinf<- summary(modAG.el)Sconf.int[,3]
AGel.intsup<- summary(modAG.el)Sconf.int[,4]
AGel.p<- cox.zph(modAG.el)Stable[,3]

FRAc.coef<-modfra.cScoeff

FRAc.secoef<- sqrt(diag(modfra.cSvar2))

FRAc.n<-modfra.cSn

FRAC.intinf<- exp(modfra.cScoeff-1.96*sqrt(diag(modfra.cSvar)))
FRAC.intsup<- exp(modfra.cScoeff+1.96*sqrt(diag(modfra.cSvar)))
FRAc.p<- cox.zph(modfra.c)Stable[,3]

FRAc1.coef<-modfra.c1Scoeff

FRAc1.secoef<- sqrt(diag(modfra.c1Svar2))

FRAc1.n<-modfra.c1Sn

FRAC1.intinf<- exp(modfra.c1Scoeff-1.96*sqrt(diag(modfra.c1Svar)))
FRAC1.intsup<- exp(modfra.c1Scoeff+1.96*sqrt(diag(modfra.c1Svar)))
FRAc1.p<- cox.zph(modfra.c1)Stable[,3]

FRAe.coef<-modfra.eScoeff

FRAe.secoef<- sqrt(diag(modfra.eSvar2))

FRAe.n<-modfra.eSn

FRAe.intinf<- exp(modfra.eScoeff-1.96*sqrt(diag(modfra.eSvar)))
FRAe.intsup<- exp(modfra.eScoeff+1.96*sqrt(diag(modfra.eSvar)))
FRAe.p<- cox.zph(modfra.e)Stable[,3]

FRAel.coef<-modfra.e1$Scoeff
FRAel.secoef<- sqrt(diag(modfra.e1Svar2))
FRAel.n<-modfra.e1$n
FRAel.intinf<- exp(modfra.e1Scoeff-1.96*sqrt(diag(modfra.e1Svar)))
FRAel.intsup<- exp(modfra.e1Scoeff+1.96*sqrt(diag(modfra.e1Svar)))
FRAel.p<- cox.zph(modfra.e1)Stable[,3]

AGexp.coef<-(summary(modAG.exp))Scoeff[,1]
AGexp.secoef<-(summary(modAG.exp))Scoeff[,4]
AGexp.n<-(summary(modAG.exp))$n
AGexp.intinf<- summary(modAG.exp)Sconf.int[,3]
AGexp.intsup<- summary(modAG.exp)Sconf.int[,4]
AGexp.p<- cox.zph(modAG.exp)Stable[,3]

AGexp1l.coef<-(summary(modAG.exp1l))Scoeff[,1]
AGexp1l.secoef<-(summary(modAG.exp1))Scoeff[,4]
AGexpl.n<-(summary(modAG.exp1))$n
AGexp1l.intinf<- summary(modAG.exp1)Sconf.int[,3]
AGexpl.intsup<- summary(modAG.exp1)Sconf.int[,4]
AGexpl.p<- cox.zph(modAG.exp1l)Stable[,3]

FRAexp.coef<-modfraexpScoeff
FRAexp.secoef<- sqrt(diag(modfraexpSvar2))
FRAexp.n<-modfraexpSn
FRAexp.intinf<- exp(modfraexpScoeff-1.96*sqrt(diag(modfraexpS$var)))
FRAexp.intsup<- exp(modfraexpScoeff+1.96*sqrt(diag(modfraexpSvar)))
FRAexp.p<- cox.zph(modfraexp)Stable[,3]

FRAexp1l.coef<-modfraexp1Scoeff
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FRAexpl.secoef<- sqrt(diag(modfraexp1Svar2))

FRAexpl.n<-modfraexplSn

FRAexp1l.intinf<- exp(modfraexp1Scoeff-1.96*sqrt(diag(modfraexplSvar)))

FRAexpl.intsup<- exp(modfraexplScoeff+1.96*sqrt(diag(modfraexp1Svar)))

FRAexp1l.p<- cox.zph(modfraexp1)Stable[,3]

filal<-c(PWP.coef[1:2], PWP.secoef[1:2],PWP.intinf[1:2],PWP.intsup[1:2],PWP.p[1:2])

fila2<-c(PWPZ.coef[1:2],PWPZ.secoef[1:2],PWPZ.intinf[1:2],PWPZ.intsup[1:2],PWPZ.p[1:2])

fila3<-c (AGc.coef[1:2],AGc.secoef[1:2],AGc.intinf[1:2],AGc.intsup[1:2],AGc.p[1:2])

filad<-c(AGcl.coef[1:2],AGcl.secoef[1:2],AGcl.intinf[1:2], AGcl.intsup[1:2],AGcl.p[1:2])

fila5<-c (AGe.coef[1:2],AGe.secoef[1:2],AGe.intinf[1:2],AGe.intsup[1:2],AGe.p[1:2])

filab<-c(AGel.coef[1:2],AGel.secoef[1:2],AGel.intinf[1:2], AGel.intsup[1:2],AGel.p[1:2])

fila7<-c(FRAc.coef[1:2], FRAc.secoef[1:2],FRAC.intinf[1:2],FRAC.intsup[1:2],FRAc.p[1:2])

fila8<-c( FRAc1.coef[1:2],FRAcl.secoef[1:2],FRACL.intinf[1:2],FRAC1.intsup[1:2],FRAc1.p[1:2])

fila9<-c( FRAe.coef[1:2], FRAe.secoef[1:2], FRAe.intinf[1:2],FRAe.intsup[1:2],FRAe.p[1:2])

filal0<-c( FRAel.coef[1:2], FRAel.secoef[1:2],FRAel.intinf[1:2],FRAel.intsup[1:2],FRAel.p[1:2])

filall<-c( AGexp.coef[1:2], AGexp.secoef[1:2], AGexp.intinf[1:2], AGexp.intsup[1:2], AGexp.p[1:2])

filal2<-c( AGexpl.coef[1:2],AGexpl.secoef[1:2],AGexpl.intinf[1:2],AGexpl.intsup[1:2],AGexpl.p[1:2])

filal3<-c( FRAexp.coef[1:2], FRAexp.secoef[1:2],FRAexp.intinf[1:2],FRAexp.intsup[1:2], FRAexp.p[1:2])

filald<-c( FRAexpl.coef[1:2], FRAexpl.secoef[1:2],FRAexpl.intinf[1:2], FRAexpl.intsup[1:2], FRAexpl.p[1:2])

filaO<-
rbind("PWP","PWPZ","AGc","AGcl1","AGe","AGel","FRAC","FRAc1","FRAe","FRAel1","AGexp","AGexpl","FRAexp","FRAExp1
")

resultat<-rbind(filal,fila2,fila3,fila4,fila5,fila6,fila7,filag,fila9,filal0,filall,filal2,filal3,filal4)
size <- sizes[i]

resultat <- cbind(j,size,resultat)

rownames(resultat)<-fila0

colnames(resultat)<-c("Mostra","Mida","coefx","coefx1",
"secoefx","secoefx1","intinfx","intinfx1","intsupx","intsupx1","px","px1")
file <- paste("pobl12_5000",i,".csv",sep="")
if (j==1)
{
write.table(resultat,file,sep=";",dec=",",row.names=T,col.names=NA, append=F)
telse{
write.table(resultat,file,sep=";",dec=",",row.names=T,col.names=F, append=T)

}
}

9.4 AVALUACIO DELS MODELS
pop<-poplll_1[poplll_1$X=="PWP",]
betal<-0.2
beta2<-0.7

# biaix = beta estimat- beta

coefl<-mean(popScoefx)
biaix1<-mean(popScoefx) - betal

coef2<-mean(popScoefx1)
biaix2<-mean(popScoefx1) - beta2

## percentatge biaix
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pbiaix1<-(biaix1/betal)*100
pbiaix2<-(biaix2/beta2)*100

## standarized biaix
betax<-sd(popScoefx)
betax1<-sd(popScoefx1)

stbiaix1<-(biaix1/betax)*100
stbiaix2<-(biaix2/betax1)*100

## coverage

popScovx11<-log (popSintinfx)

popScovx12<- log(popSintsupx)
popScoverage[popScovx11>0.2]<-0
popScoverage[popScovx12<0.2]<-0
coverage<-(summary(popScoverage))[7]/500*100

popScovx21<-log (popSintinfx1)

popScovx22<- log(popSintsupx1)
popScoveragel[popScovx21>0.7]<-0
popScoveragel[popScovx22<0.7]<-0
coveragel<-(summary(popScoverage1))[7]/500*100

popS$longl<-popScovx12-popScovx1l
popS$long2<-popScovx22-popScovx21
longl<-mean(popSlongl)
long2<-mean(popS$long2)

MSE1<-(mean(popScoefx) - betal)?2 + (sd(popScoefx))r2
MSE2<-(mean(popScoefx1) - beta2)”2 + (sd(popScoefx1))r2
px<-mean(popSpx)

px1<-mean(popSpx1)

PWP<-

data.frame(coef1,coef2,biaix1,biaix2, pbiaix1,pbiaix2,stbiaix1,stbiaix2,coverage,coveragel,longl,long2,MSE1,MSE2, px,px1)
pop<-pop111_1[pop11l_1$X=="PWPZ",]

betal<-0.2

beta2<-0.7

# biaix = beta estimat- beta

coefl<-mean(popScoefx)
biaix1<-mean(popScoefx) - betal

coef2<-mean(popScoefxl)
biaix2<-mean(popScoefx1) - beta2

## percentatge biaix
pbiaix1<-(biaix1/betal)*100
pbiaix2<-(biaix2/beta2)*100

## standarized biaix
betax<-sd(popScoefx)
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betax1<-sd(popScoefx1)

stbiaix1<-(biaix1/betax)*100
stbiaix2<-(biaix2/betax1)*100

## coverage

popScovx11<-log (popSintinfx)

popScovx12<- log(popSintsupx)
popScoverage[popScovx11>0.2]<-0
popScoverage[pop$covx12<0.2]<-0
coverage<-(summary(popScoverage))[7]/500*100

popScovx21<-log (popSintinfx1)

popScovx22<- log(popSintsupx1)
popScoveragel[popScovx21>0.7]<-0
popScoveragel[popScovx22<0.7]<-0
coveragel<-(summary(popScoveragel))[7]/500*100
popSlongl<-popScovx12-popScovx1l
popS$long2<-popScovx22-popScovx21
longl<-mean(popSlongl)

long2<-mean(popS$long2)

## accuracy

MSE1<-(mean(popScoefx) - betal)?2 + (sd(popScoefx))r2

MSE2<-(mean(popScoefx1) - beta2)”2 + (sd(popScoefx1))r2

px<-mean(popSpx)

px1<-mean(popSpx1)

PWPZ<-
data.frame(coefl,coef2,biaix1,biaix2,pbiaix1,pbiaix2,stbiaix1,stbiaix2,coverage,coveragel,longl,long2, MSE1,MSE2,px,px1)
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