

LTP: A MODEL OF LEARNING AND MEMORY

WHAT IS...?

Changes in NS resulting from experience, which create lasting changes in behavioural

Process whereby we encode, store and establish this learning

LONG-TERM POTENTIATION is a long-lasting enhancement in signal transmission between two neurons that results from stimulating them synchronously

INTRODUCTION

LTP was discovered by Terje Lømo (1966) and originally defined by Bliss & Lømo (1973)

Only reported at excitatory synapses

Different forms of LTP have been observed in different neural structures

LTP is the predominant experimental model for the synaptic plasticity mechanisms thought to underlie learning and memory

AMYGDALA

LTP is triggered by Ca^{2+} influx into the PS neurons, opening both NMDAR and L-voltage-dependent Ca^{2+} channels:

- Insertion of additional AMPAR in the PS membrane
- PKA and MAPK activate CREB \rightarrow gene expression, necessary for the persistence of the memory for learned fear and the synaptic changes

Pavlovian classical conditioning modifies the strength of synaptic transmission. When the tone is presented immediately before a foot shock (US, unconditioned stimulus), the animal learns to associate the tone (CS, conditioned stimulus) with the shock. From now on, the tone alone will be enough for the animal to elicit a fear response. After fear conditioning the electrophysiological response in the LA is greater than the response prior to conditioning. (Picture from 3)

(Picture from 3)

PROPERTIES

& Persistence: LTP can last from several minutes to many months, years...

PHASES

E-LTP: \approx 30-45 min to \approx 2-3h. Non gene expression

L-LTP: Many hours (at least 24h). Gene expression \rightarrow Synapse growth.

REFERENCES

1. Brown TH et al. *Science*, **242**, 724 (1988)
2. Cooke SF et al. *Brain*, **129**, 1659 (2006)
3. Kandel ER, Schwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ. "Principles of Neural Science." 5th edition (2013). Chapter 66 and 67.
4. Lomo T et al. *Philosophical Transactions of the Royal Society of London B*, **358**, 617 (2003)
5. Matynia A et al. *Annual Review of Genetics*, **36**, 687 (2002)
6. Sweatt JD et al. *Learning and Memory*, **6**, 399 (1999)

CONCLUSION

Discovering the physical basis of learning and memory in humans and other mammals is among the greatest remaining challenges facing the neurosciences. The phenomenon of LTP is the leading candidate for these explanations.

(Picture from 3)