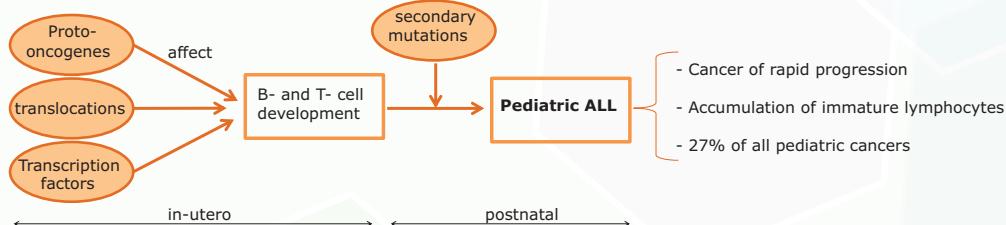


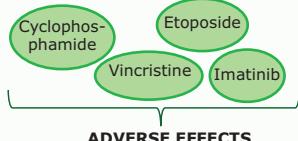
UNDERSTANDING LEUKEMIA


The role of CYP450 on Childhood Acute Lymphoblastic Leukemia

Gemma Llargués i Sistac | Genetics Degree, Universitat Autònoma de Barcelona (UAB), 2014

The aim of the present poster is to review the current knowledge about the known CYP 450 polymorphisms that alter response to drugs and treatment outcome of those pediatric patients with Acute Lymphoblastic Leukemia.

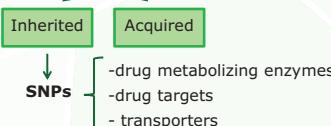
Childhood ALL


- ALL is the **most common pediatric malignancy**, and results from a multiple-step model of carcinogenesis.

- Cure rates have improved from less than 10% in the 1960s to 90% nowadays

Chemotherapy

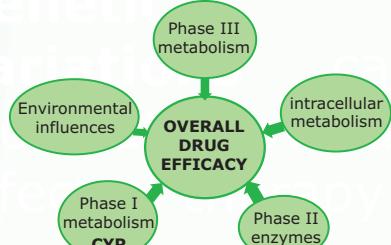
The therapy for ALL consists of drugs with **highly toxic** profile


Direct toxicity produced in healthy tissue
↳ main cause of morbidity and mortality

Not all children treated respond equally to drugs
↳ ethnic differences

Pharmacogenetics

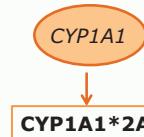
Seeks to define the **differences** between patients associated with treatment failure


Genetic variations can modulate overall effect of therapy

Genetic polymorphisms modulate the **efficacy** of antileukemic agents and clinical **outcome** of ALL.

Drug Metabolism

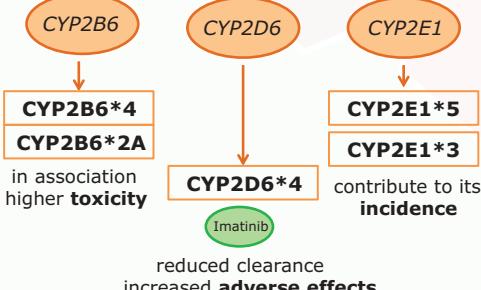
drug efficacy is affected by a number of non-genetic and genetic influences, like SNPs in genes expressing enzymes involved in:



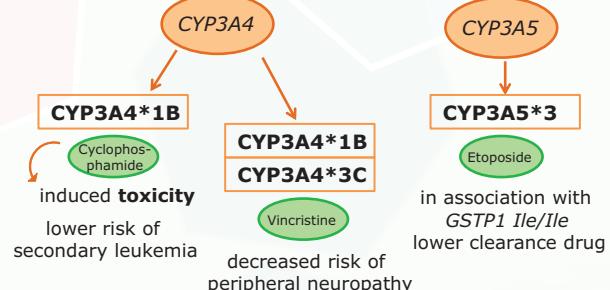
Cytochrome P450 (CYPs)

- enzymes responsible for most **phase I reactions**
- super family of **mono-oxygenases** → "activating" molecular oxygen
- capable of catalyzing the **oxidative biotransformation** of xenobiotics
- 57 genes and 58 pseudogenes → 12 enzymes belonging to the 1, 2 and 3 CYP-families effectuate the metabolism of the majority of drugs
- highly polymorphic**

CYP1 gene family


procarcinogen bioactivation induced by PAHs

increased **risk** of ALL
worse therapeutic **outcome**
increased **incidence**
(+GSTM1, GSTP1)


CYP2 gene family

largest family of CYPs in humans
several of the most important drug metabolizing CYP

CYP3 gene family

the most well-studied CYPs in ALL
CYP3A induction increases drug clearance

Conclusions and Future Perspectives

- multidisciplinary research is needed to understand both the biology of the disease and the host in order to prevent drug toxicity and adverse effects
- CYP enzymes have an important role in metabolizing drugs administrated to pediatric patients with ALL
- there is still a lack of evidence in regard to the true genetic contribution of CYP variants to the drug metabolism genotype
- further evaluation of the genetic variants reported in this project is needed in order to unequivocally establish their association with pediatric ALL

References

Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. *Lancet* **381**, 1943–55 (2013).
Wall, A. M. & Rubnitz, J. E. Pharmacogenomic effects on therapy for acute lymphoblastic leukemia in children. *Pharmacogenomics J.* **3**, 128–35 (2003).
Gervasini, G., & Vagace, J. M. Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. *Front. Genet.* **3**, 1–11 (2012).