Maternal serum markers

At the present time, a pregnant woman who wants to know if her fetus is affected by any kind of genetic disorder has two options, either a non-invasive test, like an ultrasonography or maternal serum markers, which gives a risk score of being affected, or an invasive test, like amniocentesis or chorionic villus sampling, which gives a definitive result about the fetus possible genetic alterations at the molecular level. However, both have benefits and drawbacks. As a result, neither is used as a single test offered to every pregnant woman.

The discovery of cell-free fetal DNA (cff-DNA) in maternal plasma by Lo et al (1997) opened a door to the pregnant woman. At the present time, a pregnant woman who wants to know if her fetus is affected by any kind of genetic disorder has two options, either a non-invasive test, like an ultrasonography or maternal serum markers, and 21 and sex chromosome aneuploidies.

The tests have a false-positive rate of 2-3% and false-negative rate of >5%. They might be used first to determine if a more invasive test needs to be performed. They usually do not cause any physical pain, to the mother or the fetus. The tests have a false-positive rate of 2-3% and false-negative rate of >5%.

They are needed to diagnosis any genetic disorder. There is the necessity to emphasize that NIPT is not still a diagnostic test. Further investigation and experiments are needed for NIPT to become a widespread non-invasive diagnostic test. NIPT costs must be minimized and guidelines about quality control and test warranty should be reported.

Non-invasive prenatal test: advantages, limitations and future

Neus Fornés Garcia

1Genetics Degree, Faculty of Biosciences, Universitat Autonóma de Barcelona (UAB)

INTRODUCTION

At the present time, a pregnant woman who wants to know if her fetus is affected by any kind of genetic disorder has two options, either a non-invasive test, like an ultrasonography or maternal serum markers, which gives a risk score of being affected, or an invasive test, like amniocentesis or chorionic villus sampling, which gives a definitive result about the fetus possible genetic alterations at the molecular level. However, both have benefits and drawbacks. As a result, neither is used as a single test offered to every pregnant woman.

The discovery of cell-free fetal DNA (cff-DNA) in maternal plasma by Lo et al (1997) opened a door to the pregnant woman. At the present time, a pregnant woman who wants to know if her fetus is affected by any kind of genetic disorder has two options, either a non-invasive test, like an ultrasonography or maternal serum markers, and 21 and sex chromosome aneuploidies.

They are needed to diagnosis any genetic disorder. There is the necessity to emphasize that NIPT is not still a diagnostic test. Further investigation and experiments are needed for NIPT to become a widespread non-invasive diagnostic test. NIPT costs must be minimized and guidelines about quality control and test warranty should be reported.

INVASIVE AND NON-INVASIVE TESTS

NON-INVASIVE TESTS

Chorionic villus sampling (CVS)

Tests are usually performed on women identified to be at risk for aneuploidies. They are needed to diagnosis any genetic disorder. They present higher accuracy respect to non-invasive screenings. There is 1% greater risk of miscarriage.

Invasive tests

They are performed on women identified to be at risk for aneuploidies. They might be used first to determine if a more invasive test needs to be performed. They usually do not cause any physical pain, to the mother or the fetus. The tests have a false-positive rate of 2-3% and false-negative rate of >5%.

They are needed to diagnosis any genetic disorder. There is the necessity to emphasize that NIPT is not still a diagnostic test. Further investigation and experiments are needed for NIPT to become a widespread non-invasive diagnostic test. NIPT costs must be minimized and guidelines about quality control and test warranty should be reported.

ADVANTAGES

NIPT has higher sensitivity, specificity and false-positive rates than maternal serum screenings. NIPT gives results as earlier as 9 weeks of pregnancy without needing multiple blood samples.

LIMITATIONS

False positive and false negative results can occur. It is unclear if NIPT can be performed in low risk population, multiple gestations and/or obese women. It is necessary that each sample passes a DNA quality control for results to be given.

FUTURE: improvements that should be implemented before performing as a diagnostic test:

1. To magnify the accuracy of both sequencing and results.
2. To develop an enrichment method of cff-DNA.
3. More research about the isolation and concentration of cell fetal DNA.
4. Further investigation about how mosaicism and maternal weight can affect the test results.
5. Regulations about the performance and quality of developed method.

ACOG STATEMENT

NIPT should be accompanied by genetic counselling. There is the necessity to emphasize that NIPT is not still a diagnostic test. NIPT would be offered to women in one of the following groups:

A prior pregnancy with trisomy or parental balanced robertsonian translocation.

Women ≥35 years old. Increased risk of aneuploidy found in non-invasive screening.

CONCLUSION

Currently, although NIPT can reduce the number of unnecessary invasive diagnostic procedures in some cases, it is still not a diagnostic test. NIPT is thought to be a secondary screen procedure, performed after high-risk of aneuploidy has been found, because of its higher detection rate and lower false positive rate.

At the present time, it has not been proved whether or not one method is better than the other. Further investigation and experiments are needed for NIPT to become a widespread non-invasive diagnostic test. NIPT costs must be minimized and guidelines about quality control and test warranty should be reported.

REFERENCES

