Therapeutic Cloning: A New Vision of Somatic Cell Nuclear Transfer

Pérez Francés, Marta Degree in Biomedical Science, Faculty of Bioscience, Universitat Autònoma de Barcelona

Introduction

- Somatic Cell Nuclear Transfer has been proposed as a tool to replace tissue or organ transplantation.
- This technique is based on the introduction of a somatic cell nucleus intro an oocyte cytoplasm (previously removed its nucleus) to reprogram it into a pluripotent state.
- . It's possible thanks to the oocyte cytoplasmic reprogramming factors.

Methodology

- Data come from papers and reviews researched on PubMed database: Scientific literature.
- Papers selection: key word were introduced in order to search the most relevant papers. Papers were selected according to their historical importance, data of publication and journal.
- Key words: Somatic Cell Nuclear Transfer, Therapeutic Cloning, Human, Embryonic Stem Cell, Oocyte, Ethic.

Cloning over the years

Table 1. Human Somatic Cell Nuclear Transfer Over Years (Drawn by author)

Oocytes	Caryoplast	Enucleation	Transfer	Fusion	Activation	Achivement	Reference
Oocytes from a FIV center	ESC nucleus	Pipette compression	Perivitelline space injection	Electrofusion	I/DMAP	Degenerated blastocyst	2005
FIV patients donations	Adult fibroblasts	Extrusion or aspiration	Perivitelline space injection	Electrofusion	CI+: 1)HSA+6-DMAP 2)CHX+CYTD	Blactocyst development	2008
FIV patients donations	Fetus fibroblasts	Piezo-Assisted method	Cytoplasm injection	x	Electric and chemical activation	Blastocyst development from A and B group	2009
Oocyte donors	3-year-old boy fibroblasts	Oosight + Zilos	Perivitelline space injection	Electrofusion	Electrofusion	Five blastocyst	2009
Oocyte donors	Anonymously fibroblasts	Piezo-Assisted method	Cytoplasm injection	x	I/DMAP and TSA	I/DMAP and TSA	2011
Oocyte donors	Fibroblasts	Extrusion	Perivitelline space injection	Electrofusion	I/DMAP	Two-triploid hNT-ESC lines	2011
Oocyte donors	Fetal fibroblasts	Cytoplasm injection and extraction	HVJ-E into perivitelline space	X	30' after fusion: electropulse, 6-DMAP, TSA and caffeine	Stable hNT-ESC lines	2013
Oocyte donors	Fibroblasts from 35- and 75-year- old males	Cytoplasm injection and extraction	HVJ-E into perivitelline space	x	2h after fusion: electropulse, 6-DMAP, TSA and caffeine	Diploid hNT-ESC line	2014
Oocyte donors	Fibroblasts from a female with type 1 diabetes	Data not shown	Data not shown	Sendai virus with calcium-free medium	Electropulse, puromycin and 6- DMAP. FBS for hNT-ESC lines derivation	hNT-ESC line and differentiation into beta- pancreatic cells	2014

Therapeutic Cloning

Image 1. Human therapeutic cloning. When a somatic cell nucleus is obtained from a patient, it could be transferred to an enucleated oocyte to be developed until blastocyst. Once reached, ICM may be isolated and cultured to achieve a hNT-ESC line which could be differentiated in the cell type needed by the patient. (*Drawn by author*).

Limitations

Practical considerations

Efficacy of hSCNT remains low Impossibility of having large reserves of oocytes hNT-ESC maintain epigenetic memory

Ethical controversy

Humanity status or dignity of the embryo Slippery Slope principe Oocyte's source and morality of paying for donations

Future alternatives

Interspecies Somatic Cell Nuclear Transfer

- Interspecies transfer of human fibroblast into enucleated bovine, mouse and rabbit oocytes.
- Comparisons between human and interspecies SCNT show aberrant pluripotency gene expression pattern

Nuclear Transfer to Mitotic Arrested Embryos

- Mice: Presence of cytoplasmatic reprogramming factors in both zygotes at interphase and metaphase as at two-cell embryos.
- Human: SCNT in embryos resulted to an arrest at morula stage because of a lack of reprogramming.

Conclusions

Human somatic cell nuclear transfer is a technique with a long history since 1952 that, recently, has allowed the derivation of human embryonic stem cells lines. Even though hNT-ESC and, therefore therapeutic cloning, are a really promising therapy; there's still a great deal of research to achive high-quality hNT-ESCs that would be suitable for tissue replacement therapy.