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1. Project aims and state of the art

This project seeks to investigate the possibility of using the oxide resistive switching (RS from 

now on) phenomenon as a means to alter the superconducting yttrium barium copper oxide 

(shortened to YBCO) in a controlled manner for electronic applications. Current, practical uses 

of superconductivity are generally in devices where high magnetic fields are required, such as 

medical magnetic resonance imaging equipment or measuring devices, like SQUID and some 

PPMS, as will be shown in this project.

Likewise, the use of RS is often associated to the development of novel non-volatile memories, 

the  so-called  RRAMs,  which  could  set  a  new milestone  in  terms  of  speed and  density  of 

information;  however,  the  ultimate goal  of  this  project  would be  to  further  advance in  the 

direction of superconductivity-based, solid state quantum devices, which would in theory have 

high performance but are so far mainly in a research stage.

Various attempts have been made to tune the properties of superconducting materials in the 

recent past. These include the generation of artificial pinning centres that are able to improve 

the performance of a superconductor several times overi, sometimes controlling this change in a 

local micrometer scaleii; however, none of these techniques provide a reversible way to control 

the superconducting properties, which would be ideal. In that context, very few research has 

gone in the way of using RS as a means to reversibly alter the current flow in superconducting 

materials; there is, however, some evidence that RS can alter the local oxygen doping in YBCO, 

thus allowing to completelly erase and recover the superconducting stateiii.

Therefore, it is a target of this piece of work to get a first impression of what effects does RS 

have on the behaviour of superconductors; this will be attempted through magnetic decoration 

as well as transport measurements using appropriate patterning and optimized metallic contacts. 

The prime target is to obtain reversible, controllable changes in the superdonducting properties 

after RS has taken place.
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2. Introduction and theoretical basis

2.1. Superconductivity:

This whole project revolves around the phenomenon of superconductivity and superconducting 

materials. Therefore, it is only fitting to begin by presenting this concept and briefly explaining 

some  of  its  main  properties.  What  follows  is  a  degree-level  condensed  introduction  to 

superconductivity, without too much emphasis on mathematical formulism; more on that can be 

found in the bibliographyiv.

Superconductivity  is  a  physical  phenomenon  in  which  the  electric  resistivity  of  a  certain 

material decreases to zero below a certain temperature. The resistivity of many metals decreases 

when temperature gets lower, down to a certain point, but what sets superconductivity apart is 

that it makes resistivity fall to zero. This was observed for the first time in 1911, when Dutch 

physicist  H.  Kamerlingh  Onnes  cooled  mercury  down to  the  boiling  temperature  of  liquid 

helium (4.2 K). The phenomenon that explains this sudden change in the electrical properties of 

superconductors is the formation of Cooper pairs. These entities come from the coupling of two 

electrons of opposite spins. The electron pair form due to interactions with vibrations in the 

lattice  of  the  superconductor,  although  the  exact  nature  of  the  pairing  interaction  in  high 

temperature superconductors is still not clear. This will not be discussed in detail.

Whatever the case, a wide range of superconducting materials has been studied since 1911, each 

of them with a characteristic Magnetic field-Temperature (H vs T) diagram, as follows. 
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Figure 1: Phase diagram for type I (left) and type II (right) superconductors



At this stage, it is appropriate to introduce the two types of superconductors, namely type I and 

type II. In type I superconductors, the superconducting state can be reached under threshold, or 

critical values for temperature (T) and applied magnetic field (H). When these conditions are 

met,  the material  is deemed to be a  perfect diamagnet,  which means that its magnetization 

vector is equal in modulus to the applied field, but points in the opposite way. This effectively 

means expelling the magnetic field from inside the material, and it is known as Meissner effect.

In particular, in type II superconductors the Meissner effect occurs only as long as the applied 

magnetic field stays below a certain critical field, HC1, but for higher fields the magnetic flux 

starts penetrating into the material and the superconductor enters the mixed state. When a value 

known  as  upper  critical  field  (HC2)  is  reached,  the  material  becomes  normal  and 

superconductivity is lost.

There is still, however, a distinction to be made between type I and type II superconductors. For 

that matter, two key parameters have to be presented. The first one, λ, is known as the London 

penetration depth, or more generically just “penetration depth”, and it is a measure of how the 

external magnetic field penetrates in the material. In the easiest case, the field's decay into the 

superconductor is not a step-like function, but rather a negative exponential, where the external 

field H0 has a value of H0/e at depth λ.

The  second  parameter,  ξ,  is  not  as  straightforward  to  understand.  If  one  pictures  the 

superconductor wavefunction (Ψ) whose modulus squared is the Cooper pair density (ns), there 

is also a characteristic depth ξ for the decay of  ns at the boundaries of the superconducting 

regions. Then, one can work out the ratio κ= λ/ ξ (called the Ginzburg-Landau parameter) for 

each material. This parameter can be interpreted as how energetically favourable the interface 

between superconducting and non-superconducting regions  are.  For   κ<2-1/2  we have type  I 

superconductors,  where  the  interface  is  minimized,  that  is,  the  boundary  between  states  is 

theoretically placed at  the material's  boundaries  (the whole body is  superconducting);  when 

κ>2-1/2  the material is a type II superconductor, and interfaces are favoured. When this happens, 

a new mixed state appears beyond the Meissner state, where magnetic field penetrates inside the 

material  forming quantized magnetic flux lines (with non-superconducting materials in their 
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core), called vortices.

The magnetic flux in each vortex is a constant, called the flux quantum or fluxoid, Φ0; therefore, 

in the mixed state (which is where vortices are present), an increase in the applied magnetic 

field causes an increase in the density of vortices rather than in the magnetic flux through any 

one of them.

Φ0=
h
2e

≈2.07 · 10−15T · m²

The presence of a vortex in a superconductor implies that there is an electrical current running 

around it, much like the current through a coil generates a magnetic field inside it. In the case of 

a vortex, however, these currents take place in the superconducting region i.e. they face close to 

zero  resistivity.  On  the  other  hand,  the  region  inside  the  vortex  is  not superconducting; 

therefore, any movement of the vortex will involve movement of non-Cooper-paired electrons 

and eventually lead to scattering and thermal losses.

Vortices in  a  clean superconductor  are  distributed evenly in  a hexagonal  lattice,  but this  is 

generally true only for a perfect monocrystal, as shown in the previous figure. Wherever there 

are lattice defects, these tend to not be a part of the superconducting region, and so vortices may 

be  anchored  there,  losing their  hexagonal  symmetry.  This  will  be  explained in  more  detail 

further  ahead,  but  the  main  point  is  that  when  vortices  are  pinned  in  defects,  there  are 

interesting phenomena going on. On the one hand, if a current is applied across the material, a 

Lorentz force is exerted upon the vortices, generating their motion and thus Joule effect related 

losses. On the other, defects able to anchor vortices may be used to generate a pinning force that 

prevents this motion and allows loss-free electrical transport in presence of a magnetic field. In 

this context, if the losses associated to vortex movement can be eliminated, their use in highly 

efficient current transport could be feasible in practice.

The maximum critical current that can be applied to a superconductor without vortex motion 

(i.e. dissipation) is ruled by two forces; the pinning force, which is dictated by the nature and 

number of defects in the solid, and the Lorentz force, which scales with the applied magnetic 

field and current density, as:
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F⃗L=J⃗ x B⃗

Pinning will only occur whenever the pinning force is higher in value than the Lorentz force, 

and so there will exist a certain critical field over which the vortices are free to move. This field 

varies with temperature, and together they form the so-called irreversibility line that separates 

the solid vortex lattice, to the left, and the vortex liquid to the right. To put it in another way, 

when this line is crossed to the right, the critical current density, JC  (maximum current density 

that can be achieved without dissipation) becomes zero.

This  project  seeks  to  exploit  the  possibility  to  generate  artificial  vortex  pinning  in  high-

temperature superconductors  (HTS) by using the resistive switching effect (described in the 

next section). The HTS term is generally used to refer to materials with critical temperatures 

over nitrogen's boiling temperature (77 K). They are technologically relevant because their use 

does not specifically require cooling processes that use liquid helium (which is, of course, much 

more expensive than liquid nitrogen).
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Figure 2: Simplified phase diagram for type II superconductors. Note that the irreversibility  
line (green dashes) meets the other two at H=0



The  material  of  choice  for  that  matter  was,  due  to  its  high  (in  HC)  irreversibility  line, 

YBa2Cu3O7-X (X lower than 1), as mentioned previously. It is a high-temperature superconductor 

with critical temperature around 93 K in bulk form, and slightly lower for thin films. It has a 

perovskite structure as shown in the figure; it is formed by a stack of Cu-O planes lying normal 

to  the  c  direction.  These  planes  contain  mobile  charge  carriers  and  they  are  where  the 

supercurrent  flows;  they  are  separated  by  charge-reservoir  interlayed  layers  which  allow 

changes in the carrier density available in the Cu-O planes. The magnetic fields applied in this 

project will follow the c (vertical) direction and the transport current will be applied along the 

Cu-O planes.

2.2 Resistive switching:

The RS phenomenon plays an important role in this project, and for that reason, it will be briefly 

explained. This phenomenon involves inducing two reversible resistance states (ON/OFF) in a 

material upon the application of an electric field. The possibility to use the resistive switching 

effect to generate low-resistance (non-superconducting) regions in the material would open the 

possibility to create reconfigurable pinning centres in the superconductor, which would be very 

useful for applications based on fluxtronics (manipulation of flux quanta).
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Figure 3: YBCO crystal structure; the blue lines indicate the Cu-O planes.



There are several models to explain this resistance change depending on the materialv, from the 

reversible formation of conducting filaments to the generation of charged interfaces along the 

voltage difference. The exact nature of the change in complex oxides like YBCO is still not 

agreed upon, but evidence points at the generation of oxygen vacancies as one of the possible 

causes. In any case, it is generally accepted that this switching has a very low penetration depth, 

and therefore the use of thin superconducting films will be a necessity if substantial changes in 

their transport properties are to be observed.
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Figure 4: a) Unipolar RS: the change from the Low-Resistance State to the High-Resistance  
State, and vice versa can happen at voltages of the same sign. b) Bipolar RS: the change 

between states happens only at voltages of opposite sign. (Source: reference V)



3. Experimental Procedures

3.1. Sample Preparation:

Let us not forget that the main objective of this project is to study the resistive switching effect 

in YBCO thin films. As mentioned in the introduction, these films are highly anisotropic and 

thus they must be epitaxially grown in order to obtain good superconducting performances. To 

do so, we will use the chemical solution deposition (CSD) method, which is a very promising 

route to obtain long superconducting wires that could see large scale application. This method 

has many variables that must be optimized to obatin high quality superconducting YBCO films. 

This chapter will detail the CSD process used to grow the studied samples, which is based on 

the use of metal trifluoroacetates; this is the TFA route, first displayed in the late eigthties.

To begin the process, one needs an adequate precursor solution. This had already been done by 

the start of the project, therefore it will not be explained extensively. The main line involves 

using either YBCO powder or the hydrated trifluoroacetates of Y, Ba and Cu; either way, after 

some heat treatment, the salts would be dissolved (this could take around 48 h at 50ºC) in a 

mixture of acetone and trifluoroacetic acid, and placed in vacuum for the solvents to evaporate. 

The leftover solid, still containing the metal salts, can be redissolved in ethanol or methanol in  

order to yield the precursor solution, which is dark green in colour.

For this project, that solution was diluted at a 1:4 ratio in methanol. This ultimately leads to the 

final films being substantially thinner than those obtained with the standard solution (of 250 

nm), down to about 50 nm in thickness. The substrate of choice was monocrystalline LAO 

(Lanthanum aluminate, LaAlO3), which is diamagnetic and has a lattice constant of 3.905  Å, 

similar  to  that  of  YBCO,  3.88  Å  (0.64%  mismatch).  The  substrates,  with  sizes 

5mmx5mmx0.5mm, were one-side polished and had been previously treated via an annealing in 

presence of oxygen, and cleaned with acetone and methanol afterwards in order to start with a 

clean surface.

Each  substrate  was  spin-coated  with  15  μl  of  the  diluted  YBCO  solution  inside  a  dry 
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box/chamber at 6000 rpm for 2 minutes. After roughly five minutes on a 70ºC hot plate, the 

samples were placed in a tubular furnace, starting the pyrolisis step. This process ramps the 

sample up to about 300ºC under a constant oxygen flow; a certain level of humidity is added via 

a water bubbler above 100ºC so as to prevent the sublimation of copper trifluoroacetate.

After this step, the thin film usually has a blue colour, which may vary from green to purple  

depending on the thickness. Some defects may be visible near the edges at this stage, since it is 

where the initial coating was thicker; in some cases, one can observe cracking and buckling of 

the pyrolized film (caused by quick shrinking upon heating). It is almost guaranteed that these 

defects will damage the final superconducting properties, so some samples may be discarded at 

this point.

The final process is YBCO growth and, since it also involves the use of a furnace, it may be  

performed right after pyrolisis. The sample is heated to roughly 800ºC in a mixed O2 and N2 

flow, as well as an initial water vapour flow. At the end of this step (which in this case takes  

place  overnight)  the  sample  can  be  retrieved,  and  it  normally  has  a  golden  glowing  look, 

although the sample edges and defects can sometimes retain their blue colour, indicating regions 

of poor epitaxial quality.

At this point, the thin film is finally a heteroepitaxial YBCO 50 nm film. Care must be taken to 

store it in dry conditions, as room humidity can damage the surface layer and render it useless 

for  any  superconductivity-related  purposes  in  a  matter  of  hours.  Before  the  following 

procedures,  the  quality  of  the  samples  is  assessed  by  SQUID  (Superconducting  Quantum 

Interference Device) measurements, which in this case were used to determine, among others, 

their critical current density at 5 K and 77 K and their critical temperature. The films with the 

best superconducting performance were used for this project. Below are the results of some of 

these measurements.
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3.2. Bitter decoration:

The primary characterization technique that we chose to study the effect of resistive switching 

on  vortex  pinning  was  the  Bitter  decoration  technique,  also  known  simply  as  magnetic 

decoration. The local changes in the material properties caused by oxide RS should have some 

effects in the vortex lattice pinning, and a way of checking this is monitoring the magnetic 

vortices' positions by magnetic decoration.

Magnetic decoration is a technique in which a small superconducting sample is placed inside a 

vacuum chamber with a controlled helium pressure and applied magnetic field. In front of it, a  

tungsten wire with an iron source is positioned so that, by resistive heating, iron particles can be 
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Figure 5: SQUID measured curves for four of the best samples: critical current versus applied  
magnetic field (a) or temperature (b) and magnetization versus temperature (c and d).

a) b)

c) d)



emitted. Depending on the He pressure, these particles suffer a number of scattering events, and 

eventually they may collide and form larger aggregates with a substantial magnetic moment.

If this experiment is performed at sufficiently low temperature (generally in a liquid helium 

bath) and a high enough applied magnetic field, the magnetic vortices that will be present in the 

sample will interact with these aggregates, whereas the superconducting parts will not. In the 

end, the evaporated iron will end up mostly on top of each vortex, stuck in place via van der 

Waals interactions, and it will stay there even after room pressure and temperature are restored.

After this process, the decorated samples may be observed by Scanning Electron Microscopy 

(SEM). However, due to the fact that these observations are performed at room temperature and 

that YBCO is not a very good conductor at  this  stage,  care must be taken to place a good 

amount of copper film around the sample borders, to avoid to some extent charge build-up at 

the surface of the film, which would eventually lead to poor imaging. 

3.3. Resistive switching:

In general terms, the electric field that is required to switch the material is applied via two 

conducting tips. If an AFM (Atomic Force Microscope) is used for this purpose, the mass is 

connected to the outer rim of the sample, whereas the tip at the end of the cantilever is the one 

with applied voltage. In this project, however, the most used approach was to work with a probe 

station, which could fit up to four Au/W alloy tips. This approach is not as precise, mainly 

because all  the  alignments  are  performed with  an  optical  microscope rather  than  the  AFM 

imaging, but it allows for quick and straightforward measurements.

The RS measurements are voltage sweeps between the two terminals where the electric current 

is registered; the limit of detection is roughly 1 pA. One of the terminals is defined as negative 

(mass) and the other as positive (applied voltage); in theory, the changes in the material happen 

mostly  near  the  positive  terminal.  Generally  speaking,  the  sweeps  are  between  0  V and a 

defined value, which in this project was never larger than ±10 V. A current ceiling (compliance) 

also needs to be set; the chosen value for this parameter was 0.1 A.
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3.4. Transport measurements:

If the local superconducivity of the sample needs to be assessed, one of the most direct kind of 

measurements  is  to  measure  its  electric  transport  properties.  For  that  matter,  some  of  the 

superconducting samples were patterned defining current tracks of known size.

The first step after obtaining a sample (Y4141) with good superconducting properties (checked 

by SQUID measurements) was the thermal evaporation of gold to achieve a number of contacts, 

which could be later used both for attaching the equipment wiring and for acting upon the 

sample. Knowing the design of the final circuitry, three large square pads were placed in the 

middle, with eight smaller contacts in the borders.

After these were achieved, the actual optical lithography could begin in the 10000-class clean 

room. The computer-generated mask was based on a previous design, with four tracks, each 

ready for Four-Terminal current sensing. For this project, however, the tracks were thinned to 

about 20 μm in width and 50 μm in length, leading to a cross-section of about 10-12  m2 or 10-8 

cm2, assuming that the film's thickness remained constant throughout the process.
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Figure 6: On the left side, base mask design for four terminal measurements. The white regions  
are where YBCO will remain untouched, whereas it will be etched away in the blue and purple  
areas. The grey rectangles mark the position of the metal pads. Notice the narrow tracks, 1 to 4  
(left to right) between the purple polygons. On the right side, Optical transmission microscope  
images of Track 1 (top) and Track 4 (bottom) after the etching took place. In light grey, LAO 

substrate and in dark grey, remaining YBCO. 



After  the  mask  design  was  over  and  the  sample  had  been  spin-coated  with  the  positive 

photoresist,  the  optical  LASER lithography began  (using  a  Durkham Magneto  Optics  LTD 

Micro-Writer). After the sample had been developed, it was taken out of the clean room, etched 

with 1:1000 phosphoric acid and cleaned with acetone afterwards. Any short-circuits that could 

have arisen between the gold contacts were carefully removed with 1:10 phosphoric acid as 

well.

After  the patterning,  the sample was subsequently placed in  a  clean  puck (pictured below) 

which was compatible with the Physical Property Measurement System (PPMS from now on), 

stuck to it with double-sided copper tape and surrounded in heat-conducting grease. Afterwards, 

it went back to the clean room, this time to use a wire bonder (Kuliche & Soffa Wire Bonder 

4526) to contact two of the tracks, T1 and T4, to the puck's metal pads; up to three or four 

aluminum  wires  were  used  for  each  contact,  owing  to  the  fact  that  some  of  them  might 

eventually detach from either surface.

At this point, a multimeter test showed that the resistance of either track was of the order of 1 or 

10 kΩ. This  is  consistent with the known track sizes;  for a  room temperature resistivity of 

approximately 0.008 Ω·cm vi, the expected resistance would be around 4 kΩ; this is taking only 

the  tracks  themselves  into  account  and  disregarding  all  the  rest  of  the  circuit.  With  the 

knowledge that the contacts seem to work fine, the sample was taken to the PPMS and placed 

inside the helium-cooled chamber; after the routine calibrations, the measurements of T1 and T4 

could be performed. The sample was zero-field-cooled down to 60 K from room temperature 

whilst the two tracks' resistances were being measured, and afterwards their critical currents 

were obtained at 60 K for magnetic fields up to several Tesla.
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Figure 7: PPMS puck, both empty (left; source: QD China) and with a 25 mm2 sample stuck 
and contacted (right).



4. Results and Discussion

4.1. Bitter decoration:

For the first decoration attempts, two PLD-grown (Pulsed Laser Deposition) samples were used, 

owing to their higher surface quality. By doing so, we wanted to assess the actual chance of 

success  using  the  cheaper  CSD-grown films,  which  usually  show some  precipitates  at  the 

surface  that  could  complicate  the  vortex  identifiation.  The  PLD samples  were  field-cooled 

under 33 Oersted, and decorated in 170 mtorr He. The first images are from a 150-200 nm film:

Now, if  one assumes that the vortices were perfectly still  when the iron landed on them, a 

hexagonal lattice should be expected. However, there are a variety of defects in the film, both 

isotropic and anisotropic, which act as pinning centres and result in a seemingly random pattern, 

as seen above. Given that these results are satisfying, the following step is to perform another 

decoration in a thinner sample.

It should be taken into account that the RS phenomenon is localized near the sample surface and 

thus thinner samples must be investigated in order to be able to observe the effect of RS in 
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Figure 8: SEM secondary electron images of different regions of sample S15. The YBCO film is  
seen as a grey background, and the iron aggregates are the small white shapes; some larger  

droplets can also be seen.



vortex  pinning.  For  this,  a  PLD  YBCO  film  of  50nm  in  thickness,  underwent  the  same 

decoration procedure, and the result was not so satisfactory:

The vortex locations are not so easily determined in this case. This is due to the lower thickness 

of this film, and it can be roughly explained by the spreading of the vortices depending on the 

size of our material. Whenever we are not dealing with bulk materials but thin films, a new 

penetration depth for the magnetic field, Λ, is used instead of λ. 

Λ=λ
2

t

The fact that it is proportional to t-1 (t being the material's thickness) means that, for very thin 

films, the penetration depth will be larger. If this happens, the magnetic field goes through the 

sample in a wider area around each vortex, as shown in the following figure, which would allow 

the iron aggregates to land in less discrete locations.
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Figure 10: On the left side, qualitative schematic of the magnetic field and the supercarrier  
density near a vortex. On the right side, sketch of the magnetic field penetration in a vortex  

lattice upon film thickness reduction.

Figure 9: SEM secondary electron images of different regions of S20. 
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As interesting as it may be, this phenomenon poses a serious threat to the feasibility of the 

decoration experiments on CSD-grown films of 50nm. Their thickness is the same as that of the 

thinner  PLD  sample,  and  their  surface  quality  is  likely  not  as  good;  therefore,  we  have 

concluded that the decoration technique was not a useful tool to evaluate the RS effect in YBCO 

thin films.

4.2. Resistive switching (I-V curves):

The next step before the optical lythography could take place was to determine what the optimal 

contact material was to perform the RS experiments. Metal contacts are a requirement if the 

probe station approach is used as opposed to the AFM, as they can greatly reduce the contact 

resistance  that  would  otherwise  arise  between  the  tips  and  the  oxide  and  assure  a  better 

reproducibility. According to our measurements (shown further ahead), the use of contacts can 

result in a current increase of about two orders of magnitude versus the same sweeps performed 

directly on YBCO. For this project, silver and gold contacts were compared; in both cases, 50 

nm-thick squares were thermally evaporated on two of the CSD-grown samples. Due to the low 

thickness of the films, they were not annealed afterwards, which is useful to improve contact 

adherence but can also generate some diffusion of the metal in the sample.
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Figure 11: I/V curve for Y4173 with both tips on bare YBCO.



It would also be desirable that the contacts provide non-volatile RS. This refers to the fact that 

the resistance states must be conserved from one switch to the next. The figure above, where no 

contacts  were  used,  is  a  good  example  of  non-volatile  switching;  it  can  be  seen  that,  for 

instance, sweep 2 ends in a low-resistance state (8) and sweep 3 starts in a LRS as well (9). If 

the switching is volatile, any changes that are made in the conducting tracks are not guaranteed 

to be still in effect when the transport measurements are carried out.

In this regard, it was found that silver was not as good as gold at keeping the resistance state of 

the material. Measurements performed with the two conducting tips over the contacts showed 

some differences between the different  sweeps performed on either  sample.  In  most of  the 

cases, we observed volatile RS when using silver contacts (Figure 12, left), while non-volatile 

RS was obtained with gold contacts (Figure 12, right).

However, when one tip was placed on a contact and the other was contacted directly to the 

YBCO film, the sample with the silver contacts sometimes swapped resistance states between 

consecutive sweeps; other times, the resistance state was conserved. Under the same conditions, 

the golden contacts allowed up to ten sweeps with mostly consistent (non-volatile) switching 

before the material broke down.

20

Figure 12: I/V curves for Y4172 (Ag contacts, left) and Y4173 (Au contacts, right) with both  
tips on the metal contacts.



The effect of the polarity of the contacts was also tested for each sample. Although the results 

were admittedly not very reproducible, the material's response seemed to be less volatile when 

the positive tip was placed on the contact than when the negative one was there. The order in 

which  the sweeps were performed (positive  first  or  negative first)  was varied but  no clear 

tendency was observed in the results.

Taking all the results gathered into consideration, it seems that the optimal way to perform RS 

on the tracks and witness its effects afterwards is to use gold contacts. Ideally, both tips should 

be placed on gold contacts so as to maximize the electric current, but this would require to also 

evaporate a layer of gold on top of the track, and was out of the scope of this project.

21

Figure 13: I/V curves for Y4172 with the positive (left) or negative (right) tip on a Ag contact.

Figure 14: I/V curves for Y4173 with the positive (left) or negative (right) tip on a Au contact.



4.3. Transport measurements:

The following curves were obtained for the patterned YBCO sample by means of transport 

measurements.

From these measurements, it was observed that the critical temperature obtained was lower than 

that in the bulk material, as already shown in the characterization measurements performed by 

SQUID. Moreover, the values of JC were not the best for a YBCO film either. Although much 

better samples were obtained during the course of this project, we used this one for transport 

characterization  since  this  procedure  requires  a  lot  of  steps  of  preparation  that  must  be 

performed at the beginning of the project. The better samples, with higher JC, were achieved 

after several growth trials and could not be used for this purpose.

Now, our objective is to use transport measurements to analyse the superconducting properties 

of a YBCO track before and after the RS effect. With this approach the effects of oxide RS can 

be evaluated in a way that did not require the sample to be thick and smooth as is the case for  

Bitter decoration.

Once the transport characteristic curves have been obtained for the pristine tracks, they were 

exposed to an electric field via the probe station, as previously described. After some tests run 

on a different,  blank YBCO thin film (Y4172), it  was apparent that the voltage required to 

switch to the high-resistance state was below 10V. Below are the graphs showing the I/V sweeps 
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Figure 15: PPMS-obtained JC vs H (at 65 K) and ρ vs T plots for Y4141. In these  
measurements, TC was found to be between 87 and 88 K for both tracks.



performed on two different tracks, T1 and T4.

As shown in the graphs, both curves start with a forming stage (1), and after some sweeps both 

tracks were taken to the high-resistance state (HRS). A certain discontinuity is observed in the 

resistance state for various loops (i.e. for T4, Sweep 2 ends in the HRS but Sweep 3 starts in the 

LRS), hinting at some volatility in the oxide. Nevertheless, Y4141 was taken back to the PPMS 

to measure its superconducting properties after the RS procedure (results shown further ahead).

Afterwards, a second round of RS was carried out again on T1 and T4. This time, an attempt 

was made to leave the samples at their LRS. Although it was seemingly achieved with T4, the 

results of T1 were not as good, as it seemed that some sort of breakdown had happened after 

several a couple sweeps.  The sample was taken to  the PPMS one last  time to measure the 

transport properties of the bridges.
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Figure 16: I/V curves for the first RS of T1 (left) and T4 (right).

Figure 17: I/V curves for the second RS of T1 (left) and T4 (right).



For Track 1, the first RS step caused a slight decrease in current density, as well as a roughly 1 

K drop in critical temperature. When the second RS step was carried out, the current density 

decreased again, and the critical temperature remained essentially the same. This suggests that, 

indeed, T1 was not brought to the LRS after the second round of RS but degraded to some 

extent instead.

MÉS DESCRIPCIÓ DELS RESULTATS 

DEL  SWITCHING  DE  LA  Y4141. 

CANVI APARENT DE RESISTÈNCIA 

A T AMBIENT I CANVI APARENT DE 

T CRÍTICA.

The results for T4 are more in line with the initial target of this project. It is clear from the first 

graph that the current density decreases with the first RS step, as intended, and increases again 

with the second RS step,  which indicates that the track was successfully brought back to a 

conducting  state.  The  TC has  been  slightly  recovered  throughout  the  second  RS,  but  the 

resistivity  has  not.  So,  we  can  conclude  that  we  have  been  able  to  modify  the  transport 

properties of YBCO in a reversible way by using the RS effect.
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Figure 18: JC vs μ0H (left, 65 K) and ρ vs T (right) for T1 at the three stages of RS.

Figure 19: JC vs μ0H (left, 65 K) and ρ vs T (right) for T4 at the three stages of RS.



5. Conclusions

In this project, the CSD method was proven as a way to obtain cheap, reproducible thin films 

with very high superconducting performance (JC of several MA/cm2 at 77 K) provided that the 

process  conditions  were  adequate.  The  Bitter  decoration  technique,  although  a  useful 

complement to the main line of this project, could not be used to successfully visualize the 

effect of RS on the vortices of these superconducting films. 

The evaporation and testing of different types of metal contacts provided useful information if 

attempts  at  RS are  taken in  the  future  with  similar  samples.  It  became apparent  that  gold 

contacts are generally better than silver in this case, although it is possible that other materials, 

such as platinum, should be also considered in this regard.

All things considered, it is clear that the superconducting properties of the sample have been 

altered to a certain degree upon RS, and it is likely that these changes are due to a change in the  

oxygen doping of the superconducting film. However, these changes are not fully controlled and 

a less crude approach will  be needed for more reproducible results.  This would include,  as 

aforementioned, trying to cover the tracks with gold, but also, and perhaps most important, to 

find a proper way to align the tip so that subsequent RS steps all take place in the same spot.

Anyhow, we have  been able  to  successfully  produce  reversible  switching effects  in  YBCO 

bridges, which indicates that resistive switching seems to be a promising way to reliably and 

reversibly change the resistance state of YBCO. Further study in this field could one day lead to 

a new generation of solid state reconfigurable electronic devices if the hassles found within this 

project can be overcome.
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Acronym index

AFM: Atomic Force Microscope

CSD: Chemical Solution Deposition

HRS: High-Resistance State

HTS: High-Temperature Superconductor

LAO: Lanthanum Aluminate

LRS: Low-Resistance State

PLD: Pulsed Laser Deposition

PPMS: Physical Property Measurement System

RS: Resistive Switching

SEM: Scanning Electron Microscope

SQUID: Superconducting Quantum Interference Device

TFA: Trifluoroacetate

YBCO: Yttrium Barium Copper Oxide
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