
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Emprovador virtual: Aplicació per a canviar
els colors de la roba en imatges

Santi Estrada i Fité

Resum— Aquest projecte utilitza una de les tasques més comunes en el processament d’imatges, l’alteració de color, per a
crear una aplicació que permeti modificar el color de qualsevol peça de roba en una imatge, mantenint-ne les seves propietats
d’il·luminació i textura originals. Per a aconseguir-ho ens servirem de l’entorn OpenCV, el qual fa possible el tractament
d’imatges en temps real. L’usuari serà capaç de seleccionar qualsevol element de la imatge, podent tractar-se tant d’una peça
de roba sencera com d’elements o parts que la constitueixin, i escollir qualsevol color que desitgi aplicar-hi. En el cas que es
seleccioni més d’un element o es modifiqui el color d’algun d’ells, es comprovarà l’harmonia dels colors actuals d’aquests, tant
si són els originals com si han estat modificats.

Paraules clau—OpenCV, processament d’imatges, segmentació, floodfill, transferència de color, harmonia de color.

Abstract—The aim of this project is to use one of the most common tasks in image processing, color alteration, in order to build
an application which allows modifying the color of any piece of clothing in an image, maintaining the original lightning and
texture. To achieve this we will make use of the OpenCV environment, which focuses on real-time image processing. The user
will be able to select any element of the image, being either an item of clothing or distinct elements or parts of it, and pick the
desired color to apply. In the case where more than one element is selected or one of their colors is modified, the harmony of
their current colors will be checked, whether they are the originals or they have been modified.

Index Terms—OpenCV, image processing, segmentation, floodfill, color transfer, color harmony.

—————————— u ——————————

1 INTRODUCCIÓ
ALTERACIÓ de color és una de les tècniques més
practicades en el tractament d’imatges, generalment

dedicada a la correcció de color per tal d’eliminar tonali-
tats no desitjades en una imatge o millorar-ne les propie-
tats d’il·luminació. Aquestes pràctiques poden estar invo-
lucrades tant en el món de la fotografia, adreçades a
l’augment de qualitat i retocs d’imatges, com en el món
del cinema, en tasques com el post-processament de
pel·lícules.

Un dels mètodes més peculiars per a dur a terme un
tipus de correcció de color més general es basa en aplicar
la distribució de colors d’una imatge origen a una altra
imatge objectiu, el que es coneix com a transferència de
color. En aquest projecte s’utilitzarà aquesta tècnica per a
modificar el color de parts concretes i diferenciades d’una
imatge, concretament peces de roba. D’aquesta manera,
aconseguirem tenir una aplicació que permeti observar en
temps real com quedarien les peces de roba en diferents
colors i decidir quins d’ells són els més adequats per a
cada imatge, el que vindria a ser un emprovador virtual.

2 ESTAT DE L’ART
Actualment existeixen varis algorismes de transferèn-

cia de color, els quals poden tenir en compte diferents
paràmetres estadístics de la imatge relacionats amb la
distribució dels colors. Un exemple n’és l’algorisme pro-
posat per Reinhard et al. [1], on es té en compte la mitjana
i desviació estàndard dels píxels per a aconseguir mapejar
la distribució de colors d’una imatge font a una imatge
objectiu.

Per altra banda, existeix un algorisme que, a partir
d’un píxel origen de la imatge, busca píxels veïns de color
semblant i els modifica de color, però no conserva la
il·luminació original d’aquests píxels. Tot i així, pot servir
com a algorisme de segmentació d’elements de la imatge.
Aquest algorisme s’anomena floodfill [2], i ha estat utilitzat
en projectes com el proposat per Samarth Brahmbhatt [3]
per a detectar diferents objectes en una imatge a partir
d’un sol clic sobre un punt interior d’aquests.

Finalment, es poden trobar mètodes per a millorar
l’harmonia de colors presents en una imatge, per tal de
fer-la més visualment atractiva. Un d’ells es tracta de
l’algorisme proposat per D. Cohen-Or et al. [8], el qual
determina l’harmonia de color d’una imatge determinada
a partir d’una sèrie de regles i models i corregir la distri-
bució de colors en el cas que no sigui harmònica.

L’

————————————————
• E-mail de contacte: santiago.estrada@e-campus.uab.cat
• Menció realitzada: Computació
• Treball tutoritzat per: Robert Benavente i Vidal (Computació)
• Curs 2014/15

2 EE/UAB TFG INFORMÀTICA: EMPROVADOR VIRTUAL. APLICACIÓ PER A CANVIAR ELS COLORS DE LA ROBA EN IMATGES

3 OBJECTIUS
L’objectiu principal del projecte consisteix en aconse-

guir una aplicació que permeti modificar el color d’una o
vàries peces de roba o parts d’aquestes seleccionades per
l’usuari en una imatge. D’aquest objectiu principal se’n
deriven quatre objectius més, els quals corresponen als
quatre grans blocs en els que es divideix el projecte:

• Implementar un mètode de segmentació que per-

meti seleccionar un element de la imatge a través
d’un únic clic sobre un punt interior d'aquest.

• Implementar un mètode de transferència de color

que permeti modificar el color de l’element selecci-
onat.

• Comprovar l’harmonia dels colors dels elements
seleccionats i/o modificats entre ells, informant si
la combinació de colors és harmònica o no.

• Dissenyar una interfície gràfica amigable i intuïtiva

a ulls de l’usuari que ofereixi les funcionalitats i
possibilitats adequades.

4 METODOLOGIA
En aquest projecte s’utilitzarà la tècnica de transferèn-

cia de color per a modificar el color de parts concretes i
diferenciades d’una imatge, concretament peces de roba,
però en lloc d’obtenir la distribució de colors d’una imat-
ge origen utilitzarem un sol color, el que es desitgi apli-
car, i la imatge objectiu serà únicament una part de la
imatge original, corresponent a la peça de vestir o part
d’aquesta que s’hagi seleccionat. Per tant, en primer lloc
necessitarem trobar un mètode de segmentació d’imatges
per a obtenir la part de roba determinada i diferenciar-la
de la resta d’elements de la imatge. Un cop es tingui
l’element de la imatge seleccionat i un color desitjat, ja
serà possible aplicar l’algorisme de transferència de color
i substituir el color actual de l’element pel nou color esco-
llit, mantenint la textura i la il·luminació originals
d’aquest, com poden ser arrugues, ombres, zones amb
més lluminositat, etc.

OpenCV és una gran llibreria centrada principalment
en el processament d’imatges en temps real, de manera
que ens serà de gran ajuda al llarg de tot el procés, tant a
l’hora de segmentar la imatge com al moment d’aplicar la
transferència de color.

Per tal de dur a terme l’explicació de la metodologia
que s’ha seguit per a aconseguir els objectius del projecte
la dividirem en els quatre blocs ens els que es divideix
aquest: segmentació, transferència de color, comprovació
de l’harmonia de color i disseny de la interfície.

4.1 Segmentació

En primer lloc, necessitem trobar un algorisme de
segmentació que ens permeti obtenir la màscara de la

peça o part de roba de la imatge a partir d’un sol punt
d’aquesta. Doncs bé, l’algorisme floodfill [2] que ens pro-
porciona la llibreria d’OpenCV [4], fa possible exactament
el que necessitem. Aquest algorisme determina els píxels
de la imatge que són similiars a un píxel origen o llavor
definit, i estan connectats a aquest, i els pinta d’un mateix
color. Aquesta relació de semblança es defineix a través
del valors RGB (o d’escala de grisos) dels píxels tenint en
compte un llindar especificat com a paràmetre. És a dir, la
funció obté el valor RGB del píxel origen i el compara
amb els seus píxels veïns i veïns d’aquests progressiva-
ment per a determinar si són similars i pertanyen a la
mateixa regió connectada de la imatge. La definició de la
funció i els dels seus paràmetres la podem trobar a
l’apèndix.

En el nostre cas, els paràmetres que més ens interessen
són els que determinen el llindar de semblança entre
píxels. Inicialment es van establir uns valors fixes, però es
va veure que no funcionaven correctament per a totes les
imatges, ja que cada imatge té una distribució de colors
diferent i necessita uns llindars específics. D’aquesta ma-
nera, es va decidir que aquests dos paràmetres serien
ajustables per l’usuari a través de la interfície de
l’aplicació per a trobar els valors adequats per a cada
imatge, com proposa Samarth Brahmbhatt [3].

Per altra banda, el píxel llavor es fixarà a través d’un
sol clic sobre la imatge original. A més, ens interessa que
els dos flags disponibles de la funció estiguin activats, el
primer (FLOODFILL_FIXED_RANGE) perquè volem
comparar cada píxel respecte la llavor que hem fixat, i el
segon (FLOODFILL_MASK_ONLY) perquè només ens
interessa obtenir la màscara de la peça de roba segmenta-
da per posteriorment utilitzar-la per modificar-ne el color,
i no fer-ho a través de la pròpia funció, ja que d’aquesta
manera no es mantindria la il·luminació i textura de la
roba.

La funció retorna un valor enter, equivalent al nombre
de píxels considerats de la mateixa regió, però no ens serà
de cap ajuda i no l’utilitzarem.

4.1.1 Post-procés

Un cop vistos els resultats que oferia aquest algorisme,
es va veure que presentava una sèrie de problemes:

El primer d’ells es dóna quan la peça de roba conté lle-
tres o altres tipus d’estampats que creen espais buits (fo-
rats) corresponents a parts de la mateixa peça de roba.
Aquestes regions no són segmentades ja que no formen
part de píxels veïns connectats al píxel d’origen, a no ser
que es seleccioni un punt origen per cada un d’ells. Per
exemple, si es vol segmentar una samarreta que tingui
una lletra ‘O’ d’un color diferent al d’aquesta, l’espai
interior de la lletra no es considerarà.

El segon problema es va trobar al treballar amb imat-
ges on la peça de roba contenia diferents elements del
mateix color però que no es trobaven connectats, com per
exemple samarretes amb ratlles alternades de dos colors o
amb lletres del mateix color però que es trobaven separa-
des. Per tal de segmentar aquests elements, hauríem de

 Febrer de 2015, Escola d’Enginyeria (UAB)

SANTI ESTRADA FITÉ 3

seleccionar-los per separat (un punt origen per cada un
d’ells), però seria interessant trobar un mètode que ens
permetés segmentar-los tots a la vegada al seleccionar-ne
un de sol.

L’últim defecte que es va identificar va ser que, en al-
guns casos, es segmentaven parts de pell de la imatge per
semblança de color amb la part de roba seleccionada.

Per tal de solucionar aquests tres problemes es van in-
troduir tres noves funcionalitats, no plantejades inicial-
ment, a utilitzar de forma opcional (quan sigui necessari)
un cop aplicada la funció floodfill.

La primera consisteix en reomplir els possibles espais
buits (forats) de la peça de roba del mateix color que
aquesta. La segona opció, la qual s’ha anomenat “color
global”, permet incloure elements de la imatge del mateix
color que l’element seleccionat i segmentat inicialment
que no es trobin connectats a aquest. La última funcionali-
tat consisteix en un senzill detector de pell per a eliminar
de la màscara les parts de pell que s’hagin pogut confon-
dre amb la roba.

Aquestes tres opcions podran ser activades o desacti-
vades a través de la interfície de l’aplicació, com veurem
més endavant. A continuació n’explicarem el seu funcio-
nament més detalladament.

4.1.1.1 Reomplir buits

Per a la primera opció, la de reomplir els forats de
l’element del mateix color que aquest, en primer lloc ne-
cessitem que la màscara passi a ser de la peça de roba
sencera, incloent les lletres o dibuixos que pugui contenir.
Per tal d’aconseguir-ho, fem ús de les funcions findCon-
tours i drawContours [4] de la llibreria d’OpenCV. Les
definicions d’aquestes funcions també les podem trobar a
l’apèndix.

Primer necessitem trobar els contorns externs de la pe-
ça de roba. Per a fer-ho, utilitzem la funció findContours,
on la imatge d’entrada serà la màscara obtinguda després
d’aplicar l’algorisme floodfill.

Un cop tenim els contorns externs de la peça emma-
gatzemats, procedim a omplir-ne el seu interior a través
de la funció drawContours [4]. Aquesta funció permet
dibuixar els contorns trobats mitjançant la funció anterior,
però si s’especifica un paràmetre determinat podem pin-
tar l’espai interior delimitat per aquests contorns. Aquest
paràmetre és el que determina la grossor dels contorns
que es volen dibuixar, però si es defineix com un valor
negatiu el que fa és exactament el que necessitem, omplir
tot l’interior dels contorns.

 (a) (b) (c)

Figura 1: Opció de reomplir forats. (a) Imatge original. (b) Màscara
obtinguda després d’aplicar l’algorisme floodfill. (c) Màscara obtin-

guda després d’aplicar les funcions findContours i drawContours.

Com podem veure a la Figura 1(c), aconseguim la màs-
cara de la samarreta sencera, incloent-ne tot el seu interi-
or, mentre que amb l’algorisme floodfill no podríem obte-
nir la màscara dels forats de les lletres, com veiem a la
Figura 1(b), excepte si es seleccionessin individualment
(un punt origen per a cada forat).

Doncs bé, ara que ja tenim la màscara de la samarreta
sencera, passem a aplicar la funció d’OpenCV anomenada
inRange [4] per a trobar elements interns de la samarreta
amb color semblant al d’aquesta i crear la màscara defini-
tiva. Aquesta funció simplement agafa una imatge
d’entrada i n’extreu una màscara amb els píxels que es
troben dins d’un rang de valors que se li especifica. La
definició de la funció és la següent:

void	
 inRange(InputArray	
 src,	
 InputArray	
 lowerb,	
 In-­‐

putArray	
 upperb,	
 OutputArray	
 dst)	

• src – imatge d’entrada.
• lowerb – límit inferior del valor del píxels.
• upperb – límit superior del valor dels píxels.
• dst – imatge de sortida de la mateixa mida que la

d’entrada i de tipus CV_8U (binària).

La imatge d’entrada serà només la part de la imatge
original corresponent a la màscara calculada per la funció
drawContours, en aquest cas tota la samarreta, la qual
primer convertim de l’espai RGB a l’espai HSV [5] (Hue,
Saturation, Value) mitjançant la funció cvtColor [4]
d’OpenCV, ja que així podrem diferenciar millor els co-
lors establint un rang més precís a través dels paràmetres
lowerb i upperb, obtenint millors resultats. Això és degut al
fet que l’espai HSV, al contrari que l’espai RGB, separa el
color (hue) de la intensitat dels píxels. Les operacions que
es duen a terme a l’hora de realitzar la conversió
d’aquests espais les podem trobar a [6].

Ara bé, la qüestió que sorgeix és com obtenir els límits
que hauria de tenir aquest rang de valors. Per a calcular-
los utilitzem la part de la imatge original corresponent a
la màscara calculada inicialment per l’algorisme floodfill,
sense les lletres ni els forats creats per aquestes (Figura
1(b)). Llavors la convertim també a l’espai HSV i en divi-
dim els tres canals (h, s, v) a través de la funció split [4]
d’OpenCV, la qual ens crea tres vectors, i per a cada un
d’ells busquem quin és el valor mínim i màxim a través
de la funció minMaxLoc [4], també d’OpenCV. D’aquesta
manera, obtindrem els sis valors que necessitem (tres per
l’escalar que indica el límit inferior del rang i tres més pel
que indica el límit superior) per a buscar elements interi-
ors de la samarreta i podrem aplicar la funció inRange de
la següent forma:

inRange(src_hsv,	
 Scalar(low_h,	
 low_s,	
 low_v),	
 Sca-­‐

lar(high_h,	
 high_s,	
 high_v),	
 mask)	

En el nostre cas, després d’aplicar aquesta funció ob-
tindrem la màscara de totes les parts de la samarreta que
tinguin el color vermellós original, incloent els forats de
les lletres, com podem veure a la Figura 2.

4 EE/UAB TFG INFORMÀTICA: EMPROVADOR VIRTUAL. APLICACIÓ PER A CANVIAR ELS COLORS DE LA ROBA EN IMATGES

Figura 2: Màscara obtinguda mitjançant la funció inRange amb
l’opció de reomplir forats.

És important recordar que la imatge d’entrada utilit-

zada per la funció inRange és la part de la imatge original
corresponent a la màscara de la samarreta sencera (Figura
1(c)), però a l’hora de calcular els valors dels paràmetres
lowerb i upperb s’utilitza la part de la imatge corresponent
a la màscara calculada en primer lloc per l’algorisme flo-
odfill (Figura 1(b)), ja que sinó es tindria també en compte
els valors dels píxels pertanyents a les lletres a l’hora de
calcular el valor mínim i màxim de cada canal.

4.1.1.2 Color global

Pel que fa a la segona opció introduïda, la del color
global, simplement necessitem utilitzar la funció inRange
però sobre tota la imatge original, també convertida a
l’espai HSV, calculant el rang de valors a tenir en compte
de la mateixa manera que abans. Per tant, no necessitem
l’ajuda de les funcions findContours i drawContours.

 (a) (b) (c)

Figura 3: Opció de color global. (a) Imatge original. (b) Màscara
obtinguda després d’aplicar l’algorisme floodfill. (c) Màscara obtin-

guda amb la funció inRange amb l’opció de color global.

A la Figura 3(b) podem veure la màscara obtinguda
després d’utilitzar l’algorisme floodfill utilitzant un punt
de l’interior de la lletra ‘G’ com a origen. A l’activar
aquesta opció, la funció inRange busca altres elements de
la imatge de color semblant i els incorpora a la màscara,
com veiem a la Figura 3(c), de manera que ens evita haver
de seleccionar cada lletra per separat. També ens és espe-
cialment útil pel cas de samarretes amb ratlles de dos
colors alternats, on simplement hauríem de seleccionar-ne
una i automàticament es segmentaria la resta de ratlles
del mateix color.

Ara bé, aquesta opció té un problema, i és que si hi ha-
guessin altres elements a la imatge del mateix color que
l’element seleccionat i no formessin part de la samarreta
(fons, pantalons, cabell, etc.) o inclús altres elements de la

samarreta que no es volguessin tenir en compte, també
serien considerats, ja que la funció inRange s’aplica a tota
la imatge, de manera que aquesta funcionalitat està limi-
tada a determinades imatges.

4.1.1.3 Detector de pell
Per últim, la tercera funcionalitat incorporada a l’hora

de crear la màscara de l’element seleccionat es tracta d’un
detector de pell per tal d’eliminar zones de pell que
s’hagin pogut escapar a l’aplicar l’algorisme floodfill per
semblança de color amb la roba seleccionada. No es tracta
d’un detector complex, però s’ha vist que funciona correc-
tament per a la gran majoria d’imatges amb les que treba-
llem.

El funcionament d’aquest detector es basa en utilitzar
novament la funció inRange, convertint de la mateixa
manera la imatge a l’espai HSV i utilitzant el rang de
valors que es mostra a continuació:

inRange(src,	
 Scalar(3,	
 48,	
 80),	
 Scalar(15,	
 170,	
 255),	
 dst)	

Uns valors semblants es van trobar inicialment a [7],

però després de vàries proves es va veure que no funcio-
naven del tot bé per a alguns pocs casos, de manera que
es van modificar una mica per a poder-se adaptar a
aquests casos de la millor manera possible, els quals es
tractaven d’imatges amb colors vermellosos i taronges
que es confonien amb alguns colors de pell depenent de
la il·luminació. Aquesta és una limitació òbvia d’aquesta
funcionalitat, i és que s’està tractant un problema de de-
tecció de pell com un problema de detecció de color, de
manera que els valors HSV definits com a límits del rang
podran no servir sota diferents condicions d’il·luminació.
Es va pensar en la possibilitat d’ajustar aquests valors a
través de la interfície de l’aplicació, però com que funcio-
nen adequadament per a la majoria de casos s’ha decidit
no dur-ho a terme. Tot i així, en una aplicació real caldria
implementar un detector de pell més robust que funcio-
nés per a tots els casos. Una manera de fer-ho podria
consistir en implementar un mecanisme de detecció de
cares com l’algorisme Viola-Jones [11] per a determinar el
color de la cara i posteriorment utilitzar aquest model per
a detectar la resta de pell del cos.

Una vegada tenim la màscara de les parts de pell de-
tectades, simplement la restem a la màscara actual i ja
tenim la màscara final.

 (a) (b) (c)

Figura 4: Detector de pell. (a) Imatge original. (b) Màscara obtinguda
després d’aplicar l’algorisme floodfill. (c) Màscara obtinguda després

d’aplicar el detector de pell.

SANTI ESTRADA FITÉ 5

A la Figura 4(b) podem veure com s’ha segmentat al-
gunes parts del coll i els braços, així que apliquem el de-
tector de pell i eliminem les zones no desitjades de la
màscara, obtenint el que veiem a la Figura 4(c). En aques-
ta imatge el resultat es podria dir que és perfecte, però en
l’apartat de resultats veurem casos on el detector de pell
no es comporta tan bé.

4.2 Transferència de color
Un cop obtenim la màscara definitiva de l’element de

la imatge seleccionat, ja podem aplicar la transmissió de
color. L’algorisme que s’ha utilitzat per a tal finalitat es
tracta del proposat per Reinhard et al. [1]. Aquest algo-
risme es basa en transferir la distribució de colors d'una
imatge d'entrada a una altra de diferent, a través de l'ús
de la mitjana i la desviació estàndard de les distribucions
de les dues imatges. El mètode proposat però, fa ús de
l’espai de color Lαβ, mentre que nosaltres utilitzarem el
CIELAB, més estrictament anomenat CIE 1976 L*a*b [5],
ja que els dos espais són molt semblants però ens serà
més fàcil treballar amb el segon a l’hora de realitzar con-
versions entre espais. El motiu pel qual s’utilitza aquest
espai de color és principalment perquè es tracta d’un
espai perceptualment uniforme, el que implica que la
distància euclidiana entre dos colors a l’espai es correlaci-
ona amb la diferència perceptual o visual d’aquests, de
manera que un canvi determinat en un valor de color,
produeix un canvi aproximadament de la mateixa impor-
tància visual en aquest color. A l’espai RGB, la majoria
dels píxels tenen un coeficient de correlació elevat entre
les seves components, de manera que si volem canviar un
píxel de manera coherent, hem de modificar els valors de
cada canal al mateix temps. Per tant, el que volem és un
espai de color ortogonal amb la mínima correlació possi-
ble entre els seus canals per a poder treballar amb cadas-
cun d’ells per separat.

Així doncs, l’algorisme de Reinhard et al. es serveix
dels següents passos per tal d’aconseguir transferir la
distribució de colors d’una imatge a una altra:

1. Agafar una imatge origen i una imatge objectiu. La

imatge origen conté la distribució de colors que vo-
lem transferir a la imatge objectiu.

2. Convertir les dues imatges a l’espai de color Lab
(CIELAB).

3. Separar els tres canals L*, a* i b* per les dues imat-
ges.

4. Calcular la mitjana i desviació estàndard de cadas-
cun dels canals per les dues imatges.

5. Restar la mitjana dels canals de la imatge objectiu als
valors d’aquests.

L = L – 𝜇!!

𝑎 = 𝑎 – 𝜇!! (1)
𝑏 = 𝑏 – 𝜇!!

 on 𝜇!! és la mitja del canal c de la imatge objectiu.
6. Multiplicar els canals de la imatge objectiu resultants

per la divisió entre la desviació estàndard dels canals

de la imatge objectiu i la desviació estàndard dels
canals de la imatge origen.

L = L ∗ !!
!

!!!

 𝑎 = 𝑎 ∗ !!
!

!!!
 (2)

 𝑏 = 𝑏 ∗ !!
!

!!!

on 𝜎!! és la desviació del canal c de la imatge objectiu
i 𝜎!! la desviació del canal c de la imatge origen.

7. Sumar-hi la mitjana dels canals de la imatge origen.
L = L + 𝜇!!

 𝑎 = 𝑎 + 𝜇!! (3)
 𝑏 = 𝑏 + 𝜇!!

on 𝜇!!és la mitjana del canal c de la imatge origen.
8. Combinar els canals resultants.
9. Convertir la imatge resultant a l’espai RGB de nou.

En el nostre cas, però, no tenim una imatge d’origen,

sinó un sol color que volem transferir a la imatge objectiu,
la qual no és la imatge sencera sinó la part corresponent a
l’element de roba seleccionat projectat sobre un fons ne-
gre. Aquesta part de la imatge la podem obtenir fàcilment
a través de la màscara calculada anteriorment mitjançant
la funció copyTo [4] d’OpenCV, la qual crea una còpia de
la imatge d’entrada únicament de la part corresponent a
la màscara que se li passi com a paràmetre (opcional). Per
tant, al no tenir la distribució de colors d’una imatge
d’entrada, la mitjana de cada canal d’origen passa a ser
directament el valor corresponent del color que volem
transferir en l’espai CIELAB, mentre que la desviació
estàndard fem que sigui la mateixa que la de l’objectiu.
D’aquesta manera, la divisió comentada en el pas 6 passa
a valdre 1 i, per tant, al fer la multiplicació esmentada ens
quedem amb els mateixos valors en els tres canals. Així,
en el nostre cas, ignorem el pas 6 i només tenim en comp-
te la mitjana (restem la de l’objectiu i sumem la d’origen,
la qual hem quedat que equivalia al valor en l’espai CIE-
LAB del color que volem transferir).

Per tal de convertir la imatge de l’espai RGB a l’espai
CIELAB i viceversa utilitzem la funció d’OpenCV ano-
menada cvtColor [4] com hem fet abans amb l’espai HSV,
especificant-li la imatge d’entrada i de sortida i el tipus de
conversió, en aquest cas CV_BGR2LAB o CV_LAB2BGR
(OpenCV utilitza els canals RGB en ordre invers, BGR).
Les operacions que es duen a terme per tal de realitzar la
conversió entre aquests espais les podem trobar a [6].
Aquestes operacions s’han implementat en funcions espe-
cífiques per tal de convertir el valor RGB del color que
volem aplicar a la roba seleccionada al seu valor corres-
ponent en l’espai CIELAB.

Per altra banda, per a separar i combinar els tres canals
d’una imatge utilitzem les funcions split i merge [4], les
quals ja han aparegut abans.

El resultat que obtenim després d’aplicar aquest algo-
risme és la part de roba repintada amb el nou color, de
manera que l’únic que ens fa falta és projectar-la a sobre
de la imatge original per tal d’obtenir la imatge sencera
final, fent ús novament de la funció copyTo.

6 EE/UAB TFG INFORMÀTICA: EMPROVADOR VIRTUAL. APLICACIÓ PER A CANVIAR ELS COLORS DE LA ROBA EN IMATGES

4.3 Harmonia de color
Finalment, l’última funcionalitat que s’ha incorporat al

projecte es basa en la comprovació de l’harmonia dels
colors dels elements seleccionats. Un conjunt de colors
són harmònics quan són visualment atractius. Per tal de
determinar si la combinació de colors actuals dels ele-
ments es tracta d’una combinació harmònica, ens hem
basat en el mètode proposat per D. Cohen-Or et al. [8], el
qual defineix set models o plantilles, les quals podem
veure a la Figura 5, per a buscar la que millor s’adapta als
colors d’una imatge i corregir-ne la seva distribució de
colors en el cas que no sigui harmònica. Les mides preci-
ses dels sectors de cada plantilla les podem trobar a
l’apèndix.

Figura 5: Plantilles harmòniques a la roda de valors hue.
Els colors que es troben dins de les zones grises es consideren har-

mònics. Les plantilles poden ser rotades per un angle arbitrari.

Segons aquest mètode, per tal de determinar la millor
plantilla per a una imatge determinada, el primer que es
fa és convertir-la a l’espai HSV. Un cop tenim la imatge
convertida, el següent pas a dur a terme consisteix en
calcular el sumatori de les distàncies de cada píxel de la
imatge respecte la plantilla Tm, la qual juntament amb una
orientació associada α defineix un esquema d’harmonia,
denotat per (m, α). Donat un esquema d’harmonia (m, α),
es defineix una funció F(X,(m,α)), la qual mesura
l’harmonia de la imatge X respecte l’esquema (m, α):

𝐹 𝑋, 𝑚,𝛼 = ||𝐻(𝑝)
!"#

− 𝐸!! ! 𝑝 || ∗ 𝑆 𝑝

on H(p) i S(p) denoten els valors hue i saturation del pí-

xel p, i ETm (α) (p) correspon a la frontera del sector de la
plantilla Tm amb orientació α més propera al valor H(p).
Els valors de hue que resideixen a l’interior dels sectors de
la plantilla Tm es considera que tenen una distància zero
respecte la plantilla, que és el que busquem.

Llavors, donada una imatge X i una plantilla Tm, es
busca el valor de l’angle α que minimitza l’expressió an-
terior (Eq. 1), el qual definirà el millor esquema
d’harmonia de la imatge X respecte la plantilla Tm:

𝑀 𝑋,𝑇! = 𝑚,𝛼! 𝑠. 𝑡 𝛼! = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 𝑋, 𝑚,𝛼 (2)
 𝛼

D’aquesta manera, el millor esquema d’harmonia B(X)
és determinat minimitzant la funció F per totes les planti-
lles possibles:

𝐵 𝑋 = 𝑚!,𝛼! 𝑠. 𝑡 𝑚! = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 𝑋,𝑀 𝑋,𝑇! (3)
 𝑚

Per tant, el que fem és buscar el mínim valor de F per a

cada orientació de cada una de les set plantilles i llavors
determinar el mínim d’aquests set valors obtinguts. Si
aquest valor final és zero, direm que la combinació de
colors és harmònica, ja que voldrà dir que s’adapta per-
fectament a alguna de les set plantilles.

Aquestes fórmules, però, estan destinades a buscar
l’harmonia en imatges senceres, considerant-ne tots els
píxels, mentre que nosaltres només necessitem observar
cinc o menys valors, corresponents als colors dels ele-
ments seleccionats a través de l’aplicació (se’n permet un
màxim de cinc). D’aquesta manera, si aquests cinc o
menys colors s’adapten perfectament a alguna de les set
plantilles utilitzant un angle de rotació determinat, direm
que la combinació d’aquests colors és harmònica. Quan
diem que els colors s’adapten perfectament a alguna de
les plantilles ens referim a que els seus valors estan con-
tinguts a les regions grises d’aquesta.

En la nostra aplicació, el que es fa és comprovar
l’harmonia dels colors dels elements seleccionats cada
vegada que s’afegeix un nou element (agafant com a valor
la mitjana dels colors d’aquest) o es modifica el color de
qualsevol d’ells, excepte en el cas que només tinguem un
sol element, ja que sempre s’adaptarà a totes les plantilles.
Llavors, es mostra un missatge a través de la interfície de
l’aplicació informant sobre si la combinació de colors
actual és harmònica o no, com veurem a continuació.

4.4 Interfície gràfica
Per últim, ens queda parlar sobre la interfície gràfica

d’usuari de l’aplicació. L’eina utilitzada per a la seva
creació ha estat Windows Forms [9], la qual es troba inte-
grada al Visual Studio. Es tracta d’una interfície de pro-
gramació d’aplicacions gràfiques que s’inclou com a part
del Microsoft .NET Framework i proporciona accés als
elements de la interfície de Microsoft Windows nativa, de
manera que ens ofereix les eines necessàries per a cons-
truir la interfície de l’aplicació desitjada de manera ràpi-
da, simple, i amb els controls típics. Per tal d’aconseguir
un disseny adequat i agradable a la vista de l’usuari i
evitar males pràctiques, s’han seguit les pautes proposa-
des per J. Spolsky [10].

Per a explicar totes les seves funcionalitats i opcions
que permet, ens basarem de l’ajuda de captures per tal
que quedi de forma més clara i ordenada.

(1)

SANTI ESTRADA FITÉ 7

4.4.1 Carregar imatge
A la Figura 6(a) podem veure el que seria la primera

finestra que es mostraria a l’obrir l’aplicació. El logotip de
la part superior s’ha dissenyat a través de l’eina Photoshop
CS6 per tal de donar-li un toc d’originalitat. L’única opció
disponible que tenim és la de carregar una imatge de disc.
A la Figura 6(b) podem observar com la imatge carregada
es mostra en el seu espai corresponent i ara ja tenim dis-
ponible l’opció de seleccionar un nou element de la imat-
ge. Un cop premem aquest botó, el cursor es convertirà en
una creu i podrem seleccionar un punt de la imatge, el
qual correspondrà al punt d’origen de l’algorisme de
segmentació. Es calcula la correspondència d’aquest punt
a la imatge original, ja que les coordenades del punt en la
imatge mostrada no coincidiran amb les del punt en la
imatge original, excepte en el cas que tinguin la mateixa
mida.

 (a) (b)
Figura 6: Pantalla inicial de l’aplicació. (a) Sense imatge carregada.

(b) Amb imatge carregada.

4.4.2 Seleccionar un nou element
Un cop cliquem sobre un punt de la imatge, s’aplicarà

l’algorisme floodfill, es crearà la màscara de l’element se-
leccionat tenint en compte els valors dels trackbars (tole-
rància superior i inferior de la diferència de color) i els
checkboxs (opcions de reomplir forats, color global i elimi-
nar zones de pell), i es canviarà el color de l’element uti-
litzant un color aleatori, controlant que no s’assembli a
l’original, per a mostrar una previsualització del resultat i
poder veure com varia la màscara depenent dels paràme-
tres, com podem observar a la Figura 7(a). Cada vegada
que es modifiqui un valor dels ajustaments es crearà la
nova màscara amb els nous paràmetres i s’aplicarà el
mateix color per veure el nou resultat i poder trobar els
millors paràmetres per a la imatge determinada. Un cop
premem el botó de guardar l’element, es restaurarà el
color original d’aquest i se’n guardarà la màscara calcula-
da per a poder aplicar el color desitjat posteriorment. Si
l’usuari desitja cancel·lar la operació, simplement ha de
clicar la creueta i s’eliminarà l’element. A més, podem
observar com el color del botó quadrat de l’esquerra cor-
respon al color original de la samarreta (es calcula la mit-
jana dels colors de la part de la imatge corresponent a la
màscara creada). A la Figura 7(b) podem veure com efec-
tivament es torna al color original de la samarreta i
l’element 1 queda “bloquejat”. Si en aquest moment mo-
difiquem algun dels ajustaments no es produirà cap efec-
te, simplement es tindran en compte per al següent ele-

ment que es seleccioni. També podem observar com ara
l’opció d’eliminar els elements seleccionats està disponi-
ble, la qual eliminarà tots els elements seleccionats fins al
moment i restaurarà la imatge original si aquesta s’ha
modificat, obtenint novament el que veiem a la Figura
6(b). L’opció de restaurar la imatge original sense elimi-
nar els elements seleccionats (màscares) i la de guardar la
imatge resultant encara no estan disponibles ja que no
s’ha modificat la imatge.

 (a) (b)
Figura 7: Selecció del primer element. (a) Previsualització del resul-

tat. (b) Primer element guardat.

A la Figura 8 podem veure de forma més clara els pa-
ràmetres de segmentació ajustables.

Figura 8: Paràmetres de segmentació.

4.4.3 Canvi de color
A la Figura 9(a) tenim la paleta de colors que s’obre al

prémer el botó quadrat del color. Al seleccionar un color i
clicar l’opció d’acceptar, entrarà en joc l’algorisme de
transferència de color i es substituirà el color actual de
l’element pel color seleccionat utilitzant la màscara guar-
dada corresponent. A la Figura 9(b) veiem com quedaria
el resultat utilitzant un verd fluix i l’opció de reomplir els
forats de les lletres de la samarreta. Podem modificar el
color tants cops com es desitgi, i el procediment és molt
ràpid. Ara observem que les opcions de guardar el resul-
tat i restaurar la imatge original ja estan disponibles, ja
que s’han produït canvis. D’aquesta manera, podem apli-
car el mateix procediment pel següent element, i així fins
a arribar a un màxim de cinc elements seleccionats, els
quals s’han trobat suficients, ja que en general el nombre
màxim de colors presents a la roba d’una persona no
supera aquesta quantitat, tot i que podria donar-se el cas.
A més, no es permet la selecció d’un punt de la imatge
que ja pertanyi a la màscara d’algun element existent.

8 EE/UAB TFG INFORMÀTICA: EMPROVADOR VIRTUAL. APLICACIÓ PER A CANVIAR ELS COLORS DE LA ROBA EN IMATGES

 (a) (b)

Figura 9: Canvi de color d’un element. (a) Paleta de colors.
(b) Primer element modificat de color.

4.4.4 Comprovació de l’harmonia dels colors
A la Figura 10(a) podem veure el màxim d’elements se-

leccionats, guardats i canviats de color. En qualsevol
moment podem canviar el color de qualsevol d’ells. A la
Figura 10(b) veiem el resultat de prémer el botó de restau-
rar la imatge original. Com es pot apreciar, els elements
es conserven i es torna al seu color original, i les opcions
de guardar el resultat i restaurar la imatge original tornen
a desactivar-se.

 (a) (b)

Figura 10: Màxim d’elements seleccionats. (a) Cinc elements mo-
dificats de color. (b) Restaurar imatge original.

A l’afegir un element que no sigui el primer ja es com-

prova l’harmonia del seu color respecte al dels altres ele-
ments existents, a l’igual que quan es modifica el color
d’algun d’ells. El resultat d’aquesta comprovació el po-
dem veure a les Figures 10(a) i 10(b), notificat al marge
dret inferior de la interfície, a sota dels elements seleccio-
nats. A la Figura 11(a) i 11(b) podem veure més clarament
el missatge que es mostra en cada cas, utilitzant cinc co-
lors escollits a l’atzar.

 (a) (b)

Figura 11: Comprovació de l’harmonia de colors dels elements
seleccionats. (a) Cinc colors harmònics. (b) Cinc colors no harmònics.

5 RESULTATS
A continuació es mostren uns quants resultats obtin-

guts amb vàries imatges de diferents classes, agrupades
per categories per a facilitar-ne l’estudi i comparació.

5.1 Samarretes llises
En primer lloc mostrem resultats obtinguts per a imat-

ges amb samarretes llises, per les quals no és necessari
utilitzar la funcionalitat de reomplir buits ni la del color
global, simplement aplicant la funció floodfill.

Figura 12: Primer grup de resultats. Samarretes llises simples.

Com podem observar a la Figura 12, la fila superior
correspon a les imatges originals i la fila inferior conté les
imatges resultants corresponents després d’aplicar el
canvi de color. Ens adonem fàcilment que els resultats són
molt bons i es manté la il·luminació de la roba. A més, no
veiem cap rastre de pell que s’hagi escapat. És important
destacar el bon resultat de la última imatge, ja que el color
de la samarreta és molt semblant al del fons.

Figura 13: Segon grup de resultats. Samarretes llises més sofisti-
cades.

A la Figura 13 veiem imatges amb una aparença més

real, amb més ombres i textura, mentre que a la Figura 12
tenim samarretes més simples, amb quasi la mateixa
il·luminació en totes elles. Tot i així, observem que els
resultats són igual de bons, i es respecta la textura i les
zones més i menys il·luminades de les samarretes.

SANTI ESTRADA FITÉ 9

5.2 Samarretes estampades

5.2.1 Opció de reomplir forats
A la Figura 14 ja trobem samarretes amb lletres o di-

buixos, de manera que activem l’opció de reomplir els
buits causats per aquests estampats pertanyents a la sa-
marreta. Veiem com els forats de les lletres en la primera,
tercera i quarta imatge queden perfectament modificats
de color, així com l’espai interior del requadre de la sego-
na imatge. A més, veiem com a la última imatge també
s’ha canviat el color dels pantalons mantenint-ne la
il·luminació original. En cap dels quatre casos s’han esca-
pat franges de pell, ja que els colors de les samarretes no
s’assemblen als de la pell.

Figura 14: Tercer grup de resultats. Samarretes estampades amb
opció de reomplir forats.

5.2.2 Opció de color global
A la Figura 15 veiem resultats d’aplicar l’opció del co-

lor global per a seleccionar totes les lletres de la samarreta
del mateix color a través d’un sol clic sobre una d’elles.
Com podem observar, en els dos primers casos el resultat
és adequat. En canvi, en les altres dues imatges, veiem
que s’agafen també parts dels pantalons i una mica del
cabell, ja que els colors són molt semblants. Així, podem
comprovar els límits d’aquesta funcionalitat. El que
s’hauria de fer en aquests casos és seleccionar cada lletra
individualment, però recordem que només podem selec-
cionar un màxim de cinc elements.

Figura 15: Quart grup de resultats. Samarretes estampades sim-
ples amb opció de color global.

A la Figura 16 es mostren més resultats d’aplicar
l’opció de color global, però amb imatges més sofistica-
des. En el cas de les samarretes amb ratlles, simplement
se’n selecciona una i s’activa l’opció del color global per a
considerar-ne la resta, i el mateix amb les samarretes amb
requadres. En aquest cas els resultats són molt bons, però
si hi haguessin altres elements de la imatge amb color
semblant que no fossin ni ratlles ni requadres de la sa-
marreta tindríem el mateix problema que abans, també es
segmentarien. És el cas de la quarta imatge, on es selecci-
ona una de les dues bandes negres de la dessuadora però,
per semblança de color, també es segmenta part del cabell
i ombres produïdes per la caputxa.

Figura 16: Cinquè grup de resultats. Samarretes complexes amb
opció de color global.

5.2.3 Imatges amb varis elements
A la Figura 17 tenim més resultats diferents per acabar

de completar aquesta secció. Es veu com a totes les imat-
ges s’ha modificat més d’un element de la roba, obtenint
uns resultats satisfactoris. El primer cas és destacable ja
que la il·luminació és força peculiar i es pot observar com
es manté perfectament a l’aplicar el canvi de color. Per a
la última imatge s’ha activat la opció de color global a
l’hora de seleccionar una de les bambes per a aplicar el
mateix color per a les dues, però si es prefereix es pot no
activar aquesta opció i aplicar un color diferent a cada
bamba.

Figura 17: Sisè grup de resultats. Casos amb varis elements.

10 EE/UAB TFG INFORMÀTICA: EMPROVADOR VIRTUAL. APLICACIÓ PER A CANVIAR ELS COLORS DE LA ROBA EN IMATGES

5.3 Detector de pell
Pel que fa al detector de pell, com hem dit abans acon-

segueix bons resultats per a la majoria d’imatges, però hi
ha alguns casos excepcionals en els que no es comporta
del tot bé. A la Figura 18 veiem, a la primera fila, les
imatges originals, a la segona fila tenim els resultats
d’aplicar el canvi de color sense activar el detector de pell,
on veiem que es segmenten zones de pell, i a la última fila
tenim els resultats després d’activar l’eliminació de pell.
A les dues primeres imatges veiem que les zones de pell
inicialment detectades són completament eliminades. No
obstant, a les altres dues imatges observem que no s’han
eliminat algunes franges de pell, les quals formen part
d’ombres amb un color vermellós fosc, de manera que els
seus valors no es troben dins el rang de la funció inRange i
el detector no els considera. D’aquesta manera, veiem
també els límits d’aquesta funcionalitat al tractar-la com
un problema de segmentació de color.

Figura 18: Setè grup de resultats. Eliminació de pell.

6 CONCLUSIONS
Arribats a aquest punt, es pot dir que s’han satisfet els

objectius proposats del projecte amb èxit tot i existir peti-
tes limitacions. En primer lloc, s’ha aconseguit segmentar
una o vàries peces o parts de roba determinades i diferen-
ciar-les del seu entorn. En segon lloc, s’ha trobat la mane-
ra de modificar el color d’aquests elements mantenint-ne
les propietats d’il·luminació i textura originals. Tercera-
ment, s’ha pogut comprovar l’harmonia de colors entre
els diferents elements seleccionats. Per últim, ha estat
possible acompanyar tot el procés d’una còmode i atracti-
va interfície gràfica d’usuari per a acabar de satisfer
l’objectiu global del projecte.

Per altra banda, s’han introduït noves funcionalitats no
plantejades inicialment per a fer el projecte més complet,
les quals, tot i presentar algunes limitacions, han demos-
trat ser de gran utilitat i obtenir bons resultats en la majo-
ria de casos.

A partir d’aquí, el següent pas consistiria en fer
l’aplicació més robusta al tipus d’imatges, és a dir, inten-
tar arreglar-ne de la millor manera possible les limitacions
actuals. Es podria buscar un mecanisme de segmentació
que funcionés correctament per a totes les imatges fent ús
dels mateixos paràmetres per a totes elles, i no haver
d’ajustar-los mitjançant la interfície de l’aplicació. A més,
a l’inici del projecte es va proposar fer proves amb dife-
rents algorismes de segmentació i de transmissió de color,
però es va veure que amb els primers que es van utilitzar
ja s’obtenien resultats prou bons, així que no se’n van
estudiar de nous. D’aquesta manera, estaria bé provar
altres algorismes i comparar els resultats obtinguts. Fi-
nalment, s’hauria d’implementar un detector de pell més
robust, utilitzant un mètode més sofisticat com el propo-
sat anteriorment, i no basat en la segmentació de color.

AGRAÏMENTS
M’agradaria donar les gràcies al tutor d’aquest treball,
Robert Benavente, per la seva ajuda i atenció al llarg de
tot el projecte. També voldria agrair al Ramón Baldrich i
l’Adrià Ciurana per donar-me un cop de mà en una de les
parts del projecte, la d’harmonia de color. Encara que no
acabés utilitzant el seu mètode proposat, em va servir
d’ajuda per a acabar d’entendre el concepte i els hi agra-
eixo el temps que em van dedicar.

BIBLIOGRAFIA
[1] E. Reinhard, M. Ashikhim, B. Gooch, and P.Shirley. Color Trans-

fer Between Images, IEEE Computer Graphics and Applications,
21(5):34-41, 2001.

[2] J. Elfring. Image Processing Using OpenCV, Embedded Motion
Control, University of Technology Einhoven, 2013.

[3] S. Brahmbhatt. Practical OpenCV, Chapter 7: Image Segmentati-
on and Histograms, 100-103, Apress, 2013.

[4] “OpenCV Documentation”. http://docs.opencv.org (Últim
accés el 10/02/2015).

[5] G. Wyszecki, W. S. Stiles. Color Science: Concepts and Methods,
Quantitative Data and Formulae, A Whiley-Interscience publica-
tion, 2nd Edition, 1982.

[6] “Color Conversion Algorithms”.
http://www.cs.rit.edu/~ncs/color/t_convert.html (Últim ac-
cés el 10/02/2015).

[7] “Skin Detection: A Step-by-Step exemple using Python and
OpenCV”. http://www.pyimagesearch.com/2014/08/18/skin-
detection-step-step-example-using-python-opencv/ (Últim accés el
10/02/2015).

[8] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y. Xu. Color
Harmonization, ACM SIGGRAPH 2006 Papers, 624-630, 2006.

[9] “Introducción a los formularios Windows Forms”.
https://msdn.microsoft.com/es-es/library/ms229601 (Últim
accés el 10/02/2015).

[10] J. Spolsky. User Interface For Programmers, Apress, 2001.
[11] P. Viola and M. J. Jones. Robust Real-Time Face Detection, Inter-

national Journal of Computer Vision, 57(2):137-154, 2004.

SANTI ESTRADA FITÉ 11

APÈNDIX

A1. DEFINICIÓ FUNCIÓ FLOODFILL
A continuació tenim la definició de la funció floodfill

d’OpenCV i tots els seus paràmetres:

 int	
 floodFill(InputOutputArray	
 image,	
 InputOutputAr-­‐
ray	
 mask,	
 Point	
 seedPoint,	
 Scalar	
 newVal,	
 Rect*	
 rect=0,	

Scalar	
 loDiff=Scalar(),	
 Scalar	
 upDiff=Scalar(),	

int	
 flags=4)	

• image – imatge d’entrada de 8 bits i 1 o 3 canals. És

modificada per l’algorisme ja que la regió segmentada
es pinta a sobre.

• mask – aquest paràmetre és opcional. Si s’especifica, la
màscara ha de ser inicialitzada com una imatge d’un
sol canal i de 2 píxels més ampla i 2 píxels més alta
que la imatge d’entrada. L’algorisme actualitza aques-
ta màscara (inicialment un fons negre) amb els píxels
repintats de la imatge original, de manera que un cop
aplicat obtindrem la màscara de la regió de la imatge
segmentada.

• seedPoint – punt origen, el qual es compara amb els
punts veïns.

• newVal – el valor nou dels píxels repintats, és a dir, el
nou color amb el qual es vol repintar la imatge
d’entrada.

• loDiff – màxima diferència inferior de color entre el
píxel sent actualment observat i un dels seus veïns. Dit
d’una altra manera, es tracta de la tolerància o llindar
inferior de color a l’hora de determinar la semblança
entre els píxels.

• upDiff – màxima diferència superior de color entre el
píxel sent actualment observat i un dels seus veïns.

• rect – paràmetre opcional de sortida establert per la
funció com el mínim rectangle que conté la regió seg-
mentada.

• flags – flags d’operació. S’especifica el tipus de con-
nectivitat, la qual determina quins píxels veïns són
considerats i que per defecte és 4, però pot ser 8. A
més, es poden especificar dos flags més:
§ FLOODFILL_FIXED_RANGE: Si s’activa, es con-

sidera la diferència entre el píxel actual i el píxel
llavor. Si no, es considera la diferència entre píxels
veïns.

§ FLOODFILL_MASK_ONLY: Si s’activa,
l’algorisme no té en compte el newVal i no repinta
la imatge d’entrada, únicament crea la màscara.

A2. DEFINICIÓ FUNCIÓ FINDCONTOURS
A continuació tenim la definició de la funció findCon-

tours d’OpenCV i tots els seus paràmetres:

void	
 findContours	
 (InputOutputArray	
 image,	
 OutputAr-­‐

rayOfArrays	
 contours,	
 OutputArray	
 hierarchy,	
 int	
 mode,	

int	
 method,	
 Point	
 offset=Point())	

• image - imatge d’entrada de 8 bits i un sol canal. Els

píxels amb valor diferent de zero són tractats com a 1’s
i els de valor zero es conserven com a 0’s, de manera

que la imatge és tractada com a binària i és modificada
marcant-ne els contorns trobats.

• contours – contorns detectats. Cadascun d’ells és em-
magatzemat com un vector de punts.

• hierarchy – vector de sortida opcional. Conté informa-
ció sobre la topologia de la imatge. Té tants elements
com nombre de contorns trobats. Especifica les relaci-
ons entre els contorns (pare, fill, veï, etc).

• mode – mode de cerca de contorns.
§ CV_RETR_EXTERNAL. Agafa només els contorns

externs de l’element.
§ CV_RETR_LIST. Agafa tots els contorns sense es-

tablir cap relació de jerarquia.
§ CV_RETR_CCOMP. Agafa tots els contorns i els

organitza en una jerarquia de dos nivells. Al nivell
superior hi van els contorns externs i al nivell infe-
rior els contorns de l’interior.

§ CV_RETR_TREE. Agafa tots els contorns i recons-
trueix una jerarquia completa de contorns veïns.

• method – mètode d’aproximació de contorns.
§ CV_CHAIN_APPROX_NONE. Emmagatzema

tots els punts que constitueixen contorns.
§ CV_CHAIN_APPROX_SIMPLE. Comprimeix

segments horitzontals, verticals i diagonals i deixa
únicament els seus punts extrems. Per exemple, un
contorn d’un rectangle seria codificat amb 4 punts.

• offset – paràmetre opcional segons el qual cada punt
del contorn és desplaçat. És útil si els contorns són ex-
trets de la regió d’interès de la imatge (ROI) i llavors
s’haurien d’analitzar en el context de la imatge sence-
ra.

A3. DEFINICIÓ FUNCIÓ DRAWCONTOURS
A continuació tenim la definició de la funció drawCon-

tours d’OpenCV i tots els seus paràmetres:

void	
 drawContours(InputOutputArray	
 image,	
 InputArrayO-­‐
fArrays	
 contours,	
 int	
 contourIdx,	
 const	
 Scalar&	
 color,	

int	
 thickness=1,	
 int	
 lineType=8,	
 InputAr-­‐
ray	
 hierarchy=noArray(),	
 int	
 maxLevel=INT_MAX,	

Point	
 offset=Point())	

• image – imatge destí, on es dibuixaran els contorns.
• contours – vector de contorns d’entrada.
• contourldx – paràmetre indicant el contorn a dibuixar.

Si és negatiu és dibuixen tots.
• color – color dels contorns.
• thickness – gruix dels contorns. Si és negatiu (per

exemple, CV_FILLED), es dibuixa l’interior dels con-
torns.

• lineType – connectivitat de la línia, 8 per defecte.
• hierarchy – informació opcional de la jerarquia dels

contorns. Només és necessari si es vol dibuixar úni-
cament alguns dels contorns.

• maxLevel – nivell màxim de jerarquia dels contorns a
dibuixar. Si és 0, només es dibuixa el contorn especifi-
cat. Si és 1, la funció dibuixa el contorn i els seus con-
torns veïns. Si és 2, es dibuixa el contorn, els veïns

12 EE/UAB TFG INFORMÀTICA: EMPROVADOR VIRTUAL. APLICACIÓ PER A CANVIAR ELS COLORS DE LA ROBA EN IMATGES

d’aquest i els veïns dels veïns d’aquest, i així progres-
sivament.

• offset – paràmetre opcional segons el qual cada punt
del contorn és desplaçat. És útil si els contorns són ex-
trets de la regió d’interès de la imatge (ROI) i llavors
s’haurien d’analitzar en el context de la imatge sence-
ra.

A4. MESURES DELS SECTORS DE LES PLATILLES
HARMÒNIQUES

Les mides precises dels sectors de les plantilles harmò-
niques (veure Figura 5) són les següents: els sectors grans
dels tipus V, Y i X corrresponen a un 26% del disc (93.6º);
els sectors petits dels tipus i, L, I i Y són un 5% del disc
(18º); el sector gran del tipus L ocupa un 22% (79.2º); el
sector del tipus T és un 50% (180º). L’angle entre els cen-
tres dels dos sectors dels tipus I, X i Y és de 180º, i el del
tipus L és de 90º.

