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Resumen

El objetivo del presente trabajo es explicar de manera detallada y paso a paso
diferentes técnicas utilizadas para estimar estadisticos y realizar contrastes de hipdtesis
referentes a proporciones y medias. Para ello se utilizaran técnicas propias de la estadistica
bayesiana, con lo que a priori se explicara las caracteristicas destacables de esta corriente
estadistica y sus posible puntos fuertes, para a posteriori desarrollar una serie de situaciones
en las que se precisaria de un analisis estadistico, con tal de estimar ciertos estadisticos o
contrastar determinadas hipétesis, utilizando en todo caso, ejemplos numéricos que faciliten
la comprensién de las explicaciones que a su vez puedan demostrar la idoneidad de la
estadistica bayesiana en determinadas circunstancias.

Resum

L'objectiu del present treball és explicar de manera detallada i pas a pas diferents
tecniques utilitzades per estimar estadistics i realitzar contrastos d'hipotesis referents a
proporcions i mitjanes. Per a aix0 s'utilitzaran tecniques propies de I'estadistica bayesiana,
amb el que a priori s'explicara les caracteristiques destacables d'aquest corrent estadistic i els
seus possibles punts forts, per a posteriori desenvolupar una série de situacions en les quals es
precisaria d'una analisi estadistica, amb tal d'estimar certs estadistics o contrastar
determinades hipotesis, utilitzant en tot cas, exemples numérics que facilitin la comprensié de
les explicacions que al mateix temps puguin demostrar la idoneitat de I'estadistica bayesiana
en determinades circumstancies.

Abstract

The objective of this dissertation is to explain, step by step and in detail, several
techniques used to estimate statistics and to perform statistical hypothesis testing of
proportions and means. To that end, techniques of Bayesian statistics will be used so we will
first explain the main characteristics for this trend and its possible strong points. After this, we
will explain several situations that require a Bayesian analysis in order to estimate some
statistics or compare some hypothesis. Numerical examples will always be used in order to
provide an easy comprehension of the explanations which will prove the suitability of Bayesian
statistics for some particular cases.
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1. Conceptos generales

Teorema de Bayes

El teorema de Bayes fue desarrollado por Thomas Bayes en 1763 y con él se expresa la
probabilidad condicional de un evento aleatorio A dado otro evento B, mediante la
distribucidn de probabilidad condicional del evento B dado A y la distribuciéon de probabilidad
marginal de sdélo A.

Dicho de otro modo, sea {4;,4,, ..., 4;, ..., A, } un conjunto de sucesos mutuamente
excluyentes y exhaustivos, y tales que la probabilidad de cada uno de ellos es distinta de cero.
Sea B un suceso cualquiera del que se conocen las probabilidades condicionales P(B|A4;).
Entonces, la probabilidad P(4;|B) viene dada por la expresién:

P(B|A;)P(4;
p(ap) = ZEAOPAD 'P(‘;)( )

donde:

e P(A;) son las probabilidades a priori.
e P(BJA;) es la probabilidad de B en la hipotesis 4;.
e P(A;|B) son las probabilidades a posteriori.

Por tanto, el teorema de Bayes hace uso de probabilidades a priori, que son
probabilidades subjetivas, que se desarrollan a continuacién, probabilidad de B en la hipétesis
Aj;, verosimilitud propia de la muestra, y una distribucién a posteriori, que se alcanza mediante
el producto de las dos anteriores ponderadas segun la verosimilitud propia de la muestra.

Ademds, cabe destacar que, cuando A4, A4,,...,A; son k sucesos mutuamente
excluyentes, uno de los cuales ha de ocurrir necesariamente; entonces, la ley de la
probabilidad total establece que:

k
P(B) = ) P(BIADP(A)
i=1
En el caso continuo, seria:

P(B) = fg P(BIN)f (%)

Donde f(x) es la funcién de densidad de una variable aleatoria X evaluada en x,
P(B|x) es la probabilidad de B suponiendo que X=x vy { es el posible espectro de valores
continuos que puede tomar X.

Dando lugar a la siguiente modificacion de la regla o formula de Bayes:

pP(B|A;)P(4)

p(B|A;)P(4)
z:{'(=1P(B|Ai)P(Ai)

P(4/1B) =
' fii1P(B|Ai)P(Ai)

P(A;|B) =



Probabilidad subjetiva

La estadistica Bayesiana se basa en la interpretacion subjetiva de la probabilidad. Para
ello utiliza la percepcién existente, por parte del investigador, como una variable modificadora
(distribucidn a priori) de los datos muestrales, que dan lugar a una distribucidn (distribucion a
posteriori) con la que formular inferencias con respecto al parametro de interés.

El hecho de amoldar los datos muestrales obtenidos en funcién del criterio del
investigador convierte a la estadistica Bayesiana en un instrumento altamente controvertido,
dado que esto puede interpretarse, como que la estadistica bayesiana manipula los datos
muestrales con el fin de demostrar lo que uno quiere en lugar de dejar que los datos, por si
solos, demuestren o no el objeto de estudio.

Sin embargo, la aportacion subjetiva del investigador no tiene que ser de por si
negativa o ser considerada manipuladora (en su sentido mas peyorativo), ya que esta
aportacién subjetiva que realiza el investigador puede darse a causa de conocimientos previos
adquiridos a través de otros estudios anteriores o por la intuicidn del profesional, que a diario
observa la situacidn objeto de estudio.

Por ello la probabilidad subjetiva no debe ser interpretada, de por si, como un
instrumento invalido que Unicamente pretende manipular el método cientifico, dado que esta
puede aportar beneficios al propio método, ademas de poder ser contrastado a posteriori, con
tal de dar validez a la probabilidad subjetiva utilizada en el proceso.

A su vez, una problemadtica existente en numerosas ocasiones es que las muestras son
muy pequenfas, con lo que no se cumple los requisitos exigibles por el Teorema Central del
Limite, que nos indica que si n es suficientemente grande, la variable aleatoria X = ¥, X; /n
tiene aproximadamente una distribucién normal con uz = u ya)% = ¢2/n. Al mismo tiempo,
no siempre se puede conocer la distribuciéon que sigue la muestra y los experimentos no se
pueden repetir. Requisitos que no son exigibles para la estadistica Bayesiana, con lo que
puede ser una herramienta de gran utilidad, si no Unica, en ciertas condiciones.

Dicho lo anterior, se puede comenzar a discernir el concepto de distribucién a priori,
ésta se puede comprender como una distribucién que modela los datos muestrales en funcion
de los conocimientos previos existentes, como por ejemplo estudios realizados anteriormente
sobre la materia de interés o simplemente, por la intencién de aportar cierta informacién que
el investigador considera oportuna.

Por ello, si considera una muestra, que puede ser o no aleatoria X = (X, ..., X,,) con
densidad discreta o continua en la familia f(x, @), con 8 = (64, ..., 0, )e ® c RK. Suponiendo
que se tiene informacién previa sobre 6. Esta informacion esta expresada por medio de una
distribucidn sobre 0 y es esta distribucion la que denominamos distribucion a priori.

En conclusion, la distribucidon a priori lo que pretende es aportar informacidn adicional
a los datos extraidos de la muestra, de tal forma que complementen la informacién obtenida
de ellos.



Distribucion a Posteriori

Por otro lado, la distribuciéon a posteriori p(8|x) es, por la ley multiplicativa de la
probabilidad, el producto de la funcidn de distribucion de probabilidad p(8@) y la funcién de
verosimilitud p(x|8).

Dicho de otro modo, la probabilidad a posteriori es aquella que resulta de aplicarle
conjuntamente la probabilidad a priori (probabilidad subjetiva) y la verosimilitud de los datos
(transformacion de los datos experimentales en funcidn de la probabilidad subjetiva), entre la
probabilidad de los propios datos experimentales.

Intervalo de Probabilidad

En la estadistica bayesiana, se conoce por intervalo de probabilidad a algo similar a lo
gue se conoceria como intervalo de confianza en la estadistica Frecuentista.

Del lado Frecuentista, el intervalo de confianza hace referencia a probabilidad de que
el estimador calculado se encuentre dentro de dos niveles considerados de confianza, donde la
confianza dada a este intervalo suele ser, por ejemplo, del 95%. Dicho de otro modo, si
repitiéramos el experimento en multitud de ocasiones, el estimador calculado se encontraria
dentro del intervalo en el 95% de las ocasiones, mientras que el 5% de las ocasiones
estariamos estimando erréneamente.

El enfoque bayesiano por el contrario es algo distinto, ya que, el método utilizado para
su cdlculo seria mediante la curva de la funcidn de densidad que se obtiene a posteriori, donde
el drea bajo dicha curva y entre unos ciertos valores X e Y con cierta probabilidad (por ejemplo,
del 95%) constituyen el intervalo de probabilidad del 95%, entre los mencionados puntos (X, Y).

Una vez conocido alguno de los conceptos generales necesarios para poder
comprender, de manera basica, la estadistica bayesiana. Resulta pertinente pasar a explicar las
diferentes técnicas que se pueden aplicar con tal de calcular diferentes estadisticos, segun se
precise y en funcion de la necesidad que se pudiera tener en determinados estudios.

Adicionalmente, caber reseiar que en el dUltimo capitulo se hara un resumen de las
técnicas aplicadas en los temas que se desarrollaran de aqui en adelante, utilizando la
herramienta de analisis estadistico R®, en su version 3.1.2 de 64-bit.

2. Estimacion de una proporcion (una poblacion)

A modo de ejemplo, supongamos que se desea estimar la proporcion de fraudes
cometidos por los clientes de una determinada empresa de aguas, donde alguno de sus
clientes, con tal de pagar menos en el recibo mensual de agua, manipulan los contadores para
hacer que estos contabilicen menos agua de la que realmente se les suministra.

Para asumir dicho ejemplo, vamos a suponer que tras un pequefio estudio llevado a
cabo en la ciudad donde la empresa de aguas proporciona el servicio, se ha obtenido los
siguientes resultados. De los 1.300.000 puntos de suministro que tiene la empresa, se ha
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escogido al azar una muestra de 150 puntos donde realizar una inspeccién con tal de observar
si, en cada uno de ellos, se estd cometiendo algun tipo de fraude, observando que en 12 de los
cuales, efectivamente se cometia fraude.

Por otro lado, como se ha mencionado anteriormente, en la estadistica bayesiana nos
encontramos con la necesidad de tener una probabilidad a priori de la proporcién 6 (conocida
por las observaciones o estudios que se han realizado previamente) que nos da la posibilidad
de “modificar” o “actualizar” los datos que se han obtenido a partir del estudio realizado, de
manera que a la observacion realizada, se le pueda incorpora el conocimiento previo existente.
De ahi que sea necesaria la aportacidon de una tasa que sirva de referencia, con lo que para
apoyar el estudio se ha solicitado a una asociacidn de empresas de aguas del pais a la que
pertenece la empresa, que se facilite la tasa de fraude habitual del pais. Dicha tasa de fraude
es del 10%.

Como dicha tasa se trata de una aproximacién adquirida por los conocimientos de
otros estudios realizados por entes del entorno, ésta no carece de cierta incertidumbre, con lo
que cabria esperar que la tasa también pudiera ser de 8% 6 de un 12%, siendo igual de
verosimiles que la proporcionada por la asociaciéon. Mientras que gracias al dato aportado por
estos, se sabe que tasas de 50% o mas son altamente improbables.

Con lo mencionado hasta el momento ya podemos decir que ya se dispone de todos
los datos necesarios para estimar la proporcién de fraude de la ciudad, de tal forma que
Unicamente faltaria desarrollar la distribucidon a priori a partir de los datos obtenidos y asi
poder calcular definitivamente la proporcidn de fraudes que se comete en la ciudad en estudio.

Gracias a los datos recabados, partimos de la base de que la proporcién de fraudes
puede estar en torno al 10%, con lo que moviéndonos entorno a dicha proporcién y en funcion
de la légica planteada anteriormente con respecto a los demas valores verosimiles, podemos
crear la siguiente tabla con los posibles modelos.

6% 8% 10% 12% 14%
P(6) 0.1 0.2 0.4 0.2 0.1

Tabla |

De la cual podemos conocer el valor esperado de @ mediante la siguiente férmula:

P(6) = XiL,6:P(6)),

Donde k son los posibles valores de 6: 64,85, ..., 8, y cumplen la condicién:

k
;P(Hi)=1

Por tanto, el valor esperado de 0 es:
E(6) = (0.06)(0.10) + (0.08)(0.20) + (0.10)(0.40) + (0.12)(0.20) + (0.14)(0.10) = 0.10

Se puede apreciar, que el valor esperado de la funcién de probabilidad a priori, refleja
claramente la apreciaciéon existente de que la tasa de fraude se encuentra en torno al 10%. Al



mismo tiempo, se observa que los posibles valores dados a las proporciones se sitian muy
cercanos a ese mismo 10%, lo que indica que la dispersion dada a la probabilidad a priori es
bastante corta, es decir, se tiene una elevada certidumbre en relacién a la tasa que se deberia
observar. De lo contrario, los valores serian mas dispersos, mostrando en tal caso las dudas
existentes en torno a la tasa de fraude.

El siguiente paso seria calcular las verosimilitudes, es decir, la probabilidad de que se
produzca la observacidn dada, suponiendo que el modelo expuesto es vdlido. Para ello, se ha
de calcular la funcion de densidad de una binomial con pardmetros n y 6 evaluada en x: (O,
1,...,n), utilizando la siguiente féormula:

P(xIn,6) = (Z) 6%(1— ) >

Donde,

n n!
(x) ~x (n—x)!

De tal forma que se puede aplicar los datos mencionados en el inicio de este ejemplo,
véase n=150 y x=12, lo que proporciona una estimacion puntual del fraude relativo a la
empresa de aguas del 8%.

Por tanto, aplicando para cada una de las suposiciones hechas anteriormente, la
férmula de la densidad de la distribucion binomial, podemos obtener la verosimilitud de cada
posible modelo. A modo de ejemplo, en el primer supuesto, se haria de la siguiente manera:

150
( 12 )0.0612(0.94)138 = 0.0735

De tal forma que si se aplica lo anterior de manera sucesiva, se obtendria la siguiente
tabla:

P(8) Verosimilitud P(0)x Verosimilitud P. Posteriori

0.06 0.1 0.0735 0,0074 0,1018

0.08 0.2 0.1192 0,0238 0,3301

0.10 0.4 0.0836 0,0334 0,4630

0.12 0.2 0.0335 0,0067 0,0928

0.14 0.1 0.0089 0,0009 0,0123

Total 1 0.0722 1
Tabla Il

A modo de explicaciéon adicional, cabe destacar que para cada uno de los modelos
dados, se ha calculado su verosimilitud mediante la funcidon de densidad de la distribucién
binomial, luego se ha multiplicado la susodicha verosimilitud por la probabilidad dada a prioriy
tras hacer cada una de las multiplicaciones pertinentes para todos los modelos propuestos, se
ha hecho el sumatorio de estos productos (P(08)x Verosimilitud), para por ultimo dividir
cada uno de los mencionados productos entre el sumatorio y asi obtener la probabilidad a
posteriori.



De este modo, se puede apreciar que, como se explico en el primer apartado (Teorema
de Bayes), se puede calcular y por tanto obtener la probabilidad a posteriori a través de la
férmula de Bayes “alternativa”, es decir, mediante:

P(B|A)P(A;))

P(0.10|B) = =
( 18) K P(BIA)P(4)

_ (0.0836)(0.4) _
~(0.0735)(0.1) + (0.1192)(0.2) + (0.0836)(0.4) + (0.0335)(0.2) + (0.0089)(0.1) _

=0.463

Una vez hecho los calculos anteriores, se puede recalcular el valor esperado de la tasa
de fraude en funcidn de las nuevas probabilidades (a posteriori):

E(0) = (0.06)(0.1018) + (0.08)(0.3301) + (0.10)(0.4630) + (0.12)(0.0928)
+ (0.14)(0.0123) = 0.0917

Dicho calculo da una tasa de fraude esperada del 9.17%, es decir, mayor de la
observada (8%), pero a su vez menor de la que se presuponia en un primer instante (10%), con
lo que se aprecia claramente la idiosincrasia propia de la estadistica bayesiana, y es que ésta
no pretende ni quedarse con el Unico dato proporcionado por el experimento llevado a cabo,
ni tampoco quedarse con la intuicién o creencia proporcionada por la experiencia, sino mas
bien intentar aunar los conocimientos empiricos (en su sentido mas estricto) y las
apreciaciones hechas por los profesionales de la materia en estudio, con el fin de proporcionar
la mayor cantidad de datos y experiencias que sea posible, para asi intentar lograr una mejor
estimacion del parametro que se pretende calcular.

Como alternativa al sencillo supuesto en el que se ha utilizado una cierta distribucion
discreta para expresar los posibles modelos probabilisticos que pudiera tomar la tasa de
fraude 6, y situandonos en una dimensién mas realista. Podriamos considerar la posibilidad de
que la tasa de fraude se encontrase en un intervalo que fuera de 0% a 100% de manera
continua, es decir, en cualquier punto de dicho intervalo real, lo cual es altamente comun.

De esta forma nos encontrariamos en un supuesto en el que las probabilidades a priori
no se pueden enumerar, dado que estas son infinitas, con lo que el modo de tratarlas seria
mediante la correspondiente distribucion continua de probabilidad, que pudiera ser cualquiera,
siempre y cuando expresara la visidn, intuicidn o experiencia del investigador.

La funcion de distribucién Beta es la mas usada en los casos en los que se pretende
estimar una proporcion. Esta funcién de distribucién depende de dos parametros, ay b, ambos
mayores que 0.

Entre las propiedades de la distribucién Beta se encuentran las siguientes:

a 2 ab

H ZE 0" = (a+b+1)(a+b)?



f@) = qatxai (1 - 0P, donde0 < x <1

Adicionalmente, cabe destacar como un caso especial de la distribucidn Beta aquel en
el que ésta toma los valoresa = 1y b = 1, supuesto en el que coincide con la distribucion
Uniforme en el intervalo [0, 1].

A modo de ejemplo, se puede apreciar algunas distribuciones Betas dibujadas en la
misma grafica, pero con diferentes parametros, entre ellas, la equivalente a la distribucidn
Uniforme, es decir, la de color verde, con pardmetros Beta(1,1).

Ejemplos Distribucion Beta

M~ 7 — beta(4,4)
— beta(4,1)
beta(1,1)
© - — beta(1,4)
o 4
< -
=
I
o~ 4
o 4
T T T T T T
0 200 400 600 800 1000
Index
Grdfica 1

Como se observa, si el investigador optase por utilizar como distribucién a priori la
distribucidn Beta (1, 1), equivalente a una Uniforme en [0, 1], estaria poniendo de manifiesto
una posicién totalmente neutral, ya que daria el mismo peso a cualquier posible modelo que
resultara del andlisis, sin ninguna aportacién adicional que éste pudiera afiadir. En dicho caso,
el andlisis bayesiano arrojaria el mismo resultado de estimacién que el enfoque frecuentista.

Retomando nuestro ejemplo particular, se planteaba que la tasa de fraude esperada
10%, con lo que el siguiente paso (en el caso continuo) seria proponer una distribucién Beta
que asimilara dicha proporcion. Para ello, se utiliza la férmula de la media de la distribucién
Beta mencionada anteriormente,

= = 0.10 = 109
K a+b o



Como se puede intuir, numerosos valores de a y b podrian dar como resultado la
proporcién de fraude igual al 10%, con lo que se ha de tomar una decision. Para ello nos
deberiamos basar en la certidumbre que le quisiéramos dar a nuestra probabilidad a priori, ya
gue a nUmeros mas bajos de a y b, la distribucidn a priori presenta mas dispersién, con lo que
estaria poniendo de manifiesto nuestra incertidumbre.

Como ejemplos, se pude apreciar las siguientes fdrmulas y gréficas en las que la media
de la distribucidn Beta toma valor 0.1, es decir, refleja nuestra tasa del 10%, como distribucion
a priori en funcidn de diferentes grados de certidumbre:

Media (u):
Beta(1,9) =— =010  Beta (3, 27) = ——=0.10 Beta (7, 63) = —— = 0.10
1+9 3+27 7+63
Ejemplos con tasa del 10%
2 4 — beta(1,9)
— Dbeta(3,27)
beta(7,63)
T T | T T T
0 50 100 150 200 250
Index
Grdfica 2

Dado que en nuestro caso nos hemos basado en estudios previos realizados en el
mismo pais (aunque no en la misma ciudad), se considera que la fiabilidad de nuestra tasa es
bastante alta, con lo que se utilizara los parametros (3, 27).

Por tanto, Unicamente nos faltaria mencionar que, debido a que los datos siguen una
distribucidn binomial y la distribucién a priori sigue una distribucidén Beta (a, b), podemos
concluir, que la distribucién Beta es conjugada para la binomial, transformandose entonces a
la distribucion a posteriori con los parametros Beta (a+x, b+(n-x)).
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Resumiendo, nos encontrariamos con una probabilidad a priori dada por Ia
distribucidon Beta (a=3, b=27), con una muestra n=150 y con un total de fraudes detectados
entre nuestra muestra de x=12, con lo que conjugadamente la distribucion Beta para la
binomial de los datos y por tanto, transformando nuestra distribucidn a priori y obteniendo asi,
nuestra distribucién a posteriori, nos encontrariamos con la distribucién Beta (3+12, 27+(150-
12)), o lo que es lo mismo, Beta(15, 165), con media igual a 0.0833 y desviacion tipica igual a
0.00042.

Como se puede observar, nuevamente la distribucion a posteriori se acerca
notablemente a la tasa de fraude detectada en el estudio realizado, pero como en el caso
discreto, desviandose ligeramente hacia un valor algo mds cercano a la tasa que a priori se
pensaba que podria resultar estimada.

A modo de ejemplo un tanto mas extremo, supongamos que la tasa predicha por el
investigador fuera del 25% y que la distribucidn a priori, por tanto, tomara otros parametros,
supongamos Beta (4, 12), que daria lugar a una funcidn de densidad como la siguiente:

Beta(4,12) con tasa del 25%

y1

0 100 200 300 400 500

Index

Grdfica 3

Bien, si calcularamos nuevamente la distribucidn a posteriori, ésta nos daria una
distribucidn Beta (16, 150), es decir, una estimacién para la tasa de fraude de 0.0934, o lo que
es lo mismo, 9.34%.

Como puede apreciarse, a pesar de que la tasa que intuia el investigador es muy dispar
en comparacion con la recabada por los datos, la determinada por la distribucién a posteriori
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se acerca mucho mas a la muestral debido principalmente a dos causas, una, que la muestra es
considerablemente grande, con lo que tiene un peso relativo importante y dos, a que dado
que el investigador en este supuesto no se basaba en ningln estudio, coherentemente se
decidié poner una distribucién a priori con mayor incertidumbre. De lo que se puede concluir,
por un lado que actuando de manera coherente (en relacién a la distribucion a priori) y por
otro sabiendo de la importancia del tamafio muestras, los datos corrigen a la probabilidad a
priori y que a pesar de que esta tiene cierto peso, la verosimilitud domina en la ponderaciéon
total del método bayesiano, con lo que corrige posibles errores de apreciacidn a priori, aunque
no descarta dicha informacioén, sino que la utiliza con el fin de aportar mas datos al proceso.

Por otro lado, con tal de ver de manera practica la importancia del tamafio muestral,
utilicemos el mismo ejemplo extremo pero aumentando la muestra, es decir, tomando los
siguientes datos: n=1500, x=120, a=4, b=12. Asumiendo dichos datos la tasa de fraude
muestral seguiria siendo del 8%, la tasa de la distribucion a priori seguiria siendo del 25%, pero
la distribucién a posteriori cambiaria a Beta (124, 1392) y por tanto la estimacidn a posteriori
del fraude también cambiaria a 0.0818, es decir, a un 8.18%. Demostrando por tanto la
importancia del tamafio muestral.

Dicho de otro modo, el peso del tamano muestral es muy importante en el global del
proceso bayesiano, casi igualando el resultado del método al clasico frecuentista, pero a
diferencia de éste ultimo método, el método bayesiano es capaz de maximizar su utilidad
cuando el tamafio muestral es escaso, siendo por tanto un método ideal en dichos supuestos.

Volviendo al punto en el que nos encontrabamos en el ejemplo inicial, es a partir de
este punto en donde podemos sacar conclusiones probabilisticas de nuestro proceso.
Expresando directamente en términos de probabilidad, algo imposible en el método
frecuentista, las conclusiones. Dicho de otro modo, se puede hablar de que la probabilidad de
que 0 > 7% = 0.7274 o que la probabilidad de que 6% < 6 < 12% = 0.8309. Y es que, al
contar con la distribucién del parametro se puede computar el drea que se encuentra bajo la
funcién de densidad correspondiente, utilizando para ello un calculo mediante integrales o
mediante software que realicen dichos calculos de manera mas &gil. Por tanto, con la
metodologia bayesiana se puede calcular la probabilidad de que el parametro se encuentre en
cualquier intervalo dentro del rango [0, 1] (expresado en tanto por uno).

Por ultimo, es especialmente interesante la posibilidad de realizar, en la estadistica
bayesiana, los intervalos de probabilidad, también llamados intervalos de credibilidad. A
diferencia del clasico intervalo de confianza de la estadistica frecuentista, el intervalo de
probabilidad es un intervalo en el que se encontraria el pardmetro que se desea estimar, pero
con una cierta probabilidad especificada.

Supongamos que se desea calcular un intervalo que contenga el pardmetro 6 con
probabilidad 1-a, por ejemplo a=0.05, para ello, se calcularia un intervalo donde Ia
probabilidad de que en su interior se encontrara dicho parametro seria del 95%. El problema
gue surge es que existirian infinitos intervalos que cumplan dicha condicién, con lo que existe
un criterio que nos ayuda a decidirnos por ello. Este criterio consiste en escoger aquel
intervalo para el cual la funcion de densidad (en nuestro ejemplo de la distribucion
Beta(15,165)) cumple la condicién de que f(x) = f(y) cualquiera sea x perteneciente a dicho
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intervalo y cualquiera sea y sin pertenecer a dicho intervalo. De tal modo que este intervalo es
el intervalo mds corto de entre los que se pueden obtener, cumpliendo la condicién de que por
ejemplo, bajo el susodicho intervalo se encuentre el pardmetro con una probabilidad del 95%.

Dada las infinitas posibilidades de intervalos de credibilidad que se pueden obtener,
para calcular el mas corto, y por tanto el mas denso, es necesario el uso de software
especializados, como puede ser el paquete estadistico R®, por tanto, en este caso Unicamente
se facilitard el intervalo y no se procederd a calcularlo manualmente. Con lo que se tiene un
95% de probabilidad de que el intervalo [0.045, 0.124] contenga el pardametro estimador de la
tasa de fraudes.

A continuacién se puede ver una apreciacion grafica de dicho intervalo:

18 20
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Grdfica 4

Cabe destacar nuevamente, que si el tamafio muestral es elevado, dado que la
verosimilitud tiene un alto peso, el intervalo de probabilidad no difiere mucho
(matematicamente) del intervalo de confianza, aunque si conceptualmente. Con lo que una
vez mas se puede concluir que el método bayesiano es idéneo en el supuesto de muestras
pequefias, al contrario que el método frecuentista.
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3. Hipotesis sobre una proporcion (una poblacion)

Otra técnica de gran utilidad es aquella que evalta la hipdtesis sobre una proporcién.
En este caso, se evaluara dicha hipdtesis comparando una proporcién igual a una constante,
pero Unicamente en referencia a una poblacién en estudio, es decir,

HO:P =P0
Hy:P # P,

Para evaluar este contraste de hipdtesis en primer lugar se debe conocer ciertos
pardmetros propios tanto del contraste, como de la estadistica bayesiana. Por un lado, seria
necesario conocer el valor de P, que se querria comprobar en el contraste de hipétesis y por
otro, seria necesario conocer la distribucion a priori que se le querria imputar a P, que en este
caso, como se explico en el tema anterior, se trata de una distribucién Beta con pardmetros ay
b. Cabe destacar, que la media de la distribucion Beta (explicada en la formula de la pagina 6)
debe dar un resultado aproximado a P,. Condicién razonable, dado que si el investigador
pensase a priori que la media o proporcidn del pardmetro fuera distinta de P, no tendria
sentido hacer el contraste de hipdtesis. En resumen, de no cumplirse que:

P - a;:b| <0.015

No seria correcto realizar el contraste de hipédtesis especificado al inicio de éste
capitulo.

Adicionalmente existe otra condicién sine qua non, y es que los pardametrosayb
deben tomar valores mayores que 0, al igual que la media debe comprenderse en el intervalo
[0, 1], caracteristico de las proporciones, y la desviacidn tipica ser positiva, siempre y cuando
se mantengan los parametros a y b no negativos.

Como ultima exigencia, se encuentra la necesidad de establecer una probabilidad a
priori de que H, se cumpla, que denotaremos por la letra q. Esta probabilidad a priori, al igual
que la distribucién a priori de P la establece el investigador basandose en los criterios de
experiencia y observacién, como para la mencionada distribucion a priori.

Una vez consideradas las exigencias anteriores, se procederia a obtener los datos
propios del experimento y finalmente se calcularia lo que se conoce como el Factor de Bayes a
favor de Hy, que lo denotaremos por BF:

_ Py*(1—Py)" *Beta (a,b)
"~ Beta(a+x,b+ (n—x))

BF

donde,

n = tamaio muestral
x = namero de casos favorables
! r'(@r(b)

Bet b) = a—1 1— b—ld —
eta (a,b) fou 1-uw) u Fatb)
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y donde,
I'(x) =f u*"le Udu
0

Consiguientemente, una vez obtenido el calculo del Factor de Bayes a favor de H, se
puede calcular el Factor de Bayes en contra de H,, que se denotard por BCy se calcula de la
siguiente manera:

De tal forma que se puede concluir con el calculo de la probabilidad a posteriori de la
veracidad de H,. Utilizando el Factor de Bayes a favor de Hy, y la probabilidad a priori de que
H, es cierta, es decir, q:

P(Hy|datos) = ——T0r
RS T BF + (1 - )
Lo cual se puede transformar a:
P(Hy|datos) = BF
olCatos) =g

en el supuesto de que el investigador no tuviera informacidn suficiente para aportar
un valor confiable de g y que por lo tanto, decidiera darle a dicho parametro el valor de g =
0.5, lo que equivale a decir que a priori es equiprobable que se dé, tanto la H,, como la H;.

Por ultimo, antes de pasar a exponer un caso prdctico, convendria mencionar la
apreciacion de que en la estadistica bayesiana, no se pretende escoger entre la hipdtesis nula
(Hp) y la alternativa (H,), sino evaluar cuan razonable es escoger una hipdtesis frente a la otra,
de tal forma que se pueda tomar una decisién en referencia a aquello que se esta estudiando o
analizando y por tanto actuar en funcion de dicho andlisis.

A modo de ejemplo practico, consideremos que se desea hacer un estudio de estrés a
unos contadores de agua, de una determinada marca y modelo. Para ello, los contadores son
sometidos a un estrés mayor al recomendado por el fabricante, es decir, se les hace pasar por
ellos un caudal de agua muy elevado (mayor que el maximo recomendado) en un tiempo
determinado y se evalla qué contador sigue funcionando tras la prueba de estrés y qué
contador falla y por tanto es inservible.

Para dicho estudio, se desea evaluar el siguiente contraste de hipodtesis:

Hy:P = 0.75
Hy:P # 0.75

es decir, que si la proporcion de ruptura es de un 75% o no, que es lo que el fabricante
de los contadores establece como tasa de fallo subito en el supuesto de estudio, considerando
ademds, que dicha H,, tiene una probabilidad de suceder de q=0.9.
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Por otro lado, considerando que el contador se somete a un estrés mayor al
recomendado por el fabricante, es légico pensar que la proporcién de rupturas sea mayor a la
mitad, pero sin embargo, la experiencia de la empresa suministradora de los contadores dice
gue estos contadores son mas eficientes de lo que el fabricante cree, con lo que nos emplaza a
que consideremos como distribucién a priori una distribucién Beta (7.5, 17.5) que da una
media 0.3, lo que es lo mismo, una proporcién de rupturas del 30%.

Por tanto, realizamos un estudio sobre 120 contadores, sometiéndolos a un estrés
mayor del recomendado por el fabricante y observamos que 54 contadores se han quedado
inservibles, lo que da una proporciéon del 45%.

Una vez obtenidos todos los datos, procedemos a evaluar el contraste de hipétesis y
ver si el fabricante se sobreprotege en sus especificaciones, o por el contrario, si el proveedor,
nos quiere vender los contadores a pesar de no ser adecuados para el nivel de estrés al que
seran sometidos.

Para dicha evaluacion, dado que se requiere calcular integrales y calculos extensos, nos
ayudaremos del calculo computacional, de tal forma que uUnicamente se expresaran las
formulas y los resultados finales de dichas formulas. La demostracion utilizando el paquete
estadistico R se hara en el capitulo de “Estadistica Bayesiana con R paso a paso”.

En un primer instante seria recomendable hacer un resumen de los datos,

Dato Valor

Py 0.75
q 0.9
Beta (7.5,17.5)
n 120
X 54
Tabla 11l

De tal forma que se puede proceder a calcular y dibujar graficamente las distribuciones
Beta a priori y posteriori,

1 I'(7.5) I'(17.5)
B 5175) = | u* T -w' du = —————— = 2.5827x1077
eta (7.5,17.5) fou (1-uw) du T(75 + 175) 5827 x 10
1 r(61.5) I'(83.5)
B . 4.17. — 61.5-1 1 _ 1,)83:5-1 — =5, 1044
eta (7.5 + 54,17.5 + 66) fou 1-w) du (615 1 83.5) 5.053x10
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Distribuciones Beta
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Donde se aprecia que la media o proporcidn de ambas difieren ligeramente en
comparacion de la proporcién dada por el fabricante. Siendo la proporcion de la distribuciéon a
priori (proporcionada por el proveedor) del 30% vy la posteriori (modificada por los datos) del
42.41%.

A continuacidn, se calcula el Factor de Bayes a favor de Hy(BF),

_0.75°*(1 - 0.75)"29>*Beta (7.5,17.5)

=1.6822x 10710
Beta (7.5 + 54,17.5 + (120 — 54)) X

Con lo que se puede calcular el Factor de Bayes en contra de Hy(BC),

BC = 5944541033

T 1.6822x10-10

Para concluir con el calculo de la Probabilidad a posteriori de la veracidad de H,

P datos) — 0.9x1.6822 x 1010 i 14x10-0
olAat0S) = 0 9x1.6822x 1010 + (1 —0.9) 7~

Lo que nos arrojaria un resultado bastante favorables hacia el proveedor, ya que la
media se acerca a la proporcionada por ellos, mas que el resultado del andlisis establece que
es 5.944.541.033 de veces mas probable que sea cierta la hipdtesis alternativa, a que lo sea la
nula Hy. Ademds, si se considera la probabilidad a priori que se habia dado para este supuesto,
se obtiene una probabilidad de 1.514 x 1079 de que H, sea cierta, es decir, una probabilidad
sumamente baja.
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Si en lugar de realizar el test de hipdtesis para una proporcién como valor constante,
se decidiera hacer considerando un intervalo, el procedimiento no variaria mucho. Para
cerciorarnos de ello supongamos que en el ejemplo anterior el fabricante dijera que la
proporcién de fallos se encuentra entre [0.45, 0.75] y se mantuviera el resto de variables
intactas.

En este caso, el contraste de hipdtesis tendria la siguiente estructura:

Hy:P € [P, = 0.45,P, = 0.75]
Hy:P ¢ [P, = 0.45,P, = 0.75]

Procediendo a evaluar el test de hipdtesis anterior, necesitariamos calcular en un
primer instante el drea bajo la curva de densidad de la distribucién a posteriori que queda a la
izquierda de P; y P,, lo que denotariamos por F(P;) y F(P,), lo que requiere de un célculo
computarizado, de tal forma que Unicamente se proporcionara el resultado final, como en
anteriores ocasiones.

F(P,) = 0.7372 F(P) =1

Una vez obtenido dicho calculo, se puede obtener la probabilidad de la hipétesis H, de
la siguiente manera:

P(Hy) = F(P,) — F(P,) =1—0.7372 = 0.2628

Y una vez calculada la probabilidad de la hipdtesis Hy, se puede -calcular
automaticamente la probabilidad de la hipotesis H;. Sabiendo que el area de la curva de
densidad suma (integra) 1y que el drea de P(H,) es inversa a la de P(H,), se puede calcular
P(H,) de la siguiente forma:

P(H,) =1— P(H,) = 0.7372

Con lo que tras estos pasos es posible realizar el calculo del Factor de Bayes BF como
se expresa a continuacion:

_ P(H,) _0.2628

BF = =
P(H,) 0.7372

= 0.3565

Y en consecuencia la probabilidad a posteriori de la veracidad de H:

B qBF _ 0.9 x 0.3565
T gBF+(1—-q) 0.9x0.3565+ (1—0.9)

PP = 0.7624

Lo que nos arroja unos resultados, en este caso favorables al fabricante, ya que
aproximadamente hay un 65% mas de opciones de quedarse con la hipdtesis nula que con la
alternativa, o dicho desde otra perspectiva, si se considera la probabilidad a priori que se habia
dado para este supuesto, se obtiene una probabilidad de 0.7624 de que H,, sea cierta, en este
caso, una probabilidad muy alta.
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4. Estimacion de una diferencia de proporciones (dos
poblaciones)

En este capitulo se pretende explicar el procedimiento adecuado para discernir si
existe diferencia estadistica entre dos proporciones de dos poblaciones distintas mediante
técnicas bayesianas.

Al igual que en temas anteriores, seria adecuado plantear un ejemplo numérico con tal
de facilitar la comprensidn de esta nueva situacién.

Supongamos que se desea comparar dos métodos de mantenimiento de contadores,
uno que denominaremos por X; y que consiste en hacer pasar agua a presion por el susodicho
contador, con tal de eliminar impurezas que puedan atascarlo con el tiempo. Y otro método
alternativo denominado X,, que consiste en hacerle pasar unos quimicos que eliminen dicha
impureza.

En la actualidad el método utilizado es el X; y se conoce que tiene una tasa de
efectividad en la limpieza del 30%, es decir, se consigue limpiar significativamente el 30% de
los contadores, alargando por tanto la vida util de estos.

En relacion a la probabilidad a priori dada para este ejemplo, cabe mencionar que los
investigadores que promueven el estudio creen que el método alternativo proporciona unos
resultados mejores, es decir, una mayor tasa de limpieza de los contadores y por tanto
alargando la vida util de mas unidades, consiguiendo con ello un ahorro considerable, en
renovaciones de contadores, para la empresa.

Por tanto, se tiene una fuerte creencia (basada en la propia observacién y experiencia
de los operarios de la empresa) de que la proporcidon del método X; se encuentra en el 30%
con unos margenes mas o menos definidos en torno al intervalo 10%-50%. Mientras que para
el método X, los promotores de dicho producto quimico indican que la proporcién esperada
es del 60% con unos margenes definidos entre el 40% y el 80%. En ambos casos, se considera
que existe una probabilidad muy escasa de estar fuera de dichos intervalos.

Al igual que en capitulos anteriores, la distribucion de probabilidad empleada para
expresar la densidad a priori es la de la distribucidn Beta, pero con la salvedad de que en este
supuesto nos encontramos con dos proporciones y por lo tanto se consideraran dos
distribuciones Betas, es decir, una para cada proporcidn, en funciéon de la creencia del
investigador sobre las probabilidades a priori de las proporciones dadas.

Por ello, se considera una distribucion a priori Beta (21, 70) para la proporcion de X; y
de Beta (57, 38) para la proporcidn X,, que se pueden apreciar en la siguiente grafica:
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Para realizar el estudio se ha escogido 300 contadores y se han repartido
equitativamente al azar en dos grupos de 150 contadores, a los que se les aplica sendos
tratamientos de limpieza, con tal de apreciar cuantos se han limpiado significativamente,
arrojando los siguientes resultados:

Método X; Método X,

n 150 150
X 50 80
n-x 100 70
Tabla IV

Una vez obtenidos los resultados, podemos calcular las probabilidades a posteriori, es
decir, la actualizacién (a partir de los datos) de las probabilidades a priori. Para el método
tradicional X; resultan ser Beta (21+50, 70+100), y para el método propuesto X, son Beta
(57+80, 38+70), es decir, Beta(71, 170) y Beta (137, 108) respectivamente. Por tanto, podemos
conocer su media y varianza de estas probabilidades a posteriori, que se calculan al igual que
en los capitulos anteriores, por tanto:

X; =0.2946 g, = 0.0009
X; =0.5592 ¢, =0.0010

Con lo que

X, —X; = 0.2646
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%,-x, = 0.0019

De tal forma que suponiendo valido el argumento asintético, resulta que,
aproximadamente

X, — X; ~ N (0.2646,0.0019)
Como, parala N (0,1), P(—1.96,1.96) = 0.95, un intervalo de probabilidad 0.95 es
[0.2646 —1.96v0.0019,0.2646 + 1.96V 0.0019] = [0.1800, 0.3491]

Y0 € [0.1800,0.3491], podriamos concluir que existe direrencia probabilistica de
proporciones en las dos poblaciones y que por tanto, como se aprecia en la diferencia de
medias, es mas efectivo el tratamiento con quimicos, que el tradicional.

Por otro lado, se podria utilizar el método de la simulacidn, con el que se procedera a
generar k observaciones (pil,piz, ...,pf‘) de p;|xq, x5, para i=1,2 y se aproxima la probabilidad
mediante:

cardinal {p} — p} = ¢}
k

Donde c es una constante que determina un punto minimo desde el que se puede
hacer afirmaciones precisas.

Mediante simulacién podemos generar, por ejemplo, 10000 observaciones de p; y p,
(pji-,j € {1,2},i €{1,2,..,10000}), ordenar los valoresr; = pi — pé y emplear el intervalo

[T (25), T(975)] para dar un intervalo aproximado de probabilidad de 0.95.

Pero dado que dichos célculos son complejos de llevar a cabo manualmente, se
procederd a realizar dichos cdlculos en el tema de aplicacidon en R®, tras explicar todas las
técnicas de este trabajo.

5. Hipotesis sobre una diferencia de proporciones (dos
poblaciones)

Para desarrollar esta técnica se contrastara la igualdad de proporciones del tipo:

HO:P1=P2
Hl:Pl#_-PZ

De tal modo que se podran aplicar técnicas similares a las del capitulo 3 de este trabajo.
Y es que, al igual que en dicho capitulo necesitaremos conocer una probabilidad a priori para la
validez de la hipdtesis nula H, (q), para luego definir la distribucion Beta (a;, b;) a priori para
sendas hipodtesis, nula y alternativa, donde i hace referencia a cada una de las hipétesis. Por
ultimo, se necesitaran los valores relativos al tamafio muestral (n) y al nimero de veces que se
produce el evento de interés(x) para cada una de las proporciones (P; y P,).
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Por tanto, una vez considerados todos los datos mencionados, se podria calcular el
factor de Bayes a favor de Hy. Que como se puede apreciar, difiere del explicado en el

nombrado capitulo 3.

BF — Beta(ag+xy+x1, by + (n —x)o + (n — x)1)Beta(ay, by)
~ Beta(ag + xo, by + (n — x)o)Beta(a; + x;,b; + (n — x);)

Una vez obtenido el factor de Bayes a favor de H; (BF), se puede obtener el factor de
Bayes en contra de Hy:

1

BC =—
BF

Y por ultimo, la probabilidad a posteriori de la veracidad de Hy:

qBF

P(Hyldat =—
(Ho|datos) BF+A=0

Con tal de facilitar la comprension de lo explicado hasta ahora, supongamos el mismo
ejemplo que en el capitulo 4, donde se pretendia observar qué método de limpieza de
contadores daba mejores resultado en términos proporcionales, pero en este caso,
compararemos si es igual un método que el otro o por el contrario, que difieren
proporcionalmente. Para ello, asumiremos que la hipdtesis nula tiene una probabilidad a priori
de validez g=0.3 y que:

a1:2 b1:8 x1:3 (n—x)1=12
a, =4 b, =6 X, =6 n—x),=9

Con lo que realizando los calculos mencionados anteriormente se obtendria los

siguientes resultados:

_ Beta(a;+x;+x;,b1+(n —x)1 + (n — x);)Beta(ay, b,)
~ Beta(a; + x;,b; + (n — x);)Beta(a, + x,,b, + (n — x),)
Beta(2+ 3+ 6,8+ 12+ 9)Beta(4,6) Beta(11,29)Beta(4,6)
~ Beta(Z + 38+ 12)Beta(4 + 6,6 +9) _ Beta(5,20)Beta(10,15)
5.424 x 10711 x 0.002

4705 x 10=6 x 5.099 x 10~8
BC = t_ 1 _ 2.229
" BF 0449 7
0.3 x 0.449
P(Hy|datos) = = 0.161

0.3 x 0.449 + (1 — 0.3)
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Por tanto, tras actualizar las probabilidades a priori con los datos, se puede apreciar
gue Unicamente existe una probabilidad del 16.1% de que ambos métodos sean iguales y
como las proporciones de contadores limpios son del 0.2 y 0.4 para los métodos tradicional y
alternativo respectivamente, se puede concluir que el método alternativo es mas efectivo que
el convencional.

Por otro lado, si en lugar de proporciones puntuales quisiéramos comparar si la
diferencia de proporciones se sitla dentro de un intervalo, la técnica utilizada para realizar
dicho analisis seria ligeramente diferente. En este caso utilizaremos el mismo ejemplo y con los
mismos datos que los utilizados hasta ahora.

Sin embargo, en este supuesto nos encontrariamos con un contraste de hipétesis algo
diferente al planteado anteriormente, siendo este del tipo:

Ho: P, — Py € [P3, P4]
Hy: Py — Py & [P3, Py]

Para analizar dicho contraste y determinar en cudl de las dos hipdtesis nos
encontrariamos, seria adecuado resumir los datos que conocemos e incorporar los que
necesitariamos para este nuevo supuesto.

Para el método de limpieza tradicional se tiene una proporcién de contadores limpios
del 20%, tras analizar 15 contadores que habian sido sometidos a dicho tratamiento de
limpieza y de los cuales se consideraron significativamente limpios 3 y 12 no limpios.

Para el método de limpieza alternativo, se tiene una proporcién de contadores limpios
del 40%, tras analizar 15 contadores que habian sido sometidos a dicho tratamiento de
limpieza y de los cuales se consideraron significativamente limpios 6 y 9 no limpios.

En referencia a la hipétesis nula, se considera que se tiene una probabilidad a priori de
validez, para la misma, de q=0.3. Y en relacidn a las distribuciones a priori, recordar que se le
suponian a las distribuciones Beta con los siguientes parametros:

a1=2 b1=8 a2=4’ b2=6

Una vez recordados los datos existentes, Unicamente nos faltaria incorporar un
intervalo en el cudl queremos comprobar si se encuentra la diferencia de las proporciones
mencionadas, con lo que tras hacer un analisis de costes, con el que podriamos saber si es
rentable modificar el sistema de limpieza de contadores, observamos que si la diferencia se
encuentra entre un 0 y un 0.15, no seria rentable econdmicamente realizar el cambio de
método, mientras que si se situara fuera de dicho intervalo, si repercutiria en el aumento de
beneficios de la empresa. Por tanto, tenemos P; = 0y P, = 0.15, es decir, el intervalo seria de
entre el 0%y el 15%.

Por tanto, una vez recabados todos los datos necesarios, Unicamente quedaria evaluar
el contraste de hipodtesis de la siguiente forma:
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Inicialmente, se ha de simular n (por ejemplo 10.000) valores con una distribucion a
posteriori Beta (a1 +x4,b; + (n — xl)) que denotaremos por y, ; y otros n (los mismos que
en la simulacién anterior) valores con una distribucién a posteriori Beta (az + x5,b, +
(n— xz)) que denotaremos por y, ;. Para realizar esta simulacion es necesario la utilizacion de
un paquete estadistico como el R®, dado que de lo contrario seria practicamente inasumible.

Posteriormente, se calcula las d; diferencias, es decird; = y,; —y;;, para luego
ordenarlas de menor a mayor y de esa forma contabilizar cuantos valores menores que cada
una de las P; y P, existe, de tal forma que si dividimos dicho contador entre 10.000
obtendriamos las F(P;) y F(P,), que equivaldria a sendas distribuciones a posteriori evaluadas
en P (drea bajo la curva de densidad a posteriori que queda a la izquierda de P).

Una vez realizado dichos calculos con R®, se procederia a evaluar las siguientes
ecuaciones, en las que asumiremos las simulaciones hechas con dicho Software:

Probabilidad de la hipdtesis nula:
P(Hy) = F(P,) — F(P;) = 0.2875
Factor de Bayes a favor de la hipétesis nula:

P(Ho)

= = 0.4035
P(H,)

Probabilidad a posteriori de la veracidad de la hipdtesis nula:

qBF

PP = ————
qBF +1—q

= 0.1474

Densidad a posteriori de las diferencias
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Con lo que es 2.48 (1/BF) veces mas probable de que sea cierta la hipdtesis alternativa
a que lo sea la hipdtesis nula, es decir, es 2.48 veces mds probable que el cambio de método
de limpieza sea rentable. Por otro lado, se puede concluir que con una probabilidad a priori
como la aportada, se obtiene la probabilidad de un 14.74% de que H,, sea cierta, o lo que es lo
mismo, una probabilidad muy pobre de que la diferencia de media se sitlue en valores no
rentables.

6. Estimacion de una media (una poblacion)

Habitualmente se necesita calcular medias en lugar de proporciones, ya que la
naturaleza propia de los datos no nos lo permite, y es que en ocasiones no se pueda contar el
numero de veces que se da una cierta condicidn, sino que se trata de una variable continua
gue siempre esta presente. En estos supuestos, seria ideal estimar una media de la poblacion
general a partir de los datos observados en un estudio y si se dispone de alguna informacion
adicional (probabilidad subjetiva), ponerla de manifiesto en la estimacion.

Para ilustrar esta técnica, al igual que en las anteriores, se hard uso de un ejemplo
numérico, que facilite la comprensiéon de la misma. Por ello, supongamos que nos
encontramos ante una situacién en la que una empresa municipal de aguas desea conocer la
dureza media del agua que suministra a sus clientes, ya que si se trata de aguas muy duras,
estas tienden a realizar deposiciones calcareas y de magnesio en los contadores, haciendo que
estos contabilicen menos agua de la realmente suministrada y se estropeen antes, con el
consiguiente gasto derivado a los clientes que supone eso.

En la siguiente tabla se puede ver qué caracteristicas tienen los diferentes niveles de
dureza del agua:

Tipo de Agua Blanda Levemente dura Moderadamente dura Dura Muy dura
<17 < 60 <120 < 180 > 180

(OC[ (e ={HieM Muy Corrosiva Corrosiva neutra Incrustante  Muy Incrustante
Tabla V

En ella se expresa la dureza del agua en mg/| de carbonato calcico (CaC05) y el efecto
caracteristico que ésta tiene sobre los contadores. De tal forma que un agua muy dura y por
tanto muy incrustante es el agua que mas deposiciones calcdreas realiza sobre los contadores,
haciendo en un principio que estos cuenten mas agua de la que realmente pasa por ellos
(debido a que estrecha la cavidad por la que pasa y por tanto acelera el flujo), para luego,
acortar la vida util del contador, obligando a su renovacién prematura y por tanto aumentando
en todo su ciclo de vida el coste para el cliente final. Sin embargo, un agua corrosiva, permite
mantener los contadores mds limpios, pero deteriora el latén y diversos materiales presentes
en la mayoria de instalaciones, ademas, no tiene altos contenidos de carbonato célcico y sodio,
gue hace que el agua potable sea mas sana, con lo que tampoco seria lo ideal.

Por tanto, la empresa decide realizar un estudio con tal de conocer el indice medio de
dureza en el que se sitla el agua del municipio. Para ello ademas, tiene en consideracién un
estudio rudimentario hecho por unos analistas en practicas, unas décadas atrds, que arrojé un
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valor medio de dureza de 170 mg/|, pero dada las caracteristicas rudimentarias e inexpertas de
dicho estudio, el analistas de la empresa municipal no desean darle una posible veracidad muy
elevada, pero mucho menos despreciar la informacién que proporciona, con lo que se le
supone una probabilidad a priori de que la media es mayor que 200 mg/l de un 30%.
Adicionalmente, de acuerdo con la tabla de la distribucidn normal estdndar, el valor de z que
tiene un 30% de probabilidad a su derecha es 0.52. Asi que con los datos mencionados y
gracias al método proporcionado por Berry! se podria calcular la desviacién estandar para
dicho estudio a través de las siguientes férmulas:

z=22270_ 052 y, despejando se obtiene: s = % = 57.69

Para finalizar con la recopilacidon de datos, se decide realizar finalmente el estudio y
tras analizar 100 muestras aleatorias de agua, se ha observado que ésta presenta una dureza
media de 153 mg/l de CaC05, con una desviacion tipica de 20.37 mg/I.

Una vez acabada la recopilacién de datos se puede proceder a actualizar la distribucion
a priori, con los datos muestrales obtenidos y de esa forma obtener la distribucion normal
actualizada. Puesto que nuestra distribucién a priori es normal, se procederia a realizar los
siguientes calculos:

_ 1 _ n _ + __ Comp+cx _ 1
©T%  “Taqmy  aToTe MmETET ST
donde:

Estadistico Valor
n 100
X 153
s3 3328.136
m, 170

Tabla VI
De tal forma que:
1 n
Cop = g = 0.00003 c= @ = 0.03 ciL=¢Cy+tc= 0.03003
_ com0+cf_ _i_
my = Y - 153.017 Sp = == 5.77

Concluyéndose por tanto que la media de la distribucion a posteriori es de 153.017
mg/l de CaCO05 y la desviacion tipica a posteriori de 5.77, de tal modo que se aprecia una clara
influencia de la media muestral debido al tamafio muestral y a la poca credibilidad que se le
daba al estudio rudimentario. A su vez, en cuanto a la motivacidon del estudio, se puede
concluir que se trata de un agua dura e incrustante.

En este punto, al igual que en capitulos anteriores, se puede calcular la probabilidad de
que la media de mg/l de CaC0O3;sea menor o mayor que un valor dado, como por ejemplo, la
probabilidad de que la media se situe en el intervalo [60, 120], es decir, que el agua sea neutra,
es del 5.258 x 10~ o lo que es lo mismo, una probabilidad casi nula.
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7. Hipotesis sobre una media (una poblacion)

En este capitulo se tratard de explicar la realizacién de un test de hipdtesis de la
siguiente indole:

Ho:m =my
Hl:m * my

Como se puede apreciar, se trata de un test de hipdtesis bastante similar al explicado
en temas anteriores (3 y 5), con lo que para evitar alargar innecesariamente este trabajo, se
procedera a resumir los datos necesarios y los calculos que se han de realizar, con tal de
explicar la técnica apropiada para la realizacidn de éste test de hipédtesis y aplicarlos al ejemplo
del capitulo 6, pero con la salvedad de que en esta ocasidn, en lugar de querer estimar una
media de la dureza del agua, querriamos comprobar si esta es igual a 170 o no.

Por tanto, seria necesario recopilar los siguientes datos:

Estadistico _ Valor

n 100
X 153
o 57.69
my 170
Hy(q) 0.3
H, (o) 0.7
Tabla VIl

Y los calculos a realizar serian los siguientes:

Vn

5 €XP [— ZLGZ (x - mO)Z]

BF = - =0.95

2 ) v I 2
(%+t2)2exp _(xaz_mo)

- 2

205 +t2)

BC = ! = 1.06
"~ BF
P(H,|datos) = 9BF =0.29

(Hyldatos _qBF+(1—q)_ .

Es decir, existe una probabilidad del 29% de que la media de dureza del agua se
encuentre en 170mg/l de CaCO5.

Si por el contrario, el contraste de hipdtesis tratara de dirimir si la media se encuentra
en un intervalo o no, en lugar de tomar un valor puntual, el procedimiento cambiaria
ligeramente, de tal forma que a diferencia de lo mencionado en el supuesto anterior, en lugar
de necesitar unamg, necesitaremosm;ym,, que podrian tomar los valores 120 y 150
respectivamente, adicionalmente, para este caso se supondrd la inexistencia de informacién
previa vdlida como una distribucidn a priori, con lo que se utilizard una distribucién Uniforme
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U(0, 1), para expresar dicha desinformacién. Por tanto, nos quedariamos con el siguiente test
de hipdtesis:

Ho:m (S [m1 = 120,m2 = 150]
Hy:m & [m; = 120,m, = 150]

Y con los siguientes datos:

Estadistico valor |

n 100
X 153

o 57.69
my 120
m, 150
Hy(q) 0.3

Tabla Vil

Asi pues, para realizar este ejemplo necesitariamos proceder de manera similar a la
utilizada en el capitulo 6 (Estimacién de una media), ya que necesitariamos calcular la media
m,, y desviacion tipica s, de la distribucion a posteriori, mediante la formula para el calculo de
¢, Co Y €1 (descritas en dicho capitulo).

Cabe destacar que ¢, toma valor 0 dado que la distribucién a priori sigue una U(0, 1).
Con lo que bastaria con calcular c y obtener automaticamente c;. Pudiendo asi conocer los
valores que toman m,, y s, que seran utilizados para evaluar cada una de las F(m), es decir, la
funcién de distribucién evaluada en m, o lo que es lo mismo, el drea bajo la curva de densidad
a posteriori (con my, y s,) que queda a la izquierda de m.

Es recomendable que dichos calculos se realicen a través de algun Software estadistico,
con tal de facilitar el procedimiento. Por ello, a continuacion se procederd a resumirlos,
aunque podran verse detalladamente en el anexo de este trabajo, donde se adjuntard la
sintaxis (para R®) pertinente para desarrollar cada una de las técnicas aplicadas en los
diferentes capitulos.

Por tanto, habria que calcular las siguientes ecuaciones:
Probabilidad de la hipdtesis nula:

P(Hy) = F(my) — F(my) = 0.302
Factor de Bayes a favor de la hipétesis nula:

_ Py
P(H)

=0.432

Probabilidad a posteriori de la veracidad de la hipdtesis nula:

qBF

PP=—r—
qBF +1—¢q

= 0.156
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Con lo que es 2.315 (1/BF) veces mas probable de que sea cierta la hipdtesis
alternativa a que lo sea la hipdtesis nula. Por otro lado, se puede concluir que sin tener una
probabilidad a priori informativa, se obtiene la probabilidad de un 15.6% de que H, sea cierta.

8. Estimacion de una diferencia de medias (método exacto -
dos poblaciones)

En este capitulo, se explicard como estimar una diferencia de medias mediante el
método exacto, para dos poblaciones. Por tanto, como se ha realizado anteriormente, se
disefara un ejemplo que ayude a la comprension de dicha técnica.

Por tanto, a modo de ejemplo, supdngase que en una empresa de aguas, que acaba de
ganar un concurso publico de concesidn para el suministro en una determinada comunidad
muy segregada, desea conocer la diferencia de consumos medios de sus futuros clientes en
dos explotaciones diferentes de dicha concesién. Para asi poder prever la distribucidon de
recursos que necesitard hacer de cara al buen funcionamiento del suministro en ambas
explotaciones.

Sin embargo, al ser dos explotaciones nuevas (para la empresa), no se dispone de
datos previos, ni de ninguna posible distribucidn a priori, por lo que para la realizacién del
estudio se asumira una distribucidn Uniforme (0, 1), es decir, una distribucion no informativa.

En cuanto al disefio del estudio, dado que se trata de una regién segregada, para
ambas explotaciones se decide utilizar muestras pequeiias con el fin de no encarecer mucho el
estudio, con lo que se analiza el consumo histérico facilitados por 25 clientes escogidos al azar
en cada una de las dos explotaciones (1 y 2), de las que se desprende los siguientes datos:

Estadistico Valor

ny 25
n, 25
X 35
X, 28
s? 0.95
5% 1.05
n 10.000
Tabla IX

Una vez disefiado el estudio y adquiridos los datos, Unicamente quedaria desarrollar la
técnica que nos incumbe en este capitulo, es decir, estimar la diferencia de medias del
consumo de los clientes de las dos explotaciones, mediante el método exacto.

En primer lugar, se calcula S? =n;s? =23.75 y S2 =n,s? =26.25, para
posteriormente generar n=10.000 valores y;,, ¥, con distribucién y? conn; —1yn, — 1
grados de libertad respectivamente. Luego se generan dos juegos de n=10.000 valores con
distribucidn Normal estandar, denominados z, y z,, para poder calcular las 10.000 medias
simuladas para cada una de las dos explotaciones, con las siguientes férmulas:
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272, _ 222 | -
m1i= %“+x1 mziz %21+x2
Y1in1 Y2in2

Para finalmente obtener las n diferencias d; = my; — my;, de las que si se hace una
media, se obtendria el estimador de diferencia de medias.

Dado que dicho proceso es complejo de realizar manualmente, en este supuesto se ha
procedido a realizarlo mediante el paquete estadistico R®, con lo que Unicamente se mostrara
los resultados obtenidos:

Diferencia estimada = 6.99

Percentiles relevantes \

Area Percentil
2.5 6.611
5 6.678
10 6.760
25 6.878
50 6.993
75 7.105
a0 7.217
95 7.296
97.5 7.364

Tabla X

Densidad a posteriori de las diferencias
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Por ultimo, resefiar que la diferencia estimada se ajusta de manera casi exacta a la
diferencia que saldria de las dos medias muestrales y que de la distribucion empirica a
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posteriori de las diferencias es posible obtener estimaciones (no paramétricas) de interés,
como pueden ser los percentiles detallados en la tabla anterior.

9. Estimacion de una diferencia de medias (método
aproximado - dos poblaciones)

Para estimar una diferencia de medias de dos poblaciones mediante el método
aproximado, se utilizard el ejemplo explicado en el capitulo anterior, referente al método
exacto. Utilizando exactamente los mismos valores muestrales, pero con la salvedad de que en
este caso, se planteara tres hipdtesis diferentes. Una en la que no se aporte una distribucién a
priori informativa (como en el caso del capitulo 8), otra en la que se aporta una distribucién
informativa, mediante la aportacidon de una media y un desviacion tipica, para cada una de las
poblaciones y por ultimo, otra hipdtesis, en la que se aportard una distribucién a priori
informativa, pero mediante unos determinados valores concretos para cada una de las
muestras, con sus respectivas probabilidades, es decir el area que se encuentra a la izquierda
de esos puntos.

Para el primero de los casos, dado que la distribucién a priori no es informativa,
Unicamente necesitaremos los datos procedentes de la muestra, es decir:

Estadistico Valor

ny 25
n, 25
X 35
X, 28
s? 0.95
5% 1.05
n 10.000
Tabla XI

Una vez recopilados los datos, se procede al calculo de los estadisticos pertinentes con
tal de estimar la diferencia de la media de consumo, en este caso, mediante el método
aproximado. Para ello, cabe recordar que al no tener una distribucién a priori informativa,
Unicamente habria que calcular ¢ y no ¢y, con lo que c; equivaldria a c, que se calcula, para
cada una de las poblaciones (explotaciones) de la siguiente forma:

n

c()=—2——5=2471 ¢(2) =—2—=12236
s2(1+2%) 3(1+25)
ny nz
Una vez obtenidos los resultados de las c, se puede proceder a calcular las

desviaciones tipicas a posteriori de cada una de las poblaciones (S, y S,2), para luego,
calcular la desviacién tipica a posteriori global, denominada s:

1 1

Sp1 = 7o =0.20 Sp2 = 7 =021  s=,/S,1+5,,=0.29
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Para el calculo de las medias a posteriori, dado que no hay probabilidad a priori
informativa, éstas equivalen a las medias muestrales, de tal forma que Unicamente habria que
calcular la media conjunta de la diferencia de medias, para asi obtener la media a posteriori, es
decir:

m=my; — My, =7

Asi pues, se puede concluir que la distribucidn a posteriori sigue una Normal (7,0.3) y
guedaria representada de la siguiente forma:

Distribucion normal de la diferencia - Posteriori

Density
04 08 10 12
|

0.2

T T T T T
6.0 65 70 75 80

N=10000 Bandwidth=0.04203

Grdfica 9

Una vez alcanzado este punto, es posible calcular, tanto el intervalo de credibilidad de
por ejemplo a = 0.05, que es [6.428, 7.572], o algunos puntos de interés, como pueden ser los
percentiles relevantes, que se muestran a continuacion:

Percentiles relevantes

Area Percentil
2.5 6.428
5 6.520
10 6.626
25 6.803
50 7.000
75 7.197
90 7.374
95 7.480
97.5 7.572

Tabla Xl

Si por el contrario, existieran conocimientos previos sobre la materia estudiada y se
pudiera aportar cierta informacién subjetiva, ésta podria también incluirse en el analisis, por
ejemplo, conociendo directamente las medias y desviaciones tipicas que presentan cada una
de las poblaciones en estudio, con lo que a los datos muestrales mencionados anteriormente,
habria que afadir dichos parametros de la distribucién a priori, que por ejemplo puede seguir
una distribucién Normal con:
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Estadistico Valor

ny 25
ny 25
X1 35
Xy 28
s? 0.95
5% 1.05
my 32
m, 25
Sq1 1
S, 1.25
n 10.000
Tabla Xl

Dado que en este supuesto si disponemos de informacidn previa, podemos calcular las
C, Co Y ¢4 para cada una de las explotaciones (poblaciones), como se puede apreciar a

continuacion:

c()=—"25=2471 c(1)=-=1 c1(1) = co(1) + c(1) = 25.71
S% 1+? 1

c(2)=—"5=2236  ¢(2) = Si =064  ¢;(2) =co(2) + c(2) = 23.00
sz(1+—) 2
2\ 1,2

A su vez, es posible calcular las medias y desviaciones tipicas a posteriori, para ambas

poblaciones:

1 1
Spl = _ﬁ = 0.20 sz = m =0.21 S = wlspl + sz = 0.29

co(L)ymq+cxy
c1(1)

co(2)my+cx,

=34.88  my, = T

My, = =2811 m=my —my, =6.77

Con lo que una vez llegado a este punto, al igual que en el supuesto anterior podemos
calcular, tanto el intervalo de credibilidad de por ejemplo a« = 0.05, que es [6.209, 7.335], o
algunos puntos de interés, como pueden ser los percentiles relevantes, que se muestran a

continuacion:

Percentiles relevantes

Area Percentil
2.5 6.209
5 6.300
10 6.404
25 6.578
50 6.772
75 6.966
a0 7.140
95 7.244
97.5 7.335

Tabla XIV
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Que como puede apreciarse, si se compara con la tabla de percentiles relevantes del
supuesto anterior, los percentiles se han modificado ligeramente a la baja, a causa de la

influencia dada por la distribucidon a priori.

Por ultimo, podria darse el caso en el que la distribucién a priori no se proporcionara
mediante los valores de las medias y desviaciones tipicas de cada una de las poblaciones, sino
que esta fuera dada mediante unos valores concretos y unas probabilidades para dichos

puntos.

Para poder ilustras este ultimo supuesto, consideraremos los datos anteriores, con la
Unica salvedad de que los datos relativos a las distribuciones a priori son distintos. Se puede

apreciar los datos en la siguiente tabla:

Estadistico Valor Estadistico Valor

nq 25 D11 0.3
n, 25 X12 34
Xy 35 P12 0.6
X, 28 X1 22
s? 0.95 D21 0.3
s2 1.05 X3 27
X11 32 D22 0.3
Tabla XV

En este caso el proceso variaria ligeramente, ya que hay que calcular previamente las
medias y desviaciones tipicas a priori. Para ello, en un primer instante hay que calcular la

inversa de la distribucién normal estandar aplicada a la probabilidad p; (i=1, 2), es decir, ; =
¢~ (02)-
lpll = _0524' l/)lz = 0253 l/)21 = _0524 l/)zz = 0253

Una vez obtenido dichos célculos, se procede a evaluar las desviaciones tipicas y

medias a priori de la siguiente forma:

501 = M = 2572 m01 =X11— SOlll)ll = 32885
¢11_¢12

SOZ = M = 6429 moz = le - 502¢21 = 25371
1/)21_11)22

A partir de este punto, el proceso es idéntico al utilizado en el supuesto anterior, es

decir:
c(1)=—"2—5=2471 ¢y(1) ==0.15 1 (1) = co(1) + c(1) = 24.86
st(1+:2) '
c@)=—"25=2236 c(2)=-=002  c1(2)=co(2)+c(2) =2238
S%(l‘l'? 2
S, =—

1
=75 =020 Spp=T==021 5=/5,¥5,,=029

my+cXy 2)my+cXy
mpy = UL = 3498 my, = 2O = 2801 m=mpy —my, = 6.98
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Quedandonos en este supuesto con una media de 6.98 y una desviacidn tipica de 0.29,
para la distribucidn a posteriori Normal. Y con los siguientes percentiles relevantes:

Percentiles relevantes

Area Percentil
2.5 6.411
5 6.503
10 6.608
25 6.785
50 6.982
75 7.178
90 7.355
95 7.461

97.5 7.553

Tabla XVI
10. Hipotesis de una diferencia de medias (dos

poblaciones)

Para el desarrollo de esta ultima técnica, se utilizard un ejemplo genérico, en el que se
proporcionara Unicamente los datos necesarios para su desarrollo. Por tanto, atendiendo al
siguiente contraste de hipdtesis:

Hy:D € [dy = 2.5,d, = 5]
Hl:D & [dl = 25, dz = 5]

Se recaban los siguientes datos:

Estadistico Valor

ny 15
ny 15
X1 18
X 24
s? 2.3
5% 3.4

n 10.000

q 0.4

Tabla XVII

Y se procede a analizarlos de manera similar a la utilizada en los capitulos 7 (Hipdtesis
sobre una media) y 8 (Estimacion de la diferencia de medias por el método exacto), de tal
forma que en primer lugar, se calcula S2 = n,s? = 34.5y S? = n,s? = 51, para
posteriormente generar n=10.000 valores y;,,, ¥, con distribucién y? conn; —1yn, — 1
grados de libertad respectivamente. Luego se generan dos juegos de n=10.000 valores con
distribucidn Normal estandar, denominados z; y z,, para poder calcular las 10.000 medias
simuladas para cada una de las dos explotaciones, con las siguientes férmulas:
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272, _ 2z%,  _
my = [+ my = [+
Y1t Y2in2

Para finalmente obtener las n diferencias d; = my; — my;, de las que si se hace una
media, se obtendria el estimador de diferencia de medias (en valor absoluto resulta ser 6.07).

Hasta aqui, el proceso es idéntico al utilizado en el capitulo 8 y a partir de este
momento, se asemeja al realizado en el capitulo 7 (con alguna salvedad), es decir, se realizan
los siguientes calculos:

Probabilidad de la hipdtesis nula:
P(H,) = F(d,) — F(d,) = 0.006

Para lo cual se ha tenido que calcular la funcién de distribucidén evaluada en d;,
mediante la distribucidon empirica de las diferencias entre las dos medias.

Factor de Bayes a favor de la hipétesis nula:

_ P(Hy)

= = 0.006
P(H,)

Probabilidad a posteriori de la veracidad de la hipdtesis nula:

qBF

PP = ———-——
qBF +1—¢q

= 0.004

Dada la complejidad de los calculos realizados para esta técnica, seria apropiado la
utilizacion de algun Software estadistico que permita ejecutar cdlculos masivos, como los
empleados. A modo de ejemplo, en el Anexo se adjuntardn la sintaxis utilizada para realizar
dichos calculos, paso a paso.

11. Aplicaciéon de las técnicas explicadas en R®

Dada la versatilidad y gratuidad del paquete estadistico R®, éste puede considerarse
un Software altamente apropiado para aplicar las diferentes técnicas estudiadas a lo largo de
este trabajo. Por ello esa razdn, a continuacion se hara un resumen de alguna de esas técnicas,
explicando la sintaxis que se ha de utilizar para calcular los diferentes estadisticos utilizados en
los capitulos anteriores.

Una técnica muy utilizada y de gran utilidad para la estadistica bayesiana son las
graficas referentes a la distribucion Beta(a, b), distribucién muy recurrida para expresar la
probabilidad a priori. Esta distribucion, se puede expresar graficamente en R® de la siguiente

manera:

‘ x <- seq(0, 1, length = 1025) #Proporciona valores al eje X
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y1 <- dbeta(x, 4, 1) #Calcula la densidad de la Beta (4, 1)

plot(y1, col="red", type="1", xlim=c(-10,1010), ylim=c(0,7), main="Ejemplo Distribucidn Beta (4, 1)")

Ejemplo Distribucion Beta (4, 4)

T T
0 200 400 600 800 1000

Index

Grdfica 10

Como se puede apreciar, en un primer instante se ha generado un vector con 1025
valores entre 0 y 1 (x), para luego calcular la distribucién de densidad de una Beta (4, 1), para
cada uno de los valores ‘x’. Por ultimo, se ha dado la instruccidn pertinente para que dibuje la
curva relativa a la distribucion de densidad Beta calculada anteriormente, con las indicaciones
de que dibujara la linea de color rojo, con una linea continua y que la gréfica mostrara
Unicamente el rango [-10, 1010], para el eje ‘X’ y el rango [0, 7], para el eje ‘y’. Terminando por
incluirle un titulo a la gréfica.

Si por el contrario se desea expresar varias curvar de densidad de una Beta en una
misma grafica, la sintaxis a utilizar seria la siguiente:

x <- seq(0, 1, length = 1025) #Proporciona valores al eje X
y1 <- dbeta(x, 4, 4) #Calcula la densidad de la Beta (4, 4)
y2 <- dbeta(x, 4, 1) #Calcula la densidad de la Beta (4, 1)
y3 <- dbeta(x, 1, 1) #Calcula la densidad de la Beta (1, 1)
y4 <- dbeta(x, 1, 4) #Calcula la densidad de la Beta (1, 4)

plot(y1, col="red", type="I", xlim=c(-10,1010), ylim=c(0,7), main="Ejemplos Distribucidn Beta")
lines(y2, col="black", type="1") #Afiadir la curva de la Beta y2

lines(y3, col="green", type="1") #Afiadir la curva de la Beta y3

lines(y4, col="blue", type="1") #Afiadir la curva de la Beta y4

legend("top", paste0("beta", c("(4,4)","(4,1)","(1,1)","(1,4)")),

col=c("red","black","green","blue"), Ity=1, bty = "n") #Crear la leyenda explicativa de las curvas
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Ejemplos Distribucion Beta

~ o — beta(4,4)
— beta(4,1)

beta(1,1)
©o - — beta(1,4)
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Grdfica 11

En este caso, se ha reproducido lo mencionado para la grafica anterior, pero con la
salvedad de que se ha generado cuatro distribuciones de densidad (y;) distintas de la
distribucidn de probabilidad Beta y que posteriormente se ha afiadido cada una de las y; a la
grafica con el comando ‘lines’. Por ultimo, se ha generado una leyenda que identifique cada
una de las y;.

Otra técnica de gran utilidad y muy utilizada en la estadistica bayesiana son los
intervalos de credibilidad de mayor densidad posible:

a<- 15 #Valor a de la Beta
b <- 165 #Valor b de la Beta
alfa <- 0.05 #Nivel de significacion
f <- function(x){
(dbeta(x[2], a, b) - dbeta(x[1], a, b))*2 +
(pbeta(x[2], a, b) - pbeta(x[1], a, b) -1 + alfa)”2

} #Funcidn para desarrollar los intervalos de credibilidad
res <- optim(c(a/(a+b), a/(a+b)), f) #Eleccion del intevalo de mayor densidad
x <- 1:100 / 100 #Valor dado al eje X
plot(x, dbeta(x, a, b), type ="1", ylab = "densidad") #Grafica de densidad de la distribucién Beta
lines(c(resSpar[1], resSpar[1]),

c(0, dbeta(resSpar[1], a, b)), col = "red")
lines(c(resSpar[2], resSpar[2]),

c(0, dbeta(resSpar[2], a, b)), col = "red")

lines(c(resSpar[1], resSpar[2]),

38




rep(dbeta(resSpar[2], a, b), 2), col = "red") # Diferentes lineas que crean graficamente el intervalo

res # Resultados numéricos del intervalo de probabilidad

15

densidad
1

0.00 005 010 015 020

Grdfica 12

En este caso, se ha empezado por establecer los parametros de la distribucion Beta
para la que se desea calcular el intervalo de credibilidad y el nivel de significa al que se desea
obtener. A continuacidn, se ha desarrollado una funcidon que permita calcular el propio
intervalo de credibilidad, que serd usada en la sentencia siguiente, donde se busca el intervalo
de probabilidad de mayor densidad y por tanto el mas corto, con un nivel de significacién igual
al especificado al inicio. Por ultimo, se procede a dibujar la curva de densidad de la distribucion
Beta, mas el marco en el que se encuentra el intervalo de credibilidad (en rojo). Para terminar
mostrando los resultados numéricos del intervalo, entre ellos los limites inferior y superior del
susodicho.

Por otro lado, en cuanto a las diferentes técnicas explicadas a lo largo de este trabajo,
cabe mencionar que éstas han sido calculadas de manera cuasi ‘manual’, con tal de hacer mas
comprensible el proceso por el cual se llega a los resultados finales, por lo que se adjuntard la
sintaxis que las desarrolla en el anexo final, para asi evitar enturbiar este trabajo.

Por ultimo, cabe destacar que en el paquete estadistico R® existen innumerables
librerias dedicadas a la estadistica bayesiana, que son capaces de ejecutar internamente los
calculos necesarios, evitando de ese modo la necesidad de hacerlo ‘manualmente’, pero dado
que el espiritu de este trabajo ha sido explicar cada una de las técnicas de la manera mas
detallada posible, no se considera pertinente desarrollar dichas técnicas utilizando librerias
gue ‘automaticen’ el proceso.

12. Conclusiones

Como se ha podido apreciar a lo largo de este trabajo, la versatilidad de la estadistica
bayesiana nos permite poder ampliar los conocimientos adquiridos mediante el muestreo
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estadistico, con los posibles conocimientos previos existentes sobre la materia que se estudia,
evitando de esa manera que se pierda o desaproveche informacién existente.

Adicionalmente, la estadistica bayesiana tiene una gran ventaja, como alternativa a la
estadistica frecuentista y es que permite analizar muestras pequenas sin que esto sea un
perjuicio de cara a la estimacion “insesgada” de los estadisticos de interés, como se ha podido
comprobar a lo largo de este trabajo. Sin embargo, cuando se trata de analizar muestras
considerablemente grandes, el método bayesiano no presenta resultados significativamente
distintos al método frecuentista debido a que la verosimilitud de los datos muestrales tienen
un elevado peso en el global del andlisis y por tanto, que en dichos supuestos, sea
practicamente igual considerar un método que el otro.

En otro orden de ideas, el método bayesiano habitualmente conlleva célculos
computacionales complejos, hecho que histéricamente ha sido considerado como un handicap.
Sin embargo, en la actualidad, gracias a la existencia de herramientas informaticas avanzadas
al alcance de los investigadores, (como puede ser el paquete estadistico R®, explicado en el
capitulo anterior) es posible realizar dichos calculos en un periodo de tiempo breve.
Facilitando de ese modo la implantacion de las técnicas propias de la estadistica bayesiana,
donde es habitual realizar multiples simulaciones, como se ha visto a lo largo de los ejemplos
utilizados en este trabajo, donde se llegd a generar en mas de una ocasién, para una misma
técnica hasta 4 simulaciones de 10.000 valores.

Por otro lado, dado el caracter subjetivo que tiene la distribucidon a priori, cabe
destacar que los estudios llevados a cabo mediante técnicas propias de la estadistica bayesiana,
deben ser tratados con el mayor rigor cientifico posible, ya que se trata de una técnica de gran
utilidad y por tanto no debe verse empafiada por probabilidades subjetivas sesgadas. Aunque,
como se menciond anteriormente, esta posibilidad se ve controlada por la implementacién de
los datos muestrales que actualizan la susodicha distribucion a priori.

Por todo ello, cabe destacar que la existencia y uso de la estadistica bayesiana puede
ser considerada de gran utilidad, tanto en aquellos supuestos en los que la posibilidad de
obtener muestras considerables es casi nula y por tanto no es posible la utilizacién de la
estadistica frecuentista con garantias, como en los casos en los que el investigador puede
aportar informacion relevante sobre la materia estudiada, enriqueciendo de esa manera el
estudio realizado con dicha informacién adicional. Pudiendo por tanto coexistir ambos
métodos sin que haya ninglin impedimento, ya que estos pueden llegar a considerarse
complementarios, existiendo la posibilidad de ser usados en partes distintas del proceso
investigativo y utilizdndose segln en qué situaciones uno u otro método.
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Anexo:

## Graficas ##
x <-seq(0, 1, length = 1025)
y1 <- dbeta(x, 4, 4)
y2 <- dbeta(x, 4, 1)
y3 <- dbeta(x, 1, 1)
y4 <- dbeta(x, 1, 4)
plot(y1, col="red", type="1", xlim=c(-10,1010), ylim=c(0,7), main="Ejemplos Distribucion Beta")
lines(y2, col="black", type="1")
lines(y3, col="green", type="1")
lines(y4, col="blue", type="1")
legend("top", pasteO("beta", c("(4,4)","(4,1)","(1,1)","(1,4)")),
col=c("red","black","green","blue"), Ity=1, bty = "n")
## Intervalo de Credibilidad ##
a<-15
b <- 165
alfa <- 0.05
f <- function(x){
(dbeta(x[2], a, b) - dbeta(x[1], a, b))*2 +
(pbeta(x[2], a, b) - pbeta(x[1], a, b) -1 + alfa)*2
}
res <- optim(c(a/(a+b), a/(a+h)), f)
x <- 1:100 / 100
plot(x, dbeta(x, a, b), type ="I", ylab = "densidad")
lines(c(resSpar[1], resSpar[1]),
c(0, dbeta(resSpar[1], a, b)), col = "red")

lines(c(resSpar[2], resSpar[2]),
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c(0, dbeta(resSpar[2], a, b)), col ="red")
lines(c(resSpar[1], resSpar([2]),
rep(dbeta(resSpar[2], a, b), 2), col = "red")
res
## C.H. Prop. Una Poblacion ##
P0=0.7
e=11
n=29
f=n-e
a=3.5
b=1.5
g=0.8
betaAB=(gamma(a)*gamma(b))/(gamma(a+b))
betaAeBf=(gamma(a+e)*gamma(b+f))/(gamma(a+e+b+f))
arriba=(P0”e)*((1-P0)"f)*betaAB
abajo=betaAeBf
BF=(arriba)/(abajo)
BF
BC=1/BF
BC
PdeH=(q*BF)/(q*BF+(1-q))
PdeH
## C.H. Prop. Intervalo de Una Poblacién ##
P1=0.45
P2=0.75
e=54

n=120
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f=n-e

a=7.5

b=17.5

g=0.9

Fpl=pbeta(P1, a+e, b+f)
Fp2=pbeta(P2, a+e, b+f)
PH=Fp2-Fp1

PH

BF=PH/(1-PH)

BF

PP=(q*BF)/(q*BF+1-q)

PP

## Diferencia de Prop. de Dos Poblaciones ##
p1l <- rbeta(10000,71,170)

p2 <- rbeta(10000,137,108)

dif <- p1-p2

difmas0 <- dif[dif >= 0]

prob <- length(difmas0)/10000
prob

quantile(dif,c(0.025,0.975))

## CH Diferencia de proporciones dentro de un intervalos Dos poblaciones ##

n =10000
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el=30
f1=10
a2 =57
b2 =38
e2=24
f2=16
y1 =rbeta(n, al+el, b1+f1)
y2 =rbeta(n, a2+e2, b2+f2)
d =yly2
plot(density(d))
d.ord=sort(d, decreasing=FALSE)
plot(density(d.ord))
j=NULL
i=NULL
for (i in 1:10000)
{
if (d.ord[i] <= p3) j=i
}
j
k=NULL
i=NULL
for (i in 1:10000)
{
if (d.ord[i] <= p4) k=i
}
k

Fp3 = j/10000
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Fp4 = k/10000

PH = Fp4-Fp3

PH

BF = PH/(1-PH)

BF

PP =(q*BF)/(q*BF+1-q)
PP

## CH de una media dentro de un intervalos Una poblacion ##

ml =170
m2 =178
q =0.8
media =176
var =372

n =10

¢ =n/(var*(1+(20/n"2))*2)
mp = media

sp = 1/sqrt(c)

F.m1 = pnorm(m1, mp, sp)
F.m2 = pnorm(m2, mp, sp)
PH = F.m2-F.m1

PH

BF = PH/(1-PH)

BF

PP = (q*BF)/(q*BF+1-q)

PP
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