
 

 

 

 

 

 

Introducción a la Estadística Bayesiana 

Trabajo Fin de Grado 

Grado de Estadística Aplicada 

Curso 2014/2015 

Autor: Dailos Castellano Marrero 

Tutor: Xavier Bardina i Simorra 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Resumen 

El objetivo del presente trabajo es explicar de manera detallada y paso a paso 

diferentes técnicas utilizadas para estimar estadísticos y realizar contrastes de hipótesis 

referentes a proporciones y medias. Para ello se utilizarán técnicas propias de la estadística 

bayesiana, con lo que a priori se explicará las características destacables de esta corriente 

estadística y sus posible puntos fuertes, para a posteriori desarrollar una serie de situaciones 

en las que se precisaría de un análisis estadístico, con tal de estimar ciertos estadísticos o 

contrastar determinadas hipótesis, utilizando en todo caso, ejemplos numéricos que faciliten 

la comprensión de las explicaciones que a su vez puedan demostrar la idoneidad de la 

estadística bayesiana en determinadas circunstancias. 

 

Resum 

 L'objectiu del present treball és explicar de manera detallada i pas a pas diferents 

tècniques utilitzades per estimar estadístics i realitzar contrastos d'hipòtesis referents a 

proporcions i mitjanes. Per a això s'utilitzaran tècniques pròpies de l'estadística bayesiana, 

amb el que a priori s'explicarà les característiques destacables d'aquest corrent estadístic i els 

seus possibles punts forts, per a posteriori desenvolupar una sèrie de situacions en les quals es 

precisaria d'una anàlisi estadística, amb tal d'estimar certs estadístics o contrastar 

determinades hipòtesis, utilitzant en tot cas, exemples numèrics que facilitin la comprensió de 

les explicacions que al mateix temps puguin demostrar la idoneïtat de l'estadística bayesiana 

en determinades circumstàncies. 

 

Abstract 

 The objective of this dissertation is to explain, step by step and in detail, several 

techniques used to estimate statistics and to perform statistical hypothesis testing of 

proportions and means. To that end, techniques of Bayesian statistics will be used so we will 

first explain the main characteristics for this trend and its possible strong points. After this, we 

will explain several situations that require a Bayesian analysis in order to estimate some 

statistics or compare some hypothesis.  Numerical examples will always be used in order to 

provide an easy comprehension of the explanations which will prove the suitability of Bayesian 

statistics for some particular cases. 
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1. Conceptos generales 
 

Teorema de Bayes 

El teorema de Bayes fue desarrollado por Thomas Bayes en 1763 y con él se expresa la 

probabilidad condicional de un evento aleatorio A dado otro evento B, mediante la 

distribución de probabilidad condicional del evento B dado A y la distribución de probabilidad 

marginal de sólo A. 

Dicho de otro modo, sea {𝐴1, 𝐴2, … , 𝐴𝑖 , … , 𝐴𝑛} un conjunto de sucesos mutuamente 

excluyentes y exhaustivos, y tales que la probabilidad de cada uno de ellos es distinta de cero. 

Sea B un suceso cualquiera del que se conocen las probabilidades condicionales 𝑃(𝐵|𝐴𝑖). 

Entonces, la probabilidad 𝑃(𝐴𝑖|𝐵) viene dada por la expresión: 

𝑃(𝐴𝑖|𝐵) =
𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐵)
 

donde: 

  𝑃(𝐴𝑖) son las probabilidades a priori. 
 𝑃(𝐵|𝐴𝑖) es la probabilidad de 𝐵 en la hipótesis 𝐴𝑖. 
 𝑃(𝐴𝑖|𝐵) son las probabilidades a posteriori. 

Por tanto, el teorema de Bayes hace uso de probabilidades a priori, que son 
probabilidades subjetivas, que se desarrollan a continuación,  probabilidad de B en la hipótesis 
𝐴𝑖, verosimilitud propia de la muestra, y una distribución a posteriori, que se alcanza mediante 
el producto de las dos anteriores ponderadas según la verosimilitud propia de la muestra. 

Además, cabe destacar que, cuando 𝐴1, 𝐴2, … , 𝐴𝑘  son k sucesos mutuamente 
excluyentes, uno de los cuales ha de ocurrir necesariamente; entonces, la ley de la 
probabilidad total establece que: 

𝑃(𝐵) = ∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

𝑘

𝑖=1

 

En el caso continuo, sería: 

𝑃(𝐵) = ∫ 𝑃(𝐵|𝑥)𝑓(𝑥)
Ω

 

Donde 𝑓(𝑥) es la función de densidad de una variable aleatoria X evaluada en x, 
𝑃(𝐵|𝑥) es la probabilidad de B suponiendo que X=x  y Ω es el posible espectro de valores 
continuos que puede tomar X. 

Dando lugar a la siguiente modificación de la regla o formula de Bayes: 

𝑃(𝐴𝑖|𝐵) =
𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑘
𝑖=1

 ó 𝑃(𝐴𝑖|𝐵) =
𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

∫ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)
𝑘

𝑖=1
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Probabilidad subjetiva 

La estadística Bayesiana se basa en la interpretación subjetiva de la probabilidad. Para 

ello utiliza la percepción existente, por parte del investigador, como una variable modificadora 

(distribución a priori) de los datos muestrales, que dan lugar a una distribución (distribución a 

posteriori) con la que formular inferencias con respecto al parámetro de interés. 

El hecho de amoldar los datos muestrales obtenidos en función del criterio del 

investigador convierte a la estadística Bayesiana en un instrumento altamente controvertido, 

dado que esto puede interpretarse, como que la estadística bayesiana manipula los datos 

muestrales con el fin de demostrar lo que uno quiere en lugar de dejar que los datos, por sí 

solos, demuestren o no el objeto de estudio. 

Sin embargo,  la aportación subjetiva del investigador no tiene que ser de por sí 

negativa o ser considerada manipuladora (en su sentido más peyorativo), ya que esta 

aportación subjetiva que realiza el investigador puede darse a causa de conocimientos previos 

adquiridos a través de otros estudios anteriores o por la intuición del profesional, que a diario 

observa la situación objeto de estudio. 

Por ello la probabilidad subjetiva no debe ser interpretada, de por sí, como un 

instrumento inválido que únicamente pretende manipular el método científico, dado que esta 

puede aportar beneficios al propio método, además de poder ser contrastado a posteriori, con 

tal de dar validez a la probabilidad subjetiva utilizada en el proceso. 

A su vez, una problemática existente en numerosas ocasiones es que las muestras son 

muy pequeñas, con lo que no se cumple los requisitos exigibles por el Teorema Central del 

Límite, que nos indica que si 𝑛 es suficientemente grande, la variable aleatoria 𝑋̅ = ∑ 𝑋𝑖
𝑛
𝑖=1 /𝑛 

tiene aproximadamente una distribución normal con 𝜇𝑋̅ = 𝜇 y 𝜎𝑋̅
2 = 𝜎2/𝑛. Al mismo tiempo, 

no siempre se puede conocer la distribución que sigue la muestra y los experimentos no se 

pueden repetir. Requisitos que no son exigibles para la estadística  Bayesiana, con lo que 

puede ser una herramienta de gran utilidad, si no única, en ciertas condiciones. 

 Dicho lo anterior, se puede comenzar a discernir el concepto de  distribución a priori, 

ésta se puede comprender como una distribución que modela los datos muestrales en función 

de los conocimientos previos existentes, como por ejemplo estudios realizados anteriormente 

sobre la materia de interés o simplemente, por la intención de aportar cierta información que 

el investigador considera oportuna. 

Por ello,  si considera una muestra, que puede ser o no aleatoria 𝑿 = (𝑋1, … , 𝑋𝑛) con 

densidad discreta o continua  en la familia 𝑓(𝑥, 𝜽), con 𝜽 = (𝜃1, … , 𝜃𝑘)𝜖 Θ ⊂ ℝk.  Suponiendo 

que se tiene información previa sobre 𝜽. Esta información está expresada por medio de una 

distribución sobre 𝜽 y es esta distribución la que  denominamos distribución a priori. 

En conclusión, la distribución a priori lo que pretende es aportar información adicional 

a los datos extraídos de la muestra, de tal forma que complementen la información obtenida 

de ellos. 
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Distribución a Posteriori 

 Por otro lado, la distribución a posteriori 𝑝(𝜽|𝑥) es, por la ley multiplicativa de la 

probabilidad,  el producto de la  función de distribución de probabilidad 𝑝(𝜽) y la función de 

verosimilitud 𝑝(𝑥|𝜽). 

 Dicho de otro modo, la probabilidad a posteriori es aquella que resulta de aplicarle 

conjuntamente la probabilidad a priori (probabilidad subjetiva) y la verosimilitud de los datos 

(transformación de los datos experimentales en función de la probabilidad subjetiva), entre la 

probabilidad de los propios datos experimentales. 

Intervalo de Probabilidad 

 En la estadística bayesiana, se conoce por intervalo de probabilidad a algo similar a lo 

que se conocería como intervalo de confianza en la estadística Frecuentista.  

Del lado Frecuentista, el intervalo de confianza hace referencia a probabilidad de que 

el estimador calculado se encuentre dentro de dos niveles considerados de confianza, donde la 

confianza dada a este intervalo suele ser, por ejemplo, del 95%. Dicho de otro modo, si 

repitiéramos el experimento en multitud de ocasiones,  el estimador calculado se encontraría 

dentro del intervalo en el 95% de las ocasiones, mientras que el 5% de las ocasiones 

estaríamos estimando erróneamente. 

  El enfoque bayesiano por el contrario es algo distinto, ya que, el método utilizado para 

su cálculo sería mediante la curva de la función de densidad que se obtiene a posteriori, donde 

el área bajo dicha curva y entre unos ciertos valores X e Y  con cierta probabilidad (por ejemplo, 

del 95%) constituyen el intervalo de probabilidad del 95%, entre los mencionados puntos (X, Y). 

Una vez conocido alguno de los conceptos generales necesarios para poder 

comprender, de manera básica, la estadística bayesiana. Resulta pertinente pasar a explicar las 

diferentes técnicas que se pueden aplicar con tal de calcular diferentes estadísticos, según se 

precise y en función de la necesidad que se pudiera tener en determinados estudios.  

Adicionalmente, caber reseñar que en el último capítulo se hará un resumen de las 

técnicas aplicadas en los temas que se desarrollaran de aquí en adelante, utilizando la 

herramienta de análisis estadístico R®, en su versión 3.1.2 de 64-bit. 

2. Estimación de una proporción (una población) 
 

A modo de ejemplo, supongamos que se desea estimar la proporción de fraudes 

cometidos por los clientes de una determinada empresa de aguas, donde alguno de sus 

clientes, con tal de pagar menos en el recibo mensual de agua, manipulan los contadores para 

hacer que estos contabilicen menos agua de la que realmente se les suministra. 

Para asumir dicho ejemplo, vamos a suponer que tras un pequeño estudio llevado a 

cabo en la ciudad donde la empresa de aguas proporciona el servicio, se ha obtenido los 

siguientes resultados. De los 1.300.000 puntos de suministro que tiene la empresa, se ha 
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escogido al azar una muestra de 150 puntos donde realizar una inspección con tal de observar 

si, en cada uno de ellos, se está cometiendo algún tipo de fraude, observando que en 12 de los 

cuales, efectivamente se cometía fraude. 

Por otro lado, como se ha mencionado anteriormente, en la estadística bayesiana nos 

encontramos con la necesidad de tener una probabilidad a priori de la proporción 𝜃 (conocida 

por las observaciones o estudios que se han realizado previamente) que nos da la posibilidad 

de “modificar” o “actualizar” los datos que se han obtenido a partir del estudio realizado, de 

manera que a la observación realizada, se le pueda incorpora el conocimiento previo existente. 

De ahí que sea necesaria la aportación de una tasa que sirva de referencia, con lo que para 

apoyar el estudio se ha solicitado a una asociación de empresas de aguas del país a la que 

pertenece la empresa, que se facilite la tasa de fraude habitual del país. Dicha tasa de fraude 

es del 10%.  

Como dicha tasa se trata de una aproximación adquirida por los conocimientos de 

otros estudios realizados por entes del entorno, ésta no carece de cierta incertidumbre, con lo 

que cabría esperar que la tasa también pudiera ser de 8% ó de un 12%, siendo igual de 

verosímiles que la proporcionada por la asociación. Mientras que gracias al dato aportado por 

estos, se sabe que tasas de 50% o más son altamente improbables. 

Con lo mencionado hasta el momento ya podemos decir que ya se dispone de todos 

los datos necesarios para estimar la proporción de fraude de la ciudad, de tal forma que 

únicamente faltaría desarrollar la distribución a priori a partir de los datos obtenidos y así 

poder calcular definitivamente la proporción de fraudes que se comete en la ciudad en estudio. 

Gracias a los datos recabados, partimos de la base de que la proporción de fraudes 

puede estar en torno al 10%, con lo que moviéndonos entorno a dicha proporción y en función 

de la lógica planteada anteriormente con respecto a los demás valores verosímiles, podemos 

crear la siguiente tabla con los posibles modelos. 

 6% 8% 10% 12% 14% 

𝑃(𝜃) 0.1 0.2 0.4 0.2 0.1 
Tabla I 

De la cual podemos conocer el valor esperado de 𝜽 mediante la siguiente fórmula: 

𝑃(𝜃) = ∑ 𝜃𝑖𝑃(𝜃𝑖)𝑘
𝑖=1 , 

Donde k son los posibles valores de 𝜃: 𝜃1, 𝜃2, … , 𝜃𝑘 y cumplen la condición: 

∑ 𝑃( 𝜃𝑖) = 1

𝑘

𝑖=1

 

Por tanto, el valor esperado de 𝜽 es: 

E(θ) = (0.06)(0.10) + (0.08)(0.20) + (0.10)(0.40) + (0.12)(0.20) + (0.14)(0.10) = 0.10 

Se puede apreciar, que el valor esperado de la función de probabilidad a priori, refleja 

claramente la apreciación existente de que la tasa de fraude se encuentra en torno al 10%. Al 
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mismo tiempo, se observa que los posibles valores dados a las proporciones se sitúan muy 

cercanos a ese mismo 10%, lo que indica que la dispersión dada a la probabilidad a priori es 

bastante corta, es decir, se tiene una elevada certidumbre en relación a la tasa que se debería 

observar. De lo contrario, los valores serían más dispersos, mostrando en tal caso las dudas 

existentes en torno a la tasa de fraude. 

El siguiente paso sería calcular las verosimilitudes, es decir, la probabilidad de que se 

produzca la observación dada, suponiendo que el modelo expuesto es válido. Para ello, se ha 

de calcular la función de densidad de una binomial con parámetros n y θ evaluada en x: (0, 

1,…,n), utilizando la siguiente fórmula: 

𝑃(𝑥|𝑛, 𝜃) = (
𝑛

𝑥
) 𝜃𝑥(1 − 𝜃)𝑛−𝑥 

Donde, 

(
𝑛

𝑥
) =

𝑛!

𝑥! (𝑛 − 𝑥)!
 

De tal forma que se puede aplicar los datos mencionados en el inicio de este ejemplo, 

véase n=150 y x=12, lo que proporciona una estimación puntual del fraude relativo a la 

empresa de aguas del 8%. 

Por tanto, aplicando para cada una de las suposiciones hechas anteriormente, la 

fórmula de la densidad de la distribución binomial, podemos obtener la verosimilitud de cada 

posible modelo. A modo de ejemplo, en el primer supuesto, se haría de la siguiente manera: 

(
150

12
) 0.0612(0.94)138 = 0.0735 

De tal forma que si se aplica lo anterior de manera sucesiva, se obtendría la siguiente 

tabla: 

Modelo 𝑃(𝜃) Verosimilitud 𝑃(𝜃)𝑥 𝑉𝑒𝑟𝑜𝑠𝑖𝑚𝑖𝑙𝑖𝑡𝑢𝑑 P. Posteriori 

0.06 0.1 0.0735 0,0074 0,1018 

0.08 0.2 0.1192 0,0238 0,3301 

0.10 0.4 0.0836 0,0334 0,4630 

0.12 0.2 0.0335 0,0067 0,0928 

0.14 0.1 0.0089 0,0009 0,0123 

Total 1  0.0722 1 
Tabla II 

A modo de explicación adicional, cabe destacar que para cada uno de los modelos 

dados, se ha calculado su verosimilitud mediante la función de densidad de la distribución 

binomial, luego se ha multiplicado la susodicha verosimilitud por la probabilidad dada a priori y 

tras hacer cada una de las multiplicaciones pertinentes para todos los modelos propuestos, se 

ha hecho el sumatorio de estos productos (𝑃(𝜃)𝑥 𝑉𝑒𝑟𝑜𝑠𝑖𝑚𝑖𝑙𝑖𝑡𝑢𝑑), para por último dividir 

cada uno de los mencionados productos entre el sumatorio y así obtener la probabilidad a 

posteriori. 
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De este modo, se puede apreciar que, como se explicó en el primer apartado (Teorema 

de Bayes), se puede calcular y por tanto obtener la probabilidad a posteriori a través de la 

fórmula de Bayes “alternativa”, es decir, mediante: 

𝑃(0.10|𝐵) =
𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)

∑ 𝑃(𝐵|𝐴𝑖)𝑃(𝐴𝑖)𝑘
𝑖=1

= 

=
(0.0836)(0.4)

(0.0735)(0.1) + (0.1192)(0.2) + (0.0836)(0.4) + (0.0335)(0.2) + (0.0089)(0.1)
= 

 

=0.463 

 Una vez hecho los cálculos anteriores, se puede recalcular el valor esperado de la tasa 

de fraude en función de las nuevas probabilidades (a posteriori): 

E(θ) = (0.06)(0.1018) + (0.08)(0.3301) + (0.10)(0.4630) + (0.12)(0.0928)

+ (0.14)(0.0123) = 0.0917 

 Dicho cálculo da una tasa de fraude esperada del 9.17%, es decir, mayor de la 

observada (8%), pero a su vez menor de la que se presuponía en un primer instante (10%), con 

lo que se aprecia claramente la idiosincrasia propia de la estadística bayesiana, y es que ésta 

no pretende ni quedarse con el único dato proporcionado por el experimento llevado a cabo, 

ni tampoco quedarse con la intuición o creencia proporcionada por la experiencia, sino más 

bien intentar aunar los conocimientos empíricos (en su sentido más estricto) y las 

apreciaciones hechas por los profesionales de la materia en estudio, con el fin de proporcionar 

la mayor cantidad de datos y experiencias que sea posible, para así intentar lograr una mejor 

estimación del parámetro que se pretende calcular. 

 Como alternativa al sencillo supuesto en el que se ha utilizado una cierta distribución 

discreta para expresar los posibles modelos probabilísticos que pudiera tomar la tasa de 

fraude θ, y situándonos en una dimensión más realista. Podríamos considerar la posibilidad de 

que la tasa de fraude se encontrase en un intervalo que fuera de 0% a 100% de manera 

continua, es decir, en cualquier punto de dicho intervalo real, lo cual es altamente común. 

 De esta forma nos encontraríamos en un supuesto en el que las probabilidades a priori 

no se pueden enumerar, dado que estas son infinitas, con lo que el modo de tratarlas sería 

mediante la correspondiente distribución continua de probabilidad, que pudiera ser cualquiera, 

siempre y cuando expresara la visión, intuición o experiencia del investigador. 

 La función de distribución Beta es la más usada en los casos en los que se pretende 

estimar una proporción. Esta función de distribución depende de dos parámetros, a y b, ambos 

mayores que 0. 

 Entre las propiedades de la distribución Beta se encuentran las siguientes: 

𝜇 =
𝑎

𝑎+𝑏
  𝜎2 =

𝑎𝑏

(𝑎+𝑏+1)(𝑎+𝑏)2 
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𝑓(𝑥) =
Γ(a+b)

Γ(a)Γ(b)
𝑥𝑎−1(1 − 𝑥)𝑏−1, donde 0 ≤ 𝑥 ≤ 1 

 Adicionalmente, cabe destacar como un caso especial de la distribución Beta aquel en 

el que ésta toma los valores 𝑎 = 1 y 𝑏 = 1, supuesto en el que coincide con la distribución 

Uniforme en el intervalo [0, 1].  

A modo de ejemplo, se puede apreciar algunas distribuciones Betas dibujadas en la 

misma gráfica, pero con diferentes parámetros, entre ellas, la equivalente a la distribución 

Uniforme, es decir, la de color verde, con parámetros Beta(1,1). 

 

Gráfica 1 

 Como se observa, si el investigador optase por utilizar como distribución a priori la 

distribución Beta (1, 1), equivalente a una Uniforme en [0, 1], estaría poniendo de manifiesto 

una posición totalmente neutral, ya que daría el mismo peso a cualquier posible modelo que 

resultara del análisis, sin ninguna aportación adicional que éste pudiera añadir. En dicho caso, 

el análisis bayesiano arrojaría el mismo resultado de estimación que el enfoque frecuentista. 

 Retomando nuestro ejemplo particular, se planteaba que la tasa de fraude esperada 

10%, con lo que el siguiente paso (en el caso continuo) sería proponer una distribución Beta 

que asimilara dicha proporción. Para ello, se utiliza la fórmula de la media de la distribución 

Beta mencionada anteriormente, 

𝜇 =
𝑎

𝑎 + 𝑏
= 0.10 = 10% 
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Como se puede intuir, numerosos valores de a y b podrían dar como resultado la 

proporción de fraude igual al 10%, con lo que se ha de tomar una decisión. Para ello nos 

deberíamos basar en la certidumbre que le quisiéramos dar a nuestra probabilidad a priori, ya 

que a números más bajos de a y b, la distribución a priori presenta más dispersión, con lo que 

estaría poniendo de manifiesto nuestra incertidumbre.  

Como ejemplos, se pude apreciar las siguientes fórmulas y gráficas en las que la media 

de la distribución Beta toma valor 0.1, es decir, refleja nuestra tasa del 10%, como distribución 

a priori en función de diferentes grados de certidumbre: 

Media (𝜇): 

𝐵𝑒𝑡𝑎 (1, 9) =
1

1+9
= 0.10 𝐵𝑒𝑡𝑎 (3, 27) =

3

3+27
= 0.10  𝐵𝑒𝑡𝑎 (7, 63) =

7

7+63
= 0.10 

 

Gráfica 2 

Dado que en nuestro caso nos hemos basado en estudios previos realizados en el 

mismo país (aunque no en la misma ciudad), se considera que la fiabilidad de nuestra tasa es 

bastante alta, con lo que se utilizará los parámetros (3, 27). 

Por tanto, únicamente nos faltaría mencionar que, debido a que los datos siguen una 

distribución binomial y la distribución a priori sigue una distribución Beta (a, b), podemos 

concluir, que la distribución Beta es conjugada para la binomial, transformándose entonces a 

la distribución a posteriori con los parámetros Beta (a+x, b+(n-x)). 
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Resumiendo, nos encontraríamos con una probabilidad a priori dada por la 

distribución Beta (a=3, b=27), con una muestra n=150 y con un total de fraudes detectados 

entre nuestra muestra de x=12, con lo que conjugadamente la distribución Beta para la 

binomial de los datos y por tanto, transformando nuestra distribución a priori y obteniendo así, 

nuestra distribución a posteriori, nos encontraríamos con la distribución Beta (3+12, 27+(150-

12)), o lo que es lo mismo, Beta(15, 165), con media igual a 0.0833 y desviación típica igual a 

0.00042.  

Como se puede observar, nuevamente la distribución a posteriori se acerca 

notablemente a la tasa de fraude detectada en el estudio realizado, pero como en el caso 

discreto, desviándose ligeramente hacia un valor algo más cercano a la tasa que a priori se 

pensaba que podría resultar estimada. 

A modo de ejemplo un tanto más extremo, supongamos que la tasa predicha por el 

investigador fuera del 25% y que la distribución a priori, por tanto, tomara otros parámetros, 

supongamos Beta (4, 12), que daría lugar a una función de densidad como la siguiente: 

 

Gráfica 3 

Bien, si calculáramos nuevamente la distribución a posteriori, ésta nos daría una 

distribución Beta (16, 150), es decir, una estimación para la tasa de fraude de 0.0934, o lo que 

es lo mismo, 9.34%.  

Como puede apreciarse, a pesar de que la tasa que intuía el investigador es muy dispar 

en comparación con la recabada por los datos, la determinada por la distribución a posteriori 
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se acerca mucho más a la muestral debido principalmente a dos causas, una, que la muestra es 

considerablemente grande, con lo que tiene un peso relativo importante y dos, a que dado 

que el investigador en este supuesto no se basaba en ningún estudio, coherentemente se 

decidió poner una distribución a priori con mayor incertidumbre. De lo que se puede concluir, 

por un lado que actuando de manera coherente (en relación a la distribución a priori) y por 

otro sabiendo de la importancia del tamaño muestras, los datos corrigen a la probabilidad a 

priori y que a pesar de que esta tiene cierto peso, la verosimilitud domina en la ponderación 

total del método bayesiano, con lo que corrige posibles errores de apreciación a priori, aunque 

no descarta dicha información, sino que la utiliza con el fin de aportar más datos al proceso. 

Por otro lado, con tal de ver de manera práctica la importancia del tamaño muestral, 

utilicemos el mismo ejemplo extremo pero aumentando la muestra, es decir, tomando los 

siguientes datos: n=1500, x=120, a=4, b=12. Asumiendo dichos datos la tasa de fraude 

muestral seguiría siendo del 8%, la tasa de la distribución a priori seguiría siendo del 25%, pero 

la distribución a posteriori cambiaría a Beta (124, 1392) y por tanto la estimación a posteriori 

del fraude también cambiaría a 0.0818, es decir, a un 8.18%. Demostrando por tanto la 

importancia del tamaño muestral. 

Dicho de otro modo, el peso del tamaño muestral es muy importante en el global del 

proceso bayesiano, casi igualando el resultado del método al clásico frecuentista, pero a 

diferencia de éste último método, el método bayesiano es capaz de maximizar su utilidad 

cuando el tamaño muestral es escaso, siendo por tanto un método ideal en dichos supuestos. 

Volviendo al punto en el que nos encontrábamos en el ejemplo inicial, es a partir de 

este punto en donde podemos sacar conclusiones probabilísticas de nuestro proceso. 

Expresando directamente en términos de probabilidad, algo imposible en el método 

frecuentista, las conclusiones. Dicho de otro modo, se puede hablar de que la probabilidad de 

que θ > 7% = 0.7274 o que la probabilidad de que 6% ≤ θ ≤ 12% = 0.8309. Y es que, al 

contar con la distribución del parámetro se puede computar el área que se encuentra bajo la 

función de densidad correspondiente, utilizando para ello un cálculo mediante integrales o 

mediante software que realicen dichos cálculos de manera más ágil. Por tanto, con la 

metodología bayesiana se puede calcular la probabilidad de que el parámetro se encuentre en 

cualquier intervalo dentro del rango [0, 1] (expresado en tanto por uno). 

Por último, es especialmente interesante la posibilidad de realizar, en la estadística 

bayesiana, los intervalos de probabilidad, también llamados intervalos de credibilidad. A 

diferencia del clásico intervalo de confianza de la estadística frecuentista, el intervalo de 

probabilidad es un intervalo en el que se encontraría el parámetro que se desea estimar, pero 

con una cierta probabilidad especificada. 

Supongamos que se desea calcular un intervalo que contenga el parámetro θ con 

probabilidad 1-α, por ejemplo α=0.05, para ello, se calcularía un intervalo donde la 

probabilidad de que en su interior se encontrara dicho parámetro sería del 95%. El problema 

que surge es que existirían infinitos intervalos que cumplan dicha condición, con lo que existe 

un criterio que nos ayuda a decidirnos por ello. Este criterio consiste en escoger aquel 

intervalo para el cual la función de densidad (en nuestro ejemplo de la distribución 

Beta(15,165)) cumple la condición de que 𝑓(𝑥) ≥ 𝑓(𝑦) cualquiera sea 𝑥 perteneciente a dicho 



13 
 

intervalo y cualquiera sea y sin pertenecer a dicho intervalo. De tal modo que este intervalo es 

el intervalo más corto de entre los que se pueden obtener, cumpliendo la condición de que por 

ejemplo, bajo el susodicho intervalo se encuentre el parámetro con una probabilidad del 95%. 

Dada las infinitas posibilidades de intervalos de credibilidad que se pueden obtener, 

para calcular el más corto, y por tanto el más denso, es necesario el uso de software 

especializados, como puede ser el paquete estadístico R®, por tanto, en este caso únicamente 

se facilitará el intervalo y no se procederá a calcularlo manualmente. Con lo que se tiene un 

95% de probabilidad de que el intervalo [0.045, 0.124] contenga el parámetro estimador de la 

tasa de fraudes. 

A continuación se puede ver una apreciación gráfica de dicho intervalo: 

 

Gráfica 4 

Cabe destacar nuevamente, que si el tamaño muestral es elevado, dado que la 

verosimilitud tiene un alto peso, el intervalo de probabilidad no difiere mucho 

(matemáticamente) del intervalo de confianza, aunque sí conceptualmente. Con lo que una 

vez más se puede concluir que el método bayesiano es idóneo en el supuesto de muestras 

pequeñas, al contrario que el método frecuentista. 
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3. Hipótesis sobre una proporción (una población) 
 

Otra técnica de gran utilidad es aquella que evalúa la hipótesis sobre una proporción. 

En este caso, se evaluará dicha hipótesis comparando una proporción igual a una constante, 

pero únicamente en referencia a una población en estudio, es decir, 

𝐻0: 𝑃 = 𝑃0 

𝐻1: 𝑃 ≠ 𝑃0 

Para evaluar este contraste de hipótesis en primer lugar se debe conocer ciertos 

parámetros propios tanto del contraste, como de la estadística bayesiana. Por un lado, sería 

necesario conocer el valor de 𝑃0 que se querría comprobar en el contraste de hipótesis y por 

otro, sería necesario conocer la distribución a priori que se le querría imputar a 𝑃, que en este 

caso, como se explico en el tema anterior, se trata de una distribución Beta con parámetros a y 

b.  Cabe destacar, que la media de la distribución Beta (explicada en la fórmula de la página 6) 

debe dar un resultado aproximado a 𝑃0. Condición razonable, dado que si el investigador 

pensase a priori que la media o proporción del parámetro fuera distinta de 𝑃0, no tendría 

sentido hacer el contraste de hipótesis. En resumen, de no cumplirse que: 

|𝑃0 −
𝑎

𝑎 + 𝑏
| < 0.015 

No sería correcto realizar el contraste de hipótesis especificado al inicio de éste 

capítulo. 

Adicionalmente existe otra condición sine qua non, y es que los parámetros a y b 

deben tomar valores mayores que 0, al igual que la media debe comprenderse en el intervalo 

[0, 1], característico de las proporciones, y la desviación típica ser positiva, siempre y cuando 

se mantengan los parámetros a y b no negativos. 

Como última exigencia, se encuentra la necesidad de establecer una probabilidad a 

priori de que 𝐻0 se cumpla, que denotaremos por la letra q. Esta probabilidad a priori, al igual 

que la distribución a priori de 𝑃 la establece el investigador basándose en los criterios de 

experiencia y observación, como para la mencionada distribución a priori. 

Una vez consideradas las exigencias anteriores, se procedería a obtener los datos 

propios del experimento y finalmente se calcularía lo que se conoce como el Factor de Bayes a 

favor de 𝐻0, que lo denotaremos por BF: 

𝐵𝐹 =
𝑃0

𝑥(1 − 𝑃0)𝑛−𝑥𝐵𝑒𝑡𝑎 (𝑎, 𝑏)

𝐵𝑒𝑡𝑎 (𝑎 + 𝑥, 𝑏 + (𝑛 − 𝑥))
 

donde,  

𝑛 = 𝑡𝑎𝑚𝑎ñ𝑜 𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑙 

𝑥 = 𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑐𝑎𝑠𝑜𝑠 𝑓𝑎𝑣𝑜𝑟𝑎𝑏𝑙𝑒𝑠 

𝐵𝑒𝑡𝑎 (𝑎, 𝑏) =  ∫ 𝑢𝑎−1
1

0

(1 − 𝑢)𝑏−1𝑑𝑢 =
Γ(a)Γ(b)

Γ(a + b)
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y donde, 

Γ(x) = ∫ ux−1e−udu
∞

0

 

Consiguientemente, una vez obtenido el cálculo del Factor de Bayes a favor de 𝐻0, se 

puede calcular el Factor de Bayes en contra de 𝐻0, que se denotará por BC y se calcula de la 

siguiente manera: 

𝐵𝐶 =
1

𝐵𝐹
 

De tal forma que se puede concluir con el cálculo de la probabilidad a posteriori de la 

veracidad de 𝐻0. Utilizando el Factor de Bayes a favor de 𝐻0 y la probabilidad a priori de que 

𝐻0 es cierta, es decir, q: 

𝑃(𝐻0|𝑑𝑎𝑡𝑜𝑠) =
𝑞𝐵𝐹

𝑞𝐵𝐹 + (1 − 𝑞)
 

Lo cual se puede transformar a: 

𝑃(𝐻0|𝑑𝑎𝑡𝑜𝑠) =
𝐵𝐹

𝐵𝐹 + 1
 

en el supuesto de que el investigador no tuviera información suficiente para aportar 

un valor confiable de q y que por lo tanto, decidiera darle a dicho parámetro el valor de 𝑞 =

0.5, lo que equivale a decir que a priori es equiprobable que se dé, tanto la 𝐻0, como la 𝐻1. 

Por último, antes de pasar a exponer un caso práctico, convendría mencionar la 

apreciación de que en la estadística bayesiana, no se pretende escoger entre la hipótesis nula 

(𝐻0) y la alternativa (𝐻1), sino evaluar cuan razonable es escoger una hipótesis frente a la otra, 

de tal forma que se pueda tomar una decisión en referencia a aquello que se está estudiando o 

analizando y por tanto actuar en función de dicho análisis. 

A modo de ejemplo práctico,  consideremos que se desea hacer un estudio de estrés a 

unos contadores de agua, de una determinada marca y modelo. Para ello, los contadores son 

sometidos a un estrés mayor al recomendado por el fabricante, es decir, se les hace pasar por 

ellos un caudal de agua muy elevado (mayor que el máximo recomendado) en un tiempo 

determinado y se evalúa qué contador sigue funcionando tras la prueba de estrés y qué 

contador falla y por tanto es inservible. 

Para dicho estudio, se desea evaluar el siguiente contraste de hipótesis: 

𝐻0: 𝑃 = 0.75 

𝐻1: 𝑃 ≠ 0.75 

es decir, que si la proporción de ruptura es de un 75% o no, que es lo que el fabricante 

de los contadores establece como tasa de fallo súbito en el supuesto de estudio, considerando 

además, que dicha 𝐻0 tiene una probabilidad de suceder de q=0.9. 
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Por otro lado, considerando que el contador se somete a un estrés mayor al 

recomendado por el fabricante, es lógico pensar que la proporción de rupturas sea mayor a la 

mitad, pero sin embargo, la experiencia de la empresa suministradora de los contadores dice 

que estos contadores son más eficientes de lo que el fabricante cree, con lo que nos emplaza a 

que consideremos como distribución a priori una distribución Beta (7.5, 17.5) que da una 

media 0.3, lo que es lo mismo, una proporción de rupturas del 30%.  

Por tanto, realizamos un estudio sobre 120 contadores, sometiéndolos a un estrés 

mayor del recomendado por el fabricante y observamos que 54 contadores se han quedado 

inservibles, lo que da una proporción del 45%. 

Una vez obtenidos todos los datos, procedemos a evaluar el contraste de hipótesis y 

ver si el fabricante se sobreprotege en sus especificaciones, o por el contrario, si el proveedor, 

nos quiere vender los contadores a pesar de no ser adecuados para el nivel de estrés al que 

serán sometidos. 

Para dicha evaluación, dado que se requiere calcular integrales y cálculos extensos, nos 

ayudaremos del cálculo computacional, de tal forma que únicamente se expresarán las 

fórmulas y los resultados finales de dichas formulas. La demostración utilizando el paquete 

estadístico R se hará en el capítulo de “Estadística Bayesiana con R paso a paso”. 

En un primer instante sería recomendable hacer un resumen de los datos, 

Dato Valor 

𝑃0 0.75 

q 0.9 

Beta (7.5, 17.5) 

n 120 

x 54 
Tabla III 

De tal forma que se puede proceder a calcular y dibujar gráficamente las distribuciones 

Beta a priori y posteriori, 

𝐵𝑒𝑡𝑎 (7.5, 17.5) =  ∫ 𝑢7.5−1
1

0

(1 − 𝑢)17.5−1𝑑𝑢 =
Γ(7.5) Γ(17.5)

Γ(7.5 + 17.5)
= 2.5827 x 10−7 

𝐵𝑒𝑡𝑎 (7.5 + 54, 17.5 + 66) =  ∫ 𝑢61.5−1
1

0

(1 − 𝑢)83.5−1𝑑𝑢 =
Γ(61.5) Γ(83.5)

Γ(61.5 + 83.5)
= 5.053 x 10−44 
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Gráfica 5 

Donde se aprecia que la media o proporción de ambas difieren ligeramente en 

comparación de la proporción dada por el fabricante. Siendo la proporción de la distribución a 

priori (proporcionada por el proveedor) del 30% y la posteriori (modificada por los datos) del 

42.41%. 

A continuación, se calcula el Factor de Bayes a favor de 𝐻0(BF), 

𝐵𝐹 =
0.7554(1 − 0.75)120−54𝐵𝑒𝑡𝑎 (7.5, 17.5)

𝐵𝑒𝑡𝑎 (7.5 + 54, 17.5 + (120 − 54))
= 1.6822 x 10−10 

Con lo que se puede calcular el Factor de Bayes en contra de 𝐻0(BC), 

𝐵𝐶 =
1

1.6822 x 10−10
= 5944541033 

Para concluir con el cálculo de la Probabilidad a posteriori de la veracidad de 𝐻0, 

𝑃(𝐻0|𝑑𝑎𝑡𝑜𝑠) =
0.9𝑥1.6822 x 10−10

0.9𝑥1.6822 x 10−10 + (1 − 0.9)
= 1.514 𝑥 10−9 

Lo que nos arrojaría un resultado bastante favorables hacia el proveedor, ya que la 

media se acerca a la proporcionada por ellos, más que el resultado del análisis establece que 

es 5.944.541.033 de veces más probable que sea cierta la hipótesis alternativa, a que lo sea la 

nula 𝐻0. Además, si se considera la probabilidad a priori que se había dado para este supuesto, 

se obtiene una probabilidad de 1.514 𝑥 10−9 de que 𝐻0 sea cierta, es decir, una probabilidad 

sumamente baja. 
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Si en lugar de realizar el test de hipótesis para una proporción como valor constante, 

se decidiera hacer considerando un intervalo, el procedimiento no variaría mucho. Para 

cerciorarnos de ello supongamos que en el ejemplo anterior el fabricante dijera que la 

proporción de fallos se encuentra entre [0.45, 0.75] y se mantuviera el resto de variables 

intactas. 

En este caso, el contraste de hipótesis tendría la siguiente estructura: 

𝐻0: 𝑃 ∈ [𝑃1 = 0.45, 𝑃2 = 0.75] 

𝐻1: 𝑃 ∉ [𝑃1 = 0.45, 𝑃2 = 0.75] 

Procediendo a evaluar el test de hipótesis anterior, necesitaríamos calcular en un 

primer instante el área bajo la curva de densidad de la distribución a posteriori que queda a la 

izquierda de 𝑃1 y 𝑃2, lo que denotaríamos por 𝐹(𝑃1) y 𝐹(𝑃2), lo que requiere de un cálculo 

computarizado, de tal forma que únicamente se proporcionará el resultado final, como en 

anteriores ocasiones. 

𝐹(𝑃1) = 0.7372 𝐹(𝑃2) =  1 

Una vez obtenido dicho cálculo, se puede obtener la probabilidad de la hipótesis 𝐻0 de 

la siguiente manera: 

𝑃(𝐻0) = 𝐹(𝑃2) − 𝐹(𝑃1) = 1 − 0.7372 = 0.2628 

Y una vez calculada la probabilidad de la hipótesis 𝐻0 , se puede calcular 

automáticamente la probabilidad de la hipótesis 𝐻1. Sabiendo que el área de la curva de 

densidad suma (integra) 1 y que el área de 𝑃(𝐻0) es inversa a la de 𝑃(𝐻1), se puede calcular 

𝑃(𝐻1) de la siguiente forma: 

𝑃(𝐻1) = 1 − 𝑃(𝐻0) = 0.7372 

Con lo que tras estos pasos es posible realizar el cálculo del Factor de Bayes BF como 

se expresa a continuación: 

𝐵𝐹 =
𝑃(𝐻0)

𝑃(𝐻1)
=

0.2628

0.7372
= 0.3565 

Y en consecuencia la probabilidad a posteriori de la veracidad de H: 

𝑃𝑃 =
𝑞𝐵𝐹

𝑞𝐵𝐹 + (1 − 𝑞)
=

0.9 𝑥 0.3565

0.9 𝑥 0.3565 + (1 − 0.9)
= 0.7624 

Lo que nos arroja unos resultados, en este caso favorables al fabricante, ya que 

aproximadamente hay un 65% más de opciones de quedarse con la hipótesis nula que con la 

alternativa, o dicho desde otra perspectiva, si se considera la probabilidad a priori que se había 

dado para este supuesto, se obtiene una probabilidad de 0.7624 de que 𝐻0 sea cierta, en este 

caso, una probabilidad muy alta. 
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4. Estimación de una diferencia de proporciones (dos 

poblaciones) 
 

En este capítulo se pretende explicar el procedimiento adecuado para discernir si 

existe diferencia estadística entre dos proporciones de dos poblaciones distintas mediante 

técnicas bayesianas.  

Al igual que en temas anteriores, sería adecuado plantear un ejemplo numérico con tal 

de facilitar la comprensión de esta nueva situación. 

Supongamos que se desea comparar dos métodos de mantenimiento de contadores, 

uno que denominaremos por 𝑋1 y que consiste en hacer pasar agua a presión por el susodicho 

contador, con tal de eliminar impurezas que puedan atascarlo con el tiempo. Y otro método 

alternativo denominado 𝑋2, que consiste en hacerle pasar unos químicos que eliminen dicha 

impureza. 

En la actualidad el método utilizado es el 𝑋1 y se conoce que tiene una tasa de 

efectividad en la limpieza del 30%, es decir, se consigue limpiar significativamente el 30% de 

los contadores, alargando por tanto la vida útil de estos. 

En relación a la probabilidad a priori dada para este ejemplo, cabe mencionar que los 

investigadores que promueven el estudio creen que el método alternativo proporciona unos 

resultados mejores, es decir, una mayor tasa de limpieza de los contadores y por tanto 

alargando la vida útil de más unidades, consiguiendo con ello un ahorro considerable, en 

renovaciones de contadores, para la empresa.  

Por tanto, se tiene una fuerte creencia (basada en la propia observación y experiencia 

de los operarios de la empresa) de que la proporción del método 𝑋1 se encuentra en el 30% 

con unos márgenes más o menos definidos en torno al intervalo 10%-50%. Mientras que para 

el método 𝑋2, los promotores de dicho producto químico indican que la proporción esperada 

es del 60% con unos márgenes definidos entre el 40% y el 80%. En ambos casos, se considera 

que existe una probabilidad muy escasa de estar fuera de dichos intervalos. 

Al igual que en capítulos anteriores, la distribución de probabilidad empleada para 

expresar la densidad a priori es la de la distribución Beta, pero con la salvedad de que en este 

supuesto nos encontramos con dos proporciones y por lo tanto se considerarán dos 

distribuciones Betas, es decir, una para cada proporción, en función de la creencia del 

investigador sobre las probabilidades a priori de las proporciones dadas. 

Por ello, se considera una distribución a priori Beta (21, 70) para la proporción de 𝑋1 y 

de Beta (57, 38) para la proporción 𝑋2, que se pueden apreciar en la siguiente gráfica: 
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Gráfica 6 

Para realizar el estudio se ha escogido 300 contadores y se han repartido 

equitativamente al azar en dos grupos de 150 contadores, a los que se les aplica sendos 

tratamientos de limpieza, con tal de apreciar cuántos se han limpiado significativamente, 

arrojando los siguientes resultados: 

 Método 𝑋1 Método 𝑋2 

n 150 150 

x 50 80 

n-x 100 70 
Tabla IV 

Una vez obtenidos los resultados, podemos calcular las probabilidades a posteriori, es 

decir, la actualización (a partir de los datos) de las probabilidades a priori. Para el método 

tradicional 𝑋1 resultan ser Beta (21+50, 70+100), y para el método propuesto 𝑋2 son Beta 

(57+80, 38+70), es decir, Beta(71, 170) y Beta (137, 108) respectivamente. Por tanto, podemos 

conocer su media y varianza de estas probabilidades a posteriori, que se calculan al igual que 

en los capítulos anteriores, por tanto: 

𝑋1
̅̅ ̅ = 0.2946 𝜎𝑋1

2 = 0.0009 

𝑋2
̅̅ ̅ = 0.5592 𝜎𝑋2

2 = 0.0010 

Con lo que 

𝑋2
̅̅ ̅ − 𝑋1

̅̅ ̅ = 0.2646 
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𝜎𝑋2−𝑋1

2 = 0.0019 

De tal forma que suponiendo válido el argumento asintótico, resulta que, 

aproximadamente 

𝑋2
̅̅ ̅ − 𝑋1

̅̅ ̅ ~ 𝑁 (0.2646, 0.0019) 

Como, para la 𝑁 (0,1), 𝑃(−1.96, 1.96) = 0.95, un intervalo de probabilidad 0.95 es  

[0.2646 − 1.96√0.0019, 0.2646 + 1.96√0.0019] = [0.1800, 0.3491] 

Y 0 ∉ [0.1800, 0.3491], podríamos concluir que existe direrencia probabilística de 

proporciones en las dos poblaciones y que por tanto, como se aprecia en la diferencia de 

medias, es más efectivo el tratamiento con químicos, que el tradicional. 

Por otro lado, se podría  utilizar el método de la simulación, con el que se procederá a 

generar k observaciones (𝑝𝑖
1, 𝑝𝑖

2, … , 𝑝𝑖
𝑘) de 𝑝𝑖|𝑥1, 𝑥2, para i=1,2 y se aproxima la probabilidad 

mediante: 

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙 {𝑝1
1 − 𝑝2

1 ≥ 𝑐}

𝑘
 

Donde c es una constante que determina un punto mínimo desde el que se puede 

hacer afirmaciones precisas. 

Mediante simulación podemos generar, por ejemplo, 10000 observaciones de 𝑝1 y 𝑝2 

(𝑝𝑗
𝑖 , 𝑗 ∈ {1,2}, 𝑖 ∈ {1,2, … ,10000}), ordenar los valores 𝑟𝑖 = 𝑝1

𝑖 − 𝑝2
𝑖  y emplear el intervalo 

[𝑟(25), 𝑟(975)] para dar un intervalo aproximado de probabilidad de 0.95. 

Pero dado que dichos cálculos son complejos de llevar a cabo manualmente, se 

procederá a realizar dichos cálculos en el tema de aplicación en R®, tras explicar todas las 

técnicas de este trabajo. 

5. Hipótesis sobre una diferencia de proporciones (dos 

poblaciones) 
 

Para desarrollar esta técnica se contrastará la igualdad de proporciones del tipo: 

𝐻0: 𝑃1 = 𝑃2 

𝐻1: 𝑃1 ≠ 𝑃2 

De tal modo que se podrán aplicar técnicas similares a las del capítulo 3 de este trabajo. 

Y es que, al igual que en dicho capítulo necesitaremos conocer una probabilidad a priori para la 

validez de la hipótesis nula 𝐻0 (q), para luego definir la distribución Beta (𝑎𝑖 , 𝑏𝑖) a priori para 

sendas hipótesis, nula y alternativa, donde i hace referencia a cada una de las hipótesis. Por 

último, se necesitarán los valores relativos al tamaño muestral (n) y al número de veces que se 

produce el evento de interés(x) para cada una de las proporciones (𝑃1 𝑦 𝑃2). 
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Por tanto, una vez considerados todos los datos mencionados, se podría calcular el 

factor de Bayes a favor de 𝐻0. Que como se puede apreciar, difiere del explicado en el 

nombrado capítulo 3. 

𝐵𝐹 =
𝐵𝑒𝑡𝑎(𝑎0+𝑥0+𝑥1, 𝑏0 + (𝑛 − 𝑥)0 + (𝑛 − 𝑥)1)𝐵𝑒𝑡𝑎(𝑎1, 𝑏1)

𝐵𝑒𝑡𝑎(𝑎0 + 𝑥0, 𝑏0 + (𝑛 − 𝑥)0)𝐵𝑒𝑡𝑎(𝑎1 + 𝑥1, 𝑏1 + (𝑛 − 𝑥)1)
 

Una vez obtenido el factor de Bayes  a favor de 𝐻0 (BF), se puede obtener el factor de 

Bayes en contra de 𝐻0: 

𝐵𝐶 =
1

𝐵𝐹
 

Y por último, la probabilidad a posteriori de la veracidad de 𝐻0: 

𝑃(𝐻0|𝑑𝑎𝑡𝑜𝑠) =
𝑞𝐵𝐹

𝑞𝐵𝐹 + (1 − 𝑞)
 

Con tal de facilitar la comprensión de lo explicado hasta ahora, supongamos el mismo 

ejemplo que en el capítulo 4, donde se pretendía observar qué método de limpieza de 

contadores daba mejores resultado en términos proporcionales, pero en este caso, 

compararemos si es igual un método que el otro o por el contrario, que difieren 

proporcionalmente. Para ello, asumiremos que la hipótesis nula tiene una probabilidad a priori 

de validez q=0.3 y que: 

𝑎1 = 2  𝑏1 = 8  𝑥1 = 3  (𝑛 − 𝑥)1 = 12 

𝑎2 = 4  𝑏2 = 6  𝑥2 = 6  (𝑛 − 𝑥)2 = 9 

Con lo que realizando los cálculos mencionados anteriormente se obtendría los 

siguientes resultados: 

𝐵𝐹 =
𝐵𝑒𝑡𝑎(𝑎1+𝑥1+𝑥2, 𝑏1+(𝑛 − 𝑥)1 + (𝑛 − 𝑥)2)𝐵𝑒𝑡𝑎(𝑎2, 𝑏2)

𝐵𝑒𝑡𝑎(𝑎1 + 𝑥1, 𝑏1 + (𝑛 − 𝑥)1)𝐵𝑒𝑡𝑎(𝑎2 + 𝑥2, 𝑏2 + (𝑛 − 𝑥)2)

=  
𝐵𝑒𝑡𝑎(2 + 3 + 6, 8 + 12 + 9)𝐵𝑒𝑡𝑎(4,6)

𝐵𝑒𝑡𝑎(2 + 3,8 + 12)𝐵𝑒𝑡𝑎(4 + 6,6 + 9)
=

𝐵𝑒𝑡𝑎(11, 29)𝐵𝑒𝑡𝑎(4,6)

𝐵𝑒𝑡𝑎(5,20)𝐵𝑒𝑡𝑎(10,15)

=
5.424 𝑥 10−11 𝑥 0.002

4.705 𝑥 10−6 𝑥 5.099 𝑥 10−8 
= 0.449 

 

𝐵𝐶 =
1

𝐵𝐹
=

1

0.449
= 2.229 

 

𝑃(𝐻0|𝑑𝑎𝑡𝑜𝑠) =
0.3 𝑥 0.449

0.3 𝑥 0.449 + (1 − 0.3)
= 0.161 
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Por tanto, tras actualizar las probabilidades a priori con los datos, se puede apreciar 

que únicamente existe una probabilidad del 16.1% de que ambos métodos sean iguales y 

como las proporciones de contadores limpios son del 0.2 y 0.4 para los métodos tradicional y 

alternativo respectivamente, se puede concluir que el método alternativo es más efectivo que 

el convencional. 

Por otro lado, si en lugar de proporciones puntuales quisiéramos comparar si la 

diferencia de proporciones se sitúa dentro de un intervalo, la técnica utilizada para realizar 

dicho análisis sería ligeramente diferente. En este caso utilizaremos el mismo ejemplo y con los 

mismos datos que los utilizados hasta ahora. 

Sin embargo, en este supuesto nos encontraríamos con un contraste de hipótesis algo 

diferente al planteado anteriormente, siendo este del tipo: 

𝐻0: 𝑃2 − 𝑃1 ∈ [𝑃3, 𝑃4] 

𝐻1: 𝑃2 − 𝑃1 ∉ [𝑃3, 𝑃4] 

Para analizar dicho contraste y determinar en cuál de las dos hipótesis nos 

encontraríamos, sería adecuado resumir los datos que conocemos e incorporar los que 

necesitaríamos para este nuevo supuesto. 

Para el método de limpieza tradicional se tiene una proporción de contadores limpios 

del 20%, tras analizar 15 contadores que habían sido sometidos a dicho tratamiento de 

limpieza y de los cuales se consideraron significativamente limpios 3 y 12 no limpios. 

Para el método de limpieza alternativo, se tiene una proporción de contadores limpios 

del 40%, tras analizar 15 contadores que habían sido sometidos a dicho tratamiento de 

limpieza y de los cuales se consideraron significativamente limpios 6 y 9 no limpios. 

En referencia a la hipótesis nula, se considera que se tiene una probabilidad a priori de 

validez, para la misma, de q=0.3. Y en relación a las distribuciones a priori, recordar que se le 

suponían a las distribuciones Beta con los siguientes parámetros: 

𝑎1 = 2  𝑏1 = 8  𝑎2 = 4  𝑏2 = 6  

Una vez recordados los datos existentes, únicamente nos faltaría incorporar un 

intervalo en el cuál queremos comprobar si se encuentra la diferencia de las proporciones 

mencionadas, con lo que tras hacer un análisis de costes, con el que podríamos saber si es 

rentable modificar el sistema de limpieza de contadores, observamos que si la diferencia se 

encuentra entre un 0 y un 0.15, no sería rentable económicamente realizar el cambio de 

método, mientras que si se situara fuera de dicho intervalo, sí repercutiría en el aumento de 

beneficios de la empresa. Por tanto, tenemos 𝑃3 = 0 y 𝑃4 = 0.15, es decir, el intervalo sería de 

entre el 0% y el 15%. 

Por tanto, una vez recabados todos los datos necesarios, únicamente quedaría evaluar 

el contraste de hipótesis de la siguiente forma: 
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Inicialmente, se ha de simular n (por ejemplo 10.000) valores con una distribución a 

posteriori Beta (𝑎1 + 𝑥1, 𝑏1 + (𝑛 − 𝑥1)) que denotaremos por 𝑦1,𝑖 y otros n (los mismos que 

en la simulación anterior) valores con una distribución a posteriori Beta (𝑎2 + 𝑥2, 𝑏2 +

(𝑛 − 𝑥2)) que denotaremos por 𝑦2,𝑖. Para realizar esta simulación es necesario la utilización de 

un paquete estadístico como el R®, dado que de lo contrario sería prácticamente inasumible. 

Posteriormente, se calcula las 𝑑𝑖  diferencias, es decir 𝑑𝑖 = 𝑦2,𝑖 − 𝑦1,𝑖 , para luego 

ordenarlas de menor a mayor y de esa forma contabilizar cuantos valores menores que cada 

una de las 𝑃3  y 𝑃4  existe, de tal forma que si dividimos dicho contador entre 10.000 

obtendríamos las 𝐹(𝑃3) y 𝐹(𝑃4), que equivaldría a sendas distribuciones a posteriori evaluadas 

en P (área bajo la curva de densidad a posteriori que queda a la izquierda de P). 

Una vez realizado dichos cálculos con R®, se procedería a evaluar las siguientes 

ecuaciones, en las que asumiremos las simulaciones hechas con dicho Software: 

Probabilidad de la hipótesis nula: 

𝑃(𝐻0) = 𝐹(𝑃4) − 𝐹(𝑃3) = 0.2875 

Factor de Bayes a favor de la hipótesis nula: 

𝐵𝐹 =
𝑃(𝐻0)

𝑃(𝐻1)
= 0.4035 

Probabilidad a posteriori de la veracidad de la hipótesis nula: 

𝑃𝑃 =
𝑞𝐵𝐹

𝑞𝐵𝐹 + 1 − 𝑞
= 0.1474 

 

Gráfica 7 
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Con lo que es 2.48 (1/BF) veces más probable de que sea cierta la hipótesis alternativa 

a que lo sea la hipótesis nula, es decir, es 2.48 veces más probable que el cambio de método 

de limpieza sea rentable. Por otro lado, se puede concluir que con una probabilidad a priori 

como la aportada, se obtiene la probabilidad de un 14.74% de que 𝐻0 sea cierta, o lo que es lo 

mismo, una probabilidad muy pobre de que la diferencia de media se sitúe en valores no 

rentables. 

6. Estimación de una media (una población) 
 

Habitualmente se necesita calcular medias en lugar de proporciones, ya que la 

naturaleza propia de los datos no nos lo permite, y es que en ocasiones no se pueda contar el 

número de veces que se da una cierta condición, sino que se trata de una variable continua 

que siempre está presente. En estos supuestos, sería ideal estimar una media de la población 

general a partir de los datos observados en un estudio y si se dispone de alguna información 

adicional (probabilidad subjetiva), ponerla de manifiesto en la estimación. 

Para ilustrar esta técnica, al igual que en las anteriores, se hará uso de un ejemplo 

numérico, que facilite la comprensión de la misma. Por ello, supongamos que nos 

encontramos ante una situación en la que una empresa municipal de aguas desea conocer la 

dureza media del agua que suministra a sus clientes, ya que si se trata de aguas muy duras, 

estas tienden a realizar deposiciones calcáreas y de magnesio en los contadores, haciendo que 

estos contabilicen menos agua de la realmente suministrada y se estropeen antes, con el 

consiguiente gasto derivado a los clientes que supone eso.  

En la siguiente tabla se puede ver qué características tienen los diferentes niveles de 

dureza del agua: 

Tipo de Agua Blanda Levemente dura Moderadamente dura Dura Muy dura 

mg/l ≤ 17 ≤ 60 ≤ 120 ≤ 180 > 180 
Característica Muy Corrosiva Corrosiva neutra Incrustante Muy Incrustante 

Tabla V 

En ella se expresa la dureza del agua en mg/l de carbonato cálcico (𝐶𝑎𝐶𝑂3) y el efecto 

característico que ésta tiene sobre los contadores. De tal forma que un agua muy dura y por 

tanto muy incrustante es el agua que más deposiciones calcáreas realiza sobre los contadores, 

haciendo en un principio que estos cuenten más agua de la que realmente pasa por ellos 

(debido a que estrecha la cavidad por la que pasa y por tanto acelera el flujo), para luego, 

acortar la vida útil del contador, obligando a su renovación prematura y por tanto aumentando 

en todo su ciclo de vida el coste para el cliente final. Sin embargo, un agua corrosiva, permite 

mantener los contadores más limpios, pero deteriora el latón y diversos materiales presentes 

en la mayoría de instalaciones, además, no tiene altos contenidos de carbonato cálcico y sodio, 

que hace que el agua potable sea más sana, con lo que tampoco sería lo ideal. 

Por tanto, la empresa decide realizar un estudio con tal de conocer el índice medio de 

dureza en el que se sitúa el agua del municipio. Para ello además, tiene en consideración un 

estudio rudimentario hecho por unos analistas en prácticas, unas décadas atrás, que arrojó un 
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valor medio de dureza de 170 mg/l, pero dada las características rudimentarias e inexpertas de 

dicho estudio, el analistas de la empresa municipal no desean darle una posible veracidad muy 

elevada, pero mucho menos despreciar la información que proporciona, con lo que se le 

supone una probabilidad a priori de que la media es mayor que 200 mg/l de un 30%. 

Adicionalmente, de acuerdo con la tabla de la distribución normal estándar, el valor de z que 

tiene un 30% de probabilidad a su derecha es 0.52. Así que con los datos mencionados y 

gracias al método proporcionado por 𝐵𝑒𝑟𝑟𝑦1 se podría calcular  la desviación estándar para 

dicho estudio a través de las siguientes fórmulas: 

𝑧 =
200−170

𝑠
= 0.52 y, despejando se obtiene: 𝑠 =

30

0.52
= 57.69 

Para finalizar con la recopilación de datos, se decide realizar finalmente el estudio y 

tras analizar 100 muestras aleatorias de agua, se ha observado que ésta presenta una dureza 

media de 153 mg/l de 𝐶𝑎𝐶𝑂3, con una desviación típica de 20.37 mg/l. 

Una vez acabada la recopilación de datos se puede proceder a actualizar la distribución 

a priori, con los datos muestrales obtenidos y de esa forma obtener la distribución normal 

actualizada. Puesto que nuestra distribución a priori es normal, se procedería a realizar los 

siguientes cálculos: 

𝑐0 =
1

𝑠0
2             𝑐 =

𝑛

𝑠2(1+
20

𝑛2)2
            𝑐1 = 𝑐0 + 𝑐            𝑚𝑝 =

𝑐0𝑚0+𝑐𝑥̅

𝑐1
            𝑠𝑝 =

1

√𝑐1
 , 

donde: 

Estadístico Valor 

n 100 

𝑥̅ 153 

𝑠0
2 3328.136 

𝑚0 170 
Tabla VI 

De tal forma que: 

𝑐0 =
1

𝑠0
2 = 0.00003            𝑐 =

𝑛

𝑠2(1+
20

𝑛2)2
= 0.03            𝑐1 = 𝑐0 + 𝑐 = 0.03003 

𝑚𝑝 =
𝑐0𝑚0+𝑐𝑥̅

𝑐1
= 153.017            𝑠𝑝 =

1

√𝑐1
= 5.77 

Concluyéndose por tanto que la media de la distribución a posteriori es de 153.017 

mg/l de 𝐶𝑎𝐶𝑂3 y la desviación típica a posteriori de 5.77, de tal modo que se aprecia una clara 

influencia de la media muestral debido al tamaño muestral y a la poca credibilidad que se le 

daba al estudio rudimentario. A su vez, en cuanto a la motivación del estudio, se puede 

concluir que se trata de un agua dura e incrustante. 

En este punto, al igual que en capítulos anteriores, se puede calcular la probabilidad de 

que la media de mg/l de 𝐶𝑎𝐶𝑂3sea menor o mayor que un valor dado, como por ejemplo, la 

probabilidad de que la media se sitúe en el intervalo [60, 120], es decir, que el agua sea neutra, 

es del 5.258 𝑥 10−9 o lo que es lo mismo, una probabilidad casi nula. 
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7. Hipótesis sobre una media (una población) 
 

En este capítulo se tratará de explicar la realización de un test de hipótesis de la 

siguiente índole: 

𝐻0: 𝑚 = 𝑚0 

𝐻1: 𝑚 ≠ 𝑚0 

Como se puede apreciar, se trata de un test de hipótesis bastante similar al explicado 

en temas anteriores (3 y 5), con lo que para evitar alargar innecesariamente este trabajo, se 

procederá a resumir los datos necesarios y los cálculos que se han de realizar, con tal de 

explicar la técnica apropiada para la realización de éste test de hipótesis y aplicarlos al ejemplo 

del capítulo 6, pero con la salvedad de que en esta ocasión, en lugar de querer estimar una 

media de la dureza del agua, querríamos comprobar si esta es igual a 170 o no. 

Por tanto, sería necesario recopilar los siguientes datos: 

Estadístico Valor 

n 100 

𝑥̅ 153 

𝜎 57.69 

𝑚0 170 

𝐻0(𝑞) 0.3 

𝐻1(𝑡) 0.7 
Tabla VII 

Y los cálculos a realizar serían los siguientes: 

𝐵𝐹 =

√𝑛
𝝈 exp [−

𝑛
2𝝈𝟐 (𝑥̅ − 𝑚0)2]

(
𝝈2

𝑛 + 𝑡2)
−

1
2

𝑒𝑥𝑝 [−
(𝑥̅ − 𝑚0)2

2(
𝝈2

𝑛 + 𝑡2)
]

= 0.95 

𝐵𝐶 =
1

𝐵𝐹
= 1.06 

𝑃(𝐻0|𝑑𝑎𝑡𝑜𝑠) =
𝑞𝐵𝐹

𝑞𝐵𝐹 + (1 − 𝑞)
= 0.29 

Es decir, existe una probabilidad del 29% de que la media de dureza del agua se 

encuentre en 170mg/l de 𝐶𝑎𝐶𝑂3. 

Si por el contrario, el contraste de hipótesis tratara de dirimir si la media se encuentra 

en un intervalo o no, en lugar de tomar un valor puntual, el procedimiento cambiaría 

ligeramente, de tal forma que a diferencia de lo mencionado en el supuesto anterior, en lugar 

de necesitar una 𝑚0, necesitaremos 𝑚1 y 𝑚2, que podrían tomar los valores 120 y 150 

respectivamente, adicionalmente, para este caso se supondrá la inexistencia de información 

previa válida como una distribución a priori, con lo que se utilizará una distribución Uniforme 
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U(0, 1), para expresar dicha desinformación. Por tanto, nos quedaríamos con el siguiente test 

de hipótesis:  

𝐻0: 𝑚 ∈ [𝑚1 = 120, 𝑚2 = 150] 

𝐻1: 𝑚 ∉ [𝑚1 = 120, 𝑚2 = 150] 

Y con los siguientes datos: 

Estadístico Valor 

n 100 

𝑥̅ 153 

𝜎 57.69 

𝑚1 120 

𝑚2 150 

𝐻0(𝑞) 0.3 
Tabla VIII 

Así pues, para realizar este ejemplo necesitaríamos proceder de manera similar a la 

utilizada en el capítulo 6 (Estimación de una media), ya que necesitaríamos calcular la media  

𝑚𝑝 y desviación típica 𝑠𝑝 de la distribución a posteriori, mediante la fórmula para el cálculo de 

c, 𝑐0 y 𝑐1 (descritas en dicho capítulo). 

Cabe destacar que 𝑐0 toma valor 0 dado que la distribución a priori sigue una U(0, 1). 

Con lo que bastaría con calcular c y obtener automáticamente 𝑐1. Pudiendo así conocer los 

valores que toman 𝑚𝑝 y 𝑠𝑝, que serán utilizados para evaluar cada una de las F(m), es decir, la 

función de distribución evaluada en m, o lo que es lo mismo, el área bajo la curva de densidad 

a posteriori (con 𝑚𝑝 y 𝑠𝑝) que queda a la izquierda de m. 

Es recomendable que dichos cálculos se realicen a través de algún Software estadístico, 

con tal de facilitar el procedimiento. Por ello, a continuación se procederá a resumirlos, 

aunque podrán verse detalladamente en el anexo de este trabajo, donde se adjuntará la 

sintaxis (para R®) pertinente para desarrollar cada una de las técnicas aplicadas en los 

diferentes capítulos. 

Por tanto, habría que calcular las siguientes ecuaciones: 

Probabilidad de la hipótesis nula: 

𝑃(𝐻0) = 𝐹(𝑚2) − 𝐹(𝑚1) = 0.302 

Factor de Bayes a favor de la hipótesis nula: 

𝐵𝐹 =
𝑃(𝐻0)

𝑃(𝐻1)
= 0.432 

Probabilidad a posteriori de la veracidad de la hipótesis nula: 

𝑃𝑃 =
𝑞𝐵𝐹

𝑞𝐵𝐹 + 1 − 𝑞
= 0.156 
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Con lo que es 2.315 (1/BF) veces más probable de que sea cierta la hipótesis 

alternativa a que lo sea la hipótesis nula. Por otro lado, se puede concluir que sin tener una 

probabilidad a priori informativa, se obtiene la probabilidad de un 15.6% de que 𝐻0 sea cierta. 

8. Estimación de una diferencia de medias (método exacto - 

dos poblaciones) 
 

En este capítulo, se explicará cómo estimar una diferencia de medias mediante el 

método exacto, para dos poblaciones. Por tanto, como se ha realizado anteriormente, se 

diseñará un ejemplo que ayude a la comprensión de dicha técnica. 

Por tanto, a modo de ejemplo, supóngase que en una empresa de aguas, que acaba de 

ganar un concurso público de concesión para el suministro en una determinada comunidad 

muy segregada, desea conocer la diferencia de consumos medios de sus futuros clientes en 

dos explotaciones diferentes de dicha concesión. Para así poder prever la distribución de 

recursos que necesitará hacer de cara al buen funcionamiento del suministro en ambas 

explotaciones. 

Sin embargo, al ser dos explotaciones nuevas (para la empresa), no se dispone de 

datos previos, ni de ninguna posible distribución a priori, por lo que para la realización del 

estudio se asumirá una distribución Uniforme (0, 1), es decir, una distribución no informativa. 

En cuanto al diseño del estudio, dado que se trata de una región segregada, para 

ambas explotaciones se decide utilizar muestras pequeñas con el fin de no encarecer mucho el 

estudio, con lo que se analiza el consumo histórico facilitados por 25 clientes escogidos al azar 

en cada una de las dos explotaciones (1 y 2), de las que se desprende los siguientes datos: 

Estadístico Valor 

𝑛1 25 

𝑛2 25 

𝑥̅1 35 

𝑥̅2 28 

𝑠1
2 0.95 

𝑠2
2 1.05 

n 10.000 
Tabla IX 

Una vez diseñado el estudio y adquiridos los datos, únicamente quedaría desarrollar la 

técnica que nos incumbe en este capítulo, es decir, estimar la diferencia de medias del 

consumo de los clientes de las dos explotaciones, mediante el método exacto. 

En primer lugar, se calcula 𝑆1
2 = 𝑛1𝑠1

2 = 23.75  y 𝑆2
2 = 𝑛2𝑠2

2 = 26.25 , para 

posteriormente generar n=10.000 valores 𝑦1𝑛 , 𝑦2𝑛  con distribución 𝜒2 con 𝑛1 − 1 y 𝑛2 − 1 

grados de libertad respectivamente. Luego se generan dos juegos de n=10.000 valores con 

distribución Normal estándar, denominados 𝑧1 y 𝑧2, para poder calcular las 10.000 medias 

simuladas para cada una de las dos explotaciones, con las siguientes fórmulas: 
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𝑚1𝑖 = √
𝑆1

2𝑧1𝑖
2

𝑦1𝑖𝑛1
+ 𝑥̅1 𝑚2𝑖 = √

𝑆2
2𝑧2𝑖

2

𝑦2𝑖𝑛2
+ 𝑥̅2 

 Para finalmente obtener las n diferencias 𝑑𝑖 = 𝑚1𝑖 − 𝑚2𝑖, de las que si se hace una 

media, se obtendría el estimador de diferencia de medias. 

Dado que dicho proceso es complejo de realizar manualmente, en este supuesto se ha 

procedido a realizarlo mediante el paquete estadístico R®, con lo que únicamente se mostrará 

los resultados obtenidos: 

Diferencia estimada = 6.99 

Percentiles relevantes 

Área Percentil 

2.5 6.611 

5 6.678 

10 6.760 

25 6.878 

50 6.993 

75 7.105 

90 7.217 

95 7.296 

97.5 7.364 
Tabla X 

 

Gráfica 8 

Por último, reseñar que la diferencia estimada se ajusta de manera casi exacta a la 

diferencia que saldría de las dos medias muestrales y que de la distribución empírica a 
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posteriori de las diferencias es posible obtener estimaciones (no paramétricas) de interés, 

como pueden ser los percentiles detallados en la tabla anterior. 

9. Estimación de una diferencia de medias (método 

aproximado - dos poblaciones) 
 

Para estimar una diferencia de medias de dos poblaciones mediante el método 

aproximado, se utilizará el ejemplo explicado en el capitulo anterior, referente al método 

exacto. Utilizando exactamente los mismos valores muestrales, pero con la salvedad de que en 

este caso, se planteará tres hipótesis diferentes. Una en la que no se aporte una distribución a 

priori informativa (como en el caso del capítulo 8), otra en la que se aporta una distribución 

informativa, mediante la aportación de una media y un desviación típica, para cada una de las 

poblaciones y por último, otra hipótesis, en la que se aportará una distribución a priori 

informativa, pero mediante unos determinados valores concretos para cada una de las 

muestras, con sus respectivas probabilidades, es decir el área que se encuentra a la izquierda 

de esos puntos. 

Para el primero de los casos, dado que la distribución a priori no es informativa, 

únicamente necesitaremos los datos procedentes de la muestra, es decir: 

Estadístico Valor 

𝑛1 25 

𝑛2 25 

𝑥̅1 35 

𝑥̅2 28 

𝑠1
2 0.95 

𝑠2
2 1.05 

n 10.000 
Tabla XI 

Una vez recopilados los datos, se procede al cálculo de los estadísticos pertinentes con 

tal de estimar la diferencia de la media de consumo, en este caso, mediante el método 

aproximado. Para ello, cabe recordar que al no tener una distribución a priori informativa, 

únicamente habría que calcular c y no 𝑐0, con lo que 𝑐1 equivaldría a c, que se calcula, para 

cada una de las poblaciones (explotaciones) de la siguiente forma: 

𝑐(1) =
𝑛1

𝑠1
2(1+

20

𝑛1
2)

2 = 24.71  𝑐(2) =
𝑛2

𝑠2
2(1+

20

𝑛2
2)

2 = 22.36 

Una vez obtenidos los resultados de las c, se puede proceder a calcular las 

desviaciones típicas a posteriori de cada una de las poblaciones (𝑆𝑝1 𝑦 𝑆𝑝2), para luego, 

calcular la desviación típica a posteriori global, denominada s: 

𝑆𝑝1 =
1

√𝑐(1)
= 0.20  𝑆𝑝2 =

1

√𝑐(2)
= 0.21 𝑠 = √𝑆𝑝1 + 𝑆𝑝2 = 0.29 
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Para el cálculo de las medias a posteriori, dado que no hay probabilidad a priori 

informativa, éstas equivalen a las medias muestrales, de tal forma que únicamente habría que 

calcular la media conjunta de la diferencia de medias, para así obtener la media a posteriori, es 

decir: 

𝑚 = 𝑚𝑝1 − 𝑚𝑝2 = 7 

Así pues, se puede concluir que la distribución a posteriori sigue una Normal (7,0.3) y 

quedaría representada de la siguiente forma: 

 

Gráfica 9 

Una vez alcanzado este punto, es posible calcular, tanto el intervalo de credibilidad de 

por ejemplo 𝛼 = 0.05, que es [6.428, 7.572], o algunos puntos de interés, como pueden ser los 

percentiles relevantes, que se muestran a continuación: 

Percentiles relevantes 

Área Percentil 

2.5 6.428 

5 6.520 

10 6.626 

25 6.803 

50 7.000 

75 7.197 

90 7.374 

95 7.480 

97.5 7.572 
Tabla XII 

Si por el contrario, existieran conocimientos previos sobre la materia estudiada y se 

pudiera aportar cierta información subjetiva, ésta podría también incluirse en el análisis, por 

ejemplo, conociendo directamente las medias y desviaciones típicas que presentan cada una 

de las poblaciones en estudio, con lo que a los datos muestrales mencionados anteriormente, 

habría que añadir dichos parámetros de la distribución a priori, que por ejemplo puede seguir 

una distribución Normal con: 
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Estadístico Valor 

𝑛1 25 

𝑛2 25 

𝑥̅1 35 

𝑥̅2 28 

𝑠1
2 0.95 

𝑠2
2 1.05 

𝑚1 32 

𝑚2 25 

𝑠1 1 

𝑠2 1.25 

n 10.000 
Tabla XIII 

Dado que en este supuesto sí disponemos de información previa, podemos calcular las 

c, 𝑐0  y 𝑐1  para cada una de las explotaciones (poblaciones), como se puede apreciar a 

continuación: 

𝑐(1) =
𝑛1

𝑠1
2(1+

20

𝑛1
2)

2 = 24.71  𝑐0(1) =
1

𝑠1
=1   𝑐1(1) = 𝑐0(1) + 𝑐(1) = 25.71 

𝑐(2) =
𝑛2

𝑠2
2(1+

20

𝑛2
2)

2 = 22.36 𝑐0(2) =
1

𝑠𝟐
= 0.64  𝑐1(2) = 𝑐0(2) + 𝑐(2) = 23.00 

A su vez, es posible calcular las medias y desviaciones típicas a posteriori, para ambas 

poblaciones: 

𝑆𝑝1 =
1

√𝑐(1)
= 0.20  𝑆𝑝2 =

1

√𝑐(2)
= 0.21 𝑠 = √𝑆𝑝1 + 𝑆𝑝2 = 0.29 

𝑚𝑝1 =
𝑐0(1)𝑚1+𝑐𝑥1̅̅̅̅

𝑐1(1)
= 34.88 𝑚𝑝2 =

𝑐0(2)𝑚2+𝑐𝑥2̅̅̅̅

𝑐1(2)
= 28.11 𝑚 = 𝑚𝑝1 − 𝑚𝑝2 = 6.77  

Con lo que una vez llegado a este punto, al igual que en el supuesto anterior podemos 

calcular, tanto el intervalo de credibilidad de por ejemplo 𝛼 = 0.05, que es [6.209, 7.335], o 

algunos puntos de interés, como pueden ser los percentiles relevantes, que se muestran a 

continuación: 

Percentiles relevantes 

Área Percentil 

2.5 6.209 

5 6.300 

10 6.404 

25 6.578 

50 6.772 

75 6.966 

90 7.140 

95 7.244 

97.5 7.335 
Tabla XIV 



34 
 

Que como puede apreciarse, si se compara con la tabla de percentiles relevantes del 

supuesto anterior, los percentiles se han modificado ligeramente a la baja, a causa de la 

influencia dada por la distribución a priori. 

Por último, podría darse el caso en el que la distribución a priori no se proporcionara 

mediante los valores de las medias y desviaciones típicas de cada una de las poblaciones, sino 

que esta fuera dada mediante unos valores concretos y unas probabilidades para dichos 

puntos. 

Para poder ilustras este último supuesto, consideraremos los datos anteriores, con la 

única salvedad de que los datos relativos a las distribuciones a priori son distintos. Se puede 

apreciar los datos en la siguiente tabla: 

Estadístico Valor Estadístico Valor 

 𝑛1 25 𝑝11 0.3 

 𝑛2 25 𝑥12 34 

𝑥̅1 35 𝑝12 0.6 

𝑥̅2 28 𝑥21 22 

𝑠1
2 0.95 𝑝21 0.3 

𝑠2
2 1.05 𝑥22 27 

𝑥11 32 𝑝22 0.3 
Tabla XV 

En este caso el proceso variaría ligeramente, ya que hay que calcular previamente las 

medias y desviaciones típicas a priori. Para ello, en un primer instante hay que calcular la 

inversa de la distribución normal estándar aplicada a la probabilidad 𝑝𝑖  (i=1, 2), es decir, 𝜓𝑖 =

𝜙−1(𝑝𝑖).  

𝜓11 = −0.524 𝜓12 = 0.253 𝜓21 = −0.524 𝜓22 = 0.253 

Una vez obtenido dichos cálculos, se procede a evaluar las desviaciones típicas y 

medias a priori de la siguiente forma: 

𝑠01 =
𝑥11−𝑥12

𝜓11−𝜓12
= 2.572  𝑚01 = 𝑥11 − 𝑠01𝜓11 = 32.885 

𝑠02 =
𝑥21−𝑥22

𝜓21−𝜓22
= 6.429  𝑚02 = 𝑥21 − 𝑠02𝜓21 = 25.371 

A partir de este punto, el proceso es idéntico al utilizado en el supuesto anterior, es 

decir: 

𝑐(1) =
𝑛1

𝑠1
2(1+

20

𝑛1
2)

2 = 24.71  𝑐0(1) =
1

𝑠1
= 0.15   𝑐1(1) = 𝑐0(1) + 𝑐(1) = 24.86 

𝑐(2) =
𝑛2

𝑠2
2(1+

20

𝑛2
2)

2 = 22.36 𝑐0(2) =
1

𝑠𝟐
= 0.02  𝑐1(2) = 𝑐0(2) + 𝑐(2) = 22.38 

𝑆𝑝1 =
1

√𝑐(1)
= 0.20  𝑆𝑝2 =

1

√𝑐(2)
= 0.21 𝑠 = √𝑆𝑝1 + 𝑆𝑝2 = 0.29 

𝑚𝑝1 =
𝑐0(1)𝑚1+𝑐𝑥1̅̅̅̅

𝑐1(1)
= 34.98 𝑚𝑝2 =

𝑐0(2)𝑚2+𝑐𝑥2̅̅̅̅

𝑐1(2)
= 28.01 𝑚 = 𝑚𝑝1 − 𝑚𝑝2 = 6.98  
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Quedándonos en este supuesto con una media de 6.98 y una desviación típica de 0.29, 

para la distribución a posteriori Normal. Y con los siguientes percentiles relevantes: 

Percentiles relevantes 

Área Percentil 

2.5 6.411 

5 6.503 

10 6.608 

25 6.785 

50 6.982 

75 7.178 

90 7.355 

95 7.461 

97.5 7.553 
Tabla XVI 

10. Hipótesis de una diferencia de medias (dos 

poblaciones) 
 

Para el desarrollo de esta última técnica, se utilizará un ejemplo genérico, en el que se 

proporcionará únicamente los datos necesarios para su desarrollo. Por tanto, atendiendo al 

siguiente contraste de hipótesis:  

𝐻0: 𝐷 ∈ [𝑑1 = 2.5, 𝑑2 = 5] 

𝐻1: 𝐷 ∉ [𝑑1 = 2.5, 𝑑2 = 5] 

Se recaban los siguientes datos: 

Estadístico Valor 

𝑛1 15 

𝑛2 15 

𝑥̅1 18 

𝑥̅2 24 

𝑠1
2 2.3 

𝑠2
2 3.4 

n 10.000 

q 0.4 
Tabla XVII 

Y se procede a analizarlos de manera similar a la utilizada en los capítulos 7 (Hipótesis 

sobre una media) y 8 (Estimación de la diferencia de medias por el método exacto), de tal 

forma que en primer lugar, se calcula 𝑆1
2 = 𝑛1𝑠1

2 = 34.5 y 𝑆2
2 = 𝑛2𝑠2

2 = 51, para 

posteriormente generar n=10.000 valores 𝑦1𝑛, 𝑦2𝑛 con distribución 𝜒2 con 𝑛1 − 1 y 𝑛2 − 1 

grados de libertad respectivamente. Luego se generan dos juegos de n=10.000 valores con 

distribución Normal estándar, denominados 𝑧1 y 𝑧2, para poder calcular las 10.000 medias 

simuladas para cada una de las dos explotaciones, con las siguientes fórmulas: 
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𝑚1𝑖 = √
𝑆1

2𝑧1𝑖
2

𝑦1𝑖𝑛1
+ 𝑥̅1 𝑚2𝑖 = √

𝑆2
2𝑧2𝑖

2

𝑦2𝑖𝑛2
+ 𝑥̅2 

Para finalmente obtener las n diferencias 𝑑𝑖 = 𝑚1𝑖 − 𝑚2𝑖, de las que si se hace una 

media, se obtendría el estimador de diferencia de medias (en valor absoluto resulta ser 6.07). 

Hasta aquí, el proceso es idéntico al utilizado en el capítulo 8 y a partir de este 

momento, se asemeja al realizado en el capítulo 7 (con alguna salvedad), es decir, se realizan 

los siguientes cálculos: 

Probabilidad de la hipótesis nula: 

𝑃(𝐻0) = 𝐹(𝑑2) − 𝐹(𝑑1) = 0.006 

Para lo cual se ha tenido que calcular la función de distribución evaluada en 𝑑𝑖, 

mediante la distribución empírica de las diferencias entre las dos medias. 

Factor de Bayes a favor de la hipótesis nula: 

𝐵𝐹 =
𝑃(𝐻0)

𝑃(𝐻1)
= 0.006 

Probabilidad a posteriori de la veracidad de la hipótesis nula: 

𝑃𝑃 =
𝑞𝐵𝐹

𝑞𝐵𝐹 + 1 − 𝑞
= 0.004 

Dada la complejidad de los cálculos realizados para esta técnica, sería apropiado la 

utilización de algún Software estadístico que permita ejecutar cálculos masivos, como los 

empleados. A modo de ejemplo, en el Anexo se adjuntarán la sintaxis utilizada para realizar 

dichos cálculos, paso a paso. 

11. Aplicación de las técnicas explicadas en R® 
 

Dada la versatilidad y gratuidad del paquete estadístico R®, éste puede considerarse 

un Software altamente apropiado para aplicar las diferentes técnicas estudiadas a lo largo de 

este trabajo. Por ello esa razón, a continuación se hará un resumen de alguna de esas técnicas, 

explicando la sintaxis que se ha de utilizar para calcular los diferentes estadísticos utilizados en 

los capítulos anteriores. 

Una técnica muy utilizada y de gran utilidad para la estadística bayesiana son las 

gráficas referentes a la distribución Beta(a, b), distribución muy recurrida para expresar la 

probabilidad a priori. Esta distribución, se puede expresar gráficamente en R® de la siguiente 

manera: 

 

x <- seq(0, 1, length = 1025) #Proporciona valores al eje X 
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y1 <- dbeta(x, 4, 1) #Calcula la densidad de la Beta (4, 1) 

plot(y1, col="red", type="l", xlim=c(-10,1010), ylim=c(0,7), main="Ejemplo Distribución Beta (4, 1)") 

 

Gráfica 10 

Como se puede apreciar, en un primer instante se ha generado un vector con 1025 

valores entre 0 y 1 (x), para luego calcular la distribución de densidad de una Beta (4, 1), para 

cada uno de los valores ‘x’. Por último, se ha dado la instrucción pertinente para que dibuje la 

curva relativa a la distribución de densidad Beta calculada anteriormente, con las indicaciones 

de que dibujara la línea de color rojo, con una línea continua y que la gráfica mostrara 

únicamente el rango [-10, 1010], para el eje ‘x’ y el rango [0, 7], para el eje ‘y’. Terminando por 

incluirle un título a la gráfica. 

Si por el contrario se desea expresar varias curvar de densidad de una Beta en una 

misma gráfica, la sintaxis a utilizar sería la siguiente: 

x <- seq(0, 1, length = 1025) #Proporciona valores al eje X 

y1 <- dbeta(x, 4, 4) #Calcula la densidad de la Beta (4, 4) 

y2 <- dbeta(x, 4, 1) #Calcula la densidad de la Beta (4, 1) 

y3 <- dbeta(x, 1, 1) #Calcula la densidad de la Beta (1, 1) 

y4 <- dbeta(x, 1, 4) #Calcula la densidad de la Beta (1, 4) 

plot(y1, col="red", type="l", xlim=c(-10,1010), ylim=c(0,7), main="Ejemplos Distribución Beta") 

lines(y2, col="black", type="l") #Añadir la curva de la Beta y2 

lines(y3, col="green", type="l") #Añadir la curva de la Beta y3 

lines(y4, col="blue", type="l") #Añadir la curva de la Beta y4 

legend("top", paste0("beta", c("(4,4)","(4,1)","(1,1)","(1,4)")), 

         col=c("red","black","green","blue"), lty=1, bty = "n") #Crear la leyenda explicativa de las curvas 
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Gráfica 11 

En este caso, se ha reproducido lo mencionado para la gráfica anterior, pero con la 

salvedad de que se ha generado cuatro distribuciones de densidad (𝑦𝑖 ) distintas de la 

distribución de probabilidad Beta y que posteriormente se ha añadido cada una de las 𝑦𝑖  a la 

gráfica con el comando ‘lines’. Por último, se ha generado una leyenda que identifique cada 

una de las 𝑦𝑖. 

Otra técnica de gran utilidad y muy utilizada en la estadística bayesiana son los 

intervalos de credibilidad de mayor densidad posible: 

a <- 15 #Valor a de la Beta 

b <- 165 #Valor b de la Beta 

alfa <- 0.05 #Nivel de significación 

f <- function(x){ 

  (dbeta(x[2], a, b) - dbeta(x[1], a, b))^2 +  

    (pbeta(x[2], a, b) - pbeta(x[1], a, b) -1 +  alfa)^2 

} #Función para desarrollar los intervalos de credibilidad 

res <- optim(c(a/(a+b), a/(a+b)), f) #Elección del intevalo de mayor densidad 

x <- 1:100 / 100 #Valor dado al eje X 

plot(x, dbeta(x, a, b), type = "l", ylab = "densidad") #Gráfica de densidad de la distribución Beta 

lines(c(res$par[1], res$par[1]),  

      c(0, dbeta(res$par[1], a, b)), col = "red") 

lines(c(res$par[2], res$par[2]),  

      c(0, dbeta(res$par[2], a, b)), col = "red") 

lines(c(res$par[1], res$par[2]),  



39 
 

      rep(dbeta(res$par[2], a, b), 2), col = "red") # Diferentes líneas que crean gráficamente el intervalo 

res # Resultados numéricos del intervalo de probabilidad 

 

Gráfica 12 

En este caso, se ha empezado por establecer los parámetros de la distribución Beta 

para la que se desea calcular el intervalo de credibilidad y el nivel de significa al que se desea 

obtener. A continuación, se ha desarrollado una función que permita calcular el propio 

intervalo de credibilidad, que será usada en la sentencia siguiente, donde se busca el intervalo 

de probabilidad de mayor densidad y por tanto el más corto, con un nivel de significación igual 

al especificado al inicio. Por último, se procede a dibujar la curva de densidad de la distribución 

Beta, más el marco en el que se encuentra el intervalo de credibilidad (en rojo). Para terminar 

mostrando los resultados numéricos del intervalo, entre ellos los límites inferior y superior del 

susodicho. 

Por otro lado, en cuanto a las diferentes técnicas explicadas a lo largo de este trabajo, 

cabe mencionar que éstas han sido calculadas de manera cuasi ‘manual’, con tal de hacer más 

comprensible el proceso por el cual se llega a los resultados finales, por lo que se adjuntará la 

sintaxis que las desarrolla  en el anexo final, para así evitar enturbiar este trabajo. 

Por último, cabe destacar que en el paquete estadístico R® existen innumerables 

librerías dedicadas a la estadística bayesiana, que son capaces de ejecutar internamente los 

cálculos necesarios, evitando de ese modo la necesidad de hacerlo ‘manualmente’, pero dado 

que el espíritu de este trabajo ha sido explicar cada una de las técnicas de la manera más 

detallada posible, no se considera pertinente desarrollar dichas técnicas utilizando librerías 

que ‘automaticen’ el proceso. 

12. Conclusiones 
 

Como se ha podido apreciar a lo largo de este trabajo, la versatilidad de la estadística 

bayesiana nos permite poder ampliar los conocimientos adquiridos mediante el muestreo 
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estadístico, con los posibles conocimientos previos existentes sobre la materia que se estudia, 

evitando de esa manera que se pierda o desaproveche información existente. 

Adicionalmente, la estadística bayesiana tiene una gran ventaja, como alternativa a la 

estadística frecuentista y es que permite analizar muestras pequeñas sin que esto sea un 

perjuicio de cara a la estimación “insesgada” de los estadísticos de interés, como se ha podido 

comprobar a lo largo de este trabajo. Sin embargo, cuando se trata de analizar muestras 

considerablemente grandes, el método bayesiano no presenta resultados significativamente 

distintos al método frecuentista debido a que la verosimilitud de los datos muestrales tienen 

un elevado peso en el global del análisis y por tanto, que en dichos supuestos, sea 

prácticamente igual considerar un método que el otro.  

En otro orden de ideas, el método bayesiano habitualmente conlleva cálculos 

computacionales complejos, hecho que históricamente ha sido considerado como un hándicap. 

Sin embargo, en la actualidad, gracias a la existencia de herramientas informáticas avanzadas 

al alcance de los investigadores, (como puede ser el paquete estadístico R®, explicado en el 

capítulo anterior) es posible realizar dichos cálculos en un periodo de tiempo breve. 

Facilitando de ese modo la implantación de las técnicas propias de la estadística bayesiana, 

donde es habitual realizar múltiples simulaciones, como se ha visto a lo largo de los ejemplos 

utilizados en este trabajo, donde se llegó a generar en más de una ocasión, para una misma 

técnica hasta 4 simulaciones de 10.000 valores. 

Por otro lado, dado el carácter subjetivo que tiene la distribución a priori, cabe 

destacar que los estudios llevados a cabo mediante técnicas propias de la estadística bayesiana, 

deben ser tratados con el mayor rigor científico posible, ya que se trata de una técnica de gran 

utilidad y por tanto no debe verse empañada por probabilidades subjetivas sesgadas. Aunque, 

como se mencionó anteriormente, esta posibilidad se ve controlada por la implementación de 

los datos muestrales que actualizan la susodicha distribución a priori. 

  Por todo ello, cabe destacar que la existencia y uso de la estadística bayesiana puede 

ser considerada de gran utilidad, tanto en aquellos supuestos en los que la posibilidad de 

obtener muestras considerables es casi nula y por tanto no es posible la utilización de la 

estadística frecuentista con garantías, como en los casos en los que el investigador puede 

aportar información relevante sobre la materia estudiada, enriqueciendo de esa manera el 

estudio realizado con dicha información adicional. Pudiendo por tanto coexistir ambos 

métodos sin que haya ningún impedimento, ya que estos pueden llegar a considerarse 

complementarios, existiendo la posibilidad de ser usados en partes distintas del proceso 

investigativo y utilizándose según en qué situaciones uno u otro método. 
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Anexo: 
 

## Gráficas ## 

x <- seq(0, 1, length = 1025) 

y1 <- dbeta(x, 4, 4) 

y2 <- dbeta(x, 4, 1) 

y3 <- dbeta(x, 1, 1) 

y4 <- dbeta(x, 1, 4) 

plot(y1, col="red", type="l", xlim=c(-10,1010), ylim=c(0,7), main="Ejemplos Distribución Beta") 

lines(y2, col="black", type="l") 

lines(y3, col="green", type="l") 

lines(y4, col="blue", type="l") 

legend("top", paste0("beta", c("(4,4)","(4,1)","(1,1)","(1,4)")), 

         col=c("red","black","green","blue"), lty=1, bty = "n") 

## Intervalo de Credibilidad ## 

a <- 15 

b <- 165 

alfa <- 0.05 

f <- function(x){ 

  (dbeta(x[2], a, b) - dbeta(x[1], a, b))^2 +  

    (pbeta(x[2], a, b) - pbeta(x[1], a, b) -1 +  alfa)^2 

} 

res <- optim(c(a/(a+b), a/(a+b)), f) 

x <- 1:100 / 100 

plot(x, dbeta(x, a, b), type = "l", ylab = "densidad") 

lines(c(res$par[1], res$par[1]),  

      c(0, dbeta(res$par[1], a, b)), col = "red") 

lines(c(res$par[2], res$par[2]),  
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      c(0, dbeta(res$par[2], a, b)), col = "red") 

lines(c(res$par[1], res$par[2]),  

      rep(dbeta(res$par[2], a, b), 2), col = "red") 

res 

## C.H. Prop. Una Población ## 

P0=0.7 

e=11 

n=29 

f=n-e 

a=3.5 

b=1.5 

q=0.8 

betaAB=(gamma(a)*gamma(b))/(gamma(a+b)) 

betaAeBf=(gamma(a+e)*gamma(b+f))/(gamma(a+e+b+f)) 

arriba=(P0^e)*((1-P0)^f)*betaAB 

abajo=betaAeBf 

BF=(arriba)/(abajo) 

BF 

BC=1/BF 

BC 

PdeH=(q*BF)/(q*BF+(1-q)) 

PdeH 

## C.H. Prop. Intervalo de Una Población ## 

P1=0.45 

P2=0.75 

e=54 

n=120 



44 
 

f=n-e 

a=7.5 

b=17.5 

q=0.9 

Fp1=pbeta(P1, a+e, b+f) 

Fp2=pbeta(P2, a+e, b+f) 

PH=Fp2-Fp1 

PH 

BF=PH/(1-PH) 

BF 

PP=(q*BF)/(q*BF+1-q) 

PP  

## Diferencia de Prop. de Dos Poblaciones ## 

p1 <- rbeta(10000,71,170) 

p2 <- rbeta(10000,137,108) 

dif <- p1 - p2 

difmas0 <- dif[dif >= 0] 

prob <- length(difmas0)/10000 

prob 

quantile(dif,c(0.025,0.975)) 

## CH Diferencia de proporciones dentro de un intervalos Dos poblaciones ## 

n  = 10000 

q  = 0.3 

p3 = 0.2 

p4 = 0.35 

a1 = 72 

b1 = 18 
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e1 = 30 

f1 = 10 

a2 = 57 

b2 = 38 

e2 = 24 

f2 = 16 

y1 = rbeta(n, a1+e1, b1+f1) 

y2 = rbeta(n, a2+e2, b2+f2) 

d  = y1-y2 

plot(density(d)) 

d.ord=sort(d, decreasing=FALSE) 

plot(density(d.ord)) 

j=NULL 

i=NULL 

for (i in 1:10000) 

{ 

 if (d.ord[i] <= p3) j=i 

} 

j 

k=NULL 

i=NULL 

for (i in 1:10000) 

{ 

 if (d.ord[i] <= p4) k=i 

} 

k 

Fp3 = j/10000 
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Fp4 = k/10000 

PH  = Fp4-Fp3 

PH 

BF  = PH/(1-PH) 

BF 

PP  = (q*BF)/(q*BF+1-q) 

PP 

## CH de una media dentro de un intervalos Una población ## 

m1    = 170 

m2    = 178 

q     = 0.8 

media = 176 

var   = 3^2 

n     = 10 

c  = n/(var*(1+(20/n^2))^2) 

mp = media 

sp = 1/sqrt(c) 

F.m1 = pnorm(m1, mp, sp) 

F.m2 = pnorm(m2, mp, sp) 

PH = F.m2-F.m1 

PH 

BF = PH/(1-PH) 

BF 

PP = (q*BF)/(q*BF+1-q) 

PP 

 


