Study of the shelf life of a raw and dried meat product

Balcells Piqué, Albert. Universitat Autònoma de Barcelona

INTRODUCTION

A raw and dried meat product are made of meat and pork and/or beef fat mixed with spices and additives, stuffed in natural or artificial gut and subjected to a maturing and drying process.

This kind of product emerged because of man-needs to preserve food through a drying process and low pH. Being stuffed, meat was isolated from outer microorganism or contamination.

Stages of preparing a raw and dried meat product are:

- 1- Receipt of raw materials.
- 2- Meat and fat cold preservation
- 3- Mincing
- 4-Mixing and kneading, spices addition, salt, approved additives, starters and sugar
- 5- Stuffing (+ *Penicillium chrysogenum* layer and maturation process).
- 6- Drying
- 7- Packaging
- 8- Expedition.

OBJECTIVE

The objective of this study is to evaluate the hygienic quality, the fungal surface development and the organoleptic characteristics of sums during their shelf life.

MATERIALS AND METHODS

MATERIALS:

The 26 sums were obtained from a meat product industry in Barcelona. One half of them were unpacked (batch A) and the other half were packed (batch B).

Day	Bat	ch A	Batch B					
23-March		mples a3,a4,a5)	5 samples (b1,b2,b3,b4,b5)					
7-April	A1	A2	B1	B2				
20-April	A3	A4	B3	B4				
11-may	A5	A6	B5	B6				
25-may	A7	A8	B7	B8				

Table 1: Timetable of analysis

stored at room-temperature stored under cold conditions

METHODS:

- •Organoleptic analysis: It was a simple organoleptic analysis in order to evaluate the odour, colour, fungal growth on the surface and defects in its appearance.
- •pH evolution: To determine the pH of each sample, 5 g of the sample were weighed out and diluted in 50 ml of distilled water. The pH was measured with a pH Micro pH 2000.

•Microbiological analysis:

- Salmonella spp.
- Listeria monocytogenes
- Escherichia coli
- Clostridium perfringens
- Staplylococcus aureus
- Fungus

RESULTS AND DISCUSSION

		odour	colour	fungal growth	defects in appearance	
	al	N	reddish	N	N	
	a2	N	reddish	N	N	
	a3	N	reddish	N	N	
15	a4	N	reddish	N	N	
23/03/2015	a5	N	reddish	N	N	
/03	bl	N	reddish	N	N	
23	b2	N	reddish	N	N	
	b3	N	reddish	N	N	
	b4	N	reddish	N	N	
	b5	N	reddish	N	N	
15	Al	N	reddish	N	N	
07/04/2015	A2	N	reddish	N	N	
707	B1	N	reddish	N	N	
0.2	B2	N	reddish	N	N	
15	A3	N	reddish	N	dry	
/20	A4	N	reddish	decrease fungus	dry	
20/04/2015	В3	N	reddish-brown	decrease fungus +	soft	
20	B4	N	reddish	decrease fungus +	N	
	A5	N	reddish	decrease fungus	very dry	
015	A6	N	reddish	decrease fungus +	dry	
11/05/2015	В5	ammonia	brown	disappearance fungus	Very soft, emerges the gut	
' '	B6	N	reddish-brown	decrease fungus ++	soft	

Table 2: Organoleptic analysis

stored at room-temperature stored under cold conditions

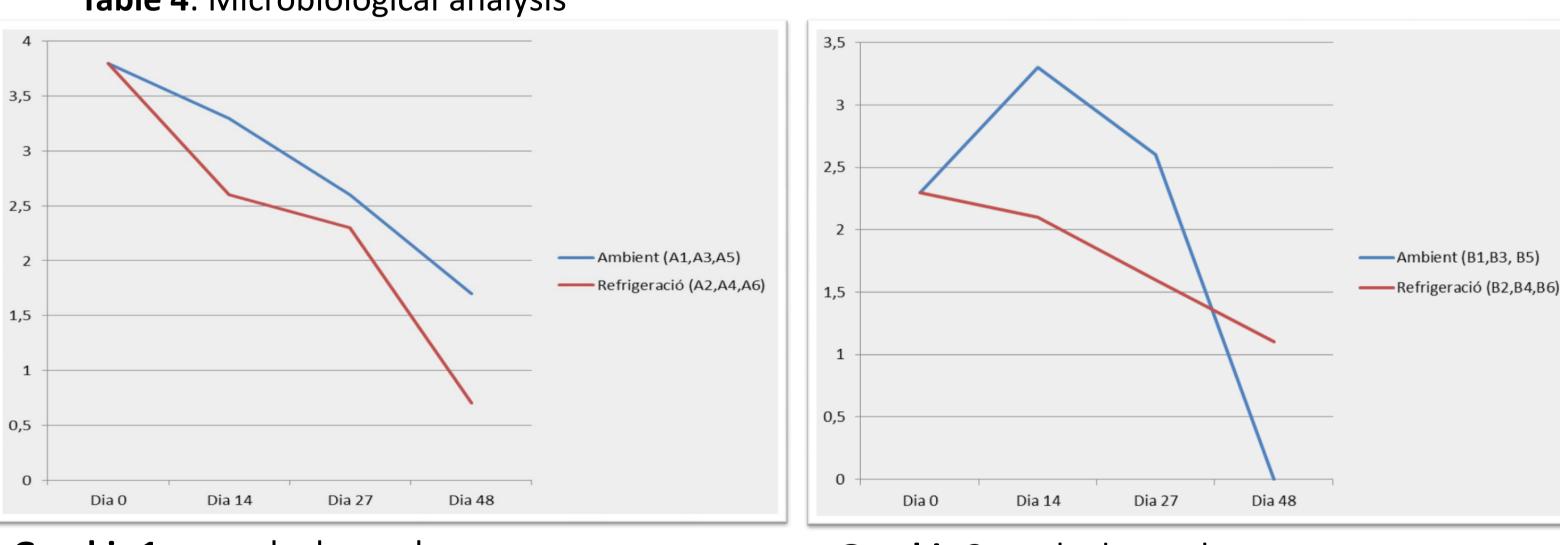
Table 2 represents organoleptic analysis results.

shown, main modifications appeared around day 30.

It can be observed that sums packed and stored at roomtemperature (B1, B3, B5) have the worst organoleptic characteristics.

Sums B2, B4 and B6, packed stored under cold conditions, their organoleptic changes have appeared later than the other samples from batch (at roomtemperature).

Surface flora had an upward trend, only at these sums stored at roomtemperature during first fifteen days of drying. Also, environment which had higher temperature and relative humidity caused a bigger surface flora growth.


> stored at room-temperature stored under cold conditions

Day	pН	Batch A	pH Batch B			
23/03/2015		6,66	6,33			
11/05/2015	A5	6,64	B5	8,08		
	A6	6,23	В6	6,41		

Table 3: Evolution of pH.

		Lot A: No envasat							Lot B: Envasat					
		Salm.	List.	E.coli	S.aureus	C.perf	Fongs(ufc/g)		Salm.	List.	E.coli	S.aureus	C.perf	Fongs(ufc/g)
23/03/2015	a1	A/25g	A/25g	A/g	A/g	A/ml	$3,8x10^7$	b1	A/25g	A/25g	A/g	A/g	A/ml	$2,3x10^7$
	a2	A/25g	A/25g	A/g	A/g	A/ml	$3,8x10^7$	b2	A/25g	A/25g	A/g	A/g	A/ml	$2,3x10^7$
	a3	A/25g	A/25g	A/g	A/g	A/ml	$3,8x10^7$	b3	A/25g	A/25g	A/g	A/g	A/ml	$2,3x10^7$
	a4	A/25g	A/25g	A/g	A/g	A/ml	$3,8x10^7$	b4	A/25g	A/25g	A/g	A/g	A/ml	$2,3x10^7$
	a5	A/25g	A/25g	A/g	A/g	A/ml	$3,8x10^7$	b 5	A/25g	A/25g	A/g	A/g	A/ml	$2,3x10^7$
07/04/2015	A1	A/25g	A/25g	A/g	A/g	A/ml	$3,3x10^7$	B1	A/25g	A/25g	A/g	A/g	A/ml	$3,3x10^7$
	A2	A/25g	A/25g	A/g	A/g	A/ml	$2,6x10^7$	B2	A/25g	A/25g	A/g	A/g	A/ml	$2,1x10^7$
20/04/2015	A3	A/25g	A/25g	A/g	A/g	A/ml	$2,6x10^7$	В3	A/25g	A/25g	A/g	A/g	A/ml	$2,6x10^7$
	A4	A/25g	A/25g	A/g	A/g	A/ml	$2,3x10^7$	B4	A/25g	A/25g	A/g	A/g	A/ml	1,6x10 ⁷
11/05/2015	A5	A/25g	A/25g	A/g	A/g	A/ml	$1,7x10^7$	B5	A/25g	A/25g	A/g	A/g	A/ml	0
	A6	A/25g	A/25g	A/g	A/g	A/ml	$0.7x10^7$	В6	A/25g	A/25g	A/g	A/g	A/ml	$1,1x10^7$

 Table 4: Microbiological analysis

Graphic 1: unpacked samples **Graphic 2**: packed samples

CONCLUSION

- products with an -Sums could be considered acceptable as microbiological quality.
- -In samples checked, any of pathogen microorganisms have been detected.
- -Surface culture addition during the production of these meat products helps to control the presence of undesirable microbiota.
- -Results of analyses in this study show that fungal contamination different from Penicillium chrysogenum has not been detected.
- -This study demonstrates that the packed and stored under cold conditions sum has the best organoleptic characteristic during a longer period of time, with the same firmness and favourable conditions of surface flora.
- -Packed and stored at room-temperature sum is not recommended, although the firmness of the product would not change with these characteristics.