Planta per la fabricació de CClF₃

Grau en Enginyeria Química

Tutora: Mª Eugenia Suárez Ojeda

PART I: VOLUMS I, II, III i IV

Andrés Palacios
Pedro Guerrero
Marc Catalá
Alberto Cárceles
Laia Camprubi
Índex

1. **Volum I: Especificacions del projecte**
2. **Volum II: Fulls d’especificació**
3. **Volum III: Instrumentació i control**
4. **Volum IV: Canonades, vàlvules, accessoris i bombes**
VOLUM I:
Especificacions del projecte
Índex

1.1. Definició del projecte ... 2
 1.1.1. Abast del projecte ... 2
 1.1.2. Localització i comunicacions de la planta química 3
 1.1.2.1. Característiques climatològiques de la zona 4
 1.1.2.2. Parcel·la de la planta .. 5
 1.1.3. Paràmetres d’edificació al terme municipal de Sabadell 5
 1.1.4. Abreviacions i nomenclatura .. 6

1.2. Descripció del CCIF₃ ... 7
 1.2.1. Característiques i història ... 7
 1.2.2. Rutes de síntesi ... 8

1.3. Descripció del procés de fabricació ... 9

1.4. Àrees de la planta .. 10
 1.4.1. ÀREA 100: Emmagatzematge de matèries primeres 10
 1.4.2. ÀREA 200: 1a fluoració .. 11
 1.4.3. ÀREA 300: Absorció HCl ... 12
 1.4.4. ÀREA 400: 2a fluoració .. 13
 1.4.5. ÀREA 500: Emmagatzematge de producte acabat 14
 1.4.6. ÀREA 600: Serveis ... 14
 1.4.7. ÀREA 700: Tractament de residus ... 14
 1.4.8. ÀREA 800: Oficines, laboratoris i vestuaris 15
 1.4.9. ÀREA ϵϬϬ: Aparatge i doyar i control d’accessos 15

1.5. Especificacions dels equips principals de planta 16

1.6. Balanços de matèria .. 19

1.7. Serveis de planta .. 22
1. Especificacions del projecte

1.1. Definició del projecte

El projecte present comprèn la viabilitat de la construcció i operació d’una planta química per a la producció del CClF3, conegut com a FREON-13 o CFC-13, a partir de CCl4 i HF. El procés de síntesi seguit té lloc en dos reactors: en el primer es duu a terme la reacció catalítica dels dos reactius per formar de CFC-11 i CFC-12, i en el segon hi ha una altra reacció catalítica que dóna com a producte el component desitjat: clorotrifluorometà. La producció de la planta dissenyada serà de 10.000 tones de FREON-13 i 33.000 tones d’àcid clorhídric al 32%, al llarg dels 300 dies de producció anual, que serà destinada a la venda. L’emmagatzematge, distribució i transport es farà amb contenidors IBC MX1.25 en lots de 1.075 kg pel que fa a l’àcid clorhídric,

Pel que fa al nostre producte final, CFC 13, s’ha pensat un mètode d’envasat en bombones per la seva distribució. El CFC 13 serà liquat en envasos d’acer a 200 bar de pressió. Diferenciem els envasos segons la seva capacitat.

- Bombones: és un recipient de fàcil maneig amb una capacitat igual o inferior a 150L
- Cilindres: és un recipient de més capacitat, entre 150 i 1000L.

1.1.1. Abast del projecte

El projecte contempla les següents parts:

- Disseny i especificació de tots els equips necessaris en el procés de producció
- Disseny de tot el sistema de control necessari pel correcte funcionament de la planta
- Descripció de les mesures de seguretat necessàries per la planta
- Compliment de la normativa local, medi ambiental, de protecció contra incendis i disposicions legals vigents
- Àrees de serveis
- Oficines, laboratori i vestuaris
- Avaluació econòmica del projecte
- Posada en marxa, operació de la planta en continu i parada
1.1.2. **Localització i comunicacions de la planta química**

La planta química dissenyada en el projecte es desenvoluparà a un terreny fictici del Polígon Industrial “Gasos Nobles” al terme municipal de Sabadell. La parcel·la té una superfície total de 70.095 m² i s’haurà de dissenyar complint tota la normativa sectorial d’aplicació.

Sabadell, formada per 207.444 habitants, és cocapital de la comarca del Vallès Occidental ubicada dins de la província de Barcelona, al centre de la Comunitat Autònoma de Catalunya. La indústria de la comarca es concentra a prop de la ciutat destacant la indústria tèxtil, mecànica, metal·lúrgica, de material elèctric, de construcció, química, d’arts gràfiques i alimentària. Com a conseqüència de la crisi industrial de finals dels anys 70 i principis dels 80, s’ha produït un important desenvolupament del sector comercial i de serveis a la comarca.

La ciutat de Sabadell és un dels principals nousos de comunicacions de Catalunya i d’Espanya ja que compta amb molt bones comunicacions viàries, ferroviàries i aèries:

- Comunicacions viàries: Comprèn una extensa xarxa de diferents carreteres, autovies i autopistes. Cal destacar la AP-7 que creua tot el Vallès en direcció est-oest connectant amb les comarques de Tarragona (coneguda pel seu port marítim essent el més gran d’Espanya i el notable complex petroquímic) i Valencia amb el sud de la Península Ibèrica. Esmentar la A-2/AP-2 que comunica Barcelona, Lleida i Saragossa amb les comarques de Girona i França passant per Sabadell.

A continuació s’esmenten els noms de les comunicacions viàries més importants:

- AP-7
- A-2/AP-2
- C-58
- C-16
- C-33
- C-1413
- C-1415
- N-150
- C-155

![Figura I - 1. Xarxa viària de carreteres que passen pel terme municipal de Sabadell](image)
Comunicacions ferroviàries: Les dues companyies de ferrocarril que operen a Catalunya tenen línies que passen per Sabadell: RENFE amb la línia que uneix Barcelona amb Lleida, i els Ferrocarrils de la Generalitat de Catalunya (FGC) anomenades també com “Metro del Vallès” unint Sabadell amb Barcelona.
A més, per Barcelona passa l’AVE que també transporta mercaderies a alta velocitat i comunica Madrid i el sud d’Espanya amb el nord de Catalunya, França, Alemanya, ... El corredor mediterrani avança paral·lel a la costa mediterrània i consisteix en un eix de mercaderies de gran importància que permet el tràfic massiu d’aquestes, permet una facilitat de moviments molt útil per la industria química proposta en el projecte i l’impuls econòmic d’aquesta, és a dir, esdevé la xarxa ferroviària més important per traslladar mercaderies degut a la seva longitud de 3.500km.

Figura I - 2. Xarxa ferroviària en el Corredor Mediterrani

Comunicacions aèries: L’aeroport de Sabadell queda a la sortida de la ciutat per la N-150 i compta amb una pista de 1.050x30, bàsicament hi operen avionetes i també s’utilitza pel tràfic de diverses mercaderies. L’aeroport del Prat, essent el més important de Catalunya, està situat a tan sols a 40km per la AP-7.

1.1.2.1. Característiques climatològiques de la zona
La ciutat de Sabadell presenta un clima mediterrani, amb estius força calorosos (mitjanes del juliol i l’agost de 28 °C aprox.) i hiverns frescos (gener, entre 3 i 5 °C). Durant l’hivern acostuma a haver-hi 30 dies amb temperatures per sota de 0 °C (mínim històric de -12,6 °C), així com 60 dies amb temperatures superiors a 30 °C a l’estiu (màxim històric de 39 °C).
La precipitació mitjana és d’uns 611 mm l’any, sent els mesos de setembre i octubre els més plujosos. Durant l’any hi ha, aproximadament, 77 dies de pluja, així com 5 dies de neu. La
calamarsa fa acte de presència una mitja de 5 dies a l’any, així com les tempestes amb trons uns 40 dies. Les estacions en què menys plou són l’hivern i l’estiu. Tot i així, no hi ha mesos extremadament secs.

Degut a la proximitat del mar i la direcció del vent, la humitat mitjana a l’aire és del 67%. La màxima es produeix durant el desembre amb un 72% de mitja i la mínima el mes de juliol amb un 64%.

1.1.2.2. **Parcel·la de la planta**

A continuació es mostra el plànol imaginari de la parcel·la on es construirà la planta química descrita en el projecte. Es pot veure la distribució espacial d’aquesta, els carreres que la limiten i la geometria que ocupa en la següent figura.

![Figura 1 - 3. Plànol de la parcel·la on es construirà la planta](image)

1.1.3. Paràmetres d’edificació al terme municipal de Sabadell

- Edificabilitat: 1,5 m\(^2\) sostre/m\(^2\) terra
- Ocupació màxima de parcel·la: 75%
- Ocupació mínima de parcel·la: 20% de la superfície d’ocupació màxima
- Reculades: 5 m a vials i veïns
- Altura màxima: 16 m i 3 plantes excepte a producció justificant la necessitat pel procés
- Altura mínima: 4 m i 1 planta
- Aparcaments: 1 plaça/150 m\(^2\) construits
- Distancia entre edificis: 1/3 de l’edifici més alt amb un mínim de 5 m
1.1.4. Abreviacions i nomenclatura

Àrees de la planta:

<table>
<thead>
<tr>
<th>Àrea</th>
<th>Descripció de la zona</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Emmagatzematge de matèries primeres</td>
</tr>
<tr>
<td>200</td>
<td>Primera fluoració</td>
</tr>
<tr>
<td>300</td>
<td>Absorció d’àcid clorhídric</td>
</tr>
<tr>
<td>400</td>
<td>Segona fluoració</td>
</tr>
<tr>
<td>500</td>
<td>Emmagatzematge de producte acabat</td>
</tr>
<tr>
<td>600</td>
<td>Serveis</td>
</tr>
<tr>
<td>700</td>
<td>Tractament de gasos</td>
</tr>
<tr>
<td>800</td>
<td>Oficines, vestuaris i laboratoris</td>
</tr>
<tr>
<td>900</td>
<td>Aparcament i control d’accessos</td>
</tr>
</tbody>
</table>

Nomenclatura dels equips de procés:

<table>
<thead>
<tr>
<th>Abreviació</th>
<th>Equip</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorbidor</td>
</tr>
<tr>
<td>AG</td>
<td>Agitador</td>
</tr>
<tr>
<td>BC</td>
<td>Balança per camions</td>
</tr>
<tr>
<td>C</td>
<td>Columna de rectificació</td>
</tr>
<tr>
<td>CN</td>
<td>Condensador</td>
</tr>
<tr>
<td>CO</td>
<td>Compressor</td>
</tr>
<tr>
<td>CT</td>
<td>Cinta transportadora</td>
</tr>
<tr>
<td>E</td>
<td>Bescanviador</td>
</tr>
<tr>
<td>ET</td>
<td>Estació transformadora</td>
</tr>
<tr>
<td>M</td>
<td>Membrana</td>
</tr>
<tr>
<td>P</td>
<td>Bomba</td>
</tr>
<tr>
<td>R</td>
<td>Reactor</td>
</tr>
<tr>
<td>RB</td>
<td>Reboiler</td>
</tr>
<tr>
<td>S</td>
<td>Scrubber</td>
</tr>
<tr>
<td>T</td>
<td>Tanc</td>
</tr>
<tr>
<td>TA</td>
<td>Torre d’adsorció</td>
</tr>
<tr>
<td>TR</td>
<td>Torre de refrigeració</td>
</tr>
<tr>
<td>V</td>
<td>Vàlvula</td>
</tr>
</tbody>
</table>
Nomenclatura dels compostos involucrats en el procés i els serveis:

<table>
<thead>
<tr>
<th>Abreviació</th>
<th>Compostos</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Aigua</td>
</tr>
<tr>
<td>V</td>
<td>Vapor</td>
</tr>
<tr>
<td>HF</td>
<td>Àcid fluorhídric</td>
</tr>
<tr>
<td>R10</td>
<td>Tetaclorometà</td>
</tr>
<tr>
<td>C1</td>
<td>Pentaclorur d’antimoni (SbCl₅)</td>
</tr>
<tr>
<td>C1D</td>
<td>Triclolorur d’antimoni (SbCl₃)</td>
</tr>
<tr>
<td>C2</td>
<td>Triclolorur d’alumini (AlCl₃)</td>
</tr>
<tr>
<td>C2D</td>
<td>Trifluorur d’alumini (AlF₃)</td>
</tr>
<tr>
<td>HCLG</td>
<td>Clorur d’huigen</td>
</tr>
<tr>
<td>HCLW</td>
<td>Àcid clorhídric</td>
</tr>
<tr>
<td>CL</td>
<td>Clor</td>
</tr>
<tr>
<td>A</td>
<td>Aire comprimit</td>
</tr>
<tr>
<td>R11</td>
<td>Triclorofluorometà, Freon-11 o R-11 (CCl₃F)</td>
</tr>
<tr>
<td>R12</td>
<td>Diclorofluorometà, Freon-12 o R-12 (CCl₂F₂)</td>
</tr>
<tr>
<td>R13</td>
<td>Clorotrifluorometà, Freon-13 o R-13 (CCIF₃)</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NA</td>
<td>Hidròxid de sodi (NaOH)</td>
</tr>
<tr>
<td>DJ</td>
<td>Dowtherm J</td>
</tr>
<tr>
<td>AC</td>
<td>Carbó actiu</td>
</tr>
</tbody>
</table>

1.2. Descripció del CClF₃

1.2.1. Característiques i història

El clorotrifluorometà o FREON-13 (CClF₃) pertany a la família dels clorofluorocarbonis (CFC). És un compost no-inflamable, no-corrosiu i també, una barreja de halometà\(^1\). S’utilitza com a refrigerant, no obstant, degut al seu potencial de destrucció de la capa d’ozó, el seu ús es va anar eliminant gradualment a partir del Protocol de Montreal (1987) fins a la seva total prohibició en l’actualitat.

\(^1\) Halometà: compostos derivats del metà (CH₄) amb un o més dels àtoms d’hidrogen reemplaçats per un àtom d’un halogen (F, Cl, Br o I).
El tetrachlorometà (CCl₄) era utilitzat pels extintors i per les “granades anti-foc” a finals del segle XIX i fins la finalització de la Segona Guerra Mundial. L’experimentació amb cloroalcans per l’extinció d’incendis en aeronaus militars va començar al 1920. FREON és el nom comercial d’un grup de CFC que s’utilitzen principalment com a refrigerants però que també van tenir el seu ús en la lluita contra incendis i com a propel·lents en els aerosols, sota aquest nom comercial s’agrupa el CFC-13 producte principal de la planta dissenyada.

El científic belga Frédéric Swarts va ser el pioner en la síntesi de CFC al 1890. Va desenvolupar un agent efectiu d’intercanvi per reemplaçar el clorur en el tetrachlorur de carboni amb fluorur per sintetitzar CFC-11 (CCl₃F) i CFC-12 (CCl₂F₂). Més tard, al 1920, Thomas Midgley Jr. va millorar el procés de síntesi i va encaminar el seu esforç cap a l’ús dels CFC com a refrigerants per reemplaçar l’amoníac (NH₃), el clorometà (CH₃Cl) i el diòxid de sulfur (SO₂) en aquest ús ja que són tòxics.

1.2.2. Rutes de síntesi

Com a ruta principal per a l’obtenció del refrigerant R-13, es destaca la utilitzada en el present projecte, que es resumeix a continuació.

Tenint tetrachlorometà i àcid fluorhidric com a matèries primeres, s’utilitza el catalitzador SbCl₅ per tal d’aconseguir l’intercanvi de ions fluor entre aquestes dues espècies i produir una mescla de CFC-11 i 12, la composició de la qual depèn del temps de residència. La reacció es pot representar de forma simplificada mitjançant les dues etapes successives:

\[
nHF + SbCl₅ \rightarrow nHCl + SbCl₅₋ₙFₙ\)
\[
SbCl₅₋ₙFₙ + CCl₄ \rightarrow CCl₅₋ₙFₙ + SbCl₅
\]

Amb n=1, 2 segons el temps de contacte entre els reactius.
Considerant el CFC-12 d’aquesta primera reacció, es pot procedir a realitzar una última fluoració en presència del catalitzador sólid AlCl₃, obtenint com a producte final el CFC-13.

\[3 \text{CCl}_2F_2 + \text{AlCl}_3 \rightarrow \text{CCl}_4 + 2 \text{CCIF}_3 \]

1.3. Descripció del procés de fabricació

A continuació, s’exposa un diagrama de blocs que descriu el procés de fabricació de CFC-13 utilitzat en el present treball, on s’indiquen les etapes operatives més importants dins del mateix procés.

![Diagrama de blocs del procés de producció de CFC-13 utilitzat](image)

En la primera fluoració, es pretén produir refrigerants CFC-11 i CFC-12 a partir d’àcid fluorhídric anhidre i tetraclorometà, en presència de SbCl₅, catalitzador en estat líquid. Aquesta reacció pretén la donació de ions Cl⁻ per part del CCl₄ a l’àcid fluorhídric, el qual quedarà en forma d’àcid clorhídric, mentre que el tetraclorometà anirà adquirint ions F⁻, formant-se les diferents espècies refrigerants (CFC-11, 12 i 13). Per què això ocorri a velo citats de aquesta adwissi, fa falta dotar la reacció del catalitzador d’antimoni SbCl₅, que té la funció d’intermediari en la donació dels ions fluor.

El catalitzador d’antimoni s’anirà empobrint en ions de clor, és a dir, anirà formant espècies intermèdies com SbCl₅F, SbCl₃F₂, etc. En el transcurs de la reacció es pot formar el compost no catalític SbCl₅, éss per això que el procés comptarà amb un sistema de regeneració tal que el catalitzador desactivat pugui re-captar de nou els ions de clor i romangui el major temps
possible en l’estat inicial: \(\text{SbCl}_5 \). Per dur a terme aquesta regeneració, s’utilitza un sistema de nanofiltració per membranes.

Un cop obtinguts els fluxos de procés, de CFC-12 i 11 i àcid clorhídric majoritàriament, es procedeix a separar els corrents d’àcid i CFC-12 del refrigerant CFC-11, el qual s’envia al primer reactor de nou per tal de convertir-lo a CFC-12. L’àcid i el CFC-12 són enviats a una segona columna de rectificació, que pretén la separació per caps de l’àcid clorhídric, que s’enviarà a l’Àrea 300 per tal de ser absorbit en aigua i poder-se comercialitzar, i per cues el CFC-12, que serà enviat al segon reactor.

Ja en la segona etapa de fluoració, que consisteix en un reactor de llit fix per a reacció gas-sòlid, el CFC-12 reacciona amb un segon catalitzador, en aquest cas el sòlid clorur d’alumini, \(\text{AlCl}_3 \), el qual farà d’intermediari acceptant ions fluorur.

El corrent de sortida del reactor és enviat a una columna de destil·lació empacada que separa el CFC-13 per caps del CFC-12 que no s’ha convertit, juntament amb el tetraclorometà que s’ha format a la reacció, que són enviats des de cues cap a una segona columna. Aquesta segona columna separa el \(\text{CCl}_4 \) del CFC-12, els quals es recirculen al primer i segon reactor, respectivament.

1.4. Àrees de la planta

1.4.1. ÀREA 100: Emmagatzematge de matèries primeres

Les matèries primeres en la fabricació del clorotrifluorometà són l’àcid fluorhidríric anhidre i el tetraclorometà. L’emmagatzemament de cadascuna de les substàncies esmentades es farà en tancs separats en subàrees, per tal de prevenir riscs per la perillositat de les substàncies i per facilitar les necessitats de temperatura de cada espècie química.

L’àcid fluorhidríric anhidre, HF, es troba en estat líquid, per la qual cosa serà necessari tenir sistemes de refrigeració en el seu emmagatzematge, degut a la proximitat del seu punt d’ebullició a la temperatura ambient. El material serà emmagatzemat en 6 tancs de polietilè d’alta densitat, HDPE, pels problemes de corrosió i toxicitat que podria suposar l’emmagatzematge de l’àcid si no es trobés al 100% de pureza i totalment anhidre. Del contrari, aquest fet es detectaria amb controls de qualitat de matèries primeres i es podria tenir emmagatzemat sense cap problema l’àcid fluorhidríric no anhidre. La capacitat de cada tanc és de 60 m³.
El tetaclorometà, CCl₄, es troba en estat líquid, ja que a temperatura ambient roman en la mateixa fase, tal i com es necessita en el procés. Es necessitaran 6 tancs de 90 m³ per emmagatzemar el volum total necessari d’aquesta substància. El material dels tancs és acer inoxidable.

Pel que fa als catalitzadors, el pentaclorur d’antimoni s’emmagatzemarà en 5 IBCs de polietilè, els quals tenen una capacitat d’1 m³ cadascun. Es preveu tenir a planta suficient catalitzador com per reposar fins a dues vegades la quantitat necessària en el procés. Aquest primer catalitzador es regenera en continu a la mateixa planta mitjançant l’acció del circuit membrana-tanc de cloració. Amb aquesta finalitat, s’haurà de introduir clor al procés quan el catalitzador s’hagi de regenerar. Aquest clor es tindrà en contenidora estàndard de 2000 lliures (907 kg) i es connectaran directament per mànegues a l’entrada de procés, per la qual cosa no es precisarà cap tanc d’emmagatzematge gran per al clor. Faran falta 3 cilindres de clor, donat que cada regeneració precisa de menys d’un cilindre. Periòdicament, es faran comandes per anar reomplint aquest clor.

El clor d’alumini es tindrà en big-bags de 500 kg que es carregaràn al segon reactor pel forat d’home quan sigui necessari, mitjançant l’acció d’una guia de polipast. Així, a planta es tindran 30 big-bags emmagatzemats i cada mes s’enviarà el catalitzador desactivat a l’empresa subministradora per tal d’activar-lo a canvi de 14 big-bags més com a reposició, amb les conseqüents despeses econòmiques que això comporta.

A nivell de serveis, es preveu tenir contínuament bombones de nitrogen per donar cabal de gas iŶeƌt a l’aďsoƌďidoƌ, aidží Đoŵ uŶes ϯ o ϰ ďoŵďoŶes de ϲϬL d’aiƌe ĐoŴp ƌiŵit a la pressió, poder-se connectar per mànegues i poder-se connectar per mànegues a l’entrada de les vàlvules de venteig.

Tenint en compte també les necessitats de l’àrea de medi ambient (tractament de gasos), es tindran emmagatzemats 1 o 2 IBCs de NaOH al 10%wt per les necessitats de reposició de l’scrubber càustic de tractament de gasos àcids que hi ha a planta.

1.4.2. ÀREA 200: 1a fluoració

En aquesta zona es duu a terme la primera fluoració, la qual es realitza en un reactor de 35 m³ en fase líquida. El cabal d’entrada al reactor està constituït per àcid fluorhidric, tetaclorometà i el catalitzador SbCl₅ recirculat, amb l’objectiu de produir CFC-11 i 12, a més de HCl.

El reactor, pensat com un RCTA, treballarà al voltant de 95 °C i a 7 atm de pressió. Es tracta d’un reactor isoterm, escalfat per un sistema de mitja canya, per tal de mantenir òptimes les
necessitat calorífiques de la primera fluoració. Donat que aquest reactor treballa amb substàncies que poden ser corrosives –a elevades pressions i temperatures– com són el clorur d'hidrogen i el fluor d'hidrogen, el material amb el què es fabricarà és Hastelloy C-22. La despesa que suposa el Hastelloy es justifica sobretot pel risc que entri aigua al procés. L'aliment de procés ja està pensat perquè no entri aigua en cap moment al reactor. Si per qualsevol esdeveniment entrés, formaria substàncies hidratades molt estables i fortament corrosives amb el SbCl\(_5\), a part de diluir el halurs d'hidrogen, formant àcids aquosos extremadament corrosius com son el fluorhídric i el clorhídric. Es va pensar en un recobriment de tefló per abaratir costos amb la mateixa finalitat, però es va trobar que aquest presenta una lleugera permeabilitat pel que fa a l'HF, amb la qual cosa s'ha decidit evitar riscos ja que al reactor n'entra constantment.

Del reactor sortiran dos corrents: un en fase gas i un altre líquid. El primer permetrà controlar la pressió del reactor i, el segon, el nivell de líquid. Ambdós corrents, però, seran mesclats abans d'entrar a la columna de rectificació posterior. Per poder mesclar-los, aquests corrents son refredats fins als 0\(^\circ\)C en una línia de bescanvi de calor on, a més, el gas condensa per poder entrar líquid a la columna. Un cop en marxa la reacció, continuament s'anirà retirant un cabal total ric, sobretot, en HCl i CFC-12. Aquest cabal s'enviara a una primera columna de destil·lació de gasos liquats (C-201) que té com objectiu separar productes (CFC-12 i HCl) de reactius i catalitzador (CCl\(_4\), SbCl\(_5\) i CFC-11). El cabal de reactius es recicula cap al reactor, mentre que els productes entren a una segona columna on es separa el HCl pur -per ser absorbit a l'àrea 300- del CFC-12, que seguirà el procés de producció principal a l'àrea 400.

1.4.3. ÀREA 300: Absorció HCl

En aquesta àrea entra l'HCl pur i líquid a 8 atmosferes i -38\(^\circ\)C. Per poder ser absorbit en fase gas i a pressió atmosfèrica, primer passa per un evaporador per canviar de fase, posteriorment per un expansor de gasos a fi de reduir la pressió fins a les 2 atm i, finalment, dos bescanviadors de calor en sèrie que escalfen el gas fins als 10 \(^\circ\)C aproximadament.

Immediatament després, el gas es mescla amb nitrogen i va a parar a un absorbidor de paret humida on s'absorbeix en aigua seguint una direcció de flux en paral·lel. Aquest absorbidor és en realitat un sistema format pel propi absorbidor isoterm de paret humida (A-301) i un de menor envergadura (A-302) adiabàtic de rebliment. En aquest últim van a parar els gasos àcids a la sortida del primer, els quals s'absorbeixen en aigua d'aliment, la qual va a parar després a l'A-301, presentant una composició del 5% en clorhídric. A la sortida de l'A-301 ja és té un
corrent de composició del 32-33%, el qual s’envia a un tanc pulmó -que treballa aproximadament al 20% del nivell total- per ser envasat i distribuït en IBCs.

D’altra banda, la sortida de gasos de l’absorbdor adiabàtic A-302 és pràcticament un corrent de 50kg/h de CFC-12 i 112kg/h de nitrogen amb traces d’HCl gas. Aquest corrent és enviat directament a l’àrea de tractament de gasos –a fi d’adsorbir el CFC-12- abans de ser enviat a l’atmosfera.

1.4.4. ÀREA 400: 2a fluoració

En aquesta àrea esdevé la segona fluoració, que té com objectiu principal transformar el CFC-12 obtingut en la primera reacció en clorotrifluorometà i tetraclorometà.

La peça clau en aquesta zona és el reactor, concretament, dos reactors idèntics de 15 m³. El motiu de la duplicació d’aquest equip és que el catalitzador, partícules sòlides d’AlCl₃, té una vida útil de 3 mesos, així que es necessita un sistema senzill per poder extreure el catalitzador sòlid dels reactors una vegada al mes sense que això supossi una parada en l’operació de la planta. A tal efecte, es tenen els dos reactors: mentre un està en operació, l’altre roman inactiu, amb el catalitzador carregat i condicionat per tal que, quan es precisi, els fluxos de procés siguin desviats al reactor duplicat i el que estava en operació pugui ser netejat del catalitzador desactivat. En una tubuladura de cada reactor es portarà aire comprimit per tal de purgar-lo i inertitzar-lo i poder dur a terme el buidat de catalitzador de forma segura: sense emissions de gasos contaminants ni riscs d’asfixia en obrir el reactor.

La reacció és, per tant, en fase heterogènia gas-sòlid, a una temperatura al voltant dels 125 °C i a una pressió d’aproximadament 1 atm. Per tal de mantenir aquesta temperatura en mode isoterm, caldrà proveir els reactors d’un sistema de refrigeració de mitja canya, donat que la reacció és exotèrmica i produeix temperatures superiors a la desitjada.

Del reactor s’obté un corrent de gasos de sortida format pels dos productes anteriorment mencionats, a més de CFC-12 no convertit. És per això que el corrent es liqua i s’envia a una primera columna on s’extreu el CFC-13 per tal d’emmagatzemar-se i condicionar-se per a la seva venda i distribució. El tetraclorometà i el CFC-12 restants que surten per cues de la primera columna son enviats a una segona on es separen i es reciculen cap al primer i segon reactor (ja que en són productes), respectivament.
1.4.5. ÀREA 500: Emmagatzematge de producte acabat
El producte acabat, CFC-13, s’emmagatzema en aquesta zona, la qual comptarà amb un sistema d’envasatge capaç de pressuritzar el gas refrigerant que s’obté de la segona fluoració fins a 200 bar en recipients a pressió per a la seva venda i distribució. Per portar a terme aquesta acció i garantir un bon envasatge, el CFC 13 passarà per un tanc pulmó de 70m3 on mantindrem les condicions de sortida del procés, construït en acer inoxidable 18/8, que ens garanteix un marge d’emmagatzematge abans d’envasar.

1.4.6. ÀREA 600: Serveis
En aquesta àrea es troba tot el sistema d’equips necessari per garantir les condicions del procés de producció, així com el control d’alguns dels aspectes més rellevants de les operacions que es duen a terme. Aquests serveis són els següents:

- Torre de refrigeració, que té l’objectiu de refredar l’aigua que prové del procés, utilitzada per eliminar calor.

- Descalcificadors, amb reines de bescanvi iònic que s’encarreguen de produir aigua de procés i aigua descalcificada per a les calderes.

- Calderes, que utilitzen gas natural per generar el vapor de la planta.

- Estació transformadora d’electricitat, subministrada externament, que proporciona 380/220V a tota la planta i un grup electrogen, que funciona amb gas-oil, que doni electricitat en cas de fallada externa.

- Estació de chillers per refrigeració industrial per tenir la capacitat de treballar amb gasos líquids.

1.4.7. ÀREA 700: Tractament de residus
En l’àrea de tractaments de residus, es pretén que les emissions contaminants que es produeixen a causa de l’activitat productiva de la planta estiguin dins dels límits legals.

D’aquesta manera, tots els ventejos de planta estaran tancats i connectats als equips de l’àrea en qüestió, l’objectiu principal de la qual serà el tractament de gasos. Els corrents dels diferents ventejos, així com els 50kg/h de CFC-12 a la sortida de l’absorbidor (mesclats en gas inert) A-302, passaran primerament per un scrubber càustic a fi d’eliminar les traces de gasos àcids i absorbir-les en una solució de sosa al 10%. Posteriorment, els corrent de gasos (sense àcids) va a parar a una torre d’adsorció de carbó actiu (doblada per poder regenerar el CA) que
per l’altre extrem està oberta directament a l’atmosfera. Aquesta servirà per adsorbi els CFCs ja que són hidrocarburs que no es poden oxidar, amb la qual cosa un cremador resultaria inoperant. Aquest fet generarà uns residus sòlids de carbó actiu brut de CFC’s que s’hauria de regenerar mitjançant un mètode intermig entre la desadsorció tèrmica i tractament químic amb peròxid d’hidrogen, el qual, actualment, no es duu a terme ja que la producció de refrigerants d’aquest tipus està prohibida. Amb aquest sistema s’aconsegueix un gradient de pressió suficient com per fer útils els venteros sense emetre contaminants mentre s’opera.

Tanmateix, cal comentar que alguns residus seran enviats a empreses externes que s’encarregaran del seu tractament, donat que alguns efluvents són difícils de tractar i el cost de fer un sistema de tractament en la planta seria molt més elevat que no pas pagar a un gestor de residus extern perquè se n’encarregui. Aquest és el cas del catalitzador desactivat del segon reactor, el qual es retornarà al proveïdor per ser regenerat. De la mateixa manera i com ja s’ha comentat, el carbó actiu també serà regenerat per una empresa externa de forma periòdica.

Finalment, pel que respecta a residus líquids, només es considera que es tindrà com a residu de procés les purgues de l’scrubber càustics. Aquesta aigua residual serà aigua lleugerament bàsica amb sal comuna i ions fluor disolts. Al tractar-se de quantitats relativament petites també s’enviaran a tractar, conjuntament amb l’aigua bruta de rentat de cada parada.

1.4.8. ÀREA 800: Oficines, laboratoris i vestuaris
En l’àrea 800 es troben els laboratoris, on es faran els controls de qualitat pertinents, així com l’estudi d’innovacions i millores a escala de laboratori.

També hi són les oficines, on es portarà la gestió, comercialització del producte i d’altres tasques administratives. A més de les oficines, el recinte comptarà amb sales destinades a reunions i a la formació dels treballadors, despatxos i sales de actes.

Per últim, aquesta àrea inclou els vestuaris dels operaris.

1.4.9. ÀREA 900: Aparcament i control d’accessos
En aquesta zona es troba l’aparcament de tot el personal, així com el control d’accessos dels treballadors a la planta de producció.
1.5. Especificacions dels equips principals de planta

En aquest apartat s’esmentaran les característiques tècniques dels equips principals de la planta, per tenir una visió general del procés i les condicions necessàries perquè es dugui a terme, justificant així la resta d’equips secundaris a planta.

- Reactor de primera fluoració R-201:

Com ja es ve comentant, aquest és el primer dels dos reactors i l’equip principal de l’àrea 200. Es tracta d’un recipient (tèrmicament aïllat) de Hastelloy C-22 amb un volum de 35 m3 i refrigeració de mitja canya. En aquest, entren les matèries primeres en fase líquida i reaccionen donant lloc a producte en fase gas, amb la qual cosa es tracta d’un reactor bifàsic. Com no interessa que els productes es dissolguin en el líquid i es separin ràpidament dels reactius per afavorir la reacció, l’agitació és radial mitjançant un agitador de pales –també de Hastelloy– a 90 rpm. S’ha mencionat anteriorment que treballa a 95°C i 8 atm per afavorir les condicions de reacció. De la mateixa manera, l’equip té un temps de residència de 4 hores per produir CFC-12 en major proporció, ja que és el producte que interessa d’aquesta etapa.

- Columna de separació C-201:

Totes les columnes a planta seran de rebliment i tèrmicament aïllades tenint en ment que treballen a temperatures extremes de fred. La primera d’elles a l’àrea 200 és una columna que té l’objectiu de separar els productes finals dels reactius, productes intermitjos i catalitzador de la primera reacció. Per caps, un condensador total retira en fase líquida a casi -30°C una mescla d’HCl i CFC-12, la qual va a parar a la següent columna. Pel que fa a cues, els 2 reboilers en paral·lel tenen un corrent de sortida format per CCl$_4$, SbCl$_5$ i CFC-11, els quals s’envien a un tanc mesclador per incorporar-hi el CCl$_4$ d’aliment i enviar-lo al primer reactor.

El rebliment seran peces de Jaeger tripacks 3 1⁄2” de polietilè d’alta densitat per tal d’aguantar per una banda la corrosió que podrien provocar els gasos àcids a pressió (HCl majoritàriament i si entren trases d’HF) i d’altra banda el salt tèrmic que es produeix a l’interior de la columna.

- Columna de separació C-202:

La segona columna en el procés també es troba a l’àrea 200 i s’encarrega de separar el cabal líquid provinent de la columna anterior C-201 en dos corrents: el primer, per caps i un cop condensats els gasos, estarà compost per HCl, a una temperatura de casi -38 °C i una pressió de 8 atm. El corrent de cues consisteix en CFC-12 pur, que s’envia al segon reactor per que es dugui a terme la segona fluoració.
El rebliment també és de tipus Jaeger Tripack, fabricat amb polietilè d’alta densitat pels mateixos molíus que en la columna anterior, però en aquest cas és de 1’’.

- **Absorbidor A-301:**

Com s’ha comentat a l’apartat de l’àrea 300, es tracta d’un absorbidor isoterm de paret humida, els tubs son de grafit, un material especial degut a que l’absorció resulta molt corrosiva a la vegada que exotèrmica. Com a tres principals, està refrigerat per carcassa mitjançant aigua de torre, que refrigera tubs de 7,5 metres on flueixen l’aigua i el gas en paral·lel. El diàmetre intern dels mateixos és de 15mm amb un gruix de 3,5mm. D’aquest ja surt el corrent de clorhídric al 32% i un corrent de gasos amb HCl per absorbir que s’envia a l’absorbidor que l’acompanya.

L’absorbidor A-302 és adiabàtic de rebliment, amb un empacat de raschig rings de plàstic d’1 metre i de DN500. Aquí entra l’aigua d’aliment i el gas restant de l’A-301, i surt gas inert cap a l’àrea de tractament de gasos i clorhídric al 5% que s’envia a l’A-301. El tanc s’adquireix directament d’un proveïdor d’aquest tipus, amb la qual cosa material i allament tèrmic ja venen inclosos en la compra i no se’n fa cap disseny.

- **Reactor R-401:**

El segon reactor té l’objectiu de convertir el CFC-12 provinent de la 1ª fluoració –concretament de la columna C-202– en CFC-13, formant-se també tetraclorometà en la reacció. Com ja s’ha dit anteriorment, aquest reactor és heterogèni, en fases gas i sòlid. La fase sòlida es tracta d’un llit fix constituït per partícules esfèriques d’AlCl₃ amb un diàmetre de 5 mm, aproximadament. Amb un volum de 15 m³, aquest reactor treballa a baixes pressions (al volant de la pressió atmosfèrica) i a una temperatura de 125 °C, ja que sota aquestes condicions es maximitzà la conversió de CFC-12 a 13, i no pas la conversió de CFC-11 a 12.

Els components involucrats en la reacció no representen riscos per corrosió, excepte pel AlCl₃ que en estat hidratat pot ser molt corrosiu, tot i que es procurarà que dins del procés les condicions siguin pràcticament anhidres, per seguretat i prevenció de riscos. Els gasos obtinguts en la reacció, majoritàriament tetraclorometà i CFC-12 i 13, s’envien a la tercera columna de destil·lació del procés, la qual s’especifica a continuació.
- Columna de separació C-401:

La primera columna de l’àrea 400, i tercera en tot el procés, té l’objectiu de separar els gasos provinents de la segona fluoració. D’una banda, s’extreu per caps un corrent de condensats gairebé al 100% de CFC-13 i a una temperatura i pressió de -31 °C i 8 atm. D’altra banda, per cues, es retira un corrent majoritàriament format per tetaclorometà i CFC-12, amb molt baixa quantitat de CFC-13 (menys del 2% màssic). Les condicions d’operació en cues són de 115 °C i 8 bar.

El corrent que s’obté per caps s’envià a l’àrea 500, on s’emmagatzemarà, mentre que el corrent de cues es portarà a la quarta i última columna del procés per tal de separar el CFC-12 del CCl₄.

El rebliment seran peces de Jaeger tripacks d’1(polsada de polietilè d’alta densitat, ja que amb aquest tipus de material s’afavoreix el gran salt tèrmic que hi ha a la columna.

- Columna de separació C-402:

L’última columna, en l’àrea 400, s’encarrega de separar el tetaclorometà i el CFC-12 provinents del corrent de cues de la columna anterior, C-401. El tetaclorometà sortirà per cues, a una temperatura de 164,5 °C i 8 atm, mentre que el corrent de caps, de CFC-12, es retirarà a 32,6 °C i 8 atm.

El CCl₄ s’enviarà a un tanc pulmó en l’àrea 200 que mesclarà aquest corrent amb l’entra de tetaclorometà al primer reactor abans de la reacció en sí. D’altra banda, el CFC-12 serà recirculat a la segona fluoració.

El rebliment també seran peces de Jaeger tripacks, però en aquest cas de polipropilè, seguint el raonament dels grans salts tèrmics.
1.6 Balanços de matèria
<table>
<thead>
<tr>
<th>Corrent</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressió (atm)</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Temperatura (K)</td>
<td>368</td>
<td>368</td>
<td>368</td>
<td>368</td>
<td>274</td>
<td>245</td>
<td>382</td>
<td>235</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Cabal Màssic (kg/h)</td>
<td>825</td>
<td>2130</td>
<td>18700</td>
<td>2626</td>
<td>10572</td>
<td>13198</td>
<td>4000</td>
<td>9198</td>
<td>1550</td>
<td>2449</td>
</tr>
<tr>
<td>Cabal Volumètric (m3/h)</td>
<td>0,84</td>
<td>1,33</td>
<td>11,65</td>
<td>1,49</td>
<td>7,82</td>
<td>9,31</td>
<td>3,58</td>
<td>5,72</td>
<td>1,76</td>
<td>1,82</td>
</tr>
<tr>
<td>Fase Vapor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Entalpia (kJ/kmol)</td>
<td>-270046</td>
<td>-123620</td>
<td>-86800</td>
<td>384879</td>
<td>-216086</td>
<td>-278860</td>
<td>-245717</td>
<td>13790</td>
<td>-112700</td>
<td>-513500</td>
</tr>
</tbody>
</table>

Taula I - 4. Caracterització de cabals I
<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressió (atm)</td>
<td>1,3</td>
<td>1</td>
<td>1,1</td>
<td>1,3</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Temperatura (K)</td>
<td>341</td>
<td>298</td>
<td>341</td>
<td>298</td>
<td>398</td>
<td>398</td>
<td>242</td>
<td>389</td>
<td>427</td>
<td>306</td>
</tr>
<tr>
<td>Cabal Màssic (kg/h)</td>
<td>4688</td>
<td>3188</td>
<td>190</td>
<td>112</td>
<td>2750</td>
<td>2750</td>
<td>1408</td>
<td>1342</td>
<td>1040</td>
<td>302</td>
</tr>
<tr>
<td>Cabal Volumètric (m3/h)</td>
<td>4,04</td>
<td>3,19</td>
<td>0,18</td>
<td>0,14</td>
<td>2,05</td>
<td>2,31</td>
<td>1,44</td>
<td>0,87</td>
<td>0,65</td>
<td>0,23</td>
</tr>
<tr>
<td>Fase Vapor</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Entalpia (kJ/kmol)</td>
<td>-243700</td>
<td>-284900</td>
<td>-45370</td>
<td>-15</td>
<td>-488700</td>
<td>-488900</td>
<td>-711727</td>
<td>-223535</td>
<td>-116100</td>
<td>-513800</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Composició wt</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>0</td>
</tr>
<tr>
<td>CCl4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,3775</td>
<td>0</td>
<td>0,773</td>
<td>1</td>
</tr>
<tr>
<td>SbCl5</td>
<td>0</td>
</tr>
<tr>
<td>CFC-11</td>
<td>0</td>
</tr>
<tr>
<td>CFC-12</td>
<td>0</td>
<td>0</td>
<td>0,31</td>
<td>0</td>
<td>1</td>
<td>0,1098</td>
<td>0</td>
<td>0,226</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HCL</td>
<td>0,32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0</td>
<td>0</td>
<td>0,69</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aigua</td>
<td>0,68</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CFC-13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,5127</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Taula I - 5. Caracterització de cabals II
1.7 Serveis de planta

Per tal de garantir les diferents condicions d’operació a tota la planta, cal tenir un àrea específica per als serveis, els quals són els següents:

- Vapor d’aigua
- Gas natural
- Descalcificador d’aigua
- Aire comprimit
- Aigua de Chiller
- Aigua de torre
- Electricitat

L’elecció dels diferents equips emprats pels serveis, així com els càlculs realitzats per tal de trobar-ne el consum van adjunts al volum de disseny d’equips.