Use of Chimeric Antigen Receptors as a Novel Cancer Immunotherapy Approach
Andrea Irazoqui Guimon, Autonomous University of Barcelona. BS in Genetics.

Abstract

- Immunotherapy consists of the use of immunologic principles against tumours. Unlike chemotherapy or radiotherapy, immunotherapy has the potential to induce such a dynamic immune response that can kill tumour cells for an extended period of time.
- The use of chimeric antigen receptors (CARs) in lymphocytes is an emerging immunotherapy approach. These receptors bind to tumour-specific antigens, promoting the activation of the host’s immune cells, which results in a specific immune response against tumour cells.

Materials and Methods

- Search of scientific literature in PubMed: reviews and recent papers about CARs and their use in pre-clinical and clinical trials were selected.
- Use of Immunology books: reading of the chapters concerning T-cell activation, antigen receptors, immune responses and autoimmunity.

Introduction to CARs

- **Structure:**
 - **Antigen-binding extracellular domain:** binding site of the antibody that targets the cognate antigen.
 - **Trans-membrane domain**
 - **Signal-activating intracellular domain:**
 - Stimulatory molecule: CD3 ζ chain
 - Co-stimulatory molecule: CD28, 4-1BB…
 - **Stimulatory molecule:**
 - CD3 ζ chain
 - CD28
 - **Co-stimulatory molecule(s):**
 - Name, only, or more of CD27, CD79, ICOS, 4-1BB, OX40

Use of CARs in different tumours

<table>
<thead>
<tr>
<th>Targeted antigen</th>
<th>Disease/hallmark of cancer</th>
<th>CAR generation</th>
<th>Used co-stimulatory molecule(s)</th>
<th>Stage of trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19</td>
<td>ALL and CLL</td>
<td>2</td>
<td>CD28 or 4-1BB</td>
<td>Clinical</td>
</tr>
<tr>
<td>CD20</td>
<td>NHL</td>
<td>2</td>
<td>4-1BB</td>
<td>Clinical</td>
</tr>
<tr>
<td>CD22</td>
<td>ALL</td>
<td>3</td>
<td>CD28 and 4-1BB</td>
<td>Clinical</td>
</tr>
<tr>
<td>CD23</td>
<td>CLL</td>
<td>2</td>
<td>CD28</td>
<td>Clinical</td>
</tr>
<tr>
<td>CD33</td>
<td>AML</td>
<td>2</td>
<td>4-1BB</td>
<td>Phase 1</td>
</tr>
<tr>
<td>Her2</td>
<td>Breast cancer</td>
<td>2</td>
<td>CD28</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>Ovarian cancer</td>
<td>CD28</td>
<td>Pre-clinical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain cancers</td>
<td>CD28</td>
<td>Clinical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Her3</td>
<td>Breast cancer</td>
<td>1</td>
<td>CD28</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>Her4</td>
<td>Breast cancer</td>
<td>1</td>
<td>CD28</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>CD133</td>
<td>GBM</td>
<td>3</td>
<td>CD28 and 4-1BB</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>α-folate</td>
<td>Ovarian cancer</td>
<td>1</td>
<td>CD28</td>
<td>Clinical</td>
</tr>
<tr>
<td>NKp20 ligands</td>
<td>Ovarian cancer</td>
<td>1</td>
<td>CD28</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>MUC16</td>
<td>Ovarian cancer</td>
<td>1</td>
<td>CD28</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>Lewis-Y carbohydrate</td>
<td>Ovarian cancer</td>
<td>2</td>
<td>CD28</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>VEGF2</td>
<td>Tumour angiogenesis</td>
<td>3</td>
<td>CD28 and 4-1BB</td>
<td>Phase 1</td>
</tr>
</tbody>
</table>

Table provided by the author.

Ex vivo methods and genetic engineering

Steps for lymphocyte modification:

1. **Apheresis:** separation of T-cells from the rest of blood cell types.
2. **Internalization of CAR constructs into T-cells:**
 - a. Electroporation
 - b. Viral vectors: most used strategy
 - c. Transposon-based systems
3. **Expansion of T-cells**
 - Activating signals: Anti-CD3 activating monoclonal antibody
 - Supporting medium: IL-2 containing medium
4. **Transfusion of an optimal number of modified T-cells back to the patient.**

Future approaches and main conclusions

Future approaches:

- Considerations for the improvement of CARs in terms of efficacy increase and toxicity decrease:
 - It is extremely important to use tumour-restricted antigens in order to decrease toxicity and off-target effects.
 - Suggested measurements to decrease the likelihood of generating autoimmune reactions:
 - Splitting the modified T-cell doses.
 - Introducing suicidal genes into the CARs construct. These genes get activated in highly toxic environments, promoting the apoptosis of the modified T-cells.
 - Economic and logistic costs: the modification of T-cells is performed for each individual’s T-cells. The use of allogeneic lymphocytes is an alternative to this strategy.

Main conclusions:

- B-cell malignancies are the cancer types in which the use of CARs has provided the best outcomes and CD19 is the most successful target.
- The success of this approach relies on the development of modified T-cells able to overcome the hostile tumour microenvironment and to promote efficient and accurate cognate immune responses.

References

- Only relevant references are cited below.