LONG NON-CODING RNAs IN CELL DEVELOPMENT AND CELL DIFFERENTIATION
Laura Talavera Marín. Grado en Biotecnología

1. INTRODUCTION

OBJECTIVES
- To describe the current knowledge about long non-coding RNAs (lncRNAs) and their role in cell development and cell differentiation.
- To clarify different kinds of lncRNAs and their mechanism of action.
- To define the most representative examples to deepen the issue and to understand the importance of this molecules.
- To explain the most relevant results of the research with lncRNAs which were carried out in recent decades.
- To analyse the possible applications of lncRNAs of interest in biomedicine.

MECHANISMS OF ACTION OF lncRNAs

lncRNAs are capable of regulate gene expression by very different mechanisms.

2. EPIGENETICS

HOX GENES

HOX genes are a set of crucial for cellular differentiation during embryonic development in animals. They encode for transcription factors which coordinate spatiotemporal gene expression and regulate different ways along the anterior-posterior axis of the body by lncRNAs.

ORGAN DIFFERENTIATION

Stem cells are differentiated in each tissue in a different cell type. Depending on the tissue, they are expressed one lncRNAs or another ones, mediating in the process of cellular differentiation. Here can be seen some examples of lncRNAs expressed in several tissues.

3. LncRNAs AND CANCER

Recent advances have determined that many lncRNAs have oncogenic functions and play an essential role in tumorigenesis. Furthermore, it has been found in cancer patients there is a deregulation in expression levels of lncRNAs.

Between lncRNAs associated with cancer, H19 is one of the most studied. Its transcription is activated by a protooncogen called c-Myc and inactivated by p53 and by prolonged cell proliferation processes. Its knockdown in model animals prevent cellular growth and oncogenicity in lung cancer cells in vitro.

TUMOR SUPPRESSOR ACTIVITY

It is known that several lncRNAs play an important role in regulating signaling through the known p53. A clear example is MEG3. It activates p53 and facilitates its signaling and its binding to the promoters of its target genes. MEG3 overexpression produce suppression of proliferation. Furthermore, hypermethylation of MEG3 and, consequently, a reduction in expression, has been observed in several types of cancer.

MEG3

Proliferation inhibition and tumour suppression

H19

Tumorigenesis regulation

4. LncRNAs AS BIOMARKERS

Once the properties of lncRNAs and their different levels of expression in cancerous tissues compared with normal tissues are known, is easy to think about their application as biomarkers for cancer diagnosis.

Nowadays, there is a test for diagnose prostate cancer based in the level expression of PCA3, a lncRNA. PCA3 is a prostate-specific gene that is overexpressed in prostate cancer. The detection of the transcript of PCA3 is made by an urine analysis of the patient. It does not require any invasive method; this involves a big advantage compared to other diagnosis methods.

5. THERAPIES WITH lncRNAs

In recent decades it is starting to be considered using lncRNAs as a therapy for various cancer diseases, but they are still only research long way to go. However, although their therapeutic use is still remote, there are clinical studies in Phase I that are employing interfering lncRNAs (RNAi) binding miRNAs. These were tested in both mice and humans with advanced stages of cancer.

The evidences confirm that RNAi-based therapies for human tumors effectively localized and reduced gene expression of target proteins and their miRNAs. Currently, these trials are testing the safety and efficacy of these RNAi in patients with various diseases, including cancer.

Tumoral administration

6. CONCLUSIONS

The latest research about lncRNAs and their differential expression between normal tissues and cancerous tissues involve a big progress for the current biomedicine. They help us to understand molecular mechanisms implicated in complex multfactorial diseases, like cancer.

The rise of integrating such knowledge beside its application make us think of the possible use of lncRNAs as biomarkers in cancer diseases and as therapeutic molecules. This is a necessary contribution to scientific knowledge and it would, even, save lifes.

7. RELLEVENT REFERENCES