

Function

SPERMATOGENESIS

(GO:0007283)

TRANSCRIPTION

(GO:0006351)

CELL DEATH

(GO:0008219)

CELL

PROLIFERATION

(GO:0008283)

Function

SPERMATOGENESIS

(GO:0007283)

TRANSCRIPTION

(GO:0006351)

CELL DEATH

(GO:0008219)

Symbol

GGT1

CAB39L

TRY1

ADAM29

CABYR

HMGB2

RPS3

NKX3-1

RPS3

RPS3A

RPS15A

NKX3-1

Symbol

CREM

DDX4

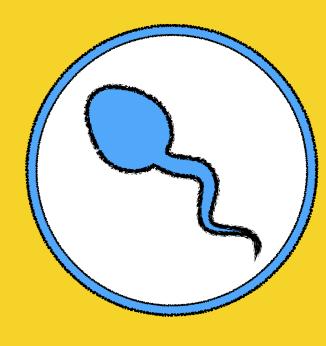
PRM2

LMNA

MEA1

SPATA4

CREM


SAP130

SPZ1

LMNA

SPATA4

TRANSCRIPTOMIC ANALYSIS OF MALE INFERTILITY

INTRODUCTION

- Infertility: Disease defined as failure to achieve a clinical pregnancy after 12 months or more of unprotected sex (World Health Organization).
- ✓ Affects approximately 10-15% of couples of reproductive age. About **50**% of these cases can be associated with male factors.
- ✓ Causes: Epigenetic, genetic, physiological and endocrine failure, testis pathologies...
- ✓ A normal seminal evaluation does not necessarily indicate a fertile potential. Transcriptomics represents a promising approach for the discovery of new biomarkers able to improve the management of male factor infertility.
- ✓ **Transcriptome**: Collection of all molecules of RNA derived from genes whose biological information is required by the cell, at a specific time and under certain conditions.

OBJECTIVE

Get a list of candidate genes, with alterations in the transcriptome, as potential markers for the diagnosis of different forms of male infertility: idiopathic [1], azoospermia [2], asthenozoospermia [3], oligozoospermia [4] and teratozoospermia [5].

Review of transcriptomic studies in infertility

Inclusion criteria

METHODOLOGY

- Infertility classification

- N° patients (>10)
- Microarray analysis
- RT-PCR validation

Functional annotation and

classification by gene ontology (GO)

IDIOPATHIC

2678

81617

5644

51686

11086

26256

3148

6188

4824

6188

6189

6210

4824

1390

5620

202051

79595

84654

4000

202051

- √ TRY1, CAB39L, GGT1 and ribosomal proteins (+ other 133), were found to be differentially expressed at least two times.
- ✓ If the over- or under-expressed genes are grouped by function, between 80 and 100% of them are involved in spermatozoa differentiation.

Infertility markers may not be related to sperm production in terms of sperm count, but are probably related to sperm function. [1]

Trypsin 1

Name

Gamma-glutamyltranspeptidase 1

Ornithine decarboxylase antizyme 3

ADAM metallopeptidase domain 29

phosphorylation-regulated protein

Name

DEAD (Asp-Glu-Ala-Asp) box

Spermatogenesis-associated protein 24

Spermatogenesis-associated protein 24

cAMP-responsive element modulator

Sin3A-associated protein, 130kDa

Spermatogenic leucine zipper 1

cAMP-responsive element modulator

Calcium-binding tyrosine

High mobility group box 2

40S ribosomal protein S3

NK3 homeobox 1

NK3 homeobox 1

polypeptide 4

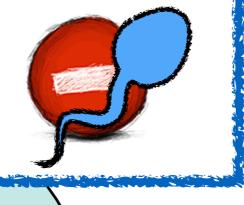
Protamine-2

Lamin A/C

Lamin A/C

Ribosomal protein S3

Ribosomal protein S3A

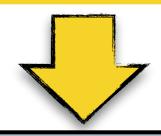

Ribosomal protein S15A

Male-enhanced antigen 1

Calcium binding protein 39-like

- ✓ Yq microdeletions study is useful for azoospermia diagnosis (AZF deletions).
- ✓ YBX2 network: **ODF1**, **TNP1** and **PRM2**.
- ✓ ARNT2 network: CRISP, TSSK2, MDM4 and EGR4.

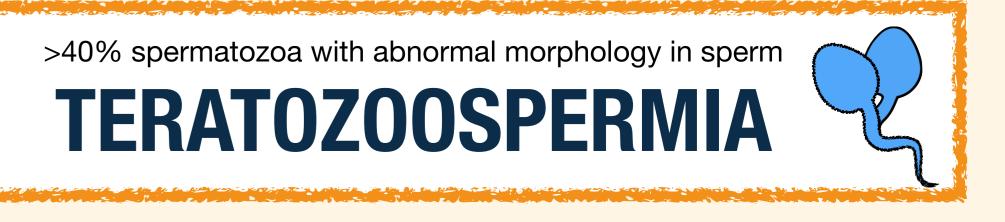
The **DAZ1** gene is the leading candidate that causes the failure of the spermatogenesis process [2].


Function	Symbol	Name	ID
SPERMATOGENESIS (GO:0007283)	DAZ1	Deleted in azoospermia protein 1	1617
	TSSK2	Testis-specific serine/threonine-protein kinase 2	23617
	CRISP2	Cysteine-rich secretory protein 2	7180
	YBX2	Y-box-binding protein 2	51087
	TNP1	Nuclear transition protein 1	7141
	PRM2	Protamine-2	5620
	ODF1	Outer dense fiber of sperm tails 1	4956
CELL PROLIFERATION (GO:0008283)	AIF1	Allograft inflammatory factor 1	199
	ARNT2	Aryl-hydrocarbon receptor nuclear translocator 2	9915
	EGR4	Early growth response 4	1961
	MDM4	MDM4, p53 regulator	4194
	SOD2	Superoxide dismutase 2, mitochondrial	6648
CELL DEATH (G0:0008219)	ARNT2	Aryl-hydrocarbon receptor nuclear translocator 2	9915
	MDM4	MDM4, p53 regulator	4194
	HMGB1	High mobility group box 1	3146
FERTILIZATION (GO:0009566)	CLGN	Calmegin	1047
	DAZ1	Deleted in azoospermia protein 1	1617
	TNP1	Nuclear transition protein 1	7141

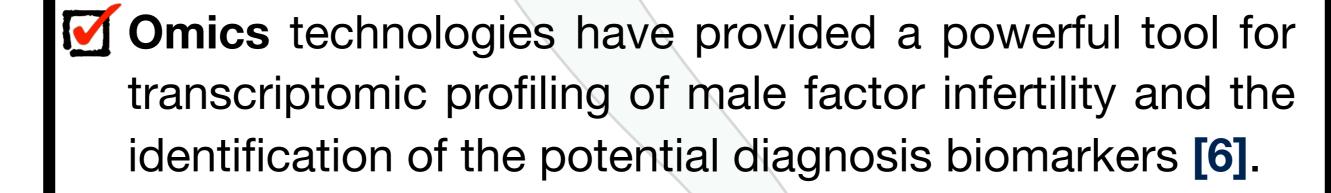
ASTHENOZOOSPERMIA > 40% of sperm with reduced motility

- ✓ ANXA2, BRD2, OAZ3 and IL6ST: significant positive correlation between the sperm progressive motility and the relative mRNA levels.
- PRM1, PRM2, TNP1 and TNP2 reduction increased DNA strand breaks, which may induce the inactivation of mitochondria.

Protamine mRNAs appear to have a role in the formation of fully functional mature spermatozoa including sperm motility [3].


Function	Symbol	Name	ID
SPERM MOTILITY (GO:0030317) & CELL MOTILITY (GO:0048870)	IL6ST	Interleukin 6 signal transducer	3572
	OAZ3	Ornithine decarboxylase antizyme 3	51686
	TNP1	Nuclear transition protein 1	7141
	TNP2	Nuclear transition protein 2	7142
	ANXA2	Annexin A2	302
	PRM1	Protamine-1	5619
	PRM2	Protamine-2	5620
	CRISP2	Cysteine-rich secretory protein 2	7180
	LDHC	Lactate dehydrogenase C	3948
	HILS1	Spermatid-specific linker histone H1-like protein	54388
	NOS3	Nitric oxide synthase 3	4846
SPERMATOGENESIS (G0:0007283)	BRD2	Bromodomain-containing protein 2	6046
	PRM1	Protamine-1	5619
	PRM2	Protamine-2	5620
	TNP1	Nuclear transition protein 1	7141
	TNP2	Nuclear transition protein 2	7142

Function	Symbol	Name	ID
SPERMATOGENESIS (G0:0007283)	HSPA2	Heat shock 70kDa protein 2	3306
	ODF1	Outer dense fiber of sperm tails 1	4956
	ODF2	Outer dense fiber of sperm tails 2	4957
	ODF3	Outer dense fiber of sperm tails 3	113746
	ODF4	Outer dense fiber of sperm tails 4	146852
FERTILIZATION (GO:0009566)	PLCZ1	Phospholipase C, zeta 1	89869
	SPAM1	Sperm adhesion molecule 1 (PH-20 hyaluronidase, zona pellucida binding)	6677
CELL PROLIFERATION (G0:0008283)	CDKN3	Cyclin-dependent kinase inhibitor 3	1033



The lack of certain transcripts is indicative of a failure in the late phase of spermatogenesis [5].

- √ Ubiquitin proteasomal pathway (UPP) completely suppressed. Involved in morphological progression of spermiogenesis.
- Reduction in HSPA2 mRNA was resonant with depletion of ODF 1-4 mRNAs and acrosomal proteins ACRV1 and SPAM1.

4000 17256 CONCLUSIONS

- Despite the evidences to support these applications, there are several **deep uncertainties** to be established. From basic functional significance of the mRNAs in mature sperm, to the molecular mechanisms and the determination the mRNAs of male factor infertility.
- What is the reason for this difference in gene expression?

As transcriptional disorder is common within infertile men, the possibility of a genetic cause decreases, thereby increasing the interest of the hypothesis that the environment, through epigenetic marks, could play a key role in this problem.

functional mature spermatozoa including sperm motility [4]. ✓ Aberrant PRM1/PRM2 protein ratio is responsible for an unstable chromatin condensation.

DDX4 gene expression significantly decreased in the sperm of oligozoospermic men.

Protamine mRNAs appear to have a role in the formation of fully

<10 million spermatozoa per one ml of ejaculate

OLIGOZOOSPERMIA

REFERENCES

- 1. Garrido, N. et al. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil. Steril. 91, 1307–1310 (2009).
- 2. Gatta, V. et al. Testis transcriptome analysis in male infertility: new insight on the pathogenesis of oligo-azoospermia in cases with and without AZFc microdeletion. BMC Genomics 11, 401 (2010).
- 3. Jodar, M. et al. Differential RNAs in the sperm cells of asthenozoospermic patients. Human Reproduction 27, 1431–1438 (2012). Montjean, D. et al. Sperm transcriptome profiling in oligozoospermia. J. Assist. Reprod. Genet. 29, 3-10 (2012).
- 5. Platts, A. E. et al. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum. Mol. Genet. 16, 763–773 (2007).
- 6. Lee, L. K. & Foo, K. Y. Recent insights on the significance of transcriptomic and metabolomic analysis of male factor infertility. Clin. Biochem. 47, 973–982 (2014).