Genetics of Alzheimer's Disease

Grau en Genètica

Universitat Autònoma de Barcelona Juny 2015

Introduction

- Neurodegenerative disease.
- Most frequent cause of dementia: it represents 66% of all dementias¹
- High prevalence: 13% of the population over 65 and 45% of population over 85 years old.
- 2 types and different genes related (figure 1)

- Diagnosis: family history + psychic and cognitive tests + magnetic resonance (to rule out other dementia causes)
- Risk factors. Genetic factors and age.
- Molecular features. Presence of:
 - Senile plaques: extracellular β amyloid deposits (A β)
 - Neurofibrillary tangles: intraneuronal tau protein aggregates
- **Treatment**. Without treatment, but several strategies have been tested:
 - Facilitate Aβ clearance + prevent Aβ aggregation⁴
 - Inhibit or modulate γ secretasa complex activity⁵
 - Modulate apoE function⁶

Genes related to Early Onset Alzheimer's Disease (EOAD)

Amyloid Precursor Protein (APP) It is located at 21q21.2 and codes for a protein called APP (figure 2). APP undergoes a proteolytic processing that results in $A\beta$ formation (figure 3). Steps:

Figure 3. Different pathways of the APP processi

The two major A β forms are A β_{40} (under normal conditions it represents 90% of A β^8) and $A\beta_{42}.$ The different forms have different aggregation properties: $A\beta_{40}$ aggregates less than $A\beta_{42}$, $A\beta_{43}$ and $A\beta_{38}$ forms⁵.

During the processing the C terminus, which is hydrophobic, is shortened, such that the shorter the fragments the easier they are to release.

Mutations and its effect on Alzheimer's Disease

In APP, 24 pathogenic, 1 of unclear pathogenicity, 1 protective and 5 non-pathogenic point mutations have been described. They cause 15% of all Early Onset Alzheimer's Disease cases. They affect through different pathways³:

- Aß production modulation: the mutations map in the β secretase and ν secretase cleavage area.
- Change of the preferred cleavage position at site ε: there is a preference for the Aβ_{ac} production line.
- More efficient folding ightarrow faster aggregation. The mutations map in all the sequence of

Additionally, 9 APP duplications have been described. They affect the APP dosage.

Presenilins (PSEN1 and PSEN2)

PSEN1 is located at 14q24.3 and PSEN2 at 1q42.13. They code for the catalytic subunit of the y - secretase complex. PSEN1 has 9 transmembranal domains (figure 4). The active site is located between the domains 6 and 79.

Mutations

In PSEN1, 185 pathogenic, 1 of unclear pathogenicity and 4 non-pathogenic point mutations have been described. They cause 18-50% of all Early Onset Alzheimer's Disease

In PSEN2, 13 pathogenic, 7 of unclear pathogenicity and 5 non-pathogenic point mutations have been described.

Aina Feliu Cuberes

Figure 4. Presenilin strucure. Adapted from

Effects 5,10

- Change of the preferred cleavage position at site ϵ . There is a preference for the position 48. It can be due to a missense mutation that changes PSEN1 conformation and, therefore, there is an APP differential binding. In some cases, it can be caused by
- Changes in processing efficiency. There is a reduction: the $A\beta_{49}$ \rightarrow $A\beta_{40}$ processing efficiency is 2-9% compared to the wild type protein and the $A\beta_{48} \rightarrow A\beta_{42}$ processing efficiency is 17-40% compared to the wild type.
- Proteolysis inhibition at site ϵ . The mutations reduce PSEN stability.
- 4^{th} cleavage efficiency reduction. The mutations cause conformational changes in the active site and a premature release of $A\beta_{42}$ and $A\beta_{43}$ peptides.

The y - secretasa complex

It comprises 4 subunits. Presenilin

- Nicastrin
- APH 1

Pen - 2

Genes related to Late Onset Alzheimer's Disease (LOAD)

APOE

It is located at 19g13.2 and codes for appE protein. Its more important functions are lipid and AB transportation, cellular metabolism regulation and participation in the reparation of neuronal injuries caused by oxidative stress. It has 3 common variants (apoE2, apoE3 and apoE4) that differ in the, amino acids of the positions 112 and 158 (figure 5). These variations affect apoE structure and its capacity to bind Aβ, among other effects¹²

Figure 6. APOE variant distribution

and genotype. From Spinney, L.13

The $\varepsilon 4$ allele is a risk factor: its frequency among affected individuals is 40-50%, whilst in the general population it is 13.7% (figure 6).

Aβ levels and senile plaques charge depend on the allele. The risk depends on the genotype: 91% of ε4/ε4 individuals and 47% of $\varepsilon 4/\varepsilon$ - individuals, but only 20% of $\varepsilon 4$ non-carrier individuals are affected (figure 7)¹³.

Effects^{6,11}

- Clearance of A β . Different ways: absorption and cellular degradation, transport across the blood brain barrier or enzymatic degradation. The apoE4 – A β union is less efficient than apoE2/3 – A β union.
- Aggregation promotion. apoE and Aβ coaggregate. apoE4 might stabilize Aβ oligomers more than apoE3/2.
- Differential regulation of cholesterol levels \rightarrow the cholesterol regulates the y secretase complex.
- Other mechanisms. Tau phosphorylation, synaptic function regulation, neuroinflammation and neurogenesis.

Conclusions

- Study of the known genes and risk factors. More investigation about these genes' influence mechanisms should be carried out in order to improve prevention, diagnosis and design new treatments.
- Study of the unknown genes and risk factors. Only 30-50%of EOAD cases are caused by identified mutations, and only 20% of the LOAD risk is explained by known factors. More investigation should be carried out to identify more genes and risk factors related to Alzheimer's Disease. That would also allow improvement in prevention, diagnosis and would open the door to new treatment strategies.

References

- Goldman, J. S. et al. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 13, 597–605 (2011). Revett, T. J., Baker, G. B., Ihamandas, J. & Kar, S. Glutamate system, amyloid β peptides and tau protein: Functional interrelationships and relevance to Alzheimer disease pathology. J. Psychiatry Neurosci. 38, 6–23 (2013).
- Ringman, J. M. & Coppola, G. New genes and new insights from old genes: update on Alzheimer disease. *Continuum (Minneap. Minn).* 19, 358–71 (2013).

 Karran, E., Mercken, M. & Strooper, B. De. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. *Nat. Rev. Drug Discov.* 10, 698–712 (2011).
- Drug Discov. 10, 698–712 (2011).
 Chave-Gutlerez, L. et al. The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J. 31, 2261–2274 (2012).
 Liu, C.-C., Liu, C.-C., Kanekiyo, T., Xu, H. & Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9, 106–18 (2013).
 Van Broeck, B., Van Broeckhoven, C. & Kumar-Singh, S. Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodegene. Dis. 4, 349–365 (2007).
 Kuperstein, I. et al. Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 29, 3408–3420 (2010).
- Wolfe, M. S. Toward the structure of presenilin/γ-secretase and presenilin homologs. Biochim. Biophys. Acta Biomembr. 1828, 2886–2897 (2013).
 Fernandez, M. a., Klutkowski, J. a., Freret, T. & Wolfe, M. S. Alzheimer Presenilin-1 Mutations Dramatically Reduce Trimming of Long Amyloid β-Peptides (A) by γ-Secretase to Increase 42-to-40-Residue A. J. Biol. Chem. 289, 31043-31052 (2014).
- Secretary Control of the Action of the Actio

