

Production of the equine influenza vaccine using a baculovirus expression system in insect cell lines

Part I: Design basics

Saioa Arza, Helena García, Oriol Cabau, Laia Puig

GLOBAL OBJECTIVE

Design of an industrial bioprocess plant with the simulator SuperPro Designer for the production of the equine influenza vaccine using a baculovirus expression system in insect cell lines, and subsequent analysis of its sustainability.

THE INFLUENZA VACCINE

The equine influenza disease is a highly contagious respiratory pathology which affects horses, donkeys and mules, among other equines. This disease is caused by two viral subtypes of influenza A virus, H7N7 and H3N8, which belong to the Orthomyxoviridae family.

Production with eggs

Nowadays influenza vaccines are produced using eggs. The vaccine contains inactivated virus. The main drawbacks of this process are:

Long production time

Large infrastructure Allergies

Dependence to eggs

The new vaccine

Alternative > cell cultures

The HA is the viral protein that attaches to cell receptors, causing fusion of both, viral and cellular membranes.

The HA on the influenza virus is a trimer, it is made of three copies of the HA polypeptide.

THE FIRST EQUINE VACCINE PRODUCED USING CELLS

BACULOVIRUS EXPRESSION SYSTEM

The production of the vaccine using the baculovirus expression system has several advantages

> Reduces vaccine production time Growth of all influenza viruses No need for chicken eggs Animal component free High purified and safe vaccine

Insect cells VS mammals

Insect cells are used instead of mammals, due to de fact that are easier to maintain.

Sf9 Vs High five cells

With the addition of some protective agents, high five cells can have high productivity, being the optimum choice for the recombinant protein production.

Sf9	HighFive	
√Resilient	Sensible	
Lower protein productivity	√High protein productivity	
√Good in virus amplification	Bad in virus amplification	

Baculovirus

- They have a restricted host range, limited to invertebrate species
- Easy to manipulate
- High levels of heterologous gene expression, due to their strong promoters

MARKET

The veterinary equine market is one of the least exploited and so it is a great business opportunity to work on it now and in a near future due to the increase in the next years.

Legally all competing horses must be vaccinated twice a year. The USA is the country with the highest number of horses, 9.5M, and among these 3.5M are federated competition horses.

National Equine Use Patterns, 2003 [4]

Jse	Percentage of Total	Number of Horses	
Recreation	42	3,906,923	
Showing/Competition	29	2,718,954	3.5M of horses that
Other	19	1,752,439	are federated and
Racing	9	844,531	in competition.
	Total	9,222,847	in competition.

Distribution

A total of 8M doses would be produced and distributed around the world.

8M Doses

PLANT LOCALITATION AND **ORGANIZATION**

0 1000 2000 Máles
0 1000 2000 Máles
Cuprylot ja Rádi Motely a Ca.
Kalánson Phylodien

• Biosafety level 3 GMP Under the umbrella of QbD

Process distribution

The process is divided in 3 parts :

→ Upstream

- Virus stock generation
- Cellular scaling up → Reaction

- Protein production
- → Downstream
 - Separation
 - Concentration
- Purification
- Packaging the final product

3 batches for H7N7 First peak 3 batches for H3N8 12 batches/year 3 batches for H7N7 Second peak 3 batches for H3N8

REFERENCES

• [1] Accessed 28th May 2015: http://www.nti.org/gsn/article/scientists-agree-unprecedented-withholding-flu-virus-research/

= BSL-3

- [2] Accessed 27th May 2015: http://www.sartorius.com/en/products/bioreactors-fermentors/single-use/biostat-str/
- [4] Kilby, E. R. (2007). The demographics of the U.S equine population. In D.J. Salem & A. N Rowan (Eds.), The state of the animals 2007 (pp. 175-205). Washington, DC: Humane Society Society Press.
- [3] Chunling Xuan; Yi Shi; Jianxun Qi; Wei Zhang; Haixa Xiao; George F. (2011) Structural vaccinology.: structure-based design of influenza A virus hemagglutinin subtype-specific subunit vaccines. Preotein cell. Issue (12): 997-1005.