Production of the equine influenza vaccine using a baculovirus expression system in insect cell lines
Part IV: Sustainability analysis and future improvements

Saioa Arza, Helena García, Oriol Cabau, Laia Puig

GLOBAL OBJECTIVE

Design of an industrial bioprocess plant with the simulator SuperPro Designer for the production of the equine influenza vaccine using a baculovirus expression system in insect cell lines, and subsequent analysis of its sustainability.

Executive Summary

- **Total Capital Investment**: $92,377,000
- **Operating Costs**: $37,045,000
- **Revenues**: $80,495,000
- **Benefits**: $43,450,000
- **Unit Production Cost**: 4.60 $/Entity
- **Unit Production Revenue**: 10 $/Entity
- **Payback Time**: 5 years
- **IRR**: 27.58%

NPV (7%): $138,762,000

Cost-effective Process

- **High initial investment**
- **Short period recovery**: 3.08 years from the production start time
- **Adjustable market price**

Total Capital Investment

- **Direct Fixed Capital**: 2%
- **Startup Cost**: 10%
- **Royalties**: 13%
- **Up-Front R&D**: 45%

Operating Costs

- **Raw Materials**: 21%
- **Facility-Dependent**: 4%
- **Miscellaneous**: 1%
- **Labor-Dependent**: 1%
- **Laboratory, Consumables, Waste Treatment & Utilities**: 79%

Environmentally Sustainable Process

- **Horses health improved**
- **Innovation in the existing production system**
- **Strong acceptance among the society**
- **Optimal security measures and process automation**
- **Quality work respecting international standards**
- **Active competition among operators and high salary**
- **GMP product**

Socially Acceptable Process

- **Multi-process industry**

Use of a pFastBac™Dual expression vector

- **Simultaneous expression of 2 proteins of interest thanks to**:
 - 2 strong promoters in opposite direction (p10 and polyhedrin)
 - 2 multiple cloning sites for large inserts

References