APPETITE REGULATION

Balance of energy metabolism is the main regulator of appetite.

CENTRAL REGULATION (CNS)

HYPOTHALAMUS: regulating center of appetite and energy homeostasis.

- **Main Hypothalamic nuclei**
 - Lateral hypothalamic area (LHA): hunger center
 - Ventromedial nucleus (VMN): satiety center
 - Arcuate nucleus (ARC): two distinct neuronal populations expressing:
 - OREXIGENIC NEUROPEPTIDES: NPY, AgRP, Orexin
 - ANOREXIGENIC NEUROPEPTIDES: α-MSH, CART, POMC

BRAINSTEM: metabolic signals primarily relay to the solitary tract nucleus (NTS) a major neuronal link between the gut and the brain.

MIDBRAIN: brain rewarding system is involved in the control of hedonic feeding (mesocortical dopaminergic pathways)

STRESS

Stress exposure induces changes in brain development and behavioral outcomes affecting eating patterns, as stress and feeding systems share the same neuroanatomy.

ACUTE STRESS

- **Sympathetic adrenal medullary system**
- **Food intake**

CHRONIC STRESS

- **Cortisol**
- **Leptin sensitivity**
- **Insulin secretion (hypoinsulinemia)**
- **Food intake (nutrient dense)**
- **Abdominal Obesity**

REWARD SYSTEM

- **Hippocampus**
 - GC binds GR
 - meAmygdala
 - MC4-R

STRESS

- Hypothalamus
 - Hypothalamic mechanism of appetite regulation
 - Inhibition of NPY expression

- Insulin
 - Hypothalamus
 - CRF via NPY, AgRP, POMC

- Leptin
 - Hypothalamus
 - HT

HYPERACTIVATED HPA AXIS

- **Hypothalamus**
 - Hypothalamic mechanism of appetite regulation
 - Inhibition of NPY expression

- **CRF**
 - Hypothalamus
 - Hypothalamic mechanism of appetite regulation

- **AgRP**
 - Hypothalamus
 - Hypothalamic mechanism of appetite regulation

- **POMC**
 - Hypothalamus
 - Hypothalamic mechanism of appetite regulation

SENSORY INPUT

- **Dopamine system activation**
- **Stress avoidance and pleasure**
- **Intake of palatable foods**

INFLUENCE OF EMOTIONS ON APPETITE REGULATION

- Hypothalamic control of appetite involves the modulation of orexigenic and anorexigenic pathways that determine the positive or negative balance between food intake and energy expenditure.
- Peripheral components are in a bidirectional communication with the brain through the autonomic nervous system and hormones.
- **Insulin** and **leptin** inhibit the orexigenic NPY/AgRP neurons and activate anorexigenic POMC neurons resulting in a decrease of food intake.
- **Ghrelin** activates AgRP/NPY neurons and stimulates food intake.
- **Serotonin** acts on POMC neurons to induce melanocortin secretion and thus satiety.

CONCLUSIONS

- Individuals regulate their emotions and mood by changing both food choices and quantities.
- Acute stress activates the sympathetic adrenal medullary system and is associated with a decrease of food intake.
- Chronic stress produces a hyperactivation of the HPA axis, increases cortisol levels and comfort food intake, which leads to abdominal obesity.
- Depression is associated with chronic stress, altered HPA axis activity and elevated cortisol levels which lead to abdominal obesity.
- Depressed patients suffer a dysregulation of the serotoninergic system resulting in a reduction of serotonin levels and an increase of food intake.

REFERENCES