VIRUS-LIKE PARTICLES

Definition
Protein structures that mimic the organization of native viruses but lack the viral genome, becoming potential vaccine candidates

Types
- Number of structural proteins: Simple or complex
- Presence of envelope: Enveloped or non-enveloped

Vaccination role
- Traditional vaccines: Low
- Inactivated vaccines: Medium
- Recombinant proteins: High
- Virus-like particles: Medium
- Peptide vaccines: Medium
- Live recombinant vaccines: High
- DNA vaccines: Low

<table>
<thead>
<tr>
<th>Safety</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>Cheap</td>
<td>Medium</td>
<td>Expensive</td>
<td>Cheap</td>
</tr>
<tr>
<td>Administration</td>
<td>Intramuscular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunogenicity</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Adjuvant</td>
<td>Yes</td>
<td>Depends</td>
<td>Yes</td>
<td>High</td>
</tr>
</tbody>
</table>

Advantages and Disadvantages

Advantages
- High versatility
- High complexity
- Promoters power
- Disulfide bond formation
- Post-translational modifications

Disadvantages
- Protein folding
- Glycosilation
- Proteolytic processing
- Contamination of baculovirus particles

Solutions
- Chaperones or foldases
- Genetic modification of insect cells/baculoviruses
- Proteolytic preservatives
- Diversity of downstream strategies

ADVANTAGES AND DISADVANTAGES

The Present: Cervarix®
- Recombinant vaccine against Human Papillomavirus
- Bivalent: Against HPV types 16 and 18
- Simple non-enveloped VLP composed by L1 protein
- Use of aluminum hydroxide adjuvant

Achievements
- The second VLP-based approved vaccine
- The first approved vaccine using BEVS

- Produced by GlaxoSmithKline
- Biologicals
- Approved by the FDA in 2009
- Data from 13 clinical studies involving 30,000 females were submitted in support of licensure

ABBREVIATIONS
- VLP: Virus-Like Particle
- BEVS: Baculovirus-insect cell Expression Vector System
- HPV: Human Papillomavirus
- FDA: Food and Drug Administration

RELEVANT REF.

CONCLUSIONS AND FUTURE PERSPECTIVES

- BEVS is the most suitable and advantageous technology to produce VLP vaccines at large-scale
- The approval of Cervarix® meant the acceptance of BEVS technology and a boost to more VLP vaccines based on BEVS to reach the market
- Systems biology and genetic engineering are expected to improve both vector technology and bioprocess engineering