Proteus mirabilis urease

Fig. 1. Proteus mirabilis urease.

Materials and Methods

- *P. mirabilis* strain was isolated and then maintained on a slant of tryptic soy agar overnight at 37°C. Then, it was suspended in an artificial urine.
- Artificial urine contains: CaCl$_2$·2H$_2$O, MgCl$_2$·6H$_2$O, Na$_2$HPO$_4$·7H$_2$O, KCl, Na$_2$SO$_4$, Na$_2$HPO$_4$, (NH$_4$)$_2$CO, CaCl$_2$·2H$_2$O, and tryptic soy broth.
- To test the urease inhibitors, it should be added at different concentrations to artificial urine.

Results

- The basic crystal morphology is coffin-like (Fig.6, panels a and b).
- When pH increases, crystals frequently form twin plates (Fig.6, panels 1 and 2).
- For higher value of pH, 9.5, dendritic structures appear (Fig.6, panels d1 and d2).

Conclusion

- *P. mirabilis* is an environmental bacterium that differentiates from a short vegetative rod to an elongated highly flagellated form.
- It is common in long-term catheterization and it is able to form biofilms on catheters.
- Because of the activation of urease, *P. mirabilis* can cause complicated urinary tract infections, like urolithiasis, that is based on the formation of stones through crystallization.

Proteus mirabilis urease

- **Fig. 2.** Scheme of genetic organization of urease genes and structural composition of urease. Modification of Ref. [2].

Discussion

- In an artificial urine (with *P. mirabilis*) without inhibitors, the first struvite crystals are formed at 3 - 4 hours. When inhibitors are added, the time to form the first struvite crystals is increases.
- Less curcumin concentration is needed than AHA, EDTA and vanillic acid to delay the struvite stones formation.
- Despite AHA is a good urease inhibitor, it is discarded because of side effects.
- So, it could be say that curcumin is the most effective inhibitor. However, it is not because of its low solubility.
- Vanillic acid is more effective than EDTA because with 3 mM of concentration, it allows a greater delay on the formation of the first struvite crystals. It needs 5 mg/ml to inhibit struvite stone formation. AHA causes side effects.
- With a 0.5 mg/ml (3 mM) concentration of vanillic acid, 24 hours are necessary to form the first struvite crystals (smaller with the same morphology).
- With a 0.5 mg/ml (3 mM) concentration of EDTA, 4.5 hours are necessary to form the first struvite crystals (smaller but with the same morphology).

Table 1. Crystalization effect of different urease inhibitors. TK (Tryptic Acid), PNP (p-nitrophosphoglyceride), GAGs (Glycosaminoglycans), CDS (Chondroitin sulfate C), HS (Heparan Sulfate), CDF (Chondroitin sulfate B), CHA (Chondroitin sulfate A).

References

Fig. 3. Urea degradation. Modification of Ref. [5].

- Aggregation is one of the main causes of stone formation in the urinary tract.
- Molecules such as polyphenols, quorum sensing antagonists and other chemical molecules are replacing the role of antibiotics in the treatment and prevention of urolithiasis.
- The use of GAGs replacements therapy is investigated for the treatment of urolithiasis.
- Fluorofamide fails to inhibit cytoplasmic urease, so it is not useful for treating urolithiasis produced by *P. mirabilis*.
- Research about urease inhibitory mechanism of quorum sensing antagonists is required.
- One of the urease inhibitors seems to be the most effective for the treatment of urolithiasis is vanillic acid, followed by EDTA.

Fig. 4. Carbonate apatite (CA) and Struvite (S) grown from artificial urine in the presence of *P. mirabilis*. Modification of Ref. [6].

Fig. 5. Persistence of the crystals on the stones. Modification of Ref. [7].

- *P. mirabilis* is a multi-enzyme composed by three structural subunits (γ, β and α). These polypeptides are encoded by three structural genes (*ureA, ureB* and ureC, respectively).
- Table 1. Crystalization effect of different urease inhibitors. TK (Tryptic Acid), PNP (p-nitrophosphoglyceride), GAGs (Glycosaminoglycans), CDS (Chondroitin sulfate C), HS (Heparan Sulfate), CDF (Chondroitin sulfate B), CHA (Chondroitin sulfate A).