Biocontrol of Salmonella in the food industry using phage therapy

Miquel Sánchez Osuna - Universitat Autònoma de Barcelona - Grau de Microbiologia

BACKGROUND

Food is an essential requirement of everyday life, but occasionally, contamination with pathogenic bacteria can result in illness and even death. According to the European Food Safety Authority (EFSA), food-borne illnesses are one of the leading causes of morbidity and mortality in the world, and it was estimated that approximately one third of the population may be affected by such diseases in developed countries every year. Ensuring food safety involves a wide range of microbial control measures applied to relevant steps in the food chain. Currently, the most effective means to limit microbial growth are good hygiene in the production and proper use of biocides and disinfectants. However, these treatments are inefficient and can produce organoleptic variations or the possibility of leaving toxic waste. Consequently, the development of effective and safe natural methods has been an interesting topic during the last years. Phage therapy emerges as one of the solutions becoming a good approach to reduce the incidence of food-borne diseases.

HAGE THERAP

Historically, phage therapy arose to control resistant bacteria because of the

BACTERIOPHAGES IN FOOD INDUSTRY

The use of bacteriophages to promote food safety can be mainly done at three different stages along the food chain.

widespread problem of antibiotic resistance coupled with the paucity of new antibacterial drugs. Even so, the interest has been renewed for the control of bacteria in other areas, including food.

Advantages and disadvantages of phage therapy Disadvantages Advantages Highly specific, rapid bacterial Narrow host range. Mixture (cocktail) usually required. killing, ability to self-replicate and natural. Knowledge of biology often Minimal disruption to regular required. microbiota. Does not affect organolpetic Negative consumer perception. properties. Abundant in natural environments.

pathogen reduce To colonization in animals during primary production.

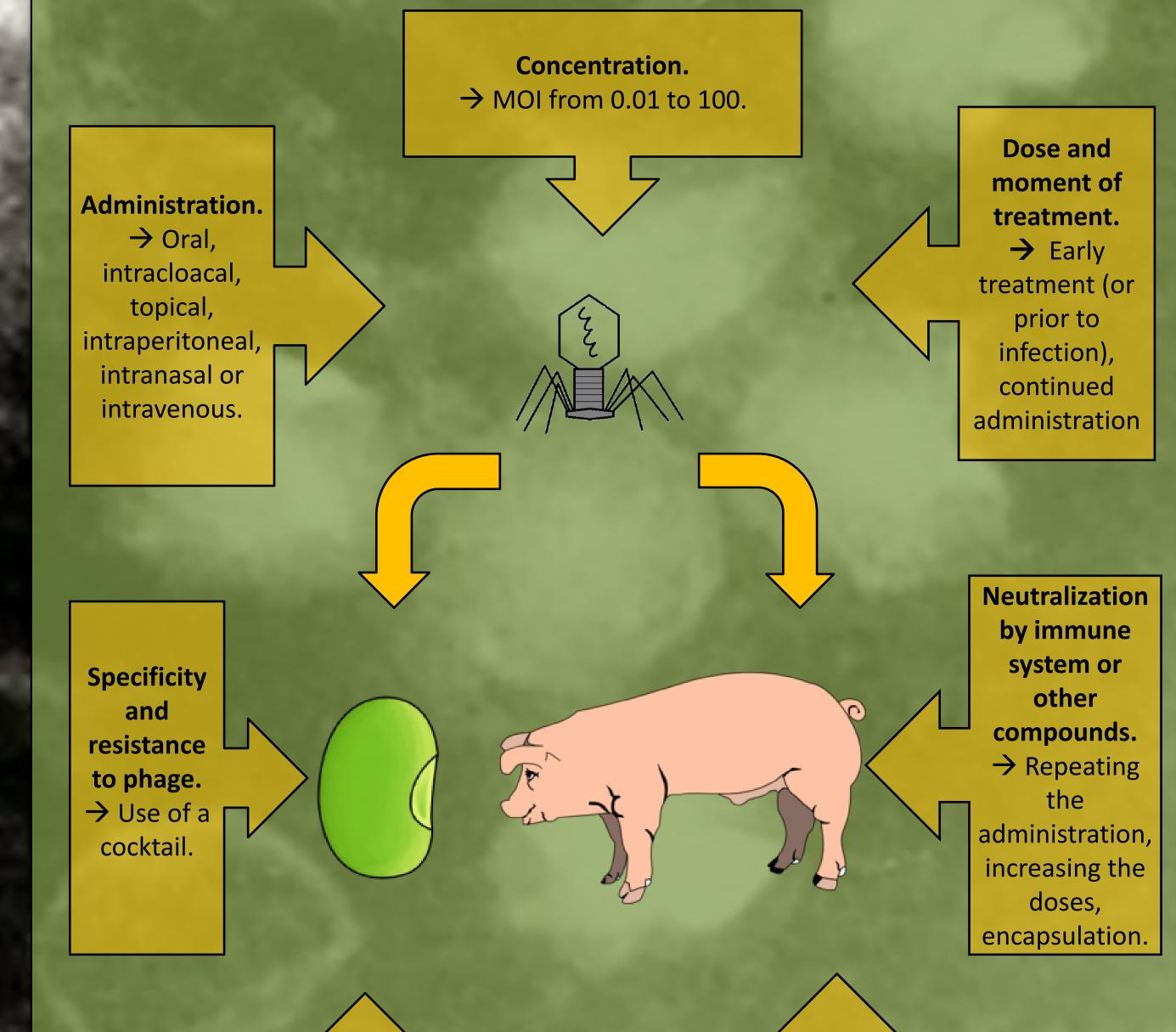
Disinfection of food contact surfaces and equipments.

Directly in **postharvest food**, such as meat carcasses, fresh fruit, vegetables and processed ready-to-eat (RTE) foods.

Directly in **postharvest food**, such as meat, fresh fruit, vegetables and processed RTE foods.

BIOCONTROL OF Salmonella

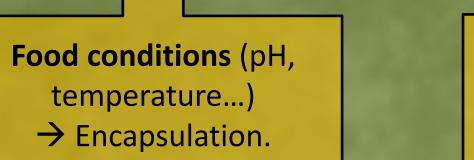
Effective in biofilms.


In the European Union, salmonellosis is the second reported zoonotic disease in humans. Although the numbers of reported outbreaks caused by vegetables and products has increased, poultry and derivates are still the common sources of Salmonella. The following table shows several studies concerning phage therapy against Salmonella.

FACTORS AFFECTING THE **EFFECTIVENESS OF PHAGE THERAPY**

Biocontrol of Salmonella in primary production

Year	Product	Phage(s)	Strategy	Conclusions
2007	Poultry	φ151, φ25, φ10	Oral delivery	Reduction of CFU with phages ϕ 151 and ϕ 10, not
				observed with φ 25. Significant numbers of phages are
				required to adsorb to individual host cells. Importance of
- 55				accessible receptors on cell surface to allow adsorption.
2007	Poultry	СВ4ф, WT45ф (cocktail)	Oral delivery	Significant reduction at 24h, not at 48h. Emergence of
1.23			and the second second second	resistant cells.
2012	Poultry	UAB_Phi20, UAB_Phi78,	Oral delivery	Importance of administering the phage prior to infection
		UAB_Phi87(cocktail)		and continued administration to achieve significant
				protection.
2012	Poultry	фCJ07	Oral delivery (via	CFU reduction in uninfected chickens. DCJ07 to prevent
12.25			feed)	cross contamination in poultry.
2013	Poultry	φst1	Intracloacal delivery	Salmonella was not detected at and after 24h. Intracloacal
				administration avoids contact with stomach.
2013	Poultry	F1O55S, F12013S (cocktail)	Spray delivery	F1O55S and F12013S reduce Salmonella horizontal
				transmission during agg incubation


The effectiveness of phage applications against pathogenic bacteria depends on several factors.

	(eggs)			transmission during egg incubation.
2011	Swine	Phage cocktail	Oral delivery	Reduction of Salmonella within 96h. Bacteriophages can
				reduce <i>Salmonella</i> in swine.

Biocontrol of *Salmonella* in postharvest food

Year	Product	Phage(s)	Strategy	Conclusions
2003	Chicken skin	P22, 29C	Applied on top	MOI (multiplicity of infection) 100-1000 caused more
				reduction than MOI 1 and eradicated resistant strains.
2001	Fresh-cut fruit	Phage cocktail	Added to foods	Significant CFU reduction on melon but not on apple. pH
				of apples inactive bacteriophages.
2004	Sprouting seeds	Phage cocktail	Applied by	Significant reduction. It is important to develop phage
			immersion	cocktails to control a wide range of contaminants.
2012	Ready-to-eat	F01-E2	Added to foods	Significant reduction of CFU in hot dogs, cooked sliced
	food			turkey breast, mixed seafood and chocolate milk at 15°C.
2012		F01-E2		Significant reduction of CFU in hot dogs, cooked sl

Accessibility to target bacteria (intracellular cells are inaccessible, limited diffusion in solid matrices).

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

- This work reflects that bacteriophages are a remarkable alternative to control and eradicate pathogenic bacteria in primary production and postharvest food. - The application of phage therapy is strengthened by the number of companies around the world investing in the production of phage-based products for use in the food industry. SALMONELEX[™], for example, is a phage-based product to control Salmonella in the food chain.

- However, regulatory agencies are careful with the application of bacteriophages because of the lack of scientific evidence through clinical trials fully supervised by ethics committees and regulatory compliance standards.

REFERENCES

Endersen L., O'Mahony J., Hill C., Ross R. P., McAuliffe O., Coffey A. 2014. Phage therapy in the food industry. Annual Review of Food Science and Technology. 5: 327-349. // European Food Safety Authority, European Centre for Disease Prevention and Control. 2011. The European Union summary report on trends and sources of mzoonoses, zoonotic agents and food-borne outbreaks in 2009. // Ly-Chatain, M. H. 2014. The factors affecting effectiveness of treatment in phages therapy. Front Microbiol. 5: 1-7. // Sillankorva S. M., Oliveira H., Azeredo J. 2012. Bacteriophages and their role in food safety. Int J Microbiol. Volume 2012: 1-13.