Bacterial SOS Response and its role in the acquisition of antibiotic
resistance and virulence factors
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/ \ First described in Escherichia coli and named by Miroslav Radman in 1974 when he postulated the existence of an “error-prone”

Uiilndhiicad atate o replication mechanism triggered by DNA damage or replication fork blockages*. The SOS response is controlled by two main proteins: the
_______________________ \ ~SO0C 000000000000y repressor LexA and the activator RecA. RecA binds to single-stranded DNA to form a nucleoprotein filament which leads to the
) JPE— > autocleavage of LexA%. More than 40 genes are under control of this regulon, including low-fidelity polymerases* (Figure 1). The inducing
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signal that activates RecA and the SOS system is based on the unwinding activity of the RecBCD enzyme3.

The SOS response can be triggered by various endogenous and exogenous factors, as UV irradiation, chemical compounds or organic
mutagens, among others. This review is focused on the antibiotic-induced SOS response and the secondary effect that this system has in
bacteria.
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Figure 1. Model of the SOS induction. Edited from Lyle A.
Simmons et al. ?

The mechanisms of action of the antibiotics are a determinant factor for the activation or not of the SOS system. Thus, each drug would have a different effect depending on the specie
we study and its target on the cells.
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f\fu\l}’lﬂﬂ {ﬂwm The antibiotics that induce directly the SOS system are those “] |Antibiotics that do not directly affect DNA replication can induce an SOS
He N TH:H o v that target DNA or blocks the replication fork by targeting some - 10 response in some microorganisms due to the existence of intermediated
3 T enzyme related to it. = factors.
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& < DNAZ. Gl T RpoS genes, but IraD prevents this union and stabilize RpoS expression.
Norfloxacin Ciprofloxacin It has been proved that iraD gene is not conserved in the Vibrionaceae

Figure 2. Quinolone structures. Obtained from Darlika and Zhao* 0 family and make them more sensitive to ROS damage®.
WT AfralD Prsss+

Figure 3. Histogram bars. Representation of the GFP induction differences between growth in LB (white bars) and growth in
presence on antibiotic (grey bars) of an strain deficient for IraD and a strain overexpressing RssB. Edited from Zeynep et al. °
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The widely extended use of the antibiotics for the treatment of infectious diseases has had a major role in the appearance of resistances, which directly challenge our ability to battle against these diseases. The wrong and excessive
use of these compounds not only enhance the appearance of resistances, but in this review is proved that they also play a key role in the spread of virulence factors among bacteria and could aggravate the infectious agent we are
trying to treat, as is the case of one of the cystic fibrosis pathogens, S. aureus. The main conclusions of this review is the importance of keep studying the molecular basis of this procedures and the development of new drugs that
do not activate the SOS system.
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