

Bacterial SOS Response and its role in the acquisition of antibiotic resistance and virulence factors

Universitat Autònoma de Barcelona

Marta Arch Sisquella, Grau en Microbiologia
Universitat Autònoma de Barcelona

INTRODUCTION

Figure 1. Model of the SOS induction. Edited from Lyle A. Simmons et al.²

The mechanisms of action of the antibiotics are a determinant factor for the activation or not of the SOS system. Thus, each drug would have a different effect depending on the species we study and its target on the cells.

Direct Activation of the SOS Response

Figure 2. Quinolone structures. Obtained from Darlak and Zhao⁴

The antibiotics that induce directly the SOS system are those that target DNA or blocks the replication fork by targeting some enzyme related to it.

Quinolones: These antibiotics (Figure 2) target two essential replicative enzymes (DNA gyrase and DNA Topoisomerase). Their interference with these enzymes prevent the advance of the replication fork and induce the generation of single-stranded DNA⁴.

Indirect Activation of the SOS Response

Figure 3. Histogram bars. Representation of the GFP induction differences between growth in LB (white bars) and growth in presence on antibiotic (grey bars) of an strain deficient for IraD and a strain overexpressing RssB. Edited from Zeynep et al.⁵

EFFECTS OF THE ANTIBIOTIC-INDUCED SOS RESPONSE

Horizontal gene transfer

Figure 4. Model of the SaPI1 cycle. In absence of the active bacteriophage the SaPI1 inserts into the chromosome. When the phage is induced the SaPI1 is excised and encapsulated in order to be transduced to another cell. Edited from Ruzin et al.⁸

Virulence (*Staphylococcus aureus*)
SaPI1 is an *S. aureus* pathogenicity island that encode toxic shock syndrome (TSST-1) and integrates near the *tyrB* gene⁷. SaPI1 is related with the temperate phage 80α, that when is induced promotes the excision and the encapsulation for the transduction of the island (Figure 4)⁸. The Stl repressor binds to SaPI1 promoters and blocks its cycle. When the 80α is induced by the SOS response (following the same mechanism as phi13) a phage protein interacts with Stl and prevents its union to the promoters⁹.

Figure 5. Adhesion to coverslips by different regulator-deficient strains. Each bar represents a different amount of fibronectin in the coverslips from less to more. Edited from Bisognano et al.¹¹

Chromosomal changes

Figure 6. Multiplex PCR. Detection of hlb, phi13 integrase and phage-encoded protein sak before (lanes 1) and after (lanes 2) ciprofloxacin treatment. Edited from Goerke et al.¹⁴

Virulence (*Staphylococcus aureus*)

Fibronectin binding proteins (FnBPs) are necessary for the attachment and encoded by two genes, one of them (*fnbA*) under LexA repression, among other regulator networks. Thus, in presence of ciprofloxacin RecA induce the autocleavage of LexA and permits the expression of this virulence factor (Figure 6). This mechanism permit that the subpopulation of survivors to antibiotics have a major invasive ability¹¹.

Hemolysin β: the *attP* site of the prophage phi13 is located in the *hbl* gene preventing its expression. The cl-like repressor of the lytic cycle has a C-terminal domain that interact with RecA and adopt a particular conformation in which a catalytic residue interact with the cleavage site¹³ (following the same mechanism as LexA). When the phage is induced, the *hbl* gene can be expressed¹⁴.

Figure 5. Model of the regulatory network by which the SOS response enhance the SXT transfer. Edited from John W. Beaber et al.¹⁰

Antibiotic resistance (*Vibrio cholerae*)
The SXT is an integrating conjugative element (ICEs) that encode resistance to several antibiotics and requires of *recA* for its excision and transfer (Waldor). SetR is the repressor of the genes needed for the excision (*setC* and *setD*). Its interaction with the active RecA filament leads to an auto-hydrolysis of SetR and permits the transfer of the SXT element (Figure 5)¹⁰.

Antibiotic resistance (Persisters)
Persistence: non-heritable phenotype acquired via reversible epigenetic changes exhibit by a subpopulation of susceptible bacteria which permit to survive lethal doses of antibiotics.
Persistence is induced by antibiotics and is highly related with the SOS system, as demonstrated when a culture is treated with a SOS inducer as mytomycin C (Figure 7)¹⁵.

Figure 7. Persistence induced after Mitomycin C treatment. Open bars represent total viable cells and grey bars are the persisters fraction. Edited from Tobias Dörr et al.¹⁵

CONCLUSIONS

The widely extended use of the antibiotics for the treatment of infectious diseases has had a major role in the appearance of resistances, which directly challenge our ability to battle against these diseases. The wrong and excessive use of these compounds not only enhance the appearance of resistances, but in this review is proved that they also play a key role in the spread of virulence factors among bacteria and could aggravate the infectious agent we are trying to treat, as is the case of one of the cystic fibrosis pathogens, *S. aureus*. The main conclusions of this review is the importance of keep studying the molecular basis of this procedures and the development of new drugs that do not activate the SOS system.

Bibliography

- Patel, M., Jiang, Q., Woodgate, R., Cox, M. M., & Goodman, M. F. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. *Crit. Rev. Biochem. Mol. Biol.* **45**, 171–184 (2010).
- Simmons, L. A., Fatti, J. J., Cohen, S. C., & Walker, G. C. The SOS Regulatory Network. *Environ. Phys.* **2008**, (2008).
- Chaudhury, A. M., & Smith, G. R. Role of *Escherichia coli* RecBCD enzymes in SOS induction. *Mol. Gen. Genet.* **201**, 525–528 (1985).
- Drlica, K. & Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. *Microbiol. Mol. Biol. Rev.* **61**, 377–392 (1997).
- Baharoglu, Z., Kirin, E., & Mazel, D. RpS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in *Vibrio cholerae*. *PLoS Genet.* **9**, (2013).
- Merrikh, H., Ferrazzoli, A., Bougour, A., Olivier-Mason, & Lovett, S. T. A DNA damage response in *Escherichia coli* involving the alternative sigma factor, RpoS. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 611–616 (2009).
- Úbeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. *Mol. Microbiol.* **56**, 836–844 (2005).
- Ruzin, A., Lindsey, J., & Novick, R. P. Molecular genetics of SaPI1 – a mobile pathogenicity island in *Staphylococcus aureus*. *J. Bacteriol.* **191**, 365–377 (2009).
- Mir-simard, I. et al. Control of *Staphylococcus aureus* pathogenicity island excision. *Nature* **85**, 833–836 (2012).
- Besbes, J. W., Hochhut, B., & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. *Nature* **427**, 72–74 (2004).
- Bisognano, C. et al. A RecA-LexA-dependent Pathway Mediates Ciprofloxacin-induced Fibronectin Binding in *Staphylococcus aureus*. *J. Biol. Chem.* **279**, 9064–9071 (2004).
- Galkin, V. E. et al. terminal Domain. *Biochemistry* **385**, 779–787 (2010).
- Görke, C., Koller, J., & Wöltz, C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **50**, 171–177 (2006).
- Dörr, T., Lewis, K., & Vulic, M. SOS response induces persistence to fluoroquinolones in *Escherichia coli*. *PLoS Genet.* **5**, (2009).