Climate change effects on *Plasmopara viticola* incidence in vineyards

Introduction

Background

Plasmopara viticola (Berk. & Curt.) is a biotrophic parasite from the Oomycetes family which causes the Downy mildew disease that provokes great harvest losses.

It was first detected in Catalonia in 1880.

To avoid the Downy mildew disease preventive treatments are done.

Climate change is one of the worst problems of the 21st century.

Pathogens have a great impact on global agriculture and climate change may aggravate the situation. (Cañadas, 2013)

Hypothesis: Temperature will accelerate *P. viticola* life cycle and benefit its development.

Objective: Study the effects of climate change on *Plasmopara viticola* epidemics in Catalonia

Methodology

EPI model: Downy mildew disease pressure measurement according to meteorological data (temperature and precipitation) from October to March (Noyes & Barrero, 2014).

Weather conditions affect oospores maturation.

![Climatic Parameters](image)

<table>
<thead>
<tr>
<th>Climates Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Tº</td>
<td>12-13°C</td>
</tr>
<tr>
<td>Daily precipitation</td>
<td>10mm rain previous 48h</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>98%</td>
</tr>
<tr>
<td>Humectation hours</td>
<td>12-13°C</td>
</tr>
</tbody>
</table>

STAGE 1

January

- Collecting meteorological data
- EPI model

February

- Symptoms inspection

March

- EPI model
- Symptoms inspection

April

- Symptoms inspection

May

- Symptoms inspection

June

- Symptoms inspection

July

- Symptoms inspection

August

- Symptoms inspection

September

- Symptoms inspection

October

- Symptoms inspection

November

- Symptoms inspection

December

- Symptoms inspection

EPI model:

- Infection pressure measurement according to meteorological data (temperature and precipitation) from October to March (Noyes & Barrero, 2014).
- Weather conditions affect oospores maturation.

Early symptoms inspection: EPI model and meteorological data results help to know how the infection will occur.

Inspections during:

- End of April & May - early June. Every 5 - 10 days

Once symptoms are detected: Symptomatic clusters will be placed in a moist chamber to induce sporulation in order to confirm *P. viticola*’s presence. (Kennelly et al., 2007)

STAGE 2

<table>
<thead>
<tr>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPA</td>
<td></td>
</tr>
</tbody>
</table>

Catalonia’s Risk Infection map:

1. Critical path analysis (CPA): In order to know which weather parameters explain more the primary infection.

2. Catalonia’s risk infection map: This map will be done according to Tº, precipitation and the result of EPI model. Reclassification in 4 risk categories with SIG Miramon.

Results & Discussion

Potential increase of *P. viticola* in the viticulture *(Salinari et al., 2006)*.

Premature infection in May.

More attention should be paid to the management of the Downy mildew

Future Improvements

High resolution climate change data for Catalonia isn’t available nowadays.

This data is still in creation progress. (A. Barrena-Escoda & J. Cañadas, 2011)

Using high resolution data for Catalonia will be an important improvement because the results will be more confident.

References