Beyond BCG: boosting strategies with viral vector vaccines

Introduction

Mycobacterium tuberculosis (MtB) is the causative agent for tuberculosis disease (TB). In 2013 9M people (1.1 HIV+) developed TB and 1.5M (360 000 HIV+) died from it. There were also registered 480 000 MDR-TB cases, three times higher than in 1990. HIV-TB coinfection and the increase of drug resistances have become a concern towards controlling the disease.

However, it’s not all bad news. From 1990 to 2013 the mortality rate and prevalence have decreased a 45 and 41% respectively, and 37M lives were saved from 2000 to 2013 due to prevention programs and TB treatment.

Vaccination

The Bacille Calmette-Guérin (BCG) is the only vaccine available for preventing TB. The countries with the highest TB burden have a BCG vaccination policy. BCG only confers partial protection in children. Thus, in order to maximize the protection range a secondary boost is needed.

Viral vector vaccines as boosters of BCG immunization are an attractive approach. Replication-deficient variants of pathogenic virus such as the modified vaccinia virus (MVA) and adenovirus (Ad5) are the most clinically advanced viral vectors.

Immune response to MtB

The immune response required against MtB is cell-mediated with T lymphocytes and mononuclear phagocytes (MP). The T-cell response is biased to the Th1 pole. The CD4+ and CD8+ T-cells both secrete INF-y and TNF-α, that will activate the MP, whereas CD8+ also produce perforins, granulysins and granzymes that will harm the bacilli. The Th17 response is involved in the early defense and adaptive immunity against TB, it also may be a Th1 recruiter and therefore help accelerate the bacterial clearance. However, if maintained for long periods can induce pathology due to inflammation. The induction of long-lived memory T-cells is paramount in terms of control of the bacilli, this may be the major problem in the production of a TB vaccine.

<table>
<thead>
<tr>
<th>Vaccine ID</th>
<th>Target indication</th>
<th>Delivery system</th>
<th>Notes about delivery system</th>
<th>Antigen</th>
<th>Antigen function</th>
<th>Mass (kDa)</th>
<th>Development phase</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVA85A/AERAS-485</td>
<td>Preventive</td>
<td>Modified Vaccinia Virus Ankara (MVA)</td>
<td>Replication-deficient viral delivery system</td>
<td>Ag85A (Rv3804c)</td>
<td>Mycolyl transferase surface protein (virulence factor)</td>
<td>35.7</td>
<td>Phase I</td>
<td>Safety ✓ Immunogenicity ✓ Efficacy X</td>
</tr>
<tr>
<td>Ad5Ag85A</td>
<td>Preventive</td>
<td>Recombinant adenovirus serotype 5 (Ad5)</td>
<td>Replication-deficient viral delivery system</td>
<td>Ag85A (Rv3804c)</td>
<td>Mycolyl transferase surface protein (virulence factor)</td>
<td>35.7</td>
<td>Phase Ib</td>
<td>Safety ✓ Immunogenicity ✓ Efficacy X</td>
</tr>
<tr>
<td>AERAS-402</td>
<td>Preventive</td>
<td>Recombinant adenovirus serotype 35 (Ad35)</td>
<td>Replication-deficient viral delivery system</td>
<td>Ag85A (Rv3804c)</td>
<td>Mycolyl transferase surface protein (virulence factor)</td>
<td>35.7</td>
<td>Phase Ib</td>
<td>Safety ✓ Immunogenicity ✓ Efficacy X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ag85B (Rv1886c)</td>
<td>Fibronectin binding protein surface protein</td>
<td>34.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TB10.4 (Rv0288)</td>
<td>ESAT-6 family protein</td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUDING REMARKS

- In order to control and eventually eradicate TB there is a need for better diagnostics, treatments and an efficacious vaccine.
- In every trial conducted to date MVA85A, Ad5Ag85A and Ad35/AERAS 402 have proved to be safe and immunogenic, but not efficacious.
- Concerns on adenoviral vectors regarding the potency for dampening the immune response due to the induction of neutralizing antibodies have been overcome.
- Further investigation is required.

References