

# GENETIC ALTERATIONS IN PEDIATRIC ACUTE LYMPHOBLASTIC LEUKEMIA

## Introduction

Acute Lymphoblastic Leukemia (ALL) is a malignant clonal proliferation of precursor lymphoid cells, B and T.

Despite this hematologic tumour can occur at all ages, it is the most prevalent malignancy in **childhood** and it has a preponderance in males over females. Specifically, in Spain it comprised 28,5% of childhood malignancies between 1983 and 2002.

ALL is a multistep process associated with the acquisition of **genetic and epigenetic alterations** in the leukemic blast cells, that varies according to the age (Figure 1), and it is a **heterogeneous disease** composed of multiple biological subgroups. (Figure 2)

Proliferation and accumulation of blasts cells in the bone marrow results in a suppression of hematologic processes, causing **symptoms** that reflect bone marrow failure (pancytopenia), as anaemia, thrombocytopenia and neutropenia.

It can be distinguished different methods of **diagnosis**. Firstly, the morphological diagnosis is made with an assessment of the bone marrow. Secondly, it is important flow cytometry, that is the standard procedure for ALL diagnostic and subclassification and also allows to detect minimal residual disease. In addition, cytogenetics, FISH and karyotyping, are an important step in ALL classification because conventional karyotyping can be helpful in identification of recurrent translocations and gain and loss of chromosomal material. Next-generation sequencing approaches are important to comprehensively identify genetic alterations in the genome and transcriptome.



Figure 1. Distribution of different cytogenetic subgroups according to age. (1)



Figure 2. Subclassification of childhood ALL. Blue wedges refer to B-progenitor ALL, yellow to recently identified subtypes of B-ALL, and red wedges to T-lineage ALL. B-ALL correspond to the 85% and T-ALL to the 15% of all cases. (2)

## Aim of the project

The aim of this project is do a review of the main genetic alterations in pediatric ALL and its prognosis, using articles published between 2012 and 2015 and searched in PubMed.

## Results

Approximately 75% of childhood ALL cases have recurrent genetic abnormalities, including aneuploidy, chromosomal rearrangements and submicroscopic DNA mutations.

Childhood ALL is considered a sporadic disease, but predisposition exists in <5% of cases, as occurs in Down Syndrome. Patients with this syndrome have 20-fold increased incidence of ALL.

It is noteworthy that many of the involved genes are related with key roles in lymphoid development, cell cycle regulation and tumour suppression, apoptosis regulators, lymphoid signalling, transcriptional regulators, and chromatin structure and epigenetic regulators.

In **B-ALL** should be highlighted **numerical abnormalities**, that may involve ploidy changes or gain or loss of individual chromosomes (aneuploidy). It is important that ploidy is considered an imperative prognostic factor in childhood ALL. In this type of alterations, it can be distinguished high hyperdiploidy, low hyperdiploidy, hypodiploidy and near haploidy. (Table 1) Furthermore, there are **recurrent translocations**, such as ETV6-RUNX1 and MLL with different partners, and **genetic alterations**, such as iAMP21 or PAX5 mutation. (Table 2)

**T-ALL** is characterized by a worse prognosis compared to B-ALL. In this subgroup there are also translocations involving T-receptor and chromosomal and subchromosomal alterations. Early-T precursor is a new subgroup in T-ALL that has 10% frequency and a poor outcome.

Finally, there are also important **epigenetic alterations**, as DNA methylation, histone modification and miRNA alterations. In this cases the primary genetic sequence is normal but there are other factors that affect gene expression. It should be noted that are reversible events that could be targeted with therapeutic agents. (Figure 3)

| Type of Alteration       | Affected Genes | Locus                                    | Functional Consequences                                                           | Prevalence (%)               | Prognosis             |
|--------------------------|----------------|------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|-----------------------|
| Recurrent translocations | ETV6-RUNX1     | t(12;21)(p13;q22)                        | Altered expression of RUNX1 regulated genes                                       | 25                           | Good outcome          |
|                          | BCR-ABL1       | t(9;22)(q34;q11)                         | Constitutive tyrosin-kinase protein activation                                    | 3-5                          | Poor outcome          |
|                          | MLL-partners   | (11q23)                                  | MLL codifies a methyltransferase-histone required for hematopoietic regulation    | 80% in <1 year; 10% children | Poor outcome          |
|                          | TCF3/E2A-PBX1  | t(1;19)(q23;p13)/der(19)t(1;19)(q23;p13) | Anormal PBX1 activation and transactivation of different genes                    | 6                            | Poor outcome          |
|                          | IGH@           | 14q32                                    | Juxtaposition of IGH@ elements with transcription factor and cytokine receptor    | <5                           | Poor outcome          |
|                          | BCR-ABL1-like  | -                                        | IKZF1 and CDKN2A/B deletions, JAK2 mutations, CRLF2 rearrangements                | 10-12                        | Poor outcome          |
| Genic alterations        | CRLF2          | PAR1 (Xp22.3)/(Yp11.3)                   | IKZF1 alteration, JAK1 mutation, implies constitutive STAT pathway activation     | 5-7                          | Poor outcome          |
|                          | iAMP21         | Intrachromosomal amplification of cr21   | 3 or more copies of RUNX1                                                         | 2                            | Poor outcome          |
|                          | IKZF1          | 7p12.2                                   | Loss of function of IKAROS transcription factor                                   | 14                           | Poor outcome          |
|                          | JAK1/2         | (1p32.3-p31.3)/(9p24)                    | Alteration of cytokine signalling and associated with IKZF1 and CDKN2A/B mutation | 10                           | Increased risk of LLA |
|                          | PAX5           | (9p13)                                   | Inactivating mutation of the transcription factor                                 | 32                           | No impact             |
|                          | TP53           | (17q13.1)                                | Loss of tumour suppression genes function                                         | 3                            | Poor outcome          |
|                          | CREBBP         | 16p13.3                                  | Alteration of transcriptional regulation                                          | 19% relapses                 | -                     |

Table 2. Genetic alterations in B-ALL: translocations and genic alterations. Table modified of (2) (3) (5) (6) (7) (8)

| Alteration         | Number of chromosomes | Prevalence (%) | Prognosis                                                                                        |
|--------------------|-----------------------|----------------|--------------------------------------------------------------------------------------------------|
| High Hyperdiploidy | 51-67                 | 25-30          | Good outcome                                                                                     |
| Low Hyperdiploidy  | 47-50                 | -              | Poor outcome                                                                                     |
| Hypodiploidy       | <46                   | 5-8            | Good outcome with 45 chromosomes and poor outcome with <45, especially with 33 to 44 chromosomes |
| Near Haploidy      | 23-29                 | 0,7- 2,4       | Poor outcome                                                                                     |

Table 1. Genetic alterations in B-ALL: aneuploidy. Table modified of (3) (4)

## Conclusions

In this kind of cancer predominate B-progenitor tumours, with genetic and epigenetic alterations. It is important to have in mind that with the analysis and the risk stratification in function of genetic alterations it can be made a prognosis approximation with the aim to administrate the best therapy.

As this kind of cancer is the most frequent in childhood, it will be successful to carry out studies to improve diagnostic and therapeutic approaches.



Figure 3. Different types of epigenetic modifications, as DNA methylation, histone modification, miRNA alterations

## References

- Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology Am Soc Hematol Educ Program [Internet]. 2013 Jan;2013:118-25.
- Mullighan CG. Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(4):1-17.
- Woo JS Alberti MO, Tirado C a. Childhood B-acute lymphoblastic leukemia: a genetic update. Exp Hematol Oncol. 2014 Jan;3(1):16.
- Braoudaki M, Tzortzatou-Stathopoulou F. Clinical cytogenetics in pediatric acute leukemia: an update. Clin Lymphoma Myeloma Leuk. Elsevier; 2012 Aug;12(4):230-7.
- Mullighan CG. Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest. 2012;122(10):3407-13.
- Mullighan, Charles; G Inaba, Hiroto; Greaves M. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881).
- Chiaretti S, Zini G, Bassan R. Diagnosis and Subclassification of Acute Lymphoblastic Leukemia. Mediterr J Hematol Infect Dis. 2014 Jan; 6(1):e2014073
- NCBI: <http://www.ncbi.nlm.nih.gov/gene/>