Browning and activation of brown adipose tissue as an anti-obesity treatment

Introduction

Obesity is caused by an energy imbalance when energy intake exceeds energy expenditure. It is characterized by excessive accumulation of adipose tissue, which might impair health. It is the most common metabolic disorder in the world and, according to the WHO, in 2014 more than 1.9 billion adults were overweight and of these over 610 million were classified as obese.

Currently, the therapeutic strategy seems to be more promising and powerful to prevent obesity is to increase energy expenditure by activating the brown adipose tissue (BAT). This tissue has been recently identified in adults. BAT is the major effector organ of the adaptive thermogenesis and it is specialized in dissipating chemical energy in the form of heat.[1]

Therefore, the activation of BAT could enable to oxidize energy reserves and increase energy expenditure, thus promoting weight loss.

Adipose tissue

It is an organ which plays a role in energy homeostasis. Specifically, there are 3 types of tissue: white adipose tissue (WAT), classic BAT and beige. Beige is a subtype of BAT, which was discovered in 2010, and it is scattered within WAT.

1. Origin and differentiation

Adipose tissue has a monodermal origin, but 2 types of precursors are derived from mesenchymal stem cells: (Fig.1) [1]

- WAT and beige are derived from Myf5-precursor. It is unknown whether beige arises from the transdifferentiation of mature WAT in response to some stimulus or it originates from the differentiation of specific precursors within WAT (CD11b+ / THEmTag+). [2] The development process of beige is called browning.
- Myf5+ precursors are induced to transform into classic BAT.

2. Features of the 3 types of adipocytes [1]

Throughout the body there are 2 types of WAT: subcutaneous WAT (sWAT) and visceral WAT.
- Round shape.
 - A large single lipid droplet
 - Nucleus is displaced to periphery
 - Few mitochondria
 - Yellowish colouring
- Activated state: similar to classic BAT, increases number of mitochondria and expression of UCP1 protein
 - Heat production
- Base state: similar to WAT
 - Polygonal shape and smaller size
 - Numerous small lipid droplets
 - Central nucleus
 - High number of mitochondria, which contain UCP1 protein
 - Brownish colouring
 - Highly vascularized tissue, innervated by SNS

PPARy is an adipogenic factor for the adipogenesis

PRD16, which stimulates PGC-1α, is essential for BAT differentiation

PGC-1α regulates:
- Mitochondrial biogenesis
- Oxidative metabolism
- Thermogenesis

Fig. 1 Differentiation into 3 types of adipocytes. [3]

Regulation of BAT

The SNS is the principal pathway of BAT regulation. However, there is a large number of endogenous molecules which regulate and activate it too.

1. Sympathetic nervous system

In response to cold exposure or an excessive intake of food, the sympathetic tone, which releases noradrenaline (NE), is increased by central mechanisms. Then, NE binds to β3 receptors present in the adipose tissue, promoting an intracellular response with the activation of PKA. This activation causes (Fig.3) (1):

- In BAT — Lipolysis and increase in thermogenic activity.
- In WAT — Lipolysis and browning.

Lipolysis: The hydrolysis of triglycerides (TG) generates and releases free fatty acids (FFA). PKA, PPARα are the mediators of the signal and activate the UCP1 present in BAT.

Thermogenic activity: Transcriptional induction of PGC-1α which enhances the expression of thermogenic genes such as UCP1. There is an increase in energy expenditure.

Browning: The expression of thermogenic genes in BAT and energy expenditure are increased.

2. Endogenous molecules that stimulate BAT

All these molecules are proposed as potential therapeutic targets to combat obesity. [6]

Irisin [9,10]:

- Myokine identified in 2012 by Bostrom et al.
- Irisin is secreted into the bloodstream by skeletal muscles after doing exercise or-shivering in response to cold.
- It acts on CD11b+ precursors within WAT and promotes WAT browning, increasing both the expression of thermogenic genes (UCPs) and the thermogenic activity in beige, and energy expenditure.
- Despite having clear therapeutic potential in mice, it is doubtful in humans. Contradictory results were obtained in studies which used different methods for the measurement of irisin after physical exercise.
- It derives from the cleavage of FNSCR5, which is expressed in muscle and in WAT. In humans, there is a mutation in the FNSCR5 start codon, which could explain why the increase in irisin levels are not detected.
- Mice treated with recombinant irisin showed weight loss.

FGF21:

- It is expressed in the liver and in BAT, and regulates glucose and lipid metabolism, and also thermogenesis. Upon cold exposure, its secretion rises in BAT [11]
- FGF21 acts by increasing thermogenic activity in BAT and enhancing browning in WAT.
- The administration of FGF21 in animal models with metabolic syndrome causes an increase in energy expenditure and weight loss, and improves insulin sensitivity and lipid parameters. Some loss was observed as an adverse effect in these mice.
- Obese subjects with Type 2 Diabetes treated with an FGF21 analog showed similar results in animal models.

There are different endogenous molecules which have thermogenic properties because they could activate BAT and/or promote WAT browning. All these factors are potential therapeutic strategies to combat obesity by increasing energy expenditure and therefore, enhancing weight loss. BMP7 has possibly the greatest therapeutic potential because it acts on BAT and also on the hypothalamus by decreasing appetite.

Further studies are needed in this area, both regarding the origin of beige or BAT regulation. Those studies should be performed mainly on humans, because the regulation may vary from animal models to people.

Gene therapy could be used to increase PGC-1α expression in WAT or to induce BAT browning, in order to increase adaptive thermogenesis and energy expenditure.

Aims and methods

The objectives of this project are:
- To describe the 3 types of adipocytes, specifying their origin as well as their main features and functions
- To study the main regulation of BAT: the sympathetic nervous system (SNS).
- To study irisin, FGF21, NP: BMP7, endogenous molecules which regulate BAT and are considered possible targets for the anti-obesity treatment.

The methodology used was a literature research. Firstly, recent Reviews regarding BAT were searched in Pubmed. And then, based on their references, specific articles on endogenous molecules that regulate this tissue were used.

References

Cardiac natriuretic peptides (NP):[8]

In 2012 Boredbiia et al. determined that an increases in circulating NP promotes browning in sWAT and boosts thermogenic activity in BAT.

After cold exposure NP levels rise, the expression of NPRA receptor is augmented and NP expression decreases. So, lipolysis and thermogenic activity are improved.

An inverse relationship between NP levels and BMI is established.

Limitation: high NP systemic levels might cause undesirable effects, such as excessive vasodilatation.

BMPP: [8]

BMI is primordial for the development of BAT and promotes increased thermogenesis in BAT and browning in WAT.

There is BMI expression in the hypothalamus too. This secretion stimulates BAT by a central mechanism and also decreases appetite by leptin-independent mTOR pathway.

Conclusions

Núria Gaja Capdevila
Degree in Biomedical Sciences